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Abstract: This paper discusses a state-of-the-art inline tubular sensor that can measure the viscosity—
density (pn) of a passing fluid. In this study, experiments and numerical modelling were performed
to develop a deeper understanding of the tubular sensor. Experimental results were compared with
an analytical model of the torsional resonator. Good agreement was found at low viscosities, although
the numerical model deviated slightly at higher viscosities. The sensor was used to measure viscosities
in the range of 0.3-1000 mPa-s at a density of 1000 kg/m?. Above 50 mPa-s, numerical models predicted
viscosity within +5% of actual measurement. However, for lower viscosities, there was a higher
deviation between model and experimental results up to a maximum of +21% deviation at 0.3 mPas.
The sensor was tested in a flow loop to determine the impact of both laminar and turbulent flow
conditions. No significant deviations from the static case were found in either of the flow regimes. The
numerical model developed for the tubular torsional sensor was shown to predict the sensor behavior
over a wide range, enabling model-based design scaling.

Keywords: viscometer; viscosity—density sensor; viscosity measurement; torsional resonator;
fluid-structure interaction

1. Introduction

Traditionally, viscosity is measured by sampling and analyzing fluids with common laboratory
viscometers or rheometers. These instruments are time consuming, error prone, expensive, and
prohibit a fast and automated system response. Sensors based on mechanical resonance, however,
are a promising alternative to conventional laboratory equipment. These sensors are robust, have no
moving parts, and are, therefore, suited to real-time measurements. Using sensors based on
resonance, various materials can be investigated for different purposes, such as studying the
viscoelastic behavior of polymers, determining fluid density and viscosity [1-8], characterizing the
mechanical properties of polymer membranes and thin films [9-14], and detecting biomolecule or
nanoparticle masses [15-20]. Sensors using torsional vibration are a subgroup of mechanical
resonators. If purely cylindrical, these sensors create pure shear stresses and do not increase mass
displacement, such as tuning forks or cantilevers. This makes them more robust, and measurement
less sensitive towards, e.g., wall effects.

Sensors based on torsional vibration have been investigated to measure viscous and viscoelastic
effects [21-24]. Probe-style sensors are already commercially available (e.g., Rheonics, Hydramotion,
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Sofraser, Brookfield, and Emerson). Experimental and numerical studies have been conducted on how
to measure viscosity [25-29]. Furthermore, they have been used to characterize viscoelastic fluids [21].

It is advantageous to have a nonintrusive viscosity sensor to monitor industrial processes.
Thereby, the sensor should neither create an obstruction in the piping system nor influence the flow
field inside the tube.

Héusler and Reinhart et al. [26,30] designed a tubular sensor on the basis of a small tube to
measure blood viscosity. The sensor consisted of a small tube with an inner diameter of 2 mm that
was excited in a torsional mode. The damping of the mode was measured and correlated to fluid
viscosity within the tube. This system was used to measure blood viscosity at different hematocrits.

Fuchs and Drahm et al. [31] built a tubular sensor to measure the mass flow rate, fluid density
and viscosity. The sensor was based on a straight tube with an attached eccentric mass. The system
oscillated in a superposition of torsional and transverse modes, which allowed the Coriolis effect to
be measured. In addition, due to fluid displacement, the resonance frequency of the excited mode
could be correlated with fluid density. The novelty in this design was that the sensor could measure
the damping of the mode. Damping is caused by the shear stresses within the fluid due to torsional
vibration. Thus, the sensor was capable of measuring the mass flow rate, viscosity, and density.

This study presents a tubular sensor that could measure the viscosity (at a known density) under
the conditions of internal flow. The design is based on the tubular sensor introduced by Hausler [26,30].
It was adapted to measure a wide range of viscosities. Additionally, the sensor was designed as a
flow-through device, which can be integrated into piping systems and does not obstruct the flow. The
resonator of the sensor oscillates in a purely torsional mode; thus, it cannot measure flow rate or fluid
density like the tubular sensor designed by Fuchs and Drahm [31]. However, because no eccentric mass
is needed, the overall inertia of the resonator is smaller than that with eccentric mass. Thus, the ratio
between fluid-induced damping and inertia is higher, and the sensor is more sensitive towards
damping. This enables greater accuracy, especially for low viscosities. Therefore, the benefit of the
new tubular sensor is higher accuracy at low viscosities in comparison to the tubular sensor presented
by Fuchs and Drahm [31].

