
Faculty of Science and Technology
Department of Computer Science

µPyCSP
Two approaches to implementing CSP-like concurrency modeling in microcontrollers.

Jon Helge Langaas Johansen
INF-3981, June 2020

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2020 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

For the boys.

“If a man does not have sauce, then he is lost. But the same man can get lost
in the sauce.”
–Gucci Mane

“The most disastrous thing that you can ever learn is your first programming
language.”
–Alan Kay

Abstract
In this thesis, we have explored the possibility of bringing CSP-like concurrency
modeling to an embedded environment. With the growth of IoT and embedded
software, many of the hardships that come with concurrent coding in an
inherently event-driven environment become more apparent. Convoluted and
complex code is often used to handle the many fallacies of concurrency. We
are solving this problem by abstracting away the concurrency and providing
an easy to use interface, in a growing language; Micropython. Through two
separate library implementations using different underlying asynchronous
architecture, harvesting the potentials and of multi-threading and coroutine
based CSP-processes.

We have shown through measurements and example implementations that
both implementations provide viable performance, and uncovered the different
advantages and disadvantages to each approach.

Acknowledgements
First and foremost, I would like to thank my family for all the love, encourage-
ment, and faith. You guys bring out the best in me.

I want to send a special thanks to my older brother, who is always available to
help me, guide me, and inspire me to try harder and do better.

I have to express my gratitude to my supervisor John Markus Bjørndalen, for
sharing this project with and for continuously pushing me in the right direction
for my thesis. Thanks for all discussions on everything related and not, and all
the help and encouragement.

To my classmates, thanks for five incredible years, for all the late nights, early
mornings and long lunches, without you, this would not have been possi-
ble.

I have to thank my fellow students and members of
Tromsøstudentenes Dataforening, for always providing useful distractions, nec-
essary procrastination, and an unhealthy amount of coffee.

and for everyone else, you’re pretty cool too.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Thesis Contribution . 3
1.3 Organization . 3

2 Related works 5
2.1 Portable CSP Based Design for Embedded Multi-Core Systems 5
2.2 Medusa: Managing Concurrency and Communication in Em-

bedded Systems . 6

3 Technical background 7
3.1 Concurrency . 7
3.2 Python & Asynchronous code 8

3.2.1 Functions in Python 9
3.2.2 Asynchronous Code in Python 11

3.3 Multi-threading In Python 12
3.3.1 Threads . 12
3.3.2 Threads And The Global Interpreter Lock 13
3.3.3 Reentrant Locks . 14

3.4 Micropython . 14
3.4.1 Asyncio For Micropython 15
3.4.2 Threading in Micropython 15

3.5 Communicating sequential processes 16
3.6 PyCSP . 16

vii

viii contents

3.7 aPyCSP, Asyncio-based CSP 17
3.8 PyCSP - Lockversion . 18

4 Design 19
4.1 Inherited Module Design 19
4.2 Platforms . 20
4.3 Project Architecture . 20

5 Implementation 23
5.1 uaPyCSP . 23

5.1.1 Futures . 24
5.1.2 Gather . 26
5.1.3 uasyncio - Run Until Complete 27

5.2 uPyCSP . 28
5.2.1 uThreading - Threads 28
5.2.2 uThreading - RLock, Reentering Locking Mechanism . 30
5.2.3 Itertools . 31

5.3 Compability Changes . 31
5.4 Collections’ Deque . 31

5.4.1 List Implementation 32
5.5 Timer - Chrono . 33

6 Experiments 35
6.1 CommsTime . 35

6.1.1 Delta2 . 36
6.2 Stressed Alternatives . 36
6.3 List & Deque Benchmark 37
6.4 The Waiting Queue . 38

7 Results 39
7.1 Platforms & Environments 39
7.2 Communication Time - CommsTime 40

7.2.1 UNIX Platform . 40
7.2.2 FiPY Platform . 41

7.3 Stressed Alternatives . 43
7.3.1 UNIX Platform . 43
7.3.2 FiPY Platform . 45

7.4 Lists & Deque Benchmark 46
7.4.1 UNIX Platform . 46
7.4.2 FiPY Platform . 48

7.5 The Waiting Queue Experiment 50
7.5.1 Unix Platform . 50
7.5.2 FiPy Platform . 51

contents ix

8 Evaluation 53
8.1 CommsTime . 53
8.2 Stressed Alternatives . 54
8.3 The Waiting Queue . 55
8.4 List & Deque Benchmark 56

9 Discussion 57
9.1 Library Dependencies . 57
9.2 uaPyCSP & Futures . 58
9.3 uPyCSP & Threads . 59
9.4 Relevance of performance 59
9.5 Usability . 60
9.6 Channels Queue implementations 60

10 Future work 63
10.1 A new version of uasyncio 63
10.2 uPyCSP Without a Global Interpreter Lock 64
10.3 Experimenting with Threads Stacksize 65

11 Conclusion 67

Bibliography 69

List of Figures
3.1 Procedures in sequential, concurrent and parallel execution . 8
3.2 A timeline of a Python thread’s lifetime states 13

4.1 Project architecture . 21

6.1 A visual representation of the CommsTime benchmark . . . 36
6.2 A visual representation of the Stressed Alternatives benchmark 37

7.1 Results from the CommsTime experiment on Unix Platform . 41
7.2 Results from the CommsTime experiment on FiPy Platform . 42
7.3 Average results of Deque and List benchmark on Unix Platform 47
7.4 Average results of Deque and List benchmark on FiPY Platform 49
7.5 Results from The Waiting Queue experiment on Unix platform. 51
7.6 Results from The Waiting Queue experiment on FiPY platform. 51

xi

List of Tables
7.1 Results from the CommsTime experiment on Unix Platform . 40
7.2 Results from the CommsTime experiment on FiPy Platform . 42
7.3 Results from Stressed Alternatives benchmark run on the UNIX

platform - Large CSP-Pool 44
7.4 Results from Stressed Alternatives benchmark run on the UNIX

platform - Small CSP-pool 44
7.5 Results from Stressed Alternatives benchmark run on the FiPY

platform . 45
7.6 Results of Deque and List benchmark on Unix Platform . . . 48
7.7 Results of Deque and List benchmark on FiPY Platform . . . 50

xiii

List of Listings
3.1 Function, definition and usage 9
3.2 Object as a function, definition and usage 9
3.3 Generator, definition and usage 10
3.4 Coroutine, definition and usage 11

5.1 Initial Future implementation 24
5.2 Second implementation of Future, with a suspending mecha-

nism . 25
5.3 Gather implementation . 27
5.4 Fix for run_until_complete method 28
5.5 The implementation of a Thread’s start, bootstrap and run

methods . 30
5.6 Manual filtering of deque object. 32

xv

1
Introduction
The recent years have brought significant growth in the development of Inter-
net of Things (iot) [1]. The increased interest and possibilities for what IoT
can provide within a variety of fields such as medicinal, research, and business
development, to younger audiences learning to develop through hobby projects.
Producers have manufactured newer, better, and smaller microcontrollers to
keep up with popular demand, provide more functionality, and create prod-
ucts with intended use varying from lightbulbs and simple thermometers to
more advanced products used to monitor the environment. Input / Output
(i/o) Input, such as sensor or network-data, is asynchronous in nature. This
often leads the developer to create convoluted code patterns, either hogging
the computing capability of the iot device by performing the i/o call in a
blocking manner or creating interrupt-based callback routines, which quickly
increases the application’s complexity. While this can provide feasible for some
application solutions, these asynchronous code blocks and separate routines
are suitable for a concurrency model.

One of these concurrency models is Communicating Sequential Processes
(csp)[2]. The csp model has been adapted in multiple languages as a way
of dividing and orchestrating concurrent application code in a structured and
simple way. Concurrency is the nature of coexisting routines. Frequently, a
routine is dependent on data input from another routine, such as reading from
a sensor and sending the readings over a network connection. csp provides a
simple, yet a rigid model for data dependency between concurrent processes,
which suits the application code for iot projects naturally.

1

2 chapter 1 introduction

A widespread and growing platform for iot is Micropython1. Micropython
is a language-platform based upon Python2 specifically designed for the iot
platform. Micropython, being a hardware-focused version of Python, has im-
plemented multiple ways of treating concurrency, intended for use with i/o.
With multiprocessing, multithreading, and asynchronous i/o supported, the
tools to create programs relying on concurrent and asynchronous code are
available. Orchestrating these mechanisms into a CSP-model-library, which
hides the internal csp logic behind abstractions, provides a more comfortable
interface for developers to develop leaner applications more efficiently.

PyCSP[3] is a csp library available for the Python programming language,
which provides inter-process communication concepts known from CSP[2].
PyCSP has the intent of aiding in constructing and managing concurrent
programs. PyCSP has multiple versions with various approaches to CSP-like
orchestration, using different underlying mechanisms. PyCSP is, however, not
available for Micropython, and while the languages are similar, Micropython
has some shortcomings, creating the need for specialized implementations of
PyCSP to work properly.

1.1 Thesis Statement

The multiple PyCSP approaches to implementing the CSP-model yields differ-
ent potential candidates for an ideal approach to a concurrency library for
a Micropython-based microcontroller. Investigating two of these approaches,
one using multi-threading, and another using coroutine-based mechanisms [4]
will provide useful context, to further determine the advantages and disadvan-
tages of each of the developed modules. This context will be gained through
experiments focusing on performance and maintaining the ease-of-use given
by PyCSP. Summarizing this leads to the thesis statement:

This thesis aims to create an efficient concurrency library, with a familiar and
easy to use interface provided by a version of the PyCSP library, aimed for use
in a microcontroller using the Micropython environment. Determining which
PyCSP version yielding the best result is done through the implementation of two
different libraries and approaches, showing and measuring of the advantages and
disadvantages of both.

1. https://micropython.org/
2. https://www.python.org/

1.2 thesis contribution 3

1.2 Thesis Contribution

The thesis outcome is two Micropython libraries providing the PyCSP interface,
with different architectures underneath. These are considered ports of their
corresponding Python PyCSP modules. The two modules which will enlighten
each approach’s distinct advantages and disadvantages and provide useful
insight as to which has better grounds for further development. The modules
will do so by implementing benchmarks to document the performance.

1.3 Organization

Chapter 2 - Related work contains a summary of researched work related to
the topic of the thesis.

Chapter 3 - Technical background summarizes the technical and theoretical
knowledge required to make decisions regarding design and implemen-
tation.

Chapter 4 - Design outlines the design choices made for the implementation.

Chapter 5 - Implementation describes the implementations specific details
of the contributions.

Chapter 6 - Experiments details the design and intent of experiments used
to evaluate performance of the contributions.

Chapter 7 - Results present the configurations and results of the experiments
conducted.

Chapter 8 - Evalutation explains the context, implications and reflections of
the results of experiments conducted.

Chapter 9 - Discussion brings forth further implications and aspects not pro-
vided by evalutation of results alone.

Chapter 10 - Future work presents possible future directions to go in for
further development of the contributions.

Chapter 11 - Conclusions summarizes the thesis, its findings and presents
concluding remarks.

2
Related works
In this section, a summary and comparison of related work and the thesis
are made. With focus reasonings, potential problems, and differences in the
process of solving similar problems.

2.1 Portable CSP Based Design for Embedded
Multi-Core Systems

Sputh et al.[5] presents an effort to provide csp capabilities to an embedded
system, with similar intentions as and reasoning as this thesis, focusing on
reducing the complexity of writing concurrent code, as it can quickly become
convoluted and complicated to control all the side-effect of concurrency. The
system described attempts doing so through both software and hardware
implementations of the csp-capabilities, in distinction from the software-only
approach intended for this project.

