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“Algorithms don’t do a good job of detecting their own flaws.”
–Clay Shirky





Abstract
Snow avalanches threaten human lives, settlements and roads in snow cov-
ered mountainous areas. For avalanche forecasting, knowledge of the spatio-
temporal occurrence of avalanche activity is critical. Automatic avalanche
detection algorithms have been developed to enable consistent avalanche activ-
ity monitoring for large regions. The Satskred avalanche detection algorithm
developed by NORCE applies synthetic aperture radar (SAR) data from the
Sentinel-1 satellite constellation and detects avalanches through a relative
increase in energy scattered back to the radar from avalanche debris. Field
Validation of all automatically detected features is desirable, but not achievable
due to weather- , light- , and avalanche danger-conditions as well as avalanches
occurring at remote locations.

In this thesis, an algorithm is presented for automatic comparison of the
Satskred avalanche detections to crowd-sourced avalanche observations from
regObs, the Norwegian public registry for snow-, weather-, flood-, and ice
observations. Thereby, the validation set of field observed avalanches grows
with every registered observation and validation of detected features can be
performed without further manual intervention. To evaluate whether a detec-
tion matches an observed avalanche, the comparison algorithm initially filters
detections by time period to ensure temporal similarity. Then, the detection
is evaluated with regards to distance, slope aspect and membership of the
same drainage basin region as the observation to ensure spatial similarity. If
the detection fulfills all the similarity requirements, it is considered to likely
represent the same avalanche.

Studying a 120 x 86 km area centered over Tromsø in Northern Norway, 308
avalanche observations from 2014 - 2019 were automatically compared to a
set of avalanche detections from the same area and time period. The field
observations were used as a truth-set and the resulting probability of detection
(POD) for the Satskred algorithm was 25.3% (78 out of 308). Further analysis
identified trends of larger POD for wet- than dry avalanches, and an increasing
POD with avalanche size. A large proportion of avalanches entered to the
regObs database are dry slab avalanches, which was found to partly explain
the low POD.
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1
Introduction
1.1 Background for the study

Snow avalanches, hereafter called avalanches, are a significant natural haz-
ard to human lives and infrastructure in snow covered mountainous areas.
Over the last 10 winters (2009 - 2019), a total of 75 people have lost their
lives in avalanche accidents in Norway (NGI, 2019). Northern Norway is over-
represented in these statistics with 18 out of 28 fatalities in the period 2014 -
2019 (Varsom, 2019b).

Avalanche forecasting is one of the approaches used to try to mitigate avalanche
risk. Knowledge of recent avalanche activity is vital when creating avalanche
bulletins, as there is a strong correlation between avalanche activity and
avalanche risk (Schweizer, 2003). However, a complete and repeatedly up-
dated overview of avalanche activity within a given forecasting region is not
achievable using field based observations. A recent study (Eckerstorfer et al.,
2018) has shown that avalanche debris is detectable in Sentinel-1 SAR images,
consistently both in space and time.

The processing chain developed at NORCE outputs automatic avalanche de-
tections on a daily basis. Both manual detections and field observations of
avalanches are currently the benchmark used to improve the performance
of the automatic detection algorithm. Field validation of both automatic and
manual avalanche detections is desirable, but not achievable in a consistent
manner due to weather- , light- , and avalanche danger-conditions as well as

1



2 chapter 1 introduction

avalanches occurring at remote locations. Consequently, the dataset of field
observed avalanches is much smaller than those detected in SAR images.

One way to increase the number of available field observations is to make
use of the crowd-sourced information at www.regObs.no, where the public is
encouraged to register their avalanche observations.

1.2 Objectives

The overall objective of the project is to improve the automatic avalanche
detection algorithm by systematically comparing automatic detections to field-
observed avalanches.

The motivation for creating an algorithm to compare avalanche detections to
avalanche observations from regObs is to enable validation of the detections
against field data without the workload associated with manually reviewing
all the observations.

Therefore, the secondary objectives of the project are:

• Design and test a prototype that automatically compares avalanche detec-
tions with crowd-sourced field observations of avalanches in the regObs
database.

• Evaluate and discuss the effectiveness of the prototype.

• Gain an improved understanding of the capabilities of the automatic
avalanche detection algorithm in terms of avalanche sizes, avalanche
types, snow conditions and spatial occurrence.



2
Theory
This chapter presents some of the basic theory on avalanches, avalanche fore-
casting and avalanche detection using remote sensing, with emphasis on space-
borne radars.

2.1 Avalanche theory

Avalanches are masses of snow that rapidly slide, tumble or flow down a steep
slope. They can be categorized by several factors such as release mechanism,
size, water content and velocity. A common distinction is made between slab
avalanches and loose snow avalanches, in addition to separating between dry
and wet avalanches (NVE, 2016). Figure 2.1 illustrates an avalanche with the
nomenclature used in this thesis. Deposits and avalanche debris will be used
interchangeably.

Dry slab avalanches account for 99% of all avalanches triggered by recreation-
ists (Landrø, 2007, p.44). According to Schweizer et al. (2003a), slab avalanches
occur when an extended weak layer below a cohesive slab no longer withstands
the shear forces and fractures (Figure 2.2a). These avalanches can be recog-
nized by a distinct crown and debris deposited as various sized blocks (Figure
2.2a).

3



4 chapter 2 theory

Figure 2.1: Overview of an avalanche path with names attached to each zone. Re-
trieved from Avalanche Canada (2020)

In a snowpack with less cohesion, a loose snow avalanche can form through a
chain reaction initiated by a single moving grain. The avalanche collects more
mass as it descends and spreads into a elongated pear-like shape, as illustrated
in Figure 2.2b (Landrø, 2007, p.44).

Dry and wet avalanches can often be distinguished by observing the color of the
debris, as wet avalanches tend to have a more blueish color. Furthermore, wet
avalanches have a larger ability to erode the underlying soil, and the debris can
thus comprise a mixture of snow, rocks and finer fractions (NVE, 2016).

(a) (b)

Figure 2.2: (a) Dry slab avalanche triggered by skier. Photo by Leif@ObsKorps, re-
trieved and modified from www.regobs.no. (b) Wet loose snow avalanches.
Retrieved from EAWS (2019).
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There are three other common snow related avalanche types in addition to slab-
and loose snow avalanches: cornice fall avalanches, glide avalanches and slush
avalanches. Cornices form incrementally along ridges during the winter and
can fail due to their own weight or potentially the added weight of a person.
When breaking off, the cornice can occasionally trigger avalanches on the slope
beneath it despite of relatively stable snow conditions (NVE, 2016).

Glide avalanches occur when the entire snowpack slowly slides on the ground.
The gliding process, caused by melt-water lubricating the ground, can often
last for days or weeks before the avalanche releases. Smooth slopes in wet
climates are most prone to glide avalanches (Tremper, 2008, p.33).

Slush avalanches can release on gentle slopes and consist of water-saturated
snow flowing rapidly like a flood. The high water content is often caused
by rapid melting or by another avalanche damming a river. Slush avalanches
have a high destructive potential due to their high density and velocity (NVE,
2013).

Studies of catastrophic avalanches have found that very few avalanches released
on slopes with less than 30° slope angle (Ammann, 2000; Schweizer and
Jamieson, 2001). With that said, it is important to recognize that avalanche
tracks can easily extend into terrain < 30°, where the debris comes to rest in
the runout zones (Figure 2.1).

The avalanche size classification used in this thesis follows the sizes used for
public avalanche forecasting in Norway (Table 2.1). Avalanches are divided
into five size categories defined, among other things, by the potential damage
caused (Varsom, 2020c).

Table 2.1: Avalanche size categories, modified after Varsom (2020c) and EAWS (2020).

Size Typical volume Typical length Could bury or destroy
1 - Small 100 m3 10 m
2 - Medium 1000 m3 100 m Person
3 - Large 10, 000 m3 1000 m Car, hut
4 - Very large 100, 000 m3 2000 m Several buildings or large

amount of forest
5 - Extremely large > 100, 000 m3 3000 m Villages. Gauges the land-

scape
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2.2 Avalanche forecasting

One of the approaches used to try to mitigate avalanche risk is avalanche
forecasting. The general public receives through an avalanche forecast, updated
information on the current snow stability and avalanche danger, in addition to
a forecast of the near future situation (McClung, 2002a). The typical content
of an avalanche forecast is described by Techel et al. (2018) as: Avalanche
danger level, most critical terrain, avalanche problems, hazard description and
information of the snowpack and weather. The forecast is valid for a specified
region and time span.

In 2013, the Norwegian public avalanche danger service Varsom (www.varsom.no)
was established as a response to the numerous lives lost in avalanche accidents
and the problems avalanches cause for transport and settlements. The service
is a member of the European Avalanche Warning Services (EAWS) and follows
European standards (Engeset, 2013). By using international standards, back-
country users can be sure that the forecasted danger levels are equivalent to
the danger levels in their home region.

The forecasting process must begin with collecting data to establish the current
avalanche situation as accurately as possible (McClung, 2002b). The data is
collected by trained observers in the field through stability tests, snow mea-
surements etc., in addition to snow- and weather- data from computer models
and weather stations. The general public is also encouraged to register their
relevant avalanche observations through the natural hazard observation site
www.regObs.no or Varsom regObs mobile app (Engeset et al., 2018) (Section
3.2). When the knowledge of the current situation is sufficient, a forecast for
the following day can be made by predicting how the forecasted weather will
affect the snowpack and consequently the avalanche danger (Varsom, 2019a).
Therefore, avalanche forecasting also has the time-scale problem of rapidly
increasing uncertainty associated with weather forecasting.

The term information entropy is, according to LaChapelle (1980), often equated
with uncertainty and can be used to describe how hard it is to apply relevant
information to stability estimates. The data available to avalanche forecast-
ers can be categorized by entropy, following LaChapelle (1985). Figure 2.3
illustrates three data classes with entropy increasing with class number.

In addition to ranking the data based on ease of interpretation, the data is
weighted differently if the information points towards snowpack stability or
instability. One sample indicating instability can outweigh an entire series of
data indicating stable conditions. Therefore, avalanche occurrences or other
obvious signs of instability are considered more important for (in)stability
estimates than the lack of such observations (McClung, 2002b).
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Figure 2.3: Information classes ranking data available when interpreting instability.
Decreasing entropy along the arrows. Retrieved from (McClung, 2002b).
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2.3 Avalanche detection by spaceborne radars

Knowing when and where avalanches have occurred is very important due to
the low information entropy of these observations, and the emphasis placed on
instability information in general. Avalanche activity monitoring have tradition-
ally been based on field observations (Schweizer et al., 2003b). Bad weather,
absence of daylight, remote locations and prevailing avalanche danger are
some of the factors that can complicate data collection in the field.

Large amounts of avalanche activity data, with few temporal and spatial gaps
are required to perform statistically meaningful data analysis and risk calcula-
tions for an entire forecasting region (Eckerstorfer et al., 2016). Furthermore,
such complete spatio-temporal avalanche activity records of an entire winter
are not achievable using field-based methods alone (Wesselink et al., 2017).
Remote sensing can be a more reasonable approach, as demonstrated by Eck-
erstorfer et al. (2017) who presented a winter-long daily avalanche activity
record of a forecasting region using satellite borne synthetic aperture radar
(SAR) data from Sentinel-1.

Avalanche detection can be done using a number of different remote sensors.
The extent to which each of the remote sensors can contribute to avalanche
activity mapping was summarized by Eckerstorfer et al. (2016). Optical- and
radar satellite data are the preferred technologies for monitoring avalanche
activity on a regional scale (Eckerstorfer et al., 2019). The remote sensing
data applied in this thesis is based on spaceborne SAR. This is therefore the
technology that will be focused on from now on.

Radar systems use active sensors that transmit coherent microwave radiation
pulses and measure the strength and phase of the signal backscattered to the
sensor (Liu and Wu, 2001). In a radar image, the brightness of a target is
determined by its radar cross section, defined as the ratio of energy received by
the sensor over the energy that would be received from a target scattering the
incident energy isotropically (Elachi and Van Zyl, 2006). The normalized radar
cross section, typically denoted f0, is the radar cross section averaged over a
resolution cell. The SAR technique is based on using a moving platform, such
as an airplane or a satellite to enable a small antenna to record radar echoes
over a large distance and through data processing replicate the aperture of a
much larger antenna (Vu et al., 2013).

The backscattered signal from snow can be modeled as the sum of the contribu-
tions from the air-snow and snow-ground interfaces in addition to the volume
scattering within the snowpack (Figure 2.4) (Eckerstorfer et al., 2016). Com-
pared to the relatively smooth, undisturbed surface of the surrounding snow,
avalanche debris is rough and therefore detectable in radar images due to the
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increased backscatter. Ulaby et al. (1986) described how the physical properties
of snow largely influences the backscattered signal. While backscatter from
dry snow is mostly dependent on snow density, wet snow scatters according to
the content of liquid water (Hallikainen et al., 1986).

Figure 2.4: Schematic models illustrating both origin and strength of the contributions
to observed backscatter from a) dry snow b) dry avalanche debris c) wet
snow and d) wet avalanche debris snow. Retrieved from Eckerstorfer and
Malnes (2015)

The potential for avalanche detection using spaceborne SAR was shown nearly
two decades ago by Wiesmann et al. (2001) using data from ERS 1/2. More
recently, avalanche debris was detected using C-band data from Radarsat-2
(Malnes et al., 2013; Eckerstorfer and Malnes, 2015) and X-band data from
TerraSAR-X (Bühler et al., 2014). The European Space Agency (ESA) have
provided freely available C-band SAR data from the Sentinel 1A and 1B satel-
lites since they became operational in 2014 and 2016, respectively (ESA, 2020).
Malnes et al. (2015) became the first to present avalanche detections in Sentinel



10 chapter 2 theory

images by applying data from Sentinel 1A in the interferometric wide swath
mode (IW), with 20 x 20 m spatial resolution and 250 x 150 km swath.

Data from Sentinel 1A was also used when Eckerstorfer et al. (2017) presented
a complete avalanche activity record from the forecasting region Tamokdalen
for the 2014 - 2016 period. The authors detected avalanches manually by
comparing activity images to earlier images with the same geometry, reference
images. Due to the lack of ground-truth data, Radarsat-2 Ultrafine images of
superior spatial resolution (3 x 3 m) were used to validate the detections.

Manual detection is both time consuming and prone to human bias, which
is why automatic detection algorithms are necessary for building a substan-
tial database of avalanche activity (Vickers et al., 2016). The first automatic
avalanche detection scheme applied to Sentinel-1 data was presented by Vickers
et al. (2016), who were able to automatically detect avalanche debris through
change in radar backscatter and K-means unsupervised object classification.
A revised algorithm by Vickers et al. (2017) allowed for different backscatter
thresholds depending on the snow conditions. This approach proved beneficial
when dealing with varied meteorological conditions within large images or
between image pairs. The near-real-time avalanche monitoring system pre-
sented by Eckerstorfer et al. (2019) is based on a further development of the
aforementioned algorithm, and will be described in section 3.1.



