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Abstract
Maritime surveillance is important for management of maritime traffic and to
prevent activities like illegal fishing, hazardous cargo transportation, piracy, and
smuggling of goods and humans. Remote sensing is frequently used for posi-
tioning vessels that are not transmitting via the Automatic Identification System
(AIS). Modern optical remote sensing instruments provide high-resolutional
imagery, allowing for advanced analyses of the Earth’s surface.

Human operators are trained to recognize different structures and objects in
satellite images, resulting in precise scene analyzes. This endeavor is, however,
time consuming and expensive, and the earth observation community is con-
tinuously researching how to effectively and precisely automate this process.
For ship detection in remote sensing images, state-of-the-art architectures are
based on deep neural networks. This thesis contributes data, experiments and
architectures that are based on deep neural networks. Recognizing vessel head-
ing may be useful for assessing its intentions, and is an interesting topic in
the application field which will be studied in this thesis. This is obtained by
deep learning of regression networks that assign rotated bounding boxes to
detected vessels.

A data set with high-resolutional SuperView optical satellite imagery and
rotatable bounding box annotations is contributed by this thesis. Experiments
on five reference object detectors are performed, giving results on the reliability
of running ship detection services on SuperView images. Scenes of high object
density are studied. Explicitly, experimental results on the newly proposed
Object Detection with Grouped Instances (ODGI) (Royer and Lampert, 2020)
show slightly increased performance when utilizing grouped object instances,
compared to equivalent models that use individual object instances.

The novel Oriented YOLOv2 and Oriented Tiny YOLO neural network architec-
tures, extending from YOLOv2 (Redmon and Farhadi, 2017) and Tiny YOLO,
recognize object rotation and provide a more accurate shape description than
the predecessors. These are used in the novel Oriented Object Detection with
Grouped Instances (OODGI) pipeline, extending from the newly proposed
ODGI (Royer and Lampert, 2020), to utilize object groupings while providing

i



ii

positioning, shape and rotation predictions. An additional error analysis of 11
reference and novel neural network architectures is supplemented to study
model sensitivities. Experiments on performance consistency of deep neural
network architectures when the amount of training data is limited reveal
that resulting precision varies over different training sessions. This variation
is discussed to be induced by stochasticity in weight initialization and batch
selection.

The experimental results indicate that Faster R-CNN has the highest precision.
However, ODGI is three times faster and has competitive precision. The novel
models proposed in this thesis successfully describe positioning, shape and
orientation of ships, although OODGI needs some amendment.
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1
Ship Detection usingRemote Sensing

ø

v As a core component in the scientific field of earth observation (EO), ship
detection has been an attractive and necessary contribution. Object detection,
and hence also ship detection, has made remarkable progress in recent years
through the adoption of deep learning. Analyzing EO images using deep
learning for detecting ships is the state-of-the-art, and is the essence of what
is studied in this thesis.

Maritime surveillance is important for safe ship traffic and to control unde-
sirable activities like illegal fishing, hazardous cargo transportation, piracy,
and smuggling of goods and humans (Sandland, 2019). Most larger ships are
required to transmit data via the automatic identification system (AIS)1, and a
large number of fishing boats and pleasure crafts use this system as well. AIS
data are available for nearby ships to avoid collisions or in case of emergencies,
and is a strong and widely used tool to regulate maritime traffic. However, ship
owners with illegal intentions tend to manipulate the reported information or

1. The regulations are somewhat more intricate. The curious reader is encouraged to read
the regulations defined by the Norwegian Coastal Administration:
https://www.kystverket.no/Maritime-tjenester/Meldings--og-
informasjonstjenester/AIS/AIS-regelverk-og-brukarkrav/

3
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simply turn off their AIS transmitter, resulting in complications when using
this system as an information source (Balduzzi et al., 2014).

Offshore surveillance can be effectively automated, which it has been for many
years, by the use of satellite remote sensing. Synthetic aperture radar (SAR) is
traditionally used, and is still widely used, for the ship detection task as radar
signals are mostly unaffected by weather conditions (Bamler and Hartl, 1998),
and because the methods have been refined to, for instance, determine the size
and velocity of a ship (Dragosevic and Vachon, 2008). SAR has a wide swath,
and its microwaves are less affected by clouds and weather conditions, resulting
in satellite images covering large footprints at all weather conditions. However,
the spatial and temporal resolution of SAR is often considered insufficient to
cope with many real world problems today (Liu et al., 2017b). Optical satellite
imagery provides multiple high-resolution bands, which may be exploited
to get details of smaller objects (Sai et al., 2019). Optical satellite imagery,
and specifically SuperView images, are the remote sensing data used for ship
detection experimentation in this thesis.

Kongsberg Satellite Services (KSAT) provides the raw data used for experimen-
tation in this thesis. This includes SuperView optical satellite products, and a
selection of annotated ships. The annotations have been adopted to a suitable
object detection format and a complete training data set has been developed
as a contribution by this thesis. KSAT provides vessel detection services to
customers worldwide2. Human operators are trained to recognize different
structures and objects in satellite images, resulting in precise analyses of the
scenes. Monitoring vast ocean areas using this endeavor is, however, time con-
suming and expensive, and the EO community is continuously researching how
to effectively and precisely automate this process. Systems for this purpose
have been up and running for decades, and they have been constantly evolving.
Reliable detectors and data handling are essential for the daily work at KSAT.
Ship detection in high-resolutional optical satellite imagery is a modern field
at KSAT. This thesis is intended to study the opportunities that lie in optical
remote sensing, and may contribute to optical remote sensing being adopted
as part of KSAT’s vessel detection services.

Machine learning, and particularly deep learning, has in the later years pro-
vided state-of-the-art EO systems. Convolutional neural networks (CNNs) are
the quintessential deep learning models, the main cause of the tremendous
progress, and can be adapted to fit various problems (Goodfellow et al., 2016).
When a CNN is trained on appropriate training data, it has proved to perform
better than traditional algorithms in a variety of computer vision and image

2. The curious readers are encouraged to immerse themselves in KSAT’s vessel detection
services at https://www.ksat.no/services/earth-observation-services/

https://www.ksat.no/services/earth-observation-services/
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analysis problems (Makantasis et al., 2015). Knowledge about the machine
learning architecture and how it respond to different data is a necessity, and
allows the opportunity of analyzing possible sources of errors. Enlightenment
of underlying challenges in the system and data is desired. One possible chal-
lenge in optical EO data is appearance of small clouds. These may look very
similar to ships and hence cause false alarms. Again, this risk can be mitigated
by using a large amount of precise training data for optimization. The CNN
can then learn to ignore these false alarms.

Rotated objects and heading prediction are of particular interest in this study.
Knowledge on vessel heading can be useful for assessing its intentions. Even
though object orientation is attractive in many applications, there is limited
research work on object detection focusing on this problem (Liu et al., 2018).
This is largely due to limited data sets labeledwith rotation. Popular benchmark
data sets, such as Pascal VOC (Everingham et al., 2010), ImageNet (Russakovsky
et al., 2015) and MS COCO (Lin et al., 2014), have no information on object
orientation. Airbus have published a data set concerning ship detection in
optical satellite images (Kaggle, 2018), with a corresponding ship detection
challenge, which has recently contributed to the interest in this field.

The scope of this thesis is to analyze properties of heading prediction and
predicting objects in areas of high object density using bounding box-based
predictors on high-resolutional optical remote sensing imagery. Concretely,
the thesis will experiment on five reference deep learning models, some well
established and some newly proposed methods, and three novel deep neu-
ral network architectures for object detection will be presented. The novel
architectures are based on existing methods, with an extension concerning
rotation recognition. Experiments on the novel models are performed to study
their precision, speed, error properties and consistency. Scenes of high object
density are of particular interest. The recently published Object Detection with
Grouped Instances (ODGI) (Royer and Lampert, 2020), and the novel extension
Oriented Object Detection with Grouped Instances (OODGI), will be used to
study such scenes of high object density.

The motivation for studying scenes with high object density is visualized in
Figure 1.1. This exemplifies a challenging scene encountering problems for
most object detectors. By adopting grouped instances, improved precision in
such scenarios are studied. By adopting rotatable annotations3, a visually more
prominent description is desired. The scene in Figure 1.1 is really complex and
improved performance in such areas is a goal. No object detectors are expected
to process such scenes perfectly.

3. Objects in Figure 1.1 are annotated using rotatable bounding boxes.
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As introduced earlier, the SuperView data set itself is considered a contribution
by this thesis. As these SuperView images have not been analyzed for ship
detection before, the experimentation using reference models is considered a
contribution by this thesis. The novel neural network architectures and corre-
sponding experimentation are also a contributing element.

Figure 1.1: Visualization of an example SuperView segment where the object density
is high. Ground truth annotations are supplemented. This summarizes the
motivation for studying grouped object instances and rotated annotations.



2
Thesis Formalities
Before approaching the essential parts of the thesis, some formalities must be
clarified. This chapter will present three hypotheses, state the outline of the
thesis, and specify the thesis structure.

2.1 Hypotheses
This thesis concerns ship detection in optical remote sensing images. Deep
neural networks are used for vessel recognition. Prediction of ship rotation and
utilization of object groupings for increased performance are topics of special
interest. Three hypotheses to be answered in the thesis have been formulated:

Hypothesis 1. Annotating objects in remote sensing images using rotatable
bounding boxes gives technical improvements leading to increased
precision over traditional bounding boxes for deep learning mod-
els, and gives a visually more prominent description.

Hypothesis 2. Object groupings are visually more salient and are easier detected
than individual objects, leading to increased precision when ap-
plying deep learning architectures based on object groupings to
the SuperView data set.

7
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Hypothesis 3. Expanding deep learning architectures based on grouped ob-
ject instances initially predicting traditional bounding boxes to
now predict rotatable bounding boxes will describe objects more
orderly, while safeguarding the advantages of utilizing object
groupings.

2.2 Thesis Outline
This thesis contributes the following elements:

• A complete high-resolution SuperView optical remote sensing data set
suited for deep learning applications is finalized.

• KSAT are provided with an analysis of how different object detectors
perform on the optical satellite images from a new sensor.

• An analysis and verification of the newly proposed ODGI (Royer and
Lampert, 2020) is presented.

• Three novel neural network architectures predicting positioning, shape
and rotation of objects are presented and experimented on.

• The ability of recognizing object rotation as a direct regression approach
is studied.

• An analysis of speed versus precision for several object detectors is com-
pleted.

• A study of consistency of deep neural network architectures that are
trained and evaluated using data set of limited extent is presented.

2.3 Thesis Structure
This thesis is organized in five parts, which are again divided into chapters. The
chapters are divided into sections, and subsections where this is considered
expedient.

Part I consists of chapter 1 concerning ship detection using remote sensing,
and chapter 2 expressing thesis formalities. Chapter 1 introduces the concept
of ship detection, its benefits to society, KSATs vessel detection services and
the motivation behind the analyses of this thesis. Chapter 2 states the scientific
hypotheses, contributing elements, and the organization of the thesis.
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Part II includes detailed theory of relevant concepts and a review of related
work. It consist of chapter 3 concerning remote sensing theory, chapter 4
describing machine learning and deep learning concepts, chapter 5 describing
relevant theory of modern object detection, and finally chapter 6 describing
work related to ship detection. Chapter 3 describes main concepts of remote
sensing, optical satellite images, and the SuperView satellites are introduced.
Chapter 4 carefully reviews neural networks, optimization of deep learning
architectures, regularizing strategies and performance measures. State-of-the-
art object detectors and methods gets a conceptual introduction in chapter 5,
before the relevant detectors are resumed and described in detail in chapter
6. Reference models are also explained in detail in this chapter.

Part III presents the SuperView data set in chapter 7 and novel architectures
in chapter 8. Chapter 7 states the main properties of the data set, how it is
collected, and potential challenges are discussed. When novel architectures are
presented in chapter 8, all complications and necessary modifications are first
described, before an explanation of the solutions are given where it is relevant
for the three novel neural network architectures: Oriented YOLOv2, Oriented
Tiny YOLO and OODGI.

Part IV presents experimental setup and results for all reference and novel
architectures, separately. Chapter 9 describes the experimental setup of the
models Faster R-CNN, DRBox, YOLOv2, Tiny YOLO and ODGI, with different
complexities, which are the reference models used in this thesis. Results are
supplemented. Corresponding description of experimental setup and results
are given for the novel architectures in chapter 10. Chapter 11 provides an
additional accuracy analysis on selected models, and stochasiticity of different
training sessions are studied.

Part V provides a discussion and conclusion in chapter 12 and 13, respectively.
Chapter 12 discusses observed results from part IV, how the speed versus
accuracy properties unfolds for the different detectors, and which factors to
consider when selecting a ship detector. Chapter 13 offers some concluding
remarks and ideas for future work.

2.4 Mathematical Nomenclature
The mathematical notation in the scientific fields of physics, statistics and
mathematics, which are all contributing this thesis, varies widely. Expressions
inspired by other references are translated to follow a common notation when
used in this thesis. Table 2.1 summarizes the notation used in this thesis.
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Table 2.1: This table defines the mathematical nomenclature in the thesis. Notations
are separated into categories.

Numbers and Arrays
a A scalar
a A vector
A A matrix
0 A vector having all elements equal to zero

Sets and Indexing
R The set of real numbers
N The set of natural numbers. N = N1 = {1, 2, ...} ⊂ R
ai Element i of vector a, with indexing starting at 1
Ai , j Element in matrix A at row i and column j
{0, 1, ..., n} Set containing all integers between 0 and n
{x (i)}Ni=1 Set containing elements of x with index between 1 and N
(a,b] Real interval excluding a but including b

Calculus and Linear Algebra
∇xy Gradient of y with respect to x∑n
i=1 ai Sum of elements in a having index between 1 and n∑
i ai Sum of all valid elements in a
‖·‖ Euclidean distance
A � B Element-wise (Hadamard) product of A and B
O Order of a function. O(n2) is quadratic order

Functions and Statistical Theory
log(x) Natural logarithm of x
exp(x) = ex Exponential of x
σ (x) Logistic sigmoid. σ (x) = 1

1+exp(−x )
◦ Function composition. (д ◦ f )(x) = д(f (x))
% Modulus. a % b = a −

[a
b

]
∗ b

∗ Convolution. The discrete convolution operator is defined in equation 4.4
A ∩ B Union of A and B. Sum of all elements in set A and set B
A ∪ B Intersection of A and B. Elements in set A also included in set B
EX∼p[·] Expectation with respect to a stochastic variable X from a distribution p

Data Sets
x (i) i-th example (sample) from data set
y(i) Target (label) associated with x (i) in supervised learning
D Set containing the complete training data
B ⊆ D Subset of the complete training data set. A batch
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3
Remote Sensing
The formal definition of remote sensing is to apply recording devices that
are not in physical, intimate contact with the items under surveillance - but
at a finite distance from the observed target (Campbell and Wynne, 2011).
Throughout this thesis, the term remote sensing will refer to remote sensing
from satellites, and remote sensing images refers to the corresponding satellite
images. Such images will be used in machine learning models for automatically
detecting ships within the scene.

3.1 Remote Sensing Principles
The most widespread sensors in the field of remote sensing from satellites
are synthetic aperture radar (SAR) and optical sensors. SAR operates with
microwaves, and how the different polarizations are reflected can be analyzed
to characterize the surface. Optical sensors operate in the visible and infrared
parts of the electromagnetic spectrum, and are intuitive to interpret. SAR
transmits energy and records the reflected energy (active sensor), and uses the
echo time and Doppler frequency to position the reflections. Optical sensors
records naturally emitted energy (passive sensor), typically from the sun. This
restricts optical remote sensing instruments to only operate during day-time
and in sufficient weather conditions. Optical sensors are also obstructed by
clouds. This makes SAR a stronger tool for all-day, all-year monitoring. To
increase the footprint recorded by optical sensors, the use of different incidence
angles is expedient. The incidence angle is the instrument sensing direction
when recording, and is corrected for in the produced satellite images.

13
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For all satellite images, the sensed data is discretized to achieve image properties
before it is transmitted to a ground station where it is processed and interpreted
according to some objective.

3.2 Resolution
For remote sensing images, there are four relevant resolution terms describing
the main properties of the instrument: temporal resolution, spatial resolution,
spectral resolution and radiometric resolution. Temporal resolution is generally
the time between reoccurring measurements. The temporal resolution for
remote sensing refers to the revisit time of a satellite: how long time the
satellite uses to return to the same geographical location (Campbell andWynne,
2011). Spatial resolution for remote sensing refers to the spacing between
pixels. If an image is acquired using 1 m spatial resolution, each pixel will
describe a square with sides equal to one meter. Spatial resolution highly
affects the appearance of an image and the size of objects present in the image.
Based on this, machine learning models, which will be presented in chapter 4,
trained on images acquired using a given spatial resolution cannot directly be
generalized for inference on images acquired with another spatial resolution.
Spectral resolution specifies the number of spectral bands a sensor is recording.
Radiometric resolution describes the amount of discrete recorded intensities
that can be stored and distinguished.

3.3 Optical Satellite Images
Optical satellite images are acquired by a multispectral imager (MSI). Camp-
bell and Wynne (2011) presents an excellent overview of this technology: MSIs
record multiple bands of different wavelengths, typically ranging from visible
and near-infrared (VNIR) to short-wavelength infrared (SWIR). Each spec-
tral band observes a small range of frequencies, and the measurement is a
summation of all signals sensed within this range (Sandland, 2019).

Optical satellite images can typically be presented using only the red, green and
blue frequency bands in an RGB or false colour image, but the near-infrared
and infrared bands are also useful for monitoring different types of objects
and surfaces. This thesis experiments on detecting ships in optical satellite
images, where SAR images traditionally have been used. SAR measurements
are sensitive to materials of high dielectric constant, making metallic ships
easy to detect (Sandland, 2019). Optical images typically have a higher spatial
resolution and increasing the potential of picking up finer details and smaller
ships.
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3.3.1 Pansharpening
A traditional technique is to record one panchromatic (PAN) band in high reso-
lution, and numerous lower-resolutional multispectral (MS) bands in different
wavelengths1. The PAN band typically records wavelengths ranging over the to-
tal wavelength range of the MS bands, while eachMS band individually records
over a smaller range of wavelengths. By utilizing the high-resolutional PAN
band, lower-resolutional MS bands may be transformed to high-resolutional
variants as well. This technique, called pansharpening, is a widely used tech-
nique applied in a various scenarios. Google Earth exploits this principle to
provide an enhanced result to the users while restricting the storage and
processor usage (Vivone, 2014).

In practice, there are different techniques for achieving the pansharpened
result. Generally, the pansharpening methods follow the following protocol:
1) From the PAN band, extract the high-resolutional geometrical details that
are not present in the MS band; 2) incorporate this geometrical details into
the lower-dimensional MS bands by properly modeling the similarities in the
PAN band and the MS bands (Vivone et al., 2014). In the later years, it has also
been experimented on using neural networks (as will be introduced in chapter
4) for pansharpening (Masi et al., 2016).