An experience presented is the ease of porting onto a different underlying
architecture, once the levels of abstractions provided by CSP-like modeling
were implemented. They do this by implementing the software approach first,
and then hardware. Similar to this project, they use the same interface, with
different underlying architectures underneath the CSP-abstractions, to provide
multiple versions of csp-capabilities, and compare them.

5

6 chapter 2 related works

A challenge presented was finding a suitable environment with all the necessary
dependencies available for the target system. The embedded OS, which was
said to be POSIX compliant, only provided partial support for the POSIX pthread
Application programming interface (api). As a part of the project, this api had
to be extended to suit the design requirements.

2.2 Medusa: Managing Concurrency and
Communication in Embedded Systems

Barr et al. [6] describe challenges with the use of concurrency in embedded
systems being very suitable, due to the event-driven nature of the embedded
system, but often ending up as "hand-coded interrupt routines". The Medusa
project is presented as an extension to the Owl, embedded Python system
[7]. The Medusa language provides a concurrency environment for embedded
systems. Medusa is based on Python due to its ease-of-use, similar to this thesis.
However, a different approach when it comes to concurrency modeling and
orchestration. Medusa takes from Erlang1 and uses the Actor Model[8] for
message passing instead of CSP.

Medusa implements threads, allocated on the heap instead of the more con-
ventional stack allocation, leaving the threads with no stack. As a result of this,
the threads are light-weight, and it gives the ability to use large amounts of
threads in a minimal environment as embedded devices often are. A side effect
of the light-weight threads is a small overhead for spawning them. Context
switches also see high performance, increasing efficiency even further.

1. https://www.erlang.org/

3
Technical background
In this section, technology relevant to the project is described to enhance
the further reading experiment. The information presented should not be
interpreted as a full description or documentation; it merely serves the pur-
pose of explaining concepts and some of the researched elements used in the
project.

3.1 Concurrency

The term concurrency in computer science refers to procedures able to be
executed in an unspecified order with a deterministic result. Concurrent pro-
cedures can be executed simultaneously, not affecting each other’s execution.
Concurrency is considered the way of structuring procedures in a manner that
satisfies the criteria as mentioned above.

Concurrency does not inherently mean that the execution of the procedure is
done at the same point of time as another procedure. This is more specifically
parallelism, a way of executing concurrent procedures.

7

8 chapter 3 technical background

Context-switching
execution

Parallel
execution

Sequential
execution
Procedure	1

Procedure	2

Procedure	1

Procedure	2

Procedure	1

Procedure	2

Idle	time Execution	time Procedure	start Procedure	end

Figure 3.1: Procedures in sequential, concurrent and parallel execution

Concurrent procedures can also be executed in a context-switching manner,
where two concurrent procedures share a resource, such as execution time.
Figure 3.1 displays an example of the distribution of execution time can be
when executing procedures in sequential, parallel, and context-switching fash-
ion.

3.2 Python & Asynchronous code

Python is a high-level, object-oriented, dynamically, and strongly typed lan-
guage. With a focus on simple, easy to learn syntax and code readability,
developers of many skill levels have taken a liking to the language.

Python is an interpreted language, meaning the code is evaluated in execution.
The Python interpreter uses a global lock, named the Global Interpreter Lock
(gil) to prevent multiple Python threads from modifying the same object,
potentially causing race conditions.

There are multiple versions of Python, and the most commonly used is CPython,
named after the language implemented in. If not specified, one can assume

3.2 python & asynchronous code 9

mentions of Python is referring to this version.

Python has a broad standard library1, with modules for a wide range of ap-
plication types. External modules can be installed from the Python Package
Index2, providing even further modularity and support for extensive function-
ality.

3.2.1 Functions in Python

Functions in Python are blocks of code defined using the def keyword. By
default, functions are considered void unless a return keyword specifies other
return values. Void functions return None objects.

Listing 3.1: Function, definition and usage

De f i n i t o n
def hel lo_wor ld () :

print (" Hello , world ! ")

Usage
hel lo_wor ld ()

Output i s " He l lo , world ! "

Functions in Python are first-class objects, allowing for extended usage, such as
storing function references in variables and lists, passing them as arguments,
and returning values.

Objects in Python can also be used similarly to functions. By implementing
an object’s __call__ method, the object is callable, like any other regular
function.

Listing 3.2: Object as a function, definition and usage

De f i n i t i o n
c lass ob j e c t _a s_ func t i on :

def __ i n i t _ _ (s e l f) :
pass

def __ ca l l _ _ (s e l f) :
print ("Good morning , world ! ")

Usage

1. https://docs.python.org/3/library/
2. https://pypi.org/

10 chapter 3 technical background

hel lo_wor ld = ob j e c t _a s_ func t i on ()
he l lo_wor ld ()

Output i s " Good morning , world ! "

Generator Functions

Generators in Python are re-entrant functions. The generator function is defined
in the same manner as a regular function, but at a point of execution, it yields
a value instead of returning.

Calling a generator directly, as a function, will not start the generator, but it will
return the generator object. Generators are iterable, to receive values from the
generator object, the __next__ method is called on the generator. This is done
through the builtin __next__ method. The generator will then start execution
until it reaches a yield or return keyword. If a generator reaches a return
keyword, it will throw a StopIteration exception, signaling the exhaustion
of a generator.

The most common usage of generators is iterative tasks. This is because the
usage of the generator is considered to be on-demand. It does not allocate
memory space for all the values potentially yielded and used, only that which
is yielded.

Listing 3.3: Generator, definition and usage

De f i n i t i o n
def generator () :

// Simple generat ion of va lues from 0 to 5 .
i = 0
while (i <= 5) :

y i e l d i
i++

return // Return as the generator i s exhausted

Usage
counter = Generator ()
for i in counter :

print (i , end=" , ")

Output i s 0 , 1 , 2 , 3 , 4 , 5

3.2 python & asynchronous code 11

Coroutine Functions

Coroutines in Python are functions defined with async def syntax, opposed to
the standard def syntax. When called with standard syntax, these return the
coroutine object. Coroutines introduce an essential functionality that regular
functions do not provide. The ability to use asynchronous syntax such as: await
yield, async with and async for within the code block.

There are a few ways of executing coroutines. The simplest method is awaiting
the coroutine, which will halt execution until the code in the coroutine has
finished executing. Awaiting a coroutine within a implicitly turns the calling
parent-function into a coroutine itself. By definition, the top-level function
has to execute these coroutines differently than using the await keyword to
avoid becoming a coroutine object itself. Executing coroutines from a regular
function without turning it into a coroutine is done using asyncio’s (described
in the next section) provided functionality.

Coroutine functions form the basis required for writing asynchronous code in
Python. They leverage the concept of shared execution through suspension
to allow other code blocks to execute, effectively creating asynchronous code
through context switching.

Listing 3.4: Coroutine, definition and usage

De f i n i t o n
async def hel lo_wor ld () :

print (" Hello , world ! ")

Usage
import async io
async io . run (hel lo_wor ld ())

Output i s " He l lo , world ! "

3.2.2 Asynchronous Code in Python

Asyncio [9] is a module as part of the Python standard library, which provides
an api to aid in the usage of coroutine-based asynchronous code. It was
introduced in Python version 3.4 and has seen multiple changes in newer
versions of Python.

Asyncio the concept of an event loop, which orchestrates the scheduling and
rescheduling of events. The event loop uses internal queues for active and
inactive events. The active queue is First In First Out (fifo)-based, while the

12 chapter 3 technical background

inactive queue contains events scheduled with a delay, such as a given amount
of time. For each iteration, the event loops handle internal queue management,
such as checking for tasks on a timed sleep or timed out tasks on the inactive
queue, then recover and run the next task in the active queue. The event loop
provides interfaces for synchronous top-level functions to wait until all the
scheduled tasks reach completion, preserving synchronicity.

The events used for scheduling in asyncio are separated into three main types
of objects. These are coroutines (described in the previous section), tasks, and
futures. The commonality between these is that all fall under the category of
awaitable objects.

Tasks are wrapper objects used to schedule coroutines in the event loop. Tasks
are created through the asyncio interface, and immediately gives the
event loop a notion of the task and its scheduling.

Futures are objects that represent an eventual result. A future does not have
an executable code block attached to it as tasks or coroutines do. Futures
simply hold the promise that they will be resolved by another operation,
enabling the owner of the future to await this result. An awaiting parent
routine can continue once the future has resolved with a result. Notably,
futures are a part of the low-level asyncio API, and direct usage is usually
avoided [10].

3.3 Multi-threading In Python

In Python, multi-threading is available through the two built-in libraries
threading3 and _thread ⁴. The threading library provides a convenient
and straightforward api to create and manage thread lifetimes. The _thread
library supplies low-level API for functions used internally in the threading
library’s Thread objects to create and identify threads, as well as common
mutexes such as barriers and locks.

3.3.1 Threads

Threads require a target task upon creation, which is done either through
customizing a class inheriting from the Thread class with a new run method,
or passing a function reference through the target argument in the constructor

3. https://docs.python.org/3/library/threading.html
4. https://docs.python.org/3/library/_thread.html

3.3 multi-threading in python 13

of a Thread object.

An initialized thread is considered not alive. The thread will first start the
execution of the job when invoking the Thread objects’ start method, which
will run the thread concurrently. The thread object also has a method join,
which halts the callers execution until a thread has finished its execution.

Thread	name	and
run	method	set.

Thread.start	is	called.
Thread.alive	is	set	to	True
Thread's	target	is	run	in	a

separate	thread.

Thread	run	method	is
completed.

Thread.alive	is	set	to	False

Initializing Idling

Executing	target

CompletedMain	thread

Spawned
thread

Figure 3.2: A timeline of a Python thread’s lifetime states

Since threads operate within the same memory space [11], both starting and
stopping threads are quick compared to, for example, subprocesses. This is
due to the memory context remaining intact and not being switched. Shared
memory, however, can easily lead to both deadlocks as well as race-conditions
if not appropriately handled.

3.3.2 Threads And The Global Interpreter Lock

As mentioned in section 3.2, the gil prevents Python threads from accessing
and modifying the same objects. Doing so can disturb an object’s reference to
value and lead to unintended race conditions. The gil, while being helpful,
can become a severe bottleneck. By removing the possibility of interpreting and
evaluating Python code at the same instance of time, this effectively disables
the possibility of parallelizing the execution of a thread’s target. A possibility of
avoiding this issue is releasing the global interpreter lock by utilizing code not
written in Python. A common use case for this is within performance-intensive
code. Libraries such as, for example, Numpy ⁵, which focus on mathematic
operations, which often can be parallelized, use implementations in C to in-
crease the performance of their interfaced calculations. Another use case for
this is I/O operations, which are not handled by Python code, thus avoiding
the gil.

5. https://numpy.org/

14 chapter 3 technical background

3.3.3 Reentrant Locks

Re-enterant Lock (rlock), are lock-like objects available through the threading
library. The rlock object enables a thread to acquire a lock multiple times.
After a thread initially acquires the rlock, the same thread will be available
to acquire the lock again. For the lock to be fully released, it has to be released
the same number of times as it is acquired.

The RLock is useful when working with threads and functionality with multiple
critical sections protected by the lock. A regular lock would already be acquired
by the thread, and cause a deadlock if the thread attempted to acquire it. Using
Rlock, The thread will be able to access numerous of these sections with the
same lock, with the rlock internal logic keeping track of which depth the
thread is acquiring the lock.

