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Abstract	16 

Paleoproterozoic sedimentary successions are important archives of the redox evolution of 17 

Earth’s atmosphere and oceans. Efforts to unravel the dynamics of our planet’s early 18 

oxygenation from this archive rely on various geochemical proxies, including stable carbon and 19 

sulfur isotopes. However, ancient metasedimentary rocks often experienced early- and late-20 

stage (bio)geochemical processes making it difficult to discern primary environmental signals 21 

from bulk-rock δ13Corg and δ34S values. Such complexity in carbon and sulfur isotope 22 

systematics contributes to uncertainty about the redox structure of Paleoproterozoic oceans. A 23 

currently popular idea is that, following the Great Oxidation Event, global changes led to low-24 

oxygen environments and temporally fluctuating ocean redox conditions that lasted until the 25 

Neoproterozoic. The volcano-sedimentary rocks of the Onega Basin have figured prominently 26 

in this concept, particularly the exceptionally organic-rich rocks of the 1.98 Ga Zaonega 27 

Formation. However, a growing body of evidence shows that local depositional processes acted 28 

to form the δ13Corg and pyrite δ34S records of the Zaonega Formation, thus calling for careful 29 

assessment of the global significance of these isotope records. Placing new and existing organic 30 
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carbon and sulfur isotope data from the Zaonega Formation into the context of basin history 31 

and by comparing those results with key Paleoproterozoic successions of the Francevillian 32 

Basin (Gabon), the Pechenga Greenstone Belt (NW Russia) and the Animikie Basin (Canada), 33 

we show that the stratigraphic δ13Corg and pyrite δ34S trends can be explained by local 34 

perturbations in biogeochemical carbon and sulfur cycling without requiring global drivers. 35 

Despite their temporal disparity, we also demonstrate that individual successions share certain 36 

geological traits (e.g. magmatic and/or tectonic activity, hydrocarbon generation, basin 37 

restriction) suggesting that their pyrite δ34S and δ13Corg trends were governed by common 38 

underlying mechanisms (e.g. similar basinal evolution and biogeochemical feedbacks) and are 39 

not necessarily unique to certain time intervals. We further show that pyrites in these 40 

successions that are most likely to capture ambient seawater sulfate isotopic composition have 41 

consistent δ34S values of 15–18‰, which hints at remarkable stability in the marine sulfur cycle 42 

over most of the Paleoproterozoic Era. 43 
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1.	Introduction	47 

The Neoarchean and Paleoproterozoic eras saw drastic perturbations in Earth system processes, 48 

spanning from the geodynamic, the emergence of continents and the initiation of supercontinent 49 

cycles (Reddy and Evans, 2009), to the climatic, as recorded by several episodes of global 50 

glaciations (Kopp et al., 2005; Young et al., 1998). In concert with those were major changes 51 

in Earth’s surface environments: widespread accumulation of iron formations (Bekker et al., 52 

2014; Cloud, 1973; Holland, 1978; Klein, 2005; Konhauser et al., 2002, 2017), disappearance 53 

of detrital pyrite and uraninite grains (Berkner and Marshall, 1965; Cloud, 1968; Holland, 54 

2006), loss of mass-independent sulfur isotope fractionation (Farquhar et al., 2000; Guo et al., 55 

2009; Luo et al., 2016), the large-magnitude positive δ13Ccarb excursion of the Lomagundi-Jatuli 56 

Event (LJE; Baker and Fallick, 1989; Karhu and Holland, 1996), accumulation of exceptionally 57 

organic-rich sediments of the Shunga Event (Melezhik et al., 1999; Kump, 2011; Strauss et al., 58 

2013), and the appearance of phosphorous-rich sedimentary deposits (Lepland et al., 2013; 59 

Papineau, 2010). 60 
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These changes are thought to have occurred as a consequence of the build-up of atmospheric 61 

oxygen to above 0.001% present atmospheric levels at c. 2.4–2.3 Ga (Fig. 1; Bekker et al., 62 

2004; Gumsley et al., 2017; Luo et al., 2016; but see also Ohmoto et al., 2014). Known as the 63 

Great Oxidation Event (GOE; Holland, 2006), this change towards oxidative surface conditions 64 

is postulated as having intensified continental weathering and prompted an increased riverine 65 

flux of sulfate, phosphate and metals into the global ocean (e.g. Konhauser et al., 2011). In turn, 66 

the increase in the availability of electron acceptors (e.g. O2, NO3
-, Fe3+, Mn4+, SO4

2-) and 67 

macro/micro nutrients (e.g. PO4
3-, Cu, Ni, Zn) is thought to have created the necessary 68 

conditions for establishment of new ecological niches exploited by microbes co-evolving with 69 

Earth’s oxygenation (e.g. Zerkle et al., 2017). Various geochemical datasets though, including 70 

stable sulfur and carbon isotopes, imply that the oxygenation of Earth’s atmosphere was 71 

dynamic and marked by spatiotemporal heterogeneities (Large et al., 2019; Luo et al., 2016; 72 

Ossa Ossa et al., 2018; Planavsky et al., 2018, 2012; Scott et al., 2014; Sheen et al., 2018). 73 

Nevertheless, what is agreed is that a substantial increase in seawater sulfate (SWS) 74 

concentrations to > 2.5 mM (Bekker et al., 2006; Reuschel et al., 2012b; Schröder et al., 2008) 75 

or even > 10 mM (Blättler et al., 2018) occurred during the c. 2.2–2.0 Ga LJE as a consequence 76 

of an oxygenated atmosphere-ocean system. The redox structure of Proterozoic oceans, 77 

however, remains debated with interpretations ranging from ocean deoxygenation and 78 

widespread euxinia at the end of the LJE (Luo et al., 2016; Ossa Ossa et al., 2018; Planavsky 79 

et al., 2012; Scott et al., 2014) to episodic deep-water oxygenation and spatiotemporal ocean 80 

redox variability that persisted until the late Neoproterozoic (Diamond et al., 2018; Planavsky 81 

et al., 2018; Sheen et al., 2018; Sperling et al., 2015, 2014). 82 

Given that microbial sulfate reduction (MSR) coupled to oxidation of organic carbon exert great 83 

influence on the redox balance of Earth’s surface environments (Fike et al., 2015; Jørgensen, 84 

1979), concomitant changes in sedimentary records of global organic carbon and sulfur cycling 85 

can provide important insights to the redox state of past oceans (Canfield et al., 2013; Fike et 86 

al., 2015; Kump and Garrels, 1986). Biological processes preferentially utilise 12C and 32S 87 

isotopes over 13C and 34S, respectively, leaving the residual source pools enriched and the 88 

products depleted in the heavier isotopes. In low temperature environments the kinetic isotope 89 

fractionations imparted by microorganisms typically surpass the extent of abiotic isotope 90 

effects. These differences between biological and abiotic isotope effects can be used to trace 91 

carbon and sulfur fluxes through various reservoirs. Furthermore, biogeochemical sulfur 92 

cycling can produce small mass-dependent fractionations in the minor sulfur isotope ratios 93 
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(Δ33S and Δ36S) that can provide additional information about different processes governing 94 

sulfur cycling even when preserved δ34S values overlap (Canfield et al., 2010; Johnston, 2011; 95 

Johnston et al., 2005; Seal, 2006; Zerkle et al., 2016, 2010). Therefore, coupled organic carbon 96 

(δ13Corg) and multiple sulfur isotope data (δ34S, Δ33S, Δ36S) can be used as indirect 97 

paleoenvironmental proxies for microbial processes and biogeochemical cycling during periods 98 

of significant change in Earth’s surface environments. However, we recognise that stable 99 

isotope values can also be influenced by post-depositional geological processes (e.g. diagenesis, 100 

metamorphism) that can significantly affect the extent of fractionation between the oxidised 101 

and reduced species and, hence, the preservation of original isotope signatures within the rock 102 

record (Aller et al., 2010, 2008; Fike et al., 2015). Screening for pristine geochemical signals 103 

is especially important given the rarity of well-preserved Paleoproterozoic sedimentary basins. 104 

Geochemical trends, including organic carbon and multiple sulfur isotopes and their global 105 

importance, from the c. 1.98 Ga Zaonega Formation in the Onega Basin of northwest Russia 106 

have figured prominently in investigations of the post-LJE time. Here we combine new and 107 

existing records of S-C systematics, from drill cores through the Zaonega Formation to assess 108 

ideas about the redox state of the Paleoproterozoic ocean following the LJE. We compare these 109 

records to other key Paleoproterozoic successions, the Francevillian Basin of Gabon, Pechenga 110 

Greenstone Belt of northwest Russia and Animikie Basin in Canada, to deconvolve local- from 111 

global-scale signals. These successions in particular have shaped ideas about the post-LJE 112 

world and their geochemical records and depositional models have helped refine understanding 113 

of this ciritical time period in Earth’s history. 114 

2.	The	Zaonega	Formation	in	the	Onega	Basin	115 

Situated in the eastern part of the Fennoscandian Shield in NW Russia, the Paleoproterozoic 116 

Onega Basin (Fig. 2) contains one of the most complete volcano-sedimentary successions that 117 

encompasses both the end of the LJE and the succeeding Shunga Event (Melezhik et al., 1999; 118 

Kump, 2011; Strauss et al., 2013); the former is mostly recorded by the carbonate rocks of the 119 

Tulomozero Formation and the latter by the organic-rich rocks of the Zaonega Formation 120 

(Melezhik and Hanski, 2013). Deposition during the LJE followed a phase of rifting associated 121 

with the opening of the Paleoproterozoic Kola Ocean and Svecofennian Sea (Lahtinen et al., 122 

2008; Melezhik et al., 2015) and occurred in sabkha-coastal plain and shallow-marine peritidal 123 

carbonate platforms restricted by stromatolite reefs as represented by the Tulomozero 124 

