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                 Abstract
By restricting generating functions of infinitesimal symmetries of symplectic and
contact vector spaces to quadratic forms, we obtain a finite-dimensional Lie sub-
algebra g, consisting of vector fields isomorphic to the linear symplectic or confor-
mal symplectic algebra. This allows us to look for joint invariants of the diagonal
action of g on product manifolds M×m. We find an explicit recipe for creating a
transcendence basis for the field of m-fold rational joint invariants over R, starting
from a base space M of any dimension n ≥ 2.
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1 Introduction

Our main objective is to obtain a complete description of the field of joint rational
invariants of an extended Lie algebra action defined on symplectic and contact
manifolds of varying dimensions. Along the way, we aim to illustrate how to
describe the algebra of joint polynomial invariants using minimal free resolutions.
We will also briefly consider how our results can be used to generate symmetric
invariants. Before diving into the computations, we introduce the necessary tools
and definitions needed to make sense of them.

Chapter 2 opens with a section on classical invariant theory, using binary forms
to illustrate the key ideas. Those ideas will be used to motivate a more general
notion of an invariant, to be described in the following section. We proceed to
describe a small variety of computational strategies for finding invariants of a
given group action, all of which will be put to use in the central part of the
thesis. Finally, we consider spaces of invariants consisting of polynomials as well
as of rational functions.

In Chapter 3 we start looking for joint invariants on symplectic manifolds. Most
of the groundwork will be laid in the 2-dimensional case, where the limited com-
plexity of the problem admits a direct approach using infinitesimal methods. As
we obtain polynomial generators for our space of invariants, we start by describ-
ing it as an algebra for the first few product spaces. We then turn to the task of
describing the field of invariants for arbitrarily large products. Our results will
be of great use in the equivalent endeavor in 4 dimensions and beyond.

We will compute joint invariants on contact manifolds in Chapter 4. Here the
infinitesimal approach fails, but we are able to find invariants by obtaining an
explicit description of the group action. On contact manifolds, generators for the
space of invariants are found to be rational functions. After finding a description
for the field of joint invariants in 3 and 5 dimensions, we proceed to consider
spaces of higher dimensions.

The thesis is concluded in chapter 5 with a few computations illustrating how to
find symmetric joint invariants on products of manifolds of low dimensions. By
averaging the action of the symmetric group on the space of invariants, we can
find generators for the field and algebra of symmetric invariants. However this
time the structure of the algebra of invariants, even the generating set, is quite
complicated, and so we describe only some particular examples.

Having computed the joint invariants we can solve the equivalence problem for
the finite collection of points (ordered or symmetric) with respect to our group
Sp(2n,R) or CSp(2n,R). For this the method of joint invariant signatures can
be applied. We refer to [Olv01] for details.
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2 A brief overview of Invariant Theory

This chapter will provide an introduction to the main elements of invariant theory.

2.1 The classical perspective

Classical invariant theory is concerned with those properties of mathematical
objects which are intrinsic to the objects themselves (i.e. not an artifact of
the underlying coordinates in which they are represented). This section will
outline this theory using homogeneous polynomials of two variables, also known
as ”binary forms” in the literature, as well as their inhomogeneous counterparts.
For more on classical invariant theory, see [Olv99].

2.1.1 Homogeneous polynomials

Formally, a homogeneous polynomial Q(x, y) in two variables is an expression
of the following form:

Q(x, y) =
n∑
i=0

aix
iyn−i =

n∑
i=0

(
n

i

)
ãix

iyn−i, ai ∈ R (or C)

It is natural to interpret the above as the local coordinate expression of some
function Q on a 2-dimensional manifold M , given in the local coordinates (x, y).
In principle, M could be any such manifold. However, we will require M to be
either R2 or C2, and our coordinates (x, y) to be global.

Since we are interested in finding properties of homogeneous polynomials which
do not depend on the coordinates of the space they are defined on, a good place
to start is by examining how the expression for Q changes under a linear change
of coordinates.

If we let M = R2, we can identify the points (1, 0), (0, 1) with the vectors e1, e2,
and in this sense regard our space as a vector space with basis (e1, e2). Under this
identification, a point (v1, v2) ∈ R2 can be regarded as the vector v = v1e1 +v2e2.
From this point of view, changing the coordinates of our space corresponds to
changing to some new basis (ē1, ē2).

Denoting the same point after a change of coordinates by v̄ = v̄1ē1 + v̄2ē2, we
have the following relationship between the old and the new coordinates:(

v̄1

v̄2

)
=

(
α β
γ δ

)(
v1

v2

)
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2 / A brief overview of Invariant Theory

This can be written more concisely as v̄ = Av, where A is the invertible ma-
trix above. There is a known isomorphism between the space of homogeneous
polynomials and the space of symmetric tensors:

P(n)(R2) ' S(n)(R2)∗

For the case where n = 1, we can regard Q as a member of S(1)(R2)∗ = (R2)∗ with
(x, y) being the dual basis of (e1, e2). Expanding in this basis, Q(x, y) = a0x+a1y
with the action on v given by Q(v) := 〈Q, v〉 = v1a0 + v2a1.

Let (x̄, ȳ) be the dual basis of (ē1, ē2). Then we can also express Q in this basis
as Q̄(x̄, ȳ) = ā0x̄ + ā1ȳ. We would like to find a relation between the old and
new coefficients. Using the well known relationship between the components of a
covector under a change of coordinates, we can quickly conclude that: ā = A−Ta.
In matrix notation: (

a0

a1

)
=

(
α γ
β δ

)(
ā0

ā1

)

Generalizing to the case where n = k, we can regard Q as a member of Sk(R2)∗,
with the action on v given by Q(v) := 〈Q, v ⊗ ...⊗ v︸ ︷︷ ︸

k entries

〉

The relationship between the old and new coefficients then becomes:
ā = A−T � ...� A−T︸ ︷︷ ︸

k entries

(a)

Notice that from this point of view, R2 as a manifold stays fixed under a change
of coordinates. We are merely changing the labels assigned to each point. It is
also possible to interpret the invertible matrix A as an automorphism of M . From
this second perspective, the coordinates (x, y) and (x̄, ȳ) are both the standard
coordinate functions on R2. However, the points they are labeling are differently
arranged. Here Q̄ can be interpreted as a transformed version of Q, defined by
the relation Q̄(x̄, ȳ) = Q(x, y). Of course, the transformation properties of its
coefficients will be exactly the same in either interpretation.

4



2.1.2 Inhomogeneous polynomials

We define an inhomogeneous polynomial Q(p) of one variable as a formal
expression of the the following form:

Q(p) =
n∑
i=0

bip
i

As was the case with homogeneous polynomials of two variables, we can interpret
such an expressions as representing some function Q defined on a 1-dimensional
manifold N in the coordinate p.

Here, we will take N to be the projective line P(R2), where points corresponds
to linear subspaces of R2. To every homogeneous polynomial Q(x, y) : R2 → R,
there is a corresponding function Q : P(R2)→ R. In affine coordinates on P(R2),
this function will be represented as an inhomogeneous polynomial.

Ex: Q(x, y) = x2 + 3xy + 2y2, let x = p, y = 1

Q(p) = p2 + 3p+ 2

As before, we are interested in how this expression for Q(p) changes as we change
to different coordinates p̄.

A linear transformation:

{
x̄ = αx+ βy

ȳ = γx+ δy
of R2,

induces a Möbius transformation p̄ =
αp+ β

γp+ δ
of P(R2).

In the special case where ȳ = y, the linear transformation induces an affine trans-
formation. Starting with the relationship between the homogeneous polynomials
Q and Q̄, we can deduce the relationship between the inhomogeneous polynomials
after a change of coordinates:

Q(x, y) = Q̄(x̄, ȳ)

ynQ

(
x

y

)
= ȳnQ̄

(
x̄

ȳ

)
, let x = p, y = 1

Q(p) = ȳnQ̄

(
x̄

ȳ

)
Q(p) = (γp+ δ)nQ̄

(
αp+ β

γp+ δ

)
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2 / A brief overview of Invariant Theory

This relationship warrants a couple of remarks:

(i) The ”naive degree” of Q(p) is not always preserved under Möbius transfor-
mations.

Ex: A =

(
0 1
1 1

)
=⇒ p̄ =

1

p+ 1

Q(p) = p2 − 1 =⇒ Q̄(p̄) = −2p̄+ 1

In fact, we will define the degree of an inhomogeneous polynomial to be the
degree of its homogeneous counterpart.

(ii) Roots of Q(p) are mapped to roots of Q̄(p̄).

That is, Q(p0) = 0 iff Q̄(p̄0) = 0. This implies that the number of distinct roots of
a polynomial does not depend on the coordinates in which it is being represented.
It is well known that p0 is a root of Q(p) of multiplicity k iff :

Q(p0) = Q′(p0) = ... = Q(k−1)(p0) = 0

The resultant gives us a way to determine whether or not two polynomials have
any common roots:

Let P (x) = amx
m + am−1x

m−1y + ...+ a0y
m

Q(x) = bnx
n + bn−1x

n−1y + ...+ b0y
n

Then the resultant of P and Q is defined as the determiant of the (m+n)×(m+n)
Sylvester matrix:

Res[P,Q] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am 0 · · · 0 bn 0 · · · · · · 0

am−1 am · · · ... bn−1 bn · · · · · · ...
... am−1

. . .
...

... bn−1
. . . · · · ...

...
... · · · am

...
... · · · . . .

...
...

... · · · am−1 b0
... · · · · · · bn

a0
... · · · ... 0 b0 · · · · · · bn−1

0 a0 · · · ...
...

...
. . . · · · ...

...
...

. . .
...

...
... · · · . . .

...
0 0 · · · a0 0 0 · · · · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
n columns

︸ ︷︷ ︸
m columns

P (x) and Q(x) have a common root iff Res[P,Q] = 0.
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We identify Q′(p) with Qx(x, y) and define the discriminant of Q as:

∆[Q] =
Res[Q,Qx]

nnãn

2.1.3 Classical invariants

Now we come to the main definitions of this section. A classical invariant of
weight k of a binary form Q(x, y) of degree n, is a function I(a0, ... , an) satisfying
the following equation under linear transformations:

I(a0, ... , an) = (αδ − βγ)kI(ā0, ... , ān)

Ex: Let n =2. ∆[Q] is an invariant of weight 2:

∆ = (αδ − βγ)2∆̄

ac− b2 = (αδ − βγ)2(āc̄− b̄2)

A classical covariant of weight k of a binary form Q(x, y) of degree n is a
function J(a0, ... , an, x, y) satisfying the following equation under linear transfor-
mations:

J(a0, ... , an, x, y) = (αδ − βγ)kJ(ā0, ... , ān, x̄, ȳ)

Ex1: Q itself is a covariant of weight 0 under the relation Q(x, y) = Q̄(x̄, ȳ)

Ex2: The Hessian H = QxxQyy −Q2
xy is a covariant of weight 2.