3
Data
In this chapter the two data sources applied in this thesis are presented in
separate sections.

3.1 The Satskred dataset of avalanche
detections

The dataset provided by NORCE is the combined output from running their au-
tomatic avalanche detection algorithm on the available data from 1 December
2014 to 31 May 2019. The same data was described in detail in Eckerstorfer
et al. (2019), where the authors presented the first dataset of spatio-temporal
avalanche activity over several winters from a large region. This section will
summarize the characteristics of the dataset and briefly present the workflow
of the detection algorithm producing the detections. Features detected by the
automatic avalanche detection algorithm will from here on be referred to as
avalanche detections or simply detections.

11
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3.1.1 Study area

The study area where the detection algorithm was applied is defined using
a 120 km x 86 km bounding box. The area is roughly centered around the
town of Tromsø in Northern Norway. Even though the regObs database spans
all of Norway, the study area of the detection algorithm determines where
observations and detections can be compared, as no detections outside the
study area are included in the dataset. This area is therefore the area of interest
(AOI) used throughout the thesis. Figure 3.1 illustrates the AOI along with the
masks applied to define where the algorithm should search for avalanche
detections. The runout mask defines where avalanche debris can be detected,
and comprises all possible runout zones. Furthermore, water-, agriculture-
glacier- and forest masks were used to reduce the search area and to avoid
false detections from these areas (Figure 3.1).

Figure 3.1: The area of interest with avalanche runout mask, water bodies, agricultural
and forested areas superimposed onto a hillshade map. Modified from
Eckerstorfer et al. (2019)
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3.1.2 Sentinel 1 availability and spatial coverage

Eckerstorfer et al. (2019) downloaded Sentinel-1 data in the period of 1 De-
cember to 31 May each winter, which is the avalanche forecasting season in
Norway. The data was ground range detected (GRD) in IW mode for both VV
(vertical transmit and receive) and VH (vertical transmit, horizontal receive)
polarizations. The ground range pixel resolution was 20 m.

Images of both ascending and descending orbits were used. During the study
period there was a trend towards increased amount of data available from ESA
and three new swaths became available. From the 2016 - 2017 season onward,
four satellite swaths were available for the ascending orbits, while six swaths
were available for the descending geometry.

The Sentinel satellites (S1A and S1B) are identical and together they make the
repeat cycle of each swath six days (ESA, 2020). Due to the high latitude of the
study area, combined with the polar orbits of the satellites, the study area is
covered daily. On average during the 2017 - 2018 season, 7.3 Sentinel images
covered the avalanche runout area illustrated in Figure 3.1 within the six days
repeat cycle (Eckerstorfer et al., 2019).

3.1.3 Detection algorithm workflow

The workflow of the avalanche detection algorithm is illustrated in Figure 3.2.
Each of the steps will be briefly presented in this subsection.

Figure 3.2: Workflow of the Satskred automatic avalanche detection algorithm. Re-
trieved from Eckerstorfer et al. (2019)
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The first processing step of the detection algorithm involves geocoding of
the Sentinel images using a Digital Elevation Model (DEM). The geocoded
images are then paired into reference image and activity images of similar
geometry and orbit that are separated in time by one repeat cycle. The scene
pairing outputs difference images, showing relative change in backscatter from
the preceding image (reference) to the current image (activity). The RGB
differentiation step consists of making a pseudo-color image by displaying
the reference image in the red and blue channel, while the activity image is
displayed in the green channel. These RGB images can be used for manual
avalanche detection, as avalanche debris appears green due to the positive
backscatter change (Eckerstorfer et al., 2019).

The automatic avalanche detection step applies the difference images from the
scene pairing together with the input masks (Figure 3.2). Avalanche detection
is carried out separately by two approaches: Difference of Gaussians (DoG)
filtering and Segmentation. The results are combined to form a binary map of
pixels classified into either avalanche or not avalanche. If an area classified as
avalanche spans less than 10 pixels, or more than 390 pixels, it is considered
noise and therefore disregarded (Eckerstorfer et al., 2019).

The final step involves vectorizing the binary avalanche detection map into
polygons by tracing the outline of each detected feature. The metadata added
to the detection polygons is listed in subsection 3.1.5.

3.1.4 Age tracking

The total number of avalanche detections in the full 2014 - 2019 dataset
is 44048. As some avalanches were detected in multiple subsequent Sentinel
images, the set contains numerous detections representing the same avalanches.
Eckerstorfer et al. (2019) developed an age tracking algorithm to identify these
detections by assuming that features from different geometries overlapping in
space and time are likely to be the same avalanche.

The age tracked dataset for the 2014 - 2019 period consists of 31863 detections.
The age tracking algorithm did not output a sufficiently reliable classification
at the start of this project. Therefore, the data used in the thesis is the full
set of 44048 detections. The age tracked data is applied once for comparison
purposes, in Figure 5.5.
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3.1.5 Data format and available metadata

The avalanche detection dataset was made available in a shapefile format.
In addition to the polygon geometries, the shapefile included the metadata
described in Table 3.1.

Table 3.1: Explanation of the metadata attributes of the avalanche detection polygons.

Attribute Explanation
OBJECTID Unique ID number
area Area of the polygon in<2

east Longitude of polygon centroid
north Latitude of polygon centroid
length Maximum length of polygon
raster_val Number of detected pixels
sat_geom Satellite track number
t_0 Timestamp of reference image
t_1 Timestamp of activity image
dem_mean Mean elevation of entire polygon
dem_median Median elevation of entire polygon
dem_min Minimum elevation of entire polygon
dem_max Maximum elevation of entire polygon
slp_mean Mean slope angle of entire polygon
slp_min Minimum slope angle of entire polygon
slp_max Maximum slope angle of entire polygon
vv0_max / min ... Backscatter parameters

The mean, median, min and max value of the reference- and activity-image
producing the detection were available for both polarizations (VV and VH) as
well.

3.1.6 Detection algorithm performance

The Sentinel images’ spatial resolution of 20m allows fordetection of avalanches
with typical path lengths of around 100 m. This corresponds to roughly size 2
- Medium in Table 2.1. Even so, larger avalanches with thin, elongated shapes
could still be difficult to detect. By comparing the automatic avalanche de-
tections to a set of 243 field-observed avalanches, Eckerstorfer et al. (2019)
found that the probability of detection (POD) was 57%. When comparing to
avalanches that were manually detectable in the difference images instead, the
resulting POD was 73%.
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The detection performance was found to be dependent on changing snow
conditions between the reference and activity images. A transition from dry to
wet snow, associated with a net decrease in backscatter, is favorable. On the
contrary, a wet to dry transition is associated with a high false alarm rate due
to a net increase in backscatter. According to Eckerstorfer et al. (2019), the
latter case is not typically associated with widespread avalanche activity as the
snowpack dries up and stabilizes. Therefore, these days with high false alarm
rates was deleted manually.

3.2 The regObs database

regObs (short for registration of observations) is a Norwegian public registry
for snow, weather, flood and ice observations. The system is developed and
operated by the NorwegianWater Resources and Energy Directorate (NVE) and
Norwegian Public Roads Administration (SVV). regObs consists of a database
with an Application Programming Interface (API) at www.api.nve.no, a web
site (www.regobs.no) and a mobile app. The national website for warning of
avalanche, flood, ice and landslide hazards is varsom.no and the regObs system
is a part of the Varsom portfolio (Engeset et al., 2018)

regObs encourages everyone to contribute with their observations related to
natural hazards. An observation in the regObs context is a collection of data
submitted by a user through the app or website. Submitted observations are
time-stamped, geographically positioned and immediately available for other
platform users. The data in regObs is presented as is and NVE does not
guarantee for information quality or actuality. It is important to recognize that
submitted observations may be erroneous or incomplete (regObs, 2020).

Data access

Observations can be viewed in the app or website. For other purposes, the
data can be accessed using the API (api.nve.no) by posting date queries with a
specified time period to the URL. The data in the regObs database is open and
licensed according to Norwegian Licence for Public Data (NLOD).

The regObs data applied in this thesis was accessed through the API by the
comparison algorithm at runtime. The dates limiting the query was set equal to
the dates defining the Satskred detection season (1 December - 31 May).



3.2 the regobs database 17

Observer competence

Users have to create an account to be able to upload observations using the
web site or mobile app. The user is assigned a competence level by regObs
ranging from one to five stars. Users without stars are considered to have
low or unknown competence. The requirements for obtaining more stars vary
slightly between the natural hazard categories, but for snow observations the
competence levels are defined as described in Table 3.2 (Varsom, 2020a):

Table 3.2: Descriptions of the different regObs observer competence levels.

Competence Description
- Unknown competence

*
The observer knows the basics of assessing avalanche
danger, but is not educated in how regObs and Varsom
communicate avalanche danger.

**
The observer is experienced in assessing avalanche dan-
ger, but not educated in how regObs and Varsom com-
municate avalanche danger.

***

The observer is educated and has advanced skills in
assessing avalanche danger. The observer has a ba-
sic course in how regObs and Varsom communicates
avalanche danger.

****

The observer is educated and has advanced skills in
assessing avalanche danger. The observer has an ex-
tended course in how regObs and Varsom communicates
avalanche danger.

***** The observer is an avalanche forecaster.
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3.2.1 Snow related observations in general

Figure 3.3: Overview of the regObs database categories. The flow chart focuses on
the snow related observation data that potentially could be compared to
Satskred detections.

The regObs database comprises four main observation categories, as illustrated
by Figure 3.3. Every observation contains information on the registration time
and location, as well as observer account information. The attributes shared
by all regobs entries are listed in Table 3.3

The different observation types within the snow related category are listed in
Table 3.4. In order to register a snow related observation, at least one of the
observation types from Table 3.4 must be entered (regObs, 2020).
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Table 3.3: Descriptions of the attributes shared by all regObs entries. The attribute
names correspond to the names returned from the API.

Attribute Description
GeoHazardName Which geohazard the observation is related to
RegID Unique ID number of the registration
DtObsTime Date and time of the observation out in the field

DtRegTime Date and time when the observation was registered
to regObs

DtChangeTime Only given if the registration has been changed
NickName Nickname chosen when creating the account
CompetenceLevelName Competence level associated with the account
UTMEast East UTM coordinate of the registration
UTMNorth North UTM coordinate of registration
UTMZone UTM zone of the registration
Latitude Latitude of the registration
Longitude Longitude of the registration
ForecastRegionName Forecast region
MunicipalName Municipality
UTMSource The way the observer registered the location
Uncertainty Estimated positional uncertainty

Table 3.4: Snow observation types. The observation types illustrated in Figure 3.3 are
set to italics. These are the observation types that are potentially useful for
comparison to avalanche detections.

Category Observation type
Snow Danger sign

Avalanche observation
Avalanche activity
Weather
Snow cover
Column test
Snow profile
Avalanche problem
Avalanche danger assessment
Accident/incident
Notes
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In addition to the general public and professional observers, some of the regObs
entries stem from avalanche detections by ground based radars and infrasound
avalanche detection systems. In February 2017, a ground based avalanche
detection radar was installed to monitor Holmbuktura in Tromsø Municipality
(Meier, 2018). The radar was able to detect avalanches through the doppler
shifted frequencies of the signal backscattered from the moving snow. During
the 2014 - 2019 period, 27 regObs entries of the avalanche observation type
was based on detections from this radar system.

In Lavangsdalen, an infrasound avalanche detection system is installed. The
system detects avalanches with a 360° field of view through their sound signa-
ture in the < 20 Hz frequencies (Wyssen, 2019). During the 2014 - 2019 period,
8 regObs entries of the avalanche observation type was based on detections
from this infrasound system.

Each of the three snow observation types considered potentially useful for
comparing to Satskred avalanche detections are presented in subsections 3.2.2,
3.2.3 and 3.2.4.
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3.2.2 Avalanche observation

Avalanche observation type entries describe a single event. These observations
are also referred to as avalanche incident (Skredhendelse in the Norwegian
version) on the regObs web site. In this thesis the main focus is placed on
this observation type. Therefore, avalanche observation and observation will
be used interchangeably. When referring to the observation types avalanche
activity and danger sign, this will be specified.

Within the Satskred AOI, 629 avalanche observations were registered during
the five seasons 2014 - 2019. The information attached to the avalanche
observations is listed in Table 3.5.

Table 3.5: Description of the attributes of the avalanche observation type regObs
entries. Attribute names correspond to names returned from the API.

Attribute Description
AvalancheName Type of avalanche
AvalancheTriggerName Trigger mechanism
WeakLayerName Weak layer
FractureHeight Height of the crown
FractureWidt Width of the crown
DestructiveSizeName Avalanche size
DtAvalancheTime Estimated release time
HeightStartZone Height (m.a.s.l) of the start zone
HeightStopZone Height (m.a.s.l) of the stop zone
SnowLine Snowline height (m.a.s.l)
TerrainStartZoneName Terrain in the start zone
Trajectory Name of the avalanche path
Aspect Slope aspect
UTMEastStop East UTM coordinate of stop point
UTMNorthStop North UTM coordinate of stop point
UTMZoneStop UTM zone of stop point
StartPoint Latitude and longitude of the start point
StopPoint Latitude and longitude of the stop point
Comment Free-text description

All of the attributes are optional for the observer to enter, except the DtAvalancheTime,
which must be specified. The avalanche observations could be categorized into
three subcategories based on the stop point information: those with a reported
stop point, those without reported stop point and the image-only registrations.
The distribution of observations between these subcategories is illustrated in
Figure 3.4. Image-only observations contain all of the information from Table
3.3, while none of the attributes from Table 3.5 are given.
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Figure 3.4: Number of avalanche observations sorted by subcategory and season.

The Uncertainty attribute from Table 3.3 is plotted by UTMSource for the
avalanche observations without stop point in Figure 3.5. These uncertainty
estimates are used in Section 5.1.2, where a method for handling observations
without stop point is proposed.
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Figure 3.5: Uncertainty values plotted by UTMSource for observations without stop
point within the AOI from 2014 - 2019.
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3.2.3 Avalanche activity

The avalanche activity category of regObs entries can be used to report multiple
avalanches, single avalanches and no avalanche activity. Figure 3.6 illustrates
the distribution of the estimated number of avalanches reported using this
category. The avalanche activity entries of single avalanches are expected to
be most applicable for comparison to avalanche detections.
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Figure 3.6: Avalanche activity estimated numbers in the Satskred AOI from 2014 -
2019 (N=2245).
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3.2.4 Danger sign

The danger sign category of regObs entries can be used to report any observed
danger sign pointing towards current or future snowpack instability, or the
lack of such danger signs. Figure 3.7 illustrates the distribution of the different
danger sign types reported. The recent avalanche type danger sign entries are
expected to be most applicable for comparison to avalanche detections.
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Figure 3.7: Danger sign types reported within the Satskred AOIfrom 2014 - 2019
(N=5181).
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Methods
This chapter comprises two sections, where the first presents the necessary
algorithm input and the second explains the algorithm workflow in a step-wise
manner and how the input is handled. In order to visualize both the input
and the steps of the algorithm, an example area roughly in the middle of
the AOI was chosen. The example area is centered over Ramfjord in Tromsø
municipality (Figure 4.1). Note that all algorithm steps presented in this chapter
are performed on the complete AOI and the purpose of the example area is
simply to present a zoomed-in visualization.

25



26 chapter 4 methods

Figure 4.1: The example area used for visualization of algorithm input and workflow.