3.4 Micropython

Micropython⁶ is a version of Python targeting micro-controllers. Micropython
aims to preserve the easy-to-use familiar Python language, with adjustments
to better suit micro-controllers. The Micropython project is open-sourced and
has many contributors. Micropython implements the syntax of Python 3.4,
with few exceptions, and can run on devices with as little as 16K memory. An
out-of-the-box read–eval–print loop (repl), like the one found in Python, is
available and provides the familiar functionality of either direct usage or file
input.

One of the most noticeable things that separate it from Python is the high focus
on modularity. Python features a broad standard library with all-you-need
included, where Micropythons philosophy is more oriented towards configure-
what-you-need. This "opt-in" approach reduces the size of the Micropython
environment since the sheer size of the Python environment can be impracti-
cable to use on a micro-controller platform. The result of this modularity in
practice is that the Micropython environment has very few standard-libraries,
and many of the Python standard libraries are instead moved to the micropy-
thon equivalent of the Python Package Index, called micropython-lib. These
are available through the Micropython version of pip, upip. Some of the stan-
dard libraries also have limited support, as some functionality is only partially
implemented or not available. The Micropython documentation attempts to
keep track of known incompatibilities.

6. https://micropython.org/

3.4 micropython 15

Micropython does provide interfaces for some new extra libraries, such as
"machine" for hardware interfacing, "network" for network configuration, and
several other more "micro-controllers-related" libraries that have no place
within Python, and in unique to Micropython. The interface concept provides
a description of how each port of micropython should be implemented to
provide the corresponding functionality to the intended target hardware for
the port.

Micropython is updated regularly with new functionality and bug fixes.

3.4.1 Asyncio For Micropython

Asyncio for Micropython is not a part of the standard library ⁷. There are,
however, several packages in micropython-lib referencing asyncio. Through-
out the Micropython community, it seems that the packages named uasyncio
are the "official" micropython asyncio package. The six modules namespaced
under uasyncio are kept separate to preserve the configurable modularity of
micropython, each containing portions of the asyncio functionality.

The uasyncio module features implementations for a subset of the essential
asyncio features such as an event-loop, scheduling of coroutines, and execution
mechanisms.

One of the substantial differences between asyncio and uasyncio is the lack of
future objects. The awaitable objects available are coroutines and a stubbed
version of tasks.

3.4.2 Threading in Micropython

Micropython has support for multi-threading. While the high-level threading
library threading is not available, the low-level _thread module is included in
the standard library. The _thread module is described as highly experimental
[12] and relies entirely on the Python documentation.

One of the differences between the Micropython and Python version of _thread
is that spawning new threads in Micropython has a configurable option of not
using a GIL.

7. Micropython version 1.12 has received a completely rewritten version of Asyncio, now
included in the standard library. This version of Asyncio is called v3.0.0. This topic will be
revisited in chapter 10, Future Work

16 chapter 3 technical background

3.5 Communicating sequential processes

Communicating sequential processes [2] is a concurrent programming lan-
guage that leverages specific commands to communicate between processes ⁸
safely. While being a simple language, it describes a model where a process
uses communication through input and output commands, which helps to
solve issues regarding shared state between processes. A process has a direct
reference to another process in its input or output argument, which defines a
correspondence between the processes.

Directly referencing an input and output from a process creates a limitation
for the input command. An input could be expected to come from multiple
sources. The solution to this is using a separate port, a communication channel
that acts as an intermediary to aid with indirect communication. Channels have
been adapted by many languages which have taken inspiration by CSP when
approaching concurrency [13][14]. The notion of multiple inputs channels is
avoided in the original CSP language paper for simplicity but has surfaced is
considered a primary feature of CSP modeled concurrency.

An addition of a buffered channel enables the ability to communicate asyn-
chronously, as the processes which interact with a channel can utilize it as a
mailbox for output. Similarly to a mailbox, one process can deliver state onto
the channel and move on, while another process can pick up communication
when it is ready.

3.6 PyCSP

PyCSP[3] is a library that adapts the CSP model in the Python language.
There are multiple implementations of CSP, which vary in which underlying
asynchronous architecture is used to provide a simple interface for running con-
current programs. The library uses concepts described in the original CSP[3]
model, such as channels and processes, but has seasoned and uses new adap-
tions of the concepts. The goal is eased usage and increased performance when
running asynchronous code, through concurrent modeling.

Channels The adaption of channels stems directly from the original CSPmodel.
Channels’ primary operations are read and write, which correspond to
input and output from the CSP model.

8. Processes in relation to CSP describe a block of code or procedure that does not refer to
the typical UNIX process

3.7 apycsp, asyncio-based csp 17

Processes The processes in PyCSP are the separate code blocks that leverage
communication over channels. The implementation of these processes is
varied, using different underlying asynchronous paradigms to execute. A
decorator is available to turn a function into a PyCSP-process efficiently.

An important distinguishment is that the processes used internally in
PyCSP do not correspond to OS processes, similarly to the CSP process.

Channel Poison Mechanism A mechanism implemented in PyCSP called poi-
son is used to shut down the network of channels and processes. Poison-
ing a channel propagates poison efficiently to all the processes that use
the channel, which poisons all the channels the poisoned process knows
before it exits the process. Poisoning a process causes it to exit with an
exception.

Being able to propagate poison throughout a CSP network is an effective
way of shutting down processes. An example is a network of processes,
where one of the processes is responsible for storing results. Once the
processes have received enough results and decide to terminate, it can
poison the network and subsequently shut down all the other processes.
The other processes do not have to consider how many results they are
producing before terminating and can contain pure producer code logic.

This poison mechanism is one of the primary reasons why the process
requires a distinguished interface from the underlying architecture of a
PyCSP version.

Alternatives, Guards & Selecting Alternatives is a concept which provides
flexibility for a process performing operations. An alternative is used to
select between multiple channels which one to operate. In combination
with a Guard, which intent is to set some protective limitation as to the
readiness of the channel, this can be used to exclusively select a channel
that is ready to be selected.

3.7 aPyCSP, Asyncio-based CSP

aPyCSP[4] is an implementation of PyCSP utilizing the asyncio module’s
scheduling and asynchronous model as its basis. Implementing CSP-processes
as coroutines has a few advantages. Due to the shared memory and minimal
cost of context switching, there is a low cost of spawning more coroutines.
A more substantial amount of CSP-processes can be spawned as a result of
this.

18 chapter 3 technical background

An initial implementation of aPyCSP used locks and conditions as a result of
being intended to be mimicking a threaded version, but instead using asyncio
[3]. A second implementation took advantage of the cooperative multitasking
that comes naturally from coroutines. The cooperative multitasking ensures
that only one "process" is active at the same time, and the yielding of a coroutine
is done at safe stages of execution, eliminating the need for primitives such as
locks to provide thread-safety.

The experiments related to these versions show that the lock-free implementa-
tion has better performance and shorter and less convoluted code.

3.8 PyCSP - Lockversion

PyCSP - Lockversion is a version of PyCSP which took inspiration from the
aPyCSP version. Instead of coroutines and asyncio, the implementation of
processes is done by using threads. While this is not a new approach in PyCSP,
the observations made during the development of aPyCSP resulted in a new
version more alike the aPyCSP.

Using threads requires thoughts on how the state is protected, and amechanism
to help synchronize the threads is used. With inspiration from aPyCSP, a future
object, which can be a wait-and-notify mechanism, is implemented using a
global shared reentering lock.

This multi-threaded approach performs better than the original PyCSP version
using threads.

4
Design
During the course of the development of the project, certain design choices
regarding the have been made. This section is intended to describe these
choices and the reasoning behind them.

4.1 Inherited Module Design

The two modules developed in this project, inherit their design from the
"original" PyCSP modules. The released publications regarding PyCSP describe
interface design and the internal logic of the modules.

A decision made to fork the existing PyCSP projects rather than start the library
code anew. The intent behind the project is not to reinvent the wheel, but rather
port the original code. By performing as little changes possible, a strong link
between the original and the micropython variant preserved. This link not only
ensures a better understanding of both original and ported versions but opens
the possibility of maintaining both source codes with more or less the same
code-changes.

The modules the design is inherited from are some of the leanest PyCSP
versions in terms of code size. aPyCSP started its development from the 0.3.0
version of PyCSP, because of the smallest and less complex code [4]. The PyCSP
lock-version bases its design on the aPyCSP version.

19

20 chapter 4 design

Less intrusive changes, such as moving files into separate submodules to main-
tain tidiness of the library is not considered altering the design of the project,
but rather a part of the project architecture, described in the following sec-
tion.

4.2 Platforms

The project’s target platform is the Micropython environment run on microcon-
trollers. As indicated in section 3.4, there are different ports of Micropython
adapted to different microcontrollers. The variety of versions of Micropython
means that there are in all likeliness that there are some underlying differ-
ences between the ports. It is essential to keep in mind that the modules should
operate on a microcontroller with specific ports, and not the UNIX version of
Micropython. The intent is to create libraries suitable for all micropython-
based controllers, and developing the modules as general for Micropython as
possible.

To approach the project from the right angle, a micropython-based controller
is used both for testing and experiments. The device chosen for development
and testing is the Pycom FiPy1. Pycom, the manufacturer of the FiPY, use
Micropython for most of their product series, which means adapting to this
device makes the module available on their portfolio of microcontrollers. They
have an open-source fork of Micropython 2, which is avidly maintained. The
microcontroller itself is based on ESP323, a commonly used microcontroller
that features a dual-core processor with clock-frequency up to 240MHz, Wi-Fi,
and Bluetooth connectivity.

4.3 Project Architecture

With respect to the above-mentioned platform design choice, there are a few
matters regarding the structure of the project that needs to be considered.
Figure 4.1 gives an overview of the flow of dependencies and imports.

1. https://pycom.io/product/fipy/
2. https://github.com/pycom/pycom-micropython-sigfox
3. https://www.espressif.com/en/products/socs/esp32/overview

4.3 project architecture 21

Entry point

main.py

Testing suite

tests.py

Configuration

config.py
Custom

application
code

uaPyCSP
module

Other
dependency
modules

be
nc

hm
ar

ks

lib
ra

ry
 c

od
e

uPyCSP
module

te
st

s

be
nc

hm
ar

ks

lib
ra

ry
 c

od
e

te
st

s

Figure 4.1: Project architecture

Entry point

While the UNIX distributions of Micropython vary between OS platforms,
the project’s structure has almost no requirements in terms of structure. The
limitations are apparent when focusing on a microcontroller target. Devices
without an underlying OS, such as the FiPY, often require an entry point file
main.py to bootstrap the rest of the application code. This entry point works
adequately for use on UNIX distributions as well.

Configuration

Concerning the ability to execute different tests, benchmarks, and different
versions of the PyCSP code, a configuration step that enables executing specific
benchmarks or tests. This configuration has to be hard-coded within config.py
and has to be configured prior to execution as the FiPy platform does not accept
arguments for execution.

While the configuration step and test suite are convenient for development, and

22 chapter 4 design

running time-based performance experiments, all of the tests and benchmarks
should be possible to run in an isolated setting, to leave the possibility open
for experiments such as measuring memory or power usage.

PyCSP Library Code

The code written for the modules should be operating in isolation. As the
libraries’ intention, is just that, libraries, the code retaining to the configura-
tion of the test and development environment are separated. This leaves the
possibility of extracting the modules, without the entry point or configurations.
The libraries dependencies, however, are not necessarily included within the
library.

Module Dependencies

While there are whole module dependencies outside of the module code, these
are placed as stand-alone modules alongside⁴ the module for the most part. The
intention to keep a clear separation of the modules. This leaves the possibility
of replacing the dependencies with newer versions or better implementations
without affecting the PyCSP module code.

