Paper 1V

Christina A. Pedersen, Fred Godtliebsen and Andreas C. Roesch, “A Scale-Space
Approach for Detecting Significant Differences between Models and Observations Using Global
Albedo Distributions”, Accepted, Journal of Geophysical Research, 2007.

Reproduced by permission of American Geophysical Union

127






JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 77?7, XXXX, DOI:10.1029/,

A Scale-Space Approach for Detecting Significant Differences
between Models and Observations Using Global Albedo

Distributions
Christina A. Pedersen

Norwegian Polar Institute and University of Tromsg, Tromsg, Norway

Fred Godtliebsen

University of Tromsg, Tromsg, Norway

Andreas C. Roesch

Swiss Federal Institute of Technology, Zurich, Switzerland

Abstract.

This paper describes how a statistical scale-space technique can be used for

evaluating climate models. A difference image between model and validation data is used
as input. Hypothesis testing is performed at each difference pixel for a broad range of
image resolutions (or scales). This approach circumvents some of the classical problems
of hypothesis testing. An area, at a particular scale, is claimed to be significant if it is
sufficiently different from zero in the difference image. such differences are called features.
As the scale gradually increases from fine to coarse, features are created, they grow and
merge and may finally annihilate. The scale-space algorithm produces maps for statis-
tical inference and the degree of significance at different locations. The adapted scale-
space technique was applied for validation of ECHAMS Global Circulation Model sur-
face albedo against a remote sensing surface albedo climatology. Overall, the largest dis-
crepancies were detected over snow and ice-covered areas, and ECHAMS5 was found to
overestimate the albedo compared to the albedo climatology for all scales in March. Suc-
cessively coarser spatial scales resulted in more and larger significant areas in the dif-
ference image. At the finest scales (280 km) very few areas of significant albedo differ-
ences were detected because of relatively high interannual variability for the areas of largest
difference. At 1100 km, significant albedo differences were found in the southern part

of the Arctic Ocean adjacent to the ice edge, probably because of the different positions
of the ice edge in the two datasets. A scale of 2500 km was found to be reasonable for
validating albedo as the statistical significance agrees well with differences meaningful
from a climatologist’s point of view. At this scale most of the snow-covered regions in
Northern Eurasia with high positive differences and relatively low interannual variabil-

ity were found to be significant.

1. Introduction

General circulation models (GCMs) are used for simu-
lating past, present and future climates. Model results are
usually evaluated against ground observations. For past cli-
mates, proxy data (e.g., information on sediment- and/or
ice cores) are sometimes converted into physical parameters
and used for evaluation of model outputs; for present cli-
mate, both ground-based and remotely sensed information
is used for evaluation. GCMs can also be used for sensitivity
studies, e.g. by changing the boundary conditions or a phys-
ical parameterization, and the experimental run is typically
compared against the control run. Even if modifications in
the experimental run have no effect on the climate, the dif-
ference field between the control and experimental run will
deviate from zero and reflect random variations [von Storch
and Zwiers, 1999]. Similarly, the difference field between
simulated and observed climate parameters can exhibit fea-
tures (possibly large scale features), even if the model is
“correct”. Therefore it is necessary to apply statistical tech-
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niques to distinguish between deterministic model error and
internal model noise in the validation of climate models.

Statistical techniques can identify areas in an image where
the difference field between a model and the validation data
are higher than the noise level, that is, the difference is sta-
tistically significant [Chervin and Schneider, 1976]. How-
ever, for a climatologist, “the practical significance” may
be of greater importance. To clarify: statistical significance
can be interpreted by asking if the means of two datasets
are the same or different, which is typical in hypothesis test-
ing. However, when assessing the practical significance, one
needs to quantify the magnitude of the difference. This
is because a very small, subtle difference can be found to
be statistically significant given a large enough sample size,
even though the difference is of little practical importance
(Wikipedia, 2007).

Albedo is the ratio of reflected to incoming solar radi-
ation, and is crucial for the Earth’s heat exchange. Snow
and sea-ice albedo is an important parameter in GCMs at
high latitudes because of its strong positive feedback prop-
erties [Curry et al., 1995]. However, current snow and sea-
ice albedo parameterizations are generally still oversimpli-
fied [Pedersen and Winther, 2005].

In this paper, we use an objective statistical method for
spatial comparison of GCM simulated albedo against remote
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sensing albedo climatology. We advance the comparison
from purely qualitative to more quantitative by investigating
whether the difference field between the model and valida-
tion data is sufficiently different from zero, and if so, in what
way and where.