Formation (Blättler et al., 2018; Melezhik et al., 2015; Melezhik and Hanski, 2013; Morozov 125 
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et al., 2010). Continued basinal subsidence created a deep-water shelf-slope-basin during the 126 

deposition of the overlying Zaonega Formation (Črne et al., 2014; Melezhik et al., 2015), 127 

marked by organic-rich siliciclastic and carbonate rocks interlayered with numerous syn-128 

depositional mafic lava flows and co-magmatic intrusions (Črne et al., 2013a, 2013b; Melezhik 129 

et al., 1999; Strauss et al., 2013). Subsequently, reduction in the rate of subsidence and sub-130 

aqueous volcanism led to the filling of the basin by hundreds-of-meters of basalts of the Suisari 131 

Formation intercalated with thin organic-rich shale beds (Krupenik et al., 2011; Melezhik et al., 132 

2015; Morozov et al., 2010) with final closure of the basin marked by deposition of turbiditic 133 

greywackes and siltstones, many containing pyrobitumen clasts (subaerial seeps), in the 134 

lacustrine settings of the Kondopoga Formation (Melezhik et al., 2015). The entire succession 135 

underwent greenschist facies metamorphism and deformation into a series of open folds cut by 136 

high-angle faults during the 1.89–1.79 Ga Svecofennian orogeny (Ojakangas et al., 2001; 137 

Stepanova et al., 2014). 138 

The lower and upper parts of the Zaonega Formation consist of intercalated siliciclastic 139 

(dominating in the lower part) and carbonate (dominating in the upper part) rocks whereas the 140 

middle part contains massive organic-rich rocks (locally termed “shungite”) considered to be 141 

one of the world’s oldest petrified oilfields (Melezhik et al., 2013, 1999): total organic carbon 142 

(TOC) can reach up to 40 wt.% in shungite rock and as high as 90 wt.% in pyrobitumen-filled 143 

veins (Melezhik et al., 2013, 2004, 1999). Oil generation and hydrocarbon migration is 144 

attributed to syndepositional magmatism that promoted thermal maturation of the organic 145 

matter along the contacts of magmatic bodies (Črne et al., 2013a, 2013b; Qu et al., 2018, 2012). 146 

Organic-rich rocks in the middle part of the Zaonega succession have characteristic δ13Corg 147 

values of < -30‰ (Kump, 2011; Lepland et al., 2014; Qu et al., 2018, 2012) and their presence 148 

and stratigraphic correlation is well documented in several outcrops and drill cores across the 149 

entire Onega Basin (Filippov and Yesipko, 2016; Galdobina, 1987; Melezhik et al., 2013). 150 

The overwhelmingly fine-grained textures, dearth of large current-generated sedimentary 151 

structures, and rare emplacement of coarser-grained sediment-gravity flow and turbidity-152 

current deposits indicate that deposition occurred predominantly in relatively low-energy 153 

environments (Črne et al., 2014, 2013a, 2013b; Galdobina, 1987; Melezhik et al., 2015). 154 

Although paleobathymetry is difficult to assess, depths must have remained consistently below 155 

storm-wave base during deposition of much of the Zaonega Formation. 156 
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2.	1	Age	of	the	Zaonega	Formation	157 

Deposition of the Zaonega Formation in part coincided with the termination of the LJE, which 158 

is recorded in the conformably underlying Tulomozero Formation and the lowermost part of 159 

the Zaonega Formation (Melezhik et al., 2015; Morozov et al., 2010). This termination occurred 160 

at c. 2.06 Ga based on correlations of LJE-bearing rocks across Fennoscandia (Karhu, 1993; 161 

Karhu and Holland, 1996) and U-Pb radiometric ages on post-LJE bearing rocks: 2058 ± 2 Ma 162 

(Melezhik et al., 2007) and 2056.6 ± 0.8 Ma (Martin et al., 2015) for the Kolosjoki Sedimentary 163 

Formation in the Pechenga Greenstone Belt; 2055.5 ± 2.3 Ma for the Il'mozero Sedimentary 164 

Formation in the Imandra-Varzuga Greenstone Belt (Martin et al., 2013a, 2013b); and a 2050 165 

± 8 Ma age on felsic volcanites in the Peräphoja Belt, Finland (Perttunen and Vaasjoki, 2001). 166 

A younger age of the Zaonega Formation is provided by the emplacement ages of igneous 167 

rocks: 1919 ± 18 Ma (Priyatkina et al., 2014), 1956 ± 5 Ma (Stepanova et al., 2014) and 1961.6 168 

± 5.1 Ma (Martin et al., 2015) for dykes that cross-cut the Zaonega Formation; 1969 ± 18 Ma 169 

(Puchtel et al., 1998) and 1988 ± 34 Ma (Puchtel et al., 1999) on gabbro sills in the overlying 170 

Suisari Formation. 171 

While the above ages bracket deposition of the Zaonega Formation between c. 2.06 and 1.98 172 

Ga, its exact age remains unresolved. A carbonate whole rock Pb-Pb age of 2090 ± 70 Ma from 173 

the underlying Tulomozero Formation (Ovchinnikova et al., 2007) and a 2050 Ma Re-Os age 174 

on organic-rich siltstone from the Zaonega Formation (reported in a conference abstract by 175 

Hannah et al., 2008) indicate that deposition occurred essentially synchronous with the end of 176 

the LJE. More recently, Martin et al. (2015) reported single zircon ages of 1982.0 ± 4.5 Ma for 177 

a tuff in the lower Zaonega Formation and 1967.6 ± 3.5 Ma for a detrital zircon grain in the 178 

overlying Kondopoga Formation. These upper constraints are within error of zircon ages of 179 

1976 ± 9 Ma (Puchtel et al., 1998) and 1975.3 ± 2.8 Ma (Martin et al., 2015) that have been 180 

determined for mafic magmatic rocks of the Jangozero Formation below the Tulomozero 181 

Formation, interpreted by Martin et al. (2015) as a lava flow. However, our recent field 182 

observations at the outcrop area near Hirvas (NW Russia), where the samples were collected 183 

for dating by both Puchtel et al. (1998) and Martin et al. (2015), indicate that this mafic body 184 

is a sill rather than a lava flow; hence, the ages derived from it cannot be used for defining the 185 

maximum depositional age of the Tulomozero and Zaonega formations. 186 

In summary, i) the Zaonega Formation was deposited conformably over the Tulomozero 187 

Formation; ii) carbonates and calcareous mudstones in the lowermost part of the Zaonega 188 

Formation host the termination of the LJE ( δ13Ccarb shift from c. 9‰ to 0‰; Melezhik et al., 189 
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2015) that occurred across Fennoscandia at c. 2.06 Ga; iii) syndepositional magmatism—190 

resulting co-magmatic sills with pepperite contacts and deposition of tuffs—place accumulation 191 

of the exceptionally organic-rich rocks in the middle part of the Zaonega Formation at c. 1.98 192 

Ga, iv) an upper age limit of c. 1.98 Ga is further corroborated by the emplacement ages of the 193 

overlying Suisari Formation igneous and volcanic rocks. Taken together, and until more refined 194 

age constraints can be determined, we consider c. 1.98 Ga as the depositional age of the Zaonega 195 

Formation. 196 

2.	2	New	samples	and	data	integrated	with	published	data	197 

In this study we integrate new δ13Corg data on 117 samples from the drill core of the Onega 198 

Parametric Hole (OPH, 62.1559 N, 34.4073 E) with published geochemical data from OPH and 199 

other drill cores including FAR-DEEP 12AB, FAR-DEEP 13A, OnZap1, OnZap3, C-175 and 200 

C-5190 (Fig. 3, 4, 5). The OPH core was drilled between 2007–2009 in the southeastern part of 201 

the Onega Basin and intersects c. 3000 m of Paleoproterozoic rocks and 500 m of the Archean 202 

basement (Fig. 2; Krupenik et al., 2011; Morozov et al., 2010). Here we mainly focus on the 203 

2115–525 m depth interval in the OPH core that comprises the Zaonega Formation and most of 204 

the sedimentary intervals of the overlying Suisari Formation. As part of the International 205 

Continental Drilling Program’s Fennoscandian Arctic Russia-Drilling Early Earth Project 206 

(FAR-DEEP) in 2007, FAR-DEEP core 13A (240 m deep, 62.5891 N, 34.9273 E) was drilled 207 

near the village of Shunga and FAR-DEEP core 12AB (504 m deep, 62.4947 N, 35.2887 E) c. 208 

25 km south-east from the village (Fig. 2). Both cores intersect the middle and upper part of the 209 

Zaonega Formation. Additional drilling was performed near the village of Shunga in 2012 when 210 

two 60 m long cores, OnZap1 (62.5870 N, 34.9310 E) and OnZap3 (62.5920 N, 34.9280 E), 211 

were recovered (Fig. 2). Together these two cores form a 102 m composite section that 212 

corresponds to the upper part of the Zaonega Formation. Detailed descriptions of the OPH, 213 

FAR-DEEP and OnZap cores are available in Krupenik et al. (2011), Črne et al. (2013a, 2013b) 214 

and Paiste et al. (2018), respectively. An additional Zaonega data set has been published from 215 

core C-175 (220 m thick interval; Scott et al., 2014) and core C-5190 (842 m thick interval; 216 

Melezhik et al., 2013; Scott et al., 2014); these are located 500 m to the northwest and c. 15 km 217 

south of the FAR-DEEP 12AB location, respectively (Fig. 2). Combined, these cores span the 218 

entire Zaonega Formation but the most detail is provided for the organic-rich intervals in the 219 

middle part of the Formation (Fig. 5). 220 
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3.	Methods	221 

The organic carbon (Corg) isotope composition of decarbonated residues was determined by 222 

flash combustion using an Elemental Analyser Continuous Flow Isotope Ratio Mass 223 

Spectrometer (EA-CF-IRMS: ThermoScientific Delta V Plus with Costech EA) at the NERC 224 

Life Sciences Mass Spectrometry Facility at the Scottish Universities Environmental Research 225 