A classical joint covariant of weight k of a system Q1(x, y), ... , Qm(x, y) is a
function J(a1

0, ... , a
1
n, ... , a

m
0 , ... , a

m
n , x, y) satisfying the following equation under

linear transformations:

J(a1
0, ... , a

1
n, ... , a

m
0 , ... , a

m
n , x, y) = (αδ − βγ)kJ(ā1

0, ... , ā
1
n, ... , ā

m
0 , ... , ā

m
n , x̄, ȳ)

A joint covariant not depending on (x, y) is called a (classical) joint invariant.

Ex: The resultant Res[Q,P ] is a joint invariant of weight mn+mk + nj, where
m = deg[Q], n = deg[P ], k = weight[Q], j = weight[P ]

7



2 / A brief overview of Invariant Theory

Using covariants and invariants we can completely classify all quadratic and cubic
polynomials under Möbius transformations:

Canonical forms for complex quadratics: Q(p) = ap2 + 2bp+ c
distinct roots I p ∆ 6= 0
double root II 1 ∆ = 0, Q 6≡ 0

identically zero III 0 Q ≡ 0

Canonical forms for complex cubics: Q(p) = ap3 + 3bp2 + 3cp+ d
distinct roots I p2 − 1 ∆ 6= 0
double root II p ∆ = 0, H 6≡ 0
triple root III 1 H ≡ 0, Q 6≡ 0

identically zero IV 0 Q ≡ 0

For quadratics, ∆ and Q are the only covariants. Cubics have one more (T ,
the Jacobian of Q and H). A quartic has 5 covariants (2 invariants). We can
construct new covariants by multiplying any two covariants, whose weight will
equal the product of their respective weights, or by adding two of the same weight.
We are however, mostly interested in independent covariants.

2.2 A broader picture

In the previous section we considered coordinate changes on R2 and C2 from two
different perspectives. From the first perspective, the spaces stayed fixed, as we
were merely transforming the coordinates used to label their points. From the
second perspective, a coordinate change is associated with an automorphism of
the underlying space. As it turns out, adopting the second point of view allows
us to significantly broaden our notion of an invariant and the spaces they inhabit.
The key observation will be that the set of automorphisms of any space forms a
group. We can thus consider a change of coordinates to be a particular instance
of an action by some element of a transformation group. In this broader picture,
we will consider any function defined on the space in question that is unaffected
by the action an invariant. The goal of this section is to make all of this precise.

2.2.1 Lie group actions and representations

To start off with, we would like to restrict ourselves to those automorphisms that
preserve the smooth structure of a smooth manifold M , i.e. diffeomorphisms.
The set of all diffeomorphisms of M is denoted by Diff(M) and forms a group.
All transformation groups we consider will be Lie groups.

8



A (left) smooth Lie group action is a smooth map Φ : G ×M → M where
(g, p) 7→ g · p satisfies:

g1 · (g2 · p) = (g1g2) · p, ∀gi ∈ G, p ∈M
e · p = p

An action of a Lie group G induces a homomorphism σ : G→ Diff(M). A group
action is faithful if σ(G) ' G. A group action is regular if all orbits have the
same dimension, and there exists neighborhoods of every point on M such that
the intersection with each orbit is connected (see [Olv95], p.41). Unless otherwise
stated, all group actions considered are assumed to be regular and faithful.

Ex1: Let M = R2. The group of rotations SO(2) is a one-dimensional group
which rotates the plane around a fixed point. Group elements correspond to the
angle of rotation, and orbits are circles of constant radii around the fixed point,
as well as the point itself.

Ex2: Let M = Rn. The Euclidean group E(n) is the group consisting of transla-
tions, rotations and reflections preserving the euclidean metric on Rn. This group
acts transitively, which means that there is only one orbit consisting of the entire
space.

There is one particular kind of group action which has especially desirable prop-
erties: a Lie Group representation is a smooth group homomorphism
Π : G→ GL(V ), where GL(V ) is the general linear group consisting of all linear
automorphisms of some vector space V .

In general, group actions will be non-linear. However, given any group action
Φ, there is a way to induce a linear action via a representation on an associated
space. Given a manifold M , its function space F(M), consisting of all functions
F : M → R is a vector space.
We define the induced representation ΠΦ : G → GL(F(M)) with the action
given by g · F = F̄ , where we define F̄ (x̄) := F (g−1 · x̄).

It is often the case that we are only interested in subrepresentations of ΠΦ. For
instance, in the setting of smooth manifolds it is natural to consider only the
induced representations of smooth functions, in the case of algebraic manifolds
of rational functions, and in the case of projective varieties of homogeneous poly-
nomials. If our manifold M is a vector space, with the group action being the
standard action of GL(n,R), we will find that in all the above mentioned cases,
restricting to our desired subspace of F(M) yields a subrepresentation. However,
this will not always be the case. Let M = P (R2), and let the action on M be
the linear fractional action of GL(2,R). Here the space of polynomials is not a
subrepresentation of ΠΦ. To see why, consider the effect of the induced action on
the coordinate representations of Q(p) as defined in section 2.1:

9



2 / A brief overview of Invariant Theory

Q̄(p̄) = Q(g−1 · p̄)

Q̄

(
αp+ β

γp+ δ

)
= Q(p)

The left hand side of the above is in general not a polynomial expression. If
we generalize our notion of an induced representation slightly, we can fix this
problem. We start with a preliminary definition:

A multiplier for a Lie group action defined on the space M is a map
µ : G×M → C \ {0} satisfying:

µ(g1 · g2, x) = µ(g1, g2 · x)µ(g2, x), ∀gi ∈ G, x ∈M
µ(e, x) = 1

A multiplier representation is a homomorphism ΠΦ,µ : G→ GL(F(M)) with
an action given by g · F = F̄ , where we define F̄ (x̄) := F (g−1 · x̄) = µ(g, x)F (x).

For the GL(2,R)-action on the functions of two variables, if we let our multiplier
be µ(g, x) = (γp + δ)−n, the space of polynomials corresponding to our previous
example above will now be a subrepresentation of ΠΦ,µ:

Q(p) = (γp+ δ)nQ̄

(
αp+ β

γp+ δ

)

2.2.2 Invariants

Let G be a Lie Group with an action defined on the space M . An invariant
is a function I : M → R satisfying I(g · x) = I(x), ∀g ∈ G. Equivalently,
an invariant I(x) is a fixed point on the function space under the action of the
induced representation ΠΦ.

Proposition: Let I denote a real-valued function on a manifold M . The follow-
ing conditions are equivalent:
i) I is a G-invariant function
ii) I is constant on the orbits of G.
iii) All level sets {I(x) = c} are G-invariant subsets of M .

(See [Olv99], p.73). It immediately follows from iii) that constant functions are
always invariant. It follows from ii) that these are the only invariants under a
transitive group action.

10



Ex1: Let M = R2, G = SO(2). If we let 0 be our fixed point under the action
of G, any function of the form I(x2 + y2) will be an invariant.

Ex2: Let M = R2, G = E(n). The Euclidean group here acts transitively on M ,
thus the only invariants will be constant functions.

Let G be a Lie Group with actions defined on the spaces M1, ... ,Mm. We can
then define an induced Cartesian Product action on the space M1× ...×Mm given
by g · (x1, ... , xm) := (g · x1, ... , g · xm), ∀g ∈ G, xi ∈Mi.

A joint invariant is a function J : M1 × ...×Mm → R satisfying
J(g · x1, ... , g · xm) = J(x1, ... , xm), ∀g ∈ G.

Usually, we are most interested in the case where the Mi’s are all copies of the
same space. A Joint invariant on the cartesian product of m copies of M , under
the induced Cartesian product action, is referred to as an m-fold joint invari-
ant. In this case, we refer to the induced action as the extended action of
G.

Ex: The Euclidean group acting on M = R2, failed to yield any non-trivial
ordinary invariants. However, consider M ×M with the extended action of G =
E(n). Any function of the form I(d((x1, y1), (x2, y2)), where d is the Euclidean
distance function, will be a 2-fold joint invariant.

A symmetric m-fold joint invariant is an invariant of the extended group
G× Sm, with an action given by σ : G× Sm ×M×m →M×m.

Ex: The joint invariant from the previous example is also a symmetric 2-fold
joint invariant.

Let µ be a multiplier for a Lie Group action defined on the space X. A relative
invariant is a function R : X → R satisfying R(g · x) = µ(g, x)R(x), ∀g ∈ G.
If the group acting is GL(n,R), it can be shown that the multiplier will always
be a determinantal factor raised to the power k (see [Olv99]). In this case we
define the weight of a relative invariant to be the value of k. The product of two
relative invariants of weight k and m, is a new relative invariant of weight k+m.
In particular, multiplying an invariant of weight k with an absolute invariant of
weight −k, yields an absolute invariant of weight 0.

We can fit our classical notions of invariants into this broader picture as follows:
Let the G = GL(2), with the induced action on F(C2).

A classical invariant is a relative invariant
I : P(n) → C

A classical covariant is a joint relative invariant
J : P(n) × C2 → C

A classical joint covariant is a joint relative invariant
I : P(n) × ...× P(m) × C2 → C

11



2 / A brief overview of Invariant Theory

2.3 Computational methods

This section will be discussing different computational strategies to finding in-
variants of a given Lie group acting on a space.

Recall that an invariant is a function I(x) ∈ F(M) satisfying I(g · x) = I(x),
∀g ∈ σ(G). Here every element g is a diffeomorphism of M , which suggests that
it might be possible to rephrase our defining equation for an invariant slightly.
Consider the following diagram:

M M

R

g

(I◦ g)(x)
I(x)

It should be clear that I(x) is an invariant if and only if the above diagram
commutes. Recognizing (I ◦ g)(x) as the pullback of I(x) under g, we can write:

g∗I(x) = I(x), ∀g ∈ σ(G)

We can recognize the form of this equation as a symmetry equation. However,
when computing symmetries of a geometric object, the unknown element is the
group acting. In our case, the group is known, and the unknown elements are the
functions its actions preserve.

2.3.1 The method of moving frames

In general there is no one way to solve the system described above, which gener-
ically will be highly nonlinear. If, under certain conditions, we have an explicit
local expression for the action of G on M , one approach is given by The method
of moving frames.

Let (x1, ... , xn) be local coordinates around a point p in some n-dimensional
manifold M , and let Φ : G×M → M be a Lie group action. A local expression
for Φ is given by:

ϕ(g, (x1, ... , xn)) = (ϕ1(g, (x1, ... , xn)), ..., ϕn(g, (x1, ... , xn)))

As G is also a smooth manifold, we can pick local coordinates (y1, ... , yr) around
the identity e ∈ G. The idea will be to eliminate the r group parameters by equat-
ing the first r component functions of ϕ to a set of constants x̃1, ... , x̃r. Consider
the following system of equations, called the normalization equations:

12



ϕ1((y1, ... , yr), (x1, ... , xn)) = x̃1

...

