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Abstract

In this thesis we will look at elliptic and hyperelliptic curves. There are three
abelian groups that are isomorphic to hyperelliptic curves. The Jacobian of hy-
perelliptic curves, the ideal class group and the form class group, will all be
defined and given abelian group structure. We will give an algorithm for point
addition and point doubling done exclusively in the jacobian of the curve. We
will end the thesis with proving that there exists an isomorphism between the
form class group and the ideal class group.
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1 Introduction
Hyperelliptic curves are, among other things, used for public key cryptography,
digital signatures and pseudo random number generation. There are currently
only standards using hyperelliptic curves of genus 1, which are called elliptic
curves. The advantage of elliptic curve cryptography (ECC) becomes evident
when higher level of security is required. If a 80 bit symmetric key security level
is needed, using the most popular public key crypto system RSA, a 1024 bit key
length is required, while only 160 bit keys are required using ECC. If a 256 bit
symmetric key security level is required, 15360 bit keys are required if using RSA,
while only a 512 bit keys are required in ECC.

Microsoft Research published an article that suggests that the ECC is going to
be weaker against attacks from quantum computers than RSA. [4] This does not
mean that hyperelliptic curve cryptography is not going to be interesting in the
post quantum world. National Institute of Standards and Technology (NIST)
is currently (may 2020) in a process of deciding on an post quantum crypto-
graphic scheme. Among the contestants is Supersingular Isogeny Key Encap-
sulation (SIKE), which uses supersingular isogeny Diffie–Hellman key exchange
(SIDH) to exchange keys before using a symmetric key scheme to encrypt the
actual information.

As Menezes wrote in 1996:

”Elliptic curves have been extensively studied over hundred years, and
there is a vast literature on the topic...
...On the other hand, the theory of hyperelliptic curves has not re-
ceived much attention by the research community.” [1, p. 2]

This is still true 24 years later. Finding literature on the topic has proven to be
difficult, which makes it hard to specialize in hyperelliptic curves.

In this thesis we will look at hyperelliptic curves and its four faces and then
prove that two of them are isomorphic. First, we will look at elliptic curves,
which are special cases of hyperelliptic curves. We will also prove that there
exists an isomorphism between the points on an elliptic curve and the jacobian
of the curve. Secondly, we will look at the jacobian of hyperelliptic curves, which
is a quotient group where the elements are finite formal sums. This group is
most commonly used for representing points on the hyperelliptic curve. The
group operation in the jacobian, as defined by Menezes [1], performs the group
operation in the ideal class group. We will present an algorithm which performs
the group operation strictly in the jacobian. By an example, we are going to show
how to use Hensel’s lemma to improve the efficiency of the algorithm. This is
not the first time this algorithm is described. Thirdly, we will describe the ideal
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1 / Introduction

class group, in which the elements are ideals. This is the group most commonly
used for computational reasons. Fourthly, we describe the form class group, in
which the elements are binary quadratic forms. The group operation will not be
defined in this chapter, as we will define it through the ideal class group. Finally,
we will prove that there exists an isomorphism between the ideal class group and
the form class group.
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2 Hyperelliptic curves
In this section we are introducing elliptic and hyperelliptic curves. Algebraic
curves are affine or projective varieties of dimension one. They correspond to
irreducible polynomials. For hyperelliptic and elliptic curves there is a single
point at the line at infinity, which we denote by∞. Our treatment of hyperelliptic
curves will mostly follow ”An elementary introduction to hyperelliptic curves” [1]

Definition 2.1. Let k be a field and let k be the algebraic closure of k. A
hyperelliptic curve C of genus g over k (g ≥ 1) is given by a polynomial on the
form

C : y2 + h(x)y − f(x) ∈ k[x, y]

where h(x) ∈ k[x] is a polynomial of degree at most g, f(x) ∈ k[x] is a polynomial
of degree 2g + 1, and there are no solutions (x, y) ∈ k × k which simultaneously
satisfy the equation y2 + h(x)y = f(x) and the partial derivative equations 2y +
h(x) = 0 and h′(x)y − f ′(x) = 0

Rational points are all points P = (a, b) such that a and b are in k and solve the
equation y2 + h(x)y = f(x) , together with the point at infinity ∞. All points
except the point at infinity are called finite points. If P = (a, b) is a finite point,
then the opposite point of P is the point P̃ = (a,−b− h(a)). If P = P̃ , then we
call P a special point.

Definition 2.2. An elliptic curve is an hyperelliptic curve of genus 1
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3 Elliptic Curves
In this section we are going to prove that there exists a group isomorphism be-
tween the points on an elliptic curve, E(k), and the jacobian of the curve, J(E).

E(k)↔ J(E)

In order to prove this, we are using several propositions and the Riemann-Roch
theorem.

Proposition 3.1. Let C be a smooth curve and let f ∈ K(C)∗, where K(C) is
the function field of C over k.
(a) div(f) = 0 if, and only if, f ∈ k∗

(b) deg(div(f)) = 0
[5, p. 28]

Proposition 3.2. Let W be a canonical divisor, then deg(W ) = 2g − 2 and
l(W ) ≥ g.
[2, p. 107]

Theorem 3.3 (Riemann-Roch). Let W be a canonical divisor on C, then for any
divisor D,

l(D) = deg(D) + 1− g + l(W −D).

[2, p. 108]

Corollary 3.3.1. If deg(D) ≥ 2g − 1, then l(D) = deg(D) + 1− g [2, p. 109]

Proposition 3.4. The map:

f : P 7→ P −∞

is an isomorphism from the group of points on an elliptic curve, E(k), to the
jacobian J(E)

Proof. We must prove that the map f is an homomorphism, and that it is injective
and surjective.

To prove that the map is an homomorphism, let P,Q,R ∈ E(k) be points on the
elliptic curve and P −∞, Q−∞, R−∞ ∈ J(E) be divisors in the jacobian, such
that

f(P ) = P −∞

f(Q) = Q−∞

f(R) = R−∞

Assume that P +Q = R ∈ E(k)
If f(P ) + f(Q) ∼ f(R), we have proved that f is an homomorphism.
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3 / Elliptic Curves

f(P ) + f(Q) = P −∞+Q−∞ = P +Q− 2∞ ∈ J(E))

In other words if P +Q− 2∞ ∼ R−∞, our proof is complete.

If L is the line that goes through the points P and Q, the line will intersect the
curve in a third point, (−R). This line has divisor

div(L) = P +Q+ (−R)

If M is the line that goes through the points (−R) and R, it will intersect a third
point in infinity. The line M has divisor

div(M) = R + (−R) +∞

P +Q−R−∞ = div

(
L

M

)
This proves that f is an homomorphism.

Now assume P −∞ ∼ Q−∞.
If we can prove that P = Q, we have proved that f is injective. Since P is a
point, then div(f) + Q = P and P > 0. The function f is in the vector space
L(Q), because div(f) +Q ≥ 0.

Proposition 3.2 states that ifW is a canonical divisor, then the degree is deg(W ) =
2g − 2. If deg(D) ≥ 2g − 1, then

deg(W )− deg(D) ≤ 2g − 2− (2g − 1)

deg(W −D) ≤ −1

This implicates that l(W −D) = 0.

