

Faculty of Science and Technology

Department of Computer Science

Beneath the snow – Developing a wireless sensor node for remote

locations in the Arctic

Øystein Tveito

Master’s thesis in Computer Science – INF-3990 – May 2020

“If people never did silly things,
nothing intelligent would ever get done.”

–Ludwig Wittgenstein

“The difference between theory and practice is that in theory,
there is no difference between theory and practice.”

–Richard Moore

Abstract
With climate change as an ever-present concern, ecologists from COAT are
hypothesizing that with a warmer climate, more rain-on-snow events will
occur. This creates ice layers in the snow which can inhibit the natural gas
exchange in rodent tunnels on the Arctic tundra, leading to a build-up of CO2.
COAT wants to explore this, but currently does not have any means of collecting
data on CO2 concentrations under the snow.

In this thesis we describe howwe designed, built, deployed, and improved upon
a robust hardware- and software solution, tailor-made to this scientific question.
During the course of this project, we created three distinct versions and we
have conducted two deployments of the sensor nodes in the Arctic tundra.
The node is able to measure CO2, temperature, and humidity, in addition to
monitoring an already existing COAT experiment. As the energy budget is a
crucial factor for the success of our project, we have conducted experiments to
optimize the power efficiency of the node.

The sensor nodes communicate over the LTE CAT M1 network, are waterproof,
and are capable of operating in temperatures as low as −25◦C. Through the use
of software optimization, low-power components, and efficient duty-cycling,
our solution is capable of operating for several years on battery power.

This novel sensor node solution will help the ecologists monitor and predict the
impact of climate change on life beneath the snow on the Arctic tundra. The
approach described will be applicable to a diverse set of scientific questions,
spanning many branches of data-driven research.

Acknowledgements
I would like to thank:

• My collaborator, Michael J. Murphy, for allowing me to participate in this
project, and sharing his knowledge on this topic. This thesis would not
have been what it is without help.

• My main advisor, Professor John Markus Bjørndalen, for guidance and
input throughout the the work on this thesis. Especially for his willingness
to read through the poor English of the early drafts.

• My co-advisor, Professor Otto Anshus, for his excellent guidance through-
out this project, and for hammering in the important separation between
accuracy and precision.

• My other co-advisor, Professor Anders Andersen, for his help and support,
even with the most densely packed calendar I have ever encountered in
Outlook.

• Our student advisor, Jan Fuglesteg, for his guidance through the admin-
istrative jungle throughout my time at UiT.

• COAT, for providing such an interesting problem for us to solve.
• COAT Tools (Thematic project, funded by UiT - The Arctic University of

Norway) and The Distributed Arctic Observatory (DAO, funded by the
Research Council of Norway, IKTPLUSS program, grant number 27062),
for funding the project.

• Ken-Arne Jensen, for sharing his experience in engineering, and for
forcing me to defend my choices, sometimes unsuccessfully.

• Telenor Research, and specifically Dr. Arne Munch-Ellingsen, for donat-
ing SIM-cards for our project, and for the help in debugging once we
encountered some problems with the signal.

• My brother, Torbjørn Tveito, for his excellent feedback and help with my
writing, his free physics lessons when we had problems with the antenna,
and lastly for his relentless badgering about that power consumption is
the wrong word for energy consumption.

• My mother, Aase Tveito, for her support, her services with proofreading,
and her babysitting, allowing me to works.

• My wife, Linda Tveito, and my children, Ada and Thomas, for their pa-
tience with me throughout this period.

Contents
Abstract iii

Acknowledgements v

List of Figures xiii

1 Introduction 1
1.1 COAT research project . 3
1.2 Complementary data . 3
1.3 CO2 . 4
1.4 Computer science in ecology 5
1.5 Overview of contributions 5

1.5.1 Michael J. Murphy 6
1.5.2 Øystein Tveito . 6
1.5.3 Remaining tasks . 6

2 Requirements 7
2.1 Non-interference . 7
2.2 Physical dimensions . 8
2.3 Measurement types . 8
2.4 Data quality . 9
2.5 Climate . 10
2.6 Data storage . 10
2.7 Time resolution . 10
2.8 Camouflage . 11
2.9 Power . 11
2.10 Practical concerns . 11

3 Related works 13
3.1 Commercial solutions . 13
3.2 Prior research in custom solutions 14

4 Architecture 17
4.1 Hardware architecture . 17

vii

viii contents

4.1.1 Wireless communication 18
4.1.2 Time keeping . 18
4.1.3 Logic controller . 18
4.1.4 Data storage . 18
4.1.5 Power management 18
4.1.6 Sensors . 18

4.2 Software architecture . 19
4.2.1 Operating modes . 19
4.2.2 Periodic sensor readings 19
4.2.3 Event-driven sensor readings 19
4.2.4 Communication . 19
4.2.5 Self test . 20

5 Design 21
5.1 Hardware design . 21

5.1.1 Logic controller . 22
5.1.2 Casing . 23
5.1.3 CO2 . 23
5.1.4 Temperature sensor 23
5.1.5 IR light sensor . 23
5.1.6 Storage . 24
5.1.7 Real Time Counter 24
5.1.8 Batteries . 24
5.1.9 Visual feedback device 24
5.1.10 Communication . 24

5.2 Software design V1.0 . 24
5.2.1 Operating system 26
5.2.2 Boot procedure . 26
5.2.3 Power on . 26
5.2.4 Watchdog reset . 26
5.2.5 Interrupt . 26
5.2.6 Communication cycle 27
5.2.7 Scheduling . 27

5.3 Software design V1.1 . 27
5.3.1 Self-test . 28
5.3.2 Communication cycle 29

5.4 Software design V2.0 . 29
5.4.1 Boot procedure . 30
5.4.2 Watchdog reset . 30
5.4.3 Events . 31
5.4.4 Scheduled interrupts 31
5.4.5 Communication . 31

6 Implementation 33

contents ix

6.1 Hardware version 1.0 and 1.1 34
6.1.1 Parts . 34
6.1.2 Budget . 36
6.1.3 Assembly . 37

6.2 Hardware version 2.0 . 38
6.2.1 Parts . 38
6.2.2 Assembly . 39

6.3 Physical implementation . 39
6.3.1 Version 1.0 . 40
6.3.2 Version 1.1 . 41
6.3.3 Version 2.0 . 41

6.4 Software implementation 41

7 Version 1.0 design and implementation discussion 45
7.1 Characteristics . 45

7.1.1 Accuracy . 45
7.1.2 Reliability . 46
7.1.3 Power consumption 46
7.1.4 Cost . 46
7.1.5 Ease of use . 46

7.2 Communication technology 47
7.2.1 Satellite communication 47
7.2.2 NB-IoT . 48
7.2.3 CAT-M1 . 49
7.2.4 LoRa . 50
7.2.5 Technology choice 51

7.3 Part selection . 51
7.3.1 Logic controller . 55
7.3.2 Power . 57

8 Lessons learned from the first deployment 59
8.1 Deployment procedure . 60
8.2 Deployment problems . 61
8.3 Communication problems 62
8.4 Hypotheses . 62

8.4.1 Communication back off 62
8.4.2 Weather conditions 63
8.4.3 Software or firmware problems 64
8.4.4 Hardware problems 65
8.4.5 Signal problems . 65

8.5 Investigation . 66
8.5.1 Capacitor effect . 66
8.5.2 Non-linear-electromagnetic effect 68
8.5.3 Antenna attenuation 68

x contents

8.6 Countermeasures . 69
8.6.1 Countermeasure testing 69
8.6.2 Countermeasure results 71

9 Second deployment - Modifications and experiences 75
9.1 Changes to the device . 75

9.1.1 Software changes 75
9.1.2 Physical changes . 76
9.1.3 Antenna changes . 77

9.2 Second deployment procedure 78
9.3 Second deployment . 79
9.4 Results . 80

10 Project analysis 83
10.1 Status this far . 83

10.1.1 CO2 . 84
10.1.2 Temperature . 85
10.1.3 Camera flash detection 85
10.1.4 Logs . 85
10.1.5 Unknowns . 85

10.2 Hardware . 86
10.3 Software . 87

10.3.1 Watchdog timer . 88
10.3.2 CO2 readings . 88
10.3.3 Operation . 89
10.3.4 Conclusion . 89

11 Final version 91
11.1 Hardware . 91

11.1.1 Main board . 91
11.1.2 CO2 and temperature sensor 95
11.1.3 SD-card . 95
11.1.4 Power supply . 95

11.2 Software . 96
11.2.1 Storage . 96
11.2.2 Power consumption 97

12 Power consumption - Experiment and results 99
12.1 Methodology . 99
12.2 Results . 100

13 Summary of the project 105
13.1 Status . 105
13.2 Challenges . 106

contents xi

13.2.1 Part selection . 106
13.2.2 Antenna problems 106
13.2.3 Time management 107

13.3 Lessons learned . 107
13.3.1 Part selection . 107
13.3.2 Antenna problems 108
13.3.3 Time management 109

13.4 Future work . 109

14 Conclusion 111

Bibliography 113

List of Figures
1.1 Picture of hidden camera trap 2
1.2 Picture taken by camera trap 3

2.1 A prototype camera trap . 8

4.1 Sensor node architecture diagram 17

5.1 Hardware design diagram 22
5.2 Software design version 1.0 diagram 25
5.3 Software design version 1.1 diagram 28
5.4 Software design version 2.0 diagram 30

6.1 Picture of version 1.0 sensor node 33
6.2 Picture of version 1.0 mainboard 34
6.3 Picture of version 2.0 . 38
6.4 Picture of a deployed co2 unit 40

7.1 Telenor coverage map - NB-IoT 48
7.2 Telia coverage map - NB-IoT 49
7.3 Telenor coverage map - CAT-M1 50
7.4 Picture of co2 sensor . 52
7.5 Picture of temperature sensor 53
7.6 Picture of RTC . 55
7.7 Picture of FiPy . 57

8.1 Picture of light sensor installation 60
8.2 Picture of antenna placement 61
8.3 Picture of antenna (back) 67
8.4 Frequency response graph of RC filter 68
8.5 Picture of antenna test tower 70
8.6 Graph of signal strength experiment - distance 72
8.7 Graph of signal strength experiment - comparative 72
8.8 Graph of signal strength experiment - threshold 73

xiii

xiv l ist of �gures

9.1 Picture of space buffers . 77
9.2 Picture of antenna spacer 78
9.3 Picture of computer scientist in the wild 80
9.4 Graph of communication over time 81

11.1 PCB traces intersecting . 92
11.2 Picture of PCB fix (front) 93
11.3 Picture of PCB fix (back) 93
11.4 Final PCB of version 2.0 . 94

12.1 Graph of measurement frequency vs deployment length . . . 102
12.2 Graph of graph of battery capacity vs deployment length . . 103

14.1 Picture of sensor node version 2.0 112

1
Introduction
Climate change will have a significant impact on the planet in different ways.
We are already seeing warmer temperatures, more extreme weather events
and local ecological changes. It is important to try to mitigate some of the
effects, but to do that we need to know what the consequences of climate
change are.

In order to explore these consequences, we need to monitor a range of pa-
rameters over time to identify trend lines and separate natural variations from
the effects of climate change. Often, these parameters should be measured in
locations far from people, and thus with little or no infrastructure supporting
the measurement setup. As a consequence of this isolation, robust and durable
systems are required to ensure stable data collection over time. One such
project is COAT (Climate-ecological Observatory for Arctic Tundra)[7], ran by
UiT - The Arctic University of Norway (UiT) in Varanger and Svalbard.

1

2 chapter 1 introduction

Figure 1.1: Picture of one of the camera traps hidden beneath rocks in the arctic tundra
(Photo: Michael J. Murphy)

1.1 coat research project 3

Figure 1.2: A picture taken by the camera trap (Photo: COAT)

1.1 COAT research project
Amongst other parameters, COAT is currently gathering data on rodent popula-
tions underneath the snow cover during the winter months using camera traps
[37]. They are conducting long term research on how the population is affected
by different conditions such as climate,weather, and other external and internal
factors. The existing setup consists of a tunnel with a wildlife camera mounted
in it. By photographing rodents going through the tunnel they can estimate
population size and when reproduction and growth is happening.

The picture data is correlatedwithweather data from both the national weather
service and COAT’s own weather stations in the area. In addition to this COAT
are gathering data using other methods, such as catch-and-release, kill-traps.
This is all part of the data set being used to model which factors influence the
ecosystem in the arctic tundra.

1.2 Complementary data
Because of warmer winters in the Arctic, the upper snow layers can melt and
create ice layers[40]. These layers might inhibit the natural gas exchange
through the snow. Without this exchange, the chemical makeup of air in the
tunnels may change. COAT’s hypothesis is that CO2 may build up in the tunnels.

4 chapter 1 introduction

The research group DAO was asked to create a sensor node that could detect
CO2 levels inside their pre-existing camera trap tunnels. Heightened CO2 levels
may change rodents reproductive behavior. In addition, sufficiently high CO2
concentrations can be fatal.

In addition to CO2 readings theywanted a health check on their camera tomake
sure that the camera was recording events, as the camera is not connected to
any network. We were not allowed to modify the camera in any way, as altering
their solution might skew the results gathered from the camera. Long-term
data collection is what enables them to draw conclusions on the data gathered.
Changing parameters in data collection will make the data harder to correlate
with data gathered from earlier years in addition to the risk of our solution not
working as well as their proven solution.

The camera records time of day and temperature,but data on the accuracy of the
temperature readings are not listed in their product specification. In addition,
the temperature sensor in the camera is directly attached to the camera PCB.
When the camera operates, the power consumed will be transformed to heat in
the camera case. This adds a bias to the temperature readings, shifting them to
a higher value. The camera case acts as an insulator, delays outside influence
on the temperature measured by the sensor. These effects are likely much less
significant than measurement error inherent in the sensor itself. COAT wanted
a second temperature reading to either collaborate with or replace the readings
from the sensor in the camera.

The camera takes a set of images each time it registers an event in addition to
one picture every 12 hours. Having the temperature sensor on the sensor node
also allows for regular temperature readings more often than the camera does.
The period between control pictures can be shortened, but that would reduce
battery life.

When the camera traps are set, there is only a small window of time where it
can be revisited formaintenance or battery replacement. When the snow comes
the traps cannot be touched. This is because we cannot disturb the habitat
without risking changing parameters. Therefore, the sensor node should stay
active through the year.

1.3 CO2
The knowledge gap we are attempting to fill is whether the CO2 levels in rodent
tunnels are significantly different from the above atmosphere. Small variations
in the concentration of CO2 may have significant ramifications for the planet

1.4 computer science in ecology 5

as a whole, but it hardly registers on an individual level. Previous experiments
have shown that the CO2 concentrations underneath snow can be as high as
70, 000 parts per million (ppm) [21]. Rodents can be affected by as little as
50, 000ppm [19] or by long term exposure to 3, 000ppm[35]. It is our objective
to investigate whether the conditions in the rodent tunnels are approaching
these levels, or if they are closer to a normal atmosphere at 400ppm[8]. We are
therefore not overly concerned with minimizing errors in our measurements. If
we have a variance of as high as 50% of the value, it doesn’t necessarily reduce
the usefulness of our dataset. The most interesting point to know is if we are
close to fresh air values, or in the thousands.

1.4 Computer science in ecology
We propose a wireless sensor node that will be able to gather the information
requested and synchronizing it with our campus servers. The research and
technology advantages done in later years within wireless sensory solutions
have providedmany exciting newpossibilities. The 4G standard even introduces
dedicated networks for sensor solutions with LTE CAT 1[6]. The problems
described are interesting from an IT point of view as they introduce some real
life challenges which must be overcome.

The proposed sensor node will have both dimensional and functional restric-
tions. Top amongst the challenges are how to have a node survive for a year,
whilst synchronizing both data and software updates from a remote location
with limited infrastructure. Both the hardware and the software must be robust.
Once deployed it is required to handle any problem in an adequate manner
without human intervention.

Creating IoT solutions like this require the software and hardware to work
together. The consolidation of software and hardware must be considered at
all stages in the project. This adds an additional dimension to the project
compared to a pure software project.

1.5 Overview of contributions
This project has been realized largely by two people: Øystein Tveito, the master
student and author of this thesis, and Michael J. Murphy, a PhD student at
UiT.

The project described is a part of the PhD-project of Murphy. Throughout this

6 chapter 1 introduction

project, we have cooperated closely. In order to give a coherent description of
the project, it is necessary also to include the contributions of Murphy. This
does not include all the work of Murphy, only the parts relevant for this thesis.
In the following, I shall describe the main division of work between us. In
all phases of the project, help has been given and offered, but the division of
responsibility and the main efforts are distributed as follows:

1.5.1 Michael J. Murphy
Murphy was in the beginning responsible for the software of the sensor node.
The parts of this project described in this thesis that the author does not claim
any credit for are:

• Software for version 1.0

• Software for version 1.1

• The first physical deployment

1.5.2 Øystein Tveito
The parts of the thesis for which the author claims full credit are:

• Hardware for version 1.0, 1.1, and 2.0

• Design and manufacturing of parts

• Assembly of units

• Software for version 2.0

• Testing and experiments done on version 2.0 of the sensor node

1.5.3 Remaining tasks
The remainder of the work have been done on together, and both Tveito and
Murphy should have credit for it.

2
Requirements
This project will cohabit the pre-existing research sites that COAT currently
operates with cameras in them on the arctic tundra. This results in a number
of requirements, restrictions, and issues that will have an impact on the soft-
ware, hardware, and packaging of the prototype node. Some requirements are
absolute, while others give "nice to have" value to the project.

2.1 Non-interference
The research project we are participating in is based upon time series of
continuous and comparable data, spanning years and decades. It is therefore
important that our contribution in no way interferes with or modifies the
existing experiment, namely the camera trap. This project should also not
be visible from inside the the main compartment of the camera trap, as this
could potentially interfere with the rodents behavior. furthermore, no wires
should be exposed anywhere in this compartment, as rodents tend to chew
on wires in the experience of the COAT researchers. A severed connection
can interfere with our data collection, and dead rodents could interfere with
the original experiment. The box can also not be altered in any major way to
ensure continuity with the data already being collected.

7

8 chapter 2 requirements

2.2 Physical dimensions
The box where the camera is placed has two smaller spaces in it with the
dimensions 100mm × 140mm × 230mm. Both compartments are empty and
we are allowed to use both if needed.