4.1 Comparison algorithm input and
dependencies

Each input will be briefly explained with emphasis on their format and creation,
while the way the input is put to use is handled in section 4.2. An overview of
the workflow of the comparison algorithm, including where the input files are
applied is illustrated in Figure 4.5.

The input files were prepared separately from the algorithm and given as input
to avoid re-computing them every time the algorithm ran. All files used as
input to the algorithm were stored in the same folder.

4.1.1 Avalanche detections

The avalanche detection dataset was made available by NORCE in a shapefile
format. The detection polygons were converted from a coordinate system
based on latitude and longitude, to UTM zone 33 coordinates which was the
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projection used in the comparison algorithm. Subsets of avalanche detections
corresponding to each season were also prepared to enable single-season
algorithm runs.

4.1.2 Digital Elevation Model

A publicly available Digital Elevation Model (DEM) of 10 m resolution was
used to produce several of the input raster files. The DEM itself is not imported
to the comparison algorithm, but it made the computation of aspects, slope
angles, drainage basins and minimum elevation points possible. The DEM was
downloaded from hoydedata.no, the Norwegian Mapping Authorities’ website.
The accuracy was ±1 m in the areas covered by National Detailed Elevation
model (NDH) and ±2-6 m in the areas not covered by NDH.

4.1.3 Minimum elevation points

The DEM was used to find the points of minimum elevation for each of the
avalanche detection polygons. These points were stored as a separate shapefile
and imported to the comparison algorithm. Computing the minimum elevation
points in advance significantly reduces the algorithm runtime for large numbers
of detections.

4.1.4 Drainage basins

Drainage basin andwatershed can be used interchangeably when referring to an
area of land that drains all the streams and rainfall to a common outlet (USGS,
2020). In this thesis, drainage basinmeans the land area, while watershed is the
perimeter of the drainage basin and consequently the border between drainage
basins.

Drainage basins were created and used to narrow down the areas when search-
ing for avalanche detections. This approach was based on the idea that it
would be highly unlikely that an avalanche detected in one drainage basin cor-
responded to an avalanche observed and reported in another. The watershed
was used to represent the typical boundary for the terrain within line of sight
of an observer.

The drainage basin map was made in QGIS using the Geographic Resources
Analysis Suport System (GRASS) plugin tool r.watershed with the DEM as input.
The minimum number of pixels of an exterior drainage basin is controlled by
the threshold parameter, which was set to 60000. The convergence for multiple
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flow directions was set to 9 out of 10, meaning almost single flow direction.
This produced the most pleasing results. The r.watershed tool produced some
small unwanted sliver regions that were removed by vectorizing the raster and
merging all polygons of areas less than 1 km2 with the adjacent polygon with
longest common border. In addition, some polygons larger than 1 km2 were
merged manually where the partitioning was not necessary. This was typically
done in areas with low gradients and few strong terrain features such as sharp
ridges. Finally the drainage basin polygons were rasterized into a 20x20 m
grid with unique values for every polygon, as illustrated by Figure 4.2.

Figure 4.2: Drainage basins with unique raster values illustrated by random colors.
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4.1.5 Aspect

The algorithm uses slope aspect as one of the similarity measures when com-
paring avalanche observations to the detections within the same drainage
basin.

A 20 m resolution slope aspect raster was computed using the DEM and the
QGIS GDAL plugin tool gdal:aspect with default parameters. The aspect is
represented with azimuth degrees, where north is zero and then in clockwise
ascending order: east(90), south(180), west(270). The aspect values are not
categorized into the four cardinal directions, but kept as floating-point numbers.
The aspect raster values are illustrated in Figure 4.3
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Figure 4.3: Grayscale representation of the aspect raster values. North is 0 degrees
(dark), then ascending clockwise to 360 degrees (bright).
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4.1.6 Slope angles

The slope aspect is not well-defined for flat ground, which is why the aspect
value of the ocean in Figure 4.3 is white, i.e facing north. The algorithm
handles this problem by applying a slope angle threshold to avoid assigning
aspect values to near-flat ground.

Much like the aspect raster, a 20 m resolution slope raster was produced in
QGIS (Figure 4.4).
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Figure 4.4: Color-coded slope angles for the example area.
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4.1.7 Configuration file

All the parameters used by the comparison algorithm can be tuned in the
configuration file. This file provides easy access to the parameters related to
adjusting algorithm performance and output. Notable parameter categories
stored in the configuration file includes: Times and regions limiting the regObs
API query, shape parameters for the scoring functions and file-paths to the files
required to run the algorithm (Table 4.1).

Table 4.1: The main content of the configuration file.

Parameter Description
use_obstypes Observation subcategory used (see Figure 3.4)
obsdate_from Start date of the API query
obsdate_to Stop date of the API query
AOIregions The regions of the API query
stop_pt_sigma Distance scoring function sigma
CCDF_threshold Distance score significance level
aspect_time_threshold Threshold for the aspect-time product
slope_threshold Slope threshold in degrees
timeslack Variable used when comparing timeframe
no_stp_spread Distance sigma used without stop point
path_alg_dep Path to the algorithm dependencies folder

4.2 Comparison algorithm workflow

This section presents the main components of the comparison algorithm in
a step-by-step manner following Figure 4.5. The code for the comparison
algorithm was written in Python 3 with an object oriented design. The entire
algorithm is as an instance of a Python class called Comparison_Algorithm. The
observations and detections were also handled in the algorithm as instances of
the Observation and Detection classes.
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Figure 4.5: Workflow of the comparison algorithm.

4.2.1 Get observations

While the avalanche detections were stored locally, the avalanche observa-
tions from regObs were accessed using the regObs python API. The API
returned observations matching the search criteria defined in the configu-
ration file as a pandas DataFrame. Python code for accessing avalanche ob-
servations using the python API was provided by NVE and can be found at
https://github.com/NVE/varsomdata. The get_avalanche method from getob-
servations.py was used.

The variables given to the API query were from_date, to_date and region_ids
defining the temporal and spatial extent of the observations. Figure 4.6 illus-
trates the locations of avalanche observations from the example area within:
from_date= ’2018-12-01’ , to_date= ’2019-05-31’.

Some of the avalanche observation database entries had no information in the
data-frame cells related to the avalanche observation form. This was found
to coincide with database entries only containing an image. These image-
only observations were filtered out, leaving only observations with non-empty
avalanche observation information forms.
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Figure 4.6: Avalanche observations from the 2018 - 2019 season represented by red
markers.

If the API output was empty, the algorithm would inform about this and
terminate.
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4.2.2 Convert timestamps to UTC

The timestamps of the regObs observations are given in local time, while the
avalanche detections have timestamps in Coordinated Universal Time (UTC).
In order to compare times and produce timedelta objects, all timestamps must
be converted to UTC. This way, ambiguities related to time zones and daylight
savings time are avoided.

All timestamps referred to and presented in this thesis are UTC times.

4.2.3 Crop observations

The Satskred AOI intersects five of the avalanche forecast regions defined
by NVE: Tromsø, Lyngen, Sør-Troms, Indre Troms and Nord-Troms (Varsom,
2020b). Large parts of the three latter regions fall outside the AOI, as illustrated
in Figure 4.7. As the input raster layers and the detections are defined only
within the AOI, all outside observations are disregarded at this step. Removing
the observations outside the AOI ensures that the observations evaluated in
the comparison algorithm are located where the avalanches could also be
detected in the satellite images. Removing these observations at an early stage
also gives a significant algorithm performance gain with regards to processing
time.

Some observations are close to the AOI border and could potentially have
been misplaced to a location inside the bounding box while the true avalanche
location is outside, and therefore not detected by the avalanche detection
algorithm. To avoid this issue, observations close to the border are also removed
if the observation is closer to the border than its own distance cutoff radius
(explained thoroughly in subsection 4.2.7). Because of the distance cutoff,
observations further inside the border could not have been assigned matches
from detections outside the AOI. Following this approach, one can be sure that
no matches were missed due to observations close to the AOI border, at the
expense of disregarding less than ten observations over the five seasons 2014 -
2019.
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Figure 4.7: The Satskred AOI represented by a red rectangle. Forecast regions ac-
cording to the NVE definition of December 2016. Avalanche observation
locations from the 2018 - 2019 season represented by red markers.
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4.2.4 Compare timeframe

The next step involves evaluating the observation time against the timeframe of
the detections. The Satskred avalanche detections are change detections based
on radar backscatter differences between a reference image taken at time C0
and an activity image taken at time C1. A detection represents an event, possibly
an avalanche, occurring within this timeframe causing increased backscatter.
Avalanche debris can be observed in the field several days after the avalanche
event, depending on weather conditions. Therefore, a variable called timeslack
was used to extend the timeframe by a few days and make possible evaluating
field observations after time C1.

The algorithm evaluates the timeframe of every Satskred detection against the
observation time of every avalanche observation. To avoid computationally
expensive looping operations, this is done by calculating timedeltas using
numpy arrays and outer subtraction. Each observation object is assigned a
list of detections with timeframes (+timeslack) that span the observation
time. These detections are from now on referred to as "timematches". In
the following algorithm steps when additional spatial filtering is done to
find potential matches of an observation, only timematches are considered
candidate detections.

The timeframe comparison significantly reduces the number of match candi-
dates, which is evident from Figure 4.8 and Figure 4.9. The first illustrates the
detections from the 2018 - 2019 season in the example area alongside with
one of the avalanche observations from the same season. The latter illustrates
the same area and observation, but only the timematching detections.

If no timematches have been found for any of the observations, the algorithm
will inform about this and terminate.
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Figure 4.8: Avalanche detections from the 2018 - 2019 season illustrated by blue poly-
gons. Observation location of RegID 193802 represented by red marker.
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Figure 4.9: Observation location of RegID 193802 represented by red marker.
Timematching detections calculated using a timeslack of five days repre-
sented by blue polygons.
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4.2.5 Compare drainage basins

After temporal filtering, the observations and detections are assigned drainage
basin memberships using the drainage basin raster input file. The drainage
basins are not used in the classical water-science manner, but instead as a
convenient way of dividing the AOI into sub-regions separated by ridges and
other prominent terrain features. The purpose of using drainage basins is
partly to perform a rough, initial spatial filtering and partly to avoid false
matches from detections on the wrong side of a mountain or ridge. If only
distance-based spatial filtering was performed, a number of detections could
be considered matches even though they were separated from the observation
by a ridge.

The drainage basin approach assumes that an observer being asked to point at
a field event in the map unlikely misplaces the event to the wrong side of a
mountain or ridge. The size of each drainage basin is large to ensure that the
spatial filtering performed in this step is not removing any true matches.

Timematches that also belong to the same drainage basin as the observation
are stored in another list of time-DB-matches (Figure 4.10). These detections
have passed the initial filtering in time and space and will be the only ones
evaluated in the following algorithm steps.
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Figure 4.10: Observation location of RegID 193802 represented by red marker. Detec-
tions sharing drainage basin and timeframe with the observation as blue
polygons. Timeslack: five days. Drainage basins illustrated by black lines
along the watersheds.
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4.2.6 Calculate aspect scores

Detections of similar aspect to the observation should be considered more likely
to be a match than those with opposite aspect. Following this idea, a smooth
cutoff function could be used to reduce the aspect score with increasing aspect
difference. This approach also assumes that observers seldom misplace the
avalanche location onto a slope with opposite aspect.

Using the aspect raster, aspects values are assigned to both observations and
detections by sampling the raster at their locations. The aspect difference is
then calculated as the least difference between two aspects when turning
clockwise or counter-clockwise. Thereby, aspect differences take on values
from 0 degrees (equal aspect) to 180 degrees (opposite aspect).

A smooth cutoff function is used to give the detections an aspect score based
on the aspect difference. The cutoff function, otherwise referred to as the bump
function, is defined using the following expression:

5 (diff, cutoff) =


exp

(
1 − 1

1−( diff
cutoff )

2

)
, diff ∈ [0, cutoff)

0 otherwise

where diff is the aspect difference and cutoff determines where the bump
function goes to zero. Figure 4.11 illustrates the properties of the bump function
compared to a gaussian function of similar shape. The bump function has the
desired properties of bothmaintaining a relatively high score for similar aspects
and reducing the aspect score to zero for detections with opposite aspect. The
cutoff was set at an arbitrary 160 degrees for visualization in Figure 4.11. The
selection of parameter values, such as the aspect cutoff is presented in section
5.1.
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Figure 4.11: The blue line represents the bump function used for assigning aspect
scores to detections. The gaussian function in orange is included only
for reference as the comparison of the two highlights the desired cutoff
properties of the bump function.
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4.2.7 Calculate distance scores

Detections close to the observation location are intuitively considered more
similar and more likely a match. The probability of the detection matching
the avalanche described in the observation follows an unknown distribution of
which distance is most likely one of the variables. Seeking the match probability
and the associated distribution is difficult, as the true explanatory variables
are mostly unknown and likely not independent. Using supervised machine
learning methods to classify the detections as matches or no-matches is not
an option without a dataset of confirmed matches and no-matches as training
data.

In order to design a distance scoring function, the probability of an observation
being placed a given distance away from the detection given that they are a
match, can be used. There is no available dataset on the actual distance from
the location stated in the observation entry to the true location of the avalanche.
However, it is reasonable to assume that the easterly and northerly deviations
from the true location are independent. The underlying causes for missing
the mark when attempting to point at the map location of a field event is not
known and can be numerous. In the absence of reasons suggesting otherwise,
and for mathematical convenience, the deviations are assumed to be normally
distributed around the aim point in each direction.

If the easterly- and northerly deviations (abbreviated : E, N) are assumed to be
identically normally distributed, a two-dimensional distance vector of the two
deviations would follow a circular bivariate normal distribution. Themagnitude
of this distance vector proves useful when building a distance scoring function.
According to Ross (2004), the magnitude of the distance vector:

D =
√
E2 + N2

would then be chi-square distributed with 2 degrees of freedom, which is
otherwise known as a Rayleigh distribution (Figure 4.12 ). The shape of the
Rayleigh distribution is determined by its shape parameter, f , which in general
will be referred to as sigma from now on.
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Figure 4.12: The probability density function of the Rayleigh distributed distance
plotted for several values of sigma.

Unfortunately, as the easterly and northerly deviations were assumed to be
normally distributed with an unknown spread, the sigma of the Rayleigh
distribution is also unknown. The sigma value is set in section 5.1 by running
the algorithm with multiple sigma values and choosing the most reasonable
value based on the outputs.

The distance scoring function used in the algorithm is found by first integrat-
ing the probability density function of the Rayleigh distribution to get the
cumulative distribution function (CDF). Then, the complementary cumulative
distribution function (CCDF) is simply 1 - CDF. The CCDF has the desired prop-
erties for the distance scoring function: a short distance gives a high distance
score (Figure 4.13).

Furthermore, using the CCDF for distance scoring makes the distance score
equal to the probability of the distance taking on a greater value than d,
given that the observation and detection are referring to the same avalanche
event:

% (� > 3 |<0C2ℎ)

Here, the detection location is used as a proxy for the field location the observer



4.2 comparison algorithm workflow 45

was aiming at when placing the map pointer. This is reasonable if the detection
and observation are referring to the same avalanche, due to the high positional
accuracy of the satellite detections (Eckerstorfer et al., 2019).

