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Abstract. Expo-rational B-splines (ERBS) provide a blending type construction where local func-
tions at each knot are blended together by infinitely smooth basis functions. In this work we consider
some specific ERBS curves that are approximations of parametric curves. We study local refinement
to increase flexibility by inserting local control curves at points of interest on the ERBS curve.

Inserting knots into an existing B-spline knot vector results in a new spline space which contains
the original spline space as a sub-space. In contrast to B-splines, knot insertion with ERBS results in
a rational local function. We investigate methods to generate local curves of different brands. Using
this, we blend extra local curves with the original ERBS curve, by knot insertion, and compare the
differences with respect to geometric shape and approximation errors.
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1. INTRODUCTION

A number of different approaches to local refinement of B-splines has been explored in
previous works. We mention here knot insertion, approached differently by Boehm [1]
and Cohen, Lyche and Riesenfeld [2], T-splines [3], LR-splines [4], subdivision of
various kinds (e.g. the recursive method by Catmull and Clark in [5]) and macro element
spaces [6]. Most of these techniques are applicable to expo-rational B-splines (ERBS)[7,
8]. However, the ERBS blending construction, using local functions as coefficients, are
different from the well-known B-spline type blending construction. To the best of our
knowledge, applying local refinement to ERBS has not been studied in detail yet.

Since knot insertion seems to have played an important role for establishing B-splines
and NURBS as common tools in applications for CAGD, we will focus on this particular
topic in this preliminary study.

2. PRELIMINARIES

2.1. Expo-rational B-splines

Let t = {tk}
n+1
k=0 be a strictly increasing knot vector. The Expo-rational B-Spline

(ERBS) associated with tk−1, tk and tk+1 is defined in [7, 8]. We consider here the



scalable subset, proposed in [9], where the integrals are independent of the knot vector:

Bk(t) =











Sk−1

∫ ωk−1(t)
0 ψk−1(s)ds, tk−1 < t ≤ tk,

Sk

∫ 1
ωk(t)

ψk(s)ds, tk < t < tk+1,

0, otherwise,

(1)

where ωk(t) = t−tk
tk+1−tk

, ψ(s) = e
−β

|s−λ |(1+γ)α

(s(1−s)γ )α , and the scaling factor is Sk =
(

∫ 1
0 ψ(s)ds

)−1
, where α > 0,β > 0,γ > 0,0 ≤ λ ≤ 1. The ERBS shares three of

its five basic properties with the linear B-spline; partition of unity, minimal support and
that it interpolates its coefficient in its central knot. In addition, all of its derivatives are
zero in every knot, and it is C∞-smooth on R.

We note here that the ERBS index number indicates the central knot, where it inter-
polates its local function (the peak of the basis function), contrary to the B-spline index
number which indicates at which knot the B-spline “starts”.

An ERBS function f (t) is a blending type construction where local functions are
interpolated at each knot. It is defined on (t1, tn] by

f (t) =
n

∑
k=1

ℓk(t)Bk(t), t ∈ (t1, tn], (2)

where the local functions ℓk(t), defined on (tk−1, tk+1), are scalar-, vector- or point-
valued. The ERBS Hermite interpolation properties (see Theorem 2.4 in [9]) states
that an ERBS function interpolates the values and all existing derivatives of its local
functions in their associated knots.

2.2. Knot insertion

Knot insertion is the process of inserting new knots into an existing knot vector
and compute new coefficients for the splines which are non-zero in the affected knot
intervals. This way the new and finer spline space contains the original coarser spline
space. We mention here the Oslo algorithm [2] by Cohen, Lyche and Riesenfeld, which
is appropriate when inserting more than a few knots at a time, and provide Boehm’s
method [1], to insert one knot at a time, in the following lemma:

Lemma 2.1. (Boehm’s method). Let t̂ = (t̂ j)
n+d+1
j=1 be a given knot vector and let

t= (ti)
n+d+2
i=1 be the knot vector obtained by inserting a knot z in t̂ in the interval [t̂k, t̂k+1].