ϕr((y
1, ... , yr), (x1, ... , xn)) = x̃r

After solving this system for the r group parameters (y1, ... , yr), we define a
moving frame as a map γ : M → G given by substituting its solution back into
ϕ1, ... , ϕr.

Proposition: Assume that the action is free and regular. Then the functions
I1, ..., In−r defined below form a complete system of n−r functionally independent
invariants for the action of G:

I1(x1, ... , xn) = ϕr+1(γ(x1, ... , xn), (x1, ... , xn))

...

In−r(x
1, ... , xn) = ϕn(γ(x1, ... , xn), (x1, ... , xn))

(See [Olv99], thm 8.25, p.164)

2.3.2 Infinitesimal methods

Another, often more computationally straightforward approach to finding invari-
ants of a Lie group action, can be taken by making use of the corresponding Lie
algebra. Given a Lie group G, there is a natural action of G on itself given by left
translations. Let lg1 : G→ G denote a left translation by g1, which we define by
lg1(g2) = g1g2. A vector field X ∈ D(G) is said to be left invariant if it satisfies
(lg)∗X = X, ∀g ∈ G. We denote the space of all left invariant vector fields of G
by Lie(G), and call it the Lie algebra of G. It has some very useful properties:

• Lie(G) is closed under the Lie bracket operation (hence the name).
• Every vector field in Lie(G) is complete.
• It is isomorphic to the tangent space at the identity of G.

There is a natural map Exp: Lie(G) → G from the algebra to the group known
as the Exponential map. It is given by Exp(X) = γ(1), where γ is the unique
integral curve of X starting at the identity. Taking the linear span of X yields a
curve γ(t) = Exp(Xt), corresponding to a one-parameter subgroup in G.

13



2 / A brief overview of Invariant Theory

In general, not every element of G can be reached via the exponential map of
some X ∈ Lie(G). The image of Lie(G) under Exp is some neighborhood around
the identity of G. Generically, the map also fails to be injective. Only in some
cases, like when G is compact or nilpotent and simply connected, do we have that
Exp(Lie(G)) ' G. For more information on this topic, see [Hal15].

A Lie group action Φ : G ×M → M , will induce a Lie algebra homomorphism
Φ̂ : Lie(G) → D(M). We can associate a global flow ϕX : R ×M → M , where
ϕX(t, p) = γX(t) · p to each element X ∈ Lie(G). Then we can define Φ̂(X) = X̂,

such that X̂p =
dϕX(t, p)

dt

∣∣∣∣
t=0

.

Lie(G) g

G G

Φ̂

Exp ϕX̂

σ

We denote the image of G under σ by G ⊂ Diff(M). Similarly, let g ⊂ D(M) be
the image of Lie(G) under Φ̂.

The map Φ̂ is sometimes referred to as an infinitesimal generator of group
actions (see [Lee13], p.526). Our strategy will be to reach for the connected
component of G via the flow of vector fields in g.

Recall our defining equation for an invariant function: g∗I(x) = I(x), ∀g ∈ G.
Given that this holds for every g ∈ G, it will in particular hold for any
ϕX̂(t, p) ∈ G, where X̂ ∈ g. Thus, we can write:

ϕX̂(t, p)∗I(p) = I(p)

dϕX̂(t, p)∗

dt

∣∣∣∣
t=0

I(p) =
dI(p)

dt

∣∣∣∣
t=0

LX̂I(p) = 0, ∀X̂ ∈ g

We recognize the last expression as the Lie equation. As before, when the
vector fields are the unknowns, this is an (infinitesimal) symmetry equation. Even
though there is some loss of information in going from the full picture to the
infinitesimal one, the Lie equation has the advantage of always being a linear
system of PDE’s. In practice, solutions to this system will often yield all invariants
of a given group action. Another useful fact is that orbits of the action of G are
integral submanifolds of the flow of the Lie algebra (see [Lee13]).

It is not a given that we have a full group acting on a space to begin with. Any
Lie algebra homomorphism, defines a Lie algebra action. Finding invariants of
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a Lie algebra action is the task we will be doing in the latter half of this thesis.
Generically there is a slight complication when considering Lie algebra actions
due to the fact that there is no guarantee that every X̂ ∈ g will be a complete
vector field. All we can say is that locally, the flow ϕX̂(t, p) will correspond to a
family of diffeomorphisms which we identify with elements in some G. For our
purposes, this turns out to be good enough.

When we are looking for m-fold joint invariants of a group action, the general
way to go about it remains very much the same. Let G be a Lie group with an
action Φ defined on M . Recall that we defined the extended group action Φ×k on
M×k to be the map given by Φ×k : G×M×k →M×k such that:
g · (p1, ..., pk) = (Φ(g, p1), ...,Φ(g, pk)). We can consider a joint invariant of Φ an
ordinary invariant under the action of Φ×k on M×k, and proceed as before. This
action induces a new homomorphsm σ×k : G → Diff(M×k). We label the image
of G under σ×k by G×k.

Similarly, given a Lie algebra g ∈ D(M), we define the extended Lie algebra
g×k ∈ D(M×k) as the image of the induced Lie algebra homomorphism Φ̂×k. In
local coordinates: If X̂ = f(x1, ..., xn)i∂xi is an element of g,
X̂×k = f(x1

1, ..., x
n
1 )i∂xi1 + ...+ f(x1

k, ..., x
n
k)i∂xik is the extended vector field in g×k.

15



2 / A brief overview of Invariant Theory

2.4 The space of invariants

Having spent some time defining invariants and looking at different ways to find
them, we now turn our attention to the space of invariants itself. Given a Lie
group G acting on a manifold M , we will denote the space of all functional
invariants by IG.

Let I1, I2 ∈ IG. Then we have allready seen that the sum I1 + I2 as well as the
product I1I2 yields another invariant. This makes the space IG into a ring. If
our invariants are real functions, then multiplication of invariants by elements
r ∈ R turns out to yield another invariant as well. We can thus consider the
space IG ⊂ F(M) as a sub-algebra.

2.4.1 Generating sets

The first question we would like to answer, is whether or not a subset a ⊂ IG is
a generating set for the space of invariants as an R-algebra.

Recall that orbits of a regular group action are immersed submanifolds of M ,
which are integral manifolds of Π, the distribution defined by the Lie algebra
g ⊂ D(M). The dimension of the orbits is the dimension of these submanifolds,
which is equal to the rank of Π (proposition 9.26 in [Olv99], p.209). Given that
our group acts regularly on M , the following theorem completely determines the
number of functionally independent invariants of G:

Theorem

LetG be a Lie group with a regular action Φ defined on an n-dimensional manifold
M . If the orbits of Φ are of dimension s, then there exists m − s functionally
independent local invariants I1, ..., Is ∈ F(M).

(See [Olv95], p.46). We conclude that a is a generating set of IG iff it contains s
functionally independent elements. From this we can also infer that when Π has
reached maximal rank, s = dim(M)−dim(G).

2.4.2 The algebra of polynomial invariants

In the special case where the group G is semi-simple, and the manifold M is any
affine space, there exists a generating set a ⊂ IG consisting of polynomials. This
is result is known as Hilbert’s theorem. For proof and further reading, see
[Hil93] and [MFK94].
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In particular, if M = Rn, we can consider our generating set a as a subset of
R[x], where x = (x1, ..., xn). We define the algebra of polynomial invariants
as the subalgebra generated by a ⊂ R[x] and label it IG.

We can learn more about IG by a deeper examination of its set of generators.
How do we know that a given generating set is a minimal one? Are the genera-
tors independent or is there some relation between them? The answers to these
questions are to be found within the framework of syzygy-modules.

Given a generating set of cardinality m, a = {a1, a2, ... , am | ai ∈ IG}, we denote
by F the free commutative R-algebra generated by a. It should be clear that
F ' R[a1, ... , am]. We can also consider F a free module over itself. In fact, we
can consider both F and IG to be R[a1, ... , am]-modules. There is a natural map
φ : F → IG given by φ(ãi) = ai. Denoting the kernel of φ by S1, we get the
following exact sequence:

0→ S1 → F → IG → 0

The R[a1, ... , am]-module S1 is called the 1st module of syzygies of IG. By a
syzygy we mean an element of S1. In other words, a syzygy is a relation between
the generators of IG, of the form:

ri1aj1 + ...+ raikajk = 0,

where ri1, ..., rik ∈ F, aj1, ..., ajk ∈ IG, k ≤ m. If S1 is a free module, there is noth-
ing more to be done. However, there might be relations between its generators
as well. In that case, we can proceed as before. Let b = {b1, b2, ... , bl | bi ∈ S1}
be a generating set of S1. Then F1 ' R[b1, ... , bl] is the free algebra generated by
b. We get another exact seqence:

0→ S2 → F1 → S1 → 0,

where S2 is the 2nd module of syzygies of IG. Equivalently, we can define a
map φ1 : F1 → F such that φ1(F1) = S1. Continuing this way we get a long exact
sequence, called a free resolution of IG:

...
φ3−→ F2

φ2−→ F1
φ1−→ F

φ−→ IG → 0

All modules Fi are free and each map is a surjection onto the kernel of the next.
It is natural to ask whether or not the free resolution of IG is a finite sequence.
The following theorem answers the question:

17



2 / A brief overview of Invariant Theory

Hilbert’s syzygy theorem

If M is a finitely generated R[a1, ..., am]-module, then the m-th module of syzygies
Sm of M is free.

(For proof and more information on free resolutions, see [Eis06]). It follows
immediately that Fi = 0 for i > m. By Hilbert’s basis theorem (see [Hil93]), each
Si is finitely generated. If we at each point choose a minimal generating set, we
get a minimal free resolution of IG, which is unique up to isomorphism and
finite with length at most m.

By homological methods, it is possible to show that the alternating sum of the
dimensions of the free modules Fi equals 0 for a minimal free resolution. These
considerations are outside the scope of this text, but for further information on
this topic, see [Eis13].

The notation Fi emphasizes that the modules in question are free. To emphasize
their generating sets a,b, c, .., we will adopt the following convention for depicting
free resolutions:

R[x] ⊃ IG ← R[a]← R[b]← R[c]← ...← 0

2.4.3 The field of rational invariants

In general, the Lie group G acting on our manifold M will not be semi-simple,
and so we can’t consider our space of invariants as a polynomial subalgebra even
if M = Rn. However, if the center of the group acts by semi-simple elements,
there exists a generating set a ⊂ IG consisting of rational functions. This is a
consequence of the following more general theorem:

Theorem (Rosenlicht)

If the action of G is algebraic, and M is any affine or projective space, a finite set
of rational invariants separates the orbits.

(For proof and further reading, see [Ros56] and [KL16]). In light of the above,
we can define the field of rational invariants as the subfield generated by
a ⊂ R(x), labeled JG. As the kernel of any field homomorphism is either 0
or the the whole field, the notions of syzygy-modules and free resolutions are
inapplicable in this context. Instead, we will make use of concepts from field
theory to further describe JG.
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Given a field extension L|K, we define its Transcendence degree to be the
largest cardinality of an algebraically independent subset S of L over K. If
in addition, L is an algebraic extension of the field K(S), we refer to S as a
Transcendence basis. For more on field extensions, see [DF04].