Centre. The organic carbon isotope data are reported relative to the Vienna PeeDee Belemnite 226 

(V-PDB) standard using delta notation (δ13Corg = 1000 ꞏ (13Rorganic-C/13RV-PDB - 1), where 13R is 227 
13C/12C). Sample reproducibility was determined by replicate analyses of the international 228 

standard USGS40 L-glutamic acid (δ13C= –26.39 ± 0.04‰ V-PDB) which yielded δ13C values 229 

of –26.19 ± 0.04‰. The δ13C values have been corrected for the 0.2‰ offset between the 230 

USGS40 measurements obtained during analysis and the accepted value for the standard. The 231 

sulfur isotopes reported from earlier studies are expressed as δ34S = 1000 ꞏ (34Rsample/34RV-CDT - 232 

1) and  Δ33S = δ33S – 1000 ꞏ (1 + δ34S/1000) 0.515 – 1). Details of chemical methods and isotope 233 

analyses are outlined in Scott et al. (2014) and Paiste et al. (2018, 2020). 234 

4.	Results	for	OPH	core	and	basin‐wide	correlations	235 

The OPH samples record δ13Corg values ranging from -41.01‰ to -23.65‰ and define a 236 

stratigraphic profile marked by a prominent negative excursion (δ13Corg values of <-30‰) in 237 

the 1226–1080 m interval and near invariant values below and above that excursion. Further, 238 

this negative δ13Corg excursion is associated with a positive δ34S excursion (Fig. 4). Examining 239 

all the available δ13Corg, δ34S and Δ33S core records for the OPH, FAR-DEEP and OnZap cores 240 

show that the middle and upper parts of the Zaonega Formation are typified by similar 241 

lithofacies, including a basin-wide dolomite marked by a prominent increase in P2O5 at the 242 

lower contact of that unit (Fig. 3). Further, in all those cores, the strongly 13C-depleted biomass 243 

recording δ13Corg values of <-30‰ occurs in a specific interval in the middle Zaonega 244 

Formation. Consequently, these independent criteria provide a firm basis for making 245 

correlations across the Onega Basin (Filippov and Yesipko, 2016; Melezhik et al., 2013) and 246 

dividing the Zaonega Formation into Members A, B and C (Fig. 5, Paiste et al., 2020). Direct 247 

correlation with cores C-175 and C-5190 studied by Scott et al. (2014) is hampered by the lack 248 

of lithological descriptions by those workers. However, given the stratigraphic consistency and 249 

uniqueness of the pronounced negative 13Corg excursion present in all other Zaonega cores, the 250 

occurrence of δ13Corg values <-30‰ in the depth intervals from 184–16 m in C-5190 and 219–251 

17 m in C-175 indicates their correlation with Member B and the depth interval between 296–252 
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184 m in C-5190 with Zaonega Member A (Fig. 5). These correlations are in good agreement 253 

with those proposed between cores C-5190 and FAR-DEEP 12AB by Melezhik et al. (2013). 254 

In detail, the Zaonega Formation houses a pronounced negative δ13Corg excursion with values 255 

as low as -42‰ in Member B, whereas Members A and C are characterised by relatively 256 

invariant δ13Corg, -26.5 ± 2.4‰ (at 1SD level, here and elsewhere) and -29.7 ± 3.5‰, 257 

respectively. The sulfur isotope data show that Member A is marked by uniformly negative 258 

δ34S (c. -11.9 ± 10.4‰) and positive Δ33S (c. 0.02 ± 0.04‰) values that shift to positive δ34S 259 

(17.8 ± 7.5‰) and mainly negative Δ33S (-0.02‰ ± 0.03) values in Member B (Δ33S data shown 260 

in Paiste et al., 2020). In Member B the values oscillate around a baseline of c. 18‰ in δ34S and 261 

c. -0.02‰ in Δ33S but several sharp positive excursions in δ34S, up to 44‰, and negative 262 

excursions in Δ33S, down to -0.12‰ occur. On average sulfides in Member C have δ34S values 263 

of 15.5‰ ± 8.4 and Δ33S of -0.01‰ ± 0.02 but record a negative trend to c. 3‰ in δ34S and a 264 

positive trend to c. 0‰ in Δ33S towards the top of the member. All these isotope shifts are 265 

accompanied by concomitant changes in TOC and TS abundances, that are relatively low in the 266 

lower part of Member A and in Member C but exhibit concentrations up to 65 wt.% TOC and 267 

11 wt.% TS in Member B (Fig. 5). 268 

5.	Discussion	269 

5.	1	Organic	carbon	and	sulfur	isotope	records	270 

5.	1.	1	Carbon	fixation	pathways	and	the	δ13Corg	record	271 

The most common organic matter source in marine sediments throughout Earth’s history is the 272 

biomass of CO2-fixing autotrophic organisms with δ13Corg values between -10‰ to -30‰ 273 

(Preuß et al., 1989; Zerkle et al., 2005). This is corroborated by the relative consistency of 274 

δ13Corg (-25 to -35‰) and δ13Ccarb (c. 0‰) records throughout Earth’s history, reflecting the 275 

antiquity of autotrophic CO2-fixing metabolisms and fairly uniform biomass burial and 276 

carbonate deposition through geologic time (Hayes, 1993; Hayes and Waldbauer, 2006; Marais, 277 

2001; Schidlowski, 2001; Zerkle et al., 2005). However, natural environments may also host 278 

mixed biological communities, some of which can produce biomass significantly more depleted 279 

in 13C such as those utilising CH4 from either thermogenic (δ13CCH4 from c. -20‰ to -50‰) or 280 

biogenic (δ13CCH4 from c. -50‰ to -90‰) sources (Sackett, 1978; Schoell, 1983; Whiticar, 281 

1999) and thereby result in sedimentary organic matter containing various δ13Corg signals with 282 

values lower than -30‰. 283 
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Sequences with significant 13C-depleted biomass (δ13Corg < -30‰) are most notably 284 

documented in the 2.7–2.6 Ga Fortescue Formation (Hayes, 1983; Schidlowski, 2001), the c. 285 

2.1 Ga Francevillian D Formation (Gauthier-Lafaye and Weber, 2003, 1989), and the c. 1.98 286 

Ga Zaonega Formation (Kump, 2011; Melezhik et al., 1999). Such excursions have been 287 

explained variably as a global-scale negative isotope shift in the atmospheric CO2 source via 288 

widespread exhumation and weathering of buried organic carbon (Kump, 2011), by increased 289 

methane oxidation (Yudovich et al., 1991) or as an increase of microbial methane cycling 290 

driving pervasive methanogenesis and subsequent methanotrophy (Bengston and Hayes, 1994; 291 

Hayes, 1983; Knoll and Canfield, 1998). However, basin-scale (or smaller) kerogen alteration 292 

and devolatilisation of 13C-depleted hydrocarbons could equally provide a suite of carbon 293 

sources to sustain microbial communities, consequently lowering the bulk δ13Corg of 294 

sedimentary organic matter (Qu et al., 2012). Another way to produce 13C-depleted biomass is 295 

by enriching the local dissolved inorganic carbon (DIC) pool in 12C by recycling of organic 296 

carbon in restricted and/or stratified environments. For example, organic matter with values as 297 

low as -45‰ δ13Corg have been reported in a modern mountain lake and -34‰ δ13Corg in a 298 

Norwegian fjord (Rau, 1978; van Breugel et al., 2005). 299 

Metamorphism can also alter the isotope composition of primary organic matter but these 300 

isotope effects are generally small (< 3‰) and will typically shift the preserved δ13Corg to more 301 

positive values (Clayton, 1991; Hayes, 1993; Lewan, 1983; Schidlowski, 2001). Significant 302 

negative shifts of residual graphite δ13Corg are theoretically possible by oxidation of 303 

carbonaceous matter in prograde metamorphic conditions where >90% of carbon is removed 304 

by extreme CO2 degassing at high temperatures (>500°C; Eiler et al., 1997). In addition, 305 

formation of abiogenic organic matter through deposition from carbonic fluids can yield low 306 

δ13Corg values, but such processes facilitating deposition from fluids also occur at temperature 307 

and pressure regimes exceeding low grade, greenschist facies metamorphic conditions (Luque 308 

et al., 1998). Therefore, the δ13Corg values preserved in organic matter in ancient sedimentary 309 

rocks of the Fortescue, Francevillian D and Zaonega Formations can be considered to carry 310 

primary signatures reflecting switching between different carbon sources and metabolic 311 

pathways that are induced by local and/or global processes. The principal way to discriminate 312 

between local and global mechanisms is to place stable isotope records into a depositional 313 

context. 314 
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5.	1.	2	Global	and	local	processes	governing	the	sulfur	isotope	system	315 

On geological time scales, seawater sulfate (SWS) concentrations depend on the redox status 316 

of the atmosphere-ocean system and the relative fluxes of sulfur into and out of the oceans. 317 

Sulfur enters the oceans mainly via riverine input and is removed as oxidised (e.g. gypsum, 318 

anhydrite, barite, carbonate/phosphate associated sulfate) and reduced (e.g. pyrite, marcasite, 319 

pyrrhotite, sphalerite, chalcopyrite) minerals and organic sulfur (Raven et al., 2018, 2016). 320 

These sulfur carriers form as a result of microbial activity (e.g. microbial reduction, oxidation, 321 

and/or disproportionation of sulfur compounds) and abiogenic processing (e.g. evaporation, 322 

thermogenic sulfate reduction, photolysis), which generate distinct isotope effects (Berner, 323 

1964; Berner and Raiswell, 1983; Canfield, 2001; Johnston et al., 2007, 2005; Seal, 2006; Sim 324 

et al., 2011). The difference between the sulfur isotope compositions of sulfate and sulfide 325 

minerals in sediments and their relative burial fluxes affect the isotopic compositions of both 326 

the SWS reservoir and the different sulfur sinks. Ideally, variations in the sulfur isotope 327 

composition of sedimentary sulfur species could, thus, be used as a proxy for past ocean 328 

chemistry. 329 

Reconstructions of deep-time sulfur cycling are often limited to pyrite records because 330 

evaporite minerals, which more directly record SWS isotopic composition, are rarely preserved. 331 