If

f =
n

∑
j=1

ĉ jB j,d,t̂(t) =
n+1

∑
i=1

ciBi,d,t(t), (3)

where B j,d,t̂(t) is the jth B-spline of degree d on the knot vector t̂, defined as

B j,d,t̂ =
t−t̂ j

t̂ j+d−t̂ j
B j,d−1,t̂(t)+

t̂ j+d+1−t

t̂ j+d+1−t̂ j+1
B j+1,d−1,t̂(t), (4)



for all real numbers t, with

B j,0,t̂(t) =

{

1, if t̂ j ≤ t ≤ t̂ j+1;
0, otherwise,

(5)

then (ci)
n+d+1
i=1 can be expressed in terms of (ĉ j)

n
j=1 through the formulas

ci =







ĉi, if 1 ≤ i ≤ k−d;
z−t̂i

t̂i+d−t̂i
ĉi +

t̂i+d−z

t̂i+d−t̂i
ĉi−1, if k−d +1 ≤ i ≤ k;

ĉi−1, if k+1 ≤ i ≤ n+1.

(6)

For details on the topic of knot insertion we refer to [10].

3. LOCAL REFINEMENT OF ERBS CURVES

Given an existing ERBS curve, as defined in eq. (2), where the local functions ℓk(t) are
vector-valued curves. Suppose we generate extra local curves to increase the flexibility
whilst shaping the ERBS curve. The extra local curves can be blended with the original
ERBS curve. We discuss in brief the blending construction in eq. (2) before we change
the topic to knot insertion.

3.1. The ERBS blending construction

Let us consider eq. (2) on the interval (tk, tk+1). It follows from the ERBS minimal
support property that the only non-zero ERBS on that interval are Bk(t) and Bk+1(t).
But since Bk(t) +Bk+1(t) = 1, due to the partition of unity property, Bk+1(t) can be
expressed as 1−Bk(t). We can clearly see that the ERBS function is a blending of two
local functions inside the knot interval:

f (t) = ℓk(t)Bk(t)+ ℓk+1(t)(1−Bk(t))

= ℓk+1(t)+(ℓk(t)− ℓk+1(t))Bk(t),
(7)

when tk < t < tk+1. By utilizing the fact that Bk(tk) = 1, we write

f (t) =

{

ℓk(tk), if t = tk
ℓk+1(t)+(ℓk(t)− ℓk+1(t))Bk(t), if tk < t < tk+1

(8)

Deriving eq. (8) at t = tk,k = 1, . . . ,n yields the ERBS Hermite interpolation properties:

D j f (tk) = D jℓk(tk), for k = 1, . . . ,n and j = 0,1,2, . . . (9)

Equation (9) shows that at t = tk,k = 1, . . . ,n, all derivatives of the ERBS curve are equal
to the respective derivatives of the local curve.
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FIGURE 1. Left: Support of the local curves (ℓi)
k+1
i=k−1 on the knot interval (tk−1, tk+1). Dashed seg-

ments indicate parts of the local curves ℓk and ℓk+1 which are not in use after inserting the knot z, with
associated local curve ℓz, between tk and tk+1. Right: A plot of Fk,t̂(t) in eq. (12) with t̂k = 0,z = 0.5 and

t̂k+1 = 1.

3.2. Knot insertion on ERBS curves

The local curve for a new knot, inserted at an existing inner knot, can be obtained
by constructing a copy of the existing knot’s local curve. This is using the property that
ERBS curves interpolate their local curves in their central knots. We will not discuss
multiple knots further here, but focus on inserting new knots between existing knots.

Since each local curve ℓk(t) is supported on (tk−1, tk+1) (see fig. 1), it follows that if we
modify ℓk(t) to compensate for a new knot inserted in (tk, tk+1), the change will influence
the ERBS blending on the whole interval (tk−1, tk+1). It not hard to imagine that such a
change would cause a chain reaction invoked by adjusting ℓk−1(t), to compensate for the
change of ℓk(t), which in turn triggers a need to adjust ℓk−2(t), and so on. We therefore
apply the restriction of not changing any of the existing local curves in order to achieve
local refinement.

In the following theorem, constrained by the mentioned restriction, we use Boehm’s
method (see lemma 2.1) to express the new local functions after knot insertion in terms
of the existing:

Theorem 3.1. (Knot insertion on ERBS) Let t̂ = (t̂ j)
n+1
j=0 be a given knot vector and let

t= (ti)
i=n+2
i=0 be the knot vector obtained by inserting a knot z in t̂ in the interval (t̂k, t̂k+1).