Figure 2.1: A dimensional accurate camera trap prototype we have in our office. Color
and lid mechanism has changed in deployed camera traps. (Photo: Øystein
Tveito)

2.3 Measurement types
As mentioned in the introduction, the primary objective of the project is to
measure CO2 concentrations. In addition, the ecologists want to get temper-
ature readings and the status of the camera they have deployed. Each of the
camera traps already onsite has a temperature sensor and record the current
temperature each time it takes a picture. The problem with this is that if no
rodents go through the trap, only one picture will be taken every 12 hours.
And so, the camera trap only records one measurement of temperature every
12 hours. It is requested that we take a temperature measurement on a more
regular basis.

2.4 data quality 9

Sometimes when a field operator deploys a camera, it is done incorrectly.
They might, for example, have forgotten to turn it on or it may be incorrectly
configured. It is also possible that the camera is malfunctioning. Physically
going out to the experiment after deployment is expensive, difficult, and time
consuming. If a camera is not operating correctly there is no way of knowing
until it is retrieved the following summer. Because of this, the ecologists want
a way to remotely check if a camera is working. If not they might consider
going out in the field to fix that specific unit.

2.4 Data quality
For this project, the main data point to gather is CO2 concentrations in the
rodent tunnels. COAT does not have a clear image of what concentrations they
expect to find. Therefore, the first round of experiments are meant to set a
baseline for future experiments.

As this is a first-order exploratory experiment we are not overly concerned
with minimizing measurement error. The sensor needs to be able to measure
the entire span of feasible concentrations. It also needs to be able to determine
the value within half an order of magnitude. In other words, a relative error
up to 20% is acceptable for our purposes.

The CO2 concentration is expected to be anywhere from 400ppm as found in
normal atmosphere[8] to 70.000ppm as found in previous research[21]. The
conditions where the camera traps are placed may have significant differences
from the environments investigated earlier. It is therefore possible that the
CO2 reaches even higher concentrations. The node therefore needs to be able
to detect a large range of CO2 concentrations, at least up to 70.000ppm. Our
data is intended to show if and how much CO2 concentrations in rodent snow
tunnels rise over the course of winter. While not crucial, minimizing sensor
error is part of the "nice to haves".

When it comes to temperature measurements it is important to minimize both
bias and error, while maximizing temperature resolution. We assume that the
temperature inside the tunnels will consistently be within a few degrees of
the freezing point of water. In this temperature range even small differences
can be significant. This is why the requirements for the thermometer are so
strict. Thermometers are widely avaliable and reasonably cheap. As such, the
high requirements for this sensor do not increase the cost or complexity of the
sensor node significantly.

The camera health check only needs to provide the information of whether

10 chapter 2 requirements

or not the camera functions. It is important to note that the non-interference
requirement limits the avaliable methods to indirect observation only.

2.5 Climate
The climate of the arctic tundra can prove a harsh environment for the sensor
node. In order for the project to succeed, the node will need to withstand the
elements for at least a year. The camera traps are covered in rocks, which helps
keep it stable, upright, and hidden (see Figure 1.1). They are not waterproof and
are occasionally flooded during snow melts. The sensor nodes must therefore
be able to survive being submerged in water. Before being covered in snow, the
camera traps can experience extreme temperatures. Due to this, the electronics
and batteries must remain functional after being exposed to temperatures as
low as −25◦C.

2.6 Data storage
The sensor node must record its measurements and log it’s status. This requires
a storage medium able to contain a year’s worth of measurements and logs.
Data corruption is an ever-present concern, and stepsmust be taken tominimize
the risk of data loss. Furthermore, the camera health check must be remotely
accessible. This requires the sensor node to have network communication
capabilities. When the node is connected to a network, it is beneficial if it is
able to send the other data as well.

2.7 Time resolution
The intended use of the CO2 data is to investigate gas buildup in rodent tunnels
over the course of winter. Short term fluctuations are not expected to occur. As
a result, only a few CO2 measurements a day are required. The data of interest
are only gathered while the camera trap is covered in snow. The snow acts as a
strong insulator, and the ground is a large reservoir of heat. Combined, these
effects act to dampen temperature fluctuations in the tunnels. Therefore the
temperature only needs to be measured on an hourly basis.

2.8 camou�age 11

2.8 Camouflage
Some of the deployment areas for this project are within national parks. Ac-
cording to the Natural Diversity Management law regarding national parks:
"Forskriften skal [...] sikre en uforstyrret opplevelse av naturen", (Naturmang-
foldloven, §35, 2009) . Our translation of it’s intent is that the national parks
must appear to be unspoiled nature. While COAT has received dispensation
to deploy the camera traps, they must be camouflaged to be as unnoticeable
as reasonably possible. The sensor node cannot make the camera trap signif-
icantly easier to notice. In addition to the legal requirement of camouflage,
curious hikers who find the camera traps might interfere with the experiment.
It is therefore necessary to camouflage all boxes, not only those in national
parks.

2.9 Power
Each deployment cycle is one year. It is therefore a strong preference that the
sensor node can stay active for at least that time. As stated previously, however,
the data of interest is when the camera trap is covered in snow. As such, it is
not strictly necessary that the node remains active after the snow melts. Due to
the camouflage restriction, solar panels and other common energy harvesting
techniques are not viable.

2.10 Practical concerns
Deployment involves carrying the sensor node several kilometers on foot. This
means that it should not be excessively heavy. It must also be durable enough
for some rough handling during transport. Effort must be made to ensure that
deployment is reasonably simple. It is preferable that the sensor node can use
the same type of battery as the camera. This would make deployment and
maintenance less complicated.

Price point is also an important feature of this project. While there is no
fixed budget, price should be considered an important factor for component
choices.

3
Related works
3.1 Commercial solutions
Scientific research often employs costly generic commercial solutions with high
precision and accuracy. Commercial products like the iButton from Maxims
Integrated or Hobo from Onset Computer are widely used[11] due to their
ease of use. One of the problems one might encounter is their relatively high
price[26].

In addition to price, neither provide a solution with CO2 sensing capabilities.
LI-COR and Lascar[11] both have CO2 sensor solutions with data loggers that
would meet our requirements to precision and accuracy. Again price would
be an issue, but not as big as the physical dimensions. The sensor solutions
comes as multiple briefcases made for fixed installations. Their other option is
handheld data loggers made for short term, manual data logging.

Tinytag from Garmin[11] have a couple of CO2 sensors that conforms to our
needs for precision and accuracy, in addition to spatial dimensions. Here, the
problem is that they are made for indoor environments, and would not survive
the climate we are exposing our sensor node to.

Testo have a few compact, energy efficient solutions that can measure most
of the data we need for this project. This product is also expensive, and is
not made for outdoor use. Aside from this, the sensors are limited to only
WiFi connectivity and a closed source cloud solution that will not work for our

13

14 chapter 3 related works

use-case.

Summarizing many of the units on the market, most of the available solutions
have limitations that will hinder us from doing what we are planning. From
the list in the study on widely used sensor solutions, all of them suffer from at
least one of these problems:

• Is too large for our use-case

• Price is too high for a large scale deployment

• Not suitable for outdoor use

• Not made for prolonged deployment without re-calibration

• Limited communication alternatives

• Proprietary cloud solutions without control over our data

• Limited selection of sensors

• Lacking support for third party sensor solutions to allow us to gather of
the needed data

3.2 Prior research in custom solutions
With the increasing availability of easy-to-use portable computing systems,
like the Raspberry pi and Arduino, several studies have employed custom, DIY
solutions in ecology [26, 29, 25]. While the Raspberry pi[29, 25] will give us
access to more computing power, the energy consumption of such a machine
wouldmake it problematic for our use-case. Arduino[26] compatible controllers
or similar provide enough power for data collection, with a significantly lower
power consumption.

Prior state of the art in wireless sensor nodes (WSN) have been applied to many
research fields, including both local and global environmental monitoring[2,
14, 20, 34, 41]. WSNs typically employ two different types of networks. One
type is a local network, where nodes exchange data and synchronizes time
and other configuration. This can be implemented by several different network
technologies, including WiFi, LoRa, and ZigBee. The other typical network type
is a remote network. This is a network that connects the nodes to the internet or
a remote location. This is typically implemented through public infrastructure

3.2 prior research in custom solutions 15

like phone networks or satellites. When deploying close to infrastructure WiFi
is also commonly used for this purpose.

For our purposes, having a local network could have been necessary, and still
can in future work. The local network allows nodes in network shadows to
communicate though other nodes. The implementation of such a network
can be done in a few different ways. There can be dedicated gateway nodes.
A gateway node then acts as the endpoint for the deployed sensor nodes.
One gateway node usually serves multiple sensor nodes. An advantage of this
scheme is that the sensor nodes do not have to have a remote network. A remote
network is usually more expensive to communicate through, power-wise, than
local direct connections. The power supply of the gateway node can then be
scaled for the added communication demands. One issue that is introduced
by having a dedicated gateway is that the network now has a single point of
failure. This can be remedied by having redundancy or by having the gateway
node easily accessible for repair.

Another approach is enabling all nodes to communicate with both the remote
and local networks. In this solution all nodes can be equal and all nodes
can act both as a normal node and a gateway. This is preferable in some
cases as there then is no need to develop two different hardware- and software
solutions. TheWSN could also be able to react dynamically to changing network
conditions.

Having bridging or multi-hop networks does, however, complicate the design.
As most battery powered solutions rely on duty cycling, having synchronized
time is important. Load distribution is also an interesting topic. Both of these
concerns have been addressed in previous research[3, 28, 5]. Solutions with di-
rect connection to permanent infrastructure do not have these concerns.

Sensor nodes have previously been deployed in harsh environments, including
rivers[4], a desert[42], and a volcano[41]. Environments can be challenging
from a practical perspective by having to protect the unit from harm. Con-
tamination of measurements is also a concern, including humidity, dust and
temperature. One important lesson learned in previous research is that the
node will need to be built ruggedly enough to withstand the elements. Main-
tenance of the node also needs to be considered. Some sensors need periodic
re-calibration to function as specified. If this is not possible, this needs to be
taken into account.

4
Architecture
This chapter describes the overall hardware and software architecture of the
sensor node. The architecture is the same for all versions of the node.

4.1 Hardware architecture
The hardware architecture is described in this section.

Logic controller
Schedule sensor readings
Schedule communication
Respond to external interrupts
Perform self test
Log state
Power management

Wireless communication
Manage connection
Encode and decode signal

Temperature CO2

Communication
Observation

Time keeping
Keep time accurately
Preserve counter in low power mode
Give interrupt to LC when scheduled

Storage
Store data and logs
Retain information w/o power

Power management
Provide power to the nod
Mange power
Controlled by LC

Sensors
Measure environment
Perform conversions if necessary
Provide data to LC on demand -
- Or give interrupt when needed
Conserve power when not in use

Camera trap
Managed by ecologists
Operates independently

Figure 4.1: Diagram illustrating the overall architecture of the sensor node

17

18 chapter 4 architecture

4.1.1 Wireless communication
The sensor node must be able to communicate wirelessly with a backhaul
network. Limited infrastructure on site sets restrictions on technology choices.
Environmental factors may also at times impede signals, which may make
communication difficult.

4.1.2 Time keeping
The sensor node needs the ability to keep track of elapsed time in order to
manage measurement intervals. The gathered data must also be correctly
timestamped. This indicates that there should be a time keeping device in the
sensor node solution.

4.1.3 Logic controller
All processing and control in the sensor node should be delegated to a central
logic controller. The logic controller will initiate all measurements and be in
control of the node’s network activity. It therefore must be able to communicate
with all the components of the sensor node.

4.1.4 Data storage
All data collected by the sensors must be stored by the sensor node. The
storage medium needs to have sufficient capacity for both data and logs that
are created during a deployment cycle. The chance of data corruption has to be
considered when choosing storage technology. Due to the possibility of power
failure, the data must be stored on a non-volatile medium.

4.1.5 Power management
The power management system must be able to supply all components with
power simultaneously. In addition, the system must store enough energy for
the node to remain active for at least one deployment cycle.

4.1.6 Sensors
The sensor array must contain sensors that are able to measure the temperature
and the concentration of CO2. It also needs to be able to investigate the camera

4.2 software architecture 19

status.

4.2 Software architecture
In this section, the software architecture is presented.

4.2.1 Operating modes
When the node is not doing other tasks it must activate a low-power mode.
It is critical that the node is able to engage the active mode from this state.
Reactivation must be possible by both scheduled and unscheduled events.

4.2.2 Periodic sensor readings
Somemeasurements must be done at regular, configurable intervals. The sensor
node is therefore required to be able to access time and create scheduled events.
At scheduled activations, the node must prepare the sensors and record the
data to the storage medium.

4.2.3 Event-driven sensor readings
It is assumed that the camera health check must be event-driven. This means
that the sensor node must be able to handle unscheduled, external interrupts.
The node must then record the event and return to a low-power state. These
activations must not affect the periodic reactivation schedule.

4.2.4 Communication
The sensor node must be able to communicate with the backend servers at
regular intervals. When communicating, the sensor node must send all data
and logs which have not been confirmed to be received by the servers previ-
ously. It must also check for and apply avaliable software updates. Network
communication can be used to synchronize time.

20 chapter 4 architecture

4.2.5 Self test
The sensor node must have a built-in self-test. This must investigate all the
essential functionalities of the sensor node. The results of the self-test must
be presented in an intuitive manner. The operator deploying the sensor node
should not be assumed to have intimate knowledge of the project.

5
Design
In this chapter we present the sensor node design. There is one main hardware
design and three software designs, one for each version of the node. The
software design is presented as a base design,with differences between versions
in subsequent sections.

5.1 Hardware design
The hardware design in Figure 5.1 is presented in this section. This design is
mostly common for all three versions. The design adjustments are presented
at the end of the section.

21

22 chapter 5 design

Micro Controller
Schedule sensor readings
Schedule communication
Respond to external int
Perform self test
Log state
Power management

Modem
Manage connection
Encode and decode signal

Real Time Counter
Keep time accurately
Preserve counter in low power mode
Give interrupt to LC when scheduled

Communication
Observation

Node casing

Batteries
Survive temperatures
Power node

SD card
Store data and logs
Retain information w/o power

Camera trap

Temperature sensor
Measure temperature
Report to micro controller

CO2 sensor
Measure CO2 concentration
Report to micro controller

Camera trap
Managed by ecologists
Operates independently

IR light sensor
Detect camera flashes
Wake micro controller

Temperature

CO2

Power management
Mange power
Turn power on/off

Figure 5.1: Diagram showing the hardware design (Diagram: Øystein Tveito)

5.1.1 Logic controller
The logic of the sensor node will be handled by a micro controller. It would be
preferable if the ratio of time where the micro controller is in low-powermode is
as high as reasonably possible. As such, it is important that the micro controller
is powerful enough to complete it’s assigned tasks in a speedy manner. In
addition, the power consumption in low-power mode should be considered of
high importance. The controller must have limited internal storage accessible

5.1 hardware design 23

from the user program. The storage is intended for state variables for the
program, thus the size only needs to be a few bytes in size.

5.1.2 Casing
The main board and the batteries of the sensor node will be placed in a
waterproof case. The sensor node needs to be able to function while completely
submerged in water. This is because the camera traps are not waterproof, and
are prone to flooding. The box must be able to fit in one of the camera trap
compartments.

5.1.3 CO2
The CO2 sensor must not have an error in excess of ±(300+ 15%)ppm. It must
be able to provide measurements within a few seconds of powering up. Due to
the limited power budget, power efficiency is an important concern for sensor
selection. The CO2 sensor must be mounted on the outside of the sensor node
casing. As such, the sensor must either be waterproof or protected by other
means.

The sensor technology chosen must measure CO2 directly. Some "CO2" sensors
measure other components in the air and returns an "equivalent CO2" (eCO2)
value. CO2 is a stable gas and hence it is hard to measure it with normal
chemical or resistive sensors. The eCO2 is based on known ratios of volatile
components in common CO2 sources. Those can be effective in estimating CO2
indoor or from cars. In our case, however, it is not certain that the CO2 sources
will produce the other components in the same ratio.

5.1.4 Temperature sensor
The temperature sensor will be mounted on the outside of the sensor node
casing. It must not have a measurement error in excess of ±0.5◦C when within
our expected temperature range.

5.1.5 IR light sensor
The wild-life camera uses an infra-red (IR) flash to illuminate rodents in the
camera trap. Therefore the camera health can be determined by using an IR
light sensor to detect these flashes. In order to do this, it is important that the
IR sensor has an unobstructed view of the main camera trap compartment. As

24 chapter 5 design

this sensor must be active continuously, it is especially important to consider
power efficiency.

5.1.6 Storage
The node must have a SD-card connected with a storage capacity of at least
2GB. The micro controller must have an internal, non-volatile storage of at
least 4MB.

5.1.7 Real Time Counter
An RTC will be responsible for timekeeping. Time drift should be limited to no
more than a few seconds per day.

5.1.8 Batteries
Batteries needs to sustain the node for one year of operation. The batteries
chosen are the same AA lithium batteries used in the camera.

5.1.9 Visual feedback device
The sensor node must have the ability to give visual feedback to the operator
during deployment. A RGB LED will be used for that purpose. This light must
be visible form the outside of the unit with the lid closed.

5.1.10 Communication
Communication will be accomplished with LTE CAT M1. LTE communication
will limit the amount of infrastructure this project need to be deploy.

5.2 Software design V1.0
In this section, the software design of version 1.0 of the sensor node is pre-
sented. The design is laid out in Figure 5.2.

5.2 software design v1.0 25

Boot

Boot reason

Log error report

Communication

Read sensors

Run self-test

Power cycle

Interrupt

No

Save data/log

Schedule next
wakeup

Time interrupt

Yes

Save flash
event

No Sleep
remainder

Connect to
tower

Yes

Update time
(NTP)

Success

Send data
and logs

Success

Ask for update

Success

Update software
and reset to

communication cycle

Update ready

No update available

Failure

Failure

Failure

Failure

Go to sleep

Verify and fix state

Reset to
communication cycle

Updates on
SD card

NoUpdate software

Yes

Watchdog

Figure 5.2: Diagram showing the software design of software version 1.0 (Diagram:
Øystein Tveito)

A schematic representation of the software design is presented in Figure 5.2.