Although pyrite is stable under a range of geological conditions, diagenetic or hydrothermal 332 

fluid flow or regional metamorphism can contribute to sulfur isotope variations in pyrite records 333 

(Craig, 1993; Meyer et al., 2017; Wagner and Boyce, 2006). Such late-stage overprinting of the 334 

primary pyrite δ34S signals can be identified by proper petrographic and geochemical screening 335 

of samples (Cui et al., 2018; Fischer et al., 2014; Gregory et al., 2017; Large et al., 2014; Ono 336 

et al., 2009; Picard et al., 2018; Wagner and Boyce, 2006; Xiao et al., 2010). Therefore, relying 337 

solely on sedimentary pyrite records in paleoenvironmental reconstructions requires careful 338 

evaluation of mechanisms that affect its isotope composition at the time of deposition. 339 

Strictly anaerobic MSR typically occurs within the shallow sediments where a combination of 340 

environmental factors (e.g. organic carbon concentrations, temperature, salinity, pH) can affect 341 

sulfate reduction rates, and sedimentary processes and characteristics such as sedimentation 342 

rate, porosity, permeability, and sediment reworking can limit sulfate transfer between pore 343 

space and the overlying water column (Aller et al., 2010, 2008; Bradley et al., 2016; Canfield 344 

et al., 2010; Farquhar et al., 2007; Fike et al., 2015; Ries et al., 2009; Sim et al., 2011). 345 

Generally, sedimentary pyrites with negative δ34S and positive 33S values are produced during 346 

steady-state conditions where microbial discrimination against 34S is most expressed (Canfield 347 
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et al., 2010; Rees et al., 1978; Seal, 2006). Conversely, if sulfate transport is limited, Rayleigh 348 

distillation effects attenuate biological fractionations and the 33S-δ34S of pore-water sulfide 349 

will approximate the initial SWS isotope composition (Berner, 1964; Goldhaber and Kaplan, 350 

1975; Johnston et al., 2007; Jørgensen, 1979; Zaback et al., 1993). In addition, the final 351 

composition of pyrite also depends on reactive iron availability and the fraction of sulfide that 352 

is reoxidised. Even in a closed system, 34S-depleted pyrites will accumulate if only a fraction 353 

of pore-water sulfide is scavenged by reactive iron. Moreover, in sediments open to sulfate 354 

transport, sulfate limitation can develop as a result of high organic matter mineralisation rates 355 

by MSR when sulfate is rapidly consumed, reduced and effectively captured as sedimentary 356 

sulfide species (Aller et al., 2010; Berner, 1964; Canfield, 1991; Claypool, 2004; Fike et al., 357 

2015; Goldhaber and Kaplan, 1975; Jørgensen, 1979; Zaback et al., 1993). 358 

Physical reworking of sediments (e.g. storms, bioturbation) can disturb redox-stratified 359 

sediments and cause mixing between distinct sulfide pools that have undergone some degree of 360 

Rayleigh distillation. If formerly reduced sediments at some depth in the sedimentary column 361 

are placed into oxidising conditions, full or partial oxidation of pore-water sulfide by abiogenic 362 

or biogenic processes can impart additional fractionations of < 5‰ amplitude (Balci et al., 2007; 363 

Fry et al., 1988; Zerkle et al., 2009) leaving the residual sulfide enriched in 34S. Further reactions 364 

between the modified sulfide and reduced iron can generate pyrites that preserve smaller sulfur 365 

isotope fractionations than predicted for MSR alone. Thus, shallow water environments, where 366 

sediment reworking is most intense, typically record pyrites with more positive and variable 367 

isotope signatures than their counterparts in deeper water settings. It has even been suggested 368 

that within such environments frequent disturbance of sediments and partial oxidation of sulfide 369 

can generate “superheavy pyrites” with δ34S values that exceed those of ambient seawater 370 

sulfate (Ries et al., 2009). Overall, steadily accumulating pelagic shales are considered less 371 

likely to be affected by sedimentary reworking and more open to exchange with the overlying 372 

water, thus the sulfur isotope records therein are not as affected by limitations on sulfate 373 

diffusion (Fike et al., 2015; Pasquier et al., 2017; Ries et al., 2009). 374 

However, this might not always be the case. For example, solid phase sulfur (ƩS = FeS, FeS2, 375 

S0) in the Amazon-Guianas inner shelf muds has unusually positive δ34S signatures in areas 376 

episodically reworked by currents and/or wave action and negative δ34S signatures where 377 

bioturbation occurs (Aller et al., 2010). If these sulfur phases were converted into pyrite and 378 

preserved in the rock record, it would be easy to misinterpret the nature of the processes that 379 

lead to such isotope signatures. We acknowledge that bioturbation had a limited effect on 380 
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sedimentary iron and sulfur cycling prior to colonisation of the seafloor by benthic fauna in the 381 

early Phanerozoic (Canfield and Farquhar, 2009). Based on that, it is reasonable to assume that 382 

Precambrian nonbioturbated sediments would be more conductive to closed system sulfur 383 

cycling. 384 

Another important aspect to be considered is the preservation of marine sedimentary records. 385 

Plate tectonics has effectively recycled Earth's crust and significantly reduced the likelihood of 386 

preserving deep-marine continental margins (Condie et al., 2017; Condie and Kröner, 2008; 387 

Hildebrand et al., 2018; Reddy and Evans, 2009). As the result, in Archean and Proterozoic 388 

successions the preservation of sedimentary successions is strongly biased towards marginal 389 

basins that may compromise the use of shales as representative archives of steady-state 390 

conditions (Woodcock, 2004). 391 

Given difficulties that arise with variability of sulfate transport in early diagenetic systems and 392 

sedimentary facies, it has been suggested that pyrites that precipitate in euxinic conditions are 393 

more likely to indicate open-system sulfate reduction (Canfield et al., 2010; Lyons, 1997). This 394 

suggestion relies on the simple assumption that euxinia could indicate MSR within the water 395 

column, shifting the locus of pyrite formation from the sedimentary environment into the water 396 

column. Such pyrites should reflect stratigraphically consistent 34S-depletions if sulfate is not 397 

limiting but approach SWS isotopic composition once sulfate limitation leads to smaller 398 

biological fractionations. Low apparent fractionation from seawater has, therefore, been used 399 

to argue for very low sulfate concentrations, since it has been assumed that biological 400 

discrimination against 34S is supressed at sulfate concentrations <0.2 mM (Bradley et al., 2016; 401 

Habicht et al., 2002; Werne et al., 2003). This has given rise to the view that Proterozoic SWS 402 

concentrations were significantly lower than those of modern (28 mM) oceans (Canfield, 2001; 403 

Canfield and Raiswell, 1999; Habicht et al., 2002; Halevy et al., 2012; Havig et al., 2017; Kah 404 

et al., 2004; Lowenstein et al., 2003; Luo et al., 2015; Planavsky et al., 2012). However, this 405 

notion has been refuted by theoretical predictions (Wing and Halevy, 2014) and observations 406 

of >20‰ fractionations between sulfate and sulfide associated with MSR in settings with 407 

extremely low sulfate concentrations (<0.01 mM; Crowe et al., 2014). 408 

In the modern oxygenated marine realm euxinic conditions are limited to isolated basins (e.g. 409 

the Black Sea), settings with restricted water circulation (fjords) or upwelling zones like 410 

Benguela, off-shore of Namibia (Meyer and Kump, 2008). In restricted basins, the sulfate 411 

reservoir can undergo Rayleigh distillation and evolve towards a more 34S-enriched end-412 
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member if sulfide production and retention outpace sulfate supply (Fike et al., 2015; Gomes 413 

and Hurtgen, 2013; Gomes and Johnston, 2017; Johnston et al., 2008; Pufahl et al., 2010). These 414 

effects can be reversed, for example, if a more stable connection with a larger reservoir is 415 

restored or if sulfide sinks are decreased. Consequently, oscillations in basinal circulation and 416 

concomitant changes in sulfate levels would produce stratigraphic successions with opposing 417 

33S and δ34S trends that are not directly reflective of changes in global ocean chemistry. Thus, 418 

unless it can be convincingly shown that euxinic conditions developed in open basins, such 419 

sulfur isotope records are likely to depict changes in the local environment, which may or may 420 

not track global trends. 421 

Identifying unambiguously euxinic water column conditions and pyrite formation pathways in 422 

paleorecords is another concern. Geochemical proxies that explore the behaviour of iron in 423 

sedimentary environments (e.g. Fe/Al and Fe speciation proxy) have been used as indicators of 424 

paleoenvironmental redox conditions (e.g. Clarkson et al., 2014; Poulton and Canfield, 2005). 425 