Note that the distance scoring function is only used to evaluate spatial proximity
and must not be confused with the probability of match given a distance:

% (<0C2ℎ |� = 3)

The distance scoring function was established using the distribution of the
magnitude of the two-dimensional distance vector given that the observation
and detection match. This match assumption is used in a similar manner as a
null hypothesis for a right sided hypothesis test (Ross, 2004, p. 292) to apply
a distance threshold at a given significance level. When the null hypothesis is
true, the distribution of the distance is as described above and the probability
of a distance greater than the distance threshold equals the significance level.
In Figure 4.13, the distance thresholds can be read from the intersections of the
5% dotted line and the distance scoring function for different values of sigma.
Distances larger than the distance cutoff are considered unlikely to represent
true matches.
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Figure 4.13: The complementary cumulative distribution function of the Rayleigh
distributed distance plotted for several values of sigma.

The application of the distance threshold is described when the scores are
combined in subsection 4.2.9.
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4.2.8 Calculate time scores

The detections have already been filtered in time at this point. However,
implementing a time score is useful to smooth the transition between detections
considered timematches and those excluded due to observation times outside
the allowed timeframe. The smooth cutoff function is the same bump function
as the aspect score, only with cutoff set to C1+timeslack. Figure 4.14 illustrates
how the time score function gives full score to detections with the observation
time fitting within the time interval from C0 to C1. Observations of avalanches
from times before the reference image time C0 will not match the change
detections, hence the sharp rise from 0.0 to 1.0 at C0.
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Figure 4.14: Time score function presented with a timeframe between C0 and C1 of six
days and a timeslack of five days.
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4.2.9 Combine scores

The comparison algorithm cannot tell with absolute certainty whether an
observation and a detection refers to the same avalanche or not. Therefore, a
match is a detection similar enough to the observation to be considered possibly
referring to the same avalanche event from the similarity criteria applied in
the algorithm. If an observation has more than one match, the one with the
best overall score will be referred to as the best match.

In the combine scores algorithm step, the aspect- and time-scores are multiplied
and the product score is evaluated against a threshold value to ensure that all
matches have similar aspect and time as the observation. Likewise, the distance
threshold mentioned in subsection 4.2.7 is applied to the distance score to
ensure all matches are reasonably close to the observation. All detections with
scores exceeding both thresholds are considered matches and their overall
score, also referred to as total score, is the product of the aspect-, time- and
distance-scores (Figure 4.15).

Combine scores

Output files

Observations with matches Observations without matches

Observations (N = 308)

Observation
RegID:193802

Time-DB-matches (N = 47)

Matches (N=2)

Detection
ObjectID:41312

Distance score

Aspect-time score

Scores exceed both thresholds

Time score

Aspect score

N > 0

Compute total score
(Aspect x Time x Distance)

Figure 4.15: The workflow of the algorithm step where scores are evaluated against
the score thresholds. The algorithm loopes over all 308 observations
and evaluates the scores of all time-DB-matches of each observation.
Observation with RegID 193802 and one of its time-DB-matches are used
as examples.
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Even though all the matches are considered similar enough to possibly refer
to the same avalanche as the observation, the best match is more likely to be
the one originating from the increased radar backscatter associated with the
avalanche debris of the observed avalanche.

The different scores are designed to penalize detections with properties that
point towards not referring to the same avalanche. Therefore, a full score in
either category should be interpreted as "similar enough to avoid a penalty"
and not as a "certain match". This score design, together with thresholds and
multiplication to get the total score, is preferred over e.g a weighted average
of scores as a single unacceptably low score in one of the categories can put
the detection outside the list of matches. It is still worth noticing that the total
score should not be used to determine the probability of a match, but merely
a convenient way of quantifying similarity.

Figure 4.16 illustrates the total score of the matches of RegID 193802. The total
score is obtained by multiplying the aspect-, time- and distance-scores. For the
best match in Figure 4.16 the scores are as follows:

Total score = Aspect score · Time score · Distance score

Total score = 0.696 · 1.00 · 0.981
Total score = 0.684

This detection is considered a match because both the aspect-time threshold
and the distance score threshold was exceeded (Figure 4.15). The total score is
used to determine the best match if an observation has more than one match.
There is no relation between the number of matches and the total score of the
best match.
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Figure 4.16: Matches of RegID 193802 represented with green polygons and the total
scores rounded to three decimals are included next to the polygons. The
time-DB-matches are represented by blue polygons. The distance scoring
function sigma parameter was 300 and distance was measured between
minimum elevation points and stop points.
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4.3 Parameter values

The algorithm described above is dependent on a set of parameter values to
run. All of the parameters can be tuned and their current values are found in
the configuration file. Before producing the results, an optimal set of parameter
values were chosen by running the algorithm multiple times and tuning only
one of the parameters at a time. Optimal in this sense means the values that
is thought to make the algorithm recognize as many true matches as possible,
while keeping the false matches at a minimum.

The performance related parameters tuned and the corresponding plots are
presented in section 5.1. Other algorithm input variables that are not related to
algorithm performance, such as spatial and temporal extent of the comparison,
are free to be chosen by the algorithm user and are not subject to parameter
tuning.



5
Results
This chapter comprises two main sections. First, the selection of algorithm
parameters is presented in section 5.1. The results from tuning parameters
are given preliminary interpretations and a set of optimal parameter values
is put together. Second, the results obtained from running the comparison
algorithm is presented in section 6.2. The output from the algorithm is a
classification of observations with stop point into a set of observations without
matches and a set with at least one match. The most essential properties of
the classified observations are explored for the whole AOI over the five seasons
2014 - 2019. Furthermore, a more detailed study of the Lyngseidet area is
presented. Finally, an example is given of the results that could be obtained by
comparing observations without stop point to the avalanche detections.

5.1 Selecting algorithm parameter values

5.1.1 Observations with stop point

The regObs database has 308 observations with stop points within the AOI
for the period 2014 - 2019. This section explores the effects from adjusting
parameters on the total number of timematches, the number of observations
with at least one match, and the number of observations with only one match.
The plots below are presented using observations with stop point from all five
seasons if nothing else is specified.

51
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Timeframe comparison: Timeslack value

The time scoring function used in the timeframe comparison step has a smooth
cutoff. The time where the timescore function reaches zero is determined by
the timeslack value (Figure 5.1). The interpretation of this parameter is the
number of days beyond the timeframe between reference and activity image
an observation can be made, and still receive a nonzero timescore.
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Figure 5.1: The time score function with different timeslack values. The square shape
represents the timeframe between reference image time (C0) and the
activity image time (C1), most often 6 days. The time score is zero for
times before C0, one within the timeframe and gradually slopes off to a
cutoff at the timeslack value.

For a detection to be considered a timematch of an observation, the time of
the observation must be within the timespan from C0 to C1+ timeslack for the
detection to get a nonzero timescore. Therefore, by increasing the timeslack
parameter value, more detections will be considered timematches. The linear
trend of the increase is illustrated in Figure 5.2.
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Figure 5.2: Relative timematch proportions plotted against timeslack values for each
season (dashed lines). The blue line with dots indicate the combined num-
ber for all five seasons (2014 - 2019) and the dots indicate the timeslack
values tested.

The optimal timeslack should be set to a value that gives the observers enough
time to report an avalanche even if it occurred late in the timespan between C0
an C1. Furthermore, the timeslack should be small enough to prevent a high num-
ber of avalanches reccuring in the same area being considered matches.

After spatial filtering has been applied, the number of observations with at least
one match can be counted. Figure 5.3 illustrates how the timeslack parameter
affects the number of observations with at least one match. Consistently, for the
three different sigmas tested, the number of matches increases as the timeslack
gets larger, which is expected. With a timeslack of 5 to 6 days, there is a
tendency in all three graphs of a more gentle increase. This can be interpreted
as the timeslack value that optimizes the criteria mentioned above. The steeper
increase corresponding to timeslacks of 8 to 10 days could point to when a
significant number of avalanche recurrences are considered matches.
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Figure 5.3: Observations with at least one match plotted for different sigma values
against timeslack value. The left y-axis shows the number, while the right
y-axis shows the percentage of the total of 308 observations. The other
parameters were fixed at: aspect cutoff: 160, slope threshold: 3 degrees,
CCDF threshold: 0.05, aspect-time threshold: 0.1
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Distance scoring: Sigma value
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Figure 5.4: The distance scoring function based on the complementary cumulative
distribution function of the assumed Rayleigh distributed distance variable.
The 5% threshold intersections indicate at which distance the detections
are too far to be considered likely matches for each sigma.

Sigma, the shape parameter of the distance scoring function determines how
relaxed, or non-restrictive the algorithm is when evaluating the spatial similar-
ity of observations and detections (Figure 5.4). The sigma value is an important
parameter as it largely influences the count of observations with matches. This
is apparent from Figure 5.3 where the larger sigma values produce larger match
counts. The distance threshold is kept at a 5% of the maximum distance score,
while the shape parameter is tuned in this section.

To decide on the optimal sigma value for the observations with stop point, the
value that recognizes the most true matches while keeping the number of false
matches low is again sought after. Without training data of actual matches,
the procedure is again to apply reasoning and plot the results for different
parameter values.

Two different effects determine the number of observations with only one
match when increasing the sigma value:
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1. Observations without matches getting their first match at a given sigma
value contribute to a higher count

2. Observations with one match getting additional matches at a given sigma
value contribute to a lower count.

The second effect is mostly unwanted as the additional matches are likely false
matches, while the first is desired to ensure including the true matches. Figure
5.5 indicates that a sigma value around 400 is optimal. The figure was produced
by running the algorithm on both age-tracked and the all-detections dataset.
The local maximum at 400 indicate that this is the sigma value giving the
most observations with only one match. However, there is no way of knowing
whether the single match is a true match or not. Above 400, the second effect
is larger than the first, making the count drop due to multiple matches.
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Figure 5.5: Number of observations with only one match plotted for each season
against sigma value of the distance scoring function. The points on the
lines indicate which sigma values were tested. The other parameters were
fixed at: timeslack: 5 days, aspect cutoff: 160, slope threshold: 3 degrees,
CCDF threshold: 0.05, aspect-time threshold: 0.1

After manually reviewing all regObs entries of avalanche observations in the
Tromsø and Lyngen regions for the 2018 - 2019 season, the impression is that
observers generally are quite accurate when placing stop points. A sigma value
of 400 at a 5% threshold gives a threshold distance of 979 meters (Figure 5.4).
This appears to be too relaxed, running the risk of including a large number
of false matches. The distance thresholds for sigmas of 200, 300 and 400
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is illustrated in Figure 5.6, centered around the avalanche observation with
RegID 193802. By manual evaluation of the regObs entry with the attached
comment and image, the detection closest to the observation is considered a
match.

Figure 5.6: Observation with RegID 193802 (red marker) surrounded by circular dis-
tance 5% threshold cutoffs for sigma values of 200 (orange), 300 (green)
and 400 (red). The radii are 489, 734 and 979 meters, respectively. De-
tections are illustrated by blue polygons with dark green points indicating
their minimum elevation points.The drainage basin perimeter is repre-
sented by black lines along the watersheds.

By combining the impressions frommanual evaluation of the regObs entries and
Figure 5.5, the sigma value is set to 300 for the optimal set of parameters.
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Aspect scoring: Aspect cutoff value

The aspect scoring function is defined using the same bump function as the
smooth cutoff of the time score, and can be tuned by using different aspect
cutoff values (Figure 5.7).
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Figure 5.7: Aspect scoring function plotted for four different aspect cutoffs.

The purpose of aspect scoring is to reduce the score of detections with largely
different aspect than the observation. Figure 5.8 illustrates how the aspect
cutoff affects the number of observations with at least one match. The aspect
cutoff does not significantly contribute to disregarding detections if the value is
set above 90 degrees. There is also a tendency towards aspect filtering affecting
the countmore for large values of sigma. This is likely due to very few detections
with large aspect differences being located within the distance cutoff circles
(see Figure 5.6). Consequently, the aspect cutoff is more influential when using
large sigma values.
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Figure 5.8: Observations with at least one match plotted against the aspect cutoff
value using three different sigma values. The other parameters were
fixed at: timeslack: 5 days, slope threshold: 3 deg, CCDF threshold: 0.05,
aspect-time threshold: 0.1

Aspect scoring: Slope threshold value

The aspect of a slope is not well-defined for flat terrain. Therefore, a slope
threshold is applied to avoid having to assign aspect values to points located
on near-flat slopes. The aspect score is set to 1 for observations with stop
point below the slope threshold. By design, this is equivalent to not evaluating
their aspects, as the scoring system effectively assigns score penalties based
on the degree of dissimilarity between observations and detections. Therefore,
increasing the slope threshold will simply reduce the number of observations
with aspect score less than one. Because the aspect would be close to arbi-
trary on near-flat terrain, potential matches could be disregarded if the slope
threshold is set too low.

The histogram of the slope angles,measured at the stop point of the observations
using the 10 m DEM is presented in Figure 5.9. Twelve observations with stop
point at a slope below three degrees were made during the 2014 - 2019
period. The slope threshold decided on for the optimal parameter set is three
degrees.
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Figure 5.9: Histogram of avalanche observation slope angles measured at the stop
point. The bin size used is three degrees. The red column represents the
observations affected by the slope threshold.
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Aspect-time threshold and distance threshold values

The thresholds placed on the aspect-time score and the distance score can
be tuned to adjust the algorithm performance. However, the parameters of
the scoring functions these thresholds are applied to have already been tuned.
The thresholds are therefore kept at the initial values used during parameter
tuning. The 5% significance level for the distance score threshold also has the
added statistical reasoning behind it (Subsection 4.2.7).

Both thresholds are necessary to evaluate which detections have been assigned
scores that are not compatible with referring to the same avalanche as the
observation.

Parameter selection summary

The parameters set above are summarized in Table 5.1.

Table 5.1: The (assumed to be) optimal set of comparison algorithm parameters for
observations with stop point.

Parameter Optimal value
Timeslack 5 days
Sigma 300
Aspect cutoff 130 degrees
Slope threshold 3 degrees
Aspect-time threshold 0.1
CCDF threshold 0.05
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5.1.2 Observations without stop point

If observations without stop point are used, a few of the parameters must
be adjusted. The distance is then calculated from the position associated
with the registration, as opposed to the stop point location. Therefore, the
shape parameter of the distance scoring function, sigma, should be changed
accordingly. The estimated optimal sigma used for observations with stop point
can be reused here as an estimate of the error introduced by placing a pointer
in the map in general.

From reviewing regObs entries manually, the general impression is that ob-
servers focus on the release area when entering registration location. The
avalanche detection polygons only represent avalanche debris (Section 3.1).
Consequently, comparing the polygon centroid to the registration location
introduces a potential uncertainty related to the avalanche path length. The
reported avalanche size can be used to choose the typical path length, following
Table 2.1

The observer has the option of entering positional uncertainty related to the
registration location. The seemingly unrealistic uncertainty value of zerometers
is the most frequently entered for registations made using the regObs web site
(Figure 3.5). Furthermore, all observations registered using the regObs mobile
app are automatically assigned zero meters uncertainty. The observations with
registration location set using the GPS location of a smart phone should be
disregarded, as this position is the observer location and could potentially be
very far from the avalanche.