26 chapter 5 design

5.2.1 Operating system
The program running on the device will have almost total control over the
hardware as the underlying operating system is a minimal real-time operating
system. The program therefore needs to handle all scheduling and communi-
cation explicitly.

5.2.2 Boot procedure
On boot the program will check what caused the activation. There are three
alternatives: power on, watchdog timer reset, or an interrupt. Each activation
type is handled differently, as described below.

5.2.3 Power on
When the node detects that it was powered on it should run through a self-
test procedure. The results of the self test must be presented visually to the
operator. It should then check the internal storage medium if there are any
updates ready to install. If so, the update should be installed. It should then
schedule an immediate communication cycle and reset.

5.2.4 Watchdog reset
The watchdog mechanism is a timer which restarts the system when it reaches
0. In order to avoid triggering this mechanism, the system must regularly reset
(or "feed") the watchdog timer. If the watchdog reset has been activated, the
program has gotten stuck at an unknown point during execution.

If a watchdog reset was triggered while doing a self test, the self test runs
again until it is completed successfully. In any other state, the program will
not try to resume its previous activity. It will instead schedule the next wake
up time, and go to low-power mode.

5.2.5 Interrupt
There are two types of interrupts. One is a scheduled interrupt for a commu-
nication or measurement cycle. The other is due to an external event detected
by the camera sensor. The sensor node checks which type of interrupt oc-
curred.

5.3 software design v1.1 27

In the case of an external interrupt, the node records the event to the internal
storage of the micro controller. The node determines how much time is remain-
ing until it’s next scheduled wake-up, and activates low-power mode for this
duration. For measurement cycles, the node activates and reads all sensors. It
then records this information to the external storage.

5.2.6 Communication cycle
In a communication cycle, the first task is to establish a connection to a cell
tower. If this fails, a back-off timer is increased by one day. At each failed
attempt, the back-off timer is incremented by one day, up to a maximum delay
of 7 days between communication cycles.

In the case of a successful connection, the first task is to synchronize time. The
back-off counter is also reset. The node is to connect to "pool.ntp.org", using
DNS to resolve the host name. Then the node must connect to the data server
at UiT. The data is to be sent first, then logs. The node must then check for
and apply any available updates.

5.2.7 Scheduling
After all tasks are completed, the node will schedule the next task and enter a
low-power state. Sensor cycles are scheduled with a fixed period of 30minutes.
Communication cycles are normally scheduled daily, where communication
occurs at a random time between 03:10 and 03:20 GMT. This is done to
reduce interference between nodes, which may happen if all the nodes tried to
communicate at the same time. The number of days between communication
cycles is dependant upon the back-off counter.

5.3 Software design V1.1
The software design of version 1.1 is almost identical to version 1.0. There are
small, but significant differences in the design. These differences were intro-
duced due to experiences from field-tests of version 1.0. The rationale of these
changes are described in Chapter 8. The design is laid out in Figure 5.3.

28 chapter 5 design

Boot

Boot reason

Log error report

Communication

Read sensors

Power cycle

Interrupt

No

Save data/log

Schedule next
wakeup

Time interrupt

Yes

Save flash
event

No

Sleep
remainder

Connect to
tower

Yes

Ask for update

Success

Send log
and data

No updates

Update time

Success

Failure

Failure

Failure

Failure

Go to sleep

Update software
and reset to

communication cycle

Update ready

Verify and fix state
Watchdog

Updates on
SD card

NoUpdate software

Yes

Run self-test

Reset to
communication cycle

Figure 5.3: Diagram showing the software design of software version 1.1 (Diagram:
Øystein Tveito)

A schematic representation of this software design is presented in Figure 5.3.

5.3.1 Self-test
When the node boots and detects a power cycle, the self test is administered as
before. In this version, if a watchdog timer is triggered during the self-test, the

5.4 software design v2.0 29

self-test is not restarted. This eliminates the possibility of an infinite self-test
loop.

5.3.2 Communication cycle
This design no longer relies on DNS look-ups. The node configuration has hard
coded IP addresses for each of the servers it is supposed to reach. The NTP
server is changed from "pool.ntp.org" to an NTP server hosted at UiT. This
sacrifices redundancy to allow for a hard coded IP address.

The order of communication in version 1.1 is different to that in version 1.0.
The node will first check for and apply available updates. After this, the node
will send recorded operation logs and then gathered data. Lastly, it will contact
the NTP server and update the RTC.

5.4 Software design V2.0
While the software design of version 2.0 is drawing on the experiences from
the previous versions, it is mostly redone from scratch. There are several
differences in this version compared to the previous designs. The design is laid
out in Figure 5.4.

30 chapter 5 design

Boot

Boot reason

Schedule next
wakeup

Power on

Go to sleep

Time interrupt
Interrupt

Watchdog timer

Make sure state is
safe

Check type
No

Read sensors

Yes

Save data and logs
locally

Communication

Record event Perform self test

Test mode

Flash detector

Return to sleep for
remainder of time

Sleep til next task

Connect to
tower

Sync state
with server Send log Send old data

Yes OK OK OK

Add error to master
log

Schedule next
wakeup

Go to sleep

No Fail Fail Fail

Delete old data

OK
Record log

Fail

Send local data

Record log

Fail

Access storage
OK

Fail

New day

No
Move data from

internal to external
storage

Yes

Figure 5.4: Diagram showing the software design of software version 2.0 (Diagram:
Øystein Tveito)

5.4.1 Boot procedure
On boot, the cause for the activation needs to be determined. In this version of
the design, when a power on is detected, it will calculate the next scheduled
measurement time immediately, and immediately enter low-power mode. A
self test is not performed automatically.

5.4.2 Watchdog reset
Watchdog timer resets are handled in the same manner as version 1.1.

5.4 software design v2.0 31

5.4.3 Events
Interrupts can, as in previous versions, either be timer based or event driven.
In this version we introduce a new event. This event is an external interrupt,
triggered manually by the operator. There are therefore two different types of
external interrupts and the node will need to distinguish between them. The
new event is used to initialize the self-test functionality. The procedure for the
camera sensor event has not changed.

5.4.4 Scheduled interrupts
In this design, timer based interrupts are only used to initiate measurements.
At every scheduled event, the sensor readings are recorded. As opposed to
previous designs, the internal storage of the micro controller is used to record
both measurements and logs. The data is moved to the external storage once
a day. Limiting the number of times the program writes to the SD-card will
drastically reduce the risk of corruption. The logs are always kept in internal
storage to allow for logging in the event of corruption of the SD-card.

5.4.5 Communication
The node will make an attempt to communicate once a day.

This is done right after a normal sensor cycle. The node will first try to connect
to a cell tower. If it succeeds, it will try to synchronize its state with the data
server. This includes time, software version and configuration. It will then send
the master log, always saved in internal storage to the server. If any of these
steps fails, the error will be logged and the node will schedule the next task
and go to sleep.

If communication is established, the node will first try to access the external
storage. If successful, it will send all data on the external storage to the server
and then delete it. If a failure occurs it will try to send the locally stored data
and after that delete it. After these steps have been completed, the next task
will be scheduled and the node will go back to sleep.

6
Implementation

Figure 6.1: A picture of a finished version 1.0 of the CO2 sensor node from the side
(left) and front (right) (Photo: Øystein Tveito)

33

34 chapter 6 implementation

This chapter will describe the implementation of the hardware, software, and
the physical construction of the sensor node. We present some arguments and
reasoning for the different choices made in later chapters.

6.1 Hardware version 1.0 and 1.1
There are no differences in the implementation of the hardware between
version 1.0 and 1.1. The below description is valid for both.

Figure 6.2: Picture of the front (left) and back (right) of the version 1.0 main board
of the co2 sensor. Dimensions are 75mm·100mm. (Photo: Øystein Tveito)

6.1.1 Parts
The parts for the node have been selected based on the design and requirement
constraints given in previous chapters.

Micro controller
The micro controller chosen for the project is a FiPy[32] from Pycom. This is
a ESP32[10] based micro controller that runs MicroPython(µPython)[27]. The
FiPy also integrates LoRa, SigFox and LTE-M modems, the latter including NB

6.1 hardware version 1.0 and 1.1 35

IoT[6] and CAT M1[16].

CO2 sensor
The carbon dioxide sensor chosen is the ExplorIR-w-20[15] from CozIR. The
sensor is based on NDIR technology and can measure from 0% to 20% CO2
concentrations.

Temperature sensor
For measuring temperature, the DS18b20[23] temperature sensor in a water-
tight package is chosen. This allows the sensor to be directly exposed to the
elements without risking component failure.

RTC
We chose a breakout of the DS3231[22] as the RTC. This is a low cost, but
accurate RTC chip with internal temperature compensation.

SD-card
The SD-card was chosen to be a Panasonic RP-SMLF08DA1. This is a cheap,
8GB SD-card that can handle temperatures down to −25◦C. The SD-card is
slotted into an SD-card breakout board from Adafruit with a 2.54mm pitch.
The SD-card breakout board simplifies access to the pins of the SD-card.

Camera monitor
The camera monitor is an unknown general purpose IR NPN transistor left over
from a previous project. We do not have a part number for this, but most IR NPN
transistors with the correct wave length should work for this purpose.

Power management
The power to the SD-card, the CO2 sensor, and the temperature sensor is cut
while in low power mode by a N-channel MOSFET[18]. The MOSFET is wired
between the ground connection of the parts and the ground of the node.

36 chapter 6 implementation

Batteries
The battery type chosen is the Energizer Ultimate Lithium[9]. The same
batteries are used by the ecologists in the cameras this project is co-located
with. Packs of three batteries batteries in series gives 1.5V ∗ 3 = 4.5V nominal
voltage. The node have four of these battery packs connected in parallel
resulting in 3500mAh ∗ 4 = 14Ah of capacity.

6.1.2 Budget
The cost per sensor node is now as follows:

6.1 hardware version 1.0 and 1.1 37

Computing parts
Microcontroller Pycom FiPy $60
MicroSD breakout Adafruit 254 $8
Real-time clock (RTC) Adafruit DS3231 $14

Sensors
CO2 sensor Gas Sensing Solutions ExplorIR-W-20 $160
Temperature sensor DFRobot DFR0198 $7
IR photo transistor Unknown NPN <$1

Communication
LTE Antenna Pycom LTE antenna kit $17
SIM card Telenor SIM card with data subscription donated

Electronics
Connector board DFRobot FIT0203 78mm x 58mm $2
Power switch NKK MS12ANA03 $5
Pin header kit Adafruit 4174 $2
MosFET MOSFET N-CH 100V 17A TO-220AB $1
Resistors 1M and 2 x 1K 1/4W <$1

Enclosure
Enclosure Polycase WH-02-03 Enclosure $14
Battery holders 4x Memory Protection Devices SBH331A $10
Hood for CO2 sensor custom 3D printed <$1
Feet custom 3D printed <$1

Accessories
MicroSD card Panasonic RP-SMLF08DA1 $11
Batteries 12x Energizer L-91 1.5 V Lithium $17
RTC battery Clas Ohlson CR1220 $2
Silica packet 1/6U <$1

Total $330

6.1.3 Assembly
Themain board of the CO2 sensor is created on a perforated boardwith 2.54mm
spacing. All parts are soldered by hand to this, and traces are either manually
created by solder between holes or by wires going from point to point (see
Figure 6.2).

38 chapter 6 implementation

6.2 Hardware version 2.0
The new version of the hardware has a few improvement in parts and manu-
facturing process.

Figure 6.3: Picture of the front (left) and back (right) of the version 2.0 main board
of the co2 sensor (Photo: Øystein Tveito)

6.2.1 Parts
There have been two substitutions, one added component, and one component
is removed. The battery capacity has also been changed.

CO2
The ExplorIR-W-20 CO2 sensor has been replaced by the ExplorIR-W-EH-20.
The added "E" means that the temperature range is extended. The new sensor
can operate from −25◦C to 55◦C. The "H" means it has a built in temperature
and humidity sensor that is used to give more accurate results.

Temperature
The dedicated temperature sensor is removed from this implementation. Tem-
perature readings are now given by the temperature and humidity sensor on
the CO2 sensor.

6.3 physical implementation 39

SD-card
The SD-card is replaced by an industrial grade SD-card[1] with 2GB storage.
The new card is based on single-level-cell technology. This should be more
robust than the previously chosen SD-card.

Reed switch
A reed switch have been added to allow waking up the unit with a strong
magnetic field. This is used to invoke the self-test procedure.

Batteries
The new main board of the sensor node is significantly smaller than that of the
earlier versions. This allows for more batteries to be fitted inside the sensor
node casing. Two additional sets of batteries have been fitted, for a total of
six sets of three. This gives the newest version a total battery capacity of
21, 000mAh.

6.2.2 Assembly
The assembly process have changed from soldering by hand on a perforated
board to a dedicated Printed Circuit Board (PCB). The PCB have holes for
all the components, and all the traces between components are within the
PCB.

6.3 Physical implementation
The physical implementation is mainly restricted by the hardware implemen-
tation and the requirements. The node needs to fit inside the designated
compartment of the camera trap. The sensors need to reach the environment
they are monitoring. Finally, the signal coverage must be taken into account
as the camera trap is made of metal.

All versions have a similar implementations, with a few alterations. Version
1.0 will be described first. For the following versions, only the modifications
will be described.

40 chapter 6 implementation

Figure 6.4: Picture showing the a unit deployed in a camera trap before the antenna
and camera sensor is secured (Photo: Michael J. Murphy)

6.3.1 Version 1.0
The casing for the unit is a NEMA 4X[30] box from Polycase[31]. It has usable
internal dimensions of 110mmx80mmx55mm. The external dimensions are
130mmx100mmx70mm.

The battery packs are in the bottom of the case and the main board is placed
on top of them. This allows the operator to see the main controller and the
RGB light during the self test.

The CO2 sensor is encased in a 3D printed hood. The hood protects the sensor
from water from the top and sides. It has no bottom, allowing the sensor to be
in direct contact with the air in the camera trap.

The CO2, temperature and camera sensor cables are routed out of the bottom
of the sensor node. The hole is sealed with ethylene-vinyl acetate (hot glue)
that allows for a watertight seal, even with temperature variations.

The antenna must be placed on top of the lid of the camera trap. The antenna
wire is too short for it to be routed out of the bottom of the node. Thus, an
additional hole had to be made at the top of the sensor node.

The camera sensor is routed over the separation wall between the side compart-
ment and the main camera trap compartment, directed towards the camera.

6.4 software implementation 41

The antenna is routed out of the camera trap and adhered to the top of the lid
with a layer of painters tape, then a layer of packaging tape.

6.3.2 Version 1.1
This version adds a standoff that is slotted into the side for the sensor node
box. This protects the SD-card that is protruding from the main board.

It also adds a standoff for the antenna of 10mm. The standoff is 3D printed
with minimal amounts of plastic to minimize electromagnetic impedance. A
3d printed cover is added to protect the antenna from the environment

6.3.3 Version 2.0
As the new PCB is designed with the SD-card in mind, the stand offs are no
longer needed. A 3d printed fitting is installed in the box instead to make
everything fit together and hold everything in place.

6.4 Software implementation
All versions of the software is implemented in µPython on version 1.18.1.R4.
Version 1.0 and 1.1 are implemented by Michael J. Murphy, the PhD student.
Version 2.0 is implemented from scratch by Øystein Tveito, the author of this
thesis. A quick overview of some of the changes will be given here:

42 chapter 6 implementation

Feature V1.0 V1.1 V2.0
Watchdog
timer 10 seconds 60 seconds 180 seconds

Log storage External only External Only
Internal storage
Pushed to external
storage daily

Data storage External only External Only
Internal storage
Pushed to external
storage daily

Can operate
w/o SD-card No No Yes

Communication
interval Daily with back-off Daily Daily

Communication
schedule Separate wake-up Separate wake-up

Combined with
measurement
cycle

OTA software
update Yes Yes Yes

OTA firmware
update No No Yes

Checksum on
updates No No Yes

Even though the newest version of the source code contains much of the same
functionality, the code is written from scratch. The newer code is based on the
experiences gathered from the testing of the first two versions.

The watchdog timer was decided to be set to 180 seconds instead of the 10
and 60 seconds as in previous versions. This was done to keep its intended
functionality of only interfering with a running program if the program is stuck
or otherwise can not function as intended. The use of the feed function is also
heavily reduced as a consequence of this. This function is only called once in
measurement, once when transferring files from internal to external storage,
and once for each attempt at communication with the server. Previous versions
of the code had to feed the timer more frequent as the timer was shorter. This
makes the code more complex.

As described in the design of the version 2.0 software, the data is now stored
primarily in internal storage, and only pushed to the SD-card once each day.
To simplify scheduling of this, the first time a reading is recorded in a day all
old data is pushed to SD-card. As data and logs are stored in files named as the
current date, detecting a new date can be done by checking if a file containing

6.4 software implementation 43

the current date is present.

With data stored in internal storage, the node can theoretically operate as
normal without an SD-card. No planned scenario involves deploying nodes
without SD-cards, but this is useful in the event of a corrupted SD-card. Older
versions of the software would not function after the corruption of the SD-card.
In the last version we would still be able to get both data and logs as long as
the node is in regular communication with the network. We would also be
able to determine that a node has a corrupt SD-card from the logs. This makes
remote debugging easier.

Communication is scheduled as frequent as in previous versions. The only
difference is that it is combined with a normal measurement cycle. This saves
the node from one wake-up event. As there is some overhead with waking up,
this saves energy. The random scheduling scheme done in version 1.0 and 1.1
was done to eliminate interference from neighboring nodes. The nodes use
a cellular network designed for several hundred simultaneous users. Further,
the nodes are located in a remote location with minimal competing users. This
feature was therefore deemed unnecessary. If, in the future, the node would
be based on different network communication technologies, this feature could
reintroduced.

The update functionality is in the older versions based on a custom function.
Files are downloaded from the backend server, and the files in the file system
are replaced. This function does no checksum functionality. Not checking the
checksum of files being downloaded introduces the risk of corrupted update
files. There is also no support for firmware updates. The newest versions rely
on the built-in Over The Air (OTA) function implemented in µPython. This
function uses checksums to ensure that files are not corrupted. Firmware
updates are also supported by this function.

7
Version 1.0 design andimplementation discussion
This chapter will explain some of the choices made in the architecture, design
and implementation of version 1.0 in greater detail.