4. Some of these dependencies require reimplementation as a part of this project, while
others are available through the upip module and Micropython standard library, described
in section 3.4

5
Implementation
In this chapter, the implementation specifics of the project will be described.
Smaller implementation changes, generic to both versions of PyCSP, will be
discussed in a common section, while the particulars to each approach are
described in their respective sections.

For this implementation the following versions have been used:

Micropython - Unix Version 1.11

Pycom Micropython Version 1.20.1.r1 (Equivalent to v1.11 of Micropython)

uasyncio Version 2.0.0

5.1 uaPyCSP

The asyncio-based PyCSP version aPyCSP is ported to Micropython and thus
named uaPyCSP to distinguish between the two versions. This section contains
the specific changes made to the source code of the library, done to create the
uaPyCSP library.

23

24 chapter 5 implementation

5.1.1 Futures

Futures, as mentioned in section 3.4.1 is a feature from asyncio, not provided
in uasyncio. The Futures waiting mechanism is used in the channels to await
operations queued on a channel. Upon scheduling a command on a channel,
it internally uses a future to wait for results. It is critical to provide the same
functionality through reimplementation to maintain the same structure as the
original implementation of aPyCSP. Two different implementations of future
objects are implemented.

The usage of sparse usage futures in aPyCSP, allows for only a subset of
methods to be reimplemented for usage in uaPyCSP. With a focus on the core
functionality of the future object, rather than a feature-packed version, it fits
into the application without any intervention into the uasyncio library. The
Future class feature a constructor method, an await method, and a set-result
method.

First Version of Futures

As seen in listing 5.1, the future object is relatively simple. After initialization,
the options are either awaiting the future or setting a result.

The __await__ method itself is a coroutine that yields until the done flag has is
set. Mainly this causes the coroutine to "take a break", so another coroutine has
the possibility of completing the future by setting the result. Upon reentrance,
the state is reevaluated and returning a result if completed.

Listing 5.1: Initial Future implementation

c lass uFuture1 :
def __ i n i t _ _ (s e l f , loop=None) :

s e l f . done = Fa l se
s e l f . r e s u l t = None

async def __await__ (s e l f) :
while not s e l f . done :

y i e l d
return s e l f . r e s u l t

CPython compab i l i t y
__ i t e r _ _ = __await__

def s e t _ r e s u l t (s e l f , r e s u l t) :
s e l f . done = True

5.1 uapycsp 25

s e l f . r e s u l t = r e s u l t

Second Version of Futures

The second version of futures, which has a bit more complex inner logic (seen in
listing 5.2), handles awaiting differently. With the intention of suspending and
rescheduling, instead of reevaluating the completed state multiple times, this
__await__ method stores a reference of the waiting coroutine in an internal
list. It then yields a False value.

Listing 5.2: Second implementation of Future, with a suspending mechanism

c lass uFuture :
def __ i n i t _ _ (s e l f , loop=None) :

s e l f . done = Fa l se
i f loop :

s e l f . loop = loop
else :

s e l f . loop = uasyncio . get_event_ loop ()
s e l f . r e s u l t = None
s e l f . wa i t e r s = []

async def __await__ (s e l f) :
while not s e l f . done :

s e l f . wa i t e r s . append(s e l f . loop . cur_ task)
y i e l d Fa l se

return s e l f . r e s u l t

CPython compab i l i t y
__ i t e r _ _ = __await__

def s e t _ r e s u l t (s e l f , r e s u l t) :
s e l f . done = True
s e l f . r e s u l t = r e s u l t
for t a sk in s e l f . wa i t e r s :

s e l f . loop . ca l l _ soon (task)

While undocumented in uasyncio, yielding a False value prevents it from
being rescheduled on the Event loop. This creates the effect of the coroutine
being taken out of the scheduling. Initially, in the development, the future
object yielded a reference to itself, and by creating a type-check in the event
loop, it provided the same non-rescheduling functionality. This provides more
readability for the code, rather than yielding a False value. It was decided

26 chapter 5 implementation

against, as doing so requires changes to asyncio code.

Upon completion of the future object, in set_result, the list of removed
coroutines is looped through and rescheduled on the event loop associated
with the future.

Creating Futures

A method create_future, known from asyncio, has also been reimplemented.
While originally being a method on the event loop class, this is now a stand-
alone function, with an optional loop argument. This function also creates an
effective way of alternating between using the different future object, when in
an experimental phase such as this project.

5.1.2 Gather

Gather is a mechanism from asyncio. The gather function takes multiple await-
able objects as arguments and returns a list of the resulting (returned) values.
The gathering mechanism is not featured in uasyncio.

Internally gather sets up the scheduling of all the entered awaitables, before
yielding to the execution to perform these. Upon completion of all the awaita-
bles, the gather function compiles a list containing results from the each of the
awaitables. The result list is ordered corresponding to the order of the inputted
awaitables, returned to the caller of gather.

The gather function is implemented as a class, leveraging the __iter__method,
which creates the illusion of the gather functionality being a coroutine function,
similar to how the __call__ method can be used to make a class appear as
a function, described in section 3.2.1. This is done to adapt correctly to the
asyncio interface where gather is an awaitable [15].

Upon initialization, a barrier object is created, alongside a result list. The barrier
object is used to aid in synchronization of the awaitables scheduled. The gather
functionality continues to loop through the task and schedule them using the
uasyncio provided create_task function. Notable in listing 5.3 the wrapping of
the objects before scheduling them. Wrapping the objects not only allows for
a mechanism to store the result properly in the result list but also creates the
possibility of adequately catching and raising a ChannelPoisonException to
propagate poison. Since the gather function is a coroutine, it will be scheduled
in the CSP-network similarly as a CSP-process, but lacks the proper poison
propagation mechanisms Process objects has.

5.1 uapycsp 27

Listing 5.3: Gather implementation

c lass gather () :
def __ i n i t _ _ (s e l f , *procs) :

ncoros = len (procs)
s e l f . b a r r i e r = Ba r r i e r (ncoros)
s e l f . r e s u l t s = [None] * ncoros
s e l f . poisoned = Fa l se
loop = async io . get_event_ loop ()
for n , proc in enumerate (procs) :

loop . c r ea t e_ t a sk (s e l f . wrap(proc , n) ())

def __ i t e r _ _ (s e l f) :
t ry :

while not s e l f . b a r r i e r . complete () :
y i e l d

return s e l f . r e s u l t s
f i n a l l y :

i f s e l f . poisoned == True :
ra ise ChannelPoisonException

def wrap(s e l f , coro , idx) :
async def wrapped () :

t ry :
s e l f . r e s u l t s [idx] = await coro

except ChannelPoisonException :
s e l f . poisoned = True

s e l f . b a r r i e r . t r i g g e r ()
return wrapped

Awaiting the gather functionality uses the __iter__ method, which similarly
to how the future objects in section 5.1.1 work, yield until the barrier sig-
nals its completion. It also checks and raises the ChannelPoisonException
for the executing channel to propagate poison further, if the gather object is
poisoned.

5.1.3 uasyncio - Run Until Complete

A minor fix for the uasyncio event loop’s run_until_complete method has
been implemented. The run_until_complete method is used for the run_csp
function in PyCSP. The difference observed between uasyncio and asyncio, is
that the version from uasyncio of the function does not return the results after
execution of the scheduled coroutines. A minor change to this method creates

28 chapter 5 implementation

the possibility of successfully returning the result from the coroutine scheduled
using this function. The change can be seen in listing 5.4.

This has been done directly within the uasyncio library. While intrusive, the
decision to do so is due to the fact that this clearly is a bug within uasyncio,
rather than an intentional design.

Listing 5.4: Fix for run_until_complete method

Or i g i na l
def run_unt i l_complete (s e l f , coro) :

def _run_and_stop () :
y i e l d from coro
y i e l d StopLoop (0)

s e l f . c a l l _ soon (_run_and_stop ())
s e l f . run_forever ()

Fixed v e r s i o n
def run_unt i l_complete (s e l f , coro) :

def _run_and_stop () :
r e s = y i e l d from coro
y i e l d StopLoop (re s)

s e l f . c a l l _ soon (_run_and_stop ())
return s e l f . run_forever ()

5.2 uPyCSP

The original PyCSP and PyCSP-Lockversion are distinguishable in name, but
since there currently is no other version of PyCSP supported inMicropython, the
name of the PyCSP-Lockversion ported will be uPyCSP. This section contains
descriptions of the specifics done to implement the module.

5.2.1 uThreading - Threads

Threads, described in section 3.3.1, has a feature rich implementation in in
Python. For the reimplementation of the threads, a more narrow approach
is done. The result are thread objects, which only supports core functional-
ity.

Initialization Initialization of a Thread object mostly configures initial values
for some of the variables keeping track of the state of the thread, as
well as the name of the thread. If a target method is passed (along

5.2 upycsp 29

with arguments and keyword arguments), these are stored here. The
allocation of a lock object from the _thread library is done. Description
of its use in the following section.

State-lock & Join A state-lock object, allocated in the initialization, is held by
the thread while it executes its target method. Once the target method
has finished, the lock is released. The implications further down the
line become clear when other threads attempt to perform a join on this
thread. While they are able to acquire the lock when the thread no longer
holds on to it, they are required to wait for it while it does. Once they
hold on to the lock, they instantly release it to allow for other threads to
join. Using a lock in this manner creates the effect of "waiting" for the
thread to finish.

An essential factor in this design is resource consumption when waiting
for a thread to complete execution. Leveraging the lock primitive, instead
of setting up while-statement-conditioning the lifetime status of the
thread, which would result in a spinning thread, using all the CPU power
possible. The lock from _thread is implemented in such a manner that
the thread is suspended, and not active until it can acquire the lock.

Start & Bootstrapping The thread’s start method initializes the thread, in
which the target function is executed on. The start method also sets up
manages some of the internal mechanisms of the thread object. These
internal mechanisms, such as acquiring a state lock and setting lifetime
status, are done right before spawning the new thread.

A separate bootstrapping method sets identity from within the new
thread and executes the target method. As seen in Listing 5.5The boot-
strapping method makes sure that the thread releases its state lock,
and re-sets its lifetime status after the execution of the run method by
leveraging a try-catch-finally block.

The concept of using a bootstrap method, instead of placing this func-
tionality within the run method, derives from the inheritance usage of
the Thread class. Any important internal mechanisms in the run method
would be overridden when inheriting from the Thread class and imple-
menting the run method.

30 chapter 5 implementation

Listing 5.5: The implementation of a Thread’s start, bootstrap and run methods

c lass Thread :
def __ i n i t _ _ (s e l f , . . .) :

I n i t i a l i z a t i o n l o g i c

def s t a r t (s e l f) :
i f s e l f . a l i v e :

Thread i s a l r eady a l i v e
ra ise RuntimeError

Get i d e n t i f i e r f o r the thread
s e l f . a l i v e = True
s e l f . s t a r t ed = True
s e l f . s t a t e _ l o c k . acqu i re ()
_thread . s tar t_new_thread (s e l f . __boots trap , ())

def __boots t rap (s e l f) :
t ry :

s e l f . indent = _thread . ge t_ iden t ()
s e l f . run ()

f i n a l l y :
s e l f . s t a t e _ l o c k . r e l e a s e ()
s e l f . a l i v e = Fa l se

def run (s e l f) :
s e l f . t a r g e t (* s e l f . args , ** s e l f . kwargs)

5.2.2 uThreading - RLock, Reentering Locking Mechanism

Another critical piece provided by the threading module is the rlock object.
As mentioned in section 3.8, a global rlock, is used in the implementation of
future objects.