If

f (t) =
n

∑
j=1

ℓ̂ j(t)B j,t̂(t) =
n+1

∑
i=1

ℓi(t)Bi,t(t), (10)

where B j,t̂(t) is the jth ERBS on the knot vector t̂, defined as in eq. (1), then (ℓi(t))
n+2
i=1

can be expressed in terms of (ℓ̂ j(t))
n+1
j=1 through the formulas

ℓi(t) =























ℓ̂i(t), if 1 ≤ i < k,

ℓ̂i(t)◦wk(t) if i = k,

ℓ̂k(t)+Fk,t̂(t)
(

ℓ̂k+1(t)− ℓ̂k(t)
)

if i = k+1,

ℓ̂i−1(t)◦wk+1(t) if i = k+2,

ℓ̂i−1(t), if k+2 < i ≤ n+1,

(11)



where

Fk,t̂(t) =

{

B◦ω̂k(t)
B◦ωk(t)

if t̂k < t ≤ z,
B◦ω̂k(t)−B◦ωk+1(t)

1−B◦ωk+1(t)
if z < t < t̂k+1,

(12)

with B(t) equal to the first half of the ERBS basis, as defined in the first part of eq. (1), on

the interval [0,1] and ω̂k(t) =
t−t̂k

t̂k+1−t̂k
, ωk(t) =

t−t̂k
z−t̂k

, ωk+1(t) =
t−z

t̂k+1−z
are affine functions

mapping the parameter value t within the new knot intervals to [0,1], and the affine

functions wk(t) =
t−t̂k−1

z−t̂k−1
and wk+1(t) =

t−z
tk+2−z

are re-parameterizing the local functions,

ℓ̂k(t) and ℓ̂k+1(t) respectively, to the new knot vector t.

Proof. We look at the first two and the last two formulas in eq. (11). Observe that for
j <= k we have t̂ j = t j. For i < k it follows that ℓi(t) = ℓ̂i(t). When i = k, ℓi(t) =

ℓ̂i(t) ◦wk(t), since ℓ̂i(t) must be re-parameterized to the domain (t̂k−1,z) on the new

knot vector t. Similarly, we have ti = t̂i−1 for i > k+1. So ℓi(t) = ℓ̂i−1(t) for such values
of i, except when i = k+2, then ℓi(t) must be re-parameterized to the domain (z, t̂k+2),
hence, ℓi(t) = ℓ̂i−1(t)◦wk+1(t).

Next, we discuss the case when i = k+1. As noted in eq. (7), the only non-zero ERBS
on the interval (t̂k, t̂k+1) are Bk,t̂ and Bk+1,t̂. Using the symmetry property of the ERBS

basis function we rephrase eq. (7) to express the ERBS curve on the interval (t̂k, t̂k+1):

f (t) = ℓ̂k(t)B◦ (1− ω̂k(t))+ ℓ̂k+1(t)B◦ ω̂k(t)

= ℓ̂k(t)+B◦ ω̂k(t)
(

ℓ̂k+1(t)− ℓ̂k(t)
) (13)

After knot insertion, the interval (t̂k, t̂k+1) is divided into two new intervals; (t̂k,z) and
(z, t̂k+1). The ERBS function in eq. (13) expressed on the new knot vector t is then

f (t) =

{

ℓ̂k(t)+B◦ωk(t)
(

ℓz(t)− ℓ̂k(t)
)

if t̂k < t ≤ z,

ℓz(t)+B◦ωk+1(t)
(

ℓ̂k+1(t)− ℓz(t)
)

if z < t < t̂k+1.
(14)

The local function ℓz(t) associated with z is found by solving the equation where the left
hand side is given by eq. (13) and the right hand side is eq. (14):

ℓz(t) =

{

ℓ̂k(t)◦ωk(t)+
B◦ω̂k(t)
B◦ωk(t)

(

ℓ̂k+1(t)− ℓ̂k(t)
)

if t̂k < t ≤ z,

ℓ̂k(t)+
B◦ω̂k(t)−B◦ωk+1(t)

1−B◦ωk+1(t)

(

ℓ̂k+1(t)− ℓ̂k(t)
)

if z < t < t̂k+1.
(15)

A slight re-formulation of eq. (15) and exploiting eq. (12) leads to the middle formula
in eq. (11).

We observe eq. (15) and conclude that the local function ℓz(t), associated with the new
knot z, is represented through knot insertion in terms of the (original) local functions
ℓ̂k(t) and ℓ̂k+1(t) and the rational function Fk,t̂(t). The rational form is different from the

original construction. Fk,t̂(t) is different in the intervals (t̂k,z) and (z, t̂k+1).