The general premise is that enrichments of iron relative to the terrigeneous background and its 426 

prevalent partitioning to iron sulfide minerals in sedimentary rocks are compatible with euxinic 427 

waters (e.g. Raiswell et al., 1994; Raiswell and Canfield, 2012). While this concept can be 428 

applied in isolated basins such as the Black Sea, iron distribution patterns in modern open-429 

marine high productivity settings like the Peruvian and Namibian shelf are often unrelated to 430 

water column chemistry and instead reflect the combined effects of local sedimentological and 431 

biogeochemical processes (Rico and Sheldon, 2019; Scholz, 2018; Scholz et al., 2019). Another 432 

aspect to consider is overprinting of the original proxy signatures, since iron is mobile under 433 

most diagenetic and metamorphic conditions and readily redistributed among different mineral 434 

phases (Clarkson et al., 2014; Slotznick et al., 2018). Consequently, connecting iron-based 435 

proxy signatures to water column chemistry and pyrite formation pathways is challenging and 436 

should be supported with additional lines of evidence (e.g. lithological observations, 437 

petrography, mineralogical and redox sensitive trace element analyses). 438 

Even further, basins that are fully open to the ocean can also exhibit significant regional 439 

variability in sedimentary sulfide isotope compositions. For example, small fractionations 440 

between δ34S of sulfate and sulfide are reported in the modern Benguela upwelling system along 441 

the Namibian coast where iron limitation and rapid oxidation of organic carbon promote 442 

episodic water column euxinia (Brüchert, 2004; Dale et al., 2009). Moreover, the distribution 443 

and development of sulfidic waters along the Namibian shelf relate to regional differences in 444 

the geochemical gradients and microbial communities, e.g. the sulfide-oxidising genera 445 
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Beggiatoa vs. Thiomargarita (Brüchert, 2004; Dale et al., 2009). Thus, even if it can be 446 

established that pyrites precipitated from euxinic waters, their 34S values might not directly 447 

relate to global seawater sulfate levels and isotopic composition. All in all, sedimentary pyrites 448 

can provide insights to ancient ocean conditions, but careful evaluation of the depositional 449 

environment, facies, microbial consortia, basinal configuration and late-stage diagenesis are 450 

necessary for any global conclusions to be drawn. 451 

5.2	Organic	carbon	and	sulfur	 isotopes	 tracking	environmental	changes	 in	452 

the	Paleoproterozoic:	Lessons	from	the	Zaonega	Formation	453 

5.	2.	1	Hydrocarbon	migration	and	alteration	of	the	δ13Corg	record	454 

Sedimentation of the Zaonega Formation was contemporaneous with magmatism (lava flows, 455 

sills with peperite contacts) that produced high heat gradients and hydrothermal circulation. 456 

This, in turn, induced thermal cracking of sedimentary organic matter, hydrocarbon generation, 457 

oil migration, and formation of ubiquitous pyrobitumen veining and impregnation of mudstones 458 

in the upper part of Member A and in Member B (Črne et al., 2013a, 2013b; Melezhik et al., 459 

1999; Qu et al., 2018, 2012). Detailed geochemical investigations show that these Members 460 

have distinctive δ13Corg values that can be pinpointed in the δ13Corg values of organic matter in 461 

pyrobitumen veins and their sedimentary host rocks. This fingerprinting confirms that the 462 

migrating organic matter was locally sourced and that pyrobitumen impregnation and post-463 

depositional alteration had only a limited (c. 4‰) effect on the preserved δ13Corg stratigraphic 464 

record (Qu et al., 2012, 2018). 465 

The relatively smooth stratigraphic δ13Corg trend is, however, interrupted in the 156–136 m 466 

interval in the FAR-DEEP 12AB core by the presence of a massive Corg-rich rock (Qu et al., 467 

2012). Its isotopic characteristics (δ13Corg = -26‰, δ34S = -18.7‰, and Δ33S = 0.023‰) are 468 

distinct form adjacent under- and overlying sediments (δ13Corg = c. -30‰, δ34S = >10.6‰ δ34S, 469 

and Δ33S = <-0.015‰) but match those of the sedimentary units occurring more than 100 m 470 

lower in the Zaonega Formation (δ13Corg = -26‰, δ34S = -22.3‰ δ34S, and Δ33S = 0.026‰) 471 

(Fig. 4). Those relationships are readily reconcilable by recognising that this seemingly 472 

anomalous 20 m interval of massive rocks represents hydrocarbons and fluidised sediments, 473 

including pyrite, that migrated from Member A upward to the seafloor during accumulation of 474 

Member B. Thermal alteration and remobilisation of organic matter, however, cannot be offered 475 

as a mechanism to explain the c. 15‰ negative δ13Corg excursion encompassed in Member B. 476 

While such processes can alter δ13Corg values, as observed in pyrobitumen-rich veins and 477 
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contact zones with magmatic bodies of Member A, the produced shifts are positive and rather 478 

small (a few per mil), inconsistent with Member B. Thus, the most straightforward explanation 479 

of the pronounced negative δ13Corg excursion in Member B is a change in primary biomass. 480 

5.	2.	2	Previous	interpretations	of	the	Zaonega	Formation	Corg	and	S	records	481 

Previous studies of the upper Zaonega Formation (e.g. Scott et al., 2014) inferred that Fe 482 

speciation data and δ34S values (as low as -19‰) of pyrites in strata from Member A recorded 483 

conditions compatible with a sizeable sulfate reservoir but that 34S-enriched pyrites (δ34S up to 484 

+27‰) from strata corresponding to Member B precipitated from an euxinic water column and 485 

that this change coincided with a global drawdown in oxygen levels. They further suggested 486 

that the negative δ13Corg shift that coincides with the 34S-enriched sulfides expressed a 487 

biogeochemical response to deoxygenation and low sulfate levels, allowing methane flux and 488 

anaerobic oxidation of methane (AOM) in the water column. Selenium (Kipp et al., 2017), 489 

molybdenum (Asael et al., 2018) and multi-proxy (Ossa Ossa et al., 2018) studies of c. 2.1–2.0 490 

Ga sedimentary rocks, including sections from the Zaonega Formation Member B, have also 491 

been used to argue for a global drawdown in oxygen levels at that time. However, instead of 492 

the progressive increase in pyrite δ34S and decrease in Δ33S values that would occur from a 493 

unidirectional, worldwide decrease in sulfate concentrations, the high resolution data show that 494 

Member B is marked by short-lived excursions around a baseline of c. 18‰ δ34S and c. -0.02‰ 495 

Δ33S. Further, molybdnenum, uranium, rhenium and selenium enrichments and uranium isotope 496 

compositions (Kipp et al., 2020; Mänd et al., 2020; Partin et al., 2013; Sheen et al., 2018), as 497 

well as negative Ce anomalies in apatite (Joosu et al., 2015) and best preserved carbonate rocks 498 

(Kreitsmann et al., 2020) in the upper Zaonega Formation have been used to argue for prevailing 499 

oxygenated conditions after the LJE (Mänd et al., 2020). Support for a large oceanic oxidant 500 

pool during the Zaonega time was also found by a most recent selenium isotope study by Kipp 501 

et al. (2020). Lastly, the coinciding four-fold increase in TOC concentrations and the negative 502 

δ13Corg excursion in Member B has been explained by a local bloom in methanotrophic 503 

organisms (Qu et al., 2012, 2018). Influence of methanotrophy on the basinal DIC pool can also 504 

be found from the relatively large up to 4‰ variations in δ13Ccarb values (as low as −6.3‰) in 505 

individual carbonate beds of Member B (Kreitsmann et al., 2019). In that Member B is 506 

characterised by syndepositional magmatism, hydrocarbon generation and seepage and changes 507 

in depositional conditions, it is not surprising that geochemical studies of the upper Zaonega 508 

Formation have produced contradictory interpretations. 509 
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An open-system steady-state modelling approach to the pyrite sulfur isotope record of the 510 

Zaonega Formation demonstrated that the positive δ34S and opposing Δ33S data in Member B 511 

can be explained by increased pyrite burial as a consequence of locally high sulfate reduction 512 

rates that ultimately led to diminished fractionation from seawater (Paiste et al., 2020). These 513 

results are consistent with the concomitant enrichments in TOC and TS seen in the upper part 514 

of Member A and lower to middle part of Member B (Fig. 5) and are suggestive of AOM 515 

coupled to MSR (Paiste et al., 2018; Qu et al., 2018, 2012). In contrast to previous work, these 516 

studies highlight the importance of local rather than global processes acting on the carbon and 517 

sulfur cycles in the Onega Basin. Considering the intraplate rift or active continental margin 518 

depositional setting (Črne et al., 2014; Melezhik et al., 2015) local control on sulfur and carbon 519 

cycling during deposition of the Zaonega Formation is feasible. 520 

5.	2.	3	New	interpretations	of	the	previous	Corg	and	sulfur	records	521 

In that syndepositional magmatic-volcanic activity generated hydrocarbon formation, it is likely 522 

that upward migrating methane produced from the organic matter of Member A fuelled 523 

sediment- or seafloor-housed methanotrophy during deposition of Member B. Thus, the 524 

coinciding four-fold increase in TOC, close association of strongly 13C-depleted organic matter 525 

and 34S-enriched sulfides within Member B suggest that a surge of carbon sources increased 526 

pore-water MSR fostering sulfate limitation and near quantitative uptake of sulfate. 527 

Alternatively, methanotrophy may have been established in an euxinic water column on the 528 

assumption that SWS levels were very low as previously suggested (Scott et al., 2014). In both 529 

of these scenarios, small fractionations from sulfate are expected and pyrites within Member B 530 

are most likely to have captured the SWS isotope composition, which was between 6–18‰ 531 

δ34SSO4 and -0.05 – -0.02‰ 33SSO4 based on modelling results (Scott et al., 2014; Paiste et al., 532 

2020). 533 

Besides helping to promote high primary productivity, active magmatism-volcanism would 534 

have modified basinal geography and influenced sedimentation patterns. Reshaping of the 535 

depositional setting and establishment of shallower conditions is implied by a higher frequency 536 

of thick dolostone beds in the upper part of the Zaonega Formation (Melezhik et al., 2015) and 537 

subsequent emplacement of the Suisari Formation lavas. Unstable redox conditions, as 538 

indicated by the large spatio-temporal variability in elemental proxies for the upper part of the 539 

Zaonega Formation (e.g. Asael et al., 2018; Kipp et al., 2017; Mänd et al., 2020; Paiste et al., 540 

2018; Scott et al., 2014) also corroborates a semirestricted hydrographic regime because both 541 

well-oxygenated open basins and stably stratified restricted basins with anoxic/euxinic deep 542 
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waters would, in contrast, record relatively constant redox conditions (Algeo and Li, 2020). 543 

Specific sediment biogeochemical conditions can, however, induce temporal and regional 544 

redox heterogeneity in continent-margin upwelling systems (Algeo and Li, 2020; Dale et al., 545 