Acquiring the Lock Attempting to acquire a reentering lock establishes if a
thread already holds the lock and if so, that thread is the same thread
that attempts to acquire it. 1 If so, a counter is increased, and the method
returns the value 1, signaling that the lock was acquired. If the lock is not
acquired or acquired by another thread, a call to the underlying _thread
method to acquire the actual lock is done. In the case of the lock being
acquired, this results in a thread waiting for the lock to become available.

1. Finding a threads identity is done through _threads get_ident function, wrapped in a
get_ident function in uthreading, alike the original threading module.

5.3 compabil ity changes 31

Once the lock is acquired by a thread, the owner and count state is set.

Releasing the Lock Releasing the lock subtracts one from the counter prop-
erty. If the property reaches 0, the owner is removed, and the lock is
released through the underlying _thread library’s mechanism. Attempt-
ing to release a lock, which is not held by the thread invoking the call
results in a RuntimeError.

5.2.3 Itertools

itertools is a module containing building blocks for iterators. itertools is not
available in Micropython.

In the Thread class, a counter is used for default naming of threads 2. A small
substitute for the counter generator replacement for counter is implemented
to maintain the naming functionality within the thread class.

5.3 Compability Changes

There are multiple places throughout the libraries where a newer syntax
then what is available in Micropython. These are minor changes and are not
considered drastic enough to be mentioned in detail. Examples of these are
print statements, and constructors of inheriting classes which have a slightly
different syntax.

Import statements using aliases are also used throughout the implementation
to ensure that changes are kept to a minimum. Conditional imports create
support for running the module code with Python support, in addition to the
Micropython target support.

5.4 Collections’ Deque

The Double-ended queue (deque) object, available from the collectionsmodule,
is used to as read-and-write queues for Channels. The collections module is not
available in Micropython, and the module ucollections is used as a replacement.

2. Thread names are by default a string "Thread-N", where N is an int starting at 1 increasing
by 1 for every thread spawned. Names are not unique and can be overridden manually
through the name property

32 chapter 5 implementation

This replacement does not provide all the features of the original module, and
the deque available from it has limitations.

The deque from ucollections has two methods implemented; append, which
adds an item on the right side of the queue, and popleft, which removes the
first item from the left end of the queue. These two methods make it possible
to use it as a fifo queue.

Max Length

The ucollections’ deque object also requires a max-length in its constructor,
unlike the deque from collections. The max-length has an optional silent/ex-
ception toggle available if the queue has reached maximum elements. On
appending, the silent approach removes the first element from the queue,
while the exception toggle throws an error if it is full.

Filtering a Deque Object

In both implementations of PyCSP, uses the builtin filter-method to operate the
write and read queue. However, the __iter__ method is not implemented for the
ucollections deque object, excluding the possibility of using the filter method.
An implementedworkaround to themissing filtering is done by iterating the full
length of the queue using popleft, and the filtering conditional for appending
the element back on the queue, as seen in listing 5.6.

Listing 5.6: Manual filtering of deque object.

def _remove_alt_from_pqueue (s e l f , queue , a l t) :
" " " Common method to remove an a l t from the

read or wr i t e queue .
" " "

for _ in range (len (queue)) :
op = queue . pop l e f t ()
i f (not op . cmd == ’ALT ’ and op . a l t == a l t) :

queue . append(op)
return queue

5.4.1 List Implementation

As an alternative to using double-ended queues within the Channels, a Python
List can be used instead. Lists have dynamic length and require no input
configuration. Filtering lists are also possible, which results in a minimal

5.5 timer - chrono 33

implementation for removing alternatives from the queue.

Alternate implementations of both uaPyCSP and uPyCSP have Channels using
lists as queues instead of deque.

5.5 Timer - Chrono

Many of the performance benchmarks, an exact measurement of time, are
critical to the results. In Python and Micropython, the time module provides
high-resolution accurate readings. However, when using testing this module on
a FiPy, which uses a Pycom port of Micropython, the time module’s resolution
is is inadequate, as it reports time in seconds.

In the Pycom port of Micropython, measuring time is handled by another
module. A chronometer class Chrono3 from a module Timer provides readings
with microsecond precision. The Chrono class is not available in the official
micropython version or Python.

For compatibility between platforms, a Chrono class is implemented, using the
time module as its basis. This allows the same benchmarking code to be similar
for all platforms, by using a platform-based import statement alternating the
import of the Chrono class.

3. https://docs.pycom.io/firmwareapi/pycom/machine/timer/

6
Experiments
The chapter will outline the different experiments used in this project, with
the intention of describing the mechanics behind the experiments, what the
experiments achieve, and the value of the results.

6.1 CommsTime

The CommsTime benchmark is used to measure communication overhead be-
tween CSP-processes using channels. The result reflects not only the communi-
cation, but due to the simple design (seen in figure 6.1) indirectly measures the
overhead associated with switching executions between the processes.

The benchmark is initiated by a message sent from a Prefix process through
a channel to the Delta2 process. The Prefix process initiates with a message,
then just relays the messages received upon a channel, onto the next. The
Delta2 process (which has two implementations, described in the following
section) sends the message onto two channels. One of the channels is used for
the Consumer process, which keeps track of the number the messages passed
through the benchmark and eventually will poison the network. The other
channel leads to the Successor process. This process increments the value
received before sending along to the next channel, leading back to the Prefix
process.

35

36 chapter 6 experiments

By sending a large number of messages through the CommsTime network, one
can, with accuracy calculate the communication time of a message per channel,
and measuring the round-trip time of a message by dividing the result by the
number of messages and finding per-channel time by dividing it by the number
of channels.

ConsumerDelta2A

CB

Prefix

Successor

D

Process Channel

Figure 6.1: A visual representation of the CommsTime benchmark

6.1.1 Delta2

The Delta2 process [3], which is used to write an inputted value onto two
output channels, has two implementations. A parallel version uses two writer-
processes, spawned in a Parallel section. The sequential version executes these
write operations one after the other. The alternate implementations of Delta2
allow for measuring a performance difference between parallel and sequen-
tial execution of processes, where the parallel version additionally spawns
processes.

6.2 Stressed Alternatives

The Stressed Alternatives experiment [16] uses multiple writer processes to
write to multiple channels as rapidly as possible, while a single stressed reading
process is performing a given number of selects, using alternatives to read from
the same pool of channels. This benchmark effectively measures the cost of
using the select mechanism for alternatives.

6.3 list & deque benchmark 37

Writer Writer Writer Writer Writer Writer

A B C

Reader

Figure 6.2: A visual representation of the StressedAlternatives Experiment experiment
with three channels, and two writers per channel

A side effect of the experiment, which in its uses a vast amount of processes,
is the ability to get a good indicator of the number of processes the library
supports[17].

In addition, the experiment utilizes the functionality related to the alternatives
and selects, such as channel operation queueing, and changes to the internals
of the queuing mechanism should be visual in the results.

6.3 List & Deque Benchmark

The List & Deque Benchmark is a microbenchmark measuring the performance
of common operations in the builtin List object, and the deque object provided
by the ucollections module. The goal of the benchmark is to measure specifically
the cost of performing corresponding functionality between the objects.

The benchmarks comprise of multiple small benchmarks testing the perfor-
mance of the different operations used in the application. These operations are
repeated a number of times to improve accuracy. These different operations
are:

Append Appends an object to the end of the List or deque object.

Popleft Removes an object from the beginning (left side) of the List or deque
object.

Filter Filters objects from the List or deque of based on a conditional state-
ment.

38 chapter 6 experiments

The benchmark provides useful context to the choice of using one or the other
for different mechanisms within the library.

6.4 The Waiting Queue

The Waiting Queue experiment spawns a number of coroutines, which all wait
for futures to complete. In the mean-time, a pair of processes tasked with
sending a number of messages back and forth through channels, simulating
regular usage of the library. Once the goal amount of messages is sent and
received through channels, the processes terminate, and all the waiting fu-
tures are completed. The result is benchmarking the time it takes to pass a
given amount of messages, with a specified amount of futures active in the
background.

With the implementation of multiple futures, an observation was that the
initial implementation performed better than the rescheduling futures in the
CommsTime experiment described in section 6.1. The initially spawned futures
increase the size of the active queue with each coroutine waiting for a future,
which resulted in a question as to if the number of coroutines waiting in the
queuemight result in differences in performance in use cases where the number
of processes utilizing futures increases.

The goal of the benchmark is to see if there are changes in the performance de-
pending on howmany processes are idling in the run queue. The potential here
is to discover if there are any notable performance differences in the two future
implementations and uncover potential aspects with either of them.

7
Results
The results discussed in this section aim to document the performance of
the implementation through the experiments brought forth in chapter 6. All
experiments are reproducible with the source code, environment, and the given
configurations.

7.1 Platforms & Environments

UNIX The UNIX environment is run on a Lenovo ThinkCentre M920Q[]
equipped with an Intel Core i5-8500T Processor(6 cores, 2.1Ghz 3.5Ghz)
and has 16GB memory at 2666MHz. The system is using Ubuntu 18.04,
with Micropython version 1.11 (Linux version) and Python 3.8.0.

FiPY The FiPy environment is run on an ESP32 microcontroller1 (2 cores,
240mhz,4MBmemory). The system is using PycomMicropython 1.20.1.r12

1. https://www.espressif.com/en/products/socs/esp32/overview
2. Equivalent to v1.11 of Micropython

39

40 chapter 7 results

7.2 Communication Time - CommsTime

CommsTime, as described in the previous chapter, measures communication
performance. The communication time is measured in messages round-trips of
the CommsTime network. A number of messages’ round-trip time is recorded,
before division by the number messages, and then again by the four channels.
The presented results are are the communication time for a single message
through for a single channel

7.2.1 UNIX Platform

The Unix platform, which has support for both Python and Micropython en-
vironments, can compare the execution of four PyCSP libraries on the same
hardware. The modules aPyCSP and PyCSP are executed using Python, and
uaPyCSP and uPyCSP are executed using Micropython.

Configurations & Results

The CommsTime benchmark data presented in Table 7.1 and Figure 7.1 is a
result of 5000 messages passed through the network. Using 100 runs, and
presenting the minimum, maximum, and average communication times for a
message on a channel. Additionally, both the Sequential and Parallel version
of the Delta2 process is used.

Delta2 Environment Version Min(µs) Avg(µs) Max(µs)

Parallel
Python PyCSP 36.687 37.563 39.618

aPyCSP 12.773 13.053 13.403

Micropython uPyCSP 28.742 29.580 30.595
uaPyCSP 22.077 22.255 22.975

Sequential
Python PyCSP 12.000 13.293 17.941

aPyCSP 5.905 6.186 6.784

Micropython uPyCSP 17.622 17.999 18.396
uaPyCSP 13.483 13.606 13.847

Table 7.1: Results from from 100 executions of the CommsTime experiment from
multiple PyCSP-versions executed on UNIX platform, configured with 5000
messages passed through the CommsTime processes.

7.2 communication time - commstime 41

Figure 7.1: Average results from the CommsTime experiment from multiple PyCSP-
versions executed on UNIX platform based on Table 7.1.

7.2.2 FiPY Platform

The experiment executed using the FiPY Platform does not support Python,
hence why onlyMicropython libraries are used. Additionally, the computational
speed is significantly lower, and a smaller number of messages are required to
measure communication time with precision.

Configurations & Results

The experiment is executed with 200 messages, and the results is presented in
Figure 7.2 and Table 7.2. Results are presented with minimum, maximum and
average communication times from the 100 runs, given in µs.