A scale-space methodology, Significance in Scale-Space
(S3) has previously been developed for answering questlons
like these [Godtliebsen et al., 2004]. S? finds features in a
noisy image which are strong enough to be dlstlngmshed
from background noise. Significant features in the image
(defined in S* as first and second derivatives) are identi-
fied through a multi-scale procedure, and changes in im-
age features at different resolutions are detected. At finer
scales there is usually a large amount of noise, while succes-
sively coarser scales smooth the data and reduce the noise.
However at very coarse scales interesting features can be
smoothed away entirely. This paper proposes an adapted
version of S* for finding features in a noisy image which are
strong enough to be distinguished from background noise
based on the difference image itself. The interesting features
are the differences between image intensities, or more specif-
ically, the differences between model and validation data.
The adapted version is specifically tuned towards users such
as climate scientists; however, it may be used in other con-
texts as well.

The adapted version differs from the original version in
several ways, most importantly it concerns features and
makes inference about the signal itself, not the first or sec-
ond derivative of the signal. This is because estimates of
scale-space derivatives are more susceptible to sampling vari-
ation than estimates of the scale-space signal itself, hence
derivative-based inference will have less statistical power,
meaning that fewer (real) features will be flagged as signif-
icant [Godtliebsen et al., 2004]. In addition the adapted
version gives plots that are easier to interpret when used for
validation purposes. This can be illustrated by the follow-
ing: suppose there is a small peak in the difference image.
The adapted version will typically detect a connected area
of pixels with a significant difference for a glven scale. If
derivative based inference (and the original S*) is used, the
image will show a circle of significant pixels around the peak.
Hence, there will be areas where the derivative feature plot
does not show significant difference although the two images
clearly are significantly different. By careful interpretation,
this can be understood from the derivative feature plots, but
the adapted version shows this in a clearer and more concise
way.

The task of producing a quantitative measure of similar-
ity between two images is encountered in many disciplines,
including image processing, pattern recognition, landscape
ecology, hydrology and multimedia [Haralick and Shapiro,
1992]. Image segmentation [Wealands et al., 2005; Pal and
Pal, 1993] is a common approach for detecting structural
features, which includes thresholding [Haralick and Shapiro,
1992], clustering [Pauwels and Frederix, 1999] and region
growing and -merging.

This paper is broadly divided in two parts, where the
methodology behind the adapted S* is described in the first
part (Section 2). Section 3 describes the surface albedo sim-
ulations from ECHAMS5 General Circulation Model and the
remote sensing PINKER albedo climatology [Pinker, 1985]
stated to represent ground truth validation data. In Sec-
tion 4, the adapted S® is used for validating ECHAMS sur-
face albedo against PINKER albedo climatology. The vari-
ability of the method is assessed with various choices of al-
gorithm parameters (scale, variance and significance level).
Section 5 discusses the results and the scale-space method,
as well as discussing and comparing statistical signiﬁcance
against practical 51gn1ﬁcance Conclusions are presented in
Section 6. The adapted S® algorithm, documentation and
examples are available at http://www3.npolar.no/~xtina
for the readers convenience. The algorithms can be down-
loaded and run on a personal computer using Matlab.
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2. Scale-space methodology and the adapted
S3 algorithm

The ideas behind scale-space were first introduced by Lin-
deberg [1994] in the field of computer vision, where suc-
cessive smoothing was applied to represent coarser scales.
Chaudhuri and Marron [1999] first developed the methodol-
ogy for detecting significant zero-crossings of the derivative
in a one-dimensional signal (SiZer). Significance in scale-
space methodology also exists for bivariate density estima-
tion [Godtliebsen et al., 2002], random design [Ganguli and
Wand, 2004], dependent time series [Park et al., 2004] and in
a Bayesian framework [Godtliebsen and @igard, 2005]. The
one dimensional scale-space methodology has been used by
Godtliebsen et al. [2003] and Karlgf et al. [2005] for detect-
ing significant peaks in climatological time series. Other
approaches are also used for multi-scale image processing.
Hay et al. [2002] reviewed the recent development of a scale-
space technique via a non-mathematical primer, and present
a multi-scale analysis method, where scale-space-blob fea-
tures are detected from a stack of scale-space smooths. Itti
et al. [1998] present a visual attention system, where multi-
scale image features are combined into a single topographi-
cal saliency map and a neural network selects attended loca-
tions. For more in-depth treatment of scale see e.g. Marceau
[1999] and Marceau and Hay [1999].

The basic idea behind scale-space is to develop a system
for determining the scale of a feature, and how to search
for it, before knowing what kind of feature being studied
and where it is located [Lindeberg, 1994]. Scale is said to
represent the filter or measuring tool with which the data
are viewed or quantified, and a feature can only exist over
a specific range of scales [Levin, 1992]. This means that
the type of information obtained is largely determined by
the relationship between the actual size of the feature and
the resolution of the filters used to extract information [Hay
et al., 2002]. When the scale is unknown, the most reason-
able approach is to investigate the data at all or at least at
multiple scales.