In particular, the field R(x) is a field extension of transcendence degree n over
R. If a generating set ā ⊆ a of JG of cardinality d is a transcendence basis, then
d is also the transcendence degree of JG over R. We denote this as follows:

R(x) ⊃ JG ' R(ā)
d
⊃ R

Of course, even in the cases when our space of invariants has a polynomial gen-
erating set, we can still consider the space as a subspace of the field of rational
functions. From this point of view, we look for a rationally independent generat-
ing set to describe the space JG as a field extension over R.
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3 Computations on even-dimensional
symplectic manifolds

In this chapter we will compute ordered joint invariants on symplectic manifolds
of dimensions 2 and 4, concluding with a discussion on how our results generalize
to higher dimensions. We begin with a preliminary exposition of symplectic
geometry.

A symplectic manifold (M,ω) is an even-dimensional manifold M equipped
with a closed, alternating, non-degenerate 2-form ω, called a symplectic form. In
contrast to Riemannian geometry, there are no notions of lengths or angles in
symplectic geometry. However, ω does provide a canonical volume form on M ,
given by ωn = ω ∧ ... ∧ ω (n entries, where dimM = 2n), which means there
is still a notion of 2n-dimensional hypervolume. Restricting to subspaces S on
which ω|S is non-degenerate, we can define even-dimensional volumes of lower
dimension as well. Such a subspace is called a symplectic subspace. A volume
form provides an orientation, which means that a symplectic manifold is oriented.
Unlike in the Riemannian case, symplectic manifolds are locally similar, by the
following theorem:

Theorem(Darboux)

Let (M,ω) be a 2n-dimensional symplectic manifold. For any point q ∈M , there
exists local coordinates (x1, ..., xn, p1, ..., pn) centered at q, in which ω has the
following form:

ω =
n∑
i=1

dxi ∧ dpi

(For a proof, see [Lee13]). We can interpret the action of ωq on a pair of tan-
gent vectors Xq, Yq ∈ TqM as a sum of areas of parallelograms defined by the
projections of Xq, Yq to the symplectic subspaces R2

(xi,pi) of TqM .

The symplectic form establishes a canonical isomorphism between TM and T ∗M
given by ω : TM → T ∗M , where X 7→ ιXω. Given any H ∈ C∞(M), we can use
this isomorphism to associate a Hamiltonian vector field XH to H, defined
by the relation ιXH

ω = dH.

In local Darboux coordinates, the Hamiltonian vector field corresponding to the
function H is given by:

XH =
n∑
i=1

∂H

∂pi
∂

∂xi
− ∂H

∂xi
∂

∂pi
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It is straightforward to deduce that Hamiltonian vector fields correspond to the
infinitesimal symmetries of ω, i.e. LXω = 0, iff X = XH for some H ∈ C∞(M).
By the infinitesimal Stoke’s theorem LXH

ω = d(ιXH
ω)+ιXH

dω. Since ω is closed,
the second term vanishes. Using the definition of XH , we see that d(ιXH

ω) =
d(dH) = 0 as well, which verifies the claim.

Thus, there is a correspondence between elements of C∞(M) and sym(ω). We
can use the Hamiltonian vector fields to induce an operation on C∞(M), turning
the space into a Lie algebra. Let F,H ∈ C∞(M). Then we define the Poisson
bracket { , } : C∞(M)× C∞(M)→ C∞(M) by {F,H} := XH(F ).
In local Darboux coordinates:

{F,H} =
n∑
i=1

∂H

∂pi
∂F

∂xi
− ∂H

∂xi
∂F

∂pi

It is follows that X{F,H} = [XF , XH ], and so the map Φ : C∞(M) → sym(ω) de-
fined by Φ(H) = XH is a Lie algebra homomorphism, where the kernel of Φ con-
sists of constant functions. Hence, sym(ω) is an infinite-dimensional Lie algebra.
We would like to consider a finite-dimensional subalgebra g. Let M be a linear
symplectic manifold. It should be clear that the subspace P(2)(M) ⊂ C∞(M) is
closed under the Poisson bracket.

This allows us to define g = Im(Φ|P(2)(M)(C∞(M))) ⊂ sym(ω).

3.1 2-dimensional M

We start with the case where M = R2(x, p) is our base space endowed with the
standard symplectic form ω = dx∧ dp. Its infinitesimal symmetries are given by:

sym(ω) = {Xf = fp∂x − fx∂p | f ∈ C∞(M)}

By restricting the generating functions f to consist of quadratic functions of the
form f = a0x

2 + a1xy + a2y
2, we get a 3-dimensional subalgebra:

g = 〈−x∂p, x∂x − p∂p, p∂x〉

We observe that g ' sp(2) = sl(2).
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The action of g on M has two orbits: the fixed point {0} and the open orbit
R2 \ {0}. We regard a generic point as a point contained in the latter orbit, and
say that the algebra acts transitively on generic points of M . Thus, there will
be no invariants on the base space. Solving the system LXf = 0, ∀X ∈ g gives
us the trivial solution where f = const, which confirms that this is the case. We
conclude that IG = R.

3.1.1 M × M

We now move onto the space M × M = R4(x1, x2, p1, p2). To look for joint
invariants, we start by extending the algebra by applying the recipe from section
2.3. It gives us the following:

g×2 = 〈−x1∂p1 − x2∂p2, x1∂x1 − p1∂p1 + x2∂x2 − p2∂p2, p1∂x1 + p2∂x2〉

The rank of the distribution defined by the vector fields in g×2 is 3, which is the
maximal rank. This implies that there will be one independent invariant. More-
over, as the algebra acting is semi-simple, we know that it will be a polynomial.
Solving the Lie equation gives us:

a12 = x1p2 − x2p1

The chosen label for the invariant will become clear as we proceed. This ex-
pression can be recognized as a signed area. If we regard A1 = (x1, p1) and
A2 = (x2, p2) as being two points on the base space, then |a12| is proportional
the area shown in the figure below:
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As our base space is R2, we can identify our manifold with the tangent space
at the origin. Since the origin is fixed by the action of g×2, we can interpret
a12 the following way: Denote the position vectors from the origin to two points
(x1, p1), (x2, p2) by OA1, OA2. Then a12 = ω(OA1, OA2). We denote the
algebra of 2-fold joint invariants by IG×2. It is generated by one element, with
the following minimal free resolution:

R[x1, x2, p1, p2] ⊃ IG×2 ← R[a12]← 0

This implies that IG×2 ' R[a12]

3.1.2 M × M × M

Prolonging the algebra further, we find that a12 is still an invariant when we solve
the Lie equation. In addition, we get two more:

a13 = x1p3 − x3p1

a23 = x2p3 − x3p2

As before, these can be regarded as signed areas, or equivalently:

a13 = ω(OA1, OA2)

a23 = ω(OA2, OA3)
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As the distribution determined by the vector fields reached maximal rank on
M×M , from this point on we can simply use the formula s = dim(M k)−dim(G),
to find the number of independent invariants. We have a 3-dimensional algebra
acting on a 6-dimensional space, and the total number of invariants we got is 3
as expected. Let us confirm that there are no relations between our invariants.
Using computer elimination algorithms, we can take our 3 defining equations for
a12, a13, a23 and try to eliminate the variables x1, x2, x3, p1, p2, p3. The ouptut is
empty as expected, and we get the following minimal free resolution for IG×3:

R[x1, x2, x3, p1, p2, p3] ⊃ IG×3 ← R[a12, a13, a23]← 0

Once again, IG×3 ' R[a12, a13, a23] .

3.1.3 M×4

At this point there seems to have emerged a pattern:
We consider aij = ω(OAi, OAj) = xipj − xjpi, s.t. 1 ≤ i < j ≤ 3. Substitut-
ing for f in the Lie equation, we find that all 6 aij are indeed invariant. However,
dimensional analysis tells us that there can be at most 5 independent invariants
at this point. There has to be a relation between the terms.

Using the same method as before, we take our set of 6 defining equations for
aij and try to eliminate the variables x1, x2, x3, x4, p1, p2, p3, p4. At first, the
elimination-algorithm fails to find any relation between the aij’s. However, by
the transitivity of the action on the open orbit in M , we can fix a generic point
contained in it in order to simplify the system. We declare that x1 = 1, p1 = 0,
and run the algorithm again. This time we get the following relation between the
generators of IG×4:

b1234 = a12a34 − a13a24 + a14a23 = 0

In general we can eliminate a number of variables equal to the dimension of the
orbit, when the algebra has reached maximal rank. At this point, the action is
free. When a point q = (xi, pi) is fixed only the stabilizer Gq of this point acts on
the remaining points. Thus the dimension of the orbit becomes smaller and the
elimination process is simplified. We will employ this strategy in all subsequent
computations.

As an aside, we can recognize the expression b1234 = 0 as the Plücker relation.
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We label the 1st module of syzygies by S1, which is the kernel of the map
Φ : R[a12, a13, a14, a23, a24, a34]→ IG×4 containing the generator b1234.

Hence, this is our minimal free resolution of IG×4:

R[x,p] ⊃ IG×4 ← R[a12, a13, a14, a23, a24, a34]← R[b1234]← 0

So far we have considered our generators for the algebra of joint invariants as
polynomials. However, it is also possible to consider them rational functions.
From this perspective, our 6 generators are no longer independent, as we can
solve for any one of them from the relation b1234 = 0 by dividing out their
coefficient. For instance:

a34 =
a13a24 − a14a23

a12

Hence, we can drop a34 from the set of generators of the field of rational joint
invariants, which we will denote JG×4. From this perspective, JG×4 is a field
extension over R of transcendence degree 5:

R(x1, x2, x3, x4, p1, p2, p3, p4) ⊃ JG×4 ' R(a12, a13, a14, a23, a24)
5
⊃ R

3.1.4 M×5

Our previous formula still produces invariants as we extend our space to M×5.
We have aij = xiyj − xjyi, s.t. 1 ≤ i < j ≤ 5. This time, the number of
generators is 10. We have a 3-dimensional group acting on a 10-dimensional
space, and so only 7 of them can be independent. The kernel of Φ now contains
5 elements of the form:

bijkl = aijakl − aikajl + ailajk, where 1 ≤ i < j < k < l ≤ 5.

To shorten our expressions, we hereby adopt a shorthand notation for the set of
generators for the free algebras we will be constructing. Let a denote the set of
all aij’s. Likewise, let b denote the set of all bijkl’s.

Let us find out if S1 is a free module, or if there are relations between its gen-
erators. We proceed as before, by constructing the free algebra F1 ' R[b],
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which we consider an R[a]-module. Relations between elements of S1 will linear
combinations of elements in R[b] with coefficients in R[a] which equals zero.