3.3.2 SuperView
Data used in this thesis is collected from SuperView-1 satellites (often referred
to as only SuperView). The SuperView satellites are China’s first optical satellite
constellation with a spatial resolution down to 0.5 m, operated by Beijing Space
View Tech Co Ltd (Sai et al., 2019)2. At present, it consist of four identical sun-
synchronously orbiting optical remote sensing satellites: SuperView-1 01 and
SuperView-1 02 launched in 2016, and SuperView-1 03 and SuperView-1 04
launched in 2018. Each satellite uses 97 minutes per orbit and in total they
operate with a temporal resolution of only one day, making the constellation
suited for a daily EO change monitoring. The project is still developing and
the constellation is estimated to be complete in 2022, having a daily acquisition
capacity of 12 million km2 3. Daily acquisition capacity is currently 3 million
km2.

1. Using one panchromatic band to increase the spatial resolution of the other bands is a
cheap alternative to all bands recording in high resolution.

2. Word on the street is that SuperView is a Chinese imitation of the American WorldView
constellation with a spatial resolution down to 0.31 m (Longbotham et al., 2015).

3. Daily acquisition capacity is the recorded footprint from a satellite pr. day (Campbell and
Wynne, 2011).
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Table 3.1 presents the main properties of the five bands recorded by sensors
on each of the four SuperView satellites. Notice the wide wavelength range of
the PAN band, and the difference in spatial resolutions. This can be utilized to
perform pansharpening.

Table 3.1: SuperView-1 bands with corresponding wavelength-range and spatial reso-
lution. Data provided by Sai et al. (2019).

Band
number

Band
name Wavelengths [nm]

Spatial
resolution [m]

1 Panchromatic 450-890 0.5
2 Blue 450-520 2
3 Green 520-590 2
4 Red 630-690 2
5 Near-IR 770-890 2

3.4 Image Tiles
Satellite images are of large scale containing a vast amount of information.
A SuperView satellite image have lengths of ∼ 3.2 × 104 pixels, and occupies
∼ 3 GB of storage capacity. It is therefore convenient to split it into subimages,
called tiles. Together, the tiles fully represent the satellite image, while being
more manageable. The tile size can be determined to fit the specific problem
and model. A drawback of employing tiles, is that objects and important details
may end up on the split. A common approach is to have some overlap, and to
ignore details on the far edge when evaluating the image.



4
Machine Learning
Machine learning as a scientific field has been around for decades, but has
shown outstanding results for various applications in particular in the later
years (Alpaydin, 2014). The accessibility of data at academic and private level
has resulted in a wide interest in the field, with subsequent magnificent archi-
tectures for interpreting and learning upon this data. Efficient and convenient
programming frameworks is another beneficial result of the wide interest in
the field.

Larger machine learning models, specifically deep learning architectures1,
consist of millions of parameters needed to be properly adjusted for correct
decision making. Training such a model, that is, adjusting these parameters to
fit the specific problem, is a comprehensive and computer-intensive procedure.
Graphics processing units (GPUs) have played a key role in the success of
expanding machine learning architectures into more complex deep learning
models (Shi et al., 2016). GPUs makes it possible to run real-time decision mak-
ing, and have drastically reduced the training- and inference time of machine
learning architectures, over the former central processing units (CPUs).

A machine learning model is trained using an optimization technique, as will be
presented in section 4.4, to best solve the problem relative to the training data.
A loss function, as will be presented in the same section, is used to evaluate
how well the model solves the specific problem relative to some data. In section

1. Deep learning refers to neural networks with many layers that can learn complex details.

17
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4.1, the distinction of supervised- and unsupervised learning will become clear.
For supervised learning, the loss function typically compares what the model
predicts to a corresponding label or ground truth. For unsupervised learning,
the loss function will be based on other measurements. It is common to use
validation- and test data to evaluate how the model performs on unseen data.
The validation process is usually done regularly during training to monitor
how the model improves and to choose the best model composition, whereas
testing is performed on a complete fully trained model. Hyperparameters are
non-trainable parameters that should be user defined to fit the specific problem.

In this thesis, mostly convolutional neural networks combined with other deep
learning methods will be used. CNNs are based on the classical feed-forward
neural network, hence this will be introduced at first to get the complete under-
standing. Other relevant machine learning principles will also be introduced.

4.1 Supervised and Unsupervised Learning
Machine learning is split into twomain categories; supervised andunsupervised
learning. Supervised learning is when each training sample, x (i), are provided
a label,y(i). Together, all such samples, Dsupervised = {(x

(i),y(i))}Ni=1 where N
denotes the cardinality, constitute the training data. The training data enable
the supervised machine learning model to learn details in the data that are
common for the samples associated to the different labels (Theodoridis and
Koutroumbas, 2009). For unsupervised learning, the samples are not provided
any label and themachine learning architectures are designed to seek structures
in the data without knowing any ground truth about it. The complete training
data when doing unsupervised learning is therefore only Dunsupervised =

{x (i)}Ni=1.

Supervised learning usually produces better results, but needs manually anno-
tated ground truth labels that can be expensive and time consuming to collect.
Whether to use supervised or unsupervised learning depends on the task and
on available resources. Nowadays, there are methods combining these cate-
gories; active learning is one such approach. Active learning asks for human
interaction (labeling) on some samples x (i), and can typically be used for hu-
man annotation on difficult data samples. This reduces the amount of human
interaction in a labeling process. Active learning is a version of semi-supervised
learning, where the complete training data is a combination of labeled and
unlabeled data.
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4.2 Neural Network
Feed-forward neural networks2 (NNs) are the quintessential machine learning
and deep learning models (Goodfellow et al., 2016). These are also known as
multilayer perceptrons. NNs exist both as supervised and unsupervised, and
have been generalized to fit a wide variety of problems. Deep learning models
are based on deep neural networks, making it the main contribution to the
recent development of machine learning and artificial intelligence (AI).

A neural network aims to fulfill the ideal function f ? : x → y by using the
approximated mapping y = f (x ;θ ), where θ are all parameters in the model,
refined to best approximate f ?. The output of the network, y, depends on
the input x , and all parameters θ in the layers { f (l )}Ll=1, where L is the total
number of layers. The neural network, described by the mapping y = f (x ;θ ),
can then be expressed as in equation 4.1. Here ◦ is the Hadamard product, as
included in Table 2.1.

f (x ;θ ) =
(
f (L) ◦ f (L−1) ◦ · · · ◦ f (1)

)
(x) (4.1)

Each layer f (l ) consists of kl neurons doing individual computations in parallel.
By utilizing the neurons in each layer, the continuous mapping in equation 4.1
can be discretized to form a vector expressing the weights of all neurons, and
hence a matrix expressing weights between all neurons. Equation 4.2 describes
how the scalar output of one neuron in layer f (l ) is a result of all neuron
outputs in the previous layer f (l−1), and how the weights inW and biases in b
affect the computation in the different neurons. A layer on this form is called
a fully connected layer.

f (l )
(
x (l−1);θ (l )

)
= ϕ

(
Wx (l−1) + b

)
, l = 1, ..., L (4.2)

In equation 4.2, the following notation is used:

• x (l−1) denotes the output of previous layer f (l−1) and x (0) denotes the
input vector.

• θ (l ) denotes all trainable parameters in the layer f (l ), stored inW and b.

2. The traditional neural networks are, in their simplest form, often called feed-forward NN
because they, after completed training, are intended to pass each training sample x(i)

only in the forward direction of the network without any recursive or feedback loops.
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• ϕ(·) denotes an activation function operating on vectors, described in
detail later in this section.

• W ∈ Rkl×kl−1 denotes the weight matrix for layer f (l ), includes trainable
parameters. kl and kl−1 denote number of neurons in layer f (l ) and
f (l−1), respectively.

• b ∈ Rkl denotes the bias vector for layer f (l ), composed of trainable
parameters.

• L ∈ N is the total number of layers in the neural network.

L is referred to as the depth of the network. The term "deep learning" originates
from deep neural networks, which typically consists of millions of trainable
parameters, and hence has the ability to learn complex details in the training
data (LeCun et al., 2015).

4.2.1 Activation Function
The activation function is a non-linear function applied on the output of a neu-
ron (as expressed by ϕ(·) in equation 4.2). It transforms the linear operation
inside a neuron to a non-linear one, making the network able to learn com-
plex details. Activation functions are also usually continuously differentiable,
which is important when adjusting the weights. In equation 4.2, the activation
function operates element-wise on vectors.

Equation 4.3 (Rottmann, 2003) shows the three dominating activation func-
tions. The sigmoid activation function was habitually mainly used in traditional
machine learning architectures. In modern neural networks, the rectified linear
unit (ReLU) (Nair and Hinton, 2010) is a default recommendation (Goodfellow
et al., 2016). In addition to its simplicity, it has proven to be mathematically
optimal. However, the sigmoid activation function is still widely used for single
object category classification problems (at the end of the network) as it con-
fines any value to the range [0, 1], and hence make them easy to interpret as
pseudo-probabilities. The tanh activation function behaves quite similar to the
sigmoid, confining all values to the range [−1, 1]. The activation functions in
equation 4.3 can be further generalized to adapt specific problems.

ϕsiдmoid (x) = σ (x) =
1

1 + e−x

ϕtanh(x) = tanh(x) =
ex − e−x

ex + e−x

ϕReLU (x) =max{0, x}

(4.3)
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4.3 Convolutional Neural Networks
CNNs are definitely one of the most influential result of the work on artificial
neural networks. The two-dimensional convolution, as will be introduced in
section 4.3.1, makes CNNs perfectly suited for processing of array-like data,
such as images. A neural network is called a CNN if at least one of the layers in
the net is a so-called convolutional layer, as described in detail in section 4.3.4.
Architectures used in this thesis are largely based on CNNs, andwill therefore be
introduced thoroughly before moving over to other machine learning concepts.

4.3.1 Convolution
What defines a CNN, is that, some place in the network, the convolution
operation is applied. Hence, this operator is essential to grasp the building
blocks of a CNN. The two-dimensional (as used in CNNs when data are images)
convolution operation between an input array X (x,y) and a convolution kernel
K(x,y) ∈ Rfh×fw , in its discrete representation, is defined in equation 4.4.
Using a proper kernel, the convolution operation can be used to find specific
features in the input array, and is considered as an extremely powerful tool in
image processing (Gonzalez and Woods, 2018).

(X ∗K)(x,y) =

x+fh∑
m=x−fh

x+fw∑
n=y−fw

X (x −m,y − n)K(m,n) (4.4)

4.3.2 Pooling
Pooling is an important construct in most CNN architectures as it condenses
the information while reshaping the data. In general, a pooling function is a
downsampling operation outputting some appropriate statistics of the input.
Examples of pooling functions are average pooling and max pooling, where
max pooling is widely used in deep CNNs (Goodfellow et al., 2016). An example
of average andmax pooling of an input array of size 2×2 to a scalar, is described
in equation 4.5.

AveraдePool

( [
x11 x12
x21 x22

] )
=

[
1

2 × 2

2∑
i=1

2∑
j=1

xi j

]
MaxPool

( [
x11 x12
x21 x22

] )
=

[
max{xi j }

2
i , j=1

] (4.5)
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Usually, masks of a given size (for instance 2 × 2, as in equation 4.5) are
strided over the array, resulting in a downsampled array. Strides apply to both
pooling and convolution operations. The stride describes how many steps
the convolution kernel or the pooling area is to be moved on the input array
between each operation. Pooling is a strong tool in deep learning because it
translates the array to a differently shaped representation, while it retains the
most informative values and condenses the information.

4.3.3 Transposed Convolution
Transposed convolution (also called fractionally strided convolution, deconvo-
lution or learned upsampling) is a version of the convolution operator mostly
used in segmentation networks. While pooling is a suitable operator for down-
sampling the image, transposed convolution is used for upsampling. Learned
upsampling of images is a strong tool for computer vision, and is a vital part
of segmentation models like fully convolutional network (FCN) (Long et al.,
2015) and U-net (Ronneberger et al., 2015).

X = (Y ∗K)(x,y) (4.6)

Equation 4.6 describes a transposed convolution operation 3 to produce X . Y
denotes some array (output from previous layer in the network), K denotes a
convolution kernel, and the convolution operation is described in equation 4.4.
By using an appropriate stride, convolution kernel size, and by zero-padding
Y , a learned up-sampling using transposed convolution can be achieved, i.e.
dim(Y ) < dim(X ).

4.3.4 Convolutional Neural Networks
Early in section 4.3, it was stated that a CNN is a neural network where at least
one of the layers, f (l ), l ∈ {1, ..., L}, is a convolutional layer.

f (l )
(
X (l−1);θ (l )

)
= ϕ

(
K ∗X (l−1) + b

)
(4.7)

A convolutional layer can be mathematically described by equation 4.7, where
K is the convolution kernel, b ∈ Rkl is the bias vector, kl is a hyperparameter
denoting the number of convolution kernels in the layer, θ (l ) = {K,b}, and
X (l−1) denotes the output array of the previous layer f (l−1). For layer l = 1,
X (l−1) = X (0) denotes the initial input array. The other terms of equation
4.7 are described in equation 4.4 and 4.2. Dimensions of the different terms

3. Equation 4.6 is initially similar to a standard convolution, but describes transposed con-
volution if the given conditions are fulfilled.
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can be customized to adapt the specific problem. For instance, if initial input
array have dimensions X (0) ∈ Rh×w×c , where h is height,w is width, and c is
number of channels, the convolution kernel of a layer l will have dimensions
K (l ) ∈ Rfh×fw×kl−1×kl . However, dimensions of the kernels and input arrays
between layers are obligated to coincide. The output array of the first layer,
X (1), is computed from the convolution kernel K (1) ∈ R(fh×fw×k0×k1) and the
initial input array X (0) ∈ R(h×w×c), and will have dimensions h ×w × k1.

In section 4.3.2, pooling was introduced and it was stated that operations like
these results in downsampled arrays for CNNs. Receptive field describes the
area of early layers (adjoining input) indirectly represented by deeper layers
(distant from input). The receptive field deep in a CNN is dependent on the
composition of convolutional layer and pooling layers, and the dimension of
convolution kernels and pooling masks. For object detection using deep CNNs,
the receptive field may limit the maximum detectable size of objects. This may
cause a bottleneck of the model, especially when operating with large scale
images ⁴.

Well known benchmark CNNs includes VGG (Simonyan and Zisserman, 2014),
AlexNet (Szegedy et al., 2013) and ResNet (He et al., 2016). These networks
have a universal architecture which can be adapted to various problems. Such
networks report good results, and more complex deep learning models are
often built upon these.

4.4 Optimization Problem for Supervised
Learning

In section 4.1, the concept of training samples for supervised learning was
introduced. The optimization problem for a neural network involves refining
all parameters in the networkθ ,with respect tominimizing a loss function E, for
all training samples {(x (i),y(i))}Ni=1. The optimization problem assumes there
exists an optimal solution of the neural network with respect to a loss function
for the specific problem. This optimal solution is numerically approximated
using optimization methods. The process of optimizing parameters according
to some loss function will now be introduced, and state-of-the-art methods for
approximating this optimum will be presented.

4. In large-scale images the size of objects varies a lot, it can therefore be challenging to
design a model with an appropriate receptive field.
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4.4.1 Parameter Optimization
All parameters in the L layers of the neural networkθ = {θ (l )}Ll=1 can be refined
such that the model best approximates its optimal goal: outputting a value
for an input sample x (i), ŷ(i) = f (x (i);θ ), that is equal to the corresponding
ground truth label y(i) = f ∗(x) of the sample. To evaluate how well the
mapping f (x ;θ ) approximates the ideal mapping f ∗(x), a loss function is
needed.

A loss function is a function mathematically describing the mapping to be
solved in the specific problem. In section 4.1, the concepts of supervised and
unsupervised learning were introduced, and the author points to the different
data set situations. For unsupervised learning, the loss function evaluates
how well f (x ;θ ) approximates f ∗(x), without knowing any true labels. For
supervised learning, however, which will be focused on here, the loss function
is typically a suited dissimilarity measure evaluating the dissimilarity between
the networks output ŷ(i) = f (x (i);θ ) and the corresponding label y(i). The
loss function will be noted as E, and the output of the loss function is referred
to as loss.

4.4.2 Objective Function
The objective of the optimization process is to (usually) minimize the expected
loss under the training data distribution, also called minimizing the objective
function.

J (θ ) = EX [E] = EX∼pdata (x )[E] (4.8)

The objective function J (θ ), is the expected loss given all parameters in the
mapping θ with respect to the training data, as expressed in equation 4.8. X
is a stochastic variable distributed as the training data. To find the expected
loss used in the objective function, maximum likelihood estimation is used
on all discrete training data points. By minimizing the objective function, all
parameters will be optimized θ ∗, as expressed in equation 4.9.

θ ∗ = arg min
θ

J (θ ) (4.9)

The choice of loss function is highly dependent of the problem to solve. The
main categories of machine learning problems are regression problems and
classification problems.
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For regression problems it is common to use a version of the Mean Squared
Error (MSE), expressed in equation 4.10, where ‖·‖ denotes the Euclidean
distance, ŷ(i) is the network output, and y(i) is the true label associated with
ŷ(i) (Goodfellow et al., 2016). For classification problems, it is common to
use a version of the standard cross-entropy function, expressed in equation
4.11. The cross-entropy loss is closely related to the Kullback-Leibler (KL)
divergence, which evaluates the similarity between the data distribution and
the current model distribution. When optimizing a model with respect to some
data, the data distribution is constant and cannot be optimized, resulting
in cross-entropy being an adaption of KL divergence specialized for training
classification models.

EMSE (y
(i), ŷ(i)) = ‖y(i) − ŷ(i)‖2

JMSE (θ ) = E
[
EMSE (y

(i), ŷ(i))
]

≈
1
N

N∑
i=1

‖y(i) − ŷ(i)‖2

(4.10)

Ecross−entropy(y
(i), ŷ(i)) = −loд ŷ(i)

Jcross−entropy(θ ) = E
[
Ecross−entropy(y

(i), ŷ(i))
]

≈ −
1
N

N∑
i=1

(
y(i)loд ŷ(i)

) (4.11)

To understand where the y(i) originates from in the last term of equation 4.11,
the reader must recall that E[·] = EX∼pdata (x )[·], where E

[
x (i)

]
= y(i).

4.5 Optimization Methods
When optimizing the model, we seek a global minimum of equation 4.9. We
approximate this by incrementally moving in the gradient direction of the
objective function J (θ ), ∇θ J (θ ). Numerous algorithms have been proposed
for solving this minimization problem in equation 4.9. All such optimization
algorithm are based on the traditional gradient descent (Curry, 1944) and
stochastic gradient descent (SGD) (Robbins and Monro, 1951). Nowadays, it
is common to use the state-of-the-art adaptive moment estimation (Adam),
presented by Kingma and Ba (2014). Well known optimization techniques
also includes Nesterov accelerated gradient descent (NAG) (Nesterov, 1983),
momentum stochastic gradient descent (Qian, 1999) and root mean squared
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propagation (RMSprop) (Hinton et al., 2012a).