The basic quantity in the adapted S* is the difference
image (model data minus validation data), and we define a
“feature” as areas where pixels in the difference image are
significantly different from zero. A feature can be positive
or negative, and a positive (negative) difference means the
model response is too high (low). These features, or areas
of significantly different pixels, will follow the path of scale-
space events [Hay et al., 2002]; (i) creation, where a new
feature appears, (ii) growing, where a feature grows in size,
(iii) merging, where two features merge into one and (iv) an-
nihilation, where a feature disappears. The Gaussian kernel
(discussed later) does not allow splitting, the last scale-space
event where one feature splits into two [Hay et al., 2002].

2.1. The adapted S3

The content below is parallel to Section 3 in Godtliebsen
et al. (2004), but full details are given here to make the un-
derpinnings of the adapted S® clear. The statistical model
for the difference image is

Y(z,]):f(z,])+e(z,]), (1)

where ¢ = 1,...,n and j = 1,...,m index the pixel loca-
tions, f(%,5) is the underlying unknown deterministic dif-
ference image, and €(i,7) is the stochastic noise signal, as-
sumed to be independent random variables. A smoothed
scale-space version of f, fn, is estimated by

(@, ) Kn(i—1i', 5 —j),
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where K} is a smoothing kernel function. Choosing K, as
the spherical, symmetric Gaussian density has many advan-
tages over using other kernels [Chaudhuri and Marron, 1999;
Hay et al., 2002], e.g. the number of zero crossings of the
smooth is always a decreasing function of the scale (which
is not true for any other kernel). As Hay et al. [2002] state:
“the Gaussian kernel’s use in scale-space theory is not by
chance, but instead reflects strict purpose, design and evalu-
ation”. The bandwidth parameter h in the Gaussian kernel
controls the degree of smoothness (i.e. the scale), and in
practice the user defines the range of scales.

2.2. Variance estimation and hypothesis testing

The variance of the smoothed image plays an important
role in the hypothesis test underlying the decision, and is
estimated from

Var [fh(i, j)]

m

2

(i—1d',j—3")°Var[Y (i, j")],

7] Khl_l]_]) = (3)

where the variance of Y (4,j) must be specified. Since the
signal f is assumed to be deterministic, the variance of Y
reflects the noise variance (cf. equation (1)). The variance
can be known apriori or it can be estimated from the im-
ages, and furthermore, it can be assumed constant over the
image, or it may be spatially varying. Summarized, four ap-
proaches for variance estimation are presented and it is left
to the user to choose the approach that suits the particular
problem best:

1. Apriori knowledge of constant variance, i.e. Var[Y (4, j
0?2, where o2 is known.

2. Apriori knowledge of spatially varying variance, i.e.

Var[Y (i, j)] = 02(4, ), where o%(i, j) is known.
3. Assumes constant variance, i.e. Var[Y(i,5)] = s?, is

estimated globally from the image. The standard variance
estimator or other estimators can be used.

4. Assumes spatially varying variance, i.e. Var[ (4,9)] =
s2(i,7), is estimated locally from the image. The window
size for estimating sQ(i,j) should depend on the smoothing
level. The standard variance estimator or other estimators
can be used.

Approach 1 and 3 above are normally required for in-
situ sampled data on a spatially regular grid under equal
weather, light and atmospheric conditions. In other words,
if the surface reflectance is sampled on a regular grid, each
point measurement can be assumed to represent one pixel in
a scene, and the variance associated with each measurement
can be assumed constant, presupposing equal conditions. If
the accuracy of the measuring device is known, approach 1
is selected; if not, approach 3 is used. When simulating a
geophysical surface parameter by a climate model, the vari-
ance is often assumed to be spatially varying depending on
the area and surface type, i.e. when modeling the surface
albedo with a GCM, the variance is assumed to be larger
over snow-covered areas than over open water. Depending
on whether the uncertainty associated with the model is
known or not, GCM output is assumed to meet the 2nd or
4th approach. The same argument holds for a remote sens-
ing scene, where the product is more accurate at nadir than
at extreme angles.

Returning to the hypothesis test for the scale-space
smooth, pixels in the difference image are flagged as sig-
nificantly different from zero when f5(7,7) is higher than

the noise level by testing

Hy :fn(3,
Hi :fn(i, g

j) = 0 against

) #0.