7.1 Characteristics
Selecting the appropriate parts is an important step in the process. When select-
ing sensors there were predominately five distinct characteristics that needed
to be weighted against each other: accuracy, reliability, power consumption,
price, and ease of use.

7.1.1 Accuracy
This is the ability to get accurate readings from the sensor. It is often one of the
first issues thatmust be determined. The accuracy required varies tremendously
depending on the application. The accuracy needed in a magnetometer in a
phone intended for use in navigation will be several orders of magnitude lower
than the accuracy needed when monitoring the shift in the earths magnetic
fields. Similarly, we have to decide how accurate the readings from the different

45

46 chapter 7 version 1.0 design and implementation discussion

sensors we chose needs to be. Accuracy will likely come at the expense of either
cost or power consumption, and in most cases both.

7.1.2 Reliability
The short explanation of reliability is how much we can depend on the sensor,
but in our case, there is mainly one concern that needs to be addressed. The
hardware needs to survive the harsh climate in the arctic tundra. This will
in most cases be a Boolean and absolute concern, either it is good enough to
survive, or it is not. If a part is made to survive the climate we expect the units
to be exposed to, it will be good enough for us.

7.1.3 Power consumption
Since our device will need to survive for at least a year on batteries this is one of
the most important factors. Two main factors determine if the part is suitable
for our purpose: The average consumption of power, and the warm-up time.
Many sensors have a specified warm-up time, meaning it needs anywhere from
a few milliseconds to a few minutes before they can deliver reliable data. This
becomes significant if the entire system needs to be powered on for longer
while waiting for the sensor to deliver data. Then it is no longer the power
consumption of the sensor times the time needed, but the consumption of the
entire system times the additional wait time.

7.1.4 Cost
Part of the goal is to gather data from as many locations as possible to get
a holistic view of how the sub snow conditions are effected by today’s and
tomorrow’s climate. Subsequently, the cheaper we can get each of these units,
the more units we can produce. We would rather get data of slightly lesser
quality from hundreds of locations, than high quality data from a few locations.
Therefore the cost needs to be taken into account when choosing the parts for
the project.

7.1.5 Ease of use
This might be one of the most important factors to consider in this project.
From the project got conceived to our defined deployment day, not much time
was available for producing and getting the different parts to work together.
Having parts that are easy to interface with, preferably with a software library

7.2 communication technology 47

already existing for our logic controller, is a crucial factor for finishing the
project on time. For this project, we therefore decided early on that we would
use breakout boards for every part where one were available.

A breakout board is a separate PCB with all the necessary electronics, and
sometimes even a separate logic controller, for the sensor to work with minimal
effort. With a breakout of a sensor, it is usually just required to wire up power
and ground, and the required signal lines. They also normally come with a
pin-out consisting of pins with 2.54mm spacing, the de facto standard of hobby
electronics. This allowed us to use a perf board with the same spacing, and
we could solder all the component to a preexisting PCB and wire up all the
components ourselves. Thus there was no need to have a custom PCB created
at the beginning of the project.

7.2 Communication technology
Communication is one of the main features of this sensor node. We wanted to
get the data back to the scientists analyzing it as soon as possible. To accomplish
that we needed a communication technology that works in remote locations
and that does not deplete the batteries too quickly. Four technologies have
been discussed for us to use: satellite, NB-IoT, CAT-M1 and LoRa.

7.2.1 Satellite communication
The major upside to satellite communication is that there is near-global cov-
erage. With a satellite transceiver we can establish two-way communication
from anywhere and not rely on the infrastructure where we are deploying.
The downside to satellites is delays and power consumption. When looking at
transceivers from iridium, one of the few commercial satellite data providers,
their transceiver requires up to 1.3A peak current and 145mA average during
transmit and 156mA peak during receive. This would limit our communication
budget by draining the batteries quite quickly.

Iridium is using the 1.6GHz band to communicate to and from the satellites.
This frequency does not have the same penetration power as the other com-
munication technologies we considered which are operating in the 800 and
900MHz bands. The basic principle is the lower the frequency, the better the
penetration.

48 chapter 7 version 1.0 design and implementation discussion

7.2.2 NB-IoT
NB-IoT, formally known as LTE CAT M2, is one of the newly established LTE
protocols. It is made specifically for IoT devices and is a network provided
by telecom companies. It is using Direct-Sequence Spread Spectrum (DSSS)
modulation which is specifically designed to reduce interference with other
signals. The range of NB-IoT is also significantly greater than traditional LTE
(4G) networks.

One of the drawbacks of NB-IoT is the reduced data rate you get. The downlink
is capped to 27.2Kbit/s and uplink to 62.5Kbit/s. This makes it hard to transfer
firmware updates or other files to and from the units in the field when desirable.
The network standard also allows delays of up to 10 seconds for a packet to get
through, severely limiting the usefulness of TCP or other higher-level protocols
for guaranteed delivery of data.

Telenor and Telia are the two telecom companies in Norway offering this
network. At the time of writing, both Telenor’s and Telia’s coverage maps for
NB-IoT indicates coverage at the planned test site[38, 39], but further east for
several of the planned deployment sites Telenor states they have no coverage
at all (Figure 7.1), and Telia’s coverage is spotty at best (Figure 7.2).

Figure 7.1: Screenshot from Telenor’s coverage map of NB-IoT (Source: te-
lenor.no/bedrift/iot/dekning/)

7.2 communication technology 49

Figure 7.2: Screenshot from Telia’s coverage map of NB-IoT (Source:
telia.no/dekning/)

7.2.3 CAT-M1
This technology is also defined together with NB-IoT, but this network has a
significantly higher bit rate, namely 300Kbit/s up and 375Kbit/s down. Both
CAT-M1 and NB-IoT have a higher bit-rate than what is stated here according
to the protocol, but that requires multiband modems, which are both more
costly and use more power and is therefore not taken into consideration.

Cat M1 is offered through telecom companies. At the time of deployment,
Telenor had coverage comparable to NB-IoT, and also covering the eastern part
of Finnmark (Figure 7.3). Telia, on the other hand, had only a few test networks
in the southern part of Norway. They now have a nation-wide coverage.

The network delay is also much lower than NB-IoT, with a guarantee of <1s.
The downside to CAT-M1 is that when compared to NB-IoT it uses more power
to transmit. This is however mitigated in practice by the fact that the bit-rate is
much higher on CAT-M1. The time needed to send is much lower and therefore
comparable amounts of power should be spent regardless of witch of the two
aforementioned LTE-M technologies are used.

50 chapter 7 version 1.0 design and implementation discussion

Figure 7.3: Screenshot from Telenor’s coverage map of CAT-M1 (Source: te-
lenor.no/bedrift/iot/dekning/)

7.2.4 LoRa
The last option we considered was LoRa. LoRa has many of the same properties
as the two LTE technologies, but with the added benefit of being on an open
radio band. This means that we could set up our own gateway for all the devices
to connect to and place the gateway on a location with line of sight both to the
nodes and to a radio tower offering 4G or other type of network connection.
This would allow for more flexibility in deployment, allowing us to deploy in
areas without coverage, for example in valleys and network shadows.

This would come at a cost of more complexity of both software and hardware.
Firstly, we would need another unit to deploy in a different location than the
rest of the units, making deployment more complex. It would also introduce
a single-point-of-failure: if the gateway goes down, no communication can be
done. This could be compensated for by having all the units act as gateways and
allowing units without LTE network to send their data to units with coverage.
This would introduce a greater need for time synchronization and added power
needs. Time synchronization is not an easy feat in low power, wireless devices.
The lack of it would either deem communication a random event or introduce
the need for huge time buffers. Devices would need to stay online to listen for
other devices that want to communicate when it otherwise could go back to
sleep.

Finally, this will in most cases result in a skewed power consumption by requir-
ing the units with coverage to transmit both their own data and the data from
everyone else. To make sure this scheme would work, the battery capacity of

7.3 part selection 51

all units would need to be increased compared to the scheme where all devices
run independently of each other.

LoRa therefore seems like a good solution if we need to deploy in locations
we suspect to lack coverage, but with deployments in areas with coverage the
other methods might be preferable.

7.2.5 Technology choice
We landed on LTE CAT-M1 for the first prototype as we feel this covers most of
our needs without any major drawbacks. The test area is according to Telenor
well within coverage from their towers, as is NB-IoT, but the added transfer rate
from CAT-M1 is desirable. Satellite communication is too hard on the batteries
and LoRa gateway and LoRa meshing drives up the complexity too much with
our limited budget and time restraint for the first deployment. Telenor donated
the SIM-cards to the project, but as Telia did not have coverage in the area this
was not defining for the choice of operator.

7.3 Part selection
The characteristics discussed in Section 7.1 were weighed up against each other
to find the ideal parts for our project. For each part we defined the minimum
specs, and then tried to find the ideal part to fill that role.

CO2 sensor
This is the most important reading we are collecting and the most expensive
sensor. The first consideration is range of measurement. As previously dis-
cussed, prior work has shown cases where the concentration can reach as high
as 7%. As we had no way of determining whether the conditions there are
similar to ours, we decided to make sure that we could measure up to 20%.
This gives us room for higher measurements than previously discovered.

Power consumption is the next crucial point of the sensor. We need to run the
node for a year on batteries and to allow this we need the sensors to consume
as little power as possible. There are here two factors: power consumption
and warm-up time. As the node is in low power mode for most of the time,
the warm-up time would be the most important part of this as the entire node
has to wait for the sensor to take a measurement before it can go back to
sleep.

52 chapter 7 version 1.0 design and implementation discussion

The choice fell on ExplorIR®-W 20% CO2 sensor[15]. This sensor has less than
ten seconds warm-up time and a power draw of just 3.5mW . The sensor also
has an accuracy of ±70ppm ± 5% which is sufficient for the first stage of this
research project. 20% CO2, or 200.000ppm, allows it to have a wide range it
can measure as we are still not certain what levels we can expect to find.

Figure 7.4: ExplorIR®-W CO2 sensor (Photo: Øystein Tveito)

Temperature
Temperature is probably the easiest sensor to source. There is a vast amount of
temperature sensors that are accurate and cheap, and they are avaliable with
about any protocol or configuration needed. To get an accurate reading the
ideal placement of the sensor should be in open air, outside the box and out
of direct sunlight. As sunlight won’t be an issue in the winter part of the year
we can ignore this point. To place it outside the box, we would want it to be
waterproof.

The choice fell on a waterproofed version of the DS18B20[23]. This sensor
is easy to work with and have an accuracy of ± 0.5 ◦C in the temperature
span we are expecting, and ± 1 ◦C outside of that. Combined with low power
consumption and an insignificant start up time this will fit this project.

7.3 part selection 53

Figure 7.5: DS18B20 temperature sensor with waterproof housing (Photo: Øystein
Tveito)

Another sensor that was considered, but ultimately rejected was the SHT10[36],
a combined temperature and humidity sensor. This sensor have comparable
specifications on the temperature sensing, but has the added benefit of a hu-
midity sensor. At the time of design, humidity was not considered an important
parameter to measure. Most humidity sensors, including this one, have the
added problem that it needs direct contact with air to measure. It was therefore
decided that, since the data was not required, the added benefit was not worth
the added complexity.

Health check
In order to know that the camera is operating as expected we needed to find
a way to monitor its health without interfering with it. As stated before, we
are not allowed to monitor it directly, so we had to figure out a way of doing it
indirectly. Every time the camera goes off it will give off an infra-red flash to
illuminate the event it is taking a picture of. After some testing we determined
that that an IR transistor would work to detect this event.

When the flash goes off, the IR transistor will close a circuit to raise the voltage
on one of the pins of the micro controller, triggering an interrupt. The interrupt
takes the controller out of low power mode, which then records the camera
flash to the sensor log.

Another approach that where tried, without reliable results, was to monitor the
electromagnetic field emitted by the camera. When the camera activates, the
electricity will flow through its circuits and create magnetic fields. The only way
we were able to catch this in our experiments was by putting a magnetometer
directly next to the camera. This also needed constant monitoring by the micro
controller. This was not practical in our use-case, but could be an option in a
scenario similar to ours, if the monitored device does not have a flash.

54 chapter 7 version 1.0 design and implementation discussion

The camera operates by having a motion sensor. Once it detects movement
it will take two pictures, a few seconds apart, and then go back to sleep. It
was considered adding a motion sensor to our node as well. A motion detector
would give us data on how much movement there is inside the camera trap.
Comparing this data to the detected flashes from the camera would give us
information about whether the camera is operating correctly. The cameras are
configured to take one picture every 12th hour even without detecting motion.
Hence, we didn’t need to detect movement as well, as a lack of events would
tell us that the camera is most likely not operating correctly.

Time keeping
A difficult hurdle to overcome with remote devices that are recording events
is timekeeping. The way a controller will keep time, even when it is turned
of or in power saving mode, is by using a Real Time Counter (RTC). The RTC
normally consists of a crystal for counting time, a battery for when power goes
off and a small controller for handling communication or events. The power
consumption of these devices is negligible. The controller we are using does
have a built in RTC, but without an option for a dedicated RTC battery, meaning
every time power is cycled, the RTC will lose its time. Furthermore, the internal
RTC is not precise enough for our purposes, with a time drift that can reach
minutes a day.

Having accurate time keeping could be an important data point for the ecolo-
gists. The cameras have a built in RTC that will keep time, but as the camera is
without any form of communication, the only way to set the RTC is manually
by putting the timestamp on an SD-card. The lack of communication leads
to a large time drift over the time of deployment. Correct time is needed to
investigate how time of day impacts behaviour beneath the snow. By correlating
the camera health sensor with the images output by the camera, a much more
precise time could be calculated for each of the images. Thus an external RTC
is needed.

7.3 part selection 55

Figure 7.6: A picture of the DS3231 RTC used (Photo: Øystein Tveito)

When selecting the external RTC, price and accuracy were considered the
major factors. The accuracy of an RTC is how well it is able to keep time
over a time period without correction. The crystal inside is consistent in a
stable environment but will be affected by temperature. If the exact operating
temperature is known, the drift can be easily calculated outside the RTC, as the
crystal have a fixed temperature correlation. In this case, the exact temperature
the node would be subject to was not known in advance. The temperature
measurements taken by the node is also too infrequent to reliably calculate this
drift. The temperature compensation should therefore be done in real time.
This can either be done on the node controller or the RTC controller. As this
calculation would need to run in real time, the controller would need to be
operational all the time. This would severely impact the power consumption.
We opted for the DS3231[?] with integrated temperature compensation tomake
sure we could keep time even with long periods between communication. This
is a reasonably priced RTC that fulfills our requirements.

7.3.1 Logic controller
The logic controller is the brain of the sensor node and is in charge of scheduling
all the readings and communication. When selecting the logic controller we had
to consider interface options, power consumption, ease of use and cost.

All the sensors are attached to the controller. It is important that the controller
have enough interface options to allow this. The latter years, the selection
of micro controllers available have exploded, allowing selection from a huge
range of different architectures, operating systems, programming languages
and characteristics.

56 chapter 7 version 1.0 design and implementation discussion

One of the main criteria for the controller is power consumption. As the project
is battery powered, the power consumption needs to be kept low. The time
resolution for our readings does not need to be that high, meaning that most
of the time the entire node can be in low power mode. The logic controller
therefore needs to be able to go into a low power state in between readings
and communication. This makes some of the more powerful controllers, like
the popular Raspberry pi[33], unsuitable as it does not have a low power mode.
In addition, controllers with a complete operating system also suffers from
prolonged boot times compared to controllers without a full operating system
to load.

We also had to consider ease of use as the time frame for the development was
quite short. The disadvantage of not having a operating system is that a lot of
tools that rely on an operating system will not work on a bare bone system.
This means that we will have to develop a lot more of the software to have the
unit working.

A few years ago, almost all micro controllers needed to be programmed di-
rectly in assembly language, C/C++ or another compilable language. There
have been other approaches to this, also in the past, with controllers that
supported the interpreted BASIC and FORTH languages[17]. Today even ex-
tremely high level languages like JavaScipt is available for micro controllers
with runtime interpretation[24]. Something in between this and the classic
C/C++ is µPython[27]. Python is a higher level programming language that
allows us to do faster development as we have more abstractions available to
use in a simpler syntax.

The controller that was selected was the Pycom FiPy[32]. This controller is
based on a ESP32[10], a dual core 240MHz micro controller with ample flash
and memory that runs µPython. It also has the ability to go into deepsleep,
turning off all non-essential components internally, including CPU, main RAM
and flash. This drastically reduces the power draw of the unit. The operation
is then taken over by the Real Time Counter (RTC) and the Ultra-Low-Power
Co-processor (ULP)[10, p. 24]. We can still keep time with the internal RTC,
wake up on time events or on external interrupts. The current draw in this
mode can theoretically get as low as 10µA but in our experience with he FiPy
we can consistently get between 14µ and 18µA, which is orders of magnitude
lower than the running consumption of around 60mA.

7.3 part selection 57

Figure 7.7: A picture of the FiPy micro controller from Pycom (Photo: Øystein Tveito)

One of the advantages with the FiPy is its multi-radio capabilities. It supports
WiFi, Bluetooth, sigfox, LoRa, LTENB-IoT, and LTE CAT-M1. This allows us to use
the same controller for a multitude of projects using different communication
technologies. This also allows us to change communication technology from
software, if the need arises.

7.3.2 Power
The advancements in mobile technology during the last two decades has
improved battery technology significantly. This has given us rechargeable
batteries that are more dense in power and with a low self-discharge rate.
LiPo and Li-IoN batteries is the standard in most battery powered technology
today. This allows for long lifetime and recharging instead of throwing away
the batteries once they are depleted. However, rechargeable batteries does
still have a problem with self-discharge. A rechargeable battery left alone
will eventually loose some of its charge. This is a lesser problem with non-
rechargeable batteries.

The cameras will function for a little over a year on the batteries installed in
them. Hence, someone will need to go to each camera trap once a year to
change the batteries. Because of this, the logistics of getting the batteries in
our node changed is drastically reduced. We opted to use the same batteries
as the cameras use to simplify logistics of the project. The added time used
to change the batteries in both the camera and node compared to only the
camera is insignificant.

The number of batteries was set by spatial restrictions. We were able to fit four
sets of three batteries in the selected enclosure. Based on our estimates and
preliminary energy measurements, this would be adequate for its operation.
We will in Chapter 12 dive deeper into energy usage and power budget of this
and subsequent sensor node versions.