42 chapter 7 results

Figure 7.2: Average results from the CommsTime experiment from multiple PyCSP-
versions executed on FiPy platform based on Table 7.2

Delta2 Version Min(µs) Average(µs) Max(µs)
Parallel uPyCSP 5934.724 6251.178 6703.854

uaPyCSP 2941.495 3141.813 3473.825

Sequential uPyCSP 3100.868 3462.108 3827.499
uaPyCSP 1802.616 1941.257 2191.131

Table 7.2: Results from the CommsTime experiment on FiPY Platform. The experiment
used 200 messages, with 100 runs.

7.3 stressed alternatives 43

7.3 Stressed Alternatives

The Stressed Alternative benchmark used to measure the performance of
Alternatives and Select. The experiment uses a reader CSP-process, performing
a number of selects onto a given list of channels. The use of multiple selections,
reduces the any potential overhead caused by measuring disturbances is the
time measuring mechanism. Each channel has a set sized pool of writer CSP-
processes. Writers perform write operations endlessly onto channels. After
the conclusion, upon finishing the number of selections, the reader will issue
a Channel poison, shutting down the network. This execution is repeated a
set number of times to ensure precise results. The total time spent on the
number of selections is then divided by the number of selections, which yields
an estimate of how much time a single selection takes.

Additionally, there are two options for performing Alternative selects, either
by using the with keyword on an Alternative, or by calling the Alternative’s
select method. Both are options are tested.

7.3.1 UNIX Platform

On the UNIX platform, performance using two configurations are measured.
This is done to see how the amount of processes in total has an effect on the
performance of the primary task, performing select operations.

Large CSP-pool configuration and results

The first configuration uses a large pool of CSP-processes; 100 channels, with 5
writer processes per channel. This leads to the total amount of CSP-processes
being 501. The reader process performs 5000 selections. The results from
Table 7.3 are minimum, maximum, and average results observed from 100
executions.

44 chapter 7 results

Select Environment Version Min(µs) Average(µs) Max(µs)

with
Python aPyCSP 78.716 79.358 80.656

PyCSP 47.757 59.170 97.495

Micropython
uaPyCSP 1 249.102 251.054 253.422
uaPyCSP 2 246.971 249.032 251.841
uPyCSP 24.615 26.283 34.524

alt.select
Python aPyCSP 78.349 79.104 84.470

PyCSP 49.583 58.457 103.198

Micropython
uaPyCSP 1 250.459 252.375 254.045
uaPyCSP 2 247.531 250.031 252.369
uPyCSP 24.862 26.632 29.528

1. Using rescheduling futures 2. Using yielding futures

Table 7.3: Results from Stressed Alternatives benchmark run on the UNIX platform.
The results are from performing 5000 selects on 100 channels. Each channel
has 5 writers.

Small CSP-pool configuration and results

A second configuration uses a reduced pool of CSP-processes. Using only 5
channels, with 2 writer processes each, for a total of 11 CSP-processes in the
network. The readers perform 5000 selections. The results from Table 7.4 are
minimum, maximum, and average results observed from 100 executions.

Select Environment Version Min(µs) Average(µs) Max(µs)

with
Python aPyCSP 10.801 10.930 12.359

PyCSP 17.738 19.247 26.880

Micropython
uaPyCSP 1 27.009 27.185 28.878
uaPyCSP 2 25.648 25.783 27.305
uPyCSP 18.433 19.087 22.838

alt.select
Python aPyCSP 10.294 10.371 10.858

PyCSP 17.436 18.817 21.336

Micropython
uaPyCSP 1 26.474 26.679 27.326
uaPyCSP 2 25.063 25.250 25.727
uPyCSP 18.673 19.359 20.671

1. Using rescheduling futures 2. Using yielding futures

Table 7.4: Results from Stressed Alternatives benchmark run on the Unix platform.
The results are from performing 5000 selects on 5 channels. Each channel
has 2 writers.

7.3 stressed alternatives 45

7.3.2 FiPY Platform

On the FiPY platform, using a large pool of CSP-processes is not possible.
A limitation introduced by the uPyCSP version, as attempting to use more
than 20 CSP-processes, causes a MemoryError. As previously stated in 6.2, the
Stressed Alternatives benchmark can be used to find the maximum amount of
CSP-processes possible to spawn with a library and is an important result in
itself.

Configurations and results

Since spawning a large pool of threads was not possible, a smaller pool of 5
channels, with 2 writers each, totaling at 11 CSP-processes is used. The number
of selects is reduced to 200, as the computational hardware on FiPY is a lot
slower, and does not need the same sized pool to reduce the overhead caused
by time measurement. The results from execution on uaPYCSP and uPyCSP
are found in Table 7.5

Alternative select Version Min(µs) Average(µs) Max(µs)

with
uaPyCSP 1 4773.066 4986.087 5655.597
uaPyCSP 2 4480.089 4712.095 5454.641
uPyCSP 3299.178 3523.560 4053.391

alt.select
uaPyCSP 1 4611.241 4844.526 5403.270
uaPyCSP 2 4331.133 4568.494 5224.5830
uPyCSP 3309.888 3522.165 4185.317

1. Using rescheduling futures 2. Using yielding futures

Table 7.5: Results from Stressed Alternatives benchmark run on the Unix platform.
The results are from performing 200 selects on 5 channels. Each channel
has 2 writers.

46 chapter 7 results

7.4 Lists & Deque Benchmark

The microbenchmark described in section 6.3, measures the speed of deque
and List objects. It reports the time it takes to perform operations with a number
of elements using the different objects. The experiment is performed with a
varying number of elements within the object, to see how the data structure
handles the different sizes.

The resulting values are the time it takes to add and remove a given number of
elements using append and popleft, while the results for filter is the reported
time it takes to perform a single filter operation on the given number elements
using the underlying data structure.

7.4.1 UNIX Platform

The benchmark is run with a number of elements in the interval of 500 ~16000,
starting at 500, doubling for each iteration value. The measurements are
presented in Figure 7.3, and Table 7.6 and display the average execution times
of 500 runs per iteration.

7.4 lists & deque benchmark 47

Figure 7.3: Average benchmark measurements of Deque and List objects performance
on Append, Popleft and Filter operations with set sizes in the interval of
500 to 16000 elements, based on numbers from Table 7.6. Executed on
UNIX platform

48 chapter 7 results

N Append Popleft Filter
500 26 25 42
1000 51 51 82
2000 101 100 162
4000 201 198 323
8000 401 394 644
16000 800 786 1288

(a) Deque results in µs

N Append Popleft Filter
500 29 46 53
1000 53 113 104
2000 104 302 206
4000 215 908 409
8000 412 4179 816
16000 831 1629 1629

(b) List results in µs

Table 7.6: Benchmark measurements of Deque and List objects performance on Ap-
pend, Popleft and Filter operations with set sizes in the interval of 500 to
16000 elements. Executed on UNIX platform

7.4.2 FiPY Platform

The benchmark is run with a number of elements in the interval of 50 ~1600,
starting at 50, doubling for each iteration value. A small set size is used as
computational speeds are slower, and accurate time measurement is achieved
with fewer elements used in the set. The measurements are presented in Figure
7.4, and Table 7.7 and display the average execution times of 500 runs per
iteration.

7.4 lists & deque benchmark 49

Figure 7.4: Average benchmark measurements of Deque and List objects performance
on Append, Popleft and Filter operations with set sizes in the interval of
50 to 1600 elements, based on numbers from Table 7.7. Executed on FiPY
platform

50 chapter 7 results

N Append Popleft Filter
500 485 463 1218
1000 964 909 2401
2000 1868 1769 4666
4000 3633 3460 9305
8000 7345 6869 19592
16000 15243 14506 40435

(a) Deque results in µs

N Append Popleft Filter
500 1794 1016 1626
1000 3476 2879 3066
2000 6742 9256 5936
4000 13406 32486 11618
8000 27530 121650 23828
16000 56357 470440 50480

(b) List results in µs

Table 7.7: Benchmark measurements of Deque and List objects performance on Ap-
pend, Popleft and Filter operations with set sizes in the interval of 50 to
1600 elements. Executed on FiPY platform

7.5 The Waiting Queue Experiment

The Waiting Queue experiment design described in section 6.4 is implemented
using a Successor CSP-Process, found in the CommstTime benchmark, as well
as a specialized Successor CSP-process. These two successors pass messages
back and forth using two Channels. Once a goal number of messages is sent
back and forth, the specialized successor reads the time, resolves futures, and
poisoning the CSP network. Meanwhile, a number of Waiting CSP-processes
are run alongside these Successors. The waiters perform an await on a future,
creating the effect of a number of extra processes in the schedulers’ queue
waiting for future objects to be resolved. The amount of waiter processes is
increased in an interval ranging from 1~30, to see the performance changes
with an increasing amount of waiter processes used, and thus futures await
mechanism.

The result after the benchmark is the total time it takes to send severalmessages,
with a given amount of processes waiting for futures to be resolved at the same
time.

7.5.1 Unix Platform

For the Unix Platform, 1000 messages are sent back and forth between the
two Successors. The execution is run 100 times, and the average measurement
from those executions is found in Figure 7.5.

7.5 the wait ing queue experiment 51

Figure 7.5: Results from The Waiting Queue experiment on Unix platform, using 100
messages and a range of 1~30 futures

7.5.2 FiPy Platform

For the FiPy Platform, 100 messages are sent back and forth between the two
Successors. The execution is run 100 times, and the average measurement from
those executions is found in Figure 7.6.

Figure 7.6: Results from The Waiting Queue experiment on FiPY platform, using 100
messages and a range of 1~30 futures

8
Evaluation
In this chapter, an evaluation of the thesis implementations will be done using
the measurements brought forth in the previous chapter, focusing on providing
context and enlightening the implications of the results, presented in the form
of performance advantages and disadvantages of the built libraries.

8.1 CommsTime

Readable from 7.1, is that the overall minimum and maximum recorded execu-
tions are relatively close to the average values reported. The most significant
variances are found in the results for PyCSP. There seem to be no distur-
bances influencing the results from the experiments performed, and the results
presented appear legitimate.

Upon inspection of Figure 7.1, it becomes evident that the sequential Delta2
process, regardless of the used version, Python environment and platform,
performs better than the corresponding parallel variant. The sequential Delta2
executes writes operations to the two output channels in sequence rather
than in parallel. As described in Bjorndalen et al. [4], using the Parallel
construct is done by spawning to two new CSP processes. In uPyCSP and
PyCSP-Lockversion, this means spawning two new threads, which has a high
cost. In aPyCSP and uaPyCSP spawning these two CSP-processes comes at a
reduced cost as the processes are implemented as coroutines, and the difference

53

54 chapter 8 evaluation

between the two Delta2 variants is smaller, but still considerable. The results
from the FiPY environment, displayed in Table 7.2 and Figure 7.2, confirms the
trends of increased performance with a sequential Delta2 Process.

The performance from both the original versions of aPyCSP and PyCSP Lock-
sharing is run with the Python environment. These are performed using a
different environment, and should not be used used for direct comparison
between the Micropython and Python libraries. However, they bring context
as to how the original libraries perform compared to each other while using
the same hardware-environment as the Micropython libraries. In Figure 7.1 the
performance of uaPyCSP is better than uPyCSP, similarly to the results when
comparing aPyCSP and PyCSP-Lockversion.