The test statistic, T'(¢, j), is calculated from

T(i,5) = bl (5)
Va’r[fh(iv .7)}

and the null hypothesis is rejected for those pixels where the
absolute value of the test statistic is larger than the appro-
priate quantile g, i.e. when |T(4,5)| > ¢(a’), where o is
the significance level for each test (defined later). An im-
portant component of the statistical inference is the number
of sample points inside the kernel window, called effective
sample size (ESS). ESS is used to highlight regions where
the data are too sparse for doing inference and partly pre-
vents the problem caused by large sample size (discussed in
Section 5). By using the standard binomial rule of thumb,
these are regions where ESS < 5. ESS is defined for each
(i,j,h) as

ESS(i,j,h) =

Yy Knli—d i —§") (6)
K1 (0,0) '

Note that if K} is a uniform kernel, ESS(i, 7, h) is the num-
ber of data points in the kernel window centered at (4, 7).
The test statistic in equation (5) can be assumed to be nor-
mally distributed if ESS is greater than 5 [Chaudhuri and
Marron, 1999], leading to a quantile g(a’) from the nor-
mal distribution. In Chaudhuri and Marron [1999] different

)] _candidates for calculating an appropriate quantile ¢(a) for

multiple testing were investigated, and based on their re-
sults, the quantile is chosen to be approximately simultane-
ous over (i,7) Gaussian quantiles based on the number of
independent averages,

wr=w (1)

— 0! (1 iz _20‘)1”) :

where [ is the number of independent averages,

I(h) =

nm
_—, (8)
ESS(h)

and £SS(h) is the average of ESS(i,7, h) over ¢ and j. The
overall significance level, «, is usually set at o = 0.05.

2.3. The adapted S® standard output

To summarize, the adapted S* algorithm provides three
images at each scale (for an example see Figures 2-3):

1. To give the user an idea of the resolution, the first panel
shows the smoothing of the image, fr, performed with the
2D Gaussian kernel using scale parameter h.

2. The second panel shows the absolute value of the test
statistic for the hypothesis test (cf. equation (5)). This is
a measure of significance probability, where darker pixels
correspond to a stronger significance. Another way of inter-
preting this is that darker pixels lead to significance even for
more conservative significance levels. This measure of signif-
icance probability weakens the effect of a fixed significance
level.
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3. The decision plot is displayed in the third panel, with
pixels significantly above (below) zero are marked in blue
(red).

Three smoothing levels have been selected and presented
here, but a broader range of smoothing levels can be dis-
played (perhaps as a movie). The significance test was also
applied on the difference image with no smoothing, that is,
at the scale of the pixel resolution.

In addition, an overall decision plot based on many scales
simultaneously was included to sharpen the statistical infer-
ence. The overall decision plot shows the number of times a
pixel is detected as significant for all the investigated scales
without taking into account if the significance is positive
or negative, indicating the creation and growing of features
through scale-space towards merging and annihilation.

3. Model and Data

ECHAMS5 GCM surface albedo simulations were inter-
compared and validated against a remote sensed surface
albedo climatology taken to represent ground truth albedo.

3.1. ECHAMS5 surface albedo

Thirty-years present-day simulations were performed
with the ECHAM5 GCM from the Max Planck Institute
for Meteorology [Roeckner et al., 2003]. The simulations
were performed at 1.1° resolution, and used observed sea
surface temperature and sea ice distribution for the period
1961-1990. The snow free surface albedo was estimated from
three blended data sets [Claussen et al., 1994]. The snow
albedo is a linear function of temperature between -5° and
freezing, and is fixed above and below these limits. The
total albedo is a weighted mean of the model-prescribed
background albedo and the snow albedo according to the
calculated snow cover fraction. Over sea-ice, the albedo fol-
lows a similar linear approach, whereas the sea-ice fraction is
fixed based on monthly observations [Roeckner et al., 2003].

ECHAMS5 captures the main features of the surface
albedo pattern in March (Figure la), with high reflectiv-
ities in the snow-covered areas and other bright surfaces
such as deserts (e.g. the Sahara and the Arabian desert).
The surface albedo for snow free land and open water re-
gions are prescribed, leading to negligible interannual vari-
ability for these areas (Figure 1b). The largest interannual
variability is found for areas where the sea-ice cover fluc-
tuates widely from year to year, e.g. the Sea of Okhotsk
north of Japan and Baffin Bay. Previous work on ECHAM4
albedo shows that the ECHAM4 gives a high positive bias
over snow-covered boreal forests and the Himalayas. In con-
trast, the model is probably too low compared with obser-
vations over extended parts of the Sahara and the adjacent
steppes [Roesch et al., 2004]

3.2. Surface albedo climatology

The remote sensed surface albedo climatology, compiled
from version 2.1 of the surface albedo algorithm developed
at the University of Maryland for the period July 1983 to
December 1998 [Pinker, 1985; Pinker and Laszlo, 1992] is
taken to be ground truth surface albedo. This dataset (here-
inafter called PINKER) is based on an algorithm that uses
input data from the International Satellite Cloud Climatol-
ogy Project (ISCCP) data D1 [Schiffer and Rossow, 1985]
at 2.5° resolution provided by the Goddard Institute for
Space Studies. The surface albedo was derived from satel-
lite observations by constructing a look-up-table based on
the delta-Eddington radiative transfer approximation under
a wide range of atmospheric conditions, surface types and
angle dependencies [Roesch et al., 2002]. The PINKER sur-
face albedo has previously been compared against other sur-
face albedo climatologies [Roesch et al., 2002], and coupled
global climate models [Roesch, 2006], and therefore provides
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a good basis for validation. PINKER has been shown to
generally underestimate the surface albedo in snow-covered
regions [Roesch et al., 2002].