To gain deeper insight into the working principle of the sensor, the sensor was numerically
modelled using a weak fluid—structure interaction. This model will provide the means for
dimensional scaling of the sensor while meeting sensor's measuring range and accuracy
specifications. For validation, the predicted damping values were verified by comparing them with
measurements under static conditions, meaning no internal flow and thermally uniform conditions.
However, the sensor eventually operated under conditions where internal flow is present. Thus, it
was crucial to investigate the sensitivity of measurement to internal flow to reliably and accurately
conduct measurements to reflect actual industrial use case. Therefore, the sensor was inserted into a
flow loop, and tested with different fluids and in the laminar and turbulent flow regime.

2. Sensor Design and Experiments

The tubular sensor uses a thin-walled, straight, stainless-steel tube as the sensor body. The fluid
flows through the tubular sensor without any interruption. This allows the tubular sensor to be
directly integrated into a process line.

The working principle of the tubular sensor is based on torsional resonance. The first torsional
mode of the tubular resonator is excited at a frequency similar to its natural frequency. The excited
resonance creates motion in the fluid. The shear stresses caused by the fluid motion induce a torque on
the sensor, which damps oscillation. Oscillation damping is measured and related to fluid properties.

2.1. Tubular Sensor Design

The schematic of the tubular sensor is shown in Figure 1. The resonator was comprised of a
thin-walled, stainless-steel (316 L) tube with an inner diameter of 5.25 mm and with two large disks
mounted onto the outer diameter. The two disks are spaced 100 mm apart. The section between these
disks is the measurement section, where the first torsional mode was excited via two permanent
magnets that are mounted onto the tube. These magnets were driven by electromagnets, which
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produced an oscillating torque near the natural frequency of the first torsional mode. This driving
torque was turned off after sufficient energy has been provided to the resonator. Then, the decay in
torsional oscillation was measured using electromagnets. On the basis of the measured signal, the
logarithmic decrement and the resonance frequency f, of the resonator were computed. Damping
was expressed as bandwidth I, which was computed on the basis of the logarithmic decrement.
Additionally, temperature was measured by a PT1000 RTD (Honeywell, Berkshire, UK) mounted on
the tube.
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Figure 1. Experimental setup of tubular sensor.

2.2. Static Experiment Procedure

Experiments were conducted under static conditions (tube filled with fluid with no internal
flow) to determine damping at different well-defined viscosities and densities of the fluid. These
experiments were used to determine whether the numerical model described in Section 2.4 agrees
with the measurement as well as to check consistency for different fluids. To conduct the
experimental measurements, the tube was filled with different NIST (National Institute of Standards
and Technology) traceable viscosity reference fluids (N2, S6, 520, 560, N100, S200, and S600, from
Cannon Instrument Company (State College, PA 16803, USA)). These fluids have a well-known
viscosity and density as a function of temperature; thus, they are well suited for calibration and
validation purposes. During calibration, the temperature varied between 20 and 100 °C. Once a target
temperature was reached, it was held constant for long enough so that the sensor and fluid were under
thermally uniform conditions.

The damping caused by the fluid is related to the product of viscosity and density, later denoted
as pn value, where p is the fluid density and n the dynamic viscosity. Each fluid covers a certain
range of pn values. However, all fluids are of similar density, and therefore, the driving change in
damping is related to the fluid’s viscosity. These ranges overlap; thus, two fluids are capable of
producing the same damping (pn value) at different temperatures.

This investigation was conducted in two different steps. In the first step, four fluids were used to
create a baseline for the sensor. These first sets of fluids are marked in Figure 2 with full lines. They
covered the entire operating range of the sensor and had some overlap of their temperature-dependent
pn value. In the second step, baseline validity was tested with additional fluids S20 and 5200, marked
with dashed lines in Figure 2.