A difference observed in Figure 7.1 is that there is that the gap between the com-
munication time in uPyCSP and uaPyCSP both in parallel and sequential Delta2
is considerable smaller, than it is between aPyCSP and PyCSP-Lockversion.
This points to uPyCSP performing very well, and a possible explanation for
this is that threads are less time-intensive to spawn in Micropython than in
Python, due to a smaller implementation. This theory strengthened when mak-
ing a comparison of uPyCSP and PyCSP-Lockversion, both using the parallel
Delta2.

Looking at Figure 7.2, a unique trait is that both the sequential and parallel
execution on uaPyCSP perform better than uPyCSP’s sequential execution. As
mentioned previously, CSP-processes as threads come at a higher cost then
CSP-processes as coroutines. A possibility is that the cost-ratio of spawning
threads-to-coroutine may be even higher on for the FiPY platform. The sup-
port for spawning threads is a platform and Operating System (os)-specific
implementation, and could return different results on different platforms and
os.

8.2 Stressed Alternatives

From Tables 7.3, 7.4 and 7.5, it is clear that the difference in usage of the "with"
statement and alt.select has little or no impact on the performance. Throughout
both platforms and environments, there is no evidence that there is a preferred
way of using the selection mechanism. This means that both ways of selecting
alternatives are equally good, and can both be used without the concern of
performance loss.

Tables 7.3 and 7.4 show that the performance ratio between uPyCSP and
uaPyCSP is inconsistent with two different configurations. The change in

8.3 the wait ing queue 55

performance of the uaPyCSP with an increased number of CSP-processes run
is dramatic, compared to the corresponding change in performance uPyCSP
displays. The change in performance is a result of the FIFO scheduling used
by the uasyncio Event loop. Once there are more processes in the run queue,
the reader process is scheduled more seldom. However, the threads from
uPyCSP rely on scheduling performed by the underlying platform OS, which
can be far more complex. A suspicion, yet to be confirmed is that the scheduler
prioritizes the reading process, as all the writing processes end up in the
_thread.acquire_lock() call within the reentering lock.

As already mentioned in section 7.3.2, a large pool of CSP-processes is not run
on the FiPY platform. Due to a limitation in the number of threads possible to
have running on the FiPY platform.

8.3 The Waiting Queue

From Figures 7.5 and 7.6, it appears that results for both FiPy and UNIX environ-
ments are alike. The results of the experiment show that message passing with
yielding futures scheduled in the background has a linear performance, while
an increasing number of rescheduling futures do not affect the performance of
the on-going message passing.

With only a few yielding futures it affects the message passing less than the
rescheduling futures. The cost of rescheduling futures is why the yielding
futures perform better when there are only a few of them. Even if it is a single
CSP-process, the rescheduling of coroutines is more time-consuming than only
yielding to reschedule.

Rescheduling quickly becomes more effective, once more CSP-processes are
waiting for futures to complete. The point of intersection in both figures show
that with as little as two and four futures scheduled, on the Unix and FiPy
platforms respectively, it is enough for the rescheduling futures to perform
better. Once there are more futures, the constant cost of context-switching
into these futures to check for completion becomes higher than the cost of
rescheduling them, thus leading to a linear cost of context switching. The
rescheduling futures, however, do not require a context-switch, as the process
waiting for the future is removed from the run-queue and not scheduled back
in until the future is completed.

56 chapter 8 evaluation

8.4 List & Deque Benchmark

It is clear from the results of the micro-benchmark shown in Figures 7.3
and 7.3 that the performance in Unix and FiPy platforms are moderately
inconsistent.

With focus on the readings from the two platforms executing append, it is
apparent that the List and deque object perform almost equally, with deques
coming slightly ahead in the Unix platform benchmark. Upon further inspection
of the results from Table 7.7, it is clear that the deque object performs over 3.5
times better than the List object on the FiPY platform across all set sizes. FiPy
runs on a port of Micropython, and these ports have different implementations
and optimizations of common built-in objects, and this may very well be a result
of such an optimization. Another explanation for the result is the underlying
hardware. While the deque object has a fixed-size on-initialization-allocated
memory space, the List is dynamically size and allocated memory on-demand.
It is possible that FiPy platform is slower than the UNIX platform when it comes
to memory allocation.

The performance when performing Popleft on both platforms is similar. Popleft
is significantly faster on deque objects. deque is by design created to have
a complexity of $ (1) for removing elements at the end or the start of the set,
whereas Lists, require all the elements to be shifted by one element in memory
when removing the first element of the set, thus resulting in a complexity of
$ (#), as seen in results from both platforms.

The figures 7.3 and 7.4 show that filter operations work similarly on both
platforms. Filter, implemented indeque as a combination of performing popleft
on all elements and appending the elements matching a condition back in the
set, results in $ (#) complexity and linear performance. Lists, which also
displays a linear performance, use an iterator to condition the elements for
removal, also at $ (#) complexity yields slightly worse performance.

9
Discussion
This chapter intends to discuss non-performance related advantages and disad-
vantages of the two built libraries based upon experiences gained throughout
the development of the thesis contribution.

9.1 Library Dependencies

A large portion of this thesis has been dedicated to reimplementing functionality
outside of the PyCSP code-base to create two functioning PyCSP libraries in
the form of dependencies. It is necessary to reflect upon the consequences and
implications of these dependencies bring.

By reimplementing parts of existing libraries, and building these reimplementa-
tions on top of the underlying dependencies as extensions of the dependencies,
these extensions become dependent themselves. These extensions, rather than
libraries, are prone to errors and bugs. The underlying libraries can introduce
changes, altering the behavior intended from the substitute libraries. It is al-
most inevitable that some underlying mechanisms or parts will change with
newer versions, and revisiting the extensions to maintain the functionality is ex-
pected if it is supposed to be compatible with future versions of the underlying
libraries.

In uPyCSP, the main dependency is a partially implemented version of the

57

58 chapter 9 discussion

threading library built upon the _thread library. The threading substitute
is working as intended in its current state. However, the _thread library is
highly experimental, and documentation as to what is implemented and not
is inadequate. Any insights into the Micropython specifics of the library is
missing. The result of this is uncertainty about the current state, for example,
the performance of the threads, and the future state of the library, and thus
the substitute built on top of it. We have already experienced, as described in
section 8.2, unexpected undocumented results.

Another interesting topic is to what degree substitute libraries should be im-
plemented. As a result of being dependent on functionality from the threading
module, only the simplified CFuture version from PyCSP-Lockversion is reim-
plemented. While it is entirely possible to implement Conditions from the
threading library, and thus have both versions of CFutures operational, it is
another part of the functionality provided by an extension that has to be
maintained.

The uasyncio library used for uaPyCSP was at the start of the thesis, a minimal
and undocumented module. This has seen a large update during the course
of the thesis. The uasyncio module has been completely rewritten. The con-
sequence of this is that with the intent to use uaPyCSP with the new and
improved version of uasyncio, the implementation of replacement functionality
requires another look to be compatible with new versions.

While development on Micropython and its library may introduce several
defects and bugs in the libraries developed, it is not all bad. Using dependencies
is, in most cases, a positive trait and a natural way of separating concerns and
create abstractions. Updates frequently increase performance and reduce bugs.
Micropython is continuously updated, and more functionality from Python is
introduced. Maintaining the implemented PyCSP-libraries and updating its
dependencies may remove the need for substituting libraries, resulting in fewer
bugs and better performance at little development cost, and it speaks to the
increased relevance of the PyCSP-libraries.

9.2 uaPyCSP & Futures

From the evaluation section 8.3 it is pointed out which version of the futures
the purely performance-related advantages to each of the future implemen-
tations. It is clear that the rescheduling future scales better in CSP-networks,
where many CSP-processes are waiting for results using futures. An advantage
with the rescheduling future is reducing the CPU-load. Constantly entering
yielding futures will result in heavy usage of the CPU, which is an embedded

9.3 upycsp & threads 59

environment that can be a quite sparse resource, both in terms of computa-
tional power and with consideration to power consumption as a side effect of
CPU usage.

Another perspective of interest is the compatibility of the future in newer
versions of uasyncio. While the rescheduling future makes use of the undoc-
umented "yielding false" feature of uasyncio, this may not be supported in
newer versions of uasyncio, as this feature is most likely an implementation-
specific artifact rather than intended design. The yielding future which uses a
simple yield, will most likely still be compatible, as the yield keyword itself is
fundamental to generators, and thus the implementation of uasyncio.

9.3 uPyCSP & Threads

The evaluation of uPyCSP has revealed that using threads in Micropython has a
viable performance. Measurements show that the uPyCSP perform better than
its Python equivalent in, for example, the StressedAlternatives benchmarks, and
should be considered a viable underlying architecture to achieve concurrency
in embedded systems due to sheer performance.

However, as mentioned in 7.3.2, it was discovered in the Stressed Alternatives
benchmark, that any attempt to exceed a thread count of over 20 resulted in
system failure. This uncovers a severe limitation for the uPyCSP library. Without
making any assumption as to the amount of CSP-processes, an embedded system
application code usually requires, it is clear that the number of threads possible
to use at the same time is rather low.

It may be possible to increase the thread-count. The _thread library documen-
tation for Python states that threads have the possibility of reducing the stack
size allocated upon initialization. By reducing this size, the thread consumes
a smaller portion of the memory, which could prove to be a solution to the
memory-related error raised when attempting to spawn a higher amount of
threads. There have been no investigation and experiments to see if the viability
of this theory, or if this is even possible using the Micropython threads.

9.4 Relevance of performance

While better performancewill always be relevant, it is also worthwhile reflecting
on the libraries’ use-cases. With the intent of using the implemented modules
in embedded hardware, several factors outside of the concurrency manage-

60 chapter 9 discussion

ment are contributing to the performance of the entire application system.
The relevancy of the difference in communication overhead may decline, for
example, if the application is sending network data with low bandwidth. Both
the implementations show promising results performance-wise, and taking
into consideration the common use-cases for IoT, the bottlenecks of application
code are likely not within the PyCSP libraries.

9.5 Usability

As mentioned in Bjorndalen et al.[4], adapting to aPyCSP and subsequently
uaPyCSP, thought as to where to yield execution, is required, due to being
cooperative multitasking. In effect, this means that the programmer using the
uaPyCSP module will have to consider which points of execution to pause
execution. To which degree this potentially convolutes the application code
is not determined, but it is noteworthy. uPyCSP, on the other hand, relies on
underlying scheduling mechanisms, and after adapting to CSP-like modeling
for the process input and output, all signs of concurrency should be gone in
abstractions.

One crucial difference between the two libraries are the support for the underly-
ing libraries. uPyCSP requires the intended port of Micropython to implement
the _thread module adequately, which it is indirectly dependent of. aPyCSP, on
the other hand, depends on uasyncio, which is written entirely in Micropython
and can be used independently of Micropython port and is installed through
the upip module.

9.6 Channels Queue implementations

As mentioned in section 5.4, one of the limitations of uaPyCSP and uPyCSP is
the usage of deque objects in the Channel queue implementation, as deque
objects require a max length. The implication of using a deque object is; when
using uPyCSP and uaPyCSP, the programmer has to manage the max queue
sizes upon channel creation. To determine the size of the queue needed, the
programmer will have to put thought to how many CSP-processes are going to
communicate using the Channel. A possible solution is to use a dynamic-length
object, such as a list object to contain the set of queued processes.

deque objects in Micropython are missing parts of their original Python imple-
mentations. As outlined in section 5.4, the builtin filter method is not possible
to use for deque objects, due to a missing implementation of the __iter__

9.6 channels queue implementations 61

method. The result of this is a more convoluted workaround to be able to
achieve the same result. The workaround strays from the original libraries
code, whereas an implementation using a List object, would be able to use the
filter method, and pose fewer code-changes compared.