We get 5 elements of S2:

c1 = a12b1345 − a13b1245 + a14b1235 − a15b1234 = 0

c2 = a12b2345 − a23b1245 + a24b1235 − a25b1234 = 0

c3 = a13b2345 − a23b1345 + a34b1235 − a35b1234 = 0

c4 = a14b2345 − a24b1345 + a34b1245 − a45b1234 = 0

c5 = a15b2345 − a25b1345 + a35b1245 − a45b1235 = 0

Then, we can look for generators between ci’s. These will be linear combinations
of elements in R[c] with coefficients in R[a]. We find one, which is an element of
S3:

d = (a23a45 − a24a35 + a25a34)c1 + (−a13a45 + a14a35 − a15a34)c2

+ (a12a45 − a14a25 + a15a24)c3 + (−a12a35 + a13a25 − a15a23)c4

+ (a12a34 − a13a24 + a14a23)c5 = 0

This is our minimal free resolution of IG×5:

R[x,p] ⊃ IG×5 ← R[a]← R[b]← R[c]← R[d]← 0

As was the case in the previous section, we can also here consider our generating
set to consist of rational functions. In the previous section we made use of the
relation b1234 = 0 to solve for the generators a34 in terms of the other 5. We
now have 5 such relations bijkl = 0 constituting a system of equations, and we
can solve for 3 of the generators simultaneously, expressing them in terms of the
other 7:

a34 =
a13a24 − a14a23

a12

a35 =
a13a25 − a15a23

a12

a45 =
a14a25 − a15a24

a12

Thus, we can remove these from our set of generators for JG×5. Let us denote
our set of 7 independent generators by ā = a\{a34, a35, a45}. From this point of
view, the field of rational joint invariants is the field R(ā) which has transcendence
degree 7 over R:

R(x,p) ⊃ JG×5 ' R(ā)
7
⊃ R
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3.1.5 M×6

On this space we have 15 generators of the form:
aij = xiyj − xjyi, s.t. 1 ≤ i < j ≤ 6.
We also get 15 relations of the form:
bijkl = aijakl − aikajl + ailajk = 0, s.t. 1 ≤ i < j < k < l ≤ 6.

In principle, we now know how to find relations between the bijkl’s. By Hilbert’s
Syzygy Theorem, we also know that there will be a free resolution of IG×6 of
length at most 12. This is good enough for our purposes. As far as illustrating
the evolution of the algebra of polynomial joint invariants as we extend our base
space, we are done. Now we turn to the task of completely describing the field of
rational invariants as we extend our space to arbitrarily large products.

By a dimension count, we know that only 9 of the generators will be functionally
independent. As before, our goal will be to express the 6 that are superfluous in
terms of the other 9. Using the exact same approach we get the 3 expressions we
already had for a34, a35, a45, as well as 3 more:

a36 =
a13a26 − a16a23

a12

a46 =
a14a26 − a16a24

a12

a56 =
a15a26 − a16a25

a12

We remove the elements a34, a35, a36, a45, a46, a56 from our generating set, and
label the ordered set of independent generators ā as before. The field of invariants
can be identified with the following field extension of transcendence degree 9 over
R:

R(x,p) ⊃ JG×6 ' R(ā)
9
⊃ R
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3.1.6 Larger products

Finally, we would like to consider spaces of the form M×m. The number of

generators aij will be

(
m

2

)
=
m(m− 1)

2
, where 1 ≤ k < l ≤ m. The number

of independent generators is given by 2m− 3. We can generalize the expressions
we’ve found so far for the dependent generators in terms of the independent ones.
Consider expressions of the form:

akl =
a1ka2l − a1la2k

a12

where 3 ≤ k < l ≤ m. Removing those from the set of generators yields us
precisely an independent generating set of desired cardinality. We can summarize
this entire section by the following diagram:

R(x,p) ⊃ JG×m ' R(ā)
2m−3
⊃ R

3.2 4-dimensional M

Now let M = R4(x, y, p, q) serve as the base space. The standard symplectic
form in this case will be ω = dx ∧ dp + dy ∧ dq. As before, the infinitesimal
symmetries of ω constitutes an infinite dimensional Lie algebra:

sym(ω) = {Xf = fp∂x − fx∂p + fq∂y − fy∂q | f ∈ C∞(M)}

We restrict our generating functions to be of the form:
f = a1x

2 + a2xy + a3xp+ a4xq + a5y
2 + a6yp+ a7yq + a8p

2 + a9pq + a10q
2,

which again gives us a finite-dimensional Lie algebra:

g = 〈 − x∂p,−y∂p − x∂q, x∂x − p∂p, x∂y − q∂p,−y∂q,
y∂x − p∂q, y∂y − q∂q, p∂x, q∂x + p∂y, q∂y〉

Here g ' sp(4). This algebra is 10-dimensional and its action has two orbits
on M , just like in the 2-dimensional case. g acts transitively on generic points,
contained in the open orbit R4\{0}, while it fixes the origin. We solve the system
LXf = 0,∀X ∈ g, which again only has the trivial solution where f = const.
This confirms that there are no functional invariants on M . Thus, IG = R.
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3.2.1 M × M

As we increase dimensions, the systems of PDEs corresponding to the Lie equation
will eventually reach a size where finding invariants by solving the system directly
becomes impractical. However, it might be possible to simplify the search for
invariants a great deal by making good use of the geometric intuition we obtained
from working on the 2-dimensional case. On M ×M , the rank of distribution
determined by the vector fields in g×2 is 7, so we expect one invariant.

Recall that in 2 dimensions, we could interpret the invariant we got on M×M by
solving the Lie equation directly as the output of a symplectic form acting on two
position vectors on M . The corresponding expression where M is 4-dimensional
is:

a12 = ω(OA1, OA2) = x1p2 − x2p1 + y1q2 − y2q1,

where OAi = (xi, yi, pi, qi). Substituting back into the Lie equation, we discover
that the above expression is indeed an invariant, which we will label a12 as before.

The minimal free resolution is given by:

R[x1, y1, p1, q1, x2, y2, p2, q2] ⊃ IG×2 ← R[a12]← 0

Which implies that IG×2 ' R[a12].

3.2.2 M × M × M

Perhaps not surprisingly, we again look to expressions of the form:

aij = ω(OAi, OAj) = xipj − xjpi + yiqj − yjqi, s.t. 1 ≤ i < j ≤ 3

And again, they are all easily verified to be invariant functions. The rank of
the distribution defined by the extended vector fields is now 9, and we got 3
generators for IG×3 as expected.

R[x,y,p,q] ⊃ IG×3 ← R[a]← 0
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3.2.3 M×4

Here our distribution have reached rank 10, which is the maximal rank. We have
a 10-dimensional algebra acting on a 16-dimensional space, and so we expect to
find 6 generators for IG×4. This is exactly what our recipe outputs:

aij = xipj − xjpi + yiqj − yjqi, s.t. 1 ≤ i < j ≤ 4

We produced 6 generators on R2×4 as well, but in that case there was a relation
between them. This time, they are all independent.

R[x,y,p,q] ⊃ IG×4 ← R[a]← 0

3.2.4 M×5

Now we have a 10-dimensional algebra acting on a 20-dimensional space, and
thus we need 10 generators for IG×4. Again, this is precisely the number we get:

aij = xipj − xjpi + yiqj − yjqi, s.t. 1 ≤ i < j ≤ 5

It is quick to verify that they are still independent.

R[x,y,p,q] ⊃ IG×5 ← R[a]← 0

3.2.5 M×6

Our formula generates 15 invariants on this space. We have a 10-dimensional
algebra acting on a 24-dimensional space, which means that only 14 of our gener-
ators can be independent. Hence, there has to be a relation between them. In this
case, we have to eliminate 24 variables from a set of 15 equations. By carefully
fixing points in accordance with our previously described method, we can sim-
plify the problem enough for the elimination-algorithm to output the following
relation between our 16 generators:

b123456 =a12a34a56 − a12a35a46 + a12a36a45 − a13a24a56 + a13a25a46 − a13a26a45+

a14a23a56 − a14a25a36 + a14a26a35 − a15a23a46 + a15a24a36 − a15a26a34+

a16a23a45 − a16a24a35 + a16a25a34 = 0
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Recall that the first relation that appeared between our generators as we extended
the 2-dimensional base space was a quadratic relation. Here, the relation we find
is a cubic relation. We get the following free resolution of IG×6:

R[x,y,p,q] ⊃ IG×6 ← R[a]← R[b]← 0

Up until now, we have considered the space of joint invariants as a subalgebra
of R[x,y,p,q]. From this point on, we would like to consider our generators
as rational functions, which makes the space of joint invariants a subfield of
R(x,y,p,q).

On the 2-dimensional base space we were able to use the relation b1234 = 0 to
solve for one of the generators of JG×4 in terms of the others. Using the relation
b123456 = 0 we are able to do the same thing here:

a56 =(a12a35a46 − a12a36a45 − a13a25a46 + a13a26a45 + a14a25a36 − a14a26a35

+ a15a23a46 − a15a24a36 + a15a26a34 − a16a23a45 + a16a24a35 − a16a25a34)

/(a12a34 − a13a24 + a14a23)

We can thus remove a56 from our generating set, and consider JG×4 as a field
extension over R of transcendence degree 14:

R(x,y,p,q) ⊃ JG×6 ' R(ā)
14
⊃ R

3.2.6 M×7

At this space, our formula yields 21 generators of the form aij. We get 6 relations
between them of the following form:

bijklmn =aijaklamn − aijakmaln + aijaknalm − aikajlamn + aikajmaln − aikajnalm+

ailajkamn − ailajmakn + ailajnakm − aimajkaln + aimajlakn − aimajnakl+
ainajkalm − ainajlakm + ainajmakl = 0

where 1 ≤ i < j < k < l < m < n ≤ 7. By counting dimensions, we know that
18 of our 21 generators are independent. Our formula expressing a56 in terms of
14 other generators is still valid.
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Using the above relations, we can solve for 2 more:

a57 =(a12a35a47 − a12a37a45 − a13a25a47 + a13a27a45 + a14a25a37 − a14a27a35

+ a15a23a47 − a15a24a37 + a15a27a34 − a17a23a45 + a17a24a35 − a17a25a34)

/(a12a34 − a13a24 + a14a23)

a67 =(a12a36a47 − a12a37a46 − a13a26a47 + a13a27a46 + a14a26a37 − a14a27a36

+ a16a23a47 − a16a24a37 + a16a27a34 − a17a23a46 + a17a24a36 − a17a26a34)

/(a12a34 − a13a24 + a14a23)

Removing a56, a57, a67 from our set of generators, allows us to consider JG×7 as
the following field extension over R:

R(x,y,p,q) ⊃ JG×7 ' R(ā)
18
⊃ R

3.2.7 Larger products

We can now generalize what we’ve found to describe anyM×m with a 4-dimensional
base space. The number of generators aij produced at a given m, is exactly the

same as when we considered products of 2-dimensional spaces, i.e.
m(m− 1)

2
.