The new sigma values can be calculated by adding the three uncertainty
contributions in quadrature:

sigma =
√
path2 + uncertainty2 + pointer2

Where path is the typical path length of an avalanche of the reported destructive
size, uncertainty is the reported positional uncertainty and pointer is the error
related to placing a pointer in the map. If not given, the path length can be
computed as a weighted average of the other path lengths. In that case, the
resulting typical path length of avalanches reported without stop point in the
AOI during the 2014 - 2019 period is 598 meters.
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5.2 Presenting results

In this section the results from running the algorithm with the parameter
settings described in section 5.1 will be presented. The classification result
for each avalanche observation can be found in Table 9.1 in the appendix.
The output from the algorithm is, in essence, a classification of observations
into those with at least one match and those without matches. Some of the
classification results are validated by examining the regObs entries manually.
All of the presented plots represent the algorithm output and are not adjusted
according to themanual validation. Emphasis will be placed on the classification
of observations with stop point. These results are first presented for the entire
AOI, before the results from focusing on the Lyngseidet area are presented.
Finally, an excerpt of the results obtained from running the algorithm with
observations without stop point is presented in subsection 5.2.8.

Observations with stop point are considered the most applicable for direct
comparison to avalanche detections (Section 3.2). In this category, a total of 308
avalanche observations from 2014 - 2019 were evaluated by the comparison
algorithm. 78 (25.3%) of these had at least one match, while 230 (74.7%) had
no matching detections. Several properties of the classified observations are
investigated below. Consistently, green color is used to represent observations
with matches, while red is used for observations without matches.

5.2.1 Observation location

The spatial distribution of the classified observations within the AOI is presented
in Figure 5.10. The locations of the observations span most of the mountainous
regions of the AOI. Some clusters of observations can be identified in popular
areas for backcountry recreation, such as Lyngseidet (A) and Kattfjordeidet
(B). Furthermore, clusters of observations can be identified close to the ground
based radar installation in Holmbuktura (C) and infrasound installation in
Lavangsdalen (D) (Section 3.2.2). Figure 5.10 is presented with green dots
as the uppermost layer, which can give a false impression of very high match
percentages in some of the observation clusters.

The area with a high density of observations that stood out with regards to low
match percentage, was the area centered over Lyngseidet. This area has been
investigated in detail and the results are presented in subsection 5.2.7.
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A

C

D

B

Figure 5.10: Map of the AOI with green points representing observations with matches
and red points representing observations without matches. The green
points have been added on top of the red and may hide some of the
observations without matches. Labeled areas with a high density of
observatons: Lyngseidet (A), Kattfjordeidet (B), Holmbuktura (C) and
Lavangsdalen (D).
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5.2.2 Reported Avalanche size
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Figure 5.11: Reported avalanche size plotted for observations with stop point. The
observations are classified into observations with at least one match
(green) and without matches (red), and plotted by proportions within
each avalanche size.

The observers have the option to estimate avalanche size when registering
an avalanche observation. The distribution of reported avalanche size of the
classified observations is presented in Figure 5.11. The two most frequently
reported avalanche sizes are size 2-Medium and 3-Large.

TheNot given category accounts for 60 of the observations and togetherwith the
4 entered as Unknown, roughly one fifth of the observations have unspecified
avalanche sizes. Further investigation of these observations found that 41
of the 60 observations with avalanche size Not given were entered by the
account drift@svv (an account associated with the Norwegian Public Roads
Administration (SVV)).

A tendency towards higher match percentages for the Large and Very large
avalanches can be seen in Figure 5.11.

The 32 avalanche observations with reported avalanche size 1-Small were
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investigated further by manually applying all the entered regObs information,
including text comments and images, to validate the comparison algorithm
classification. Out of the 8 avalanches of reported size 1-Small, 6 had only
false matches, i.e detections incorrectly classified as matches. The other two
observations with matches, were both wet loose-snow avalanches with long
runout lengths. All of the 24 observations without matches was considered by
the manual validation to be correctly classified,meaning that the avalanche was
not detected. The match proportion of observations of reported size 1-Small is
2 out of 32 (6%) using manually validated numbers.

The 17 observations with reported avalanche size 4-Very large were examined
the same way with the following results. 6 of the 7 avalanche observations
with matches were confirmed to be correctly classified, while the last one was
a false match and the avalanche was not detected. 9 out of the 10 observations
classified without matches were correctly classified by the comparison algo-
rithm. One observation was incorrectly assigned no matches. This observation
had two detections matching the images and comments entered to regObs. Fur-
ther investigation found that the aspect difference was higher than the aspect
threshold value of 130 degrees. In summary, the manual comparison found
that two observations were incorrectly classified, while the match proportion
of the size 4-Very large avalanches was correct at 7 out of 17 (41%).

The single avalanche of size 5-Extremely large without matches can not be
used to infer any general knowledge of the detectability of destructive size five
avalanches. Nevertheless, the observation was validated manually and found
to be correctly classified. The image and comments indicated that this was a
spontaneously released dry slab avalanche and the placement of the stop point
was accurate.
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5.2.3 Reported Avalanche type
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Figure 5.12: Reported avalanche type plotted for observations with stop point. The
observations are classified into observations with at least one match
(green) and without matches (red), and plotted by proportions within
each avalanche type.

Similar to avalanche size information, it is optional to include the avalanche
type. Figure 5.12 illustrates the reported avalanche types of the classified
observations, including columns for Not given. Once again, a large portion (41
out of 74) of the observations with avalanche type Not given was entered by
drift@svv. Out of the specified avalanche types, Dry slab avalanches were by
far the most frequently entered.

Observations of Wet slab avalanches have the highest match percentage when
disregarding the single Glide-snow avalanche with match resulting in 50%. A
tendency towards the wet avalanches having a larger percentage of matches
can be interpreted from Figure 5.12. Both within the slab avalanche category
and the loose snow category the wet avalanches have highermatch percentages.
However, the match proportion of Dry slab and Wet loose are roughly equal, 36
out of 139 (26%) and 5 out of 20 (25%), respectively.

None of the 12 Cornice fall observations or 5 Slush avalanches have matching
detections.
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5.2.4 Observation time
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Figure 5.13: Observations with stop point plotted against season. The observations are
classified into observations with at least one match (green) and without
matches (red), and plotted by number (a) and proportions (b) within
each month.

The observation time of the observations divided into the five seasons studied
is illustrated in Figure 5.13. Only 16 observations belong to the 2014 - 2015
season. The other four seasons have consistently over 60 observations with a
maximum of 93 in the 2016 - 2017 season.

The match proportion for season 2018 - 2019 is only marginally larger than
for season 2016 - 2017, with 33% and 32% respectively.
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Figure 5.14: Observations with stop point plotted against month. The observations are
classified into observations with at least one match (green) and without
matches (red), and plotted by number (a) and proportions (b) within
each month.

The monthly distribution of the observation time is illustrated in Figure 5.14.
The number of observations is highest for March and gradually decreases
towards the end and beginning of the seasons.

None of the 10 observations from December had matching detections. The
match percentage for April stands out as the highest with 42 %. For December
and April, the avalanche sizes and avalanche types are illustrated in Figures
5.15 and 5.16. The size distribution for December is roughly even between
sizes 1-Small, 2-Medium and 3-Large. The size distribution for April resembles
the distribution from Figure 5.11, only with generally higher match propor-
tions.

By comparing the avalanche type distributions for the two chosen months
against the overall type distribution in Figure 5.12, some differences can be
identified. Dry slab avalanches account for 9 out of 10 December observations,
which is a higher proportion than 139 out of 308 (45%) overall. For April, dry
slab avalanches are the most reported, but avalanches of types Wet slab and
Wet loose are more represented than in Figure 5.12. Figure 5.17 illustrates the
size distribution of the dry slab avalanches observed in April. No significant
difference in size distribution can be found by comparing these avalanches to
the overall size distribution illustrated by Figure 5.11.
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Figure 5.15: Observations from December (a) and April (b) with stop point plotted
against avalanche size. The observations are classified into observations
with at least one match (green) and without matches (red).
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Figure 5.16: Observations from December (a) and April (b) with stop point plotted
against avalanche type. The observations are classified into observations
with at least one match (green) and without matches (red).
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Figure 5.17: Observations from April of type Dry slab plotted against reported
avalanche size. The observations are classified into observations with
at least one match (green) and without matches (red).
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5.2.5 Slope angle
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Figure 5.18: Superimposed slope angle histograms for observations with and without
matches. The bin size is three degrees. The slope angle is computed from
the DEM at the stop point location.

Figure 5.18 illustrates the slope angle distributions of the classified observa-
tions. The histograms are superimposed to investigate for shape differences
suggesting slope angle dependency. No obvious shape differences can be seen
from figure 5.18.
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5.2.6 Aspect

N

NE

E

SE

S

SW

W

NW

10

20

30

40

Match
No match

(a)

N
NNE

NE

ENE

E

ESE

SE

SSE
S

SSW

SW

WSW

W

WNW

NW

NNW

10

20

Match
No match

(b)

Figure 5.19: Aspect plotted for observations with stop point and slope angle above
slope threshold (N = 296). The observations are classified into observa-
tions with at least one match (green) and without matches (red), and
divided into 8 and 16 directions in sub-figures (a) and (b), respectively.
The radial axis represents the number of observations within each aspect
direction.

The aspect of the observations measured at the avalanche stop point location is
illustrated in Figure 5.19. A pattern where observations on slopes facing west
and east/southeast can be seen. This pattern is found both when categorizing
aspect into 8 and 16 directions. However, no significant difference in the aspect
distributions between observations with matches and observations without
matches can be determined from Figure 5.19.

8 of the 30 observations on slopes facing west in Figure 5.19 (b) were from
the Holmbuktura radar installation. The eight avalanche observations from
the infrasound installation in Lavangsdalen were done on slopes facing east
(5 observations), east-southeast (2 observations) and northeast (1 observa-
tion).
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5.2.7 Focus area: Lyngseidet

Figure 5.20: Map of the AOI with classified observations represented by red and green
dots. The Lyngseidet focus area is illustrated by a red rectangle.

Some areas with a high density of observations were identified from studying
Figure 5.10. One area with a high number of observations and a low num-
ber of observations with matches is Lyngseidet (Figure 5.20). Out of the 33
observations, 3 (9%) had matching detections.

In Figure 5.21, the observations and detections in the Lyngseidet area from
2014 - 2019 are illustrated. It should be noted that the detections are not time
filtered with respect to any of the observation times. Therefore, only spatial
proximity can be seen directly. The observations without matches located close
to detected polygons in Figure 5.21 and Figure 5.22 have observation times that
are very different from the detection timeframe, which explains the no-match
classification.

The number of observations in the Lyngseidet area is relatively low, making
it possible to manually review the observation entries. A thorough manual
comparison of the observations and detections in the area was conducted using
the observation comments and images in addition to the spatio-temporal infor-
mation. The manual comparison gave the same classification as the comparison
algorithm for the Lyngseidet area.

One of the observations can be interpreted from the comments to be a duplicate,
meaning the same avalanche event has been entered twice. The comments
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Figure 5.21: Overview of the Lyngseidet focus area with classified observations as
green and red dots. The avalanche detections from 2014 - 2019 are
presented as blue polygons.

added to the observation gives the impression that the observer who entered
both observations did not understand the Norwegian questions in the form.
The lenght and type of the avalanche is stated in the comments in English. The
numbers presented for Lyngseidet are not altered to account for the duplicate
entry.

The masks applied by Eckerstorfer et al. (2019) to remove detections on glaciers,
in dense forest and agricultural areas are applied in Figure 5.22. The figure
illustrates how all three observations in the upper left corner are within the
area masked by the glacier mask. The residue of one detection polygon outside
the glacier mask explains why one of the observations has a match. Several
observations illustrated in Figure 5.22 are located in areas where no avalanche
detections were made during the entire 2014 - 2019 period.



76 chapter 5 results

Figure 5.22: The classified observations from Lyngseidet with stop point plotted with
some of the masks applied by Eckerstorfer et al. (2019).
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Figure 5.23: Reported avalanche size of the classified observations from the Lyngseidet
area.

The three observations with matching detections belong to avalanche sizes
3-Large and 4-Very large. None of the size 1-Small or 2-Medium avalanches
have matching detections (Figure 5.23).

Dry slab avalanches account for a substantial amount of the observations in
the Lyngseidet area, with 21 out of 33 (Figure 5.24).

The majority of observations from the Lyngseidet area was registered by three
observer accounts, as illustrated by Figure 5.25.
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Figure 5.24: Reported avalanche type of the classified observations from the Lyngsei-
det area.
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Figure 5.25: Bar-plot of the different observer accounts contributing to regObs in the
Lyngseidet area in the 2014 - 2019 period.
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Figure 5.26: Superimposed histograms of stop point slope angle of the classified
observations from the Lyngseidet area.

The slope angle distribution of the observations from Lyngseidet (Figure 5.26)
does not differ significantly from the slope angle distribution observed else-
where in the AOI (Figure 5.18).
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5.2.8 Observations without stop point

Observations without stop point are considered to have a larger positional
uncertainty and must be handled with care (Section 3.2.2). This section is
not aiming to explore the result from running the comparison algorithm with
these observations. Instead, the section should be viewed as an example of the
results that can be obtained by adopting an approach that accepts the additional
uncertainties associated with observations without stop point.

Only observationswith the following position information sources are presented
in this section: pointer in web map and pointer in regObs app. In these categories
of observations, a total of 195 avalanche observations from 2014 - 2019 were
evaluated. 55 (28%) of these had at least one match, while 140 (72%) had no
matching detections.
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Figure 5.27: Reported avalanche size plotted for observations without stop point. The
observations are classified into observations with at least one match
(green) and without matches (red), and plotted by number (a) and
proportions (b) within each avalanche size.
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Figure 5.28: Reported avalanche size plotted for observations regardless of stop point.
The observations are classified into observations with at least one match
(green) and without matches (red), and plotted by number (a) and
proportions (b) within each avalanche size.

Figure 5.28 illustrates the distribution of reported avalanche size of observations
regardless of stop point information. The result is equivalent to combining
Figures 5.11 and 5.27. A trend of higher match percentages for the Large and
Very large avalanches compared to Small and Medium avalanches is found in
Figure 5.11. This trend is also present in Figure 5.28.





6
Discussion
This chapter comprises two main sections. In section 6.1, the comparison
algorithm is discussed with emphasis on design choices, selection of input
data and performance in general. Section 6.2 is a discussion of the results
obtained from running the comparison algorithm to classify observations. The
implications from the results on the performance of the Satskred avalanche
detection algorithm are also discussed in section 6.2.

6.1 The comparison algorithm

6.1.1 Design

The design and workflow of the comparison algorithm is presented in section
4.2. The algorithm is designed to evaluate the temporal and spatial similarity
of all the detections against each of the observations. A general assumption
is made that all avalanche observations from regObs represent an avalanche
occurrence. The observations can thus be used as a set of true avalanche
events. The algorithm design reflects this assumption by evaluating the detec-
tions against observations. The reversed comparison of evaluating how many
detected avalanches are also observed in the field is not considered relevant
for improving the understanding of the detection algorithm performance. The
reason being the satellite data enabling detecting avalanches in remote loca-
tions regardless of light- , weather- and avalanche danger conditions (Section
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3.1).