2009; Waldron and Probyn, 1991). Similar to modern upwelling zones, the occurrence of 546 

abundant phosphates (Lepland et al., 2014), high redox sensitive trace element concentrations 547 

as well as elevated uranium isotope ratios in the middle part of the Zaonega Formation point 548 

towards locally variable redox conditions in the backdrop of an oxygenated ocean (Mänd et al., 549 

2020). On the other hand, Kreitsmann et al. (2020) has proposed that the preservation of 550 

prominent EuSN anomalies in the Zaonega Formation carbonates and positive and negative EuSN 551 

anomalies in apatites (Joosu et al., 2015) are suggestive of deposition in a semi-restricted rather 552 

than fully open-marine embayment, because otherwise the excess Eu would have been rapidly 553 

diluted. Taken together the large variability in elemental redox proxies for the upper part of the 554 

Zaonega Formation is best explained by sediment accumulation in a semi-confined embayment 555 

that had intermittent access to the open ocean. The modern Guaymas Basin in the Gulf of 556 

California is a representative example of a dynamic early rifting environment where seasonal 557 

upwelling, high heat gradients, hydrothermal fluid flow and syndepositional hydrocarbon 558 

generation induce regional redox heterogeneity (Chang et al., 2015; Curray, 1982; Scholz et al., 559 

2019). Thus, instead of the common approach of using the Black Sea as a paleo-marine model 560 

system, the Guaymas Basin could serve as a closer analogue for deposition in the Onega Basin 561 

during the Zaonega time. 562 

The combination of added carbon sources, shallowing and/or the establishment of a physical 563 

barrier within the basin could have led to sulfate limitation due to an increased pyrite sink. This 564 

would have allowed the basinal sulfate to undergo Rayleigh distillation and explain pyrites in 565 

Member B and lower part of Member C that exceed the oceanic SWS isotope composition. 566 

However, in order to maintain high rates of MSR over 150–200 meters of strata and sustain a 567 

baseline of c. 18‰ δ34S and c. -0.02‰ Δ33S of sedimentary sulfides, relatively constant sulfate 568 

concentrations had to be maintained. That MSR was not sulfate-limited is further implied by 569 

the relatively high but variable TS/TOC ratios that mostly fall between 0.1 and 0.5 in Member 570 

B (Melezhik et al., 1999; Paiste et al., 2020), even though organic matter mobilization, 571 

impregnation of the sediments with pyrobitumen and hydrocarbon spillage on the seafloor 572 

likely lowered TS/TOC ratios. In addition, the pronounced positive >30‰ δ34S excursions in 573 

Member B that occur over a few m of strata are unlikely to reflect rapid fluctuations (in a range 574 

of << millions of years) in the size of the SWS reservoir, even if the residence time for sulfate 575 
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in the Proterozoic ocean was shorter than in the modern (13 Ma; Berner, 2001). Therefore, it is 576 

likely that the Onega Basin was periodically cut off and/or sulfate consumption episodically 577 

exceeded supply from a larger reservoir. Another possibility is that a separate generation of 578 

late-stage pyrite—identified in intervals with >30‰ δ34S values (Paiste et al., 2018)—could 579 

contribute 34S-enriched sulfur to the bulk pyrite S isotope signature. Whether different pyrite 580 

morphologies in the Zaonega Formation carry distinct δ34S signatures and to what extent this 581 

could affect the bulk pyrite δ34S analysis is currently unknown and remains to be determined 582 

by future studies. In any case, it is doubtful that the anomalous >30‰ δ34S values reflect abrupt 583 

fluctuations in the SWS reservoir. This renders previous interpretations suggesting water 584 

column methanotrophy in response to very low global SWS levels in Member B equivocal. 585 

Further doubts arise from the fact that such interpretations require a close association between 586 

the most positive δ34S and negative δ13Corg in the Zaonega Formation; instead what is observed 587 

is that intervals with δ34S values >30‰ occur in the upper part of Member B where steadily 588 

increasing δ13Corg values from -42‰ to -29‰ suggest increasing contributions of normal 589 

marine CO2-fixing autotrophic biomass. 590 

If the Zaonega Formation records global perturbations in the carbon and sulfur cycles, then the 591 
13C-depleted organic matter and 34S-enriched pyrites in Member B represent the postulated 592 

global deoxygenation event; however, such conditions must have been short-lived as normal 593 

marine biomass and more open-system MSR resumed in Member C. Thus, instead of oscillating 594 

atmospheric oxygen levels, what is more likely is that changes in the basin dynamics and 595 

depositional environment affected both microbial and sedimentary processes, and it is these that 596 

were mutually responsible for generating the δ13Corg and multiple sulfur isotope trends within 597 

the Onega Basin. 598 

5.	3	Global	vs	 local	influence	on	the	seawater	sulfate	 levels	and	 its	 isotope	599 

composition	in	the	Paleoproterozoic	600 

There is abundant evidence to suggest that seawater sulfate concentrations significantly 601 

increased during the GOE and the 2.2–2.1 Ga LJE (e.g. Guo et al., 2009; Reuschel et al., 2012b; 602 

Planavsky et al., 2012; Scott et al., 2014; Luo et al., 2015; Havig et al., 2017; Blättler et al., 603 

2018). However, broadly similar chemostratigraphic trends with positive and upwards 604 

increasing δ34S values characterize several post-LJE Paleoproterozoic sedimentary successions 605 

such as the Onega Basin (Kump et al., 2011; Scott et al., 2014), the Francevillian Basin (Kump 606 

et al., 2011; Canfield et al., 2013), the Pechenga Greenstone Belt (Reuschel et al., 2012a) and 607 
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younger strata such as the Animikie Basin (Poulton et al., 2004, 2010) (Fig. 6). These trends 608 

have been proposed to reflect a contraction of the global seawater sulfate reservoir, redox 609 

stratified oceans and a return to more reducing surface environments (Canfield et al., 2013; 610 

Havig et al., 2017; Johnston et al., 2006; Ossa Ossa et al., 2018; Planavsky et al., 2012; Poulton 611 

et al., 2004; Scott et al., 2014). However, we and other workers have questioned the global 612 

nature of these preserved δ34S records by demonstrating that sedimentary processes, facies 613 

changes and basinal restriction could equally govern sulfur cycling and isotope trends within 614 

these basins (Pufahl et al., 2010; Reuschel et al., 2012a). Evaluating the meaning of pyrite δ34S 615 

records becomes even more important in light of recent time-series investigations of trace 616 

element composition of marine pyrite grains in black shales that have been used to infer that 617 

atmospheric oxygen levels remained persistently high until at least 1.8 Ga (Large et al., 2014, 618 

2019; Mukherjee and Large, 2016). 619 

5.	3.	1	Similar	Paleoproterozoic	organic	carbon	and	sulfur	isotope	records	‐	global	vs	local	620 

underlying	mechanisms	621 

Kump et al. (2011) argued that the distinct negative trend of δ13Corg values in sedimentary 622 

successions of the upper part of both the Francevillian and Onega Basins signified a global and 623 

synchronous two-step shift towards strongly 13C-depleted biomass at the end of the LJE. The 624 

compilation of Kump et al. (2011) used data from the FAR-DEEP 12AB core from the Onega 625 

Basin, compared it with data from the Francevillian reference stratigraphic column (Gauthier-626 

Lafaye and Weber, 2003), and noted that the two δ13Corg records exhibit similar trends, but are 627 

off-set by c. 7‰. However, ascribing outcrop and drill core material from the Francevillian 628 

Basin to specific stratigraphic intervals of the reference lithostratigraphic column has proven to 629 

be challenging. For example, the unit containing the most 13C-depleted biomass (δ13Corg < -630 

45‰) has been variably assigned to the Francevillian C (FC) Formation (Gauthier-Lafaye and 631 

Weber, 2003) or to the FD Formation (Canfield et al., 2013). The lack of robust stratigraphic 632 

correlation and disparate representations of the Francevillian reference lithostratigraphic 633 

column by different authors complicate direct comparisons with other basins. 634 

Canfield et al. (2013) and Ossa-Ossa et al. (2018) have demonstrated that the first negative 635 

δ13Corg shift (from c. -25‰ to -35‰) in the middle part of the Francevillian B Formation (FB1) 636 

coincides with a positive shift in pyrite δ34S values (from c. -20‰ to 10‰, Fig. 6). The sulfur 637 

isotopes in the upper FB Formation (FB2) return to predominantly negative values ranging from 638 

-34‰ to 5‰. The overlying FC Formation exhibits more variable δ34S values, with carbonate 639 

samples containing typically isotopically heavier pyrite (δ34S from 12‰ to 59‰) than shales 640 
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(δ34S from -4‰ to 16‰). According to Canfield et al. (2013), the FD Formation at the top of 641 

the Francevillian succession houses the second step of the negative δ13Corg shift representing 642 

the most 13C-depleted biomass (δ13Corg values between -40‰ and -50‰) and pyrite δ34S values 643 

typically ranging between -5‰ to 8‰ (with the exception of one 24‰ data point). By 644 

combining Francevillian δ13Corg and δ34S records, Ossa-Ossa et al. (2018) argued for negative 645 

coupling of the two isotope systems caused by shoaling of anoxic deep waters and sulfate 646 

limitation that was accompanied by two global episodes of ocean-atmosphere deoxygenation. 647 

While the opposing behaviour of the δ13Corg and δ34S trends during the first negative δ13Corg 648 

shift in the FB Formation is evident, the available data do not support such co-variation during 649 

the second negative δ13Corg shift in the upper FC and FD Formations. Notably, within the FC 650 

and FD Formations the most 13C-depleted biomass does not typically associate with the highest 651 

δ34S values. Using the interpretation of Scott et al. (2014) from the Zaonega Formation it was 652 

reasoned that low-sulfate conditions resulted in an overall increase in methane production by 653 

methanogens and a shift of methanotrophy into the water column, thus explaining the negative 654 