This time our algebra is 10-dimensional, and so the number of independent gen-
erators is given by 4m− 10. As before, we can generalize the expressions for the
dependent generators in terms of the independent generators:

akl =(a12a3ka4l − a12a3la4k − a13a2ka4l + a13a2la4k + a14a2ka3l − a14a2la3k

+ a1ka23a4l − a1ka24a3l + a1ka2la34 − a1la23a4k + a1la24a3k − a1la2ka34)

/(a12a34 − a13a24 + a14a23)

where 5 ≤ k < l ≤ m. Removing those from the set of generators for J×m gives
us an independent set of generators consisting of 4m − 10 elements as desired.
Hence:

R(x,y,p,q) ⊃ JG×m ' R(ā)
4m−10
⊃ R
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3.3 Higher dimensions

Noticing the pattern for generating invariants, we can consider spaces where
M = R2n(x1, ..., xn, p1, ..., pn) is the base space for n > 2. The expression for
the standard symplectic form becomes ω = dx1 ∧ dp1 + ...+ dxn ∧ dpn.

The number of vector fields constituting the finite subalgebra g will equal the
dimension of the space of homogeneous polynomials in 2n variables, which is

given by

(
2n+ 2− 1

2

)
= n(2n+ 1). We have that g ' sp(2n).

Our formula for producing invariants on M×m now becomes:

aij = ω(OAi, OAj) =
n∑
k=1

xki p
k
j − xkjpki , s.t. 1 ≤ i < j ≤ m

Going from a 2-dimensional base space to a 4-dimensional base space, we found
that even though we could generate the same number of invariants for each ex-
tension, the difference between the number of vector fields defining g and the
dimension of the extended manifold grew. A natural question to ask is whether
or not this difference will increase to a point where we will obtain insufficient
generators for the algebra of invariants by only using our previous method.

To answer this question, let us examine how the rank of the distribution defined
by vector fields in g evolves as we extend base spaces of higher dimensions. It
should be clear that the action is transitive on the open orbit R2n \ {0} for any
any n > 2. Thus the distribution always starts out with a rank equal to the
dimension of R2n, i.e. 2n. On R2n×2, the group G acts on pairs (p1, p2). To
obtain the dimension of the orbits, we can picture the group acting on each copy
of R2n in succession.

We have 2n degrees of freedom in fixing the point p1. The remaining degrees of
freedom is given by dim(Gp1), where Gp1 is the stabilizer of p1. As the expression
a12 is always an invariant on R2n×2 for generic points, we can conclude that
dim(Gp1) = 2n − 1. Hence the rank of the distribution is always 4n − 1 on
R2n×2.

Similarly, on R2n×3 we have an action on triplets (p1, p2, p3). After fixing the first
two points, the remaining degrees of freedom is given by dimGp1,p2 . But here we
have two new invariants a13, a23, and so dim(Gp1,p2) = 2n− 2.
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Proceeding in this fashion, it should be clear that we obtain maximal rank at
R2n×2n. In particular, Gp1,...,p2n = {0}. Of course, this also follows from the fact
that a generic 2n-tuple is a basis for R2n, and that a linear transformation which
preserves it must be the identity.

By comparing dimensions of our spaces to the number of generators, we can
deduce that the first syzygy appears at R2n×(2n+2). By inspecting the syzygies
appearing on R2×4 and R4×6, we can understand them as nested Plücker relations.
Denoting their generators by b2

1234 and b4
123456 respectively, we see that:

b2
1234 = a12a34 − a13a24 + a14a23

b4
123456 =

6∑
j=2

(−1)ja1jb
2
klst

where the letters klst are taken from {2, 3, 4, 5, 6}\{j} and arranged in ascend-
ing order. It is easy to verify that the following constitutes a generator for the
first module of syzygies for R6×8:

b6
12345678 =

8∑
j=2

(−1)ja1jb
4
klstuv

Generalizing this result, we can define the generator for the first module of syzy-
gies for R2n×(2n+2) inductively:

b2n
1...2n =

2n+2∑
j=2

(−1)ja1jb
2n−2
i1...i(2n−2)

Hence, once we reach this point we can always use these relations to express excess
generators in terms of the others, generalizing our previous procedure. Denote
the set of independent generators obtained by removing those that are not needed
by ā. It is quick to verify that this set will contain 2nm− n(2n+ 1) elements.

Summarizing:

R(x,p) ⊃ JG×m ' R(ā)
2nm−n(2n+1)

⊃ R
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4 Computations on odd-dimensional contact
manifolds

In this chapter we will compute ordered joint invariants on contact manifolds of
dimensions 3 and 5, concluding with some remarks on how to extend our results
to higher dimensions. We start with a brief introduction to contact geometry.

A contact manifold (M, τ) is an odd-dimensional manifold M equipped with
a completely non-integrable smooth distribution Π ⊂ TM of co-dimension 1,
known as a a contact structure. Elements τ ∈ Ann(Π) are non-vanishing one-
forms called contact forms, and completely characterize Π. Contact geometry
is in many ways an odd-dimensional counterpart to symplectic geometry. Any
contact form τ has the property that dτp|Πp is a symplectic tensor for any p ∈M .
The following theorem illustrates another similarity:

Theorem(Contact Darboux)

Let (M, τ) be a 2n+ 1-dimensional contact manifold. For any point q ∈M and
any τ ∈ Ann(Π), there exists local coordinates (x1, ..., xn, u, p1, ..., pn) centered
at q, in which τ has the following form:

τ = du−
n∑
i=1

pidx
i

(For a proof, see [Lee13]). An important difference from symplectic geometry, is
that while ω is unique, fτ is still a contact form if f ∈ C∞(M) is non-vanishing.
Hence it makes sense in defining infinitesimal symmetries of contact forms, to
require only that τ is preserved up to scale. That is:

sym(τ) := {X | LXτ = λτ}

Solutions to the above equation are called contact vector fields.
Let h ∈ C∞(M). Then in local contact Darboux coordinates, any contact vector
field has the following form (see [Arn13]):

Xh = −
n∑
i=1

∂h

∂pi

(
∂

∂xi
+ pi

∂

∂u

)
+ h

∂

∂u
+

n∑
i=1

(
∂h

∂xi
+ pi

∂h

∂u

)
∂

∂pi

Just as was the case on symplectic manifolds, there is a correspondence between
sym(τ) and C∞(M). Also here we can induce an operation on the latter space,
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providing a Lie algebra structure. Let f, h ∈ C∞(M). Define the Lagrange
bracket [ , ] : C∞(M)× C∞(M)→ C∞(M) by [f, h] := Xh(f).
In local contact Darboux coordinates:

[f, h] = −
n∑
i=1

∂h

∂pi

(
∂f

∂xi
+ pi

∂f

∂u

)
+ h

∂f

∂u
+

n∑
i=1

(
∂h

∂xi
+ pi

∂h

∂u

)
∂f

∂pi

As before, the property X[f,h] = [Xf , Xh] allows us to construct a Lie algebra
homomorphism. Define Φ : C∞(M)→ sym(τ) by Φ(h) = Xh. Here the kernel
is trivial, and so the map Φ is an isomorphism. Also in this case, we would like to
define a finite-dimensional subalgebra g. LetM be a linear contact manifold. This
time, P (2)(M) is not closed under the Lagrange bracket. To remedy this situation,
we consider the space Q(2)(M), consisting of quasi-homogeneous polynomials of
degree 2. In this space, the variables xi, pi is given weight 1, while the variable
u is given weight 2. This construction is known as the Heisenberg algebra, which
is the Tanaka algebra (see [Kru14]) of the contact structure.

Now we can define g = Im(Φ|Q(2)(M)(C∞(M))) ⊂ sym(τ).

4.1 3-dimensional M

Let M = R3(x, u, p) be our base space endowed with the standard contact
structure, whose annihilator is generated by the form τ = du − pdx. We have
the following infinite-dimensional Lie algebra:

sym(τ) = {Xf = −fp(∂x + p∂u) + f∂u + (fx + pfu)∂p | f ∈ C∞(M)}

We restrict our generating functions to those of the form:
f = a0x

2 + a1xp+ a2p
2 + a3u.

This yields the following 4-dimensional subalgebra:

g = 〈x2∂u + 2x∂p,−x∂x + p∂p,−2p∂x − p2∂u, x∂x + 2u∂u + p∂p〉

To look for functional invariants on the base space, we again solve the system
LXf = 0,∀X ∈ g. The only solution to this system is the trivial one, f = const.
Thus, there are no non-trivial invariants on the base space.

38



4.1.1 M × M

Moving on to the space M ×M = R6(x1, u1, p1, x2, u2, p2), we start by comput-
ing the rank of the distribution defined by the new vector fields, which is found
to be the maximal rank of 4. This implies that there are 2 generators for our
space of joint invariants. Next, we attempt to solve the Lie equation as before.
However, unlike in the previous even-dimensional cases, the PDE-solve program
is unable to obtain a solution for this system. We need to try another approach.

One such approach is to simplify the system of equations we need to solve by
eliminating group parameters, making use of the method of moving frames. In
order to do so, we have to be able to determine the explicit action of the group
obtained by exponentiating the Lie algebra.

We start by looking closer at our initial Lie algebra on the base space. Its Levi
decomposition turns out to be g = R⊕ sp(2), which implies that:
g ' csp(2) ' gl(2). As its center acts by semi-simple elements, we expect a
rational generator for the space of invariants.

Exponentiating yields the connected component of GL(2).
We denote our group G.

Computing the flow of each vector field in g might tell us something about how
the group acts. We get the following families of diffeomorphisms:

Φ0(t, x, u, p) = (x, tx2 + u, 2tx+ p)

Φ1(t, x, u, p) = (xe−t, u, pet)

Φ2(t, x, u, p) = (−2pt+ x,−p2t+ u, p)

Φ3(t, x, u, p) = (xet, ue2t, pet)

From this we deduce that the action of G projects to the standard linear action
on R2(x, p). Let ϕ ∈ G. Then we know it is an automorpism of the form:
ϕ(x, u, p) = (αx+ βp, f(x, u, p), γx+ δp) such that ϕ∗τ = λτ ,
where τ = du− pdx is a contact form.