The gradients of a parameter in the model depend on all other parameters in
all layers, and are complex to calculate. In theory, this calculation is feasible for
minor algorithms, but not practically desirable for larger algorithms. For these
larger algorithms, the backpropagation algorithm is used (Rumelhart et al.,
1986). The backpropagation algorithm applies the chain rule for calculating
the gradients, starting with layers at the end of network and incrementally
moving forward in the network, allowing the weights to be adjusted according
to the gradients. In fact, the backpropagation algorithm does not only makes
it possible to calculate the gradients, but it is also a highly effective method
for refining the weights and training the neural network (Goodfellow et al.,
2016)⁵.

4.5.1 Gradient Descent
Gradient descent (Curry, 1944) is a traditional and widely used method for
optimizing machine learning problems. For every parameter in the model, θ ,
with its corresponding gradient, ∇θ ⁶, the parameter is incrementally updated
according to the rule in equation 4.12 over several epochs⁷ until convergence.

θnew = θold + µ ∇θ (4.12)

In equation 4.12, θnew and θold denote the parameter values of the current
epoch and the previous epoch, respectively, µ ∈ R denotes the learning rate
(which will be explained later in this section), and ∇θ denotes the gradient of
θ . At first epoch, all parameters are initialized randomly ⁸ or from a pretrained
model as presented in section 5.3.1.

Stochastic gradient descent (SGD) (Robbins and Monro, 1951) is a stochastic
approximation of gradient descent where the total training data in conjunction,
D = {(x (i),y(i))}Ni=1, is split into several randomly drawn subsets, B ⊆ D. The
subsets B, called batches, are of size B ∈ {1, 2, ...,N } ∈ N, where B is the
batch size. Each batch is run separately through the network at every epoch,
and the batch-elements are typically redefined for every epoch, generating a

5. The mathematically interested reader is encouraged to study the details of the backprop-
agation algorithm in Theodoridis and Koutroumbas (2009).

6. Where the gradient is typically calculated using the backpropagation algorithm.
7. One epoch is one iteration feeding all training data through the model and updating the
parameters once. Several epochs are typically needed to achieve convergence.

8. For deep neural networks, there are typically millions of parameters that needs to be
adjusted. For these models to converge, the parameters cannot be unconditionally random
initialized. Techniques addressing this problem have been proposed, Glorot and Bengio
(2010) and He et al. (2015) presented the techniques for weight initialization which are
most used nowadays.
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stochasticity in the data. The stochastic gradient descent algorithm is more
prevalent and more common than the standard gradient descent. The use
of batches provides the opportunity to train models on enormous data sets
without draining the workstation capacity. The use of batches do also generalize
the model by generating a stochasticity in the data, and is also used in modern
optimization algorithms.

Learning rate is a hyperparameter present in most optimization methods. The
learning rate restricts the optimizer from doing exaggerated or too moderated
steps, and is a hyperparameter typically in the range µ ∈ (0, 1]. Figure 4.1
shows different situations where the learning rate is erroneous and correctly
tuned, and how it affects the optimizer to localize the minimum of the objective
function J (θ ). If the learning rate is too low it takes unnecessarily many epochs
to localize a minimum. The optimizer may reach a maximum number of epochs
before reaching the minimum, or the optimizer risks being stuck in a poor local
minimum. It the learning rate is too high, the optimizer may oscillate around
the global minimum, preventing convergence.

Figure 4.1: Figure visualizing conceptual sketch of how the learning rate affects the
optimizer when localizing a minimum of the objective function J (θ ).
Image credits: https://mc.ai/cyclical-learning-rates-for-
training-neural-networks/. Adopted 11.03.2020

There have been proposed adaptive optimization methods addressing the prob-
lem of erroneously tuned learning rate. Adaptive gradient algorithm (AdaGrad)
(Duchi et al., 2011) adapts a learning rate for each feature dimension in the
optimization space dynamically, while still having a learning rate hyperpa-
rameter that gets refined in the separate dimensions. Adadelta (Zeiler, 2012)
removes the learning rate hyperparameter completely and, like AdaGrad, it
adapts a learning rate to each feature dimension dynamically. These methods
are adequate, however, the adaptive moment estimation technique (Adam)
utilizes momentum to get a precise and rapid convergence.

https://mc.ai/cyclical-learning-rates-for-training-neural-networks/
https://mc.ai/cyclical-learning-rates-for-training-neural-networks/
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4.5.2 Momentum and Adam
There are numerous optimization techniques that include the momentum
term. Optimization methods have developed further since the inclusion of
momentum in stochastic gradient descent (Momentum SGD) (Qian, 1999), but
the main principles of momentum are the same: the optimizer uses the previous
step size when evaluating the current step size with a goal of speeding up
convergence in the beginning, while doing accurate decisions when converging.
In other words, the optimizer does large adjustments when operating far from
a minimum, but restricts the step size as it approaches the minimum.

Momentum SGD incrementally updates the parameter θ according to the rules
in equation 4.13, where vnew and vold are the current and previous momenta,
respectively, γ is a hyperparameter, and µ is the learning rate.

vnew = γvold + µ∇θ

θnew = θold −vnew
(4.13)

The Adam (Kingma and Ba, 2014) optimizer extends the concept of momentum,
and is considered as the state-of-the-art optimizer for the majority of deep
learning problems nowadays. The reason behind Adams success is firstly that it
incorporates momentum directly as an estimate of the first-ordermoment of the
gradient (Goodfellow et al., 2016). Secondly, Adam accounts for inaccuracies
in initialization by incorporating bias corrections for both the first- and second-
ordermoment estimates. This corresponds to applying individual learning rates
on all parameters, based on first- and second- order moment estimates of the
gradients (Hansen, 2019). Algorithm 1 shows a detailed step-wise description of
the Adam optimization method where each epoch will update the parameters
until it reaches a stopping criterion. A stopping criterion can typically be a
predefined maximum number of epochs, or when a measure of convergence
remains unchanged. In algorithm 1, it emerges that Adam also applies batches,
as introduced for the stochastic gradient descent in section 4.5.1, to achieve a
stochasticity in the data.
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Algorithm 1: Adam optimization method (Goodfellow et al., 2016). Default
values suggested by original paper Kingma and Ba (2014) are given in
parentheses.

- Initialize Hyperparameters:
Learning rate µ as float (µ = 0.001)
Exponential decay rates for moment estimates, ρ1 ∈ [0, 1) and ρ2 ∈ [0, 1)
as float (ρ1 = 0.9, ρ2 = 0.999)
Numerical stability constant ξ as float (ξ = 10−8)

- Initialize:
Parameters θ as floats
1st and 2nd moment variables s = 0, r = 0 as floats
Time step t = 0 as int

- Scheme:
while stop criterion not fulfilled do

Sample a batch B of size b from the complete training data set D
Estimate current gradient д = 1

b∇θ
∑b

i=1 E(y
(i), f (x (i);θ ))

t = t + 1
Update biased 1st moment estimate s = ρ1s + (1 − ρ1)д
Update biased 2nd moment estimate r = ρ2r + (1 − ρ2)д � д
Correct bias in 1st moment ŝ = s

1−ρt1
Correct bias in 2nd moment r̂ = r

1−ρt2
Compute element-wise update ∆θ = −µŝ ŝ√

ŝ+ξ
Apply element-wise update θ = θ + ∆θ

end

4.6 Regularization
A key challenge when it comes to machine learning problems is to assemble
architectures that do correct and precise decisions on data they have never seen
before, not just on the training data. Strategies explicitly designed to reduce the
validation error are called regularization strategies, and numerous techniques
can be included in training to achieve a more generalizedmodel⁹. Overfitting of
a model is an effect that decreases the generalizability, and batch normalization
(Ioffe and Szegedy, 2015), weight normalization, dropout (Hinton et al., 2012b)
and employing batches are example of well known regularization strategies
that will be presented in the following.

9. Generalizability of a model describes how well the trained model performs on unseen
data.
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4.6.1 Overfitting

Figure 4.2: Visualization of an example training process with corresponding
validation loss for each epoch during training. Here, the performance is
evaluated using loss E for the specific problem. The figure is a conceptual
sketch and is not sourced from a model in this thesis.
Image credits: https://machinelearningmastery.com/learning-
curves-for-diagnosing-machine-learning-model-performance/.
Adopted 12.03.20.

An overfittedmachine learning model is producing close to perfect performance
scores on the empirical data used to train the model, but is performing signifi-
cantly poorer on the unseen validation and test data. Figure 4.2 visualizes the
overfitting effect through a thought scenario where a model, evaluated by a
loss E defined for the specific problem, is trained over 500 epochs. Without any
regularizing constraints, the optimizer does its best to minimize the training
loss throughout the training process. After exceeding ∼ 100 epochs, the reader
may notice that the training and validation losses start to diverge. The model
is now "learning the data set", not the distribution, and the validation loss is
starting to increase. Regularization strategies preventing this effect will now
be presented.

4.6.2 Weight Regularization
Weight regularization restricts the model parameters θ in the deep learn-
ing model from becoming independently too great in value, and it penalizes
nonzero parameters (Goodfellow et al., 2016). An exaggerated large parameter
value is typically indicating that the model is learning the data set (not the
data distribution), resulting in poor generalizability, and can be limited by sup-
pressing such values. By penalizing nonzero parameters, sparse and structural
networks will be encouraged. In practice, weight regularization is commonly
achieved by including the L1 norm, penalizing nonzero parameters, and the L2
norm, penalizing large parameter values, in the objective function J (θ ) (Wen
et al., 2016).

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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4.6.3 Batch Normalization
For deep neural networks, composed of numerous fully connected and convo-
lutional layers, small parameter updates in one layer will affect the input to
subsequent layers (in feedforward networks) (Goodfellow et al., 2016). This
effect is called internal covariate shift, and is said to delay the optimization.
Ioffe and Szegedy (2015) proposed the batch normalization (often shortened as
batch norm) strategy for suppressing all features in a batch, while retaining the
structure, to achieve smaller adjustments in the weights. Traditionally, batch
normalization has been considered a technique to avoid doing unnecessary
many updates for a considerable amount of parameters before convergence,
and hence avoid the challenge of internal covariate shift. However, Santurkar
et al. (2018) concluded that batch normalization reparametrizes the underlying
optimization problem to make it more stable, rather than directly avoiding the
internal covariate shift. Either way, batch normalization achieves increased
optimization. It is achieved by applying equation 4.14 to each layers input,
where x̂ (i) is the batch normalized feature vector of x (i) and EB[·] andVarB[·]

denote the expectation and variance with respect to the set B.

x̂ (i) =
x (i) − EB[x (i)]√

VarB[x (i)]
(4.14)

In section 4.5, the reader was introduced to the concept of batches, which are
used when batch norm is practiced. In fact, the use of batches itself acts as a
regularization strategy because the presented data vary in each iteration 1⁰.
Optimization using batches acts as an approximation to optimization using the
complete distribution (the complete training data) and introduces a stochastic-
ity in the data that presumably increases the generalization properties. By using
batches and batch normalization, the need for other regularization strategies
can be considered as eliminated (Redmon and Farhadi, 2017).

4.6.4 Dropout
Dropout (Hinton et al., 2012b) is a technique with several motivations. The
most prevalent motivation is that dropout is used as a regularization strategy to
avoid overfitting during training. Figure 4.3 concretises the idea of applying the
dropout strategy as part of the training process. By randomly dropping units
(typically neurons), with a probability p, a typical situation where a unit is
only learned to operate in the context of specific parallel units can be avoided.
The objective is units that are learned to operate more independently. During
test time, all units are used.

10. Iteration here refers to each time a batch is presented to the model.
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Figure 4.3: Conceptual sketch of how the dropout strategy, with p = 0.5, applies to
a neural network. Image credits: https://towardsdatascience.com/
coding-neural-network-dropout-3095632d25ce. Adopted 13.03.20.

4.6.5 Data Augmentation
To increase the generalization properties of a model, it is advantageous to
train it on all different scenarios that can be faced during test time. This can
be done by artificially generating data related to the originally observed data.
For images, this is typically done by flipping vertically, flipping horizontally,
rotating, scaling, or by adding noise (Goodfellow et al., 2016). However, it is not
beneficial to train the model on augmentations that are not physically valid,
especially if they cannot even be argued to be pragmatically valid (in the sense
of not being advantageous in the learning process) (Brenn et al., 2019). The
concept of data augmentation to artificially increase the amount of training
data is especially relevant to data sets of limited size (Cheng et al., 2016). The
discussion of augmenting satellite images continues in section 7.3.

4.7 Performance Measures
To evaluate how well the model performs, there is need for an appropriate
measure. In section 4.4, it was stated that a loss function is a measure of how
well the mapping f (x ;θ ) approximates the ideal mapping f ∗(x), i.e. how well
a predicted value coincides with the corresponding true label for that specific
problem. Two common loss functions were also explicitly presented. A loss
function is a great performance measure for a model with its corresponding
data, but can not be generalized if one for instance want to test the data
on a completely different model. Also, the loss itself is difficult to interpret.
Common performance measures, which are easier to interpret and generalize,
will be introduced in the following. Which measure to use depends on the
situation, but common for supervised learning is to, in some way, compare the
output of the model with prior information on corresponding ground truth
label. Such performance measures are typically applied during validation, and
will be denoted as A.

https://towardsdatascience.com/coding-neural-network-dropout-3095632d25ce
https://towardsdatascience.com/coding-neural-network-dropout-3095632d25ce
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4.7.1 Common Measures
The performance measures that will be introduced here are used for different
machine learning problems, not only for object detection architectures used
in this thesis. Common for these measures is that they are only suitable for
supervised problems, assumed to provide a label.

4.7.1.1 Accuracy
For categorical machine learning problems (classification), a common superior
measure is the overall accuracy (OA) evaluating how large proportion of data
points that were correctly classified. However, for imbalanced classes where one
class is highly underrepresented, the OA would still report acceptable results
by just ignoring this underrepresented class. In such cases, it is convenient to
inspect the class-conditional accuracy.

For categorical problems with a moderate number of classes, an orderly way of
presenting data is by using a confusion matrix. A typical two-class classification
problem is to predict a data sample to be positive or negative. This thesis
regards evaluating regions as ship contra not ship, and it is often convenient
to operate with positive/negative classification in such cases. Soon, the reader
will be introduced to how this can be applied to region-based predictions (as
is can be applied to most object detection settings). This leads us onto the
four terms: true positive (tp), false positive (fp), true negative (tn) and false
negative (fn), to evaluate whether a prediction is correct or incorrect with
respect to its label. These terms are the ones to be presented in a confusion
matrix. In the scientific field of ship detection, these terms are assigned some
names: correct prediction is a tp, false alarm is a fp, and miss is a fn. tn is not
assigned any particular name.

4.7.1.2 Precision
The performance measure precision is a direct result of the recently introduced
terms in a two-class confusion matrix: tp, fp, tn, fn. Precision is the proportion
of all predicted positives that were correctly classified, and is an indicator of
the amount of false alarms. The general precision is defined in equation 4.15.

APrecision =
tp

tp + f p
(4.15)

For object detection, average precision (AP) is a popular measure for evaluating
its performance.
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AP is a per-class measure taking the average precision with respect to all object
categories individually. For the positive/negative classification approach used
in this thesis, there is only one AP; for the ship class. In such single object
category problems, the AP is reduced to precision, AAP = APrecision . For
multi object category problems, AAP is calculated per class. Mean average
precision (mAP) denotes the average AAP for multi object category problems,
and is an indicator of overall performance.

4.7.1.3 Intersection-over-Union
To determine if a region-based prediction is corresponding to a ground truth
region, there is need for an additional measure. Here, the intersection-over-
union (IoU) comes in handy. A predicted object is typically concluded to be a
tp if IoU (ŷ(i),y(i)) > τIoU , where τIoU is a user defined threshold.

IoU is a measure of how much two regions overlap relative to their size, and
is a common measure for goodness of fit of a predicted bounding box with
respect to some ground truth bounding box. The IoU between two bounding
boxes Ψ and Γ is defined in equation 4.16.

IoU (Ψ, Γ) =
area(Ψ ∩ Γ)

area(Ψ ∪ Γ)
(4.16)



5
Object Detection usingDeep Learning
Object detection is a vital part of the computer vision research field. The state-of-
the-art in automated object detection models is constantly developing. Machine
learning models, and specifically CNNs, have shown exquisite performance and
is the foundation of most object detection architectures nowadays. In this
thesis, the term object detection refers to object detection in images.

Object detection aims to recognize structures and shapes, and process this
information to, in some way, describe objects in an image. This includes
reporting present objects, annotating them using bounding boxes, or labeling
each pixel with the identity of the category it belongs to (Goodfellow et al.,
2016). In this thesis, the aim is to apply object detection using machine learning
principles to detect ships in satellite images. For ship detection using machine
learning, there are two architecture paradigms: models based on semantic
segmentation1 (from now on referred to as segmentation-based models) and
models based on bounding boxes2 (often called object detection models).

Segmentation-based models will output a two-dimensional array proportional

1. Semantic segmentation models label each pixel in the image with the identity of the object
it belongs to.

2. Models based on bounding boxes annotate objects with boxes that enclose the object.

35
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to the size of the original image, where the value of each pixel represents
the predicted categorical label at this pixel. In the field of ship detection,
segmentation-based models are traditionally essentially used on SAR, images
where the spatial resolution is limited. Segmentation-based models will be
studied further in section 5.1, and later in section 6.2.

Bounding box-based models typically output a bounding box enclosing the
object, but also classification and score for all objects in the image. Bounding
box models are again typically divided into proposal-based and grid-based
models, where a consideration of speed versus accuracy is important for the
choice of model. With the constant development of remote sensing technology,
bounding box-based models are well suited for optical satellite images with
their exquisite spatial resolution. Bounding box-based models are the main
scope of this thesis andwill be studied further in section 5.2, and state-of-the-art
models will be presented in section 6.3.

Single object category detection versus multiple object category detection is
another discrimination for object detection that applies to both bounding box-
and segmentation-based models 3. Single object category detection is suited
for answering specific problems (such as detecting ships), while multiple object
category detection are useful for a universal and complete image understand-
ing. A typical image appealing to single object category detection have objects
that are small and distributed inhomogeneously and sparsely over the image.
This is most commonly used for commercial applications ⁴. A typical image
appealing to multiple object category detection consists of everyday objects
in natural scenes that are large and covers the image densely. This is most
commonly used in academic research 4.

For supervised learning, the level of precision of the provided labels is an im-
portant factor when designing the model. The level of precision for labels
specifies how accurate the objective is described by the label (Han et al.,
2014). Lowest level of precision for object detection is typically an annotation
describing the number of a specific object in the image, for instance: "There
are at least one ship in this image". Approaching higher levels of precision for
object detection, labels constituting bounding boxes enclosing all objects in the
image can be found. At the very highest level of precision for object detection,
a pixel-wise description of represented class can be found (as preferably used
in segmentation-based models). Techniques aiming at achieving results of a
higher level of precision than the provided labels are constantly proposed.