During measurement, sensor damping and resonance frequency were determined. The measured
damping of the sensor was the superposition of intrinsic material damping and fluid-induced damping.
To determine fluid-induced damping, intrinsic damping was subtracted from the measured damping
value. The intrinsic damping of the sensor was temperature dependent and measured prior to fluid
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measurements. Therefore, the clean sensor with no fluid inside the tube was measured with the same
protocol as the filled sensor in the climate chamber.
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Figure 2. Product of viscosity and density (pn) of fluids as a function of temperature. Solid lines are
fluids used to create a baseline, and dashed lines are fluids used for validation.

For all measurements, sensor bandwidth was measured in intervals of approximately 1 s. One
hundred measurements were used to calculate an averaged value of bandwidth, temperature, and
resonance frequency. To estimate measurement uncertainty, error estimation was performed. There
were two main contributions to the error: (1) intrinsic damping and (2) measuring damping value.

(1) An absolute error in the measured damping was caused by the intrinsic damping of the sensor.
This error was independent of the damping value.

(2) Measurement of the damping value was more accurate at low damping due to higher signal-to-noise
ratio. The relative error was 0.3% in air and increased to 30% for viscosities of 1000 mPas at a density of
1000 kg/m?3. This error could be reduced by averaging multiple measurements. Thus, by averaging 100
measurements, its contribution was reduced by ten-fold.

To determine the absolute viscosity (at a given density), the exact fluid properties at a given
temperature during measurements were required. Temperature measurement was subject to its own
error, creating uncertainty around the fluid properties during measurements. For the fluids used in
this study, this error was approximately 3%.

2.3. Flow Loop Experiment

The tubular sensor was integrated into a flow loop to investigate the sensor sensitivity towards
internal flow under realistic industrial conditions (as shown in Figure 3). Flow rate could be varied in
the flow loop, allowing variation in the averaged flow velocity through the sensor from 2.3 to 10 m/s.
A membrane pump (ZIP-80, Wagner (Altstitten, Switzerland)) was used to circulate the fluid, creating
a pulsating flow. The flow rate was measured after the tubular sensor. Experiments were conducted at
room temperature (27-32 °C) with a water—glycerol solution at 10 different concentrations (83%—-8.3%
W-G). Viscosities varied between 1 and 45 mPas at a density of approx. 1000 kg/m3. At each
concentration, five measurements at different flow rates were taken. These five measurements were
compared to the static measurements (flow rate = 0).
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Figure 3. Flow loop schematic used for internal flow experiments (Reynolds number range of 500-50,000).

2.4. Resonator Modeling

The sensor could be modeled as a classic harmonic resonator, where temporal and structural
parts are independently considered. To compute the shape of the torsional mode, the equation for
torsional waves in nonhomogeneous cylindrical structures is solved, with the contribution of the
attached magnets considered in a simplified manner. The inertial mass of the magnets was modelled
by a larger cylindrical section. This larger cylindrical section increases the internal mass to account
for the additional inertial mass of the attached magnets and stiffens the section of the larger cylinder.
This larger cylindrical section is shown in Figure 4 (top) by the “magnet mass”. The equation for
torsional waves is shown as Equation (1),

2
;—x(mp) -g—l:—ZTERZT+F = IP%‘P )
where ¥, angular deflection; I,,, second moment area; x, axial direction; G, shear modulus; R, inner
tube radius; F, excitation force; t; viscous shear stress on the structure; and t, time.

We assumed that the solution of Equation (1) could be written by a space- and time-dependent

function (see Equation (2)). Therefore, the temporal and structural parts could be solved independently.

Y0 =1 X @)

To compute the shape of the structural mode, excitation and fluid forces were neglected. This
weakly coupled fluid-structure interaction approach holds true for fluids with a low viscosity, where
fluid-induced forces are much smaller than structural forces. At higher viscosities, the fluid may
influence the shape of the structural mode. To compute the shape of the mode, we assumed that the
angular deflection at the masses was zero because the moment of inertia was much higher than that
of the tube. This defined the boundary conditions at the end of the measuring section (+1/2); see
Equation (4).

d oo ~
Ga<1p 6_1)> = —w?l,pd 3)
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Figure 4. (top) Schematic cross-section of the tubular sensor, including the tube and magnet mass;
(bottom) normalized solution of the excited torsional mode over measurement length +1/2.