Substituting:

ϕ∗τ = d(ϕ∗(u))− ϕ∗(p)d(ϕ∗(x))

= d(f(x, u, p)− (γx+ δp)d(αx+ βp)

= fxdx+ fudu+ fpdp− α(γx+ δp)dx− β(γx+ δp)dp

= λdu− λpdx
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Collecting terms we get a system of PDEs:

fu = λ

fx = αγδ + αδp− fup
fp = βγx+ βδp

Solving this system for f gives us:

f(x, u, p) = (αδ − βγ)

(
u− px

2

)
+

(αx+ βp)(γx+ δp)

2

Now we have an explicit expression for the action of G on M . Notice that even
though G is in principle only the connected component of GL(2) (i.e. elements
with positive determinant), our formula is valid for all real values of α, β, γ, δ,
as long as αδ − βγ 6= 0. We can understand our expression as the action of the
Zarisky closure of G. By extending, we also get an expression for the action on
M ×M :

ϕ×2(x1, x2, u1, u2, p1, p2) =(αx1 + βp1, αx2 + βp2, f(x1, u1, p1),

f(x2, u2, p2), γx1 + δp1, γx2 + δp2)

At this point we can eliminate the group parameters. Consider the system of
equations:

ϕ×2∗x1 = x̃1

ϕ×2∗p1 = p̃1

ϕ×2∗x2 = x̃2

ϕ×2∗p2 = p̃2

We solve for the group parameters α, β, γ, δ that satisfy the above, and substitute
the output into the expression for ϕ×2. Next, we compute the pullback for the
remaining two coordinates:

ϕ×2∗u1 =
x1p1 − 2u1

2(p1x2 − p2x1)

ϕ×2∗u2 =
x2p2 − 2u2

2(p1x2 − p2x1)
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Substituting the results for f into our original Lie equation, we confirm that both
functions are invariant. We have a 4-dimensional group acting on a 6-dimensional
space, so we don’t expect any more. Looking closer at the invariant functions
obtained, we notice another difference from the previous even-dimensional cases.
This time the invariants are rational functions, rather than polynomial. These can
be understood as a ratio of relative invariants. Collecting all 3 terms appearing
in either the numerator or denominator of our invariant functions, ignoring the
factor of 2:

R11 = x1p1 − 2u1

R22 = x2p2 − 2u2

R12 = x1p2 − x1p2

The terms R11, R22 can be understood in the following sense: Consider the vector
field X3 = x∂x + 2u∂u + p∂p, corresponding to the action of the center of g. We
saw that its flow lines are curves radiating away from the origin. The extended
vector field X×2

3 = x1∂x1 + 2u1∂u1 + p1∂p1 + x2∂x2 + 2u2∂u2 + p2∂p2 is a sum of
two copies of X3.

By labeling the copies X1
3 , X

2
3 , we have that X×2

3 = X1
3 +X2

3 . As was the case on
the symplectic manifolds, we can identify M with the tangent space at the origin.
Since the origin is fixed by the action, we can interpret the relative invariants as:

R11 = −τ0(X
1
3 ), R22 = −τ0(X

2
3 )

We recognize the expression R12 as a projected symplectic area. Computing the
pullback, we find that ϕ×2∗Rij = (αδ − βγ)Rij in all 3 cases, which means that
our 3 Rij’s are all relative invariants of weight 1. Recall that the product of two
relative invariants of weight m and n respectively, equals a new relative invariant
of weight m + n. As we multiply a relative invariant with the reciprocal of a
different relative invariant of the same weight, the result is an absolute invariant
of weight 0. We can choose any two such products as our generators of JG×2, as
long as they are independent. Let us choose the following:

I11 =
R11

R22

I12 =
R12

R22

The following describes our field of rational joint invariants:

R(x1, x2, u1, u2, p1, p2) ⊃ JG×2 ' R(I11, I12)
2
⊃ R
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4.1.2 M × M × M

Again, we have discovered a pattern. Define the following functions:

Rij =

{
xipi − 2ui, if i = j

xipj − xjpi, if i 6= j
, where 1 ≤ i ≤ j ≤ 3.

All 6 turn out to be relative invariants of weight 1, as before. Dividing all of them
by the last one, gives us 5 absolute invariants:

Iij =
Rij

R33

We will adopt the convention that indices in expressions Iij are the usual sym-
metric ones, with the largest value of ij removed, in this case 33. Here we have
a 4-dimensional group acting on a 9-dimensional space, so we expect no more in-
variants. As we did before, we adopt the notation Ī for our rationally independent
set of generators.

R(x,u,p) ⊃ JG×3 ' R(̄I)
5
⊃ R

4.1.3 M×4

Using the same formula for the Rij’s as before, where 1 ≤ i ≤ j ≤ 4, we
now generate 10 relative invariants. Dividing every expression by R44, gives us 9
absolute invariants Iij. Now we expect to find a relation between them.

Using elemination methods, we find one relation between the absolute invariants
with skew-symmetric indices:

b1234 = I12I34 − I13I24 + I14I23 = 0

The invariants I11, I22 and I33 are all independent. As our invariants are already
rational functions, we can use the relation b1234 = 0 to solve for one of them in
terms of the other:

I34 =
I13I24 − I14I23

I12

Thus, we can remove I34 from Ī. It follows that our field of invariants JG×4 has
transcendence degree 8 over R:

R(x,u,p) ⊃ JG×4 ' R(̄I)
8
⊃ R
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4.1.4 M×5

Continuing, we get 14 invariants Iij =
Rij

R33

As we did on R2×5, we get 5 relations between our generators with skew-symmetric
indices:

bijkl = IijIkl − IikIjl + IilIjk, where 1 ≤ i < j < k < l ≤ 5.

The 4 generators with symmetric indices are independent. Completely analo-
gously to what we did on R2 × 5 we can use our relations to express two more
generators in terms of the others:

I35 =
I13I25 − I15I23

I12

I45 =
I14I25 − I15I24

I12

Now we can describe our field of invariants as follows:

R(x,u,p) ⊃ JG×5 ' R(̄I)
11
⊃ R

4.1.5 Larger products

Our results on M×4 and M×5 can be generalized to larger products. On the
space M×m, the number of generators Iij is given by:(

m+ 1

2

)
− 1 =

m(m+ 1)− 2

2

The number of independent generators is 3m− 4. Comparing our number to the
number of independent generators for R2×2, which was 2m−3, we can understand
the difference to consist of generators with equal indices.

Our previous formula for expressing the dependent generetors in terms of those
that are independent, can be applied here as well:

Ikl =
I1kI2l − I1lI2k

I12

where 3 ≤ k < l ≤ m. We can remove the dependent genereators from our
generating set as before. The following diagram summarizes this section:

R(x,u,p) ⊃ JG×m ' R(̄I)
3m−4
⊃ R
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4.2 5-dimensional M

Here M = R5(x, y, u, p, q) is our base space, again with the standard contact
structure. In this case the annihilator is generated by the form:
τ = du− pdx− qdy. We have:

sym(τ) = {Xf = −fp(∂x+p∂u)−fq(∂y+q∂u)+f∂u+(fx+pfu)∂p+(fy+qfu)∂q}

where f ∈ C∞(M). As before, we need to use weighted polynomials as our
generators to produce a finite dimensional subalgebra. They will be of the form:
f = a1x

2+a2xy+a3xp+a4xq+a5y
2+a6yp+a7yq+a8p

2+a9pq+a10q
2+a11u.

We now get an 11-dimensional Lie-algebra:

g = 〈x2∂u + 2x∂p, xy∂u + y∂p + x∂q,−x∂x + p∂p,−x∂y + q∂p, y
2∂u + 2y∂q,

− y∂x + p∂q − y∂y + q∂q,−2p∂x − p2∂u,−q∂x − p∂y − pq∂u,
− 2q∂y − q2∂u, x∂x + y∂y + 2u∂u + p∂p + q∂q〉

Here we find that g ' R⊕ sp(4) = csp(4)

We quickly confirm that there are no functional invariants on the base space by
solving the Lie equation, which only has constant solutions for this system. As
in all previous cases, the algebra of invariants on the base space IG = R.

4.2.1 M × M

Like before, increasing dimensions increases the computational complexity of the
problem of finding invariants. In 3 dimensions, we were unable to solve the Lie
equation on M ×M , so we can’t expect to be able to do so here. It is possible
to find an explicit expression for the group action on the base space again, but
maybe we can do without it. When finding generators for the algebra of invari-
ants in 4 dimensions (in fact, in all even dimensions), we could make use of our
previous discoveries in 2 dimensions. We will analogously make use of the results
from the 3-dimensional case here.
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In 3 dimensions, we could interpret all generators for the algebras of joint in-
variants as a ratio of relative invariants. These relative invariants came in two
basic forms, one of which could be recognized as a projection of a symplectic
area to a submanifold isomorphic to the tangent bundle on the base space. The
corresponding submanifold this time is going to be R4(x, y, p, q), so we naturally
consider the expression:

R12 = x1p2 − x2p1 + y1q2 − y2q1

We verify that it is a relative invariant of weight 1. The other relative invariants
could be understood as the standard contact form τ acting on components of the
extended vector fields corresponding to the center of the action of g, evaluated
at the origin. On the base space the center is given by the vector field
X11 = x∂x + y∂y + 2u∂u + p∂p + q∂q. This leads us to consider the following
two expressions:

R11 = x1p1 + y1q1 − 2u1

R22 = x2p2 + y2q2 − 2u2

Both are verified to be relative invariants of weight 1. Dividing all 3 expressions
by R22 gives us two absolute invariants, like before:

I11 =
R11

R22

I12 =
R12

R22

The rank of the distribution defined by the vector fields is confirmed to be 8 at
this point. As our space is 10-dimensional these are the only invariants.

R(x,y,u,p,q) ⊃ JG×2 ' R(̄I)
2
⊃ R

4.2.2 M × M × M

The rank of our vector fields is now 10, while our space is 15-dimensional. We will
have 5 independent generators for our field of invariants. Our formula provides
us with 6 relative invariants Rij where 1 ≤ i ≤ j ≤ 3. We divide every one of
them by R33 and get 5 absolute invariants Iij.

R(x,y,u,p,q) ⊃ JG×3 ' R(̄I)
5
⊃ R
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4.2.3 M×4

Our distribution have now reached rank 11, which is the maximal rank. We are
able to produce 9 independent generators for JG×4, which is what we need.

R(x,y,u,p,q) ⊃ JG×4 ' R(̄I)
9
⊃ R

4.2.4 M×5

Here we get an 11-dimensional algebra acting on a 25-dimensional space. Our
formula produces 14 independent generators.

R(x,y,u,p,q) ⊃ JG×5 ' R(̄I)
14
⊃ R

4.2.5 M×6

Analogously to the situation where we had a 4-dimensional symplectic base space,
we now reach a point were our formula produces more generators than we need.
We have an 11-dimensional algebra acting on a 30-dimensional space. There
is 20 generators Iij, which means there must be some relation between them.
Recall that on the space R3×4 we found a relation between generators with skew-
symmetric indices. Moreover, the relation turned out to be the same one as the
relation b1234 = 0 we found on R2×4. From this we are able to predict that we
will find the same relation between generators with skew-symmetric indices on
R5 × 6, as the relation b123456 = 0 we found on R4×6. We verify that this is the
case:

b123456 =I12I34I56 − I12I35I46 + I12I36I45 − I13I24I56 + I13I25I46 − I13I26I45+

I14I23I56 − I14I25I36 + I14I26I35 − I15I23I46 + I15I24I36 − I15I26I34+

I16I23I45 − I16I24I35 + I16I25I34 = 0

We find that the generators I11, I22, I33, I44, I55 are all independent. Like before,
we have no problem expressing one generator in terms of the others:

I56 =(I12I35I46 − I12I36I45 − I13I25I46 + I13I26I45 + I14I25I36 − I14I26I35

+ I15I23I46 − I15I24I36 + I15I26I34 − I16I23I45 + I16I24I35 − I16I25I34)

/(I12I34 − I13I24 + I14I23)
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Having removed I56 from our generating set Ī, we can describe JG×6:

R(x,y,u,p,q) ⊃ JG×6 ' R(̄I)
19
⊃ R

4.2.6 Larger products

It is now possible to describe the field of joint invariants on larger products M×m.
We will produce the same number of generators Iij as we did on R3×m, that is:
m(m+ 1)− 2

2
. Of those, 5m− 11 will be independent.