3. The number of categories (classes) to detect is just a fixed preference and do not affect
the model design to such a great extent.

4. Claimed in the Royer and Lampert (2020) presentation notes: https://cvml.ist.
ac.at/talks/lampert-cdeml2020.pdf. Adopted 17.03.20.

https://cvml.ist.ac.at/talks/lampert-cdeml2020.pdf
https://cvml.ist.ac.at/talks/lampert-cdeml2020.pdf
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Weakly supervised learning is the main category of such techniques (Brenn
et al., 2019).

This thesis willmainly focus on bounding box-basedmodels. However, segmentation-
based models are essential in object detection using machine learning, and will
be partly included for a complete perspective.

5.1 Segmentation-based Models
As stated earlier in this chapter, segmentation-based models for ship detection
are mostly used when it comes to SAR images. For optical remote sensing
images, both bounding box-based and segmentation-based models are widely
used. Segmentation-based models, operating with pixel-wise classification, use
labels of highest level of precision and are generally computationally expensive.

Common for segmentation-based deep learning architectures is a complete
convolutional architecture, i.e. no fully connected layers. The input image is
interpreted and downsampled several times before repeated upsampling using
transposed convolution and a comparison with a label map of identical shape
as the input image at output. In addition to this standard design, different
modifications are typically included for increased performance on specific
problems.

For large scale images with underrepresented objects, which is the situation
for ship detection using remote sensing, a model can report satisfactory per-
formance results by just ignoring the objects. In such situations, a loss factor
compensating the extreme class imbalance is required. Focal loss (Lin et al.,
2017c) is one successful and widely used approach addressing the class im-
balance problem. FCN (Long et al., 2015) and U-net(Ronneberger et al., 2015)
are considered benchmark and state-of-the-art models for general semantic
segmentation, and forms the foundation of most segmentation-based object
detection models⁵.

5. Segmentation-based models are mentioned to get a complete perspective of object detec-
tion using remote sensing, but a thorough presentation is omitted due to time limitations,
as it is outside the scope of this thesis.
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5.2 Bounding Box-based Models
Where segmentation-based models describe an image and its objects in a pixel-
wise manner, bounding box-based models describe all objects using bounding
boxes (BBoxes) θBBox , and non-described areas are evaluated as "background".
The predicted BBoxes are typically the output of the last layer in the detector.
Each BBox is typically parameterized by θBBox = {θx , θy, θw , θh, c}, where
θx , θy, θw , θh are the centerx -coordinate, centery-coordinate,width and height
of the BBox, respectively. We denote c as the confidence score of single object
category problems, which can easily be expanded to describe multiple object
category problems.

Bounding box-based object detection architectures are typically sorted into the
two paradigms: proposal-based and grid-based models. What characterizes
proposal-based object detection models is the pipeline where a selection of
regions to contain objects are first proposed, after which these regions are
sent into another network for validation and prediction. Grid-based models are
often called single-shot models, as the image only goes through a single forward
pass during inference. What characterizes grid-based models is the predefined
grid uses to split the image into smaller regions to be evaluated separately.
Proposal-based models are known to be precise, but computer-intensive and
slow, whereas grid-based models are somewhat more imprecise, but are fast
and have potential for real-time processing during inference. Models that are
a hybrid of proposal- and grid-based principles have also been proposed with
a goal of achieving models that are both fast and precise. Royer and Lampert
(2020) is a version of a such a hybrid model.

5.2.1 Non-maximum Suppression
Common for proposal-based and grid-based object detection models is that
they apply the concept of non-maximum suppression (NMS) just before the
predictions are presented to the user. Bounding box-based models will typically
have numerous proposed bounding boxes for each object, where only one of
them encloses the object in a best possible manner with respect to correct
classification on pixel level. There are different methods for performing NMS,
but the principle is that, as the name so elegantly describes, all predicted
bounding boxes that are not the best predicted bounding box of that object,
are removed.

Usually, NMS is performed by first sorting all predictions according to the
confidence score. Next step is to, starting at prediction with highest confidence
score, calculate the IoU between the current prediction and all predictions
with higher confidence score. Only predictions where this IoU is below a user
defined threshold and the confidence score is above a user defined threshold
will be accepted.
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5.2.2 Proposal-based Methods
As introduced early in this section, the main characteristics of proposal-based
object detection models is the pipeline where a selection of regions that po-
tentially contain objects are first proposed (called region proposals, anchors or
prior bounding boxes), then these regions are sent further into the network
for prediction and validation of existence. The region proposal part will be
referred to as phase one of the pipeline, and the prediction and validation of
existence part will be referred to as phase two.

A wide variety of techniques for proposing anchors have been suggested, and
many architectures refine and regress on the first proposed anchors during
the second phase. By applying regression in the second phase, the amount of
proposed regions in the first phase can be minimized.

5.2.2.1 Region Proposal Techniques
Generic proposal-based object detection architectures have moved from pre-
viously using dense sliding window approaches for region proposal, to now
using sparser region proposal frameworks, typically a trained region proposal
network (RPN) (Kong et al., 2016).

Sliding window approaches will in principle propose anchors at predefined
positions with predefined size and aspect ratios. For such approaches, the
anchors will rarely fit objects perfectly, and the amount of proposed regions are
massive. Most of these proposed regions are not accepted as objects, resulting
in unnecessary computer intensive models.

Selective search (Uijlings et al., 2013) is a benchmark region proposal algorithm
which is widely used in object detection. It performs image segmentation to
achieve a universal image understanding, and proposes anchors based on this.
Selective search extracts ∼ 2, 000 region proposals, which is a lot less than
the typical sliding window approach (Kong et al., 2016). Also, the anchors are
now arbitrarily shaped and positioned, leading to a more precise enclosing
of objects. Selective search is the origin behind the success of the pioneering
proposal-based object detector called region-CNN, commonly known as R-CNN
(Girshick et al., 2014).

State-of-the-art proposal-based object detectors nowadays typically consists of
trainable RPNs, leading to end-to-end trainable architectures ⁶. RPNs are the
designator for trainable networks, and they can be implemented in different
forms. Another pioneering proposal-based object detector applying a RPN for

6. In an end-to-end trainable architecture, all components in the model can be learned using
machine learning. This is generally preferred, as it guides every component to do precise
and contextual decisions w.r.t. the other components.
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region proposal is the Faster R-CNN model (Ren et al., 2015). In this network,
the RPN is built in a fully convolutional structure to propose anchors that are
passed on to phase two of the architecture. Unlike selective search (Uijlings
et al., 2013) and R-CNN (Girshick et al., 2014), this network is end-to-end
trainable, which enables the network to learn which proposed regions that
were accepted as objects at the end of phase two. This results in fewer and
more deliberated region proposals.

5.2.2.2 Region of Interest Pooling
To understand the architectures that will be introduced and described in the
following, an introduction of Region of Interest (RoI) pooling is expedient. RoI
pooling appears as a layer in modern proposal-based object detection networks,
and is supportive to designate a specific region of interest in a large feature
map of a fixed size (Girshick, 2015). Neural networks and their weights depend
on fixed sized inputs and outputs making it expedient to combine fixed-size
feature maps with RoI pooling instead of modifying the data shapes.

Recall the concept of pooling and stride from section 4.3.2. The pooling oper-
ation has the ability to retain the key details (RoI) of an array while altering
the shapes. A RoI pooling layer is therefore used to transform an arbitrary
shaped array to a fixed shape array (or feature vector) while maintaining the
key details. For object detection networks, these arbitrary shaped arrays refers
to region proposals. The technique for transforming an arbitrary shaped array
to a fixed shaped array is to define the pooling stride according to the two
arrays.

5.2.2.3 Benchmark Proposal-based Object Detection Models
A conceptual description of benchmark proposal-based object detection mod-
els will now be given, before models concerning the ship detection task are
described in detail in section 6.3.1. R-CNN (Girshick et al., 2014), Fast R-CNN
(Girshick, 2015) and Faster R-CNN (Ren et al., 2015) are considered benchmark
models within proposal-based object detection, where Faster R-CNN is still
considered as state-of-the-art for general proposal-based object detection ⁷.

Figure 5.1 visualizes the pipeline and the main components of the pioneer
proposal-based architecture, R-CNN (Girshick et al., 2014). As mentioned, R-
CNN uses selective search for region proposal in phase one. Phase two consists
of feature extraction on each prior BBox using a CNN, and a support vector
machine (SVM)⁸ to classify the presence of an object within the proposed

7. An excellent summarizing review is given at: https://towardsdatascience.com/
r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-
36d53571365e.

8. SVM is a traditional, strong and flexible tool for classification.

https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
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Figure 5.1: R-CNN pipeline with its main components. Image credits: Girshick et al.
(2014).

region based on the extracted features. In addition to the SVM, the extracted
features are also used to predict offset values of the proposed region, which
refines the prior bounding box to increase precision. In object detection, this
refinement is often called regression as it adjusts the original parameters with
the aim of perfectly coinciding with ground truth boxes.

Fast R-CNN (Girshick, 2015), presented by the same author as R-CNN, is a
continuation of R-CNN addressing some of its drawbacks. Instead of feeding
∼ 2, 000 region proposals to the CNN, the image itself is input to the CNN
resulting in a convolutional feature map. A convolutional feature map is a
different representation of the input data, which often holds useful information
on contours and shapes. Selective search is applied to the convolutional feature
map to generate region proposals. These region proposals are again processed
by a RoI pooling layer to achieve a fixed shaped representation. Finally, these
results are used for classification and regression on each proposed region,
similarly as in R-CNN.

Faster R-CNN (Ren et al., 2015) takes a step further from selective search and
adopts a trainable RPN that can learn how a prior bounding box should be
formed to be accepted. Similarly as for Fast R-CNN, the image itself is input
to a CNN to generate a convolutional feature map. The RPN processes the
convolutional feature map to predict region proposals. The region proposals
are, again, reshaped to a fixed shape using a RoI pooling layer, before classifying
and regressing the individual region proposals at the end.

Table 5.1 presents a comparison of speed and precision of the presented bench-
mark proposal-based object detection models. The reader presumably notices
that Faster R-CNN is superior among the proposal-based models.
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Table 5.1: A comparison of speed and mAP of the five benchmark models: R-CNN,
Fast R-CNN, Faster R-CNN, YOLO and SSD. Results are from an experiment
performed on PASCAL VOC 2007 data set (Everingham et al., 2010).
Sources: https://dzone.com/articles/from-r-cnn-to-faster-r-
cnn-the-evolution-of-object and https://towardsdatascience.
com/review-ssd-single-shot-detector-object-detection-
851a94607d11. Adopted 18.03.20.

R-CNN Fast R-CNN Faster R-CNN YOLO SSD
Inference time
per image [s]

50 2 0.14 0.02 0.017

mAP 66.0 66.9 69.9 63.4 68.0

5.2.3 Grid-based Methods
Where proposal-based models aim to localize independent objects using re-
gions, grid-based models aim to get a complete and universal image under-
standing of all objects in the image by using a predefined grid. In the beginning
of chapter 5, it was stated that multiple object category detection usually is
used to get a universal image understanding, and that a typical image for
such a scenario consists of everyday objects in natural scenes that are large
and cover the image densely. Traditionally, grid-based models are better for
predicting such large objects, while proposal-based models are better to detect
smaller details.

Grid-based object detectors are efficient and can often operate in real-time,
but objects need to be distributed homogeneously on the predefined grid for
the model to report satisfactory results (Royer and Lampert, 2020). Figure
5.2 visualizes the main components of the state-of-the-art grid-based object
detection model You only look once (YOLO) (Redmon et al., 2016). Common
for all grid-based model is the predefined grid, which is applied to the input
image to divide it into smaller regions. This grid is user-defined and should
match the specific problem under consideration.

A frequent approach is to choose the grid size according to a worst case scenario
for the processed images (Royer and Lampert, 2020). To ensure no objects are
undetected, even for regions with high object density, the grid cell size should
be adequate. A small grid cell size is also a drawback in the sense that the
number of operations scales quadratically (O(n2)) with the number of regions,
and most cells will remain empty in the typical object detection problem.

Different architectures for grid-based object detection have been proposed.
Common for them all is that they achieve an impressive speed by processing
each image only once, however, this may cause smaller objects to remain
undetected.

https://dzone.com/articles/from-r-cnn-to-faster-r-cnn-the-evolution-of-object
https://dzone.com/articles/from-r-cnn-to-faster-r-cnn-the-evolution-of-object
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
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5.2.3.1 Benchmark Grid-based Object Detection Models
A summarizing conceptual description of benchmark grid-based object detec-
tion models will now be given, before models concerning the ship detection
task are described in detail in section 6.3.2. The single shot detector (SSD)
(Liu et al., 2016a) and YOLO (Redmon et al., 2016) algorithms are considered
benchmark models within grid-based object detection and were some of the
first successful models of this kind. Numerous extensions of these models
have been proposed, but the original models are still powerful and form the
foundation of grid-based object detection.

Figure 5.2: YOLO architecture with its main components. Image credits: Redmon et al.
(2016).

The design of YOLO (Redmon et al., 2016) is visualized in Figure 5.2. One single
CNN is used to predict both the bounding boxes and the class probabilities for
these boxes, which is the main reason behind its speed. YOLO first splits the
image into a grid of sizeC ×C, resulting inC2 cells. Based on this grid, BBoxes
are defined as a compositions of cells⁹, as visualized in the middle top figure
in 5.2. For each BBox, the CNN predicts a classification score together with
some offset values. The offset values are regressed parameters adjusting the
BBox location to better fit the object. NMS are combined with an acceptance
threshold for the classification score to evaluate which of the BBoxes to accept.

SSD (Liu et al., 2016a) follows the concept briefly presented in Figure 5.3. The
image is first presented to a CNN, used as feature extraction, to get different
representation of where the objects are localized. The BBox size and aspect
ratio, as seen in Figure 5.3, subfigure (b) and (c), are predefined by the user
to fit the specific problem. BBox locations are evaluated from the feature
extraction results, and are learned using end-to-end training. All shapes and
aspect ratios at all locations are used to predict classification scores and offset
values to better fit the object. Similarly as for YOLO, NMS and an acceptance

9. How these BBoxes should be formed is learned during training.
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Figure 5.3: SSD framework. Subfigure (a) displays an arbitrary input image with
ground truth BBoxes. Subfigures (b) and (c) visualize some default BBox
with different sizes and aspect ratios before evaluation, and how location
offsets and class scores are predicted.
Image credits: Liu et al. (2016a).

threshold for the classification score is applied to conclude which BBoxes to
accept.

Results of speed versus mAP for YOLO and SSD are also included in the
comparison of benchmark object detection models in Table 5.1. These results
show that grid-based models report promising results. The mAP is fairly good
compared to the slower proposal-based models. YOLO and SSD can operate
in exceptional 45 frames per second (fps) and 59 fps, respectively, making
them well suited for real-time inference problems. These results are reported
from an experiment on the PASCAL VOC 2007 dataset (Everingham et al.,
2010), which mostly contains large objects covering the images densely. In
the field of ship detection in remote sensing images, there may be a risk that
smaller ships will not be detected. A study of errors in YOLO shows that it
makes a significant amount of localization errors compared to state-of-the-art
proposal-based object detectors (Redmon and Farhadi, 2017).

5.2.4 Rotation Invariant Networks
Common for EO images is that objects will be arbitrarily oriented. It is there-
fore desirable to modify deep CNN for object detection to process the images
correctly and do valuable predictions for all object orientations. Naively, the
convolutional filters in the network will precisely learn the object character-
istics, including the rotation. For remote sensing images, having arbitrarily
oriented objects, we want our network to be invariant to these rotations. A
rotation invariant network is a network having a mapping f (x ;θ ) that is inde-
pendent on the rotation of the data (Theodoridis and Koutroumbas, 2009). A
CNN is translation invariant from its architecture design. A common approach
to synthesize rotation invariance in object detection networks is to train it on a
wide variety of object rotations. This can be called rotation pseudo-invariance.
In a rotation pseudo-invariant network, the network will learn that different
object rotations may occur. To achieve this, it is necessary to have enough
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training data or to augment the data properly1⁰. Rotation invariance concerns
the loss and decisions of a neural network, but has nothing to do with the
label appearance. This is where rotatable bounding boxes (RBox) (often called
oriented bounding box (OBB)) come in handy.

5.2.5 Rotatable Bounding Boxes
RBox is an extension of the traditional BBox. For the traditional BBox, the
size and aspect ratio may not reflect the real shape of the object, and a lot of
background pixels could fall into the box (Liu et al., 2017a). This will create
an uncertainty when classifying objects inside the BBoxes. In Figure 5.4, the
subfigure on the left hand side also visualizes the problem of using traditional
BBoxes on neighboring objects.

The RBox introduces one additional parameter on top of the five existing
parameters for a BBox: θRBox = {θx , θy, θw , θl , θϕ, c}. Here θϕ is a trainable
parameter representing the orientation of the BBox. The right hand side sub-
figure in 5.4 visualizes how much background that can be omitted and how
great an improvement there is when adopting RBoxes. There are also some
drawbacks when using RBox over BBox. One additional parameter typically
leads to longer training- and test time, and there are in principle need for many
more region proposals for proposal-based models.

Figure 5.4: Image tile visualizing how the RBox is able to locate the shipmore precisely,
while excluding background from the bounding box, as compared to the
traditional BBox. Image is from the Airbus ship detection data set (Kaggle,
2018).

In the field of ship detection, most detectors do not distinguish between bow
and stern of a ship. In such cases, if the predicted RBox has an angle θϕ , the
true ship heading will lie in the set {θϕ , θϕ ± 180◦}.

10. Data augmentation was introduced in section 4.6.5 and will be studied further in section
7.3.
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5.3 Deep Learning Computation
With the growing popularity of deep learning over the later years, several
deep learning frameworks have been implemented and published as open
source (Bahrampour et al., 2015). They are also a lot of the reason behind
the efficient development in deep learning. Deep learning frameworks are
often user-friendly and allow anyone to experiment on machine learning.
They are usually computationally faster than self-defined layers, gradients
and optimizers, and relax the requirement of heavy mathematical insight.
Deep learning frameworks numerically approximate gradients using automatic
differentiation (Paszke et al., 2017). The inclined reader is encouraged to study
the concept of automatic differentiation.

Available deep learning frameworks includes, but are not limited to, Caffe
(Jia et al., 2014), Pytorch (Paszke et al., 2019), Fastai (Howard and Gugger,
2020), Tensorflow (Abadi et al., 2015), and Keras (Chollet et al., 2015). Keras
is a high-level framework running Tensorflow back-end. Fastai is a high-level
framework running Pytorch back-end. Many modern frameworks have also
implemented support for initializing networks using pretrained weights.