Equation (3) is a boundary value problem that could be solved numerically in MATLAB by using
the bvp4c (fourth-order method for boundary value problems) function [32]. Thereby, only the
solution of the first torsional mode was computed with its corresponding natural frequency, as
shown in Figure 4. Due to the inertial load caused by the magnets (blue, Figure 4), the mode was
distorted in the central section. This created large local bending of the modal function at the edge
where magnets are attached to the tube and results in a slight straightening of the rest of the tube.
The time-dependent component of the oscillation is represented by an ordinary differential equation.
The representative viscous torque, the moment of inertia, and spring constant were obtained by
integration over the length 1, see Equations (6) and (7).

The excitation term F was neglected because it was not present when the measurement took
place. Thus, the resonator could be modeled by an ordinary differential (Equation (5)) under the
assumption of a time-harmonic solution of (t) = R(Xe'®*!):

02 .
12
Jo = f P10 - I (0)]dx 6)
-i/2
/2 ( ) 5
. T(x)2nR
M, = f ———dx @)
-i/2

where <;[3, angular deflection; ¢, mode spring constant; X, amplitude; i = v—-1; w, the angular
frequency; and M,, fluid-induced torque. Using the time-harmonic assumption, we get Equation (8):
—w¥o+c+M,=0 ®)

Equation (8) can be solved as an eigenvalue problem, where the eigenvalue 1 = iw. On the basis
of the solution, the bandwidth I' of the resonator can be determined from the logarithmic decrement
of the oscillation, which is the real part of the eigenvalue A. Similarly, the angular resonance
frequency w is the imaginary part of A.

=R\ 9)
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Fluid Forces

The torsional oscillation of the tube created fluid motion, and thus shear stresses at the inner wall
of the tube where the fluid is in contact with the solid. These shear stresses 7 created a torque, which
damped the oscillation. To compute the shear stresses, a simplified set of the linearized Navier-Stokes
equation was solved. Flow within the tube was approximated under the assumption of no axial flow,
no azimuthal change, and no radial flow. On the basis of these assumptions, a simplified version of the
Navier-Stokes equation could be written in cylindrical coordinates, where u, azimuthal velocity; 7,
dynamic viscosity; p, fluid density; r, radius; and p, pressure—see Equations (10) and (11). This
approach was already used by Fuchs and Drahm [31] for cylindrical geometries.

ou n(1lou 62u+u 10
ot p\ror or?2 r (10)
u? dp
i 11
r or ()

Then, we assumed a time-harmonic solution (Equation (12)).
.7 16ﬁ+62ﬁ+ﬁ 19
ulw_p rdr 0r? r (12)

A solution to Equation (12) could be found (see Equation (14)), where ]; was the Bessel function
of the first kind,Y; the Bessel function of the second kind and c¢;, ¢, coefficients.

a(r)=c ) (‘Hzrﬁ +c Y, —(—1)3/47”\/% (13)

Boundary conditions were #i(r = 0) = 0 and @(r = R) = ¥y, where R is the tube inner radius
and 7, the wall velocity. The wall velocity depended on the axial location, as well as the rate of
angular deflection; see Equation (14).

Do = Xrw|$(x)] (14)
The flow field can then be described by Equation (15).

_1yar [@P
h (1 [2)

Figure 5 shows the real part of the azimuthal velocity u for three different viscosities at a constant
density of 1000 kg/m?. For all solutions, flow velocity was near zero within the first 30% of the radius;
thus, any flow effects occur in the vicinity of the wall.

On the basis of Equation (15), shear rates and thus the viscous-induced damping could be
determined. Viscous-induced torque M, was computed by integrating shear stress £ over the wall of
the tube; see Equation (7). Shear stress was defined by Equation (16) at the radius of the inner wall R.
01 (y(x)) B ﬁ(ﬁo(x))>

or

r

a(r) = (15)

() = 77< (16)



Sensors 2020, 20, 3036 8 of 13

15 T
‘\‘ n=1mPas
\ - n=10mPas
08 n =100 mPas
————1=1000 mPas
06
E 04
= : L
02 \
\‘\
\\
0f/— S |
-0.2 - - - - :
0 0.05 0.1 0.15 02 0.25 0.3

1-R/Ir

Figure 5. Velocity profile for different fluids in a tubular sensor with a frequency of 10,800 Hz and
density of 1000 kg/m?.