PINKER also captures the main features of the sur-
face albedo pattern, with high reflectivities in the snow-
covered areas and bright deserts (Figure 1lc). The vari-
ance of PINKER (Figure 1d) shows greater spatial variabil-
ity compared to ECHAMS5, but has similar characteristics,
with highest variance over land and snow-covered areas. The
highest albedo variances in March are found in and around
Kazakhstan, due to this being a sparsely forested area which
often contains the snow line in March.

4. Validation of model simulated surface
albedos by the adapted S® for March

Both the simulated surface albedo and satellite estimates
provide the upward and downward surface radiation fluxes,
and the surface albedos were derived from the ratio of
these. The ECHAMS5 time-slice simulation runs from 1961-
1990, while PINKER estimates are available from 1983-1998,
meaning that the two time series only partly overlap. A dif-
ferent reference period may thus lead to certain differences
mainly in snow-covered regions, as snow cover extent ex-
hibits considerable interannual and decadal variations. The
dataset was re-sampled on the same T42 grid, providing a
pixel resolution of 280 km. Surface albedo is spatially very
heterogeneous; however, GCMs only have grid average sur-
face albedos [Roesch et al., 2004]. The intracell variability
for the T42 grid, that is, the spatial heterogeneity within a
grid cell, was determined from MODIS albedo [Schaaf et al.,
2002] and found to be largest in snow-covered areas, particu-
larly mountainous regions, and forested areas [Roesch et al.,
2004].

As indicated previously, the variance is taken to be apri-
ori unknown and spatially varying (approach 4). The inter-
annual variabilities of ECHAMS5 and PINKER albedo are
taken to be an estimate of the noise variance. ECHAMS5
(model albedo) and PINKER (satellite albedo) are assumed
to be independent and the variance of the albedo difference
(ECHAMS5 minus PINKER) is simply the sum of the individ-
ual variances (calculated as the sample variance derived from
the standard estimator). All months were studied; however,
this paper focuses on March as it is characterized by both
an extended snow cover and sufficient global radiation allow-
ing accurate albedo estimates over Northern Eurasia . The
northernmost latitudes in the images, where there are Polar
Nights in March (i.e. missing data), were removed from the
image maps.

The difference map (ECHAMS5-PINKER) reveals large
differences, primarily over regions covered with snow and
ice (Figure 1le). The albedo differences over snow-covered
land and ice-covered areas frequently exceeds 0.2, while cor-
responding deviations over ice-free sea are rarely higher than
0.02. Positive deviations are generally found over snow and
sea-ice covered areas, deserts such as the Sahara and the
Arabian desert, and also in dry regions of South America
and Australia. In contrast, negative deviations are found
over tropical rain forests such as the Amazonian forest and
African rain forest as well as tundra areas in West Siberian
Plain. The total interannual variability of the surface albedo
difference (Figure 1f) reveals that the variance is highest in
areas adjacent to the snow and ice line, as also seen in the
individual variances. Low variances are generally found over
snow-free areas, ice-free oceans, and regions covered by thick
snow pack or a closed ice cover.

4.1. Practical significance

The problem with statistical significance is that it may
not be particularly meaningful for a given application be-
cause of the natural variability of the phenomena or the ar-
bitrariness of a defined statistical threshold (as discussed in
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Figure 1. Mean simulated surface albedo (a) and interannual variability (variance, b) for ECHAMS in
March, and mean PINKER surface albedo climatology (c) and interannual variability (variance, d) in
March. The albedo difference (ECHAM5-PINKER) in (e) and the total interannual variability of the
difference in (f). Note the distinction in the scales.

the introduction). Experienced climatologists, on the other
hand, can decipher whether the difference between, e.g., two
albedo images is climatologically meaningful (herein called
‘practical significance’), but this process is subjective and
greatly depends on the skill of the observer. Also, there is
no exact definition of practical significance. Often the nor-
malized albedo difference (difference divided by the stan-
dard deviation) is used as a measure of practical signifi-
cance, and values above one are considered to be practically
significant. Calculating statistical significance across multi-
ple scales helps to overcome the problems of both statisti-
cal and practical significance and provides a more objective
procedure to determine the practical significance of areas of
change across an image. In the next sections, areas where
large discrepancies are identified by means of the adapted S*

will be highlighted as statistically significant, and compared
to the practical significance.