5.3.1 Pretrained Deep Learning Models
When training a deep neural network, millions of parameters are fine-tuned
to learn the necessary information. Generally, these parameters are randomly
initialized before training. If the amount of training data is not of significant
size, the parameters will not manage to learn the main contours and crucial
characteristics which is needed to make reasonable predictions.

A common solution is to initialize the network with already trained weights of
a similar problem, instead of a random initialization. If an architecture includes
a widely used neural network, this part of the architecture can be initialized
using pretrained weights. For instance, a lot of deep learning models include
well known CNNs such as VGG (Simonyan and Zisserman, 2014), ResNet (He
et al., 2016) and AlexNet (Szegedy et al., 2013) somewhere in the architecture.
There are published open-source weights for these models that are pretrained,
often on ImageNet (Russakovsky et al., 2015). If a ship detector is initialized in
such a manner, it can directly focus on the characteristics of a ship, instead of
using time to learn basic concepts that are similar for all images.



6
Object Detection NeuralNetworks and ShipDetection
In chapter 5, the reader was introduced to different paradigms of object de-
tection using machine learning. A review on ship detection in remote sensing
images reveals that for SAR images, segmentation-based models are mainly
used to obtain a pixel-wise prediction of ships. For optical satellite images,
with their high spatial resolution, bounding box-based models are mostly used.

In this chapter, the reader will be given a presentation of the object detection
literature, with a particular focus on the ship detection task. Faster R-CNN (Ren
et al., 2015), DRBox (Liu et al., 2017a), YOLOv2 (Redmon and Farhadi, 2017),
Tiny YOLO and ODGI (Royer and Lampert, 2020) will be particularly reviewed,
as these are considered the core of the thesis, and will be experimented on in
part IV as well. Traditional ship detection methods are introduced to give an
impression of how deep learning revolutionized the research field of ship detec-
tion. Segmentation-based ship detection is reviewed for an overall impression
of how such models play a significant part of ship detection in remote sensing
images. State-of-the-art bounding box-based models that are not specifically
studied in this thesis are also included to give an updated status on the research
field.

47
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6.1 Traditional Ship Detection
Traditionally, ship detection in remote sensing images is based on analyzing
the statistics of the scene, and use detection theoretical techniques upon this.
The most common ship detection methods are based on a constant-false alarm
rate (CFAR) detector1 assuming that the background pixel intensities (non-
ship pixels) follow a known distribution, for instance a gamma distribution
(Eldhuset, 1996). The principle of CFAR is to adaptively determine a detection
threshold while preserving a defined number of false alarms (Tao et al., 2016),
which is possible for algorithms that staisfy the so-called CFAR property. A CFAR
detector thereforemodels the statistical pixel distribution,while utilizing formal
hypotheses with a probabilistic interpretation. However, these models are based
on processing of single-pixels, resulting in non-contextual decision making
which makes these detectors less suitable for the high spatial resolutional
instruments found in modern satellites and images with distributed targets
that extend over many pixels.

Recently, deep learning based ship detection architectures have shown state-of-
the-art performance. Most object detection models nowadays use deep learning
to learn different complex and non-complex scenes. Before embarking the state-
of-the-art deep learning architectures, the reader will get a brief introduction
to traditional machine learning principles that ruled object detection in remote
sensing images the first decade of this millennium.

Cheng and Han (2016) present an excellent overview of the scientific journey in
the field of object detection in remote sensing images, with a focus on machine
learning techniques. Template matching defines an ideal shape of the object
to find, in this case; a ship, and a similarity measure is used to evaluate the
goodness of fit according to shape, color and other features. Template matching
in remote sensing images is tested in for example Liu et al. (2013).

Other strong machine learning architectures for object detection in remote
sensing images typically consists of bringing the data into a strong feature
representation, then apply a trained classifier to find the features of interest.
Such classifiers include the support vector machine (SVM) (which has been
used in Han et al. (2014), Xu et al. (2009) and Zhang et al. (2014)), AdaBoost
(which has been used in Grabner et al. (2008)) and conditional random field
(as has been proposed in Zhong and Wang (2007)). To get a suitable feature
representation, the bag-of-words (BoW)model (Li and Perona, 2005) is a strong
and popular tool. Another widely used tool for transforming data into a suitable
feature representation is the histogram of oriented gradients (HOG) (Dalal and
Triggs, 2005). The BoW model is very simple, yet efficient and also invariant to

1. Recall from subsection 4.7.1 that false alarms are reported detections not coinciding with
a ground truth ship.
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viewpoint variation (Cheng et al., 2016). The HOG is somewhat more complex,
but has been widely acknowledged as one of the best models for capturing edge
and shape of objects, and is considered as an even stronger tool for feature
representation than BoW.

Ship detection using deep learning has now largely taken over. This brings us
over to object detection using segmentation-based and bounding box-based
models.

6.2 Architectures Based on Segmentation
As stated earlier, segmentation-based models are not directly studied and ex-
perimented on in this thesis, but are briefly included for a holistic perspective
because segmentation-based detectors are widely used in the field of ship de-
tection. Most such object detectors are based on the standard FCN (Long et al.,
2015) and U-Net (Ronneberger et al., 2015) architectures. An example model
where FCN has been further developed to generate more reliable predictions
is the Res-FCN (Lin et al., 2017a).

6.2.0.1 Res-FCN: Lin et al. (2017a)
2 Resnet-50 modified into a fully convolutional network (Res-FCN) combines
a fully convolutional structure and a multidimensional attention network to
reliably predict ships in remote sensing images. The attention network is
trained to localize bow and stern of all ships. These locations are then used to
predict the total shape of the corresponding ships, with the objective of doing
better predictions on adjacent ships.

6.3 Architectures Based on Bounding Boxes
When R-CNN was presented (Girshick et al., 2014), it was one of the first
successful proposal-based object detection networks operating at acceptable
computational cost. Since then, there have been lots of improvements in object
detection, and the principles in R-CNN formed a foundation for proposal-based
object detection that still is used in remote sensing analysis. For grid-based
object detection, YOLO (Redmon et al., 2016) and SSD (Liu et al., 2016a) formed
such foundations recurring in modern grid-based detectors. Traditionally, grid-
based object detectors were too elementary to be used on large scale remote
sensing images.

2. This paragraph is made a subsection for consistency with architectures that will be intro-
duced in the following sections.
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Liu et al. (2017a) presented the DRBox estimating rotatable bounding boxes3,
with an architecture based on SSD. Recall section 5.2.5 and Figure 5.4 stressing
how great an improvement there is when using RBox over the traditional BBox.
Since then, several descendants have been practicing RBoxes.

In chapter 1, it was mentioned that Liu et al. (2018) claimed that there is less
focus on detecting orientation of objects in remote sensing images because
the great benchmark data sets have omitted data on object orientation, and
hence operates with traditional BBoxes. In 2018, Kaggle published a data set on
ship detection in optical satellite images (Kaggle, 2018), and Xia et al. (2018)
published a data set for object detection in aerial images, opening up for a
wider interest in the research field.

Object detection in large scale remote sensing scenes is different from natural
everyday scenes, and different methods are often used for these scenarios. The
large difference between these scenarios is the large scale and the great variety
in object rotation and scale in remote sensing images⁴.

6.3.1 Proposal-based Methods
From section 5.2, it is clear that proposal-based object detection developed
rapidly in the initial phase after R-CNN (Girshick et al., 2014) was presented.
Most proposal-based models today follows the foundation of Faster R-CNN
(Ren et al., 2015) (introduced in section 5.2), but with a twist evolving it to be
specialized for a specific task.

Faster R-CNN (Ren et al., 2015) has been considered as the state-of-the-art object
detection architecture also within remote sensing images. Recently presented
architectures are specialized on large scale images and to recognize ship
characteristics, and have shown state-of-the-art performance on ship detection.

6.3.1.1 HDNN: Chen et al. (2014)
Hybrid Deep Neural Network (HDNN) is specifically designed for detecting
vehicles in high-resolution satellite images using traditional BBoxes. The basic
idea behind this model is that the data is run trough multiple subnetworks at
the end of the model, where the different subnetworks operate with different
receptive fields. This makes the model able to extract variable-scale features,
resulting in a more robust shape prediction when object size varies. It uses
sliding window for anchor generation, and is built on an undocumented deep
CNN.

3. Liu et al. (2016b) introduced the principle of rotatable bounding boxes in 2016, based on
Faster-RCNN (Ren et al., 2015). However, the DRBox from 2017 is a more stable and strong
tool.

4. In section 7.2, there will be discussed that ship pixels usually are highly underrepresented
in satellite images.
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6.3.1.2 Faster R-CNN: Ren et al. (2015)
A conceptual description of Faster R-CNN was given in section 5.2.2. The
architecture, training methodology and optimization objective will now be
described in detail.

Faster region-based convolutional neural network (Faster R-CNN) has emerged
from the ancestors R-CNN and Fast R-CNN, and is an end-to-end trainable
architecture consisting of a region proposal network, a regression network,
and a classification network. Essentially, the RPN suggests locations and shapes
(anchors), the regression branch refines these anchors for a better fit, and the
classification branch takes in these arbitrarily shaped regions and evaluates
the confidence scores. There are in general several times as many proposed
regions than objects in the image. This is resolved by applying a user-defined
threshold where anchors having a confidence score lower than this threshold
are rejected. Also, NMS is applied to the final result to reduce redundancy.

During training, the RPN will get feedback on which regions that coincide with
the ground truth object bounding boxes. Gradually, the RPN will learn which
proposed regions were accepted as correct predictions and which were false
alarms. Themain idea behind Faster R-CNN is to integrate an RPN into the CNN
used in Fast R-CNN, and use shared weights between the RPN and the object
detection network to decrease the inference time and for faster convergence.
Faster R-CNN (Ren et al., 2015) operates with traditional BBoxes. However,
there have been developed architectures operating with RBoxes based on the
Faster R-CNN architecture (Xia et al., 2018).

Network Structure
Figure 6.1 summarizes the main components and data flow in the Faster R-CNN
model. A simple fully convolutional network produces convolutional feature
maps. An RPN is applied to this feature map to produce prior BBoxes. In the
subfigure on the left hand side, the output of the base CNN is passed both to
the RPN and to the later RoI pooling layer. This is referred to as using shared
weights, and is argued to decrease the computational cost of region proposal
(Ren et al., 2015). VGG (Simonyan and Zisserman, 2014) is used as the base
CNN, encouraging the use of a pre-trained network.
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Figure 6.1: Overview of main components in the Faster R-CNN model (left), and a
conceptual sketch of the region proposal network (right). Image credit:
Ren et al. (2015).

RPN
The right hand side subfigure in 6.1 displays a conceptual sketch of the RPN.
A small window is slid over the convolutional feature map, where each sliding
window is mapped to a 512-dimensional vector⁵. ReLU activation functions are
applied to the small slidingwindowoutputs. This 512-dimensional vector in each
sliding window is fed into two fully-connected sibling layers: a BBox-regression
layer (reg) and a BBox-classification layer (cls). Each sliding window predicts k
anchors, where k is a hyperparameter, leading to 2k and 4k parameters output
from the cls and the reg layers, respectively. Experimentation with 3 scales and
3 aspects ratios results in k = 9. The effective receptive field when using VGG
as the base CNN is 228 pixels (Ren et al., 2015).

Training

LFaster =
1

Ncls

Nbox∑
i=1

Lcls (ĉ
(i), c(i))

+
λ

Nbox

Nbox∑
i=1

c(i) Lsmooth
1 (l (i) − д(i))

(6.1)

Equation 6.1 expresses the overall Faster R-CNN loss. Ncls and Nbox are batch
size and number of anchors, respectively, ĉ(i) is the anchor confidence score, c(i)

is the binary ground truth describing if the anchor is an object. l is predicted
BBox parameterization and д is the ground truth BBox parameterization of the
box associated with l . Lcls penalizes false alarms accepted as true objects, and
vice versa. Lcls is the cross entropy loss, as was introduced back in equation

5. The "256-d" label in 6.1 corresponds to a lighter network than VGG.
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4.11, and is now simplified in equation 6.2.

Lcls (ĉ
(i), c(i)) = −c(i) loд(ĉ(i)) − (1 − c(i))loд(1 − ĉ(i)) (6.2)

Lsmooth
1 is the smooth L1 loss, claimed to be less sensitive to outliers, expressed

in equation 6.3.

Lsmooth
1 (ψ ) =

{
0.5ψ 2 , |ψ | < 1
|ψ | − 0.5 ,otherwise

(6.3)

The relation between the BBox parameterization l = {lx , ly, lw , lh} and our
known BBox representation {θx , θy, θw , θh}, is by the mapping given in equa-
tion 6.4.

lx = (θx − xa)/wa, ly = (θy − ya)/ha

lw = loд(θw/wa), lh = loд(θh/ha)
(6.4)

In equation 6.4, θx , θy, θw and θh denote the box center (coordinates θx and
θy), width (θw ) and height (θh). θx is the predicted x-coordinate and xa is
the anchor x-coordinate. The same applies for θy, θw , θh and the ground truth
parameterization д.

6.3.1.3 R2PN: Zhang et al. (2018)
The rotated region proposal network R2PN is end-to-end trainable and con-
cerns detection of arbitrarily oriented ships. Zhang et al. (2018) introduced
both a rotated RPN, and a rotated RoI pooling layer. The rotated RPN uses
the acknowledged VGG network (Simonyan and Zisserman, 2014) for feature
extraction, followed by numerous user defined sizes, aspect ratios and angles
combined with the feature map to produce the region proposals. These are
again regressed to produce more accurate final predictions. The rotated RoI
pooling layer acts as a rotated max pooling operator, and reduces to a stan-
dard RoI pooling if there is no rotation. This model is really interesting and
addresses a lot of the concepts tackled in this thesis, but is not included in
the experiments due to time limitations as since no source code is publically
available.

6.3.1.4 OBB for Faster R-CNN: Xia et al. (2018)
Faster R-CNN (Ren et al., 2015) has also be extended to predict oriented
bounding boxes (OBB)⁶. This model differs from other models predicting
arbitrary-oriented objects, as it predicts all corners using eight parameters,

6. OBB is another name for RBox.
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instead of the common θRBox = {θx , θy, θw , θl , θϕ}.

Xia et al. (2018) do also use a version of rotated RoI pooling, but is not sharing
the model details. The use of eight parameters over the more common five
parameter approach for describing a RBox has later been studied further.
Experiments have shown that eight parameters result in less constraints for
object shape and can potentially enclose objects better. However, the lack of
constraint often result in chaotic predictions for small and challenging objects,
and the field of research has mostly reverted back to the five parameter standard
(Yang et al., 2018).

6.3.1.5 R-DFPN: Yang et al. (2018)
The Rotation Dense Feature Pyramid Network (R-DFPN) aims to address the
problem of ships being hard to detect if the ship width is narrow. It is built on
the principles of the original Feature Pyramid Network (FPN) (Lin et al., 2017b).
Ships tend to appear in various shapes and sizes in remote sensing images.
This model is therefore trained using a multi-scale detection framework. This
will engourage the model to reuse training features at different scales. Yang
et al. (2018) also introduces a multi-scale RoI alignment layer, to compensate
for the RoI pooling layer present in proposal-based object detection models.
Standard RoI is argued to have problems handling large aspect ratios and
to cause misalignment. RoI alignment is much like RoI pooling, but is done
without quantifying the feature grid. This is claimed to result in narrow objects
being more highlighted.

6.3.1.6 SRDet: Yang et al. (2019)
Yang et al. (2019) presented an object detector specialized for detecting small,
cluttered and rotated objects (SCRDet)⁷. This model is end-to-end trainable,
and the three subnetworks, SF-Net, MDA-Net and Rotation Branch, consti-
tute the overall SCRDet as a pipeline. This architecture is more complex than
the ones studied so far, and involves i.a. multi-dimensional attention to high-
light small out-of-focus objects. Even though the complexity leads to higher
precision, the inference and training time will also reflect the complexity.

The subnetwork SF-Net incorporates feature fusion and performs detailed
region proposal. MDA-Net is a multi-dimensional attention network specialized
for highlighting pixels and channels of interest and to neglect noisy background
areas. The Rotation Branch introduces and regresses a rotation parameter for
the region proposals, opening up for RBox prediction.

7. It also goes under the name R2CNN++ as it is an extension from the Rotational Region
CNN (R2CNN) presented in Jiang et al. (2017).
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6.3.2 Grid-based Methods
The evolution of grid-based object detection started really to accelerate, as
described earlier, when YOLO (Redmon et al., 2016) and SSD (Liu et al.,
2016a) were presented. These models build the foundation of grid-based object
detection, and their principles are found in modern grid-based object detectors.

6.3.2.1 DRBox: Liu et al. (2017a)
The Detector using RBox (DRBox) was of the first successful object detector
using RBoxes, and is established as a simple and innovative model giving
state-of-the-art results for a significant period after it was published. DRBox is
extended from the SSD detection framework, as briefly introduced in section
5.2.3, to involve angle estimation.

DRBox is not fully end-to-end trainable, but its performance is pseudo-rotation
invariant. To achieve this, the model is trained on a wide variety of differently
rotated objects to learn that the object can be detected with any orientation. In
addition, by including the angle parameter in the predicted bounding boxes,
the model can realize the existence of orientation differences, rather than being
confused by rotation (Liu et al., 2017a).

Network Structure
In equation 4.16, the standard IoU criterion for two intersecting BBoxes was
introduced. The IoU criterion is used in this architecture for NMS. However,
this model first proposes a prior RBox, then regresses it until it coincides with
the ground truth RBox. Because the intersection of two RBoxes can be any
polygon with no more than eight sides, the traditional IoU criterion is a weak
tool (Liu et al., 2017a). The angle-related IoU (ArIoU) is therefore introduced
as a criterion for refining the angle parameter in the prior RBox. The ArIoU
between a predicted RBox Ψ and a ground truth RBox Γ is defined in equation
6.5.

ArIoU (Ψ, Γ) =
area(Ψ̂ ∩ Γ)

area(Ψ̂ ∪ Γ)
cos(θϕ,Ψ − θϕ,Γ) (6.5)

In equation 6.5, θϕ,Ψ and θϕ,Γ are the angles of regions Ψ and Γ, respectively.
Ψ̂ is identical to Ψ, except having angle parameter θϕ,Γ instead of ϕϕ,Ψ. This
architecture is not distinguishing between bow and stern of the ship i.e., if the
predicted RBox has an angle θϕ,Ψ, then the true ship heading is predicted to
lie in the set {θϕ,Ψ, θϕ,Ψ ± 180◦}. Because of this, the authors also presented
the ArIoU180 measure (defined in equation 6.6) to better tackle the situations
where θϕ,Ψ −θϕ,Γ ≈ 180◦. Note that equations 6.5 and 6.6 is non-commutative
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(i.e. ArIoU (Ψ, Γ) , ArIoU (Γ,Ψ)). The standard IoU criterion is commutative.