Temporal comparison

The timeframe between the image time of the reference image (C0) and the
activity image time (C1) limits the precision of the time comparison. The change
detection states that the avalanche time of the detected feature must be within
the C0 - C1 timeframe. The interesting design choice with regards to time is
deciding how to relate the observation time of the avalanche observation to
this timeframe. The avalanche time is entered and sometimes explained in
the comments of the regObs entry, and other times only guessed at if the
observation refers to an older avalanche. The implementation of a timeslack
variable ensured that observation times after the change detection timeframe
was allowed. The drawback of this approach is that observations entered to the
regObs database shortly after the avalanche release time would benefit from a
very short timeslack to avoid false matches. Meanwhile, observations of older
avalanches would be disregarded if the avalanche release time was late in the
change detection timeframe and a short timeslack was applied. An attempt
to optimize the timeslack value to suit both these conflicting interests can be
found in section 5.1, where the five day timeslack was decided on.

An alternative design avoiding the timeslack could be to perform the time
comparison with the estimated avalanche time from the observation. This ap-
proach was not chosen due to the avalanche release times being considered too
uncertain to rely on without reading the attached comments. The observation
times, on the other hand, are assumed to be more accurate.

The avalanche observations in the regObs data base originating from ground
radar- or infrasound- detections have accurate avalanche release times (Section
3.2.1). Therefore, a time comparison especially designed for these observations
could be implemented using the estimated avalanche release time without the
need of a timeslack variable.

Spatial comparison

The spatial similarity was evaluated using drainage basins in addition to scoring
and thresholding of aspect and distance. The reasoning and effectiveness of
each of the three criteria is discussed below.

The drainage basin approach is very effective as an initial rough filtering.
For every observation, the number of timematches is much higher than the
number of time-DB-matches with average values of 641 and 18, respectively.
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The advantage of computing further statistics for 18 detections, as opposed
to 641, is obvious. However, similar results could have been expected from a
much more simple radial threshold or a bounding box. The other reason for
using drainage basins is that the watersheds defining the boundaries of the
drainage basin by definition, follows the highest points in the terrain (Figures
4.2 and 4.10). Therefore, the drainage basin filtering has the added benefit of
dividing the AOI into regions in a way that detections with a different drainage
basin membership can be disregarded as potential match candidates. This is
highly beneficial where an observation is close to e.g a ridge, and therefore
possibly close in distance to detections on the other side of the ridge. If the
only spatial filtering applied was a simple distance threshold, such detections
could have been considered matches. The assumption that observers are highly
unlikely to misplace a stop point to the extent that it is assigned a different
drainage basin membership is considered strong.

The drainage basin approach also has its drawbacks. First, the drainage basin
raster must be prepared in advance and is not computed automatically when
running the algorithm. This is an advantage when running the algorithm
multiple times for the same area. However, if the algorithm was to be applied
to a new region, such as entire Norway, preparing the drainage basins is tedious
work and requires at least a basic understanding of GIS.

The second problem using drainage basins is the lower boundary in the terrain.
Although the drainage basins fulfill their purpose along mountain tops and
ridges, applying a strict drainage basin filter in the lower parts of the terrain
is less meaningful. As a result, if an observation is located close to the lower
drainage basin border, some of the potential matches could be incorrectly
disregarded. This is not considered to introduce any significant errors in the
results presented. One alternative approach to avoid the lower border problem
is to draw lines along the prominent terrain features where matches on either
side should not be allowed. Then, detections located where a straight line from
the observation to the detection would have to cross the drawn line, would be
filtered out.

Aspect score is assigned to the remaining detections after drainage basin
filtering, the time-DB-matches. The purpose of evaluating the aspect is to
reduce the score of detections located on slopes that are considered less likely
to be where the avalanche registered in the avalanche observation entry is
located. Thereby, false matches from detections on the opposing side of a
valley can be avoided. Much of this score reduction is already taken care
of by the distance scoring function. From Figure 5.7 it can be interpreted
that aspect scoring becomes more influential for higher values of the sigma
parameter of the distance scoring function. One problem with the aspect
scoring approach became apparent from the manual validation of the algorithm
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results in subsection 5.2.2. One observation was incorrectly not assigned any
matches even though the manual comparison concluded that two of the nearby
detections most likely represented the same avalanches visible in the attached
images. The explanation for this is likely twofold: The images suggest that
the map pointer locating the stop point could be misplaced by roughly 400 m,
and the valley where the avalanches occurred made the misplacement severe
with respect to aspect difference. In general, the aspect scoring approach is
not expected to introduce many similar errors, but the sensitivity to stop point
placement in narrow valleys is noteworthy.

An alternative to evaluate aspect difference was explored in an early version of
the comparison algorithm. Drainage basins divided into so-called half-basins
along the rivers produced comparable results to evaluating aspect difference.
The interpretation of detections located in the opposite half-basin was that
they belonged to slopes of unacceptably large aspect difference and therefore
should be disregarded. The reason why the half-basin design was abandoned is
another drawback in addition to the two described above. The border between
half-basins in the uppermost part of a valley creates a strict boundary between
terrain that is essentially the same. The aspect scoring approach has no trouble
evaluating detections in the upper part of a drainage basin correctly, and was
therefore preferred over half-basins.

The most intuitive and essential spatial similarity measure applied by the
comparison algorithm is the distance between an observation and the potential
match candidates. In section 5.1, the sensitivity of the sigma parameter on the
match count is illustrated by several figures (e.g Figure 5.3 and Figure 5.8).
The sigma value of 300 appears to be reasonable from reviewing the algorithm
results, and the Lyngseidet area in particular (Subsection 5.2.7). From the false
matches identified by the manual validation, it should be argued that higher
sigma values will likely result in a large increase in false matches. Ideally, this
sensitive parameter would have been decided using a complete truth-set of
confirmed matches if such a set was available.

6.1.2 Selecting useful regObs data

The different data categories of the regObs database is presented in section 3.2.
Three main types of snow related entries are considered potentially useful for
comparisonwith avalanche detections: Avalanche observation,avalanche activity
and danger sign. In order to get the highest quality results, the main focus
was placed on making the comparison algorithm compatible with evaluating
avalanche observation type entries. The avalanche observations were considered
to be more directly comparable to the detections, as they only refer to a single
avalanche event and the observer has the option of specifying the stop point
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of the avalanche.

The stop point information is of great value for automatically comparing obser-
vations to detection polygons, as the avalanche detections represent avalanche
debris. When using observations with stop point, there is no uncertainty related
to which part of the avalanche the observer was referring to. Furthermore, the
minimum elevation point is a natural choice for point representative of the
detection polygons when calculating distance between the polygon and the
stop point given in the observation. The total number of observations with stop
point within the AOI in the 2014 - 2019 period was 308. Ideally, the number
should be higher to be able to be confident in the conclusions inferred from
the algorithm results.

One way of raising the number of observations is to add the avalanche obser-
vations without registered stop points. Doing so requires a number of difficult
design choices, and introduces a number of new uncertainties that must be
dealt with. The most obvious problem is the avalanche location. If no stop (or
start-) point is given, the only option is to rely on the position related to the
registration in general. As the registration location can refer to any point of
the avalanche, the observer location in the field or indeed the home address of
the observer, a significant uncertainty is introduced here. Even so, the general
impression from manually reviewing the observations from Tromsø and Lyn-
gen for 2018 - 2019 is that the registration location mostly can be trusted to
refer to the avalanche location. Another impression from the comments, map
pointers and images of the same observations is that observers often focus on
the release area of the avalanche instead of the debris. An additional spatial
uncertainty related to the size of the avalanche is thus introduced.

In section 5.1.2, a method for handling the positional uncertainties associated
with observations without stop point was proposed. The sigma parameter of
the distance scoring function was adjusted dynamically to account for the
reported avalanche size, and stated positional uncertainty of the registration.
One weakness of the method proposed, is the large impact on sigma from typi-
cal path length of the different avalanche sizes. As a result, the classification
of observations of certain avalanche sizes could become biased for avalanches
of significantly different length than the typical path length. This effect may
partly explain the relatively large match numbers for avalanches of reported
size 3-Large in Figure 5.27. In order to keep the positional uncertainties at an
acceptable level, observations with location information set using the GPS posi-
tion of a smartphone was disregarded. These were considered the observations
most likely to refer to a point far from the avalanche, as they certainly corre-
spond to the observers’ location when registering the avalanche observation
to the database. The resulting number of observations without stop point is
195, which brings the total number of observations up to 503, provided that
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the added uncertainties can be accepted.

The avalanche activity type entries of single avalanches can likely be handled
similar to the avalanche observations without stop point. The possibility that
the regObs entry could comprise several observation types should be kept in
mind when relying on the registration location. In these cases, the registration
location could well refer to e.g a snow profile from the same trip. The same
considerations apply when using the danger sign entries of recent avalanches,
and avalanche observations where an uploaded image is the only information
added to the regObs entry. If appropriate measures to account for the positional
uncertainties are found, a substantial increase in number of useful data samples
can be expected.

6.2 Interpreting results: Detection algorithm
performance

The performance of the Satskred avalanche detection algorithm is discussed in
this section on the basis of the results from section 5.2. The detection perfor-
mance with regards to avalanche size, avalanche type, slope angle and aspect
is discussed in separate subsections. Further, the results from the Lyngseidet
focus area are discussed before some of the masks applied in the detection
algorithm are evaluated. Even though a manual validation of the results was
conducted for some of the observations, all numbers presented in this section
represent the classification by the comparison algorithm, if nothing else is
specified.

The results from running the comparion algorithm can be used to evaluate the
performance of the Satskred avalanche detection algorithm. Even though the
avalanche observations are associated with some degree of positional uncer-
tainty, they are trusted to represent real field events. Furthermore, an avalanche
observation without matches is interpreted as a non-detected avalanche. This
reasoning was found to be valid for 49 out of the 50 classified observations
of size 1, 4 and 5 validated by the manual comparison using all available
information (Subsection 5.2.2). In general, the comparison algorithm is consid-
ered more prone to including false matches than incorrectly disregarding true
matches.

Eckerstorfer et al. (2019) found a probability of detection (POD) of 57% for the
automatic detection algorithm by comparing it to a set of 243 field observations.
The POD obtained from counting the number of regObs avalanche observations
with matches is 25.3% (78 out of 308) (Section 5.2). The large difference in
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POD for the two field validations is likely to stem from the properties of
the avalanches included in the two sets and will be revisited in subsection
6.2.2.

6.2.1 Avalanche size

The true size of the observed avalanches is not known, and not all of the
regObs entries have images attached, making a complete manual validation of
the reported sizes difficult. Therefore, without knowledge of systematic over-
or under-estimation of avalanche size by the observers, the reported size is
trusted when discussing avalanche sizes.

From dividing the observations into groups of each reported avalanche size, a
trend of higher match proportions for observations of the larger sizes could be
seen from Figure 5.11. This trend was further reinforced when accounting for
the high number of false matches in the size 1-Small category. Consequently,
the field validation suggests a very low detection capability of avalanches of
size 1.

One problem when inferring knowledge of detection capability from the com-
parison algorithm results in general, is the option to not enter information such
as avalanche size and avalanche type. If the 60 observations without specified
avalanche size truly represent the other sizes in a significantly skewed manner,
the identified trends may be false. One way of reducing the number of unspec-
ified avalanche sizes and types would be to suggest that the observers from
drift@svv could start to specify this information, as they already estimate the
avalanche debris volume.

In despite of the identified size trend, the single avalanche of reported size
5-Extremely large was not detected. This avalanche was a dry slab avalanche
observed in February 2017 near Kattfjordeidet on the Kvaløya island (Figure
6.1). The reason why this avalanche was not detected is unclear. However, the
possibility that much of the avalanche debris was deposited on a small frozen
lake (not included in the photo) below the slope can not be ruled out. If that
is the case, a change detection feature corresponding to this avalanche debris
could have been disregarded by the water mask.
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Figure 6.1: Image attached to the regObs observation of the only avalanche of reported
size 5-Extremely large. The crown can be seen below the cliffs and spans the
width of the image. Photo by Silje Lauritsen, retrieved fromwww.regobs.no

6.2.2 Avalanche type

The results from dividing the classified observations into avalanche types give
some interesting hints with regards to detection algorithm performance. For
slab avalanches and loose snow avalanches, the wet avalanche type had the
highest POD (Figure 5.12). This is consistent with the findings of Eckerstorfer
et al. (2019), who found, through field validation, that the detection algorithm
performed better for wet snow conditions than dry. With that said, none of the
five slush avalanches observed in the 2014 - 2019 period were detected. Other
factors than liquid water content of the avalanche debris are likely to explain
this, as slush avalanches rarely stop before reaching water or the sea (NVE,
2013).

Some of the missed detections of cornice fall avalanches could potentially be
explained by the area covered by cornice fragments being too small to exceed
the 10 - pixel area threshold applied by the detection algorithm. For larger
avalanches triggered by the cornice fall, this may not be the full explana-
tion.

The data set of field observed avalanches applied by Eckerstorfer et al. (2019)
consisted of 90% wet avalanches, out of which the vast majority was slab
avalanches. In the set of the regObs avalanche observations, on the other hand,
the dry avalanches (dry slab + dry loose) are represented, with 52% of the
total. The difference in POD found by comparing each field set to the automatic
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avalanche detections, can partly be explained by the proportions of dry- and
wet avalanches in the sets. However, the match proportions illustrated in Figure
5.12 do not suggest a POD of more than 50% for any set of field observations,
regardless of the avalanche type distribution. Therefore, the avalanche type
distributions alone do not account for the difference in POD.

By investigating the observation time, December and April were identified as
the extremes with regards to low and high proportions of matches, respectively
(Subsection 5.2.4). This is also partly explained by the avalanche types, as
the majority of December avalanches were dry slab avalanches. Furthermore,
the results for April showed that wet slab avalanches were over-represented
compared to the overall type distribution illustrated in Figure 5.12. Curiously,
several of the avalanche types had a higher match percentage in April than
their overall percentage (Figure 5.16). Eckerstorfer et al. (2019) suggested that
avalanches with low surface roughness were difficult to detect. If an argument
can be made that the surface roughness of April avalanches is above average,
and similarly below average for December avalanches, the surface roughness
could potentially explain the large difference in match percentages for the two
months.

The backscatter contributions from dry and wet snow are illustrated in Figure
2.4 for both undisturbed snow and avalanche debris. The partial transparency
of dry snow to C-band microwave radiation may cause a weaker backscatter
difference from dry avalanche debris, thus preventing these avalanches from
being detected. One suggestion could be to experiment with avalanche detec-
tion based on images from radars of higher frequencies, such as X-band, to have
a larger backscatter contribution from the air-snow interface, and possibly a
higher POD for dry avalanches.

6.2.3 Slope angle and aspect

Some aspects may be over-represented due to installations such as ground based
radars and infrasound detection systems. Regarding detection capabilities, no
dependencies on slope angle or aspect were possible to identify from Figures
5.18 and 5.19. However, in order to confidently compare slope angle and aspect
distributions between the match and no match categories, a larger number of
samples would be required.

6.2.4 Lyngseidet

From Figure 5.10, a tendency towards avalanches being observed and registered
in popular areas for backcountry recreation, close to public roads and at the
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locations of avalanche detection systems. Lyngseidet was identified as an area
with a low proportion of detected avalanches (9%) and therefore investigated
further in subsection 5.2.7. The classification performed by the comparison
algorithm was validated manually and found to be correct for all 33 avalanche
observations.