Through experiments and evaluation of the results, it is determined that the
deque object is, in all use cases, superior in terms of performance. However,
the experiments performed are based on micro-benchmark, which is designed
to exaggerate and find the performance differences between the two objects. In
regular use of the uPyCSP and aPyCSP library, it is seldom, if even possible, to
enqueue the number of processes used in the micro-benchmark, due to process
limitations.

The general trade-off by imposing the implementations using List as its mech-
anism for Channels read and write queues seem to boil down to usability
versus performance. By opting for the deque object, a user-defined size is as
mentioned required. PyCSP has, in its design, considered ease of use as an
essential factor in decision-making [3]. Posing the requirement that the user
has to define the number of processes using a channel introduces complexity
to the usage of one of the most critical aspects of the libraries. The performance
difference experienced using List as a substitute with an actual CSP application
would be minimal and, in most if not all use cases, insignificant.

10
Future work
This section will describe future work that could prove interesting in the context
of this thesis. The future work will be described in as much detail as convenient
and should not be considered the detailed specification for solutions. The
work presented here is intended to build the foundations laid by this thesis’s
contributions.

10.1 A new version of uasyncio

Parallel to the work in this thesis a uasyncio has had a complete reimple-
mentation. A new version 3.0.0 of uasyncio is now a part of the Micropython
standard library from version 1.12 and upwards. This has multiple implications
for the uaPyCSP library implemented, which is here presented as further work
in terms of research and development.

This new version of uasyncio has new features and bug fixes, providing some
of the same functionality as implemented in this thesis. One of the things
fixed is the run_until_complete method for the event loop. This thesis made
an intrusive change made into the uasyncio library (described in section 5.1.3)
to fix a bug experienced. Upon using the new version of uasyncio, this change
will no longer have to be applied, and the same functionality is provided
out-of-the-box from uasyncio upon installation.

63

64 chapter 10 future work

Another significant change in the new version of uasyncio is the Gather method.
Gather, as mentioned in section 5.1.2, was not featured in the previous version.
A local gather function is implemented as an internal part of uaPyCSP. This can
hopefully be replaced with the uasyncio-supplied Gather instead. A concern
here is the Channel Poison mechanism not functioning correctly, though this
is only a concern and has not been verified.

Future objects are not introduced in the new version of uasyncio, and the
implemented future object will have to be re-implemented to fit the new
version of uasyncio. How comprehensive this work is, is yet to be determined.
With all likeliness, the rescheduling futures will require a change as to how
they remove the waiting coroutines from the event loops run queue. However,
yielding futures will most likely adapt better, as they use a simple yield
mechanism, fundamental to uasyncio, as described in section 9.2.

It would prove valuable to see how these two uasyncio versions alter the
performance of uaPyCSP and to determine if either sets a better foundation as
an underlying architecture for CSP-based concurrency.

10.2 uPyCSP Without a Global Interpreter Lock

Multithreading in Micropython can be done without using the gil. The gil
is, as mentioned in 3.3.2 a possible bottleneck for threaded applications. An
interesting approach would be to attempt a version of uPyCSP where the gil
is released.

The implications of releasing the gil, is possibly increased performance for
threads. If not prohibited by the gil, threads have the possibility of using
the Micropython interpreter in multiple threads at the same time, effectively
parallelizing the thread’s target code. With the aid of CSP-based concurrency,
many of the challenges related to parallelism are already handled by the
inherited CSP design, thus making it a suitable setting to attempt to parallelize
the CSP processes.

However, the _thread library is experimental, and finding documentation of
how to disable the gil, has proven to be a challenge. Further research into
this, could provide the uPyCSP library a whole new modus operandi, working
as parallel threads.

10.3 experimenting with threads stacksize 65

10.3 Experimenting with Threads Stacksize

One of the larger limitations in uPyCSP is not being able to spawn a lot of
CSP-processes, due to underlying memory limitations when running on a FiPy
unit. In section 9.3, it is presented that there may be a possible solution to this
problem. By reducing the stack size of the spawned threads, it is less likely that
memory consumption reaches its limits, and thus potentially opening up for
larger-scale CSP-networks, even on embedded controllers.

Further research into the potential of this could result in a much more perfor-
mant, and versatile version of uPyCSP.

11
Conclusion
To conclude and summarize the thesis, it can be helpful to reiterate the original
thesis statement:

This thesis aims to create an efficient concurrency library, with a familiar and
easy to use interface provided by a version of the PyCSP library, aimed for use
in a microcontroller using the Micropython environment. Determining which
PyCSP version yielding the best result is done through the implementation of two
different libraries and approaches, showing and measuring of the advantages and
disadvantages of both.

Two versions of the PyCSP has been researched, and successfully implemented
in Micropython, and are compatible to be used with microcontrollers. Both the
libraries have implemented benchmarks, which both show promising results
performance-wise. Evaluating the benchmark has resulted in highlighting
specific characteristics for both implementations. Through this evaluation and
a discussion reflecting different experiences gained, the thesis has uncovered
multiple advantages and disadvantages to each implementation outside of
computational efficiency. Both versions have pieces of further work, which
could reveal more about the potential of the libraries.

67

68 chapter 11 conclusion

The two libraries showed unique traits. Whereas the uaPyCSP gives the pos-
sibility of large networks of CSP-processes, it had the drawback of slower
communication speeds while doing so. uPyCSP had issues spawning enough
threads but showed impressive speed on a platform where it was able to do
so.

With all this in mind, it is hard to determine which one of the implementations
is more fitting the description of the thesis statement, as they both have
advantages and disadvantages in various essential aspects, and both may very
well fit.

Bibliography
[1] S. Lucero et al., “Iot platforms: enabling the internet of things,” White

paper, 2016.

[2] C. A. R. Hoare, “Communicating Sequential Processes,” Commun. ACM,
vol. 21, p. 666–677, Aug. 1978.

[3] J. M. Bjørndalen, B. Vinter, and O. J. Anshus, “PyCSP-Communicating
Sequential Processes for Python.,” in Cpa, pp. 229–248, 2007.

[4] J. M. Bjørndalen, B. Vinter, and O. J. Anshus, “aPyCSP-Asynchronous
PyCSP Using Python Coroutines and asyncio,” 2018.

[5] P. Welch, J. Kerridge, and F. Barnes, “Portable csp based design for em-
bedded multi-core systems,” in Communicating Process Architectures 2006:
WoTUG-29: Proceedings of the 29thWoTUG TechnicalMeeting, 17-20 Septem-
ber 2006, Napier University, Edinburgh, Scotland, vol. 64, p. 123, IOS Press,
2006.

[6] T. W. Barr and S. Rixner, “Medusa: Managing concurrency and communi-
cation in embedded systems,” in 2014 USENIX Annual Technical Conference,
pp. 439–450, 2014.

[7] T. W. Barr, R. Smith, and S. Rixner, “Design and implementation of an
embedded python run-time system,” in Presented as part of the 2012
USENIX Annual Technical Conference, pp. 297–308, 2012.

[8] C. Hewitt, “Actor model of computation: scalable robust information sys-
tems,” arXiv preprint arXiv:1008.1459, 2010.

[9] “Pep 3156 – asynchronous io support rebooted: the ’asyncio’ module.”
https://www.python.org/dev/peps/pep-3156/. Accessed on 2020-25-06.

[10] “Python docs – coroutines and tasks - awaitables.” https://docs.python.
org/3/library/asyncio-task.html#awaitables. Accessed on 2020-25-

69

https://www.python.org/dev/peps/pep-3156/
https://docs.python.org/3/library/asyncio-task.html#awaitables
https://docs.python.org/3/library/asyncio-task.html#awaitables

70 bibl iography

06.

[11] A. D. Birrell, An introduction to programming with threads. 1989.

[12] “Micropython v1.11 docs – _thread -multithreading support.” http://docs.
micropython.org/en/v1.11/library/_thread.html. Accessed on 2020-20-
06.

[13] D. May, “Occam,” ACM Sigplan Notices, vol. 18, no. 4, pp. 69–79, 1983.

[14] A. A. Donovan and B. W. Kernighan, The Go programming language.
Addison-Wesley Professional, 2015.

[15] “Python docs – coroutines and tasks - running tasks concurrently.”
https://docs.python.org/3/library/asyncio-task.html#running-
tasks-concurrently. Accessed on 2020-29-06.

[16] K. Chalmers, “Development and evaluation of a modern c++csp library,”
08 2016.

[17] K. Chalmers and S. Clayton, “Csp for .net based on jcsp.,” pp. 59–76, 01
2006.

http://docs.micropython.org/en/v1.11/library/_thread.html
http://docs.micropython.org/en/v1.11/library/_thread.html
https://docs.python.org/3/library/asyncio-task.html#running-tasks-concurrently
https://docs.python.org/3/library/asyncio-task.html#running-tasks-concurrently

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Thesis Statement
	1.2 Thesis Contribution
	1.3 Organization

	2 Related works
	2.1 Portable CSP Based Design for Embedded Multi-Core Systems
	2.2 Medusa: Managing Concurrency and Communication in Embedded Systems

	3 Technical background
	3.1 Concurrency
	3.2 Python & Asynchronous code
	3.2.1 Functions in Python
	3.2.2 Asynchronous Code in Python

	3.3 Multi-threading In Python
	3.3.1 Threads
	3.3.2 Threads And The Global Interpreter Lock
	3.3.3 Reentrant Locks

	3.4 Micropython
	3.4.1 Asyncio For Micropython
	3.4.2 Threading in Micropython

	3.5 Communicating sequential processes
	3.6 PyCSP
	3.7 aPyCSP, Asyncio-based CSP
	3.8 PyCSP - Lockversion

	4 Design
	4.1 Inherited Module Design
	4.2 Platforms
	4.3 Project Architecture

	5 Implementation
	5.1 uaPyCSP
	5.1.1 Futures
	5.1.2 Gather
	5.1.3 uasyncio - Run Until Complete

	5.2 uPyCSP
	5.2.1 uThreading - Threads
	5.2.2 uThreading - RLock, Reentering Locking Mechanism
	5.2.3 Itertools

	5.3 Compability Changes
	5.4 Collections' Deque
	5.4.1 List Implementation

	5.5 Timer - Chrono

	6 Experiments
	6.1 CommsTime
	6.1.1 Delta2

	6.2 Stressed Alternatives
	6.3 List & Deque Benchmark
	6.4 The Waiting Queue

	7 Results
	7.1 Platforms & Environments
	7.2 Communication Time - CommsTime
	7.2.1 UNIX Platform
	7.2.2 FiPY Platform

	7.3 Stressed Alternatives
	7.3.1 UNIX Platform
	7.3.2 FiPY Platform

	7.4 Lists & Deque Benchmark
	7.4.1 UNIX Platform
	7.4.2 FiPY Platform

	7.5 The Waiting Queue Experiment
	7.5.1 Unix Platform
	7.5.2 FiPy Platform

	8 Evaluation
	8.1 CommsTime
	8.2 Stressed Alternatives
	8.3 The Waiting Queue
	8.4 List & Deque Benchmark

	9 Discussion
	9.1 Library Dependencies
	9.2 uaPyCSP & Futures
	9.3 uPyCSP & Threads
	9.4 Relevance of performance
	9.5 Usability
	9.6 Channels Queue implementations

	10 Future work
	10.1 A new version of uasyncio
	10.2 uPyCSP Without a Global Interpreter Lock
	10.3 Experimenting with Threads Stacksize

	11 Conclusion
	Bibliography