4.2. Statistical significance - assessing the range of
scales

Both for defining the scale and choosing the range of
scales, we used an approach similar to that suggested by
Chaudhuri and Marron [1999]. The scale is defined as four
times the bandwidth parameter h. This definition is based
on the fact that approximately 95% of the probability mass
of the 2D Gaussian kernel is inside the circle of diameter
four times the standard deviation (here h corresponds to
the standard deviation). The widest possible range of the
scale has the lower boundary limited by the binned imple-
mentation and the upper boundary is the range of the data.
However, a smaller range of scales is investigated here.

The adapted S* provides information on the statistical
significance of the difference between the simulated and
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Figure 2. The difference image (ECHAM5-PINKER), fx, at 280 km resolution (no smoothing) in (a)
and smoothed at 1100 km resolution in (b). The scales are marked in black in the upper left corner of
(b). The measure of significance probability for 280 km resolution in (c¢) and 1100 km resolution in (d).
The decision plot at 280 km in (e) and at 1100 km in (f), identifying the pixels in the smoothed difference
image significantly different from zero at a 5% significance level, with blue for significant positive pixel,
and red for significant negative pixel (only significant positive pixels are detected here). The variance is

spatially varying and estimated from the data.

observed surface albedo for four scales from 280 km (no
smoothing) to 4000 km (Figures 2 and 3). The finest scale
equals the pixel resolution of 280 km and produces very
few pixels (0.21%) where the albedo in the two images is
significantly different (Figure 2e, significantly different pix-
els will hereafter be abbreviated SDP). This may be some-
what surprising to a climatologist as the normalized albedo
difference (not shown here) exceeds unity in extended re-
gions over both land and sea such as major parts of snow-
covered Northern Eurasia and North America as well as the
Southern Ocean. As the interannual variability of the above
mentioned regions differs considerably, the albedo difference
over these areas is not statistically significant. Only for a
few pixels in north-eastern Siberia and some areas in the
Arctic Ocean are the differences significant. A few more
SDP (1.2%) are found at 1100 km resolution (Figure 2f).
The critical areas include the northern and eastern boreal
forests and some regions close to the ice edge. The positive

differences over snow-covered boreal forests are primarily at-
tributed to a poor representation of the sky view factor in
ECHAMS5, which plays a major role in the parameterization
of the forest albedo under snow-covered conditions [Roesch
and Roeckner, 2006]. Significant differences are also found
in the southern part of the Arctic Ocean adjacent to the ice
edge, which is attributed to the different positions of the ice
edge in ECHAMS5 and PINKER.

The statistical SDP at 2500 km resolution (Figure 3e)
coincide well with the practical significance from a climatol-
ogist’s view (8.2% SDP). Most of the snow-covered regions
in northern Eurasia and northern Canada/Alaska with pos-
itive differences above 0.2, and relatively low interannual
variability show SDP. The regions further to the south and
close to the spring snow line tend to show differences of the
same magnitude, but as the interannual variation is more
pronounced in these regions with thin snow cover, the albedo
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Figure 3. Same as for Figure 2, only for the scales 2500 km in (a,c,e) and 4000 km in (b,d,f).

difference is not statistically significant. The quite low inter-
annual variability in western Australia gives SDP despite the
small albedo difference. South America shows differences
of the same magnitude, but has slightly higher interannual
variation, and therefore very few pixels are significantly dif-
ferent. SDP are also found in the snow and ice covered Arc-
tic Ocean and Beaufort Sea. The rest of the sea-ice covered
Arctic does not show SDP, probably because of changing ice
edge over the years and high interannual variability. Also
these northernmost areas are largely cloud-covered with low
global radiation during spring. At 4000 km resolution (Fig-
ure 3f) the snow-covered regions of SDP continue to grow
and merge further south (17.6% SDP). More areas of SDP
are detected in both the North and South Atlantic Ocean.
All these plots prove that ECHAMS5 overall overestimates
the albedo, and this is confirmed when investigating larger
scales (indicated in Figure 4). No areas of negative SDP
are found at any scale, meaning that ECHAMS5 albedo is
never significantly lower than PINKER albedo. However, it
should be borne in mind that previous studies [Roesch et al.,
2002] showed that PINKER albedo was underestimated in
snow-covered regions.

The overall decision plot in Figure 4 is a composite of indi-
vidual decision plots at several scales ranging from 1120 km
to 6950 km with steps of 224 km (and also including the

un-smoothed scale of 280 km). The plot indicates which re-
gions contain SDP at different scales. For increasing scales,
the SDP areas merge and grow until one reaches scales com-
parable to the Earth size (not shown here) where all pixels
are SDP. Inference at scales equal to the range of the data
should be avoided since the statistical significance at these
very coarse scales is not of any practical significance.