If we further assume, in addition to this, that deg(D) ≥ 2g−1, then the Riemann-
Roch theorem 3.3 reduces to

l(D) = deg(D)

Since Q is a point on the elliptic curve, then deg(Q) = 1, which is ≥ 2g −
1. The reduced form of the Riemann-Roch theorem now applies, and therefore
the dimension of the vector space l(Q) = 1, and k ⊆ L(Q). This implicates
that L(Q) = k. This means that f must be a constant function, which further
implicates that P = Q. This completes the injection proof.
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In order to prove that f is a surjection, it is assumed that D is a divisor of
degree 0. Let D′ = D +∞, then deg(D′) = 1. Corollary 3.3.1 states that if
deg(D) ≥ 2g − 1, then l(D) = deg(D) + 1 − g. Elliptic curves have genus 1,
which implicates that l(D′) = deg(D′). By the definition of L(D), there exists
a function f ∈ K(C)∗, such that div(f) + D′ ≥ 0. Proposition 3.1 states that
deg(div(f)) = 0. This leads to deg(div(f)+D′) = 1. Since div(f)+D′ is positive
and the degree is 1, it must be a point, div(f) + D′ = P , on the elliptic curve.
This means that D′ −∞ = D is equivalent to P −∞

This concludes our proof.
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4 Jacobian of Curves
The coordinate ring of C over k, is defined to be k[C] = k[x, y]/ 〈y2 + h(x)y − f(x)〉 ,
where 〈y2 + h(x)y − f(x)〉 denotes the ideal in k[x, y], generated by the polyno-
mial y2+h(x)y−f(x). Elements in the coordinate ring k[C], are called polynomial
functions in C. The field of fraction of k[C], is called the function field of C over
k. The field of fraction is denoted by k(C), and its elements are called rational
functions. There exists a rational function u, such that u(P ) = 0, and for each
polynomial function t there exists an integer d and a rational function s, such
that s(P ) 6= 0, ∞, and t = uds. d is defined to be the order of t, and is denoted
by ordP (t) = d. u is called the uniformizing parameter for the point P , and the
integer d does not depend on the choice of u. Let r = t/h be a rational function,
where t and h are polynomial functions, then the order of r on the point P ∈ C
is defined to be ordP (r) = ordP (t)− ordP (h).

A divisor D is a formal sum on the form
∑

P∈CmPP , where mP ∈ Z, P ∈ C(k),
with only a finite number of the mP being unequal to zero. The sum of two
divisors is defined to be∑

P∈C

mpP +
∑
P∈C

npP =
∑
P∈C

(mp + np)P.

The degree of a divisor is given by the sum
∑

P∈Cmp. The set of all divisors of
degree 0 form an additive group, which will be denoted by D0.

A divisor of a rational function r ∈ k(C)∗ is given by div(r) =
∑

P∈C(ordP r)P .
These divisors are called principal divisors. All principal divisors have degree 0.
The set of all principal divisors form a subgroup under the group D0, which will
be denoted by P

Definition 4.1. The Jacobian, J of a hyperelliptic curve, C is defined to be the
quotient group J = D0 / P

As the Jacobian is a quotient group, there are several divisors which are equiv-
alent. This would be a problem seen from a cryptographic perspective. This is
because two parties wouldn’t necessarily end up with the same divisor after de-
cryption. To make it useful for cryptography, there has to be a way of representing
divisors uniquely.

Definition 4.2. A semi-reduced divisor is a divisor of the form

D =
∑
P∈C

miPi −
(∑

mi

)
∞,

where each mi ≥ 0 and the Pi’s are finite points, such that when Pi ∈ supp(D)
then P̃i /∈ supp (D), unless Pi = P̃i in which case mi = 1. Here supp(D) is defined
to be the set supp(D) = {P ∈ C |mp 6= 0}
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For each divisor D ∈ D0 there exist a semi-reduced divisor, which is equivalent
to D.

Definition 4.3. Let D be a semi-reduced divisor. If
∑
mi ≤ g, then D is called

a reduced divisor.

For all divisors D ∈ D0 there exists a unique reduced divisor, which is equivalent
to D. This means that there is a unique way to represent each coset in the
Jacobian, J. A divisor D is said to be defined over k if it is invariant for all
automorphisms of k over k. The set of all such divisors form a subgroup under J,
and will be denoted by J(k). J(k) is a divisor class group and when k is i finite,
then J(k) is a finite abelian group.

When adding reduced divisors together, we are not guaranteed to get a reduced
divisor, or even a semi-reduced divisor. Given a divisor D, the following algorithm
will generate a semi-reduced divisor, which is equivalent to D.

Algorithm 4.1.

1. Partition the set of points in the support of D into three sets, {C0, C1, C2}.
Such that C0 contains all special points. A point P is in C1 if and only if
P̃ ∈ C2 and mP ≥ mP̃ or when mP̃ = 0. Then we can write D as,

D =
∑
P∈C0

mpP +
∑
P∈C1

mpP +
∑
P∈C2

mpP −m∞

2. Construct the following divisor

Ds = D −
∑

P=(a,b)∈C2

mpdiv(u− a)−
∑

P=(a,b)∈C0

⌊mp

2

⌋
div(u− a)

Ds =
∑
P∈C1

(mP −mP̃ )P +
∑
P∈C0

(
mp − 2

⌊mp

2

⌋)
P −m1∞

for some m1 ∈ Z.

Given a semi-reduced divisor Ds, such as the one generated in the algorithm 4.1,
the following algorithm will generate a reduced divisor, which is equivalent to Ds

Algorithm 4.2.

1. If |Ds| ≤ g, where g is the genus of the curve, then Ds is reduced.

2. Pick g+ 1 finite points in suppDs, P1, P2, ..., Pg+1. Assume Pi = (ai, bi) has
multiplicity mi. The points do not need to be distinct, but they can’t have
multiplicity bigger than ordP (Ds).
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3. There exists a unique polynomial gi(x) ∈ k[x] such that g(ai) = bi, and
g2i + hgi − g ≡ 0 mod (x − ai)mi for each Pi = (ai, bi) ∈ C1. Use Hensel’s
lemma to generate these polynomial’s.

4. Use chinese remainder theorem to generate g(x) ≡ gi(x) mod (x−ai)mi , for
all i

5. Construct div(g(x)− y)

6. Ds − div(g(x)− y) = D′

7. Use algorithm 4.1 to generate a semi-reduced divisor on D′. Then go to
step 1 with the semi-reduced divisor.

This algorithm will terminate in finite time.

Example:

Suppose that C is the hyperelliptic curve:

y2 + h(x)y = x5 + 5x4 + 6x2 + x+ 3,

where h(x) = x, and is defined over the field k = F7, with genus g = 2.

Let’s consider the divisor D = 4(1, 1) + 2(1, 5) + (5, 3) − 7∞. Using algorithm
4.1, we can find an equivalent semi reduced divisor.

1.
C0 : {}
C1 : {(1, 1), (5, 3)}
C2 : {(1, 5)}

2.

Ds = (4− 2)(1, 1) + (5, 3)− 3∞
Ds = 2(1, 1),+(5, 3)− 3∞

If we further apply algorithm 4.2 to Ds we can find the unique reduced divisor.

1.
|Ds| =

∑
P∈C/{∞}

mp = 3 ≥ 2

Ds is not a reduced divisor.
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2. P1 = (1, 1), P2 = (1, 1), P3 = (5, 3)

3.

B(a0) = b0

B(1) = 1

The polynomial function y − 1 goes through the point (1, 1), but does not
have a double root at the point. To get such a function we need Hensel’s
lemma.

Theorem 4.1 (Hensel’s Lemma). Let k be a field and let F (y) ∈ k[x][y].
Let A be an irreducible polynomial in k[x]. Suppose B ∈ k[x] is such that
F (B) ≡ 0 mod Ar. If F ′(B) 6≡ 0 mod A, there is a unique T ∈ k[x], such
that F (B + TA) ≡ 0 mod Ar+1. In fact, T ≡ −F ′(B)−1((F (B))/A) mod A.

Our problem states that we have a single root at a specified point, but we
need a double root, so that F (B) ≡ 0 modA is given.

F (B) = B(x)2 +B(x)h(x)− f(x) = 0

If A(α) = 0 then (α,B(α)) is a point on the curve. This implies that
B(α) = −B(α)−h(x), which by definition makes (α,B(α)) a special point.
But special points come with order one in any semi-reduced divisor. Thus
we do not need to find a function with a double zero at (α,B(α)). Hence
we may assume 2B(x) +h(x) 6≡ 0 modA, which is equivalent with F ′(B) 6≡
mod(A)

Using Hensel’s lemma we can produce a polynomial with a double root.