3. Discussion

The sensor was tested in two different stages. In the first stage, static experiments were
conducted under well-defined conditions where the fluid properties were well known. These
experiments were used to create a baseline for the sensor and validate the numerical model. The
numerical model was then fitted to the experiments to account for any systematic deviation. The
fitting was carried out by multiplying the prediction with an empirical correction function. This
corrected prediction was then used to predict the fluid’s viscosity based on the measured properties.
In the second stage, sensor sensitivity towards internal flow was evaluated by comparing the
measured damping for the same fluids with and without internal flow.

3.1. Static Flow Conditions

Experiments were conducted under static, thermally uniform conditions using fluids with a
well-known property. The measured fluid-induced damping versus the product of fluid denisty and
viscosity (pn) is shown in Figure 6. The colormap shows the temperature at which the measurement
was conducted. To mitigate any temperature effects, the measured bandwidth was divided by the
resonance frequency. This was carried out because the shear modulus of the resonator was temperature
dependent. The resonance frequency and bandwidth of the sensor decreases with increasing
temperature. By dividing the bandwidth by the resonance frequency, the temperature dependence of
the damping could be compensated, and the measurements collapsed to a single line. Thus, the sensor
measures the same I'/f;, value independent of fluid temperature, as can be seen in Figure 6.
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Figure 6. Numerical prediction and experimental measurements of the pn value at different
temperatures, where p is the density and 7 the viscosity.



Sensors 2020, 20, 3036 9 of 13

The model described in Section 2.4 enables the prediction of the pn value, where p is the fluid
density and n the dynamic viscosity. This prediction of the pn value for a given damping is shown
as a black line in Figure 6 (black line). The predictions were within the same order of magnitude and
show the same trend as the experimental measurements. This indicates that the model captured the
primary effects of the resonator. For small viscosities, the model predicted that damping increases
proportionally to the square root of pn, which is a typical property of sensors based on torsional
resonators. This is the case, as long as the penetration depth § = ,/21/(p) is much smaller than the
inner radius from the tube (2.625 mm). The penetration depth § ranges from 0.054 mm at a dynamic
viscosity of 1 mPas up to 0.171 mm for a viscosity of 1000 mPas. Thus, at higher viscosities, the
curvature of the tube becomes relevant and the predicted damping relatively decreases. This effect is
present in both simulation and experiment, but more predominant in the experiments.

The deviation between measurement and model is more evident in Figure 7. Despite the overall
trend being in good agreement, predictions systematically differed for high pn values. At low pn
values, there was a constant offset between numerical predictions and experiments, which could be
explained by manufacturing tolerances. However, at high pn values, i.e., high damping, there was
systematic deviation in the trend. This systematic deviation was statistically significant and could be
caused by an effect that was neglected in the model. Potential sources of the deviation include

(1) Bias in the damping measurement: At high damping, the signal-to-noise ratio (SNR) decreased
due to the smaller amplitude of the resonator. The algorithm used to determine the damping
was sensitive to the noise in the signal. As the SNR decreased, the error in the evaluation of the
damping value increased. The error is not normally distributed but had a bias towards smaller
damping values. Hence, the evaluated averaged value of the damping tended to be
underpredicted as the SNR decreased. This behavior could be qualitatively simulated and
showed a similar trend, as was experimentally observed.

(2) Distortion of modal function: Another potential source of the systematic deviation is the fluid—
structure interactions. At high pn values, the fluid exerts forces on the tube that are much higher
than those exerted at low pn values; thus, the balance between structural and fluid forces
changes. In the model, the modal shape was computed under the assumption that the fluid
forces did not impact the shape of the mode. Hence, this assumption may no longer be valid for
fluids with high pn values. To account for and verify this effect, the fluid-structure interaction
(strong coupling) will be incorporated into the numerical model in future studies. This would
allow specific investigation of the impact of fluid properties on the structural mode and its
implications at prm values.

30%

% N100
al + 5600
20 % o
> 86
§ 0% ) . X
= * #
@ *
£ ow| > ¥y ¥
g B bR ¥
& 0%
’200/0 L
-30 % : :
107 10° 10" 10? 10°

£

Figure 7. Relative deviation of the predicted and actual pn value, where p is the density and 7 the
dynamic viscosity.