δ13Corg shift and pyrites with highly positive δ34S values (Ossa-Ossa et a., 2018). However, the 655 

decoupling of the δ34S and δ13Corg records in the upper part of the Francevillian succession does 656 

not favour such reasoning nor a pronounced contraction of the marine sulfate reservoir during 657 

the second negative δ13Corg shift. Instead, these results suggest that the observed δ13Corg and 658 

δ34S trends can be produced by both local and global processes – their implication for large-659 

scale changes in Earth’s surface environments then rests mainly on comparisons with other 660 

basins of similar age (Ossa-Ossa et al., 2018). 661 

Such comparisons, however, are fraught with difficulty in the Paleoproterozoic and verifying 662 

the global synchronicity of short-term (<10 Ma) geochemical trends is in most cases 663 

irresolvable by currently available geochronology methods due to precision and accuracy 664 

uncertainties. This is the case with the interpretation that a singular event encompassing large 665 

fluctuations in SWS concentrations was the underlying cause of the organic carbon and sulfur 666 

isotope records on two different cratons, as derived from the upper FC and FD Formations 667 

(Ossa Ossa et al., 2018) and the Zaonega Formation (Kump, 2011; Scott et al., 2014). The 668 

maximum age for most of the Francevillian succession is determined by a zircon 207Pb/206Pb 669 

age of 2191 ± 13 Ma derived from the N’goutou magmatic complex that intrudes the 670 

Francevillian FA, FB and possibly FC Formations (Sawaki et al., 2017; Weber et al., 2016), 671 

whereas the minimum age is defined as 2083 ± 6 Ma by zircon ages from a welded ignimbrite 672 

tuff in the FD Formation in the Lastrousville sub-basin (Horie et al., 2005). Current age 673 
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constraints make the Zaonega Formation younger, at minimum c. 30 Ma (Hannah et al., 2008) 674 

and at maximum c. 100 Ma (Martin et al., 2015; Weber and Gauthier-Lafaye, 2013) and indicate 675 

that instead of a single global event, the geochemical conditions in the Francevillian and Onega 676 

Basins were not coeval. We suggest that a similar style of basinal evolution for the intracratonic 677 

Francevillian and the Onega Basins could be responsible for the similar δ13Corg and δ34S trends 678 

recorded at different time periods in these basins. 679 

A recent review of the evolution of the c. 2.0 Ga Eburnean Orogeny (Weber et al., 2016) 680 

suggests that the depositional history of the Francevillian sedimentary basin is comparable to 681 

the Onega Basin, although the latter was magmatically more active. According to their 682 

interpretation the black shales of the FB Formation accumulated in confined and restricted 683 

environments during a period of tectonic instability and submarine volcanism. The overlying 684 

FC Formation, which has been thought to record the falling limb of the LJE, is characterised by 685 

widespread emersion and deposition of stromatolitic and evaporitic carbonates in very shallow 686 

environments, similar to the Tulomozero Formation of the Onega Basin. Moreover, the 687 

common occurrence of bitumen filled fractures in the lower part of the FC Formation has been 688 

related to syn-depositional hydrocarbon migration and seepage that likely invigorated 689 

methanotrophy and its contribution to the sedimentary biomass (Ossa-Ossa et al., 2018). In a 690 

larger tectonic framework the FA–FC Formations accumulated during a phase of basin opening, 691 

whereas the FD Formation represents sedimentation in a foreland basin towards the end of the 692 

Eburnean Orogeny (Weber et al., 2016). Pyrite precipitation within the FD Formation was 693 

interpreted to have occurred under euxinic conditions (Canfield et al., 2013) and the strongly 694 
13C-depleted biomass was related by Kump et al. (2011) to increased weathering of LJE organic 695 

carbon. However, this scenario was subsequently dismissed, since the negative δ13Corg shift in 696 

the underlying FB Formation occurs during accumulation of isotopically heavy LJE carbonates 697 

(Ossa-Ossa et al., 2018). Instead, Ossa-Ossa et al. (2018) forwarded a scenario whereby 698 

increased methane cycling occurred in low-sulfate environments, similar to the interpretation 699 

of the FC Formation S and Corg isotope profiles. Even so, hydrocarbon migration and seepage 700 

are typically restricted to environments where high heat gradients are generated locally due to 701 

active magmatism and/or tectonic processes that can further impact depositional patterns and 702 

nutrient fluxes within confined areas. Given the similar history of basinal evolution, we suggest 703 

that the observed range of δ34S and δ13Corg in the Francevillian can therefore be explained by 704 

local processes without necessitating global oscillations in the sulfur and carbon cycles, as we 705 

have demonstrated for the Zaonega Formation. 706 
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In addition to the Onega and Francevillian Basins, pyrite sulfur isotope records from other 707 

Paleoproerozoic metasedimentary basins have also been subjects of debate about the meaning 708 

of the isotopic information and if the size and isotopic composition of the contemporaneous 709 

SWS reservoir can be estimated from bulk-rock pyrite δ34S records alone. The organic-rich 710 

sediments of the Pilgujärvi Sedimentary Formation in the Pechenga Greenstone Belt record 711 

pyrites with positive δ34S values up to 18.7‰ that accumulated in a tectonically active basin 712 

bound to an oceanic rift system (Melezhik and Sturt, 1994; Reuschel et al., 2012a). Until 713 

recently, the Zaonega and Pilgujärvi Sedimentary Formation were considered time equivalent; 714 

however, new age constraints suggest that the latter is significantly younger (1.92 Ga instead 715 

of 1.98 Ga; Martin et al., 2015).  While some authors have linked 34S-enriched pyrites in the 716 

Pilgujärvi Sedimentary Formation to global fluctuations in seawater sulfate levels (Planavsky 717 

et al., 2012; Having et al., 2017), Reuschel et al. (2012b) suggested that a combination of high 718 

sedimentation rates, increased organic carbon loading and highly reactive iron availability 719 

resulted in rapid pore water MSR and effective pyrite burial (Claypool, 2004). In such closed-720 

system conditions, if all sulfate entering the pore waters was reduced and scavenged by reduced 721 

iron, the preserved sedimentary pyrites with the most positive δ34S would have captured the 722 

sulfur isotope signature of the contemporaneous seawater (Johnston et al., 2006; Zaback et al., 723 

1993). While this interpretation requires a more thorough assessment, it is intriguing that pyrites 724 

in the organic-rich Member B of the Zaonega Formation typically have very similar δ34S values 725 

of c. 18‰. 726 

Younger Paleoproterozoic successions such as the Gunflint and Rove Formations of the 727 

Animikie Basin have, likewise, been used to estimate a δ34S signature of c. 17‰ for seawater 728 

sulfate at 1.84 Ga (Poulton et al., 2004, 2010). The Rove Formation was further interpreted to 729 

reflect low seawater sulfate concentrations under an oxygen-poor atmosphere. This conclusion 730 

was largely based on the assumption that water circulation between the ocean and the Animikie 731 

Basin was unrestricted and that the precipitated pyrites reflect relatively small fractionations 732 

from seawater sulfate. Pyrites in the Gunflint Formation with average δ34S values of 8.4‰ ± 733 

5.4‰ were interpreted to have formed within shallow sediments, while pyrites with δ34S values 734 

of 17.2‰ ± 5.1‰ in the overlying Rove Formation were suggested to have precipitated from 735 

an euxinic water column. Taken together with other lines of evidence, the overall small 736 

fractionations between the estimated SWS composition and the positive δ34S values were 737 

suggested to indicate SWS concentrations between 0.2 and 2.4 mM during accumulation of the 738 

Rove Formation (Poulton et al., 2004). However, a subsequent study of the time-equivalent 739 
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Michigamme Formation in the Baraga Group was used to argue that the Animikie Basin became 740 

increasingly isolated during its evolution and that the sulfur isotope profiles reflect basinal 741 

rather than global processes (Pufahl et al., 2010). Disseminated pyrites with average δ34S values 742 

of 6.3 ± 1.0‰ throughout the Michigamme Formation were used to argue for freshening effects 743 

in the riverine delta areas that resulted in lateral gradients along the coast of the Animikie 744 

foreland. While this interpretation has been debated (Poulton et al., 2010; Fralick et al., 2011), 745 

further work in the Animikie Basin has strengthened the impression of important spatial and 746 

temporal variability in geochemical profiles across the area (Fralick et al., 2017; Poulton et al., 747 

2010; Poulton and Canfield, 2011). 748 

Expanding on their earlier work on the Rove Formation, Poulton et al. (2010) analysed several 749 

correlative core sections extending from the shallow- to deep-water settings of the Animikie 750 

Basin to further assess a redox stratified open-shelf environment with oxygenated surface, 751 

euxinic mid-depth and ferruginous deep waters. This change in iron proxy data across the 752 

Animikie shelf was accompanied by a negative shift in pyrite δ34S from c. 17‰  in the shallow-753 

shelf (Rove Formation) to 5.5 ± 3.6‰ in the correlative deeper-shelf (Virginia Formation). 754 

Following a similar reasoning as in Poulton et al. (2004), samples with an euxinic iron 755 

speciation signature were interpreted to capture the δ34S signature of seawater sulfate, whereas 756 

those with ferruginous signatures were thought to reflect open-system MSR in sediments. Given 757 

these associations, a relatively small c. 15‰ fractionation between sulfate and sulfide was 758 

estimated and considered characteristic of a limited SWS reservoir that supressed biological 759 

sulfur cycling (Poulton et al., 2010). Enrichments of redox-sensitive metals and positive Cr 760 

isotope signatures of meteoric calcite cements in the Gunflint Formation have also been used 761 

to argue for oxygenated terrestrial conditions and an imbalance between the redox-state of the 762 

ocean and atmosphere, assuming the former remained reducing (Fralick et al., 2017). 763 