ArIoU180(Ψ, Γ) =
area(Ψ̂ ∩ Γ)

area(Ψ̂ ∪ Γ)
| cos(θϕ,Γ − θϕ,Γ) | (6.6)

Figure 6.2: Network structure of DRBox (Liu et al., 2017a). The model searches for
objects by sliding and rotating prior RBoxes on input images and return
location and orientation of objects.

Figure 6.2 presents the network structure of DRBox, with its convolutional
architecture. A truncated VGG-net (Simonyan and Zisserman, 2014) is used for
feature extraction. The last convolutional layer is for prediction and includes
K groups of channels, where K is the number of prior RBoxes at each location.
All prior RBox locations are determined from a predefined grid. For each prior
RBox, the prediction layer outputs a predicted confidence, and 5 corresponding
parameters describing the regressed offset from the prior RBox. At last, there
is a decoding process for moving the prior RBoxes to the refined position,
and NMS to remove repeated predictions. To moderate the abundance of prior
RBoxes, the user predefines which angles, aspect ratios and sizes to be proposed
at each location.

The receptive field of DRBox is 108 pixels (Liu et al., 2017a). With the constantly
evolving remote sensing technology, the reader may notice that this will put
some restrictions.

During training, a prior RBox P is assigned to match the corresponding ground
truth RBox G iff ArIoU (P,G) > 0.5. These matched boxes will represent
positive samples and contribute the loss during training⁸. The objective loss
function is an extension from SSD (Liu et al., 2016a), where there is included

8. Note that there still is an abundance of matching RBoxes. Many of these will be removed
by NMS.
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an additive angle-related term.

L(x,c, θ̂RBox ,θRBox ) =
1
N

(
Lconf (c) + Lrbox (x, θ̂RBox ,θRBox )

)
(6.7)

The overall objective loss function is given in equation 6.7, where N is the
number of matched prior RBoxes. Lconf (c) is the softmax loss over all positive
and negative samples, kept in the confidence vector c. The RBox regression
loss Lrbox (x, θ̂RBox ,θRBox ) between the predicted RBox θ̂RBox and the ground
truth RBox θRBox is given in equation 6.8.

Lrbox (x, θ̂RBox ,θRBox ) =
∑
i ∈Pos

∑
j

∑
m∈{x ,y,w ,l ,ϕ }

xi jL
smooth
1

(
¯̂θ (i)RBox ,m − θ̄

(j)
RBox ,m

)
(6.8)

Equation 6.8 contains membership coefficients xi j ∈ {0, 1} being 1 iff the i-th
prior RBox is matched to the j-th ground truth RBox. Further, ¯̂θRBox and θ̄RBox
are the regressed offsets of all parameters in θ̂RBox and θRBox , corresponding
to the prior RBox p, as defined in equation 6.9. Lsmooth

1 is the smooth L1 loss,
also used in Faster R-CNN, and expressed in equation 6.3. By minimizing the
overall objective loss function during training, and hence the angle regression
term t̂ϕ , it ensures that the correct angle is learned during training.

t̂x = (tx − px )/pw , t̂y = (ty − py)/ph

t̂w = loд(tw/pw ), t̂h = loд(th/ph)

t̂ϕ = tan(tϕ − pϕ)

(6.9)

Complementary Details
It was mentioned that the angle, aspect ratio and size needs to be user defined.
In this thesis, we are only concerned with ship objects and typical aspect ratios
and sizes repeat, but in the general case this is considered a drawback.

6.3.2.2 YOLOv2: Redmon and Farhadi (2017)
In chapter 5, YOLOv1⁹ was conceptually introduced as a benchmark grid-
based object detector. YOLO version two (YOLOv2) is an extension of YOLOv1,
with the objective of significantly improving accuracy in addition to reducing
inference time. Main design components included for increased performance

9. As extensions of YOLO have been developed, the traditional YOLO is often referred to as
YOLO version one (YOLOv1).
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includes batch normalization, location and scale offset regression, and a fully
convolutional structure.

Where other object detectors tend to be large, complex and precise, YOLOv2
simplifies the network even more from YOLOv1, and includes a collection of
carefully selected promising principles, like the mentioned ones, to achieve
fast and accurate predictions. YOLOv2 predicts traditional BBoxes. It is not
rotation invariant, however, rotation invariance is commonly synthesized using
the approach described in section 5.2.4.

Network Structure
Similarly as for YOLOv1, the image is split into a grid withC2 cells. The cells can
be thought of as prior BBoxes, where both shape and localization is learnable
regression parameters to enclose objects better.

Table 6.1 presents all layers of the YOLOv2 object detector, with shapes cor-
responding to experiments performed in part IV. There are seven blocks of
convolutional layers, with ReLU activation function after each convolutional
layer, and MaxPooling between each block. All shapes are stated according
to experiments performed in part IV, and the output layer corresponds to
predicting 1024 BBoxes described by 5 parameters θBBox = {θx , θy, θw , θh, c}.
The output shape of the last layer can be modified to fit various problems. It is
also common to apply an activation function to the final output, dependent on
the task under consideration.

The final BBoxes predicted by YOLOv2 is calculated from equation 6.10 (Red-
mon and Farhadi, 2017). θBBox = {θx , θy, θw , θh} is the predicted bounding
box, tx , ty, tw and th are predicted offset values, c is the confidence score, to is
outputted confidence before sigmoid activation function is applied1⁰, px and
py is the top left corner of the cell in the grid, and pw and ph is the height
and width of the cell, respectively. All θx , θy, θw , θh,px ,py,pw and ph are nor-
malized relative to the image width and height. By using this approach, the
localization will be predicted relative to each cell and the ground truths will
always have a position relative to each cell bounded on the range [0, 1]. The
sigmoid activation function is applied to tx and ty in equation 6.10 to constrain
the predicted locations relative to the cells as well. Using a per-cell location
approach like this remedies model instability and results in more sensible
predicted offsets at an early stage of training.

10. Applying sigmoid to achieve a conficence score c ∈ [0, 1] is very common. This allows the
confidence scores to be interpreted as probabilities.
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Table 6.1: All layers with corresponding properties of the YOLOv2 network (Redmon
and Farhadi, 2017). Output sizes correspond to image shapes used for
experimentation in this thesis.

Type Filters Filter Size / Stride Output Size
Conv. 32 3 × 3 512 × 512

MaxPool 2 × 2 /2 256 × 256
Conv. 64 3 × 3 256 × 256

MaxPool 2 × 2 /2 128 × 128
Conv. 128 3 × 3 128 × 128
Conv. 64 1 × 1 128 × 128
Conv. 128 3 × 3 128 × 128

MaxPool 2 × 2 /2 64 × 64
Conv. 256 3 × 3 64 × 64
Conv. 128 1 × 1 64 × 64
Conv. 256 3 × 3 64 × 64

MaxPool 2 × 2 /2 32 × 32
Conv. 512 3 × 3 32 × 32
Conv. 256 1 × 1 32 × 32
Conv. 512 3 × 3 32 × 32
Conv. 256 1 × 1 32 × 32
Conv. 512 3 × 3 32 × 32

MaxPool 2 × 2 /2 16 × 16
Conv. 1024 3 × 3 16 × 16
Conv. 512 1 × 1 16 × 16
Conv. 1024 3 × 3 16 × 16
Conv. 512 1 × 1 16 × 16
Conv. 1024 3 × 3 16 × 16
Conv. 1024 1 × 1 5 × 1024

θx = σ (tx ) + px

θy = σ (ty) + py

θw = pwe
tw

θh = phe
th

c = σ (to)

(6.10)
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LYOLOv2 = Llocalization + Lconf idence

= λcoord

C2∑
i=0

B∑
j=0

1ob ji j

[(
θ (i)x − θ̂

(i)
x

)2
+

(
θ (i)y − θ̂

(i)
y

)2
]

+ λcoord

C2∑
i=0

B∑
j=0

1ob ji j

[(√
θ (i)w −

√
θ̂ (i)w

)2

+

(√
θ (i)h −

√
θ̂ (i)h

)2
]

+

C2∑
i=0

B∑
j=0

1ob ji j

(
c(i) − ĉ(i)

)2

+ λnoobj

C2∑
i=0

B∑
j=0

1noobji j

(
c(i) − ĉ(i)

)2

(6.11)

The detection loss for YOLOv2 origins from Sum of Squared Errors11 and is
given in equation 6.1112, where the following notation is used:

• λcoord and λnoobj are hyperparameters to regulate the weighting of
coordinate loss in the total loss, and to decrease the total loss when
detecting only background, respectively.

• C2 and B are the total number of cells in the grid, and total number of
bounding boxes, respectively.

• 1ob ji j is a boolean value indicating if the j − th bounding box in cell i is
responsible for detecting the object. 1noobji j is the complement of 1ob ji j .

• ĉ(i) is the confidence score of box j in cell i.

• {θ (i)x , θ
(i)
y , θ

(i)
w , θ

(i)
h , c

(i)} describes the parameters of the true bounding
box j in cell i.

• {θ̂ (i)x , θ̂
(i)
y , θ̂

(i)
w , θ̂

(i)
h , ĉ

(i)} describes the parameters of the predicted bound-
ing box j in cell i, calculated from equation 6.10.

11. Similar to MSE, introduced in section 4.4.
12. The loss can be extended to include classification loss as well. This is omitted as it is not

relevant for this thesis.
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YOLO will predict multiple BBoxes per cell13. Only the best prediction is used
when calculating the loss. The best prediction is the BBox having largest
IoU with a ground truth label, and is referred to as the responsible prediction
for that object. This strategy will cause the model to make better and more
accurate predictions for every iteration. The localization loss measures the
error between the ground truth object and the responsible prediction. Square
root of the width and height is used to address the problem of weighing the
absolute error of small and large boxes unequally. The confidence loss is split
into one part handling predictions in cells containing ground truth objects, and
one part handling cells where there are no ground truth objects. The binary
variable 1ob ji j and its complement 1noobji j keeps track of which predictions that
are considered responsible. The hyperparameter λnoobj remedies the class
imbalance problem arising from training data having a large majority of empty
cells.

The powerful regularization technique of batch normalization is applied on
all convolutional layers (Redmon and Farhadi, 2017). NMS is performed at
the end of the model before outputting the final results during inference and
validation. Royer and Lampert (2020) suggests that λcoord = 1 and λnoobj = 5
are appropriate values for the common remote sensing data set.

6.3.2.3 Tiny YOLO
Originating from YOLOv2, the shallower model Tiny YOLO (or Tiny YOLOv2)
has also been developed. No official article has been posted on Tiny YOLO, but
except having a lighter neural network as base, all concepts is identical as for
YOLOv21⁴.

Tiny YOLO is specialized for detecting simpler objects at high speed. The
lightweight neural network being the foundation of Tiny YOLO is presented in
Table 6.2. It has seven convolutional layers with subsequent ReLU activation
functions and MaxPool layers in between. Similar as for YOLOv2 in Table 6.1,
this model also is a fully convolutional network, where the output shape of the
last layer is customized for the specific problem.

Tiny YOLO reports exceptional frame rate during inference. It is able to run
over three times faster than YOLOv2, but in return the mAP decreases with
about 25%1⁵.

13. https://medium.com/@jonathan_hui/real-time-object-detection-
with-yolo-yolov2-28b1b93e2088 summarizes different YOLO models with their
corresponding loss functions perfectly.

14. Tiny YOLO is developed by the same developer as YOLOv2. The official web cite, with
related experiments, can be found at https://pjreddie.com/darknet/yolo/.

15. Tiny YOLO operates at unbeatable 207 fps whereas YOLOv2 operates at 67 fps, according
to the official YOLO page: https://pjreddie.com/darknet/yolov2/.

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolov2/
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Table 6.2: All layers with corresponding properties of the tiny-YOLO network. Output
sizes correspond to image shapes used for experimentation in this thesis.

Type Filters Filter Size / Stride Output Size
Conv. 16 3 × 3 51 × 512

MaxPool 2 × 2 /2 25 × 256
Conv. 32 3 × 3 25 × 256

MaxPool 2 × 2 /2 12 × 128
Conv. 64 3 × 3 12 × 128

MaxPool 2 × 2 /2 64 × 64
Conv. 128 3 × 3 64 × 64

MaxPool 2 × 2 /2 32 × 32
Conv. 256 3 × 3 32 × 32

MaxPool 2 × 2 /1 16 × 16
Conv. 512 3 × 3 16 × 16
Conv. 1024 1 × 1 5 × 1024

6.3.3 ODGI: Royer and Lampert (2020)
In December 2019, Prof. Christoph Lampert presented how his ph.d. student
Amélie Royer and he utilizes object groupings in their Object Detection with
Grouped Instances (ODGI) model at a deep learning conference in Tromsø.
This brought the author to the idea of testing this model on ship detection
in optical satellite images as part of this thesis. Royer and Lampert (2020)
has primarily focused on detecting people and cars in aerial images, not ships
in satellite images. ODGI will be experimented on in chapter 9, and is the
foundation behind the novel model presented in chapter 8.

The main principle of ODGI is to combine a series of stages where each stage is
an individual object detector, able to predict either individual object instances or
grouped object instances to pass further to consecutive stages. Royer and Lam-
pert (2020) experiments on using the grid-based YOLOv2 (Redmon and Farhadi,
2017), Tiny YOLO and MobileNet (Sandler et al., 2018) as object detectors in
each stage. Because each stage is capable of predicting either an individual
instance or to propose a grouped instance for further analysis in consecutive
stages, ODGI can be considered a hybrid of grid-based and proposal-based
object detector, where each stage that can propose grouped instances is a
region proposal network. When focusing on individual or grouped instances
at an early stage, most of the computation is concentrated on important and
decisive regions (Royer and Lampert, 2020).

Most existing object detectors today are inefficient for grouped instances and
do not exploit the potentials in grouped instances (Royer and Lampert, 2020).
The motivation behind this pipeline scheme is that groupings are visually
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more salient and easier to detect than individuals. ODGI is a single-class object
detection scheme for inhomogeneously distributed objects, but can easily be
extended to include multi-object categories and classification as well.

Figure 6.3: ODGI overview. Compiled by a grid-based object detector at each stage ϕs .
A stage ϕs can predict an individual object instance or propose a grouped
object instance to be passed to consecutive stages. Image credits: Royer
and Lampert (2020)

The multi-stage pipeline visualized in Figure 6.3 consists of S stages, ϕS ◦ · · · ◦
ϕ1, S > 1. Each stage ϕs for s < S −1, is a lightweight object detection network
predicting both individual object instances and grouped object instances (Royer
and Lampert, 2020). A candidate for further refinement predicted at stage ϕs
will be the input to the consecutive stage, ϕs+1. Such a segment, input to the
consecutive stage, will be denoted as a crop. The last stage is constrained to
only output individual objects.

For sorting the predictions at each stage, there is a need for two hyperparam-
eters, τlow and τhiдh , and a binary group flag д, which will be introduced in
the next paragraph. There are three possibilities during this sorting:
i) c ≤ τlow : The prediction is discarded.
ii) c ≥ τhiдh and д = 0: The predictions is considered as an individual object
instance and skips consecutive stages.
iii) (c > τlow and д = 1) or (τlow ≤ c < τhiдh and д = 0): Prediction is
either a group or an individual with medium confidence and is passed on to
the consecutive stage.

NMS is applied to all candidates of possibility iii) at intermediate stages before
being passed on to next stage. The hyperparameter τs regulates the maximum
number of predictions to refine in consecutive stages. After NMS, these τs
predictions will have highest possible confidence and lowest possible overlap.
These predictions are processed to form subimages ready for further refinement
in stage ϕs+1. This process includes multiplying the prediction width and
height by 1/ow and 1/oh , respectively, where (ow ,oh) are learned offset values
as describes below. The final output will be all accepted predictions of the
final stage ϕS , in addition to all strong individual predictions (possibility ii))
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in preceding stages.

Training
The model is trained to recognize individuals and groups in the respective
stages. The original labels are therefore expanded to form group labels as
well, which is used as ground truth when training the model. To expand the
ground truth labels from the individual object instance form to the grouped
object instance form, there is a need for a study of adjacent individuals. This
is done by utilizing the grid that was formed mainly to be used in the grid-
based object detectors over the stages. This grid size is dependent on image
resolution and the average object sizes. Royer and Lampert (2020) uses a grid
size 32 times larger than the pixel size. If two individual objects appear in the
same grid cell, a group mask is formed to enclose both these individuals, and
possibly additional adjacent individuals. An example of one such group mask
is visualized in Figure 6.4. The individual object labels for both these ships are
occurring in at least one common cell, and is therefore considered as a group
instance. Individual object instances with no adjacent objects will retain its
original label.

In addition to the common practice of using five parameters for each prediction
(θBBox = {θx , θy, θw , θh, c}), ODGI is augmented to also predict a binary group
flag д, as well as two offset values (ow , oh). д indicates whether the prediction
is considered to be an individual instance (д = 0) or a group instance (д = 1).
The offset values (ow , oh) are used for rescaling group instances before passing
these to subsequent stages. These offset values will ensure that relevant regions
are covered well enough, and compensate for the potential challenge that the
detectors are learned to exactly predict the ground truth labels, not to fully
enclose them. Intermediate stages are also modified to predict one BBox per
cell. The intuition is that the grid resolution is not always fine enough to contain
only one object per cell. If that was fulfilled, the problem is reduced to a simple
object detection problem. Otherwise, if a cell contains multiple objects, the cell
needs a closer study to distinguish individual object instances.

Each ODGI stage is trained independently using the three loss terms expressed
in equation 6.12, and is optimized using standard backpropagation.

LODGI = Lдroups + Lcoords + Lof f sets (6.12)

The loss terms will be described in the following.

The group loss term, Lдroups , will drive the model to classify predictions as
individuals or groups, and is calculated as a binary classification objective
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Figure 6.4: Visualization of how a group mask (purple) is formed based on two single
instance masks (green). The single instance masks are both appearing
in at least one common cell and are therefore considered as members of
a group instance. The grid (right hand side) consists of cells of 32 × 32
pixels and is used for grid-based detection.

expressed by equation 6.13:

Lдroups = −
∑
i , j

A(i , j)
(
д̄(j)loд(д(i , j)) + (i − д̄(i , j))loд(1 − д(i , j))

)
(6.13)

A(i , j)(n) is a binarymask indicating if an individual ground truth labelb(n), n =
1, ...,N is assigned to output cell (i, j). Mathematically expressed by equation
6.14:

A(i , j)(n) = J| b(n) ∩ cell (i , j) |> 0K, withJxK = 1 i f x, else 0 (6.14)

Formally, B(i , j) is now introduced as the predictor to cell (i, j), and will be used
in the following. We also denote its ground truth coordinates as B̄(i , j) and its
group flag as д̄(i , j), as is used in equation 6.13, mathematically expressed as:

B̄(i , j) =
⋃

n |A(i , j )(n)=1

b(n) (6.15)

д̄(i , j) = J#{n | A(i , j)(n) = 1} > 1K (6.16)

In equation 6.15,
⋃

denotes the minimum enclosing bounding box of the set.