F (y) = y2 + h(x)y − f(x)

F (B) = B2 + xB − f(x) ≡ 0 modA

Thus
−(x− 1)(x4 + 6x3 + 6x2 + 5x+ 5) ≡ 0 modA

Let A = (x− 1) and C = −(x4 + 6x3 + 6x2 + 5x+ 5). Hensel’s Lemma tells
us that F (B + TA) ≡ 0 modA2 where T ≡ −F ′(B)−1 (F (A)/A) modA

T (2B + x) ≡ −F (B)/AmodA

T (2B + x) ≡ −C modA

T (2 ∗ 1 + 6) ≡ −C mod (x− 1)

T ≡ −5C mod (x− 1)

T ≡ (5x4 + 2x3 + 2x2 + 4x+ 4) mod (x+ 6)

T ≡ 3 mod (x+ 6)
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B + T (x)A = 1 + 3(x+ 6)

which is the new unique polynomial B = 1 + 3(x+ 6)

B(a1) = (b1)

B(5) = 3

The polynomial function y − 3 has a simple zero at the point (5, 3). This
gives us the system of polynomial congruence equations,

B(x) ≡ 3x− 2 mod (x− 1)2

B(x) ≡ 3 mod (x− 5)

To solve a system of polynomial congruence equations, we need the Chinese
remainder theorem.

Theorem 4.2 (Chinese remainder Theorem). Let A1, A2, ..., Ai, B1, B2, ..., Bi

∈ k[X], where A1, A2, ..., Ai are relative coprime.Then the system of poly-
nomial congruences

B(x) ≡ B1 mod A1

B(x) ≡ B2 mod A2
...

B(x) ≡ Bi mod Ai

have a unique solution modulo M = m1m2...mi, and the solution is given
by

B = B1M1µ1 +B2M2µ2 + ...+BiMiµi

where Mi = M/Ai and µi is the inverse of Mi mod Ai

Using the Chinese remainder theorem results in:

(x− 5)µ1 ≡ 1 mod (x− 1)2

(x− 1)2µ2 ≡ 1 mod (x− 5)

(x− 1)2 = x2 − 2x+ 1 = (x− 5)(x+ 3) + 2

multiplying by 4 which is the inverse of 2

1 = 4(x− 1)2 − 4(x+ 3)(x− 5)

which gives us µ1 = −4(x+ 3) and µ2 = 4.

B ≡ (3x− 2)(x− 5)(−4(x+ 3)) + 3(x− 1)24 mod (x− 1)2(x− 5)

B ≡ −40x2 + 272x− 168 mod (x− 1)2(x− 5)

B ≡ 2x2 + 6xmod (x− 1)2(x− 5)

13
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4. div(B(x)− y) = div(2x2 − x− y)

B(x)2 + h(x)B(x)− f(x) = (x− 1)3(x− 5)2

so div(2x2 − x− y) = 3(1, 1) + 2(5, 3)− 5∞

5.

Ds ∼ 2(1, 1) + (5, 3)− 3∞− 3(1, 1)− 2(5, 3) + 5∞
∼ −(1, 1)− (5, 3) + 2∞
∼ (1, 5) + (5, 6)− 2∞ = Dr

|Dr| = 2 ≤ 2, so Dr is a reduced divisor.

For practical purposes, such as in Diffie-Hellmann key exchange, one needs to
calculate nD where n is an integer. Calculating nD is not a problem, but finding
the equivalent reduced divisor is. For example, let’s assume D = P − ∞, and
n = 13. One way to find the equivalent reduced divisor to 13P − 13∞ is to just
apply algorithm 4.1 and 4.2 to it. Due to Hensel’s lemma, it’s possible to calculate
2P efficiently. This opens up the possibility to rather calculate 8P+4P+P = 13P .
This is the equivalent of three point doublings and three point additions. In a
worst case scenario nD will require dlog2(n)e point doublings and dlog2(n)e point
additions.

Algorithm 4.1 and 4.2 are designed to generate semi-reduced and reduced di-
visors from a general divisor. When adding multiple points together or doing
point doubling more than once, both algorithms can be altered such that it isn’t
necessary to calculate the divisors at each step. It is sufficient to work with the
polynomials.

Given the hyperelliptic curve y2 + h(x)y − f(x) = 0, where h(x) = x and f(x) =
x5 + 5x4 + 6x2 + x+ 3, let’s calculate 13P where P = (2, 3).

We know that 2P is reduced, since |2P | = 2 ≤ 2.

B(2) = 3

The polynomial function y − 3 goes through the point (2, 3) with multiplicity 1.
Using Hensel’s lemma it is possible to double the multiplicity. Calculating 2P :

F (y) = y2 + h(x)y − f(x)

F (B) = B2 + xB − f(x)

14



let A = x− 2 = x+ 5 as we are working over F7

T (x)(2B + x) ≡ −F (B)

A
mod (A)

T (x)(2 ∗ 3 + x) ≡ −32 + 3x− f(x)

x+ 5
mod (x+ 5)

T (x)(6 + x) ≡ x4 + 6x− 32 mod (x+ 5)

T (x) ≡ 3 mod (x+ 5)

B + T (x)A ≡ 3x+ 4 ≡ 0 mod (x+ 5)2

Since 2P is reduced, it’s not necessary to reduce it. So the unique polynomials
for 2P are B = 3x + 4 and A = x2 + 3x + 4. Applying Hensel’s lemma to
these two polynomials, we can double the multiplicity, and get a multiplicity of
4. Calculating 4P :

T (x)(2B + x) ≡ −F (B)

A
mod (A)

T (x)(2(3x+ 4) + x) ≡ −(3x+ 4)2 + (3x+ 4)x− f(x)

x2 + 3x+ 4
mod (x2 + 3x+ 4)

T (x)(7x+ 8) ≡ x3 + 2x2 + 4x+ 2 mod (x2 + 3x+ 4)

T (x) ≡ 3x+ 6 mod (x2 + 3x+ 4)

B = B + TA = (3x+ 4) + (3x+ 6)(x2 + 3x+ 4) ≡ 3x3 + x2 + 5x

4P is not reduced. The reduced A is given by A = B2+Bh(x)−f(x)
(oldA)2

≡ 2(x2 + 1),

multiplying by 4 makes it monic, A = x2 + 1. Now we can calculate the new
reduced B = −(B + h(x)) modA ≡ −(3x3 + x2 + 5x+ x) mod (x2 + 1) ≡ 4x+ 1.
The polynomials 4x + 1 and x2 + 1 represent the reduced form of 4P . Now
doubling 4P , we get 8P .

T (x)(2B + x) ≡ −F (B)

A
mod (A)

T (x)(2(4x+ 1) + x) ≡ −(4x+ 1)2 + x(4x+ 1)− f(x)

x2 + 1
mod (x2 + 1)

T (x)(2x+ 2) ≡ x3 + 5x2 + 6x+ 2 mod (x2 + 1)

T (x)(2x+ 2) ≡ 5x+ 4 mod (x2 + 1)

T (x) ≡ (5x+ 2)(5x+ 4) mod (x2 + 1)

T (x) ≡ 2x+ 4 mod (x2 + 1)

B + T (x)A = 2x3 + 4x2 + 6x+ 5

15
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It’s now possible to calculate the new reduced A.

A =
F (B + TA)

A2

A =
(2x3 + 4x2 + 6x+ 5)2 + x(2x3 + 4x2 + 6x+ 5)− f(x)

(x2 + 1)2

A = 4x2 + x+ 1

If we multiply A by 2, we get A = x2 + 2x + 2. Using this we get B = −(B +
h(x)) modA ≡ −(2x3 + 4x2 + 6x + 5 + x) mod (x2 + 2x + 2) ≡ 4x + 2. We now
have the two reduced polynomials 4x + 2 and x2 + 2x + 2 which are equivalent
with 8P . Using the Chinese remainder theorem we can add them together to get
13P . Starting with P and 4P , we get:

B ≡ 3 mod (x+ 5)

B ≡ 4x+ 1 mod (x2 + 1)

the Chinese remainder theorem gives us B ≡ 3x2 + 4x + 4 mod (x2 + 1)(x + 5).
Since (x2 + 1)(x+ 5) has a degree of 3, it has to be reduced.