8
Lessons learned from thefirst deployment
The test bed for the first deployment was decided in conjunction with the
ecologists and Telenor’s LTE Cat-M1 coverage map. An area with good coverage
was chosen and preparations were done. The units were transported by car to
Vadsø, where a Murphy would meet up with some field researchers from COAT.
From Vadsø there was an one hour drive to Nyborgmoen where the equipment
was loaded over on ATVs. From there there was a three hour drive along ATV
trails close to Reinhaugen where the units were going to be deployed.

Because of regulations in the area, no motorized transportation can happen
outside the designated trails, and therefore the equipment needed to be trans-
ported on foot the remainder of the deployment. The test bed is approximately
a 20 minutes hike from the trails, and the individual nodes are between 300
and 800 meters apart, spanning a couple of kilometers. The deployment itself
takes approximately 10 hours.

This illustrates why it was crucial to the project that the sensor node was
robust and well tested before deployment. Maintenance of a unit is a major
undertaking, and we should have taken every step possible to ensure that the
units would work once deployed.

59

60 chapter 8 lessons learned from the �rst deployment

8.1 Deployment procedure
The twelve camera traps all consist of a metal box with a wildlife camera
mounted in the lid and the two compartments we are allowed to use. The main
compartment where the camera is installed also have a hole cut into two of the
walls, allowing it to be integrated into the rodents tunnels. The unit is placed
in one of the compartments with the feet at the bottom and the CO2 sensor at
the top. The photo transistor is taped on the edge of the compartment, facing
the camera (Figure 8.1). The LTE-antenna is routed outside the box and taped
on top of the lid (Figure 8.2).

Figure 8.1: This picture show how the IR transistor is secured in the camera trap
(Photo: Michael J. Murphy)

8.2 deployment problems 61

Figure 8.2: This picture show how the antenna is positioned on top of the camera trap
lid (Photo: Michael J. Murphy)

Before deploying the nodes, the researcher initializes the self-test procedure of
the units. This is to make sure that all the sensors were working correctly and
that the unit can communicate. With an all clear, the box is placed as described
above.

8.2 Deployment problems
During the deployment, three units had their SD-card dislodged and wedged
between the lid and the box. Two were broken, whereas the third could be put
back in place. This was not an anticipated problem and we had not issued any
extra SD-cards. Because of this, one unit got deployed with the SD-card of the
test unit, and one unit could not be deployed. The test unit was programmed
to communicate every 10 minutes instead of once each day.

All other units completed the hardware self-test, but only three units completed
the communication tests successfully. Five where able to attach to the network,
but where not able to complete an NTP request, resulting in an infinite self-test
loop. Two units could not attach to the network at all, and one unit was not
tested in fear of the self-test loop. We had never seen the looping problem in
our pre-deployment testing.

The researcher tested different solutions to break the self-test loop, amongst

62 chapter 8 lessons learned from the �rst deployment

others placing the antenna inside the camera trap. He was hoping that the
metal box would act as a Faraday cage to prevent the units from attaching to
the network. This did not work. Disconnecting the antenna was not an option
as this would risk destroying the LTE-M modem[32]. The solution ended up
being dislodging the SIM-card from the FiPy while it was in the test cycle and
carefully re-seat it after it gave up on communication. This made the self-test
fail instead of looping.

8.3 Communication problems
After deployment we expected some units not to communicate, as the self-test
had shown that the coverage in the area was worse than the coverage map
suggested. What we did not expect was that we got absolutely no communica-
tion at all. At August 26th, we got partial communication from one of the units,
but this communication was interrupted by a timeout on our server. After this
we received nothing from any of the units.

Norwegian telecom regulation is quite strict on getting meta data from the
telecom companies, but we managed to get some logs from Telenor of the last
contact each of the SIM-cards had had with a tower. According the the logs, all
units where seen by the towers during deployment. After that only two units
had been able to attach to the tower at all, one of which is the one that we
could see in our servers log. The other had not been able to contact us.

8.4 Hypotheses
The communication problems had to be solved. In this section we will present
the different hypotheses we had for the cause of the problem and discuss the
perceived likelihood of each.

8.4.1 Communication back off
Built into the code there is a back-off algorithm designed to limit the commu-
nication drain on the batteries when the units are covered with snow and not
able to communicate. We expected the units to, at least occasionally, fall out of
communication as snow depths can reach several meters and we did not think
the LTE signal would be able to penetrate this amount of snow. Water is known
for its radio dampening properties, and meters of snow seemed to us unlikely
to help the signal.

8.4 hypotheses 63

Because of this, for each failed attempt to reach a tower, the communication
cycle will be extended by one day, up to a maximum of seven days between each
communication attempt. This will assure that a minimum amount of battery
capacity is wasted when not able to communicate, while giving us a reasonably
short time until we regain communication once the snow has melted. Every
successful communication attempt will reset the timer back to one day between
each attempt.

Before the deployment, the units had been transported by car by one of the
ecology researchers. During the car trip, the units spent a couple of days in
a town without any Cat-M1 coverage. this would have triggered the back-off
algorithm, but we should not reach the seven day cap in this stay alone. Because
of a design flaw in the original program, the communication self-test did not
reset the back-off counter.

With the back off at its maximum of seven days between communication
attempts, we should still have been able to get some communication attempts
from the units. The deployment tests showed that almost all units were able
to attach to a tower, even if they were not able to connect to our servers.
One explanation for this would be if the back-off algorithm somehow had
malfunctioned and sent the units into an eternal back-off state.

We conducted an experiment where the communication delay was set to 2
minutes. The unit was also connected by USB and the output of the unit
was monitored. Further, the SIM-card was removed, making any communica-
tion impossible. The device showed the expected behaviour of increasing the
communication delay to 35 minutes. When the SIM-card was reintroduced,
the back-off algorithm returned to 2 minutes, as intended. At that time, we
considered this hypothesis implausible.

8.4.2 Weather conditions
We know that wireless communication does not fare well through water[12].
If the units were to be covered in snow, we expected this to severely impact
the signal. We expected the units to lose communication at some point though
the winter. We hoped that they would be able to get a signal through now
and then. According to the weather forecast, no snow coverage was present
in the area of deployment. Later we have learned that snow does not impede
wireless signals nearly as much as we thought as water in a frozen state is not
dielectric.

64 chapter 8 lessons learned from the �rst deployment

8.4.3 Software or firmware problems
Aside from the back-off algorithm, other software problems could be the cause
of our lack of communication. Multiple researchers in our research group went
through the code, and even though some minor potential problems where
found, and corrected, none of them would give us the issues we experienced
in our deployment.

The way the firmware works on the micro controller we selected, any un-
caught exception would put the controller into REPL mode. In this mode the
developer have an interactive python shell allowing debugging the device im-
mediately. This is handy while developing, but this could potentially cause a
severe problem in the field. It is therefore important to be sure to catch all
exceptions.

The way this is normally done in these controllers is that there is one global
exception handler that will handle any exceptions generated by the user code,
and all system calls done by the user code. If there is any particular risky code
that needs to be run, or code where the exception needs to be handled in a
specific way, this code is wrapped in a local exception handler. Everything else
will be handled by a simple handler that will just set all parameters to a known
state and ether restart the device, or put it to sleep.

Our code does have this, and if any exception that was not specifically handled
occurred, the device would go into recovery mode and go to sleep until the
next measurement cycle.

We then discussed whether the problem could be caused by an exception
triggered by the boot code in the firmware. This would not have been caught
by our exception manager. This could be caused by a corrupted or wrong
register or fuse setting. As there are no way of setting the fuse settings of the
ESP32 directly from µPython, this would have to be caused by a bug in the
firmware.

Any uncaught exceptions would put the device into REPL mode, with a power
consumption of around 80mA. The device would in this mode run out of battery
within hours instead of months. Furthermore it would not run any of the user
code, and thereby not trying to communicate with us. This was still one of the
hypotheses we kept until the real problem was eventually found.

8.4 hypotheses 65

8.4.4 Hardware problems
Since none of the nodes had communicated since deployment, we considered
potential hardware failure. In particular, the possibility of excessive power
consumption was discussed.

The hardware was carefully designed to use as little power as possible while
sleeping, turning of all components except the micro controller. As all the circuit
boards were handmade, some failures are to be expected. If the deployment
had consisted of only a few units, hardware problems would be on the top of
the list of likely causes of failures. This is one of the reasons we planned on
deploying 12 unites at the same time, mitigating that risk. It is unlikely that
mistakes would make all the units malfunction if there is not a problem with
the design itself.

Any fault that would make all the units malfunction should therefore be repli-
cable in the lab using the same hardware design. All our testing in the lab
showed the expected power consumption; both with a unit with accelerated
cycles of 5 minutes, and a stock unit. Hardware problems where therefore
deemed unlikely as the cause of this specific problem.

8.4.5 Signal problems
In our correspondence with Telenor, we also asked about any irregular coverage
problems on their end. We were assured by Telenor that they had not experi-
enced any major and lasting problems with the towers in the area reachable
from our deployment site.

We conducted some experiments with signal strength on our units in the lab.
We found that the positioning of the antenna on top of the box severely impeded
the signal. Signal strength when the antenna was in open air, away from the
camera trap, averaged around −53dBm. With the antenna taped on top of
the metal lid of the camera trap, the signal was approximately −75dBm. Thus
we were losing 99% of the signal. We still had no problems connecting and
sending data from our office. −75dBm is considered a reasonably good signal
for a Cat-M1 device. All pre-deployment testing had been done in our office,
which has a very good network coverage. Few places close to our lab have a
signal strength as low as we expect it to be on the test site. Thus, testing in
close to equal conditions is hard to achieve.

When deploying the units, they were all running the self-test routine before
they were placed in the camera trap, and before the antenna was taped to the
lid. This explains why nearly all nodes could establish a link to the tower in

66 chapter 8 lessons learned from the �rst deployment

the self-test, but not after they were deployed.

8.5 Investigation
Antenna issues appeared to be the most likely cause of the connectivity prob-
lems. In this section, we will attempt to explain the cause of the reduced signal
and find a means to combat it.

8.5.1 Capacitor effect
After some research, we realized that the antenna configuration we used could
be approximated as two metal plates separated by some space. This is the
basic principle of a capacitor. Sufficiently large capacitors coupled with the
correct resistor can be considered a short circuit for alternating current signals
(AC). There is always a resistance element in a signal cable. The internal
resistance from the modem to the antenna combined with the capacitor we
have made with the antenna results in an RC circuit. This is also called a
low-pass filter.

A low-pass filter is used in signal processing to filter out signals above a
certain frequency. To calculate the range of the filter, we first need to know the
capacitance made by our capacitor and the resistance from the modem wave
generator.

We did not have the necessary equipment to precisely measure the capacitance,
but this can be calculated:

C =
k · ε0 · A

d

WhereC is capacitance, k is the permittivity of the material between the plates,
A is the area of the metal plate inm2 and d is the distance between the two
metal plates inm. The metal plate in the antenna has an irregular shape (see
Figure 8.3). This makes it hard to precisely measure the area. We estimated it
to be about half of the antenna plate.

8.5 investigation 67

Figure 8.3: Picture of the underside of the antenna exposes where the antenna is
covered with conductive material (brown) and where it is left bare (black)
(Photo: Øystein Tveito)

A =
75mm · 21mm

2
= 0.0007875m2

.

The distance between the antenna and the lid equals the thickness of the
substrate of the antenna. This was measured to 0.3mm = 0.0003m. We
assume that the antenna substrate is made from woven fiberglass. According
to the FR-4 NEMA standard[13], woven fiberglass shall have a permittivity of
k = 4.4. In the following, we assume that the material adheres to the FR-4
NEMA standard.

In spite the uncertainties of these parameters, the calculation will provide
an acceptable "order-of-magnitude" estimate of the capacitance of the sys-
tem.

This gives us:

C =
4.4 · ε0 · 0.0007875m2

0.0003m
= 0.00010226F = 102.26pF

We were not able to measure the resistance between the wave generator and
the antenna. The wave generator is inside the modem, and thus inaccessible.
The antenna has a long, relatively thin cable and a small connector, both
introducing some resistance. For this exercise wewill assume that the resistance
is 1Ω.

These values where entered into Altium Designer™that calculates the cutoff
frequency and transient response automatically. The cutoff frequency, when
the magnitude is halved, was calculated to be 1.55GHz. There are different
frequency bands available for LTE Cat M1. In the upper end of the spectrum,
band 41, has a frequency of 2.593GHz.

68 chapter 8 lessons learned from the �rst deployment

Figure 8.4: Frequency response of RC filter (Graph: Øystein Tveito)

It is plausible that this band is used for the stations we are connecting to. With
this frequency, we would get approximately −6dB signal strengthFigure 8.4,
reducing our signal with 75%.

8.5.2 Non-linear-electromagnetic effect
When the frequency is high enough relative to the antenna size, the problem
becomes more complicated. With high frequencies there will be a charge
difference between the near- and far-side of the antenna. Thus, the calculations
above are not as straight forward as they are with low frequencies.

In RC filter calculations, we assume that the entire metal plate of the capacitor
holds the same charge. As a non-linear electromagnetic problem, this assump-
tion no longer holds true. The calculations of how much this would influence
the signal is more complex. It must take into account the exact shape of the
antenna, which is a multi band antenna, and therefore quite complex. This
would be out of scope of this thesis, and more suiting for an antenna theory
study.

8.5.3 Antenna attenuation
The third factor that could affect the signal quality and strength in our case
would be attenuation problems with the antenna. As described in the two prior
subsections, the linear and non-linear capacitor effect will weaken the signal,
but they will also attune the antenna.

In a simple antenna the length of the exposed conduction directly affects the
harmonic frequencies the antenna will respond to. This antenna is a multi band
antenna, meaning it has multiple harmonic frequencies, but the basic principle

8.6 countermeasures 69

still applies. The shape of the antenna is precisely calculated to allow certain
frequencies to resonate in the antenna.

The capacitor effect will, as previously mentioned, to some degree work as
short circuit for higher frequencies, and as a resistor for lower. In any case, the
fine tuned impedance of the antenna will be changed. This could drastically
impede the signal.

8.6 Countermeasures
The low-pass filter effect, antenna attenuation, and the non-linear electromag-
netic effect combined can explain our problem in the first deployment. The
next step was to figure out how to fix it.

As we can not change the resistance of the antenna, the only parameter
causing the low-pass filter effect that can be easily changed is the capacitor
effect. Reducing the capacitance of the antenna will reduce the unwanted non-
linear-electromagnetic effect. It will also solve the attenuation problem.

8.6.1 Countermeasure testing
As the conclusion was that the proximity to the lid was the cause of the
problems, the solution seems obvious; move the antenna away from the lid.
The next thing to determine is by how much, or if we could find another
solution that would give the same result.

To find the ideal antenna position, several tests where done with different
antenna orientations and distances. The fist was to test distance. We tested
distances of 1mm to 10mm in 1mm increments, and 5mm to 100mm in 5mm
increments.

For the 1 − 10mm tests we made shims of a specific thickness that would fit
underneath the antenna when taped down. We took a few readings of each
distance before replacing the shim with the next one. As the changing between
the different thicknesses was somewhat elaborate, 3 successive measurements
were done on each thickness before moving on. This could potentially make
temporal variations in signal strength influence our results, but reduced the
time required to complete the tests. This compromise was shown to be accept-
able as no temporal variations in signal strength were found in subsequent
experiments.

70 chapter 8 lessons learned from the �rst deployment

For the 10 − 100mm tests we created a tower with slots of 5mm increments.
This allowed us to quickly transition between elevations. The tests on this scale
where done with one measurement for each elevation. The entire test was
repeated several times, to reduce potential effects from temporal variations in
the signal. The results showed no significant temporal variations.

Figure 8.5: The tower used to test 10 − 100mm (Photo: Øystein Tveito)

In addition we tested positioning the antenna in a non-planar position on top
of the camera trap; at 30, 60, and 90 degrees. Tests done with the antenna
in this fixture was done in a few different horizontal directions as well to
see if the facing direction would influence the signal. From the testing we
wanted to find the ideal position of the antenna and the minimum viable signal
strength.

We did the tests described above in three different locations. The first test
took place in our office As previously mentioned our office has excellent cover-
age.

To find a location with coverage closer to that of the deployment site we

8.6 countermeasures 71

measured the signal strength at several locations in our building. The lowest
we could find was in a culvert connecting the building to other buildings on
campus.

After these tests where completed we repeated the tests at a location in
Futrikelv, at the outskirts of Tromsø. One of the supervisors, professor Otto
Anshus, had personally experienced that the coverage from Telenor was lacking
in that area. This would give us even better opportunity to test in conditions
similar to that of the deployment site.

8.6.2 Countermeasure results
From the testing we found that moving from 1mm to 10mm we had a huge
increase in signal strength, and were now comparable to the tests done without
the camera trap there. From 10mm to 100mm there were no measurable
improvements. Tilting the antenna had no significant impact on the signal
strength. The results are shown in Figure 8.6 and Figure 8.7.

From the results we have also investigated what signal strength is the required
for a successful communication cycle. This is shown in Figure 8.8. Here we
can see that a signal strength between −80dBm and −90dBm is necessary for
communication to be successful, with one outlier of −95dBm.

72 chapter 8 lessons learned from the �rst deployment

0 20 40 60 80 100
Antenna height over box (mm)

110

100

90

80

70

60

50
Si

gn
al

 Q
ua

lit
y

(d
Bm

)

Office 09-11
Office 09-12
Office 09-13
Basement 09-12
Futrikelv E 09-16
Futrikelv N 09-16
Futrikelv S 09-16

Figure 8.6: Graph of signal strength from multiple testing runs in multiple locations
from 1 − 100mm (Graph: Michael J. Murphy)

No box Near box In box Taped Taped
w/ shim 3mm

Relation to camera box

110

100

90

80

70

60

50

Si
gn

al
 S

tre
ng

th
 (R

SS
I i

n
dB

m
)

Flat
Vert short
Vert tall

Figure 8.7: Bar graph showing the signal strength of different antenna setups (Graph:
Michael J. Murphy)

8.6 countermeasures 73

0 20 40 60 80 100 120 140
Trials

110

100

90

80

70

60

50

Si
gn

al
 Q

ua
lit

y
(d

Bm
)

no attach
attach ok
self test fail
self test ok
comm incomplete
comm success

Figure 8.8: Graph showing signal strength and communication status (Graph: Michael
J. Murphy)

9
Second deployment -Modifications andexperiences
As the snow had not yet covered the deployment site, we had the opportunity
to do a second deployment where we could add the countermeasure to the
antenna. At the same time we applied some minor software changes.