The single duplicate observation in the Lyngseidet area was likely caused by
the regObs platform user being inexperienced, or by the user struggling with
the Norwegian questions in the avalanche observation form, according to the
attached comments. In general, duplicate observations of the same avalanche
event could be a problem when relying on regObs data. With that said, the
manual validation of the comparison algorithm result does not indicate that
duplicates are common enough to significantly affect the results. Creating a
reliable automatic algorithm to check for duplicates is likely difficult, as two
different observations close in time and space do not necessarily refer to the
same avalanche. Evaluating images of the avalanches would be a more reliable
approach to determine if similar observations are indeed duplicates.

The low detection probability in the Lyngseidet area is unlikely explained by
avalanche size, avalanche type or slope angle, as none of these distributions
differ significantly from the overall. Two of the non-detected avalanches had
reported stop points in areas masked out by the glaciermask. Therefore, if these
avalanches were detected, they would likely not be included in the data set of
avalanche detections. However, one example that the masked out detections
in some cases can match an observed avalanche was found in the Lyngseidet
area. After masking, the small fractions of one polygon was found to likely
represent one avalanche observation (Figure 5.21 and Figure 5.22). If these small
residue-polygons are undesirable, the 10-pixel area threshold could be applied
again after masking to make sure the masked out detections are removed
completely. In summary, the glacier mask could be responsible for 2 of the 30
non-detected avalanches observed within the Lyngseidet area. The forest mask
and agriculture mask do not appear to inhibit detection performance.

The low number of different observers contributing to the regObs database in
the Lyngseidet focus area is not considered a problem with regards to reliability,
and is unlikely a factor explaining the low proportion of matches. The overall
impression is that the regular observers are competent and know the area well.
Regardless of observer competence, an observer is trusted to be able to place a
pointer in the map with reasonable accuracy.



7
Conclusions
In this thesis, I designed, implemented and tested a prototype algorithm for
automatic comparison of avalanche detections to crowd-sourced avalanche
observations from regObs. The effectiveness and general performance of the
comparison algorithm has been evaluated and discussed with emphasis on
algorithm design and choice of input data. The main design features of the
comparison algorithm relate to assessment of spatial and temporal similarity of
observations and detections. Drainage basin regions and aspectmaps were used
in addition to distance calculations to evaluate spatial similarity. The change
detection timeframe between reference- and activity image was extended by
a timeslack variable and was required to span the observation time if the
detection was to be considered a time-match. The optimal parameter settings
for the comparison algorithm were estimated through running the algorithm
multiple times and adjusting one parameter at the time. Strict parameter
settings in time and space led to disregarding a large number of detections
and consequently very few matches. Too relaxed parameter settings (i.e large
timeslack and a large sigma of the distance scoring function) were found to
give a high number of false matches that likely did not represent the same field
event.

The field observations from regObs were used as a truth-set, and the perfor-
mance of the Satskred detection algorithm was quantified by counting the
number of observed avalanches detected. Thus, by further investigation of the
information attached to the regObs entries, the detection algorithm perfor-
mance was evaluated for different scenarios.
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The main conclusions of the study can be summarized as follows:

• Validation of Sentinel-1 borne snow avalanche detections can be con-
ducted systematically by an automated comparison scheme based on
crowd-sourced avalanche observations from regObs. The comparison
algorithm enables validation of avalanche detections without the work-
load associated with manually reviewing all the observations. In general,
the presented comparison algorithm was effective, and a manual assess-
ment of all regObs entries of avalanche size 1-, 4- and 5 supported the
classification results in the vast majority of the cases.

• The reliability of the comparison is largely influenced by the accuracy of
the information entered by the observer. Entries within the regObs cate-
gory Avalanche observations, and especially observations with specified
avalanche stop point information, were found most directly comparable
to the Satskred avalanche detections. The stop point location was sought
after, as the stop point could be directly compared to the minimum eleva-
tion point of the detected avalanche debris regardless of avalanche path
length. Avalanche observations without stop point, avalanche activity
entries and danger sign entries were considered not applicable as compar-
ison algorithm input. If the positional uncertainty associated with these
observation categories can be addressed properly, the amount of regObs
data applicable for automatic comparison purposes can be increased
substantially.

• By counting observationswith at least onematch, the resulting probability
of detection (POD) for the Satskred detection algorithm was 25.3% (78
out of 308). A large part of the field observed avalanches were dry slab
avalanches, which the Satskred detection algorithm has problems with
detecting. The probability of detection was found to depend on both
avalanche type and avalanche size, which is in line with the findings
of Eckerstorfer et al. (2019). The POD differed significantly from the
57.3% POD found by Eckerstorfer et al. (2019). The large difference
was mostly attributed to dry avalanches being over-represented in the
regObs set and likewise for wet avalanches in the validation set applied
by Eckerstorfer et al. (2019). Evidently, dry snow avalanches are difficult
for the Satskred algorithm to detect and could be an important focus
forward when building a reliable avalanche activity monitoring system
for forecasting purposes.

• The Lyngseidet area was chosen as a focus area due to a high density
of avalanche observations without matching detections. The distribution
of reported avalanches with regards to factors such as size and type
did not differ significantly from the respective distributions from the
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entire area of interest. The masks applied to the features detected by the
Satskred algorithm was investigated along with avalanche observation
locations. The glacier mask was found to likely be responsible for two
missedmatches in the Lyngseidet focus area. This shows that the masking
approach designed to reduce the number of false alarms also reduces the
POD. The reason why the Lyngseidet area in general had a relatively low
proportion of observations with matches is unclear.





8
Further work
8.1 Implementation into Satskred processing

chain

The comparison algorithm could, with some adjustments, be implemented to
the operational processing chain atNORCE to automatically compare detections
to the regObs database every time new Sentinel-1 images are available. For
new detections within the AOI, the main adjustment needed is to compute the
minimum elevation points of the detections polygons at runtime. The minimum
elevation points associated with the 44048 detections studied in this thesis
were pre-computed, stored locally and taken as algorithm input to avoid the
time consuming computations every time the algorithm ran. When running
the comparison algorithm for longer time periods, such as entire seasons, the
minimum elevation points should be computed in advance.

Alternatively, if the coordinates of the minimum elevation points are easily
accessible during the last stages of the Satskred algorithm, these coordinates
could be outputted along with the other metadata of the detection polygon
shapefile.

If the Satskred detection algorithm is expanded to detect avalanches in all
of Norway, the comparison algorithm would have to be adjusted accordingly.
Expanding the current version of the comparison algorithm involves e.g com-
puting larger versions of the input maps. The production of input files would
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preferably be automated, as this is tedious work even for the relatively small
Satskred AOI. The main focus should be placed on automating and improving
the production of drainage basin maps, as the procedure used in this study
involved several computationally expensive steps.

8.2 Use of other observation categories in
regObs

The regObs database comprises snow related observations of different types
(Subsection 3.2.1). Anyone with a registered account are allowed to enter their
relevant observations, the information is presented as is and the quality and
actuality can not be guaranteed. Even though the observers accounts are as-
signed a competence level, many of the optional information fields can be left
blank, also for highly competent observers. When using regObs observations
as a truth-set to evaluate the performance of another information source, ac-
curate and complete observations are sought after. The regObs data would
become even more valuable for validation purposes if observers were instructed
to specify the avalanche stop point location. Furthermore, for more detailed
investigations of size and type of detected and non-detected avalanches, in-
complete information of these factors is detrimental to statistical analysis. The
observers entering avalanche observations on behalf of the Norwegian Public
Roads Administration (account: drift@svv) could thus be instructed to specify
avalanche type and size, as this account registered a large proportion of the
entries without this information (Subsection 5.2.2).

In this thesis, avalanche observations with stop point was used. Avalanche ob-
servations without stop point, image-only entries, avalanche activity entries and
danger signs are all potentially useful and combined these observations greatly
outnumber the avalanche observations with stop point. However, without stop
point information, evaluating the spatial similarity to detections is challenging.
The proposed approach for estimating the sigma parameter of the distance
scoring function in these cases must be revised, as it is expected to introduce
many false matches for the larger avalanche sizes. One possible approach to
reduce false matches could be to make the distance cutoff boundary elliptical
and align the major axis of the ellipse with the local slope gradient.

For the purpose of field validating avalanche detections, a new category of
quality controlled avalanche observations could potentially be introduced to
the regObs database. Observations in this category would be required to be
complete and include images to enable manual validation of the registered
information.
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8.3 Optimal parameter settings for the
comparison algorithm

The comparison algorithm performance is dependent on the selection of pa-
rameter values (Section 5.1). The tuning of parameter values was performed
through multiple algorithm runs with slightly different parameter settings,
adjusting the parameters one at the time. Ideally, if a set of confirmed matches
was available, the parameters of the comparison algorithm could be chosen
so that the classification results were as close as possible to the confirmed
set.

In the absence of such a set, a manual evaluation of the regObs entries with
all ancillary information could be used for tuning of the parameters. This kind
of manual validation was performed for 50 of the 308 avalanche observations
used in this study. The manual approach is labour intensive, and even more so
when recognizing that the 2019 - 2020 season raises the count of avalanche
observations with stop point by more than 140 new entries. Nevertheless, the
work could very well be worthwhile as the result is valuable training data for
finding the optimal comparison algorithm parameter values.





9
Appendix
Table 9.1: The 308 avalanche observations with stop point classified by the comparison

algorithm.

RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

52818 2015-02-20 2 24239 0.87 4 - Very large Dry slab
40477

79710 2016-01-31 2 6769 0.47 Not given Not given
21194

79717 2016-02-02 3 6769 0.96 Not given Not given
21192
21194

79718 2016-02-02 2 6768 0.72 Not given Not given
21193

78933 2016-02-06 2 44 0.68 3 - Large Dry slab
11877

79025 2016-02-06 1 6745 0.52 1 - Small Dry slab
79386 2016-02-06 2 44 0.74 Not given Not given

11877
79163 2016-02-07 2 2687 0.06 2 - Medium Dry slab

6744
91234 2016-03-29 1 22672 0.2 2 - Medium Dry slab
92304 2016-04-06 1 43708 0.68 3 - Large Unknown
92308 2016-04-06 3 12709 0.25 1 - Small Dry slab

33148
33149

Continued
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

94357 2016-04-16 3 5822 0.89 2 - Medium Wet slab
5823
5825

98423 2016-05-23 2 37201 0.32 3 - Large Wet slab
37202

109159 2017-01-06 1 11643 0.08 2 - Medium Dry slab
112517 2017-01-27 1 11120 0.07 3 - Large Dry slab
115213 2017-02-17 1 42172 0.01 1 - Small Dry loose
119839 2017-03-18 2 5190 0.83 3 - Large Dry slab

33423
119883 2017-03-18 2 5184 0.08 1 - Small Dry slab

25311
120218 2017-03-20 2 5190 0.99 3 - Large Dry loose

33423
120461 2017-03-22 4 25373 0.96 3 - Large Dry slab

26563
33427
39601

121317 2017-03-27 4 1046 0.83 2 - Medium Dry slab
5483
5484
6351

121534 2017-03-28 1 5502 0.27 2 - Medium Dry slab
121936 2017-03-31 1 18389 0.57 3 - Large Dry slab
122122 2017-03-31 4 1670 0.77 4 - Very large Dry slab

6350
18371
31744

122253 2017-04-01 3 18407 0.57 4 - Very large Dry slab
26983
31771

122609 2017-04-04 4 8102 0.1 4 - Very large Wet slab
13778
29760
37952

122622 2017-04-04 6 8090 0.99 Not given Not given
8099
8100
13776
29754
37950

166767 2017-04-04 4 21345 0.71 2 - Medium Not given
21347
29405
29409

Continued
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

122646 2017-04-04 4 21345 0.82 2 - Medium Wet loose
21347
29405
29409

122677 2017-04-04 10 13654 0.92 3 - Large Wet slab
18369
18370
21333
26975
29368
31741
31742
31743
37830

166764 2017-04-04 1 29407 0.88 1 - Small Dry loose
122777 2017-04-05 4 8098 0.91 3 - Large Wet slab

13775
37949
45071

123185 2017-04-07 1 21353 0.88 3 - Large Wet slab
123418 2017-04-08 3 29652 0.99 2 - Medium Dry slab

36825
36831

123471 2017-04-09 6 7926 0.5 2 - Medium Dry slab
13727
21415
29579
36774
37909

123948 2017-04-12 2 36679 0.22 2 - Medium Dry slab
36686

124747 2017-04-19 1 25560 0.02 2 - Medium Wet slab
125045 2017-04-21 1 13348 0.88 3 - Large Glide-snow
126769 2017-05-05 7 4853 0.79 2 - Medium Wet slab

4854
9581
9582
16606
32188
32190

126965 2017-05-07 1 15395 0.29 2 - Medium Dry slab
127131 2017-05-09 1 24197 0.44 4 - Very large Dry slab
127729 2017-05-16 1 24199 0.1 3 - Large Not given
127725 2017-05-16 1 24199 0.12 3 - Large Wet slab
140817 2018-01-16 1 8943 0.57 3 - Large Not given
140813 2018-01-16 1 8943 0.07 3 - Large Dry slab

Continued
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

151286 2018-03-18 1 9030 0.29 2 - Medium Dry slab
155675 2018-04-02 3 24465 0.63 Not given Not given

33578
44733

155702 2018-04-02 4 14412 0.9 3 - Large Dry slab
24455
33570
44727

155650 2018-04-02 1 24461 0.19 2 - Medium Dry slab
155653 2018-04-02 3 24459 0.4 2 - Medium Dry slab

24461
44728

155740 2018-04-02 3 24459 0.82 3 - Large Dry loose
33574
44728

158054 2018-04-11 1 9823 0.13 3 - Large Not given
166717 2018-04-11 1 9823 0.14 3 - Large Not given
162884 2018-04-28 1 33761 0.06 1 - Small Wet slab
162982 2018-04-29 2 30818 0.97 1 - Small Wet loose

33743
164270 2018-05-10 1 7498 0.12 4 - Very large Wet slab
182385 2019-01-10 6 928 0.94 Not given Not given

12183
12184
12185
18782
18783

175494 2019-01-12 8 952 0.97 Not given Dry slab
955
2157
12205
12409
12410
18822
40165

175493 2019-01-13 16 955 0.79 Not given Dry slab
957
958
2157
12205
12409
12410
12411
18822
18825
18827
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

23309
39611
40165
40168
40170

181034 2019-02-14 2 30379 0.85 3 - Large Wet slab
30384

182384 2019-02-15 4 30398 0.73 Not given Not given
30399
33459
33460

196416 2019-03-02 5 1892 0.95 Not given Not given
1898
1903
20877
208790

196417 2019-03-02 2 1903 0.09 Not given Not given
20879

183809 2019-03-02 1 45023 0.48 2 - Medium Not given
183985 2019-03-03 1 16960 0.33 3 - Large Dry slab
184331 2019-03-05 1 21023 0.98 2 - Medium Dry slab
188668 2019-03-28 6 3082 1.0 3 - Large Not given

3084
35163
35164
44104
44580

188807 2019-03-29 1 44172 0.28 3 - Large Dry slab
189005 2019-03-30 5 3033 0.98 3 - Large Dry slab