A =
B2 + h(x)B − f(x)

oldA
= 6x2 + 2x+ 4

multiplying by 6, results in A = x2 + 5x+ 3

B = −(B + h(x)) modA ≡ 3x+ 5

With the reduced polynomials corresponding to both 5P and 8P we can add
them together using the Chinese remainder to get 13P :

B ≡ 3x+ 5 mod (x2 + 5x+ 3)
B ≡ 4x+ 2 mod (x2 + 2x+ 2)

The Chinese remainder gives us B ≡ 4x3 + 6x2 + x+ 5 mod ((x2 + 2x+ 2)(x2 +
5x+ 3)). Again A = (x2 + 2x+ 2)(x2 + 5x+ 3) has a multiplicity bigger than 2,
and has to be reduced

A =
B2 +Bh(x)− f(x)

oldA
= 2x2 + 5x+ 6

multiplying by 4, results in A = x2 + 6x+ 3

B = −(B + h(x)) mod (A) ≡ 4

With both the reduced polynomials corresponding to 13P , it’s possible to calcu-
late the corresponding divisor.

If A(α) = 0 then B(α)2 + B(α)h(α) = f(α), which makes (α,B(α)) a point on
the curve. A = x2 + 6x+ 3 = (x− (4 + i))(x− (4− i)), which results in the roots
(4+i) and (4−i) over F7. Therefor the divisor to 13P is (4+i, 4)+(4−i, 4)−2∞
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Point doubling
A B Divisor

P x+ 5 3 (2, 3)−∞
2P (x+ 5)2 3x+ 4
4P x2 + 1 4x+ 1
8P x2 + 2x+ 2 4x+ 2

Point addition
5P x2 + 5x+ 3 3x+ 5
13P x2 + 6x+ 3 4 (4 + i, 4) + (4− i, 4)− 2∞

Most Processors today have multiple cores, making it possible to do multiple
tasks at the same time. To calculate 5P it’s not necessary to know 8P . This
makes it possible to do the point doubling and point additions simultaneously.
This procedure is described in detail by Lange[3].
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5 Ideal Class Group

In this chapter we will assume that the hyper elliptic curve has a characteristic
different from 2, resulting in further assumptions that h(x) = 0. Let f(x) be a
square free monic polynomial with degree 2g + 1 in k[x], and let k[x, y] be the
quadratic extension of k[x], where y2 = f(x). This extension will be denoted by
O

Let I be an ideal under O. Then by definition I is a subgroup of O, such that
αI ⊂ I for all α ∈ O.

Proposition 5.1. An ideal I ∈ O is generated by 〈α1, α2〉
Where α1, α2 ∈ I

Proof: Let’s denote k[x] by Z. Elements in O are on the form O = {A + By},
where A,B ∈ Z. The elements in Z2 are on the form Z2 = {A, B}. The map

O → Z2

A+By 7→ A, B

is an isomorphism. The subgroups of Z2 are isomorphic to Z2 and Z. Subgroups
of O have to be isomorphic to the subgroups of Z2. The ideal I is by definition
a subgroup under O, and therefore has to be isomorphic to Z2 or Z. This proves
that I = 〈α1, α2〉.

It is possible to say even more about the generators of I. α1 and α2 are in O.
That implies that they are on the form α1 = A1 + B1y and α2 = A2 + B2y. If
the euclidean algorithm is applied to α1 and α2, it is possible to reduce either
B1 or B2 to zero. This implies that I = 〈A, B +Gy〉, where A,B,G ∈ Z. If a
polynomial A is in the ideal I, then Ay is in the ideal I as well. This results in
Ay = AX1 + (B+Gy)X2, where X1, X2 ∈ O. This implies that A = GX2, which
further implies that 0 ≤ deg(G) ≤ deg(A). It is possible to subtract multiples of
A from B + Gy such that 0 ≤ deg(B) < deg(A). This will not change the ideal
they generate.

We define the product of two ideals to be 〈α1, α2〉·〈β1, β2〉 = 〈α1β1, α1β2, α2β1, α2β2〉.
Let I = 〈A, (B +Gy)〉, then J =

〈
A
v
, (B+Gy))

v

〉
, where v ∈ O, is called a fractional

ideal. For all fractional ideals J there exists an other fractional ideal J ′, such that
J · J ′ = O. The set of all fractional ideals form a multiplicative group, with O
as the identity element. This group will be denoted by F . An ideal I is called
principal, if there exists an α ∈ I such that I = {αβ | β ∈ O}. In other words,
an ideal is called principal if it is generated by a single element. The set of all
principal ideals form a subgroup under the group of fractional ideals F , and will
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5 / Ideal Class Group

be denoted by P . The quotient group F/P , is called the ideal class group, and
will be denoted by Cl(O).

Let I = 〈A,B +Gy〉, where G = G′H2, and where H ∈ Z and G′ is square free.
We already know that G|A. Let N be the norm, which gives us N(B + Gy) =
B2 − G2f(x) = (B − Gy)(B + Gy) ∈ I, and B2 − G2f(x) ∈ Z. If an element
is in both Z and I, then it is a multiple of A. Thus B2 − G2f(x) = AC, for
some C ∈ Z. This implies that G|B2. This further implies that G′|B, H|B and
G′H2|A. Thus it is possible to write A = G′HA′ and B = G′HB′, which gives us

I =
〈
G′HA′, G′HB′ +G′H2y

〉
= 〈G′H〉 · 〈A′, B′ +Hy〉

Using the same arguments as above, H|A′ and H|B′2. We can continue this
process until G becomes a constant, which is equivalent to assuming that G = 1.
Which results in I = 〈A,B + y〉.

Definition 5.1. Let I = 〈α1, α2〉, then we can define the norm of the ideal to be

N(I) =
detβ(α1, α2)

σ(detβ(α1, α2))

where β = {1, y} is the basis for O and σ(x) is the leading coefficient to x.

Let I = 〈A,B + y〉, then

N(I) =
detβ(α1, α2)

σ(detβ(α1, α2))

=
detβ(A,B + y)

σ(detβ(A,B + y))

=

det

∣∣∣∣A 0
B 1

∣∣∣∣
σ

(
det

∣∣∣∣A 0
B 1

∣∣∣∣)
=

A

σ(A)

If A is monic, then N(I) = A.

The inverse of the element 〈A,B + y〉 is 〈A,B − y〉. Multiplying them together
should by definition give an element equivalent to the identity element O.

〈A,B + y〉 · 〈A,B − y〉
=
〈
A2, A(B + y), A(B − y), B2 − y2

〉
=
〈
A2, A(B + y), A(B − y), B2 − f(x)

〉
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Since both B2 and f(x) are elements in Z their difference has to be as well, thus
B2 − f(x) ∈ Z. All elements that are both in Z and I, are multiples of A.

〈A,B + y〉 · 〈A,B − y〉
=
〈
A2, A(B + y), A(B − y), AC

〉
= 〈A〉 · 〈A, (B + y), (B − y), C〉
= 〈A〉 · 〈A, 2B, (B + y), C〉

We know that f(x) = B2 − AC. If B2 and AC have any common divisors, then
f(x) can’t be square free as previously assumed. Thus gcd(A, 2B,C) = 1. This
implies that 〈A〉 · 〈A, 2B, (B + y), C〉 is a principal ideal, and equivalent to the
identity element O, in Cl(O).