9.1 Changes to the device
We took the opportunity to add a few changes, both to the physical implemen-
tation and the software running on the device.

9.1.1 Software changes
During the investigation following the first deployment a few minor problems
where found with the code. As mentioned earlier, the self-test was not able
to run on most of the units without resulting in an infinite loop. This was
corrected by introducing two changes to the self-test code. Firstly, the node
uses a fixed IP for the NTP server. Secondly, if no connection could be achieved

75

76 chapter 9 second deployment - modi�cations and experiences

on the first try, the test would terminate.

Another problem pointed out in the first code review was that the watch dog
timer of 10 seconds was a bit short. The watch dog timer is not meant to trigger
in normal conditions. It is there to avoid an infinite waiting state that may
occur if the code encounters a blocking call that does not return. We found
that some UDP requests could take up to 10 seconds before the socket would
time out. The timer was thus increased to 60 seconds.

Measurements of the signal strength was added to the communication cycle
and reported along with the sensor measurements. If we had this from the
beginning, we assume that the antenna problem would have been discovered
much earlier.

9.1.2 Physical changes
We had previously had problems with the SD-cards breaking. This was caused
by the SD-card partially sticking out of the main board of the sensor node,
which was not securely fastened in the box. The SD-card could then be pressed
in between the lid and the box, and it would break off by a small jolt to the
box. To solve this, some spacers where designed and added to the side of
the box ensuring that the main board could no longer move. This solved the
problem.

9.1 changes to the device 77

Figure 9.1: Photo of the spacer slotted into the sensor node enclosure (Photo: Øystein
Tveito)

9.1.3 Antenna changes
With the knowledge acquired in the testing of the antenna, we decided that a
shim of 10mmwould mitigate the problem. We also wanted to give the antenna
some added protection. Previously we relied on a thin coat of lacquer on top
of the antenna and the tape to protect it from the elements. We designed
the shim for the antenna as a box with a lid that would provide the added
protection.

78 chapter 9 second deployment - modi�cations and experiences

Figure 9.2: Photo of the antenna in the protected shim (Photo: Øystein Tveito)

9.2 Second deployment procedure
Both the physical and software changes had to be applied to the already
deployed units in the field. We analyzed the risks and benefits of three different
approaches to this.

• Load new software from an SD-card

• Reprogram the nodes in the field

• Replace the micro controllers with new, pre-programmed controllers

The first software version has a self-update procedure built in. This allows us
to load the new software to an SD-card and the controller loads it from there.
The problem with this approach is that this procedure is started right after the
self test. As we learned from the first deployment, described in Section 8.2,
this could be complicated. We could have gone through the same procedure,
as we did in the first deployment, by removing the SIM card and reinserting
it at the correct time. This, however, is time consuming and would force us to
spend time with the nodes exposed to the weather.

Alternatively, the nodes could be reprogrammed in the field. As the micro
controller is programmed through a serial interface, it is possible to create a
program that would allow us to quickly reprogram the controllers. A prototype
of this was created but later abandoned. Programming in the field would, as
with the SD-card solution, force us to expose the electronics of the node to the

9.3 second deployment 79

elements for longer than we preferred.

We decided that the best solution was to bring new micro controllers already
programmed with the revised software. This allows us to quickly update the
node from version 1.0 to 1.1 without exposing the electronics unnecessarily to
the weather.

The deployment procedure now consists of:

• Open the box

• Remove the micro controller and SD-card

• Insert the new micro controller and SD-card

• Add internal spacers

• Close box and position it in the camera trap

• Close lid and apply shim to the antenna

This procedure was expected to take less than five minutes in the field.

9.3 Second deployment
The second trip to the deployment site was without the ecologists. As the task
was only to change the nodes we had deployed, a two man team from DAO
went to deploy the changes. A liaison from COAT followed us to the deployment
site as he had to install some upgrades to a weather station they have in the
area.

Right from the first node we had some unexpected problems. Some of the nodes
were already out of batteries. We had brought with us four spare units and a
twelve extra batteries. We expected the node with communication intervals of
10 minutes to be out of batteries, but we did not expect the other nodes to be
dead.

During the deployment, seven nodes where out of batteries, four still had power.
Thus we had to strategically replace batteries and nodes. We decided that we
wanted the prioritize the nodes in the higher ground, as those were the once
with the best chance of communicating. Therefore, two camera traps were left
without nodes, and two nodes were given half the amount of batteries they

80 chapter 9 second deployment - modi�cations and experiences

were originally planned to have.

We ended up with ten populated camera traps, where two of them were
expected to die during the winter.

Figure 9.3: Michael J. Murphy inspecting the logs of an inoperable sensor node at the
deployment site (Photo: Øystein Tveito)

9.4 Results
From a total of ten working units, we have since heard from six. We had long
since given up the hope of getting report from all of them, as the coverage
in the area is worse than we expected. From our experience with the first
deployment, having heard from six of them was a relief. Some of the nodes
have been heard from nearly every day, some only reports occasionally (see
Figure 9.4).

9.4 results 81

Figure 9.4: Graph showing communication over time. First vertical line is first de-
ployment. Second vertical line is second deployment. (Graph: Michael J.
Murphy)

Only hearing from some of the nodes is of course not ideal, but on the other
hand is arguably more interesting from a research point of view as we will
discuss later in this thesis. The fact that we at this point had working nodes
that at varying degrees reported back regularly gives us the opportunity to
start analyzing our experiences.

10
Project analysis
The final analysis will need to be done after the deployment, but we can still
analyze what we have learned so far. This project is a large project for two
people, executed in a short time. Multiple mistakes have been made, and
multiple lessons have been learned from them. Here we will try to analyze the
key elements of what has worked and what has not.

Analyzing what we have learned from our existing experiment will later be
broken off into three major components:

• Experience on how to create the hardware that can withstand the harsh
climate of the arctic tundra.

• Experience on how to create software that will work and not crash, even
if some of the hardware breaks.

• Experience working on a project from beginning to end in order to ensure
that the end-product works as intended.

10.1 Status this far
From the ten sensors we currently have in the field, we have been in commu-
nication with six. Two are regularly sending data, and the rest are only able to

83

84 chapter 10 project analysis

contact us infrequently. While this might not be the result we were hoping for,
it might be more interesting from a scientific point of view. This way the units
are tested on how they handle temporary communication loss.

10.1.1 CO2
The data we are receiving from the nodes is unstable. The CO2 values are
jumping between zero and several thousands, and in one case several hundred
thousand ppm. We can therefore confidently say that these measurements are
incorrect. The interesting thing we can see from the reading we are getting
is that at least on some charts we can see an inverse correlation between the
CO2 value and temperature. The second interesting thing we can see is that
on almost all the nodes, where we are getting values from the CO2 sensor, we
see a sudden stop in the temperature fluctuation. This is most likely the point
where the camera trap became completely covered in snow and therefore the
temperature becomes stable and so do the CO2 values.

It is therefore reasonable to believe that the sensor is temperature dependent
to a greater extent than we thought it would be from reading the data sheet.
Another reasonable assumption is that the sensor is sensitive to humidity.
This was not accounted for in our hardware design, and therefore we did
not add humidity sensing capabilities to our node. We know that when the
temperature goes down, the ability of air to absorb water is reduced, and
therefore the relative humidity increases. When we see the inverse correlation
between temperature and CO2 value, it could be just as likely that what we
actually see is a correlation between humidity and CO2 readings. It is also a
possibility that condensation or deposition of water from the air affects the
measurements.

When reading the data sheet[15] it appeared that the sensor we chose, the
explorir-w-20, was the wrong one for the job. This sensor is not calibrated
below 0◦C. The sensor we should have chosen was the explorir-we-20 which
is in essence the exact same sensor, but have been calibrated all the way down
to −25◦C. The calibration can be done by the manufacturer if we send the
sensors back to them, and they should then work in the extended temperature
range. The reason they are not all calibrated for the extended temperature
range is that the calibration itself is a time consuming and expensive process.
This caveat was not clear to us when we read the data sheet before deciding
on this specific sensor for our design.

On two of the sensor nodes, the CO2 value is constantly 0. This is an indication
that the sensor itself is malfunctioning. This is probably because of ice deposi-
tions on the sensor itself, or it could be a randomly failing sensor. We will not

10.1 status this far 85

get a definite answer until the nodes are recovered from the tundra.

10.1.2 Temperature
The temperature readings we are receiving seem reasonable, and when com-
pared to the historic weather data from weather stations in the area, they are
not far off. However, we have decided to replace this sensor, as we have realized
that we also needed to record humidity.

10.1.3 Camera flash detection
The camera flash detection seems to be working as intended. All nodes from
which we have received data have indicated that the cameras are in working
order.

10.1.4 Logs
The node logs that we have received show that the nodes are mostly operating
as intended. The watchdog timer rarely triggers and not many other errors are
recorded. In hindsight we should have logged more extensively. This would
have helped us in determining the cause of failure for the retrieved nodes.
It could also possibly help us understand what causes some nodes to record
obviously erroneous sensor data.

10.1.5 Unknowns
There are still a lot we do not know about how the nodes are operating. From
the nodes we have in the field, only six have been in communication since
deployment. We expect this to be because of the network coverage in the
area, but it could also be that the nodes have failed somehow. This will not be
answered until we either achieve communication or until we recover the nodes
next autumn. Our hope is that they are operating, but not able to communicate.
All the sensor data and logs should then have been recorded to the SD-card so
that we can analyze it.

86 chapter 10 project analysis

10.2 Hardware
The inaccessibility, harsh climate, and the lack of network coverage of the
arctic tundra present challenges normally not faced in IoT development. The
temperatures routinely gets below 20 degrees Celsius. The devices could be
buried under meters of snow. If something breaks, the devices are inaccessible
half of the year, both because of the snow and that we can not disturb the
active experiment that the ecologists are conducting. The network coverage
is limited. Due to the low signal strength, both weather conditions and local
geography can severely affect communication capabilities.

From what we have experienced so far, the changing temperatures and humid-
ity seems to be one of our biggest hurdles. Before the snow covers the camera
traps, they are exposed to fresh air. The temperature difference between day
and night during the autumn can be large, and we are hypothesizing that some
of the CO2 sensors have been damaged by having ice depositions on the sensor
head.

When the snow covers the camera trap we see that the temperature becomes
stable. Before this, the rapid change in temperature after the sun goes down
can cause the humidity in the air to condense or deposit on exposed surfaces.
This could cause problems for the sensors, and may be the cause of some of
the erroneous sensor data we have received.

During testing in our lab in parallel with the deployment, we have also found
that the SD-cards we are using are prone to corruption. This was a common
occurrence during testing in a freezer we have in the lab which holds −35◦C.
This is outside the stated working range of the SD-cards, and we have not
seen these temperatures in the field. Nevertheless, we suspect that the rapidly
changing temperatures might influence the cards, but further testing will be
needed to determine the severity of this effect.

Until the existing nodes are brought back to the lab we can not determine
if the enclosures of the devices have provided sufficient protection from the
climate of the tundra. The only issue we have encountered during our testing
of the sensor node housing was that the SD-card sometimes got wedged in the
lid. Aside from this, it seemed to provide sufficient protection from our testing
conditions.

One shortcoming of this hardware platform is the lack of humidity sensing. This
has proven to be a major problem when trying to analyze the incoming CO2
data. The addition of a humidity sensor could possibly have improved the data
from this deployment. Due to the possibility of a humidity dependence in the
CO2 sensor, we are unable to determine the validity of ourmeasurements.

10.3 software 87

Another shortcoming of the platform is that the CO2 sensor chosen is not cali-
brated for our conditions. The calibration is stored as a table of calibrated values
on the internal storage of the sensor. Intermediate values are interpolated from
this table. The sensor will still attempt interpolation when measuring values
outside it’s calibrated range. However, the calibration table is filled with junk
values prior to calibration, leading to meaningless results. When the tempera-
ture is on or above freezing we have higher hopes for the data as this is within
the calibrated range.

The sensor nodes do not appear to consume muchmore power than anticipated.
None of the units we have for testing in the lab have been shown to use more
than expected power. The nodes in the field have been running for several
months and some of the nodes are still in active communication. The power
supply therefore seems to be sufficient.

We did encounter some units that had flat batteries while doing the second
deployment round. The working theory of this is that the SD-card have been
corrupted at some point, possibly by a watchdog timer, while trying to write to
the SD-card. In this scenario, the unit has no routine to handle this. A corrupted
SD-card will result in an exception, which in turn will be written to the log,
located in the SD-card, generating another exception. This loop will not be
broken until the unit is out of battery.

All the prototypes were hand built from multiple components. All the connec-
tions between them were soldered by hand. This introduces many potential
flaws in the design by simple human error. Even with a relatively simple design
without too many components, a lot of soldering was needed. Each soldered
connection adds the potential for mistakes. Even though each node was tested
initially, weak soldering joints can cause issues later.

10.3 Software
Creating a robust observation unit requires both the hardware and software to
work together and should continue to function even if non-essential components
malfunction. If a single sensors stops working, the observation unit should be
able to continue operation without it. Interacting with prototype hardware
presents challenges that software normally does not have to deal with. In a
normal program, once the proper tests have been done, one can be reasonably
confident that the program will work. Bugs in the code are always present, but
a software developer usually does not have to account for bugs in hardware.
It is also usually assumed that hardware components do not suddenly break
or start behaving erratically. When working with prototype hardware, these

88 chapter 10 project analysis

challenges become prominent.

10.3.1 Watchdog timer
On micro controllers, watchdog timers are a widely adopted way of ensuring
that the program running never gets stuck in unbreakable loops or blocking
calls that do not return. The watchdog timer is implemented on a very low
level, sometimes in hardware, and will overrule all user code running on the
device. On the ESP32 the watchdog timer is implemented in the FreeRTOS
operating system, and based on a hardware timer and dedicated registers. The
length of the watchdog timer is important, as the watchdog should only trigger
when the code is actually stuck and not when doing tasks that could take a
long time to complete.

The first revision of the program had the watchdog timer set to 10 seconds.
This proved to be too short for our purpose, as several calls related to network
communication could easily take more than that. Having to feed the timer
so frequently also made the code more complex. In the second revision of
the code it was set to 60 seconds. As the watchdog timer is only meant to be
a last resort, this is a more appropriate value. Furthermore, the self-test no
longer goes into a loop if the communication fails between attachment and
the completion of a successful communication cycle.

10.3.2 CO2 readings
Another issue is whether there could have been done anything in software
to remedy the erroneous CO2 values. The current program is only extracting
the "calibrated" values from the sensor, even outside the calibrated range.
The raw values are the output of the light sensor internal in the senor head.
In retrospect, we should have modified the code in V1.1 to also store the
raw sensor values. By having these, we could potentially give an estimate of
the CO2 values also outside of the calibrated range. It could also have been
valuable if we could get the sensors calibrated after the retrieval and use the
new calibration to interpret the raw values.

We assume that humidity have a huge impact on the CO2 values from the
sensor. The lack of humidity readings is therefore a problem. The inverse
correlation between relative humidity and temperature is well known. It could
potentially be modeled what the humidity, both relative and absolute, in the
camera trap was at each reading based on historic and current temperature
readings.

10.3 software 89

10.3.3 Operation
The operation of the unit is quite straight forward. It is supposed to wake up
at regular intervals, take readings and go back to sleep. In addition to this,
it should wake up at another interval and communicate the findings over the
network. The resulting software ended up being quite complex and in the end
made debugging harder than it needed to be. A slimmer and simpler version
of the program would have made debugging, both before and in between the
deployments easier.

10.3.4 Conclusion
Overall, the preliminary results from the changes to the 1.1 version of the code
seems promising. We will again not get a final answer until we retrieve the
units in the field.

11
Final version
The final version of the sensor node is built based on the experience we had
with the previous deployments. It is built on the same architecture as the
previous versions, but with some refinements where needed. The design and
implementation of 2.0 version of the node are described in Chapter 5 and
Chapter 6. This chapter will explain some design choices made in the final
version of the CO2 sensor node.

11.1 Hardware
As discussed previously, the hardware is mostly the same for this version of the
node as with earlier versions. The results reported back from the nodes in the
field are looking promising, but some aspects of the previous versions needed
to be improved.

11.1.1 Main board
The biggest hurdle when creating the original node hardware was the assembly
time. Each unit required about two hours of soldering. This time does not
include the time to remedy any eventual mistakes. The most cumbersome task
when creating a main board was to connect all the components together. This
was done by hand-soldering all the signal and power paths, either by solder

91

92 chapter 11 �nal version

trace or by wire.

Version 2.0 has a PCB that connects all the parts together. This reduces the
time spent manufacturing the main board from hours to minutes. This also
reduces the risk of human error as there is less manual work involved.

Problems
There has been one production run of the PCBs. From testing, we have found
that the board works as intended except for two small flaws.

Figure 11.1: Illustration showing a portion of the PCB where a through hole connection
unintentionally shorts two signals. Red = bottom layer. Green = top layer.
Yellow = through holes, and copper on both layers. (Illustration: Øystein
Tveito)

The clock line for the SPI bus (red) is touching the through hole connection
(yellow) of the resistor going to the gate of the MOSFET (see Figure 11.1).
These signals are then connected, and electricity can flow between them. The
consequence of this is that the SPI bus is not working properly as the driver for
the power pin outperforms the driver for the clock pin. This problem is remedied
by cutting the trace going to the resistor and soldering the resistor directly to
the pin on the backside. This is shown in Figure 11.2 and Figure 11.3.

11.1 hardware 93

Figure 11.2: Front side of the PCB shows
where the trace is cut (Photo:
Øystein Tveito)

Figure 11.3: Back side of the PCB shows
how the resistor is installed
to bypass the intended hole
(Photo: Øystein Tveito)

The second problem is that the board is configured for a Normally Closed (NC)
reed switch, while the ones at hand are Normally Open (NO). The result of this
is that the voltage level of the function pin is normally high, switching to a low
state when magnetized. This voltage is meant to wake the sensor node when
the operator wants it to perform a self-test. The node can still be programmed
to be woken on a falling edge event. The problem with this is that the FiPy can
only have one type of event for waking up from a low power mode. Since we
already have the flash detector go high when an event is detected, we need
the node to wake on rising edges.