Generators of the form:

Ikl =(I12I3kI4l − I12I3lI4k − I13I2kI4l + I13I2lI4k + I14I2kI3l − I14I2lI3k

+ I1kI23I4l − I1kI24I3l + I1kI2lI34 − I1lI23I4k + I1lI24I3k − I1lI2kI34)

/(I12I34 − I13I24 + I14I23)

where 5 ≤ k < l ≤ m, can be removed from our generating set. Thus:

R(x,y,u,p,q) ⊃ JG×m ' R(ā)
5m−11
⊃ R

4.3 Higher dimensions

As in the even-dimensional case, we observe a pattern for generating invariants
on our odd-simensional contact manifolds. We can consider the cases when M =
R2n+1(x1, ..., xn, u, p1, ..., pn) is our base space for n > 2. Now the annihilator
for the standard contact structure is given by τ = du− p1dx

1 − ...− pndxn.

The finite subalgebra g will contain n(2n + 1) + 1 vector fields, and we can
produce relative invariants on M×m of the following form:

Rij =

{
−2ui +

∑n
k=1 x

k
i p

k
i , if i = j∑n

k=1 x
k
i p

k
j − xkjpki , if i 6= j

, where 1 ≤ i ≤ j ≤ m.
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Dividing every relative invariant by Rmm gives us absolute invariants:

Iij =
Rij

Rmm

We showed that on linear symplectic manifolds of higher dimensions, we were
always able to generate enough invariants. By similar arguments, the same holds
true for linear contact manifolds of increasing dimensions.

Like on our symplectic manifolds, we get our first relation between the generators
of J×m on R(2n+1)×(2n+2). We learned that all generators of the form Iii will
be completely independent. Generators of the form Iij where i 6= j will have
relations of the same type as the generators on symplectic manifolds. If we let
b2

1234 = I12I34 − I13I24 + I14I23, we find that on R(2n+1)×(2n+2):

b2n
1...2n =

2n+2∑
j=2

(−1)jI1jb
2n−2
i1...i(2n−2) = 0

This implies that we can always express excess generators in terms of a minimal
generating set Ī, which is obtained by removing elements that are unneeded the
same way as before.

To Summarize:

R(x,u,p) ⊃ JG×m ' R(̄I)
(2n+1)m−n(2n+1)−1

⊃ R
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5 Computations of symmetric joint invariants

In this chapter we will use our previous results to illustrate how to compute
symmetric joint invariants on the symplectic manifold of dimension 2, as well as
the contact manifold of dimension 3. The approach used is applicable to both
larger products and base spaces of higher dimension.

Recall that we defined an unordered joint invariant as an invariant of the extended
group G× Sm, with an action given by σ : G× Sm ×M×m →M×m.

Alternatively, we can view an unordered joint invariant as an invariant of the
symmetric group Sm acting on the space of invariants, with an action given by
σS : Sm × IG×m → IG×m.

5.1 2-dimensional M

We return to the 2-dimensional symplectic manifold M = R2(x, p), with an
action given by g = 〈x∂p, x∂x−p∂p, p∂x〉. We will denote our space of symmetric
joint invariants by IGS . Recall that the only invariants on the base space was
constant functions. These are trivially symmetric joint invariants as well, and so
we can conclude that IGS = IG = R.

5.1.1 M × M

On this space, we found one generator for IG×2, namely: a12 = x1p2 − x2p1.
Let us denote the result of permuting the indices 1 and 2 by a21. Observe that
a21 = x2p1 − x1p2 = −a12, which means that a12 is not a symmetric joint
invariant. There exists a natural projection ρ from the space of functions to the
space of invariants under a group action, given by:

ρ(f) =
∑
g∈G

g · f

We would like to find an element f ∈ IG×2, (a polynomial function of the variable
a12), such that ρ(f) = f , under the action of S2 . Applying this projection to
a12 ∈ IG×2 gives us: ρ(a12) =

∑
α∈S2 α · a12 = a12 + a21 = 0.

Even though ρ is surjective, it is clear that it does not map generators of IG×2

to generators of IG×2
S .
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However, by linearity of ρ, we can see that for f to satisfy ρ(f) = f , it necessarily
satisfies the condition f(a12) = f(−a12). Hence letting f = (a12)

2, we get:
ρ((a12)

2) = (a12)
2.

As any linear polynomial in a12 is contained in the kernel of ρ, (a12)
2 is in fact

a generator for IG×2
S . We know that the number of generators for the symmetric

algebra will be the same as for the ordinary one by dimensional reasons, as IG×2
S

is a subfield of IG×2. It is thus the only generator, which we will denote by s,
where s = (a12)

2. Summarizing:

R[s] ' IG×2
S ⊂ IG×2 ' R[a12]

5.1.2 M × M × M

We found 3 generators for IG×3 of the following form:
aij = xiyj − xjyi, s.t. 1 ≤ i < j ≤ 3.

Again, we note that all linear polynomials in the variables aij maps to 0 under ρ.
We could hope that squaring the generators of IG×3 would yield all generators of
IG×3
S , but as it turns out, ρ maps all (aij)

2 to the same element:
ρ((a12)

2) = ρ((a13)
2) = ρ((a23)

2) = (a13)
2 + (a13)

2 + (a23)
2

Of course, other quadratic expressions can also be mapped under ρ:

ρ(a12a13) = ρ(a12a23) = a12a13 − a12a23 + a13a23

We can also consider inputting cubic and quartic expressions, like for instance:

ρ((a12)
2a13) = (a12)

2a23 − (a23)
2a13 + (a13)

2a12

ρ((a12)
4) = (a13)

4 + (a13)
4 + (a23)

4

All we can say without further investigations, is that the algebra IG×3
S is generated

by a finte number of images of monomials in IG×3 under ρ. Finding a minimal
generating set and all possible syzygies can be done in principle, but could be
very difficult to compute in practice and is outside the scope of this thesis.
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5.2 3-dimensional M

Let M = R3(x, u, p) equipped with the standard contact structure, with the
action given by:

g = 〈x2∂u + 2x∂p,−x∂x + p∂p,−2p∂x − p2∂u, 2u∂u + x∂x + p∂p〉

There are no nontrivial invariants on the base space, and so:
IGS = IG = R.

5.2.1 M × M

Recall that we found 3 relative invariants on this space of the following form:

Rij =

{
xipi − 2ui, if i = j

xipj − xjpi, if i 6= j
, where 1 ≤ i ≤ j ≤ 2.

Dividing all of them by the last one, gave us two rational absolute invariants:

Iij =
Rij

R22

In the symplectic case, the natural projection ρ to the space of symmetric invari-
ant mapped generators of IG to 0. On this space however, we find that:

t1 = ρ(I11) =
R11

R22

+
R22

R11

t2 = ρ(I12) =
R12

R22

+
R21

R11

We can take those two elements to be a generating set for JG×2
S and conclude

that:

R(t1, t2) ' JG×2
S ⊂ JG×2 ' R(I11, I12)
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5.2.2 M × M × M

Here we have 5 absolute invariants:

Iij =
Rij

R33

There are many possible linear expressions to map under ρ:

ρ(I11) = ρ(I22) =
R11

R33

+
R11

R22

+
R22

R11

+
R22

R33

+
R33

R11

+
R33

R22

ρ(I12) =
R12

R33

+
R13

R22

+
R21

R33

+
R23

R11

+
R31

R22

+
R32

R11

ρ(I13) =
R13

R33

+
R12

R22

+
R23

R33

+
R21

R11

+
R32

R22

+
R31

R11

ρ(I23) =
R23

R33

+
R32

R22

+
R13

R33

+
R31

R11

+
R12

R22

+
R21

R11

We have even more quadratic expressions:

ρ(I11I12) =
R11

R33

R12

R33

+
R11

R22

R13

R22

+
R22

R33

R21

R33

+
R22

R11

R23

R11

+
R33

R22

R31

R22

+
R33

R11

R32

R11

ρ(I11I13) =
R11

R33

R13

R33

+
R11

R22

R12

R22

+
R22

R33

R23

R33

+
R22

R11

R21

R11

+
R33

R22

R32

R22

+
R33

R11

R31

R11

ρ(I11I22) =
R11

R33

R22

R33

+
R11

R22

R33

R22

+
R22

R33

R11

R33

+
R22

R11

R33

R11

+
R33

R22

R11

R22

+
R33

R11

R22

R11

ρ(I11I23) =
R11

R33

R23

R33

+
R11

R22

R32

R22

+
R22

R33

R13

R33

+
R22

R11

R31

R11

+
R33

R22

R12

R22

+
R33

R11

R21

R11

ρ(I12I13) =
R12

R33

R13

R33

+
R13

R22

R12

R22

+
R21

R33

R13

R33

+
R23

R11

R21

R11

+
R31

R22

R32

R22

+
R32

R11

R31

R11

ρ(I12I22) =
R12

R33

R22

R33

+
R13

R22

R33

R22

+
R21

R33

R11

R33

+
R23

R11

R33

R11

+
R31

R22

R11

R22

+
R32

R11

R22

R11

ρ(I12I23) =
R12

R33

R23

R33

+
R13

R22

R32

R22

+
R21

R33

R13

R33

+
R23

R11

R31

R11

+
R31

R22

R12

R22

+
R32

R11

R21

R11

ρ(I13I22) =
R13

R33

R22

R33

+
R12

R22

R33

R22

+
R23

R33

R11

R33

+
R21

R11

R33

R11

+
R32

R22

R11

R22

+
R31

R11

R22

R11

ρ(I13I23) =
R13

R33

R23

R33

+
R12

R22

R32

R22

+
R23

R33

R13

R33

+
R21

R11

R31

R11

+
R32

R22

R12

R22

+
R31

R11

R21

R11

ρ(I22I23) =
R22

R33

R23

R33

+
R33

R22

R32

R22

+
R11

R33

R13

R33

+
R33

R11

R31

R11

+
R11

R22

R12

R22

+
R22

R11

R21

R11
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We also get 5 more, of the form ρ((Iij)
2). .

Note that some of these expressions are identically 0, like for instance ρ(I12), due
to the fact that Rij = −Rji. Like in the 2-dimensional case, on M×M×M , all
we can say a priori is that the field JG×3

S is generated by a finte number of images
of monomials in JG×3 under ρ. Finding relations and a minimal generating set
for JG×3 is outside the scope of this thesis, and the above expressions illustrate
the complexity of the problem.
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