Let 〈A,B + y〉 be an element in Cl(O), then the element 〈C,−B + y〉 ∈ Cl(O)
is it’s equivalent. If two elements are equivalent, if we then multiply one with the
inverse of the other one, we should get the identity element.

〈A,B + y〉 · 〈C,−B − y〉
=
〈
AC,A(−B − y), C(B + y),−(B + y)2

〉
=
〈
AC,A(B + y), C(B + y), B2 + 2By + y2

〉
B2 − y2 = B2 − f = AC, thus B2 ≡ y2 modAC. This gives us

=
〈
AC,A(B + y), C(B + y), 2B2 + 2By

〉
= 〈AC,A(B + y), C(B + y), 2B(B + y)〉

As shown earlier, the gcd(A, 2B,C) = 1. We also know that AC = B2 − f(x) =
B2 − y2 = (B + y)(B − y) which reduces the element to

〈B + y〉

This a is principal ideal, which is equivalent to O in Cl(O), and therefore con-
cludes our proof.

Proposition 5.2. Each coset in Cl(O) has one element such that

deg(B) < deg(A) < deg(C)

and deg(A) ≤ g

Proof: We have already proved that 〈A,B + y〉 ∼ 〈C,−B + y〉. Which one
is called A and which one is called C does not matter, making it possible to
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5 / Ideal Class Group

write deg(A) ≤ deg(C). 〈A,B + y〉 is equivalent with 〈A,B − TA+ y〉 where
T ∈ k[x], because the difference is a multiple of A. We have previously argued
that it is possible to remove all multiples of A from B without changing the
ideal, thus it has to be possible to add multiples of A without changing the ideal.
This means that we can choose T , such that deg(B) < deg(A). We know that
f(x) = B2−AC and that deg(f(x)) = 2g+ 1. This implies that the maximum of
2deg(B) and deg(A)+deg(C) is equal to 2g+1. However 2deg(B) can’t equal an
odd number, forcing deg(A) + deg(C) = 2g+ 1. deg(A) ≤ deg(C), in addition to
deg(A) + deg(C) = 2g + 1, implies that deg(A) < deg(C) and that deg(A) ≤ g,
which concludes our proof.

Proposition 5.3. Let I1 = 〈A1, B1 + y〉 and I2 = 〈A2, B2 + y〉 represent a coset
each in Cl(O), then the product I1I2 is given by I3 = 〈A3, B3 + y〉 if

G = gcd(A1, A2, B1 +B2) = S1A1 + S2A2 + S3(B1 +B2)

A3 =
A1A2

G2

B3 =
S1A1B2 + S2A2B1 + S3(B1B2 + f(x))

G

Proof: By definition G will divide A1, A2 and B1 +B2, which are the coefficients
of y. B2

i ≡ f(x) modG, as B2
i −f(x) = AiCi and G divides Ai. B1 ≡ −B2 modG

which implies that B1B2+f(x) ≡ 0 modG. Thus all coefficients of y are divisible
by G, and we can write〈

A1A2

G
,
A1(B2 + y)

G
,
A2(B1 + y)

G
,
B1B2 + f(x)

G
+

(B1 +B2)y

G

〉
If we now look at〈

S1A1(B2 + y)

G
+
S2A2(B1 + y)

G
+
S3(B1B2 + f(x))

G
+
S3(B1 +B2)y

G

〉
=

〈
S1A1B2 + S1A1y + S2A2B1 + S2A2y + S3(B1B2 + f(x)) + S3(B1 +B2)y

G

〉
=

〈
S1A1B2 + S2A2B1 + S3(B1B2 + f(x))

G
+

(S1A1 + S2A2 + S3(B1 +B2))y

G

〉
=

〈
S1A1B2 + S2A2B1 + S3(B1B2 + f(x))

G
+ y

〉
= 〈B3 + y〉

This means that 〈B3 + y〉 is in the ideal
〈
A1A2

G
, A1(B2+y)

G
, A2(B1+y)

G
, B1B2+f(x)

G
+ (B1+B2)y

G

〉
.

The polynomial

A2

G

A1

G
(B2 + y)− A1

G

A2

G
(B1 + y)

=
A2A1

G2
(B2 −B1)
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is contained in the ideal above.

A2A1

G
=
A2A1

G2
G

is contained in the ideal as well. If we now look at the polynomial

B1 +B2

G

A1

G
(B2 + y)− A1

G

B1B2 + f(x)

G
+

(B1 +B2)

G
y

=
A1

G

B1B2 +B2
2 −B1B2 − f(x)

G

=
A2A1

G2
C2

we see that also this is contained in the ideal. Similarly we can make a polynomial

A2A1

G2
C1,

which will be contained as well. As these four polynomials are contained in
the ideal, the polynomial A1A2

G2 (gcd(B2 −B1, G, C2, C1)) has to be as well. By
definition, the gcd will divide G, thus it will divide Ai. The gcd divides both
B1 −B2 and B1 +B2, implying that it divides Bi as well. As B2

i −AiCi = f(x),
the gcd will divide f(x) twice, which is a contradiction, as we have assumed f(x)
to be square free. Thus gcd(B2−B1, G, C2, C1) has to be one, which means that〈
A1A2

G2 , B3 + y
〉

is contained in
〈
A1A2

G
, A1(B2+y)

G
, A2(B1+y)

G
, B1B2+f(x)

G
+ (B1+B2)y

G

〉
. To

conclude this proof it is necessary to prove the opposite is true. A1A2

G
is contained

in
〈
A1A2

G2 , B3 + y
〉
. Let’s take

A1

G
(B3 + y))

=
A1

G

(
S1A1B2 + S2A2B1 + S3(B1B2 + f(x))

G
+ y

)
Substituting S1A1 with G− S2A2 − S3(B1 +B2), results in

A1

G
(B2 + y) +

A1

G

(
S2A2(B1 −B2) + S3(−B2

2 + f(x))

G

)
This proves that A1

G
(B2+y)+A1

G

(
S2A2(B1−B2)+S3(−B2

2+f(x))

G

)
is in the ideal

〈
A1A2

G2 , B3 + y
〉
.

If we look at at

A1

G

(
S2A2(B1 −B2) + S3(−B2

2 + f(x))

G

)
=
A1A2

G2
(S2(B1 −B2)) +

A1

G2
S3(f −B2

2)

it is now clear that A1A2

G2 (S2(B1 − B2)) is a multiple of A1A2

G2 and thus is con-
tained in the ideal. From previously we know that B2

i ≡ f(x) mod g, which
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5 / Ideal Class Group

implies that A1

G2S3(f − B2
2) = 0. As both A1

G2S3(f − B2
2) and A1A2

G2 (S2(B1 − B2))
are in the ideal, and because an ideal is a group, their sum has to be in the

ideal as well. Both A1

G

(
S2A2(B1−B2)+S3(−B2

2+f(x))

G

)
and the sum A1

G
(B2 + y) +

A1

G

(
S2A2(B1−B2)+S3(−B2

2+f(x))

G

)
are in the ideal, which implies that

A1

G
(B2 + y) ∈

〈
A1A2

G2
, B3 + y

〉
.

Similarly we use

A2

G
(B3 + y))

=
A2

G

(
S1A1B2 + S2A2B1 + S3(B1B2 + f(x))

G
+ y

)
.