Conversely, a more recent multi-proxy study of the Stambaugh Formation that represents the 764 

deepest-water facies of the Animikie Basin has provided evidence for deep-water oxygenation 765 

at c. 1.85 Ga (Planavsky et al., 2018). The latter authors propose that variations in the 766 

geochemical signatures of the metasedimentary rocks of the Stambaugh Formation resemble 767 

those in the modern Baltic Sea, where local anoxia can develop due to fluctuations in basin 768 

connectivity with the larger ocean. While Poulton et al. (2010) and Fralick et al. (2011) argue 769 

against basin isolation, Planavsky et al. (2018) offer an alternative scenario in which periodic 770 

incursions of low oxygen, suboxic and oxic waters are responsible for the observed redox 771 

variability in the Animikie Basin. Although it is not clear if the 1.84 Ga Rove and 1.85 Ga 772 
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Stambaugh Formations are in part time-equivalent, they are considered time-transgressive on a 773 

regional scale (Planavsky et al., 2018), which has some interesting implications for the reported 774 

δ34S data. 775 

The bulk pyrite sulfur isotope data from the deep-water Stambaugh Formation range from −21.6 776 

to +2.2‰ (average −6.3 ± 6.5‰) in δ34S, as opposed to the dominantly positive shallow-shelf 777 

pyrites with δ34S of around 17‰ in the Rove Formation. Additionally, the deeper-shelf pyrites 778 

of the Virginia Formation carry δ34S signatures that fall between the more shore-proximal Rove 779 

Formation and most shore-distal Stambaugh Formation pyrites. Applying the modern analogy 780 

and the isotopic contrast between shallow- and deep-water settings (e.g. Fike et al., 2015; 781 

Pasquier et al., 2017) the discrepancy in δ34S between Stambaugh, Virginia and Rove 782 

Formations could imply that facies differences are driving variability in the sulfur isotope 783 

records within the Animikie Basin. Moreover, if the δ34S value of c. 17‰ from the Rove 784 

Formation represents a SWS signature as previously proposed, then a fractionation of c. 38‰ 785 

between sulfate and sulfide could be estimated. Such a c. 38‰ offset between pyrite and SWS 786 

is commonly observed in more recent sulfate-rich marine environments. This estimate supports 787 

the conclusion of Poulton et al. (2004) that sulfate concentrations within the Animikie Basin 788 

exceeded the 0.2 mM threshold generally required to induce large fractionations during MSR. 789 

We caution, however, that the upper limit for sulfate concentrations needs further evaluation, 790 

as the attenuated fractionation between sulfate and sulfide in the shallower environments is 791 

likely depositionally controlled, rather than directly reflective of global fluctuations in SWS 792 

concentrations. 793 

Taken together, the sulfur isotope profiles of the Francevillian Basin, Onega Basin, Pechenga 794 

Greenstone Belt and the Animikie Basin record environmental changes within basins having 795 

complex sedimentation histories and variable environmental conditions all of which operated 796 

at disparate time intervals. Despite the influence of local factors on the pyrite records, it may 797 

be possible to estimate the 34S composition of ambient SWS by thoroughly screening for 798 

intervals where quantitative reduction of sulfate to sulfide and conversion into pyrite can be 799 

inferred. However, this screening requires a thorough understanding of the basinal evolution 800 

and local sedimentary and biological processes that can mutually influence the expression of 801 

stable isotope signatures in sedimentary minerals and organic matter. Thus, if typical δ34S 802 

values of 15–18‰ in pyrites from the Zaonega, Pilgujärvi Sedimentary, and Rove Formations 803 

reflect an isotope composition similar to the initial SWS, it could imply that the global sulfate 804 

reservoir and its isotope composition was relatively stable throughout much of the 805 
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Paleoproterozoic. This stability, if confirmed, would suggest that the underlying mechanisms 806 

that govern pyrite formation and a sizeable SWS reservoir with stable δ34S values may have 807 

been already established during or shortly after the initial rise in atmospheric oxygen levels, 808 

and have remained largely unchanged. 809 

Conclusions	810 

Exploiting the pyrite δ34S and δ13Corg records from recently drilled cores, bisecting the entire 811 

Zaonega Formation of the Onega Basin, we have undertaken a careful investigation of these 812 

proxies in the context of depositional history to constrain global and/or local influences on 813 

sulfur and carbon cycling as recorded in Paleoproterozoic rock records. Considering the 814 

emerging understanding of sulfur isotope effects associating with sedimentary and biological 815 

processes, the entire Zaonega Formation pyrite isotope record can be explained by local 816 

depositional changes and corresponding microbial feedbacks without the need to invoke large-817 

scale fluctuations in ocean sulfate concentrations and isotope composition. Likewise, the 818 

negative δ13Corg excursion encompassed in the organic-rich rocks of the middle Zaonega 819 

Formation can be explained by a blooming methanotrophic community responding to a surge 820 

of carbon sources to the local environment as a consequence of syn-depositional hydrocarbon 821 

seepage. In turn, this invigorated MSR causing a high demand for sulfate that overwhelmed its 822 

supply from an external pool. However, an influx of sulfate had to be maintained in order to 823 

account for the high pyrite burial and MSR rates throughout most of the Zaonega Formation, 824 

indicating that SWS levels were not in a state of decline as suggested by previous workers. 825 

Further comparisons between the Zaonega Formation pyrite δ34S and δ13Corg records and the 826 

older Francevillian Formations in Gabon reveals that similar but temporally unrelated 827 

conditions marked these diachronous successions in which high primary productivity and 828 

dynamic basinal conditions governed the sulfur and organic carbon cycles subsequently 829 

producing broadly similar stable isotope records; they do not represent global perturbations in 830 

the ocean-atmosphere redox system and, in fact, this is a likely commonality between other 831 

Paleoproterozoic basins such as the Pechenga Greenstone Belt and Animikie Basin. However, 832 

screening for pyrites that infer small fractionations from the initial seawater sulfate has revealed 833 

consistent δ34S values of 15–18‰ in the Zaonega, Pilgujärvi Sedimentary, and Rove 834 

Formations, which could indicate a relatively stable SWS reservoir throughout much of the 835 

Paleoproterozoic. All be it speculative, it highlights the importance of interpreting pyrite δ34S 836 

and δ13Corg records in a context of sedimentological evidence, facies changes and late-stage 837 
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diagenesis underpinned by firm chronological constraints in each individual Paleoproterozoic 838 

succession. 839 
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Figure	captions	1497 

Figure 1. Key geobiological events and trends in Earth history; evolution of atmospheric 1498 

oxygen modified from Lyons et al. (2014) and δ13Ccarb trend from Farquhar et al. (2014). 1499 

Figure 2. A. Simplified geological map of the Onega basin, NW Russia. Circles show locations 1500 

of cores discussed in the text. B. World map showing the present distribution of 1501 

Paleoproterozoic rocks, highlighting the locations of the Animikie Basin, Francevillian Basin, 1502 

Onega Basin and Pechenga Greenstone Belt. 1503 

Figure 3. Lithological profiles for the dolostone marker unit and underlying P-rich mudstone 1504 

used for correlating the OPH, OnZap 1 and 3, and FAR-DEEP 12AB cores across the Onega 1505 

Basin, NW Russia. Photos show the dolostone-mudstone contact and the occurrence of mm- to 1506 

cm-thick discontinuous layers of apatite at the base of the massive grey dolomite bed. Phosphate 1507 

(expressed as P2O5) concentration logs displayed to the right of lithological profiles represent 1508 

semi-quantitative determinations undertaken by XRF logging directly on cores (OnZap 1, 3 and 1509 
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FAR-DEEP 12AB cores) whereas data for the OPH core are from bulk XRF quantitative 1510 

determinations on extracted subsamples.  1511 

Figure 4. Lithostratigraphic profile and new δ13Corg data from the OPH core and previously 1512 

published sulfur isotope, total organic carbon (TOC) and total sulfur (TS) data for the OPH core 1513 

(Paiste et al., 2020). These data are used to divide the OPH core into Members A, B and C (see 1514 

text for details). Black bars at the side of the OPH lithological profile represent intervals of core 1515 

recovery; interpolation of rock types in zones of no recovery are based on interpretations of 1516 

downhole geophysical data (after Morozov et al., 2010).  1517 

Figure 5. Compilation of δ13Corg, δ34S, TS and TOC profiles for six cores from the Zaonega 1518 

Formation. The three Members defined in the OPH core (Members A, B and C; see Fig. 4) can 1519 

be identified in all the cores (data from Lepland et al., 2014; Melezhik et al., 2015; Qu et al., 1520 

2012; Scott et al., 2014; Strauss et al., 2013). Sedimentary and magmatic intervals are shown 1521 

for the OPH, FAR-DEEP (FD) and OnZap core profiles but cores C-5190 and C-175 are left 1522 

blank because, although C-S isotope data have been utilised from those cores (e.g. Scott et al., 1523 

2014), there are no lithological descriptions to accompany those data hence the exact 1524 

distribution of sedimentary and magmatic bodies is not known.   1525 

Figure 6. Compilation of sulfide (grey) and sulfate (light blue) δ34S data through time (modified 1526 

after (Crockford et al., 2019; Fike et al., 2015; Havig et al., 2017) with expanded trends shown 1527 

for stratigraphic pyrite δ34S profiles from the Francevillian (Canfield et al., 2013; Ossa Ossa et 1528 

al., 2018), Onega (Paiste et al., 2020, 2018; Scott et al., 2014), Pechenga (Reuschel et al., 2012a) 1529 

and Animikie (Planavsky et al., 2018; Poulton et al., 2004) successions. Note that two different 1530 

stratigraphic schemes have been proposed for the Francevillian reference column (Formations 1531 

FB, FC and FD), one by Canfield et al., (2013) and the other by Ossa-Ossa et al., (2018), who 1532 

use additional subdivisions of Formation FB (units 1a through 2b); both versions are shown. 1533 
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Supplementary Table 1. Organic carbon isotope data for the Onega Parametric drillhole 1535 

(OPH). 1536 