4.3. Statistical significance - assessing the choice of
variance

The use of the interannual albedo variability as a mea-
sure of the noise variance can be debated, as a high variance
in a window surrounding a pixel in one area of an image
might arise through natural and true variability, whereas a
part of the image with lower variance can in fact be noisier.
However, for spatially varying variance, the variance in the
window of surrounding pixels is a reasonable estimate of the
noise variance if the difference image can be assumed to be
reasonably smooth. If the image contains abrupt changes,
the variance will fail, and a more robust estimate e.g. of the
nearest neighbor differences is required. This idea was fur-
ther exploited in Godtliebsen and @igard (2005), and with
the additional knowledge about the noise distribution, it
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works very well for a broad range of signals. The method
can be used to obtain variance estimates both locally and
globally (and is included in the adapted S® package on the
web). For this albedo validation, we believe the interannual
albedo variability is the best estimate of the noise variance,
and the estimate that will provide the most realistic statis-
tically significant areas (Figure 2 and 3).

As the variance estimate is often associated with errors,
it is crucial that the adapted S® is somewhat stable against
small variance biases (say plus/minus 10%). The adapted S*
was tested for stability by applying it to the difference map
(ECHAMS5-PINKER) and changing the variance in turn to
be 10% higher and 10% lower than the original spatially
varying variance used for Figure 2-3. It is obvious that areas
of SDP will be reduced by larger variance, and increased by
smaller variance, as a larger variance allows more variability
before the difference becomes significant (cf. equation (5)).
A variance 10% higher than the original variance gave 11-
62% fewer pixels detected for the four scales, with largest
percent deviations for the finest scale. However, the abso-
lute difference was only 0.21% for the same scale. A variance
10% lower than the original variance gave 12-24% more pix-
els detected for the four scales, again with largest deviations
for smallest scales. The same areas of SDP were found after
increasing/decreasing the variance: the only change was the
size of the areas of SDP. The only two exceptions were an
area outside the east coast of Australia which was detected
as SDP after a 10% variance reduction at 4000 km, and ar-
eas in the Arctic Ocean which were not detected as SDP
after a 10% variance increase at 280 km.

4.4. Statistical significance - assessing the level of
significance

The significance level « is important for the outcome of
the statistical test, and a social norm of 0.05 is common in
most scientific fields [Germano, 1999]. The adapted S® re-
duces the problems inherent in using a fixed «, as the mea-
sure of significance probability gives a clear indication about
the strength of the significance. The measure of significance
probability gives the absolute value of the test statistics for
the SDP pixels. The value of the quantile decreases for
successively larger scales because of more smoothing, as is
evident from equation (7). The quantile is calculated based
on the significance level a, but a cannot be interpreted di-
rectly from the measure of significance probabilities. It is,
however, clear that the SDP in the darkest areas of the mea-
sure of significance probability, will be SDP also for a more
conservative significance level. Another interesting observa-
tion is that areas detected as significant at fine scales, have
a stronger significance at coarser scales (cf. Figure 2-3 c-d).

Figures 2-3 refer to SDP at 5% significance level, and a
decrease or increase of a will affect the number of SDP. The
adapted S* was applied on the difference image (ECHAMS5-
PINKER) with a conservative 1% significance level and was
found to detect 22-100% fewer SDP compared to the 5%
level, again with largest deviations for the smallest scale
and again with small absolute decreases. The 100% decrease
was for 280 km resolution, where no SDP were detected. A
less conservative 10% significance level, resulted in 14-252%
more SDP being detected. Again, the greatest increase was
for the finest scale, and again the absolute difference was
small. Despite the variable number of SDP, the overall pat-
tern of SDP was unchanged. These findings are in agreement
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with the original S* [Godtliebsen et al., 2004], where S* had
little sensitivity to the significance level.
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Figure 4. The overall decision plot as a composite of
individual decision plots for scales ranging from 1120 to
6950 km with steps of 224 km (also including the no
smoothing at 280 km), altogether 28 scales. The color-
bar indicates the number of times (in percent) a pixel is
significant for the chosen range of scales.

5. Discussion

The use of scale-space clearly adds great new informa-
tion to statistical testing in climatology, as a simple t-test
applied to the original data (without any smoothing), will
detect very few SDP as shown in Figure 2e. These few
statistical SDP do not coincide with practical significance;
however, when the data are smoothed and inference made at
coarser scales the statistical significance agrees well with the
practical significance from a climatologist’s point of view.

Areas of large discrepancies over boreal forests and
deserts will strongly influence the temperature pattern and
possibly the Monsoon regime, and are indeed of practical sig-
nificance. Also, areas close to the ice edge and snow line are
of practical significance, as the discrepancies are probably
due to cloud screening problems and interannual variations
in ice coverage.