But this time, substituting S2A2 with G− S1A1 − S3(B1 +B2) gives us

A2

G
(B1 + y) +

A2

G

(
S1A1(B2 −B1) + S3(−B2

1 + f(x))

G

)
=
A2

G
(B1 + y) +

A1A2

G2
S1(B2 −B1) +

A2S3

G2
(f(x)−B2

1)

As previously, B2
i ≡ f(x) modG, which results in

=
A2

G
(B1 + y) +

A1A2

G2
S1(B2 −B1) + 0

This proves that A2

G
(B1+y)+ A1A2

G2 S1(B2−B1)+0 is in the ideal. The polynomial
A1A2

G2 S1(B2 − B1) is just a multiple of A1A2

G2 and is therefore in the ideal, which
implies that

A2

G
(B1 + y) ∈

〈
A1A2

G2
, B3 + y

〉
Looking at

B1 +B2

G
(B3 + y)

=
B1 +B2

G

(
S1A1B2 + S2A2B1 + S3(B1B2 + f)

G
+ y

)

substituting S3(B1 +B2) with G− S1A1 − S2A2 results in

=
B1 +B2

G
y +

B1 +B2

G2
(S1A1B2 + S2A2B1) +

B1B2 + f(x)

G2
(G− S1A1 − S2A2)

=
B1 +B2

G
y +

(B1 +B2)S1A1B2

G2
+

(B1 +B2)S2A2B1

G2
+
B1B2 + f(x)

G

− S1A1
B1B2 + f(x)

G2
− S2A2

B1B2 + f(x)

G2

=
B1 +B2

G
y +

B1B2 + f(x)

G
+
S1A1

G2
(B2

2 − f) +
S2A2

G2
(B2

1 − f)
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From above we know that B2
i − f(x) = AiCi where Ci ∈ k[x]

=
B1 +B2

G
y +

B1B2 + f(x)

G
+
S1A1

G2
(A2C2) +

S2A2

G2
(A1C1)

=
B1 +B2

G
y +

B1B2 + f(x)

G
+
A1A2

G2
(S1C2) +

A1A2

G2
(S2C1)

=
B1 +B2

G
y +

B1B2 + f(x)

G
+
A1A2

G2
(S1C2 + S2C1)

It is clear that A1A2

G2 (S1C2 + S2C1) is a multiple of A1A2

G2 and is therefore in the

ideal. As both A1A2

G2 (S1C2 + S2C1) and B1+B2

G
y + B1B2+f(x)

G
+ A1A2

G2 (S1C2 + S2C1)
are in the ideal, the difference has to be as well, thus

B1 +B2

G
y +

B1B2 + f(x)

G
∈
〈
A1A2

G2
, B3 + y

〉
We have now proved that〈
A1A2

G2
, B3 + y

〉
⊂
〈
A1A2

G
,
A1(B2 + y)

G
,
A2(B1 + y)

G
,
B1B2 + f(x)

G
+

(B1 +B2)y

G

〉
and〈
A1A2

G2
, B3 + y

〉
⊃
〈
A1A2

G
,
A1(B2 + y)

G
,
A2(B1 + y)

G
,
B1B2 + f(x)

G
+

(B1 +B2)y

G

〉
which concludes our proof.
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6 Form Class Group
As in the previous chapter we will continue to assume that the characteristic of
the curve has to be different from 2, thus assuming that h(x) = 0. Let f(x) be a
square free polynomial in k[x], with degree 2g+ 1. A binary quadratic form is as
the name suggests: a quadratic homogeneous polynomial in two variables

Q(x, y) = Ax2 + 2Bxy + Cy2,

where A,B,C ∈ k[x] and where B2 − AC = f(x) is the determinant. For sim-
plicity, binary quadratic forms will be referred to by short form (A,B,C). The
polynomial greatest common divisor will denoted by pgcd. If pgcd(A,B,C) = 1,
the binary quadratic form is called primitive.

We will assume that all binary quadratic forms are primitive. Two binary
quadratic forms Q1 and Q2 are said to be equivalent if there exists a matrix(
U R
V S

)
such that

1. U,R, V, S ∈ k[x]

2. Q2(x, y) = Q1(Ux+Ry, V x+ Sy)

3.

∣∣∣∣U R
V S

∣∣∣∣ = 1

Also, we define (mA,B, C
m

), where m ∈ k∗, to be equivalent to (A,B,C), thus we
can assume A to be monic. A binary quadratic form Q(x, y) = Ax2+2Bxy+Cy2

is called reduced if A is monic, deg(A) ≤ g, and

deg(B) < deg(A) < deg(C)

Proposition 6.1. A binary quadratic form Q(x, y) = Ax2 + 2Bxy + Cy2 is
equivalent to a reduced binary quadratic form, which is unique.

Proof: We have defined all binary quadratic forms to be equivalent to a binary

quadratic form where A is monic. By using the matrix

(
0 1
−1 0

)
, we get Cx2 −

2Bxy + Ay2. Thus the matrix

(
0 1
−1 0

)
changes places on A and C, and also

changes the sign on B, which means that it is possible to get deg(A) ≤ deg(C).

We know that B2−AC = f(x), and that deg(f(x)) = 2g+ 1. This implies that
maximum (2deg(B), deg(A) + deg(C)) = 2g + 1. Because 2deg(B) can’t equal
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2g + 1, we know that deg(A) + deg(C) = 2g + 1. This, in addition to the fact
that deg(A) ≤ deg(C), implies that

deg(A) < deg(C)

Furthermore, this implies that deg(A) ≤ g. This proves that there exists a
reduced binary quadratic form which is equivalent to any given binary quadratic
form. To conclude the proof, we still need to prove that two reduced binary
quadratic forms can’t be equivalent.

Assuming there exist two reduced binary quadratic forms Q1(x, y) and Q2(x, y)

which are equivalent, there must exist a matrix

(
U R
V S

)
with determinant 1,

such that Q2(x, y) = Q1(Ux+Ry, V x+ Sy).

A1(Ux+Ry)2 + 2B1(Ux+Ry)(V x+ Sy) + C1(V x+ Sy)2

=A1(U
2x2 + 2URxy +R2y2)

+2B1(UV x
2 + USxy +RV xy +RSy2)

+C1(V
2x2 + 2V Sxy + S2y2)

=x2(A1U
2 + 2B1UV + C1V

2)

+xy(2A1UR + 2B1(US +RV ) + 2C1V S)

+y2(A1R
2 + 2B1RS + C1S

2)

This results in

A2 = (A1U
2 + 2B1UV + C1V

2)

A2 = (A1U
2 + 2B1UV +

(
B2

1 − f(x)

A

)
V 2)

A2A1 = A2
1U

2 + 2A1B1UV +B2
1V

2 − f(x)V 2

A2A1 = (A1U +B1V )2 − f(x)V 2

As both Q1(x, y) and Q2(x, y) are reduced, we know that deg(A1) ≤ g and
deg(A2) ≤ g. This implies that deg(A2A1) < deg(f(x)) = 2g + 1. As A2A1

is given by A2A1 = (A1U + B1V )2 − f(x)V 2, which implies that V = 0. This
results in A2A1 = (A1U)2. Which further implies that A2 is given by A2 = A1U

2.

With V = 0, we get the matrix

(
U R
0 S

)
. By definition, this matrix has a deter-

minant of one. This implies that US = 1 and further that S = U−1. As S = U−1,
we know that U, S ∈ k∗, which further implies that deg(A1) = deg(A2). As both
A1 and A2 are monic by definition and A2 = A1U

2, we know that U = ±1. As
previously stated, B2 is given by 2B2 = (2A1UR + 2B1(US + RV ) + 2C1V S).
However we know that V = 0, thus 2B2 = 2A1UR + 2B1US. By definition
deg(B2) < deg(A2) = deg(A1). This implies that R = 0, such that 2B2 = 2B1.
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To get a determinant of one, U = S = ±1. From previous calculations we know
that Q2(x, y) is given by

=x2(A1U
2 + 2B1UV + C1V

2)

+xy(2A1UR + 2B1(US +RV ) + 2C1V S)

+y2(A1R
2 + 2B1RS + C1S

2)

V = R = 0, which results in x2(A1U
2) + xy(2B1US) + y2(C1S

2), which implies
that

A2 =A1U
2

2B2 =2B1US

C2 =C1S
2

This proves that both U = S = −1 and U = S = 1 result in Q1(x, y) = Q2(x, y),
which contradicts our assumption, and concludes our proof.