The coordinate loss term of equation 6.12, Lcoords , is based on a standard
mean squared error loss, similar to what is used in for example YOLOv2. It is
mathematically expressed in equation 6.17 using the terms and sets introduced
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for this model:

Lcoords =
∑
i , j

A(i , j)‖B(i , j) − B̄(i , j)‖2 + λconf ‖c
(i , j) − c̄(i , j)‖2

+λnoobj
∑
i , j

(1 −A(i , j))(c(i , j))2)
(6.17)

The two first terms of equation 6.17 are least square error objectives of predicted
coordinates and confidence scores. The ground truth confidence score c̄i j is
defined as the IoU between the prediction and its assigned ground truth target,
expressed by equation 6.18:

c̄(i , j) = IoU
(
B(i , j), B̄(i , j)

)
=
| B(i , j) ∩ B̄(i , j) |

| B(i , j) ∪ B̄(i , j) |
(6.18)

The last term in equation 6.17 is for penalizing non-zero confidence scores
in empty cells. This is necessary for remedying the class imbalance problem,
similar to what was used in the YOLOv2 loss in equation 6.11. The parameters
λconf and λnoobj are penalizing hyperparameters to be adjusted for the specific
problem.

The offset loss term in equation 6.12, Lof f sets , will encourage refinement of
prior boxes at intermediate stages, and hence better coverage of extracted
crops. Intermediate stages will predict offset values (ow ,oh) that are used for
rescaling crops before they are passed on to consecutive stages, as described
earlier.

Lof f sets =
∑
i , j

A(i , j)
[(
ow − ōw

(
B(i , j), B̄(i , j)

))2

+
(
oh − ōh

(
B(i , j), B̄(i , j)

))2
] (6.19)

Equation 6.19 expresses how the offset loss term is calculated, where the
target vertical and horizontal offset values, ōw (B(i , j), B̄(i , j)) and ōh(B(i , j), B̄(i , j)),
respectively, are determined as:

ōh

(
B(i , j), B̄(i , j)

)
=max

(
1,h(B(i , j))/hscaled

(
B(i , j), B̄(i , j)

))
(6.20)

In equation 6.20,α denotes the center y-coordinate,h(B(i , j)) denotes the height
of box B(i , j) and δ is a margin hyperparameter regularizing the minimum
desirable overlap between a prediction and the corresponding ground truth.
Royer and Lampert (2020) uses δ = 0.0025, half the average object size in their
data. Further, B(i , j) and B̄(i , j) denotes a predicted box and its assigned ground
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truth box, respectively. The function hscaled (B(i , j), B̄(i , j)) scales the prediction
B(i , j) with respect to its assigned ground truth B̄(i , j), and is calculated as:

hscaled (B(i , j), B̄(i , j)) =max
(
| (α(B̄(i , j)) + h(B̄(i , j))/2 + δ ) − α(B(i , j)) |,

| (α(B̄(i , j)) − h(B̄(i , j))/2 − δ ) − α(B(i , j)) |
)
(6.21)

The horizontal offset ōw is calculated identically as ōh , but using the center
x-coordinate and its width instead.

Complementary Details
The number of stages S to be used in the pipeline is user defined and should
be set according to image resolution and object sizes, with the speed versus
accuracy trade-off in mind. Royer and Lampert (2020) argues that S = 2 is
sufficient for most ordinary remote sensing problems, and that S > 2 is more
suited for very-large scale scenarios, e.g. gigapixel images.

In total, the ODGI model is modified using the hyperparameters
τlow , τhiдh, τnms , τs , S, λconf , λnoobj and δ . Recall that τlow and τhiдh are the
weak (τlow ) and strong (τhiдh) confidence thresholds, τnms is the NMS thresh-
old, τs is the number of crops to evaluate at stage ϕs and S is the total number
of stages in the pipeline. The hyperparameters λconf and λnoobj are for weight-
ing loss terms, and δ is a margin hyperparameter regularizing the desirable
overlap between a prediction and the corresponding BBox. For the loss penalty
terms, Royer and Lampert (2020) successfully uses λconf = 5, λnoobj = 1 and
δ = 0.0025. S = 2 stages is used, as their data set is considered as an ordinary
remote sensing data set. When using S = 2 stages, τs is reduced to τ1. To
force the model to be trained on as many groups and situations as possible,
the remaining hyperparameters is split into τ trainlow , τ

train
hiдh , τ

train
nms , τ

train
1 during

training, and τ testlow , τ
test
hiдh, τ

test
nms , τ

test
1 during evaluation and inference.

Royer and Lampert (2020) states that the motivation behind the model is to
decrease grid resolution, and hence the number of anchors, while performance
is maintained. Decreasing the grid resolution will offer substantial computa-
tional savings, and provides opportunities for running inference on devices
having limited computational or energy resources.
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6.3.4 Summary
This chapter has reviewed key models in the object detection literature, with a
particular focus on ship detection. Traditional machine learning-based models
were introduced initially, before main relevant deep learning architectures
were described in detail. Faster R-CNN, DRBox, YOLOv2, Tiny YOLO and ODGI
are especially noteworthy models, as these will be studied and experimented
on further in the thesis.
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7
SuperView Data Set
The data set used for experimentation in this thesis consists of optical satellite
images captured by the SuperView satellites. This chapter will describe how the
data set is collected and modified, and essential properties will be described.

Five SuperView satellite products captured in near-shore areas aroundGibraltar
and Perth, Australia are used in the data set. Table 3.1, defined back in section
3.3.2, presented the five bands recorded by the SuperView instrument and their
spatial resolution. All data used for experimentation in this thesis are RGB
images originating from pansharpened satellite products (Sai et al., 2019). The
panchromatic band is used to sharpen the red, green, and blue components to
synthesize a spatial resolution of 0.5 m. Only these three RGB components are
used in the data set.

The large SuperView satellite products are tiled up (ref. section 3.4) to achieve
an appropriate data shape for experimentation. For the experiments in part IV,
this corresponds to 1024×1024 images. This image shape is inspired by official
experiments on ODGI (Royer and Lampert, 2020). Because of the spherical
earth shape, the satellite products will have a non-rectangular shape and some
areas will be zero-padded as they are not included in the sensed area. Only
tiles with at least 30% non-zero pixels were included in this data set. This will
exclude unnecessary empty tiles, whilst still including most ships close to the
satellite product boundaries.
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Key details of the SuperView data set are summarized as:

• Five satellite products over Perth and Gibraltar, Australia.

• Pansharpened to 0.5 m spatial resolution.

• Total of 3308 annotated ships.

• 380 positive image tiles1.

• 80 % of the positive tiles are used in the training data set. The remaining
20 % of the positive tiles are divided into one validation data set and one
test data set.

• 8.70 is the average number of ships in a tile.

• 683 ships is the maximum number of ships present in one tile.

Ship annotations originates from manually performed near real-time services
by KSAT. These annotations consists of position, shape and heading. As a result
of corruped image data during storage, many annotations have been dupli-
cated and displaced subsequently. A significant effort to adapt the original
data to a suitable detection training data set has been made as a contribution
by this thesis. This adaption includes i.a., annotation refinement, data wash-
ing and data set completion. Ships are annotated according to the θRBox =
{θx , θy, θw , θl , θϕ} format, where θϕ points in the ship bow direction relative
to image x-axis. Several models used for experimentation in part IV practice
traditional BBoxes. The annotation format is transformed as a pre-processing
step for these models. A code snippet for doing this mapping can be found in
appendix section 14.1. All label parameters are normalized by dividing location
and shape parameters by image size and the rotation parameter by 180. This
means that all rotation values initially are confined to [0, 180), and that bow
and stern of the ship is not distinguished.

A comparison of this SuperView data set relative to other benchmark object
detection data sets2 shows that 380 positive image tiles are relatively few
samples for object detection data sets.

1. A positive image tile is an image tile where at least one annotated ship is present.
2. Other benchmark object detection data sets are for instance Pascal VOC (Everingham
et al., 2010), ImageNet (Russakovsky et al., 2015), MS COCO (Lin et al., 2014) and Airbus
ship detection (Kaggle, 2018).
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7.1 SuperView Appearances
Environmental conditions cause artifacts in optical satellite images, and gener-
ate a diversity in the SuperView image appearance. Such environmental effects
are typically sea waves, time of day and weather. All satellite products used in
this data set are free of clouds, enabling the potential for all ships being visible.

Figure 7.1: Visualization of four common SuperView appearances. The main different
features are typically ship size, water texture and partial zero-padding.

Figure 7.1 exemplifies four common versions of SuperView image tiles used in
the data set. Subfigures (a) and (c) display large and small ships, respectively.
Subfigure (b) displays an image tile where sea waves causes the sea to be
prominent. An offshore static installation is present in this image as well.
Subfigure (d) displays an image tile where large proportions are zero-padded.
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The data collection team at KSAT, provider of the fundamental data, clarifies
that these different appearances is caused by environmental effects and that
artifacts from incidence angle correction may occur. Scenes recorded with a
low incidence angle may appear sharp and detailed, whereas scenes recorded
with a lower incidence angle may be less sharp and detailed. When the data
is this diverse, an object detector needs to be trained to operate in all such
scenarios, and the importance of a large data set becomes prominent.

7.2 Data Imbalance
Class distributions must be reasonable for a deep learning model to converge
properly. For pixel-wise segmentation models, this means that the proportion
of positive pixels cannot be vanishingly small, but not explodingly large either.
For bounding box-based models, positive annotations will learn the model how
the objects are recognized and should be of sufficient scale. Uninhabited scenes
will learn the detector not to produce false alarms.

For the SuperView data set annotated with RBoxes, the average area enclosed
by boxes per image tile is 7100 pixels. 16500 pixels is the corresponding average
area when BBoxes are used as labels. These image tiles are represented using
1024 × 1024 ≈ 106 pixels, making the average ship area constituting only
0.68% and 1.6% of the total pixels when using RBoxes and BBoxes, respectively.

This data imbalance will often prevent convergence for segmentation-based
models, and the optimization process needs modifications (Brenn et al., 2019).
Such modifications typically include moderating the number of negative train-
ing samples, increasing the original labels, and adopting the weighted focal
loss (Lin et al., 2017c). Data imbalance for grid-based models will result in a
majority of empty cells in the grid. For proposal-based models, data imbalance
will be reflected through the proportion of empty and rejected region propos-
als. For these scenarios, the imbalance is typically controlled by using carefully
chosen penalty terms in the objective function, and by using a reasonable split
of positive and negative training samples.

Because of the described data imbalance in the SuperView image tiles, only
positive samples are included in the SuperView data set. As stated early in
this chapter, the scenes under consideration are near-shore areas and the ship
density is usually relatively high. It is therefore not necessary to take drastic
measures. The background class will be trained on areas in the positive tiles
where no ships are annotated. Negative tiles could have been interesting to
include in the data set, with the aim of preventing false alarms. This had to
be reflected in the objective function to ensure convergence. Penalty terms are
included in the objective functions used for experimentation in part IV.
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7.3 Augmenting Optical Satellite Images
If the data set is limited, it can be augmented using artificially generated
data. If the data is used to train a deep neural network, the aim is to avoid
overfitting and to increase the generalization properties (Cheng et al., 2016).
The motivation for data augmentation was introduced in section 4.6.5.

Brenn et al. (2019) argue that vertical and horizontal flipping, insertion of
additive Gaussian noise, rotation and scaling all are physically valid transfor-
mations for optical earth observation images. For the augmented data to be
pragmatically valid, all transformations should be adopted to the sensor. This
means that augmentations which are not physically valid should be dropped if
it cannot be justified by increased model performance. For optical satellite data,
accurate corrections for incidence angle should cause image transformations to
correspond to physical differences in the sensed scene3. This means that most
mappings are scenes that could have been naturally recorded by the sensor.
Figure 7.2 visualizes three scenes artificially generated based on a SuperView
image, supporting the allegation that these are physically valid transformations
of optical earth observation images.

3. This means that a 90◦ rotated image using transformation will be identical to an image
captured with a 90◦ rotated imager.



76 CHAPTER 7 SUPERV IEW DATA SET

Figure 7.2: Visualization of different modes of artificially generated data based on
original data to be used for data augmentation. Vertical and horizontal
flipping and additive Gaussian noise are here used as example augmenta-
tion modes.



8
Novelties
Three novel neural network architectures, which are extensions of existing
models, will be presented in this chapter and experimented on in part IV.
The aim is to extend the ODGI pipeline (Royer and Lampert, 2020) to predict
RBoxes for individual object instances. This model should take advantage of
object groupings to focus the evaluation on the essential areas of the image
at an early stage, while describing objects in a tidier way as it adopts RBoxes.
RBox predictions also lead to the beneficial result of recognizing ship headings.
The author has named this model as Oriented Object Detection with Grouped
Instances (OODGI).

As described in chapter 6.3.3, ODGI is composed of multiple stages of object
detection. The object detectors in the different stages, {ϕs }Ss=1, will henceforth
be referred to as individual detectors. YOLOv2 (Redmon and Farhadi, 2017) and
Tiny YOLO are the individual detectors used for ODGI experimentation in this
thesis. Because the novel OODGI will have a pipeline composition similar to
ODGI, the individual detectors YOLOv2 and Tiny YOLO will first be extended to
predict RBoxes, before they are used in the OODGI pipeline. The novel object
detectors, which are extensions of YOLOv2 and Tiny YOLO, is named by the
author as Oriented YOLOv2 and Oriented Tiny YOLO, respectively. These novel
detectors can also be used as stand-alone object detectors.

Problems to address in the OODGI model will first be introduced. Subsequently,
the novel object detectors Oriented YOLOv2 and Oriented Tiny YOLO will be
presented, before the novel OODGI pipeline is presented at the end of this
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chapter.

8.1 Technical Problems to Address
The problem of predicting RBoxes in the OODGI model creates a need for
numerous modifications in the holistic pipeline. The overall problem can be
divided into the following subproblems:

(1) Represent oriented bounding box: The earlierθBBox = {θx , θy, θw , θh, c}
representation needs be replaced by a representation supporting orien-
tation.

(2) Regress angle-related parameter: Support for regressing the rotation-
related parameter is needed1.

(3) Optimize angle-related parameter: Incorrect rotation should be pe-
nalized in the loss function. Optimization of the orientation should be
included in the optimization process.

(4) Calculate IoU of RBoxes: IoU calculation for RBoxes must be imple-
mented.

(5) Implement data augmentation: Data augmentationmust be re-assessed
and re-implementated.

(6) Solve and implement stage transition problem: The stage transition in
the ODGI pipeline should support RBoxes. Potential complication where
group instances are rotated should be addressed.

(7) Constrain finalizing stage: The last stage in the OODGI pipeline should
be constrained to only output individual object instances, i.e. RBoxes.

Several of the described subproblems concern the individual detectors sepa-
rately. Subproblem (1)–(5) will be addressed for the individual detectors in
section 8.2 and 8.3. Subproblem (6) and (7) will be addressed when OODGI
is presented in section 8.4. Subproblem (3), which initially is addressed for
the individual detectors, will need modification when it becomes part of the
OODGI pipeline.

1. At least, some way to infer an RBox is required. For proposal-based object detectors, this
would typically mean to propose different orientations of anchors.
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Because Oriented YOLOv2 and Oriented Tiny YOLO share most of the same
principles and structure, all of the introduced subproblems are addressed
equally for these object detectors. Because Oriented Tiny YOLO is considered
as a lightweight version of the main Oriented YOLOv2, these problems will be
described and addressed in section 8.2.

8.2 Oriented YOLOv2
The novel Oriented YOLOv2 model can be used as a stand-alone object detector
to detect positioning, shape and orientation of arbitrary oriented objects, or as
an individual detector in the OODGI pipeline. Oriented YOLOv2 is an extension
of the base model YOLOv2 (Redmon and Farhadi, 2017). Explanation of the
different subproblems to be addressed for this extension will be presented
consecutively, along with the specific solution, before a summary is given.

Subproblem (1) – Represent oriented bounding box:
The earlier θBBox = {θx , θy, θw , θh, c} representation does not include any
orientation-related parameter, and excludes the potential of describing oriented
objects. In section 5.2.5, it was established that RBoxes have been successfully
expressed using the six parameters: θRBox = {θx , θy, θw , θl , θϕ, c}. Here, θx
and θy denote the x- and y-coordinate, respectively, while θw and θl denote
the width and length, respectively. The orientation is expressed using θϕ , and c
denotes the predicted confidence score. The parameters θx , θy , θw and θl are
normalized by division with image size, and θϕ is divided by 180. The model
is therefore not distinguishing the bow and stern of the ship, and all rotations
are confined to [0, 180). This is done similarly as in DRBox (Liu et al., 2017a),
and encourages low parameter values. In section 4.6, it was stated that low
parameters values should be pursued for increased generalization properties.
In section 6.3.1.4, it was introduced that the Oriented Bounding Boxes for Faster
R-CNN model (Xia et al., 2018) describes an RBox using 9 parameters. This
is not adopted in this novel model because it was discussed to have too few
constraints for object shape and often result in chaotic predictions.

Subproblem (2) – Regress angle-related parameter:
The grid defined for grid-based object detectors controls the positioning and
size of anchors, but how can these anchors be rotated to match ground truth
RBoxes? For proposal-based object detection, this typically includes proposing
different oriented anchors. Initially, these grid cells are non-rotated. In this
Oriented YOLOv2 model, the orientation fitting task is proposed as a direct
regression task. In part IV, it is experimented on this approach, and discussed
in part V whether the performance is adequate.
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When solving the orientation optimization problem as a direct regression task,
an additional orientation-related term in the loss function will be included. The
loss function for Oriented YOLOv2 will be explained in detail when subproblem
(3) is addressed in the next paragraph.

In practice, a predicted θϕ parameter will be output by the CNN in addition to
the original five YOLOv2 parameters listed in Table 6.1. This is simply done by
expanding the earlier 5-dimensional output of the CNN to being 6-dimensional.
This θϕ parameter is optimized and used only by the orientation-related loss
term, and for describing predictions. A simple linear activation function is
applied to this sixth output component (as it will be used for regression).

Subproblem (3) – Optimize angle-related parameter:
In section 4.4.2 it was stated that regression problems are commonly solved
by using a version of the MSE as loss term. For the Oriented YOLOv2 an
orientation-related variant of MSE will be added to the existing YOLOv2 loss
function, which already optimizes the other parameters. Leal-Taixé and Roth
(2019)2 argue that a simple loss term of (θϕ − θ̂ϕ)2 (squared angular error) is
sufficient and an appropriate loss term to optimize rotations.

Based on this, the proposed Oriented YOLOv2 loss function, given in equation
8.1, includes a sum of squared errors (a variant of MSE, expressed in equation
4.10) loss term for regressing the orientation parameter θϕ , where θϕ ∈ [0, 1].