We see from theorem 3.1 that ωk(z) = 1. The first part of eq. (14) shows that f (z) =
ℓz(z). For reference, see the Hermite interpolation properties in eqs. (7) and (8). Since
lim

t→z+
ωk+1(t) = 0, lim

t→z−
f (t) = ℓz(t). This shows that eq. (12) is continuous on (t̂k, t̂k+1).



Both ω̂k(t) and ωk(t) tend to zero as t approaches t̂k from above. But ω̂k(t) tends to
zero faster than ωk(t), since z < tk+1, hence,

lim
t→ t̂k

+
Fk,t̂(t) = lim

t→ t̂k
+

0
B◦ωk(t)

= 0. (16)

On the other hand, when t is approaching t̂k+1 from below, both ω̂k(t) and ωk+1(t) tend
to one. But, since t̂k < z, ω̂k(t) tends to one faster than ωk+1(t). Thus,

lim
t→ t̂k+1

−
Fk,t̂(t) = lim

t→ t̂k+1
−

1−B◦ωk+1(t)
1−B◦ωk+1(t)

= 1. (17)

A plot of Fk,t̂(t), as defined in eq. (12), is provided in fig. 1.

Our final note here is that the observations on the limits of Fk,t̂(t) as t goes towards t̂k

and t̂k+1 shows that the middle formula in eq. (11), on the form of eq. (13), satisfies the
ERBS Hermite interpolation properties in eqs. (7) to (9).

3.3. Approximation of local functions

As we have seen in the previous section, generating a local curve for a new knot
inserted into an existing knot vector has a solution which involves a rational function. In
practical applications the local functions are usually polynomials, such as Bézier curves,
Hermite curves or circle arcs. It is therefore interesting to investigate methods to generate
local curves of different brands and how well they approximate the original ERBS. We
propose the following strategies to generate local curves:

I Use a truncated Taylor expansion of the original ERBS curve in the new knot. This
is, due to the ERBS Hermite interpolation properties (see eqs. (7) to (9)), equivalent
to evaluating the original ERBS curve given the new knot as its parametric value.

II Construct a new local curve, of the same brand as the existing local curves, which
Hermite interpolates the value and all existing derivatives of the ERBS in the new
knot.

III Construct a new local curve, of the same brand as the existing local curves, by
performing a least squares approximation of the local curve specified by the middle
formula in eq. (11) of theorem 3.1.

IV Adjust the coefficients of the local curve, obtained by any of the two previous
methods, to obtain a better geometric approximation of the global ERBS curve.

As an example we consider a closed parametric ERBS curve, which approximates a
circle with radius r = 10 and parametric value t ∈ [0,2π), using four quadratic Bézier

local curves on the knot vector t= {3π
2 ,0, π

2 ,π,
3π
2 ,0}. Table 1 shows error measurements

for the different methods to generate local curves for the new knot z = 3.5. We measure
the deviation using norms presented in [9]; a max norm

L∞( f −g) = max
t∈[t1,tn+1]

| f (t)−g(t)|, (18)



TABLE 1. Error measurements for different kinds of local
curves when inserting one new knot on an ERBS approxima-
tion of a circle using four quadratic Bézier local curves.

I II II + IV III III + IV

L2( f −g) 0.075 0.080 0.12 0.071 0.032
L∞( f −g) 0.29 0.26 0.45 0.25 0.14

L2
G( f −g) 0.049 0.046 0.0078 0.026 0.0069

L∞
G( f −g) 0.22 0.17 0.033 0.097 0.032

to measure the guaranteed maximum deviation, and an L2 norm

L2( f −g) =

√

1

tn+1 − t1

∫ tn+1

t1

| f (t)−g(t)|2 dt, (19)

to investigate the “quadratic” mean deviation. These two norms take the parameteriza-
tion into consideration, thus, they are used to measure the “mathematical” deviation.