As stated previously the information obtained is a re-
lationship between the actual size of the feature and the
resolution of the filter used to extract information. From a
statistical point of view it is not reasonable to compute av-
erages over a single or very few GCM grid boxes, as climate
models are inappropriate for estimating small-scale regional
averages. It is appropriate, however, to provide averages
over a larger number of grid cells. What contributes as a
reasonable number of cells depends, among other things,
on the parameter in question and the topography. In view
of the significant albedo variations both in time and space,
it might be reasonable to compare observed and simulated
albedos only at scales of 1000 km and above. A scale of
2500 km proved to be appropriate for albedo validation, as
the statistical significance seen at this scale coincided well
with the practical significance. However, we want to under-
line that the strength of the adapted S* methodology is that
all scales are investigated: looking only at the scale that sup-
ports the preconceived notions and putting most emphasis
on that one should be avoided.



PEDERSEN ET AL: STATISTICAL SIGNIFICANCE AND VALIDATING CLIMATE MODELS

The difficulties connected with hypothesis testing and in-
ference based on hypothesis testing should not be ignored.
One of the main objections to hypothesis testing is that
the zero hypothesis is false in nature [Germano, 1999; An-
derson et al., 2000]. E.g. two datasets will never be quite
identical, hence tests similar to equation (4) are false in na-
ture. Large samples enhance this weakness, because a small
difference will become statistically significant given a large
enough sample size [Katz, 1992]. S* partly avoids the prob-
lems of large sample size by defining the effective sample size
(cf. equation (6)). For this paper the effective sample size
was below 80 for all individual tests for the albedo valida-
tion, meaning that reasonable inference can be obtained for
reasonable scales [von Storch and Zwiers, 1999]. A common
mistake is to take the p-value (the probability of getting the
observed value or something more extreme) as the proba-
bility of the research hypothesis H; being true. However, it
should be kept in mind that the only conclusion to be made
from hypothesis testing is to reject or retain Hp. Indeed
the significance level « is the probability of rejecting a true
Hy. The adapted S® reduces the effect of a fixed significance
level as the measure of significance gives a clear indication
about the strength of a significant feature. In addition, the
adapted S® proved to be reasonably stable for variations in
significance level. For a more thorough and general descrip-
tion of advantages and disadvantages of hypothesis testing,
see Germano [1999] and Anderson et al. [2000].

6. Conclusions

Numerous applications would benefit from quantifying
the difference image (difference between model and valida-
tion data or difference between two model runs) by using sta-
tistical methods for making statistical inference. Such appli-
cations include comparisons of model parameterizations for
GCMs with control runs [Marshall and Oglesby, 1994; Dou-
ville et al., 1995] and validation of model results [Roesch
et al., 2002; Wei et al., 2001; Liston, 2004]. This paper
presents an adapted version of Significance in Scale-Space
(S?) for detecting significant features (defined as areas where
pixels in the difference image are sufficiently different from
zero) at different scales specifically adapted for validation
purposes in climatology. The scale issue is introduced for
making inference at different levels of resolution. As the
scale gradually goes from fine to coarse, features are cre-
ated, they grow and merge and may finally annihilate. The
adapted S? algorithm produces maps for statistical inference
as well as showing the strength of the significance.

The adapted S® was applied to the difference map of
ECHAMS5 simulated surface albedo and PINKER surface
albedo climatology to validate and intercompare the two
datasets from a statistical point of view. Overall, snow and
ice covered areas had the largest discrepancies. Only pos-
itive statistically significant areas of pixels were detected,
which means that the ECHAMS5 model overestimates the
albedo compared to the PINKER climatology for all scales -
at least in March. At the finest scales (280 km) very few ar-
eas of significant albedo differences were detected because of
relatively high interannual variability for the areas of largest
difference, such as major parts of snow-covered Northern
Eurasia and North America as well as the Southern Ocean.
At 1100 km, significant albedo differences were found in the
southern part of the Arctic Ocean adjacent to the ice edge,
probably because of the different positions of the ice edge
in ECHAMS5 and PINKER. At 2500 km the statistical sig-
nificance coincided well with the practical significance, as
most of the snow-covered regions in Northern Eurasia with
positive differences above 0.2, and relative low interannual
variability were marked as significant. It is not possible to
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put a threshold on the albedo bias to judge if a certain bias
is large enough to substantially change the large-scale cir-
culation. The threshold would depend on both the spatial
extent of the bias and the magnitude of the bias, as well
as the location. Previous studies show that surface albedo
biases should be within +/-0.02 to +/-0.05 in order to allow
reliable climate simulations [Henderson-Sellers and Wilson,
1983]; however, these limits are widely exceeded in this val-
idation.

The adapted S® proved to be both a powerful and an easy
approach for detecting significantly different pixels taking
into account the observed interannual variability. It will be
a helpful tool for climatologists attempting to make objec-
tive inference from large amounts of climate data that need
to be validated and intercompared (cf. IPCC).
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