Definition 6.1 (Form Class Group). The set of equivalence classes on binary
quadratic forms with determinant f form an Abelian group under the group law:
(A1, B1, C1) · (A2, B2, C2) = (A3, B3, C3)

G = pgcd(A1, A2, (B1 +B2)) = α1A1 + α2A2 + α3(B1 +B2)

A3 =
A1A2

G2

B3 =
α1A1B2 + α2A2B1 + α3(B1B2 + f)

G

C3 =
B2

3 + f

A3

This group is called the form class group, and will be denoted by Cl(F ).

The unity element in Cl(F ) is (1, 0,−f). To prove this, let’s take

(A,B,C) · (1, 0,−f)

which should be equivalent to (A,B,C).

G = pgcd(A, 1, (B + 0)) = α1A+ α2 + α3(B + 0) = 1

which implies that α1 = α3 = 0 and α2 = 1

A3 =
A

G
= A

B3 =
0 +B + 0

1
= B

C3 =
B2 − f
A

= C
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7 The isomorphism between Cl(O) and Cl(F )

Theorem 7.1. The ideal class group Cl(O), is isomorphic to the form class group
Cl(F ).

This theorem will be proved through a series of lemmas. We will start with
proving that there exists a well defined map φ from Cl(F ) to Cl(O).

For a map to be well defined, it can’t map one element to several elements, or
classes in this case. So we need to prove that one equivalence class maps to no
more than one coset in the ideal class group.
The form class group consists of equivalence classes, where equivalences are based
on matrices with determinants equal to one. The group of all such matrices, is
called SL2(Z). Thus it suffices to look at how the generators of this group behave
when mapped.

Lemma 7.2. SL2(Z) =

{(
A B
C D

)
|A,B,C,D ∈ k[x], AD −BC = 1

}
and is generated by

T1 =

(
0 1
−1 0

)
T2(M) =

(
1 M
0 1

)
where M ∈ k[x]

Proof: Let W =

(
A B
C D

)
be any matrix in SL2(Z). If deg(C) < deg(A) we can

write the matrix as (
A B
C D

)
=

(
0 1
−1 0

)(
−C −D
A B

)
(
A B
C D

)
= T1

(
−C −D
A B

)

Thus we can safely assume that deg(A) ≤ deg(C). Because deg(A) ≤ deg(C)
there exists a Q and an R, such that

C = QA+R
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where Q,R ∈ k[x], and deg(R) < deg(A), which implies that it is possible to
write (

A B
C D

)
=

(
A B

QA+R D

)
=

(
1 0
Q 1

)(
A B
R D −QB

)

By definition of the reminder, deg(R) < deg(A) and we know that deg(A) ≤
deg(C), which implies that deg(R) < deg(C). It is possible to repeat this pro-
cess, and because deg(R) < deg(C), we get a descending chain that is bound to
terminate in finitely many steps. Thus after finitely many steps, C becomes 0.

So we can write W = E1E2...EsW
′, where Ei =

(
1 0
Qi 1

)
and W ′ =

(
A′ B′

0 D′

)
The matrix Ei

=

(
1 0
Qi 1

)
= T3(−1)

(
0 1
−1 0

)(
1 −Qi
0 1

)(
0 1
−1 0

)
= T3(−1)T1T2(−Qi)T1

where

T3(α) =

(
α 0
0 α−1

)
=

(
0 1
−1 0

)(
1 α−1

0 1

)(
0 1
−1 0

)(
1 α
0 1

)(
0 1
−1 0

)(
1 α−1

0 1

)
= T1T2(α

−1)T1T2(α)T1T2(α
−1)

This proves that the matrices Ei are just multiples of T1 and T2(M). The de-
terminant of Ei is one for all i. By definition of the matrix W , its determinant
is equal to one as well. We know that det(AB) = det(A) ∗ det(B). This implies

that the determinant of the matrix W ′ =

(
A′ B′

0 D′

)
has to be one. Which further

implies that D′ = A′−1, resulting in the matrix

W ′ =

(
A′ B′

0 A′−1

)
=

(
1 A′B′

0 1

)(
A′ 0
0 A′−1

)
= T2(A

′B′)T3(A
′)
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This implies that W ′ is just a multiple of T1 and T2(M). We know that W =
E1E2...EsW

′, and we just proved that the matrices Ei and W ′ are multiples of
T1 and T2(M), which in turn proves that W is a multiple of T1 and T2(M). This
proves that SL2(Z) is generated by T1 and T2(M).

Lemma 7.3. Let φ : be a map from Cl(F ) to Cl(O), such that

φ : Ax2 + 2Bxy + Cy2 7→ 〈A,B + y〉

By this, φ is a well defined surjective map.

Proof: As a result of lemma 7.2, it is sufficient to look at how the generators T1
and T2(M), map. The matrix T1 maps (A,B,C) to (C,−B,A).

(A,B,C) 7→ 〈A,B + y〉
(C,−B,A) 7→ 〈C,−B + y〉

〈A,B + y〉 and 〈C,−B + y〉 have already been proved to be equivalent to each
other. The matrix T2(M) maps (A,B,C) ∈ Cl(F ), to (A, (B + AM), C), where
M ∈ k[x].

(A,B,C) 7→ 〈A,B + y〉
(A, (B + AM), C) 7→ 〈A, (B + AM) + y〉

〈A,B + y〉 and 〈A, (B + AM) + y〉 are equivalent to each other, because it is only
a multiple of A that differentiates them.

We also defined (mA,B, Cm) to be equivalent to (A,B,C) therefore we have to
prove this as well.

(A,B,C) 7→ 〈A,B + y〉(
mA,B,

C

m

)
7→ 〈mA,B + y〉

〈mA,B + y〉 and 〈A,B + y〉 are equivalent to each other, because m is an element
in k∗, thus it does not change the ideal it generates. This proves that the map φ is
well defined, as it maps one class to one coset. Proposition 6.1 guarantees that all
binary quadratic forms are equivalent to a reduced binary quadratic form, where
deg(B) < deg(A) < deg(C) and deg(A) ≤ g. Proposition 5.2 guarantees that
each coset in the ideal class group Cl(O) has one element such that deg(B) <
deg(A) < deg(C) and deg(A) ≤ g. As all elements in the form class group
Cl(F ) are equivalent to an element on the form deg(B) < deg(A) < deg(C) and
deg(A) ≤ g, and all cosets in the ideal class group Cl(O) have one element on
the same form, the map φ has to be surjective. This concludes our proof.

33



7 / The isomorphism between Cl(O) and Cl(F )

Lemma 7.4. Let I = 〈α1, α2〉, where α1, α2 ∈ O, and ψ be a map form Cl(O)
to Cl(F ), such that

ψ : 〈α1, α2〉 7→
N(α1x+ α2y)

N(I)
= qα1,α2

where N(α1x + α2y) = (α1x + α2y)(α̃1x + α̃2y), and α̃1 and α̃2 are equal to α1

and α2 conjugated. N(I) =
detβ(α1,α2)

σ(detβ(α1,α2))
as defined in definition 5.1

By this ψ is a well defined and surjective map.

Proof:

N(α1x, α2y)

=(α1x+ α2y)(α̃1x+ α̃2y)

=α1α̃1x
2 + (α1α̃2 + α2α̃1)xy + α2α̃2y

2

We know that α1α̃1, (α1α̃2+α2α̃1) and α2α̃2 are in the ideal I. We also know that
y2 = f(x), which is in k[x]. This implies that (α1α̃1), (α1α̃2 + α2α̃1), and (α2α̃2)
are in k[x] and thus multiples of N(I). This implies that (α1α̃1), (α1α̃2 + α2α̃1),
and (α2α̃2) are divisible by N(I).

This further implies that it is possible to write

α1α̃1

N(I)
= A

(α1α̃2 + α2α̃1)

N(I)
= 2B

α2α̃2

N(I)
= C

thus proving that N(α1x+α2y)
N(I) is a binary quadratic form.