This problem can be remedied in a few different ways. The first and simplest
solution would not involve any modification to the nodes hardware or software.
By attaching a magnet to the outside of the case the signal would go low. The
operator can then remove the magnet to perform the self test routine.

Another fairly simple fix is to replace the reed switch with an NC variant.
The board would then behave as intended. The NPN IR transistor used in the
flash detector could also be switched out for a PNP type IR transistor. This
would essentially reverse its functionality, making the sensor pin voltage go
high when not detecting any event, and low when an event is detected.

The last solution would be to switch the order of the reed switch and resistor.
The way we measure the position of the reed switch is by measuring the voltage
between the switch and a resistor. In the current PCB, a voltage is applied to
a resistor and the reed switch is connected to ground. The signal is measured
between these. By applying the voltage to the reed switch instead, the signal
would conform to the same pattern as the flash detector. Each of these fixes
would successfully solve the problem.

94 chapter 11 �nal version

Solution
As we will be ordering a new batch of PCBs, the best solution in our mind
is to fix this problem on the PCB. The last version of the PCB have both the
aforementioned problems solved as shown in Figure 11.4.

Figure 11.4: PCB layout showing the copper deposits on the PCB. red = bottom layer,
blue = top layer, green = both layers, white = silkscreen (Layout: Øystein
Tveito)

11.1 hardware 95

11.1.2 CO2 and temperature sensor
The CO2 sensor module has been replaced by one which is calibrated to work
for a larger temperature range. The new module is a version with the same
sensor, that has been calibrated to work from −25◦C to 55◦C. We have also
opted for a version with a temperature and humidity sensor added to the
module.

This simplifies the design slightly as we no longer need the dedicated temper-
ature sensor. As we have mentioned earlier, humidity might play a role in our
CO2 measurements. The added humidity sensor will give us this data, allowing
us to get more reliable CO2 estimates.

Unfortunately, due to the the COVID-19 pandemic, these sensors have not been
ordered. Fortunately, as the sensor employs the exact same sensor controller
and firmware, testing of the new solution can be done with the version we
already have. The protocol for communicating with the sensor is the same for
both versions, and there are only a few parameters that must to be changed
when switching over to the new sensor.

11.1.3 SD-card
We have replaced the SD-cards from that of the previous designs. The SD-cards
of multiple units have been corrupted, both in the lab and from the recovered
nodes after the first deployment. The original SD-card used conformed to the
required specifications, and we are unsure exactly why they failed. We decided
to go for industrial grade SD-cards instead of the commercial grade ones. The
new cards are made with an older, more robust technology. The price is higher,
but we believe that these cards should be less likely to fail.

11.1.4 Power supply
The smaller size of the main board of the node also allows for more batteries.
Version 2.0 of the sensor node has six sets of three batteries, compared to
four sets of three in the previous versions. Combined with the reduced energy
consumption, the 50% increase in available power will give a bigger energy
buffer for the node. It is also conceivable that the node could be deployed for
longer periods. In the next chapter we will take a closer look at the power
consumption of the different versions of the node.

96 chapter 11 �nal version

11.2 Software
The new software addresses some of the issues we currently have on the
deployed nodes.

11.2.1 Storage
As described in the hardware section and previously in this thesis, storage
corruption has been a problem. This can be caused by faults in the physical
card or by corruption of the file system. One of the improvements in the new
software is that all data and logs are stored internally on the micro controller.
The data and logs are then pushed to the external SD-card once a day. The
internal storage is large enough for several days worth of data and logs. Every
time a write operation is performed, there is a chance that the SD-card will
be corrupted. If the controller is suddenly powered off while doing a write
operation, there is a significant risk of corruption. By only writing the data to
the SD-card once a day we reduce this risk.

Another benefit of using the internal storage is that accessing it is much faster.
Reducing the time to record measurements will slightly improve the power
consumption for every measurement cycle.

SD-cards can only be accessed in blocks. When writing a single byte to an
SD-card, the entire block needs to be read into a buffer. The byte that is to
be changed is then changed in the buffer. Finally, the entire block is written
back to the SD-card. The block size of our SD-cards is 512 bytes. Because of
this mechanic, writing 1 or 512 bytes will take exactly the same amount of
time and requires just as many operations. This solution therefore reduces the
stress on the SD-card by bulking the write operations together and writing
more data at a time.

Another significant difference with having logs and data stored internally is
that the node can operate without an SD-card. Compared to the SD-card, the
internal storage of a few MB is limited. The node will not be able to store an
entire years worth of data and logs. If the node is in semi-frequent contact
with the network, the logs and data will be uploaded to the servers and then
deleted from the node. In this way, as long as communication is satisfactory,
the node will be able to operate normally, even if the SD-card is broken (see
Figure 5.4.

11.2 software 97

11.2.2 Power consumption
A flaw in the previous software versions have led to slightly higher power
consumption than necessary. The way the node powers off the sensors when
it is in low power mode is by breaking the sensors’ connection to ground. All
sensors therefore have the voltage input high, but nowhere for the electricity
to go to ground.

The problemwith the previous software versions is that even though the ground
connections are severed, the data pins are not addressed. When a voltage is
applied to the sensor, the entire sensor will eventually reach this voltage. When
the micro controller is put in low power mode, the signal pins of the controller
will go to low voltage, or ground. The electricity going into the sensors can
then leak through the signal pins. This is accomplished by forcing all the signal
pins to remain high during low power mode. With the signal pins at the same
voltage as the sensor, there is no path for the electricity from the sensor to
ground.

Another decision that influences the power consumption of the sensor node
is how the communication cycle is scheduled. In version 1.0 and 1.1 the
communication cycle is scheduled as a separate event, with its own wake up.
Every time the system powers up from low power mode, some time is spent on
setting up the underlying systems like FreeRTOS and the µPython interpreter.
Version 2.0 combines the communication cycle with a normal measurement
cycle, essentially reducing the number of wake ups by one. This might not
influence the overall power consumption by much, but small savings build up
over a year-long deployment.

Version 1.0 implemented a back-off algorithm that reduces the communication
attempts for nodes with poor coverage. If a node is totally without coverage,
the node will, after some time, only try to communicate every seven days. This
will reduce the power consumption of the node as communication is one of the
more costly operations done by the node.

In version 1.1 and 2.0 we chose not to implement such an algorithm. A failed
attempt at connecting to the network will use less power than what is assigned
to daily communication in the energy budget. In the case where a node has no
coverage at all, the node should therefore still be able to function throughout
the deployment period. In nodes that have sparse coverage, we would prioritize
getting the data back to our servers for this deployment, rather than conserving
power. This may be subject to change in future versions if we experience that
nodes use more power than anticipated on failed communication cycles.

12
Power consumption -Experiment and results
In this chapter we will take a closer look at the power consumption of the
different node versions. As this was one of the major concerns when designing
the sensor node, we conducted an experiment to look at the difference in
power consumption between the three versions of the node. As the hardware
configuration is mostly the same, this will indicate the impact of the software
design on the efficiency of the node. Finally, we will discuss the potential
impact of the power consumption on deployment period and measurement
frequency.

12.1 Methodology
It is more important to find an upper limit for power consumption than to
quantify it exactly. As such, if we think that a variable might be hard to
measure, we will rather aim to over-estimate it. This means that we can
guarantee that the power consumption is less than the value we find here. All
current measurements are done with a Fluke 37 multimeter. The power source
is an Aim TTi EX355R power supply set at 4.5V.

The first measurement is the low-power mode, also referred to as deep sleep,

99

100 chapter 12 power consumption - experiment and results

power consumption. The sensor nodes spend most of their time in this mode.
Optimization of low-power mode consumption is therefore of utmost impor-
tance. The way themeasurements were plannedwas to take 100measurements
of the low-power mode consumption and average them.

The power consumption while the node is active was harder to measure than
in low-power mode. When operating the power consumption fluctuates signif-
icantly. The measurements are therefore not as precise as with the low-power
mode. While it would be possible to measure this to a high accuracy, a ball-
park estimate is sufficient for our purposes, and can be done with avaliable
equipment. The power consumption was estimated by visual inspection of
continuous measurements of the current.

The time spent in active mode is also an important variable. This is time
spent from waking up from low-power mode, taking measurements, saving it,
and going back to low-power mode. The time was measured manually with a
stop-watch, and therefore a degree of human error must be expected.

The time spent in the communication cycle is harder to measure. Here variables
like connection quality, amount of data to be transmitted, and available updates
have a huge impact.

Due to the inherent variability of this value, measuring it reliably isn’t practical.
In order to preserve the over-estimation ideal, we therefore set the duration of
the daily communication cycle to 3 minutes. This value should be significantly
higher than the average communication time.

The yearly consumption for each of these three stages is calculated based on
the time spent doing a task multiplied by the power consumption.

We have not considered energy usage during the self-test or the camera flash
detection. The reason the self-test is excluded is that it is only done once for
each deployment. The camera health sensor energy usage is difficult to estimate
as it will depend on how frequently the camera trap is visited by rodents. In all
versions of the node, this is a small procedure that will take about a second to
be completed. Hence, neither should have a significant influence on the yearly
energy usage.

12.2 Results
The power consumption of the operative mode of the sensor nodes is very
similar between the different versions. This is because it performs essentially

12.2 results 101

the same tasks. The only meaningful difference is a slight reduction in the time
it takes to complete it’s tasks in version 2.0.

V1.0 V1.1 V2.0
Low power mode
Current 442µA 443µA 24µA
Yearly energy usage 3, 871mAh 3, 881mAh 210mAh
Measurement mode
Current 70mA 70mA 70mA
Time spent 14.9s 14.8s 14.1s
Yearly energy usage 5, 076mAh 5, 042mAh 4, 803mAh
Communication mode
Current 120mA 120mA 120mA
Time spent 180s 180s 180s
Yearly energy usage 2, 190mAh 2, 190mAh 2, 190mAh
Total yearly energy usage 11, 138mAh 11, 113mAh 7, 203mAh

We can see from the table there is a significant difference in the yearly con-
sumption of the first two versions and version 2.0. Most of this is due to
the low-power mode current draw being much lower in version 2.0. Our ex-
periment shows that fine-tuning the software can significantly improve the
efficiency of a given hardware configuration. This illustrates the importance
of optimization of power consumption for the most common state. Again, it is
important to note that there are no significant hardware differences between
versions. These gains in power efficiency are nearly entirely due to software
improvements.

The deployed nodes have a total of 14, 000mAh capacity in the batteries. This
implies that those nodes should be able to operate for 459 days for version 1.0
and 460 days for version 1.1. Version 2.0 have been equipped with 21, 000mAh
total capacity. This, together with with the improved efficiency, results in a
maximum deployment time of 1, 064 days, or almost 3 years.

Increasing the deployment period is not beneficial in our case. Instead, we
could increase the measurement frequency. Versions 1.0 and 1.1 could both
be configured to take measurements every 19 minutes instead of the 30 they
currently are configured to. Version 2.0 could be configured to take measure-
ments every 7.5minutes. This would result in versions 1.0 and 1.1 recording in
excess of 75measurements each day, while version 2.0 recording 192 readings
each day. A plot of the maximum number of measurements possible each day
is presented in Figure 12.1.

102 chapter 12 power consumption - experiment and results

Figure 12.1: Graph showing daily measurements as a function of deployment length
(Graph: Øystein Tveito)

We can also use the measurements to estimate the required battery capacity
for each of the nodes dependent upon the deployment period. A graph plotting
the battery capacity needed for a given deployment period is presented in
Figure 12.2.

Measurement frequency, communication frequency, battery capacity, and de-
ployment length can be changed in case this is desired. If only a single reading
is needed each day, the sensor node can be deployed for more than eight years
according to these calculations. If communication was not important, the node
can operate for more than four years before the batteries needs to be replaced,
if measuring at a frequency of two measurements per hour. However, one aspect
that is not taken into consideration is the self depletion rate of the batteries.
All batteries will lose some of its capacity over time. For the batteries we are
using, the shelf life is stated to be 20 years. In this time, 10% of the capacity
will be dissipated. As such, this is not an important concern, provided that we
over-estimate energy usage by at least five per cent.

12.2 results 103

Figure 12.2: Graph showing required battery capacity as a function of deployment
length (Graph: Øystein Tveito)

13
Summary of the project
13.1 Status
The status of the project is currently that we have ten units in the field. Of
these, we have been in communication with six, but only two of these are
communicating frequently. None of the sensors from which we have received
measurements have provided CO2 readings that we believe are correct.

Some of the sensors are constantly giving the value zero for CO2. This may
indicate that the sensor itself is broken. Others report CO2 values that are far
outside the range we expected. If those prove to be correct, that would be very
surprising and of high importance to the ecology study. However, we deem it
far more likely that the data is either corrupted by the missing calibration, or
are heavily dependent upon humidity data to be able to accurately report the
CO2 levels.

The data reported back will be examined further when the nodes are eventually
retrieved from the deployment site. The data and logs from the SD-cards will
then be analyzed. The hope is that we are able to decorrelate the temperature
with the CO2 readings, providing a somewhat useful result.

The logs of the units that have not reported back will also be subject to
investigation. We expect the reason we have not heard from them are that they
are without network coverage. If this is not the case, it would be interesting to
investigate why they have failed.

105

106 chapter 13 summary of the project

Version 2.0 should remedy the problem with incorrect data with a sensor that is
better suited for the temperatures to which we are exposing the sensor nodes.
The new version is also easier and faster to assemble. This could allow us to
deploy far more units to widen the scope of the experiment.

Version 2.0 of the node would be ready for the next deployment. However, due
to the global COVID-19 pandemic the deployment plans are more uncertain
than when the project started. It is conceivable that this year’s deployment
will be delayed. It is also possible that it will be cancelled entirely. The current
traveling advice is that unnecessary traveling should be avoided.

13.2 Challenges
Challenges, small and big, are a part of any project worth doing. Here we will
reiterate some of the more important challenges we encountered throughout
this project. Finally, we will take a look on some of the lessons that can be
extracted from this.

13.2.1 Part selection
Assembling a complete sensor node based on the data available in data sheets
has been challenging. The way the technical data is provided in a data sheet can
be quite cryptic for the untrained eye. Due to our somewhat limited experience
in interpreting these types of documents, some of the caveats were overlooked
when picking components. The CO2 sensor is an example of such a mistake.
Here the information on calibration ranges and humidity dependency was
interpreted incorrectly. This lead us to using a sensor which was not calibrated
for operation in negative temperatures.

13.2.2 Antenna problems
We did not receive communication from any of the deployed nodes on the first
deployment. This was a major problem that we encountered in this project.
Our somewhat lacking understanding of antenna theory at the time led to us
spending several days in search of the cause of the problem.

Compounding to the antenna placement problem, the reception in the area
was lower than we expected. According to the coverage maps we had access
to, the reception should have been sufficient. After the antenna placement had
been fixed, four units were still not able to communicate due to the sparse

13.3 lessons learned 107

coverage.

13.2.3 Time management
Deadlines are an ever-present concern for most projects. The deadline we
had to abide by was set by the planned maintenance trip done yearly by the
ecologists at COAT. Planning, designing, implementing, and testing our sensor
node in time for this deadline was a challenge. Software development and
hardware assembly was ongoing right up to the deadline. This meant that little
time was spent on testing the device before deployment. There was also not
allocated time for code reviews. Code reviews are usually useful for finding
less than optimal code and bugs.

While the hardware design was being developed from the beginning of the
project, the software development did not start until the first hardware proto-
type had been created. This contributed to the time crunch at the end of the
project.

Finally, in the start of the project, a lot of time was spent on planning the project
and design. No parts were ordered until this stage was completed. While some
components were changed in this phase, most of the components were selected
early in the planning stage. This meant we had to wait for parts to arrive once
the planning stage was completed, subtracting from our available development
time.

13.3 Lessons learned
From the challenges we encountered, we have noted some lessons that we have
learned. These lessons could have helped us to quickly find good solutions, or
avoid these problems completely.

13.3.1 Part selection
Many data sheets do not present their technical data in an easily readable
manner. The data sheet is meant for reference and comparison, not as a
manual. Spending more time on reading the data sheets might be useful. What
we ended up doing after discovering the strange measurements was to e-mail
the manufacturer. After a couple of emails back and forth, we had understood
how the data sheet was meant to be read. If we had been in direct contact
with the manufacturer at an early stage of the project this problem could have

108 chapter 13 summary of the project

been completely avoided.

The manufacturer’s sales representatives usually have comprehensive knowl-
edge about their products and prior use-cases. It is in their interest that we,
the customer, are getting the correct information and are successful in our
project. Both the resulting sales and the publications that are produced may
be profitable or useful for their continued business. Therefore, one should not
hesitate to contact the company if any uncertainty exists after reading the data
sheet for a component.

Confounding variables must be considered carefully. More thought should have
been given to determining which variables might influence the results, apart
from what we are trying to measure. In our case, humidity is likely a crucial
variable that needs to be included in the equation to calculate the correct CO2
level.

13.3.2 Antenna problems
The lesson that have been ingrained in us from our encounter with the antenna
problem is an important one. When developing any solution, the solution
should always be tested thoroughly. We did some testing in and around our
lab, but none of the tests done tried to imitate the actual deployment. Testing
parts of a solution is of course important, but testing the entire solution as it is
meant to be deployed is crucial.

Our testing should have included placing the node in a camera trap enclosure,
with the antenna secured to the lid as in the deployment. It should also have
included a test of this setup in an area with poor reception. If this had been
done we would likely have located the problem before the actual deployment.
This would have saved us the second deployment altogether.

While some of the units now are communicating, others are not. The coverage
maps provided by Telenor and Telia are clear about the fact that the maps
are generated based on algorithms, and not actual gathered data. In our case,
shadowing caused by the local terrain is likely to be the reason for the deviation
between the map and reality. Measuring the signal strength in the area would
have given us some valuable information about the conditions in advance. We
would have had the time to create a signal strength test in a simple node. This
could then have been shipped to COAT’s local technician, who could have taken
it to the actual deployment site early on in the project. The deployment site
could potentially have been changed, as COAT operates several deployment
sites like the one we are using.

13.4 future work 109

13.3.3 Time management
While the deadline for this project could not have been changed, there were
several things we could have done differently in our time management. One of
the first lessons have extracted from this is that software development should
have started earlier.