Another error measure, proposed in [9], which only refers to the geometric shape and
not to the speed of the parameterization, using a non-symmetric version of the Hausdorff
distance, for measuring the result, using a geometric version of a metric related to a max
norm,

L∞
G( f −g) = max

t∈[t1,tn+1]
| f (t)−Cg( f (t))|, (20)

where Cg(p) refers to the closest point on a curve f from a point p. A metric related to

the L2 norm is constructed in [9] by the following:

L2
G( f −g) =

√

√

√

√

∫ tn+1
t1

| f (t)−Cg( f (t))|2|D f (t)|dt
∫ tn+1

t1
|D f (t)|dt

. (21)

The last method (IV) above is achieved here by a rather naïve, iterative algorithm
which translates or dilates the coefficients of the Bézier curve in small steps; first along
the line which passes through the first and the last coefficients, then along a line which
passes through one of the “inner” coefficients and its closest point on the first line, until
it reaches a stop criterion when the approximation error does not improve.

4. CONCLUDING REMARKS

Local refinement of ERBS curves, in terms of knot insertion, constrained by not altering
any of the existing local curves, provides a rational function as the new coefficient.

We propose a few methods to approximate the local curves associated with the in-
serted knots. This is of interest in applications where it is desirable to use a homoge-
neous set of local curves. The error is restricted within the support intervals of the new
local curves.



Methods I and II shows near similar performance but the geometric shape of the global
curve is different. Method III provides an increase in geometric deviation. Invoking IV
shows that it is possible to improve the global geometric approximation error by altering
the new local curve. But the mathematical deviation may increase, and the refined ERBS
curve may not interpolate the original in the new knot.

As topics for future work we suggest investigating least squares approximation with
respect to the global approximation error, knot insertion on the generalized set of ERBS
basis functions (GERBS [11]), or even Sigmoid functions. It would also be interesting
to investigate convergence when the value of the inserted knot becomes arbitrarily close
to an existing knot.

A different approach to investigate local refinement in terms of knot insertion could be
considering Taylor expansions as local coefficients rather than the polynomial functions
considered here.

ACKNOWLEDGMENTS

The work described in this paper is a part of “Dreamworld”, a joint research project
between Funcom and Narvik University College, funded by the Norwegian Research
Council under the Verdikt program with grant agreement No. 201511.

REFERENCES

1. W. Boehm, “Inserting New Knots into B-spline Curves,” , Journal of Computer Aided Design 12,
199–201 (1980).

2. E. Cohen, T. Lyche, and R. Riesenfeld, “Discrete B-Splines and Subdivision Techniques in Computer-
Aided Geometric Design and Computer Graphics,” , Computer Graphics and Image Processing 14,
87–111 (1980).

3. T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri, “T-splines and T-NURCCs,” in ACM SIGGRAPH
2003 Papers, SIGGRAPH ’03, ACM, New York, NY, USA, 2003, pp. 477–484, ISBN 1-58113-709-5.

4. T. Dokken, T. Lyche, and K. F. Pettersen, “Polynomial splines over locally refined box-partitions,” ,
Computer Aided Geometric Design 30, 331 – 356 (2013), ISSN 0167-8396.

5. E. Catmull, and J. Clark, “Recursively generated B-spline surfaces on arbitrary topological meshes,” ,
Journal of Computer Aided Design 10, 350–355 (1978).

6. L. L. Schumaker, and T. Sorokina, “Smooth Macro-Elements on Powell-Sabin-12 Splits,” , Mathemat-
ics of Computation 75, 711–726 (2006).

7. A. Lakså, B. Bang, and L. T. Dechevsky, “Exploring Expo-Rational B-splines for Curves and Sur-
faces,” in Mathematical methods for Curves and Surfaces, edited by M. Dæhlen, K. Mørken, and
L. Schumaker, Nashboro Press, 2005, pp. 253–262.

8. L. T. Dechevsky, A. Lakså, and B. Bang, “Expo-Rational B-Splines,” , International Journal of Pure
and Applied Mathematics 27, 319–362 (2006).

9. A. Lakså, Basic properties of Expo-Rational B-splines and practical use in Computer Aided Geometric
Design, Ph.D. thesis, University of Oslo (2007).

10. R. N. Goldman, and T. Lyche, Knot Insertion and Deletion Algorithms for B-Spline Curves and
Surfaces, Geometric Design Publications, SIAM, 3600 University City Science Center, Philadelphia,
PA 19104-2688, 1993.

11. L. T. Dechevsky, B. Bang, and A. Lakså, “Generalized Expo-Rational B-Splines,” , Int. J. Pure Appl.
Math. 57, 833–872 (2009).