The discriminant to Ax2 + 2Bxy + Cy2 is

(2B)2 − 4AC

=

(
α1α̃2 + α2α̃1

N(I)

)2

− 4

(
α1α̃1α2α̃2

N(I)2

)
=

(α1α̃2 + α2α̃1)
2 − 4α1α̃1α2α̃2

N(I)2

=
(α1α̃2 − α2α̃1)

2

N(I)2
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Let α1 = A and α2 = B + y, resulting in

(α1α̃2 − α2α̃1)
2

N(I)2

=
(A(B − y)− (B + y)A)2

N(I)2

=
4A2y2

N(I)2

=4f(x)

as y2 = f(x). The discriminant to a basis 〈A,B + y〉 is 4f(x), thus it is the same
as for ψ(Ax2 + 2Bxy + Cy2).

Proposition 5.1 states that an ideal I in O is on the form 〈α1, α2〉. In the proof we
went even further, by proving that an ideal inO is actually on the form 〈A,B + y〉.
None of the operations used in the proof will change the discriminant.

It is clear that 〈α1, α2〉 is equivalent to 〈Uα1 +Rα2, V α1 + Sα2〉. Thus we need

to prove that qα1,α2 is equivalent to qUα1+Rα2,V α1+Sα2 . Let

(
U R
V S

)
∈ SL2(Z).

If we look at

qα1,α2 =
N(α1x+ α2y)

N(I)

=
α1α̃1x

2 + (α1α̃2 + α2α̃1)xy + α2α̃2y
2

N(I)

which again gives us

N(I)A = α1α̃1

N(I)2B = (α1α̃2 + α2α̃1)

N(I)C = α2α̃2
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Looking at qUα1+Rα2,V α1+Sα2 gives us(
(Uα1 +Rα2)(Uα̃1 +Rα̃2)

N(I)

)
x2

+

(
(Uα1 +Rα2)(V α̃1 + Sα̃2) + (V α1 + Sα2)(Uα̃1 +Rα̃2)

N(I)

)
xy

+

(
(V α1 + Sα2)(V α̃1 + Sα̃2)

N(I)

)
y2

=

(
U2(α1α̃1) +RU(α1α̃2 + α̃1α2) +R2(α2α̃2)

N(I)

)
x2

+

(
2V U(α1α̃1) + (US +RV )(α1α̃2 + α2α̃1) + 2SR(α2α̃2)

N(I)

)
xy

+

(
V 2(α1α̃1) + V S(α1α̃2 + α2α̃1) + S2(α2α̃2)

N(I)

)
y2

which gives us (
N(I)(U2A+RU2B +R2C)

N(I)

)
x2

+

(
N(I)(2V UA+ (US +RV )2B + 2SRC)

N(I)

)
xy

+

(
N(I)(V 2A+ V S2B + S2C)

N(I)

)
y2

=
(
AU2 + 2BRU + CR2

)
x2

+ (2AUV + 2B(US +RV ) + 2CRS)xy

+
(
AV 2 + 2BV S + CS2

)
x2

We see that
Ax2 + 2Bxy + Cy2

and (
AU2 + 2BRU + CR2

)
x2

+ (2AUV + 2B(US +RV ) + 2CRS)xy

+
(
AV 2 + 2BV S + CS2

)
x2

are equivalent under

(
U V
R S

)
. As

(
U R
V S

)
has a determinant of one, then so

does

(
U V
R S

)
, thus it is in SL2(Z).

qα1,α2 = Ax2 + 2Bxy + Cy2
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and

qUα1+Rα2,V α1+Sα2

=
(
AU2 + 2BRU + CR2

)
x2

+ (2AUV + 2B(US +RV ) + 2CRS)xy

+
(
AV 2 + 2BV S + CS2

)
y2

implying that qα1,α2 and qUα1+Rα2,V α1+Sα2 are equivalent. This proves that the
map ψ is well defined.

Again, we use proposition 6.1 and 5.2 which guarantees that all binary quadratic
forms in Cl(F ) and cosets in Cl(O) are equivalent to an element, where deg(B) <
deg(A) < deg(C) and deg(A) ≤ g. As all elements in the form class group
Cl(F ) are equivalent to an element on the form deg(B) < deg(A) < deg(C) and
deg(A) ≤ g, and all cosets in the ideal class group Cl(O) have one element on
the same form, and the fact that ψ is well defined, this implies that ψ has to be
surjective. This concludes our proof.

Lemma 7.5. Let φ be as defined in lemma 7.3, and ψ be as defined in lemma
7.4, then

φ ◦ ψ
and

ψ ◦ φ

are identity maps.

Proof: For φ ◦ ψ to be an identity map, then

φ(ψ(〈A,B + y〉)) = 〈A,B + y〉

ψ(〈A,−B + y〉)
=qα1,α2

=
α1α̃1x

2 + (α1α̃2 + α2α̃1)xy + α2α̃2y
2

N(I)

We know that α1 = A og α2 = B + y, which results in

ψ(〈A,B + y〉)

=
A2x2 + 2ABxy + (B2 − f)y2

N(I)
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In the form class group, we know that A is monic, thus N(I) = A

=
A2x2 + 2ABxy + (B2 − f)y2

N(I)

=Ax2 + 2Bxy + (
B2 − f
A

)y2

ψ(〈A,B + y〉) =Ax2 + 2Bxy + Cy2

φ(ψ(〈A,B + y〉))
=φ(Ax2 + 2Bxy + Cy2)

φ(ψ(〈A,B + y〉)) = 〈A,B + y〉

This proves that φ ◦ ψ is an identity mapping. We know that ψ is surjective. By
definition, it is then possible to write all binary quadratic forms as q = ψ(I) for
some ideal I. This further implies that ψ(φ(q)) = ψ(φ(ψ(I))). We just proved
that φ ◦ ψ is an identity mapping, thus ψ(φ(q)) = ψ(φ(ψ(I))) = ψ(I) = q, which
proves that ψ ◦ φ is an identity mapping as well, and concludes our proof.

Definition 7.1. Let q1 and q2 be in Cl(F ), and · be the group operation in Cl(O).
We then define the group operation in Cl(F ) to be

ψ(φ(q1) · φ(q2))

To prove that φ is an homomorphism, let q1 and q2 be binary quadratic forms.
Then, by definition,

φ(q1q2) = φ(ψ(φ(q1) · φ(q2)))

As φ ◦ ψ is an identity mapping, this implies that

φ(q1q2) = φ(ψ(φ(q1) · φ(q2))) = φ(q1)φ(q2)

which proves that φ is an homomorphism.

To prove that ψ is an homomorphism, let I1 and I2 be ideals in Cl(O). Lemma
7.3 guarantees that φ is surjective, and all ideals in Cl(O) can therefore be written
as I = φ(q). This gives us

ψ(I1 · I2) = ψ(φ(q1) · φ(q2))

This is the definition of the group operation in Cl(F ), thus

ψ(I1 · I2) = ψ(φ(q1) · φ(q2))

= q1q2

As φ(qi) = Ii, for i = 1, 2, then ψ(Ii) = qi. This gives us

q1q2 = ψ(I1)ψ(I2)

This proves that ψ is an homomorphism and concludes the proof of theorem 7.1.
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8 Conclusion
We have described the four faces of hyperelliptic curves and proved that the form
class group and ideal class group are isomorphic. We have also described an algo-
rithm that does group operations strictly in the jacobian of hyperelliptic curves.
Further work would have included comparison of the group operations in the ja-
cobian and the ideal class group, to see which one is theoretically faster. Ease of
visualization would have been emphasized as well, as it seems that some computer
security researchers are reluctant to use hyperelliptic curve cryptography because
of its complexity. A special case of hyperelliptic curves have recently been given
attention as a candidate as the post quantum cryptographic algorithm. Super-
singular isogeny Diffie–Hellman key exchange (SIDH), as it is called is based on
supersingular elliptic curves and the isogenies between them.
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