3034
3879
28340
28342

189556 2019-04-02 3 3077 0.91 2 - Medium Dry slab
3972
12571

189612 2019-04-03 8 3989 0.99 3 - Large Dry slab
12580
20633
28466
35162
44326
44575
44577

190430 2019-04-09 8 2762 0.52 4 - Very large Dry slab
2764

Continued
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

23423
23424
34741
44307
45307
45314

190496 2019-04-09 1 23581 0.88 3 - Large Dry slab
191217 2019-04-14 5 2762 0.26 2 - Medium Not given

2764
23423
23424
34741

191445 2019-04-15 1 28611 0.96 1 - Small Wet loose
191340 2019-04-15 1 34741 0.01 2 - Medium Not given
193780 2019-05-05 3 242 0.71 2 - Medium Wet loose

3589
19674

193802 2019-05-05 2 212 0.68 2 - Medium Wet loose
41312

46807 2015-01-20 0 - - 2 - Medium Dry slab
50043 2015-02-08 0 - - 1 - Small Cornice fall
52333 2015-02-13 0 - - Not given Not given
53175 2015-02-13 0 - - Not given Not given
53176 2015-02-13 0 - - Not given Not given
52312 2015-02-16 0 - - Not given Not given
56125 2015-03-09 0 - - Not given Not given
56403 2015-03-15 0 - - 2 - Medium Wet loose
65788 2015-03-16 0 - - Not given Not given
57698 2015-03-26 0 - - 3 - Large Dry slab
58717 2015-04-03 0 - - 1 - Small Wet loose
59303 2015-04-08 0 - - Not given Not given
59970 2015-04-14 0 - - 1 - Small Dry loose
62276 2015-05-07 0 - - 3 - Large Wet slab
62288 2015-05-07 0 - - 4 - Very large Wet slab
70482 2015-12-13 0 - - 1 - Small Dry slab
71836 2015-12-24 0 - - 2 - Medium Dry slab
71884 2015-12-24 0 - - 2 - Medium Dry slab
74118 2016-01-09 0 - - Not given Not given
74120 2016-01-09 0 - - Not given Not given
74008 2016-01-10 0 - - Not given Not given
77234 2016-01-22 0 - - Not given Not given
76734 2016-01-23 0 - - 3 - Large Dry slab
76758 2016-01-23 0 - - Not given Not given
76956 2016-01-24 0 - - 3 - Large Dry slab
76964 2016-01-24 0 - - 2 - Medium Dry slab
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

77441 2016-01-27 0 - - 3 - Large Dry slab
78067 2016-01-31 0 - - Not given Not given
79713 2016-01-31 0 - - Not given Not given
78273 2016-02-02 0 - - 4 - Very large Dry slab
78334 2016-02-02 0 - - Not given Not given
78927 2016-02-06 0 - - 3 - Large Dry slab
79388 2016-02-06 0 - - Not given Not given
79107 2016-02-07 0 - - 2 - Medium Dry slab
79162 2016-02-07 0 - - 4 - Very large Unknown
79141 2016-02-07 0 - - 2 - Medium Dry slab
79158 2016-02-07 0 - - 3 - Large Dry slab
81702 2016-02-11 0 - - Not given Not given
82151 2016-02-13 0 - - 3 - Large Dry slab
80998 2016-02-13 0 - - 3 - Large Dry slab
81063 2016-02-13 0 - - Unknown Dry slab
82438 2016-02-16 0 - - Not given Not given
81601 2016-02-16 0 - - 2 - Medium Dry slab
82077 2016-02-19 0 - - 3 - Large Dry slab
82191 2016-02-20 0 - - 2 - Medium Dry slab
82232 2016-02-20 0 - - 1 - Small Dry slab
82212 2016-02-20 0 - - 4 - Very large Not given
83884 2016-03-02 0 - - 3 - Large Dry slab
83896 2016-03-03 0 - - 3 - Large Dry slab
83899 2016-03-03 0 - - 2 - Medium Dry slab
89309 2016-03-13 0 - - Not given Not given
90239 2016-03-22 0 - - 3 - Large Dry slab
90317 2016-03-22 0 - - 3 - Large Dry slab
90586 2016-03-24 0 - - 2 - Medium Dry slab
90609 2016-03-24 0 - - 2 - Medium Dry slab
90745 2016-03-25 0 - - 2 - Medium Wet loose
91373 2016-03-27 0 - - 2 - Medium Dry slab
91239 2016-03-29 0 - - 2 - Medium Wet loose
91851 2016-04-03 0 - - 3 - Large Cornice fall
92427 2016-04-07 0 - - 1 - Small Dry slab
94427 2016-04-17 0 - - 1 - Small Dry slab
95088 2016-04-22 0 - - 2 - Medium Not given
95129 2016-04-22 0 - - 1 - Small Wet loose
95970 2016-04-29 0 - - 3 - Large Wet slab
96089 2016-04-30 0 - - 2 - Medium Cornice fall
96090 2016-04-30 0 - - 2 - Medium Cornice fall
96634 2016-05-02 0 - - 1 - Small Wet slab
105626 2016-12-09 0 - - 3 - Large Dry slab
107699 2016-12-27 0 - - 2 - Medium Dry slab
108264 2016-12-31 0 - - 1 - Small Cornice fall
112497 2017-01-07 0 - - 2 - Medium Dry loose
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

109292 2017-01-07 0 - - 2 - Medium Dry slab
110418 2017-01-14 0 - - 1 - Small Dry slab
111092 2017-01-18 0 - - Not given Not given
112496 2017-01-20 0 - - 2 - Medium Dry loose
112110 2017-01-24 0 - - 2 - Medium Dry slab
112173 2017-01-25 0 - - 2 - Medium Dry loose
112121 2017-01-25 0 - - 2 - Medium Wet slab
112178 2017-01-25 0 - - 2 - Medium Wet slab
114442 2017-02-11 0 - - 2 - Medium Cornice fall
114677 2017-02-13 0 - - 2 - Medium Wet slab
116002 2017-02-22 0 - - 2 - Medium Dry slab
116825 2017-02-24 0 - - Not given Not given
166768 2017-02-24 0 - - 3 - Large Dry loose
116348 2017-02-24 0 - - 3 - Large Dry loose
116502 2017-02-25 0 - - 2 - Medium Dry slab

116841 2017-02-27 0 - - 5 - Extremely
large Not given

116857 2017-02-27 0 - - 2 - Medium Dry slab
117569 2017-03-04 0 - - 3 - Large Dry slab
117867 2017-03-05 0 - - 2 - Medium Dry slab
117791 2017-03-06 0 - - 3 - Large Dry slab
117996 2017-03-07 0 - - 2 - Medium Dry slab
118819 2017-03-12 0 - - 2 - Medium Cornice fall
118826 2017-03-12 0 - - 3 - Large Dry slab
118829 2017-03-12 0 - - 3 - Large Dry loose
118837 2017-03-12 0 - - 3 - Large Unknown
118839 2017-03-12 0 - - 2 - Medium Dry slab
118905 2017-03-13 0 - - 3 - Large Dry slab
119221 2017-03-14 0 - - Not given Not given
119225 2017-03-14 0 - - Not given Not given
119171 2017-03-14 0 - - 2 - Medium Dry slab
119832 2017-03-18 0 - - 3 - Large Dry slab
120026 2017-03-19 0 - - 3 - Large Dry slab
120196 2017-03-19 0 - - 1 - Small Dry loose
120337 2017-03-21 0 - - 2 - Medium Dry loose
120923 2017-03-24 0 - - 2 - Medium Dry slab
121062 2017-03-25 0 - - 3 - Large Dry slab
121373 2017-03-27 0 - - 3 - Large Dry loose
121918 2017-03-28 0 - - 3 - Large Dry slab
121733 2017-03-29 0 - - 3 - Large Dry slab
121789 2017-03-30 0 - - 3 - Large Dry slab
129188 2017-03-31 0 - - Not given Not given
122391 2017-04-02 0 - - 2 - Medium Glide-snow
122469 2017-04-02 0 - - 2 - Medium Dry slab
123371 2017-04-08 0 - - 2 - Medium Wet loose
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

123915 2017-04-12 0 - - 3 - Large Cornice fall
124086 2017-04-13 0 - - 2 - Medium Dry slab
124568 2017-04-17 0 - - 3 - Large Dry loose
124646 2017-04-18 0 - - 2 - Medium Dry slab
125033 2017-04-20 0 - - Not given Dry slab
125141 2017-04-22 0 - - 2 - Medium Dry slab
125161 2017-04-22 0 - - Unknown Dry slab
125561 2017-04-25 0 - - 2 - Medium Wet loose
126302 2017-05-01 0 - - 4 - Very large Not given
127839 2017-05-17 0 - - 1 - Small Slush
128174 2017-05-20 0 - - 3 - Large Slush
166795 2017-05-22 0 - - 2 - Medium Not given
128401 2017-05-23 0 - - Not given Not given
128376 2017-05-23 0 - - 3 - Large Wet loose
128804 2017-05-27 0 - - 2 - Medium Dry loose
133939 2017-12-04 0 - - 1 - Small Dry slab
133981 2017-12-05 0 - - 3 - Large Dry slab
133990 2017-12-05 0 - - 3 - Large Dry slab
137874 2017-12-30 0 - - 3 - Large Dry slab
139074 2018-01-07 0 - - 2 - Medium Dry loose
149063 2018-01-11 0 - - 3 - Large Dry slab
166763 2018-01-18 0 - - 2 - Medium Dry loose
142523 2018-01-26 0 - - 1 - Small Dry loose
148662 2018-03-03 0 - - 2 - Medium Dry slab
148811 2018-03-04 0 - - 2 - Medium Dry loose
149574 2018-03-09 0 - - 2 - Medium Dry slab
150086 2018-03-12 0 - - 2 - Medium Dry slab
150188 2018-03-13 0 - - 1 - Small Dry slab
166759 2018-03-17 0 - - 2 - Medium Not given
166758 2018-03-17 0 - - 2 - Medium Not given
151242 2018-03-18 0 - - 1 - Small Dry slab
166756 2018-03-19 0 - - 2 - Medium Dry loose
166755 2018-03-19 0 - - 2 - Medium Dry loose
151388 2018-03-19 0 - - 3 - Large Dry slab
151471 2018-03-19 0 - - 3 - Large Not given
151536 2018-03-19 0 - - 2 - Medium Dry slab
151757 2018-03-19 0 - - 3 - Large Dry slab
152106 2018-03-21 0 - - 3 - Large Dry slab
152228 2018-03-22 0 - - 3 - Large Dry slab
153159 2018-03-25 0 - - 2 - Medium Dry slab
153510 2018-03-26 0 - - 2 - Medium Dry slab
153576 2018-03-26 0 - - Unknown Unknown
154152 2018-03-28 0 - - 3 - Large Dry slab
154188 2018-03-28 0 - - 4 - Very large Dry slab
154701 2018-03-29 0 - - Not given Dry slab
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RegID ObsDate Matches ObjectID of
matches

Best match
tot. score Avalanche size Avalanche type

154817 2018-03-30 0 - - Not given Not given
155230 2018-03-31 0 - - 3 - Large Dry slab
166718 2018-03-31 0 - - 4 - Very large Dry slab
155287 2018-03-31 0 - - 4 - Very large Dry slab
155399 2018-04-01 0 - - Not given Not given
155488 2018-04-01 0 - - Unknown Dry slab
155674 2018-04-02 0 - - Not given Not given
157022 2018-04-07 0 - - 4 - Very large Dry slab
157266 2018-04-08 0 - - 2 - Medium Dry slab
158355 2018-04-12 0 - - 3 - Large Wet loose
158515 2018-04-13 0 - - 2 - Medium Wet loose
158741 2018-04-13 0 - - 3 - Large Wet slab
159561 2018-04-16 0 - - 3 - Large Wet slab
160244 2018-04-18 0 - - 3 - Large Wet slab
160477 2018-04-20 0 - - 3 - Large Cornice fall
160625 2018-04-20 0 - - 3 - Large Wet slab
162487 2018-04-25 0 - - 2 - Medium Wet loose
163213 2018-05-01 0 - - 1 - Small Not given
163322 2018-05-01 0 - - 1 - Small Dry slab
166716 2018-05-04 0 - - 2 - Medium Not given
166713 2018-05-04 0 - - 2 - Medium Not given
163685 2018-05-04 0 - - Not given Not given
164139 2018-05-09 0 - - 1 - Small Wet loose
166710 2018-05-10 0 - - 2 - Medium Wet loose
164577 2018-05-12 0 - - 2 - Medium Wet slab
175498 2019-01-13 0 - - 1 - Small Cornice fall
178482 2019-01-24 0 - - Not given Not given
177575 2019-01-25 0 - - Not given Not given
177540 2019-01-25 0 - - 2 - Medium Dry slab
177590 2019-01-25 0 - - 2 - Medium Dry slab
177602 2019-01-25 0 - - 1 - Small Dry slab
179318 2019-02-03 0 - - 1 - Small Dry slab
179381 2019-02-06 0 - - Not given Not given
179955 2019-02-09 0 - - 2 - Medium Dry slab
180662 2019-02-12 0 - - Not given Not given
181096 2019-02-12 0 - - 2 - Medium Dry slab
180758 2019-02-12 0 - - Not given Not given
182965 2019-02-14 0 - - Not given Not given
182968 2019-02-14 0 - - Not given Not given
195543 2019-02-14 0 - - Not given Not given
182996 2019-02-15 0 - - Not given Not given
181541 2019-02-17 0 - - 2 - Medium Dry slab
182973 2019-02-21 0 - - Not given Not given
183617 2019-02-22 0 - - Not given Not given
183447 2019-02-28 0 - - 2 - Medium Dry slab
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196418 2019-03-02 0 - - Not given Not given
186595 2019-03-16 0 - - 2 - Medium Cornice fall
186904 2019-03-17 0 - - 2 - Medium Dry slab
186758 2019-03-17 0 - - 3 - Large Dry slab
188095 2019-03-18 0 - - Not given Not given
187125 2019-03-19 0 - - 2 - Medium Dry slab
187768 2019-03-23 0 - - 3 - Large Dry slab
188467 2019-03-27 0 - - 3 - Large Dry slab
189213 2019-03-31 0 - - 3 - Large Dry slab
189404 2019-04-01 0 - - Not given Unknown
190125 2019-04-06 0 - - 2 - Medium Dry slab
190535 2019-04-09 0 - - 2 - Medium Cornice fall
191350 2019-04-15 0 - - 2 - Medium Wet slab
191357 2019-04-15 0 - - 3 - Large Wet slab
192276 2019-04-22 0 - - Not given Wet slab
192335 2019-04-22 0 - - 4 - Very large Wet slab
192627 2019-04-24 0 - - 3 - Large Not given
192725 2019-04-25 0 - - Not given Slush
192731 2019-04-25 0 - - Not given Not given
193185 2019-04-29 0 - - 3 - Large Wet slab
193723 2019-05-04 0 - - 2 - Medium Dry slab
193913 2019-05-06 0 - - 2 - Medium Wet loose
194421 2019-05-11 0 - - 1 - Small Slush
194497 2019-05-12 0 - - 2 - Medium Wet loose
195203 2019-05-21 0 - - 2 - Medium Slush
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