To account for those effects which were not accounted for in the numerical prediction, an
empirical polynomial model was used to correct the deviation between the predicted and measured
values; see Equation (17). This polynomial was multiplied by the numerical prediction to correct the
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small deviations between the numerical prediction and experimental data. The multiplier function
was a polynomial based on the log of the pn value. Coefficients were determined by the least squares
method on the relative deviation from prediction to measurement (Equation (18)).

4
r T .
_~ L(pn) a; log(pn): (17)
fO fO,num =0

0,num

Lm0 54 4 10g (o)t /

( Lom(On) 54 g, 10g(on): —%
a; =min| ) 0 (18)

f 0,num

To validate the baseline model, we tested it against two other viscosity reference fluids from
Cannon, S20 and S200, which were not used to create a baseline for the sensor, i.e., to determine
coefficient a;. Therefore, the measured damping was used to determine the pn value of the fluid
(using Equation (17)). This predicted pn value was then compared to the actual pn value of the fluid
used in the measurement. Figure 8 shows the relative deviation between the predicted (Equation (17))
and actual pn value of the fluid. Deviation from the predicted to the actual pn value was within the
confidence interval. The black line indicates the 95% confidence interval in terms of repeatability,
whereas the red line shows the respective 95% confidence level for predicting the absolute pn value.
The uncertainty of predicting the absolute pn value was higher because it also contained the
uncertainty of the basic calibration conducted in this study.

Overall, confidence intervals become smaller at higher pn values and reach a minimum of +4%
for repeatability.
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Figure 8. Relative deviation of the predicted and actual pn value for the fluids S20 and 5200, where
p is the density and n is the dynamic viscosity. The full and dashed lines show the 95% confidence
interval (20) for repeatability and absolute value, respectively.

3.2. Flow Loop

The sensor was tested in a flow loop to account for flow effects such as turbulent or laminar
flow. This experiment was necessary to investigate the interaction between internal flow and flow
induced by torsional vibration. This is important under turbulent conditions, where turbulences may
interact and disturb the flow caused by the torsional vibration of the sensor and thus impact the
measurement. This would create a flow or Reynolds dependence on the measurement. Experiments
were conducted over a wide range of Reynolds numbers from 500 (laminar flow) up to fully turbulent
conditions at 50,000. The variation in the Reynolds number was achieved by varying both flow rate
and the fluid’s viscosity (by changing the glycerol concentration in water).

Figure 9 shows the relative deviation of the predicted pn value between static flow measurement
and measurements with the internal flow. All deviations were below +1%. This deviation was below
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the confidence interval of repeatability, and data were randomly spread. Hence, flow conditions
shown in Figure 9 exhibited no significant influence on measurements of Reynolds numbers up to
50,000. Any variations were within the uncertainty of repeatability.
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Relative deviation to static measurments

15% : : ‘
10% 10* 10°

Reynolds Number
Figure 9. Relative deviation between static and flow measurements in a flow loop for different
water—glycerol (W-G) concentrations.

4. Conclusions

We presented an experimentally validated numerical model for a nonintrusive, real-time,
tubular sensor and tested for different viscosities and densities. The sensor was comprised of a
straight tube and could be directly integrated into a piping system. The numerical model describing
the sensor was derived on the basis of the torsional vibration of the tube and the interaction with the
fluid inside the tube. The fluid interaction with the resonator was computed using an analytical fluid
model. The modelled predictions were compared with four different fluids at temperatures between
20 and 100°C and were found to be in good agreement at low viscosities. However, at high viscosities,
there was systematic deviation between numerical prediction and experimental data. This deviation
was likely caused by fluid-induced modal distortion or bias in the measurement error.

In order to account for the systematic deviation between prediction and measurement, the
numerical prediction was multiplied with an empirical model. After this correction, the model was
tested against two additional fluids. Measurements were in good agreement with the prediction and
within the confidence interval.

Additionally, the tubular sensor was tested in a flow loop with different water—glycerol
solutions, simulating industrial conditions, in a Reynolds number range of 500-50,000. The sensor
did not exhibit any Reynolds dependence. Overall, the tubular sensor showed good potential for
application in industrial processes. However, further studies are needed to elucidate the departure
of the model prediction from real sensor behavior at high viscosities.
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