As stated earlier, software development did not start until we had an assembled
hardware prototype. It may be slightly frustrating developing for a system that
has not been built yet. Nevertheless, it would have saved us some time to
have a base program ready when the first hardware was built. The main
operations of the sensor node could be coded on a stand-alone FiPy. The
missing hardware functionality could have been emulated with place-holder
functions. Programming is usually more time consuming than first anticipated.
With software development started early, we could have had time for both
code reviews and testing of the system before the deployment. This would also
have given us a way of properly testing the hardware early on in the hardware
development.

Allocating time for reviewing code and tests is useful. While it does take time
away from development, it may save the developer from spending time going
in the wrong direction. Additionally, it often is useful to formulate what your
code is trying to do in a human language.

Components could have been ordered as soon as we were reasonably sure that
the final selection for that component was done. This way, we could have saved
some time waiting for components to arrive. This would have resulted in about
a week of extra development time. There would be a risk of some parts being
removed or replaced from the project after it was ordered, but the added cost
of this would be negligible compared to the overall budget.

13.4 Future work
There is still some work that needs to be done until this project can be consid-
ered complete. Version 2.0 of the sensor node is still not deployed. This will
be done in conjunction with retrieval of the currently deployed version 1.1
nodes. With the old nodes retrieved, we can start analyzing the logs and data.
Diagnosing the nodes that have not been able to communicate will then be the
main priority. If the logs are not able to give us enough information about why
the nodes failed, we would then have to do some more experimentation.

Furthermore, we will take a closer look at the data. The goal is that we will be

110 chapter 13 summary of the project

able to interpret the data, estimating the real CO2 values. If this can be done,
we would be able to deliver on our original task. The new and improved sensor
node should in any case be able to deliver useful data to the ecologists by the
following winter.

Additional functionality has been suggested in order to improve its versatil-
ity. Top amongst this is the addition of a local network. This would allow
sensor nodes with no LTE CAT M1 coverage to use surrounding nodes as gate-
ways. Having this functionality would vastly expand the amount of suitable
deployment locations.

14
Conclusion
The task we set out to complete was to create a small, robust, and power
efficient node to measure CO2 concentrations underneath the snow in the Arctic
tundra. We have created three distinct versions of a sensor node, fulfilling all
the requirements set by the ecologists and the requirements set by us. The
experience from the first two deployments has allowed us to test what works,
and helped us identify design- and implementation flaws. We have still not
been able to deliver the requested data to COAT’s ecologists. This is something
that we think will change once we are able to deploy the newest versions of
our sensor node.

In the end, we have created a scientific instrument that will be able to provide
measurements of previously unknown variables. The data gathered might be
an important part of the ecological research done in COAT. The sensor node
that has been presented here is novel, small, power efficient, and functional.
It is able to autonomously monitor the conditions in the camera traps for
several years on batteries, while delivering the data wirelessly to our backend
servers.

111

112 chapter 14 conclusion

Figure 14.1: Picture of a finished version 2.0 sensor node (Photo: Øystein Tveito)

Bibliography
[1] APT. Industrial Grade microSD datasheet, 2020. https:

//media.digikey.com/pdf/Data%20Sheets/ATP%20Electronics%20PDFs/
ATP%20microSD_SDHC.pdf.

[2] Aline Baggio. Wireless sensor networks in precision agriculture. In
ACM Workshop on Real-World Wireless Sensor Networks (REALWSN 2005),
Stockholm, Sweden, pages 1567–1576. Citeseer, 2005.

[3] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, Martin Vet-
terli, Olivier Couach, and M. Parlange. Sensorscope: Out-of-the-box
environmental monitoring. pages 332–343, 05 2008.

[4] Elizabeth A. Basha, Sai Ravela, and Daniela Rus. Model-based monitoring
for early warning flood detection. In Proceedings of the 6th ACM Conference
on Embedded Network Sensor Systems, SenSys ’08, pages 295–308, New
York, NY, USA, 2008. ACM.

[5] C. Chen, X. Jun-ming, and G. Hui-fang. Polluted water monitoring based
on wireless sensor. In 2011 International Conference on Electronics, Com-
munications and Control (ICECC), pages 961–963, Sept 2011.

[6] M. Chen, Y. Miao, Y. Hao, and K. Hwang. Narrow band internet of things.
IEEE Access, 5:20557–20577, 2017.

[7] COAT. Climate-ecological Observatory for Arctic Tundra, 2020. https:
//www.coat.no/.

[8] Earth System Research Laboratory - Global Monitoring Division. Global
Greenhouse Gas Reference Network, 2020. https://www.esrl.noaa.gov/
gmd/ccgg/trends/.

[9] Energizer. ENERGIZER L91 datasheet, 2005. https://data.energizer.
com/pdfs/l91.pdf.

113

https://media.digikey.com/pdf/Data%20Sheets/ATP%20Electronics%20PDFs/ATP%20microSD_SDHC.pdf
https://media.digikey.com/pdf/Data%20Sheets/ATP%20Electronics%20PDFs/ATP%20microSD_SDHC.pdf
https://media.digikey.com/pdf/Data%20Sheets/ATP%20Electronics%20PDFs/ATP%20microSD_SDHC.pdf
https://www.coat.no/
https://www.coat.no/
https://www.esrl.noaa.gov/gmd/ccgg/trends/
https://www.esrl.noaa.gov/gmd/ccgg/trends/
https://data.energizer.com/pdfs/l91.pdf
https://data.energizer.com/pdfs/l91.pdf

114 bibl iography

[10] Espressif. ESP32 datasheet, 2020. https://www.espressif.com/sites/
default/files/documentation/esp32_datasheet_en.pdf.

[11] Bramer et al. Chapter three - advances in monitoring and modelling
climate at ecologically relevant scales. Adcances in Ecological Research,
58:101–161, Feb 2018.

[12] S. Evans. Dielectric properties of ice and snow–a review. Journal of
Glaciology, 5(42):773–792, Jan 1965.

[13] N. J. Poole F. Sarvar and P. A. Witting. Pcb glass-fibre laminates: Thermal
conductivity measurements and their effect on simulation. Journal of
Electronic Materials, 19(12):1345–1350, Dec 1990.

[14] Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, and Joan Garcia-
Haro. Wireless sensor network deployment for integrating video-
surveillance and data-monitoring in precision agriculture over distributed
crops. Computers and Electronics in Agriculture, 75(2):288 – 303, 2011.

[15] Gas Sensing Solutions. ExplorIR-W CO2 Sensor Datasheet,
2018. https://web.archive.org/web/20190522120607/https:
//www.gassensing.co.uk/wp-content/uploads/2018/08/ExplorIR-
W-CO2-sensor-datasheet.pdf.

[16] P. Hsieh, Y. Jia, D. Parra, and P. Aithal. An experimental study on coverage
enhancement of lte cat-m1 for machine-type communication. In 2018 IEEE
International Conference on Communications (ICC), pages 1–5, 2018.

[17] Intel. MCS 51 MICROCONTROLLER FAMILY USER’S MANUAL, 1994. http:
//datasheets.chipdb.org/Intel/MCS51/MANUALS/27238302.PDF.

[18] International IOR rectifier. IRLB8721PbF datasheet, 2009. https://cdn-
shop.adafruit.com/datasheets/irlb8721pbf.pdf.

[19] Thomas C. Krohn, Axel Kornerup Hansen, and Nils Dragsted. The impact
of low levels of carbon dioxide on rats. Laboratory Animals, 37(2):94–99,
2003. PMID: 12689419.

[20] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: experi-
ences from a pilot sensor network deployment in precision agriculture.
In Proceedings 20th IEEE International Parallel Distributed Processing Sym-
posium, pages 8 pp.–, April 2006.

[21] Françoise Martz, Jaana Vuosku, Anu Ovaskainen, Sari Stark, and Pasi

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://web.archive.org/web/20190522120607/https://www.gassensing.co.uk/wp-content/uploads/2018/08/ExplorIR-W-CO2-sensor-datasheet.pdf
https://web.archive.org/web/20190522120607/https://www.gassensing.co.uk/wp-content/uploads/2018/08/ExplorIR-W-CO2-sensor-datasheet.pdf
https://web.archive.org/web/20190522120607/https://www.gassensing.co.uk/wp-content/uploads/2018/08/ExplorIR-W-CO2-sensor-datasheet.pdf
http://datasheets.chipdb.org/Intel/MCS51/MANUALS/27238302.PDF
http://datasheets.chipdb.org/Intel/MCS51/MANUALS/27238302.PDF
https://cdn-shop.adafruit.com/datasheets/irlb8721pbf.pdf
https://cdn-shop.adafruit.com/datasheets/irlb8721pbf.pdf

bibl iography 115

Rautio. The snow must go on: Ground ice encasement, snow compaction
and absence of snow differently cause soil hypoxia, co2 accumulation and
tree seedling damage in boreal forest. PLOS ONE, 11(6):1–18, 06 2016.

[22] Maxim Integrated. DS3231 datasheet, 2015. https://cdn-shop.adafruit.
com/product-files/3013/DS3231.pdf.

[23] Maxim Integrated. DS18B20 datasheet, 2019. https://datasheets.
maximintegrated.com/en/ds/DS18B20.pdf.

[24] Mbed. Building IoT devices with JavaScript, 2020. https://os.mbed.com/
javascript-on-mbed/.

[25] Wesley J. McBride and Jason R. Courter. Using raspberry pi microcomput-
ers to remotely monitor birds and collect environmental data. Ecological
Informatics, 54:101016, 2019.

[26] James G. Mickley, Timothy E. Moore, Carl D. Schlichting, Amber DeRober-
tis, Emilia N. Pfisterer, and Robert Bagchi. Measuring microenvironments
for global change: Diy environmental microcontroller units (emus). Meth-
ods in Ecology and Evolution, 10(4):578–584, 2019.

[27] MicroPython org. MicroPython, 2013. http://micropython.org/.

[28] M. A. Nasirudin, U. N. Za’bah, and O. Sidek. Fresh water real-time
monitoring system based on wireless sensor network and gsm. In 2011
IEEE Conference on Open Systems, pages 354–357, Sept 2011.

[29] Sajid Nazir, Scott Newey, R. Justin Irvine, Fabio Verdicchio, Paul Davidson,
Gorry Fairhurst, and René van der Wal. Wiseeye: Next generation ex-
pandable and programmable camera trap platform for wildlife research.
PLOS ONE, 12(1):1–15, 01 2017.

[30] NEMA. NEMA Enclosure Types, 2015. https://www.nema.org/Products/
Documents/nema-enclosure-types.pdf.

[31] Polycase. Polycase WH-02, 2019. https://www.polycase.com/wh-02.

[32] Pycom. FiPy datasheet, 2017. https://docs.pycom.io/gitbook/assets/
specsheets/Pycom_002_Specsheets_FiPy_v2.pdf.

[33] Raspberry pi foundation. Raspberry pi, 2020. https://www.raspberrypi.
org/.

https://cdn-shop.adafruit.com/product-files/3013/DS3231.pdf
https://cdn-shop.adafruit.com/product-files/3013/DS3231.pdf
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://os.mbed.com/javascript-on-mbed/
https://os.mbed.com/javascript-on-mbed/
http://micropython.org/
https://www.nema.org/Products/Documents/nema-enclosure-types.pdf
https://www.nema.org/Products/Documents/nema-enclosure-types.pdf
https://www.polycase.com/wh-02
https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_FiPy_v2.pdf
https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_FiPy_v2.pdf
https://www.raspberrypi.org/
https://www.raspberrypi.org/

116 bibl iography

[34] Luis Ruiz-Garcia, Loredana Lunadei, Pilar Barreiro, and Ignacio Robla. A
review of wireless sensor technologies and applications in agriculture and
food industry: State of the art and current trends. Sensors, 9(6):4728–
4750, 2009.

[35] Karl E. Schaefer. Effects of increased ambient co2 levels on human and
animal health. Experientia, 38(10):1163–1168, Oct 1982.

[36] Senserion. SHT1X datasheet, 2011. https://cdn-shop.adafruit.com/
datasheets/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf.

[37] Eeva M. Soininen, Ingrid Jensvoll, Siw T. Killengreen, and Rolf A. Ims.
Under the snow: a new camera trap opens the white box of subnivean
ecology. Remote Sensing in Ecology and Conservation, 1(1):29–38, 2015.

[38] Telenor. Dekningskart IoT, 2019. https://www.telenor.no/bedrift/iot/
dekning/#map.

[39] Telia. Dekningskart IoT, 2019. https://www.telia.no/dekning/.

[40] Dagrun Vikhamar-Schuler, Ketil Isaksen, Jan Erik Haugen, Hans Tøm-
mervik, Bartlomiej Luks, Thomas Vikhamar Schuler, and Jarle W. Bjerke.
Changes in winter warming events in the nordic arctic region. Journal of
Climate, 29(17):6223–6244, 2016.

[41] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensor network.
In Proceedings of the 7th Symposium on Operating Systems Design and Im-
plementation, OSDI ’06, pages 381–396, Berkeley, CA, USA, 2006. USENIX
Association.

[42] Ming Xia, Yabo Dong,Wenyuan Xu, Xiangyang Li, and Dongming Lu. Mc2:
Multimode user-centric design of wireless sensor networks for long-term
monitoring. ACM Trans. Sen. Netw., 10(3):52:1–52:30, May 2014.

https://cdn-shop.adafruit.com/datasheets/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf
https://cdn-shop.adafruit.com/datasheets/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf
https://www.telenor.no/bedrift/iot/dekning/#map
https://www.telenor.no/bedrift/iot/dekning/#map
https://www.telia.no/dekning/

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 COAT research project
	1.2 Complementary data
	1.3 CO2
	1.4 Computer science in ecology
	1.5 Overview of contributions
	1.5.1 Michael J. Murphy
	1.5.2 Øystein Tveito
	1.5.3 Remaining tasks

	2 Requirements
	2.1 Non-interference
	2.2 Physical dimensions
	2.3 Measurement types
	2.4 Data quality
	2.5 Climate
	2.6 Data storage
	2.7 Time resolution
	2.8 Camouflage
	2.9 Power
	2.10 Practical concerns

	3 Related works
	3.1 Commercial solutions
	3.2 Prior research in custom solutions

	4 Architecture
	4.1 Hardware architecture
	4.1.1 Wireless communication
	4.1.2 Time keeping
	4.1.3 Logic controller
	4.1.4 Data storage
	4.1.5 Power management
	4.1.6 Sensors

	4.2 Software architecture
	4.2.1 Operating modes
	4.2.2 Periodic sensor readings
	4.2.3 Event-driven sensor readings
	4.2.4 Communication
	4.2.5 Self test

	5 Design
	5.1 Hardware design
	5.1.1 Logic controller
	5.1.2 Casing
	5.1.3 CO2
	5.1.4 Temperature sensor
	5.1.5 IR light sensor
	5.1.6 Storage
	5.1.7 Real Time Counter
	5.1.8 Batteries
	5.1.9 Visual feedback device
	5.1.10 Communication

	5.2 Software design V1.0
	5.2.1 Operating system
	5.2.2 Boot procedure
	5.2.3 Power on
	5.2.4 Watchdog reset
	5.2.5 Interrupt
	5.2.6 Communication cycle
	5.2.7 Scheduling

	5.3 Software design V1.1
	5.3.1 Self-test
	5.3.2 Communication cycle

	5.4 Software design V2.0
	5.4.1 Boot procedure
	5.4.2 Watchdog reset
	5.4.3 Events
	5.4.4 Scheduled interrupts
	5.4.5 Communication

	6 Implementation
	6.1 Hardware version 1.0 and 1.1
	6.1.1 Parts
	6.1.2 Budget
	6.1.3 Assembly

	6.2 Hardware version 2.0
	6.2.1 Parts
	6.2.2 Assembly

	6.3 Physical implementation
	6.3.1 Version 1.0
	6.3.2 Version 1.1
	6.3.3 Version 2.0

	6.4 Software implementation

	7 Version 1.0 design and implementation discussion
	7.1 Characteristics
	7.1.1 Accuracy
	7.1.2 Reliability
	7.1.3 Power consumption
	7.1.4 Cost
	7.1.5 Ease of use

	7.2 Communication technology
	7.2.1 Satellite communication
	7.2.2 NB-IoT
	7.2.3 CAT-M1
	7.2.4 LoRa
	7.2.5 Technology choice

	7.3 Part selection
	7.3.1 Logic controller
	7.3.2 Power

	8 Lessons learned from the first deployment
	8.1 Deployment procedure
	8.2 Deployment problems
	8.3 Communication problems
	8.4 Hypotheses
	8.4.1 Communication back off
	8.4.2 Weather conditions
	8.4.3 Software or firmware problems
	8.4.4 Hardware problems
	8.4.5 Signal problems

	8.5 Investigation
	8.5.1 Capacitor effect
	8.5.2 Non-linear-electromagnetic effect
	8.5.3 Antenna attenuation

	8.6 Countermeasures
	8.6.1 Countermeasure testing
	8.6.2 Countermeasure results

	9 Second deployment - Modifications and experiences
	9.1 Changes to the device
	9.1.1 Software changes
	9.1.2 Physical changes
	9.1.3 Antenna changes

	9.2 Second deployment procedure
	9.3 Second deployment
	9.4 Results

	10 Project analysis
	10.1 Status this far
	10.1.1 CO2
	10.1.2 Temperature
	10.1.3 Camera flash detection
	10.1.4 Logs
	10.1.5 Unknowns

	10.2 Hardware
	10.3 Software
	10.3.1 Watchdog timer
	10.3.2 CO2 readings
	10.3.3 Operation
	10.3.4 Conclusion

	11 Final version
	11.1 Hardware
	11.1.1 Main board
	11.1.2 CO2 and temperature sensor
	11.1.3 SD-card
	11.1.4 Power supply

	11.2 Software
	11.2.1 Storage
	11.2.2 Power consumption

	12 Power consumption - Experiment and results
	12.1 Methodology
	12.2 Results

	13 Summary of the project
	13.1 Status
	13.2 Challenges
	13.2.1 Part selection
	13.2.2 Antenna problems
	13.2.3 Time management

	13.3 Lessons learned
	13.3.1 Part selection
	13.3.2 Antenna problems
	13.3.3 Time management

	13.4 Future work

	14 Conclusion
	Bibliography