LOriented YOLOv2 = LYOLOv2 + Lor ientation

= LYOLOv2 + λrotation

C2∑
i=0

B∑
j=0

1ob ji j

[(
θ (i)ϕ − θ̂

(i)
ϕ

)2
]

(8.1)

The LYOLOv2 term in equation 8.1 is the YOLOv2 loss expressed back in
equation 6.11, λrotation is a hyperparameter regulating the weighting of the
rotation loss term relative to the total loss, θ (i)ϕ and θ̂ (i)ϕ are the normalized
true and predicted rotation of the RBox, respectively. Remaining notation is
inherited from equation 6.11. It is not convenient to output a transformed θ̂ϕ
from the CNN (like the mappings described in equation 6.10), since orientation
is not cell-dependent.

This additional loss term is processed similarly as the other loss terms during
the optimization process.

2. The paper of Leal-Taixé and Roth (2019) concerns an oriented version of the YOLOv3
(Redmon and Farhadi, 2018) model, which is applied to 3-dimensional objects.
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Subproblem (4) – Calculate IoU of RBoxes:
In the ordinary YOLOv2 process, IoU between BBoxes is applied three times:
to select the prior BBox responsible for a ground truth object during training
(i.e., the binary 1ob ji j and 1noobji j ), for NMS during inference, and to evaluate
mAP during validation. Calculating the exact IoUs between RBoxes is tedious
and computer-intensive, and is not feasible for near real-time processing.

Approximated calculations of IoU between RBoxes are used for example in
R2PN (Zhang et al., 2018) and DRBox (Liu et al., 2017a). However, the training
and inference time still increases when using such calculations. The approxi-
mation in DRBox (Liu et al., 2017a) is based on rotating one of the RBoxes to
match the angle of the other RBox and calculate the IoU in this translated co-
ordinate system. Because the IoU criterion is also calculated during inference,
it is desirable to use a fast computation. Experiments on DRBox in part IV will
indicate that this approach is not feasible for near real-time processing.

To address the problem of IoU calculation to find the prior RBox that is
considered responsible for predicting an object, the RBoxes are transformed to
a corresponding BBox and the standard IoU is calculated on these BBoxes. This
approach is chosen in lack of better alternatives. In section 6.3.2, it was stated
that the responsible prediction also has the best fitting shape and aspect ratio.
When calculating IoU between RBoxes using this proposed approach, it will
not cause the model to make better predicted rotations for every iteration in the
same way that shape and aspect ratio will be improved. The rotation parameter
will be learned by using regression, as stated earlier, which may cause a higher
variation in parameter values and may result in poorer predictions. When
transforming to BBoxes, the responsible RBox will now be the one having the
best matching BBox with the ground truth BBox.

The problem of IoU calculation between RBoxes in the NMS step during
inference, is addressed using an identical approach as the one described in
previous paragraph. It is conceivable that this is a drawback when processing
scenes with high object density. This thesis concerns grouped objects, and it
may therefore be worth noting this when approaching the experiments in part
IV.

IoU calculation between predicted RBoxes formAP evaluation during validation
is performed similarly as was described in the previous two paragraphs. Because
this is performed only during validation, the argument of avoiding algorithms
that is tedious and computer-intensive is not that pertinent.



82 CHAPTER 8 NOVELT IES

When ignoring this argument, the calculation of IoU between RBoxes becomes
a simple problem3. However, such an approach has not been adopted because
it is desirable to produce mAP results that are directly comparable to other
models.

Subproblem (5) – Implement data augmentation:
In section 7.3, it was stressed that selection of mappings for data augmentation
should considered the specific data and instrument. Augmentations are desired
to be physically valid, meaning that one should not be able to detect manip-
ulation of the data based on knowledge of the nature of the sensor and data.
In other words, the sensor should be able to produce data realizations that are
identical to the augmentations. When changing the bounding box format, i.e.
adopting the θRBox = {θx , θy, θw , θl , θϕ, c} representation, the data augmenta-
tion modes need to be reconsidered. A reimplementation of the augmentation
mappings are also necessary.

In section 7.3, five transformations were specifically mentioned: vertical and
horizontal flipping, addition of Gaussian noise, rotation and scaling. Because
the optical satellite images remain the same, and the only modification is the
annotation format, all these mappings would entail physically correctness.

Summary
Except for the mentioned modifications, the Oriented YOLOv2 architecture is
similar to the standard YOLOv2 (Redmon and Farhadi, 2017) architecture. Other
than having a 6-dimensional output, as described in this chapter, the CNN is
identical to the one presented in Table 6.1. The same concepts as presented in
section 6.3.2.2 apply.

In addition to the previous hyperparameters applicable for the standard
YOLOv2, an additional λrotation hyperparameter concerning the weighting
of the orientation loss term in the total loss function is introduced. This Ori-
ented YOLOv2 model is prepared to make adjustments in the grid cell size
according to a user-defined image tile size. The grid cell size will be 32 times
smaller than the size of the image tile. I.e., an image tile of 1024× 1024 pixels
will result in a grid cell size of 32 × 32 pixels, 512 × 512 pixel tiles result in
a grid cell size of 16 × 16 pixels, etc. This allows for experimentation on the
subject of speed versus accuracy trade-off.

3. An approach for exact IoU calculation between RBoxes is for instance pro-
posed at: https://stackoverflow.com/questions/44797713/calculate-
the-area-of-intersection-of-two-rotated-rectangles-in-python.

https://stackoverflow.com/questions/44797713/calculate-the-area-of-intersection-of-two-rotated-rectangles-in-python
https://stackoverflow.com/questions/44797713/calculate-the-area-of-intersection-of-two-rotated-rectangles-in-python
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8.3 Oriented Tiny YOLO
As the Oriented YOLOv2 is already presented, it is elementary to present the
Oriented Tiny YOLO. Recall from section 6.3.2.3 that the Tiny YOLO model
is identical to the YOLOv2 model, except practicing a more lightweight CNN.
The novel Oriented Tiny YOLO is, similarly as for the non-oriented versions, a
direct replica of the presented Oriented YOLO model, except using the identical
lightweight CNN as Tiny YOLO (described in Table 6.2), but now with a 6-
dimensional output.

When the Oriented Tiny YOLO model now is introduced, diverse complexities
of the OODGI pipeline may be experimented on to study its speed versus
accuracy properties, and to select a combination that is customized for the
specific problem. Recall that Oriented YOLOv2 and Oriented Tiny YOLO are
presented as stand-alone object detectors. Now that two novel versions of
stand-alone oriented object detectors are introduced, both receptive for diverse
grid cell sizes, the speed versus accuracy trade off can be experimented on for
stand alone detectors as well.

8.4 Oriented Object Detection with Grouped
Instances

The novel OODGI pipeline with S stages {ϕs }Ss=1 will now be introduced.
Subproblem (6) and (7) will be addressed in succession, before the overall
model is summarized. Subproblem (3), initially addressed in section 8.2, will
need modifications when used in this pipeline. Each stage ϕs consist of one
oriented individual detector.

Recall Figure 6.3, presenting the ODGI pipeline. This figure is highly relevant
for the OODGI model as well. All stages are linked,ϕS ◦· · ·◦ϕ1, S > 1, and each
stage is capable of predicting both individual and grouped object instances.
Candidates for further refinement predicted at stage ϕs will be the input to the
consecutive stage ϕs+1. Recall from section 6.3.3 that a crop denotes an image
segment that is a candidate for further refinement in the consecutive stage,
and can contain both individual and group instances, meeting certain criteria.

The scheme for sorting predictions at a stage ϕs (which is not the finalizing
stage, s < S) is, as introduced in section 6.3.3, summarized as:

i) c ≤ τlow : The prediction is discarded.
ii) c ≥ τhiдh and д = 0: The predictions is considered as an individual object
instance and skips consecutive stages.
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iii) (c > τlow and д = 1) or (τlow ≤ c < τhiдh and д = 0): Prediction is
either a group or an individual with medium confidence and is passed on to
the consecutive stage.

Here, τlow and τhiдh are the user-defined weak and strong confidence thresh-
olds, respectively, c is the predicted confidence score, and д is the binary group
flag, all described in detail in section 6.3.3.

Subproblem (6) – Solve and implement stage transition problem:
Because a predicted group object instance is passed to the consecutive stage for
refinement, it is treated as an image in the consecutive stage and poses problems
if such a group object instance is rotated. The proposed solution is to predict
RBoxes for individual object instances, and BBoxes for group object instances.
The original model does already support division of individual and group
instances. It does this by predicting the binary group flag д, as was introduced
in section 6.3.3. Here, this distinction is encouraged by labeling group object
instances using BBoxes and individual object instances using RBoxes. Figure
8.1 exemplifies what these mixed labels might look like. Similarly as for ODGI,
described in section 6.3.3, individual object instances occurring in at least one
common cell are considered part of a grouped object instance. In OODGI, a
traditional BBox fully enclosing all individual object instances (annotated as
RBoxes) in this group is formed. The group instance BBoxes will follow the
{θx , θy, θw , θh, θϕ, c} representation for format consistency, but with θϕ = 0.

Figure 8.1: Visualization of how a group mask (purple) is formed based on individual
instance RBoxes (green). The group mask is always a BBox fully enclosing
all RBoxes that are considered a member of this group. One ship is not
annotated as a result of deficiencies in the labeling process.
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During training, the model will learn that grouped instances have zero rotation
and that individual instances allow rotation. Deviations will occur, especially in
the early training process. Recall from section 6.3.3, that predictions at inter-
mediate stages fulfilling (c > τlow and д = 1) or (τlow ≤ c < τhiдh and д = 0),
meaning that the prediction is either a group or an individual with medium
confidence, will be passed on to consecutive stages for refinement. Hence,
not only predictions considered as group instances are refined in consecutive
stages. These two mentioned scenarios are the origin behind the following
constraint: If a candidate for further refinement has nonzero rotation θϕ , 0, it
is transformed to a corresponding BBox before being input to the consecutive
stage. For predictions that are considered individuals with medium confidence,
this will be a specifically recurring event. Individual object instances are anno-
tated using RBoxes, and the individual detectors will constantly try to predict
a correct orientation, even at early stages. However, because the ground truth
object annotation will be mapped to the crop-relative coordinate system (as
will be described in the following paragraph), the consecutive stage will still
be able to recognize the object characteristics.

Originally, all annotations are relative to the complete image tile. However,
when crops are formed and passed on to consecutive stages in the pipeline,
the annotations should be recalculated to be relative to this respective crop.
The simple trigonometry rules, mathematically expressed by equation 8.2, will
do the mapping {θx , θy, θw , θl , θϕ} → {θx_c , θy_c , θw_c , θl_c , θϕ_c } to a new
crop-relative coordinate system. In equation 8.2, θcrop_min_x and θcrop_min_y
denotes the minimum x- and y- coordinates of the crop⁴, respectively, and
θcrop_w and θcrop_h denotes the width and height of the crop, respectively.
Implementation of this mapping is appended in section 14.2.

θx_c = θx − θcrop_min_x

θy_c = θy − θcrop_min_y

θw_c =
θw (sin θϕ + cos θϕ)

θcrop_w

θl_c =
θl (sin θϕ + cos θϕ)

θcrop_h
θϕ_c = θϕ

(8.2)

4. It is also common to parametrize a BBox using {xmin,ymin, xmax ,ymax }. Then
θcrop_min_y and θcrop_min_y will correspond to xmin and ymin , respectively.
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Subproblem (7) – Constrain finalizing stage:
The concluding stage of the OODGI is, similarly as for ODGI, constrained to
only output individual objects. This constrain is included as it is desirable
to produce results that are comparable with other object detectors. If enough
stages are included relative to the task under consideration, all such predictions
should allow orientation and be RBox predictions.

Because RBox annotation is still used for individual object instances, the model
will learn to output oriented predictions for such scenarios during optimization.
If the number of stages S is not sufficient, non-rotated predictions may occur
at the concluding stage. This is an artifact of the choice of S , and is not
considered a problem. All predictions at the concluding stage are transformed
back to the original image coordinate system. This is done by solving the
respective expressions in equation 8.2 for {θx , θy, θw , θl , θϕ}, over all S stages,
ϕS ◦ · · · ◦ ϕ1, S > 1.

The problem of IoU calculation has already been addressed, and the same
principles applies for this model. However, IoU calculation (subproblem (4)) is
now performed with yet another purpose: for NMS at intermediate stages to
select the best crops to be refined at consecutive stages. Recalling that these
crops are basic traditional BBoxes, this is simply executed as a standard IoU
calculation.

Subproblem (3) – Optimize angle-related parameter:
Subproblem (3) is resumed because the particular loss function presented for
Oriented YOLOv2 and Oriented Tiny YOLO is not applicable for OODGI. Recall
from the LODGI loss in equation 6.12 that it is composed of the terms Lдroups ,
Lcoords and Lof f sets . LODGI has proven to be well-functioning, thus it is desir-
able that the new LOODGI loss is based on the same principles. Lдroups needs
no modification as the groups are identical as before. The labels of grouped
object instances are also identical as earlier. Lcoords needs modification to
optimize the angle-related parameters. The Lcoords term consist of three terms
whereas only the first term optimizes prediction of the earlier {θx , θy, θw , θh}
BBox parameters. As these mentioned parameters are optimized using a least
square error loss, optimization of the additional angle-related parameter is
also performed using a least square error loss version. Lof f sets concerns crop
offsets at intermediate stages. It is described earlier in this chapter that crops at
intermediate stages will behave equivalently as earlier, thus it is not necessary
to modify Lof f sets .

The loss function used to optimize OODGI, mathematically described by equa-
tion 8.3, is a combination of the ODGI loss and the Oriented YOLOv2 loss. Here,
LODGI is the total ODGI loss, expressed in equation 6.12, and Lor ientation is
the rotation-related loss term introduced for Oriented YOLOv2 in section 8.2,



8.4 OR IENTED OBJECT DETECT ION W ITH GROUPED INSTANCES 87

expressed in equation 8.1.

LOODGI = LODGI + Lor ientation (8.3)

Summary:
The novel OODGI is relatively similar to the baseline ODGI model, with the
described modifications. Non-described concepts can be assumed to be equally
applied as for the ODGI model. The overall loss function, presented in equa-
tion 8.3, introduces an additional λrotation hyperparameter weighting the
Lor ientation term in the total loss function.

The total set of hyperparameters consist of τlow ,τhiдh ,τnms ,τs ,S ,λconf ,λnoobj ,
λrotation and δ . Recall from the ODGI introduction in section 6.3.3 that τlow
and τhiдh are the weak (τlow ) and strong (τhiдh) confidence thresholds, τnms
is the NMS threshold, τs is the number of crops to evaluate at stage ϕs and
S is the total number of stages in the pipeline. The hyperparameters λconf ,
λnoobj and λrotation are for weighting loss terms, and δ is a margin hyperpa-
rameter regularizing the minimum desirable overlap between a prediction and
the corresponding BBox. Suggested hyperparameters and training scheme is
described among the experimental setup in section 10.1.

When this architecture now is introduced as a pipeline with an unlimited
number of stages S , it is considered a general model that can be customized
to fit various problems. Because each stage is capable of predicting either
an individual instance or to propose a grouped instance for further analysis
in consecutive stages, OODGI can be considered a hybrid of grid-based and
proposal-based object detector, where each stage that can propose grouped
instances is a RPN.

Royer and Lampert (2020) argue that S = 2 stages are sufficient for most
ordinary remote sensing problems, and that S > 2 is more suited for very-
large scale scenarios, e.g. gigapixel images. This argumentation is applicable
to the novel OODGI as well. Because most crops are of limited resolution,
a suggestion of using more lightweight individual detectors at intermediate
stages to increase inference speed is appropriate. It is rarely desirable to use
an exaggerated individual detector to evaluate a crop of limited resolution.
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This part concerns all experiments performed on selected models in this thesis.
Experimental setups are described, and experimental results are presented,
both for reference and novel detectors.

Articles on object detection usually present experimental results in the form
of inference time, mAP and predicted examples. However, false alarms, misses
and proportion of correct predictions are also interesting measures during
model evaluation in the field of ship detection, and will be studied in this part.
Chapter 9 discloses experiments performed on reference models, including
experimental setup, inference time, AP and example predictions. Chapter 10
discloses experiments performed on the novel methods presented in chapter 8,
including experimental setup, inference time, AP and example predictions. An
accuracy analysis on main models is presented in chapter 11. Some reported
average precisions in Table 10.1 may be considered as unforeseen and is the
origin behind a model stochasticity analysis, also presented in chapter 11.
Experimental results are presented in this part, but are discussed in detail in
part V.

When example predictions are visualized in this part, basic ships⁵, larger
ships, areas of high ship density and harbor scenes are scenarios that will be
particularly studied. These mentioned scenarios are together considered to
constitute a holistic perspective of potential scenarios. All experiments
throughout this thesis are calculated on a GeForce RTX 2080 Ti 11 GB GPU⁶,
during training, testing and inference.

5. A basic ship refers to the most common appearance of a ship: a smaller ship with no
neighboring ships and no significant difficulties.

6. Additional specifications is found at https://www.nvidia.com/nb-no/geforce/
graphics-cards/rtx-2080/.

https://www.nvidia.com/nb-no/geforce/graphics-cards/rtx-2080/
https://www.nvidia.com/nb-no/geforce/graphics-cards/rtx-2080/


9
Experiments on ReferenceModels
Numerous architectures for object detection were reviewed in chapter 6. As
introduced in part I, the scope of this thesis is to study the properties of using
grouped object instances and rotatable annotations for increased precision and
a more prominent representation. Concretely, ODGI (Royer and Lampert, 2020)
is the model that is based on grouped object instances which will be reviewed
in this thesis. In chapter 10, the novel extension OODGI, which predict object
orientations,will be experimented on. ODGI is built upon YOLOv2 (Redmon and
Farhadi, 2017) andTiny YOLO. Thus, these are also included for experimentation
on ODGI improvement from the baseline models. DRBox (Liu et al., 2017a) is
experimented on to give insight into performance of preceding models using
RBoxes. Faster R-CNN (Ren et al., 2015) is included in the experiments to give
a comparison with a state-of-the-art proposal-based object detector.

9.1 Experimental Setup
During inference and validation on all object detectors experimented on in
this chapter, the hyperparameters τIoU and τc are included, and properly
determined values are desired to achieve satisfactory results. τIoU and τc
are the IoU threshold and the confidence score threshold, respectively, but
applied during NMS. Using τIoU = 0.5 is a standard choice, recurring in
object detection experiments (Royer and Lampert, 2020). During NMS, this
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will suppress predictions having IoU ≥ 0.5 with already accepted predictions1.
τIoU = 0.5 is used for experiments on reference models in this chapter for
easier comparison to other models.

The τc hyperparameter is the threshold that rejects all predictions having a
confidence score c < τc . How this hyperparameter should be determined
depends on the data set complexity and the model properties. A complex and
computer-intensive model will typically be more confident in each prediction
(higher c) than an operational real-time model (Ren et al., 2015). A common
approach is to test for different adjustments of τc and inspect how the mAP
unfolds. Based on unreported experiments on the SuperView data set, and
experimental results in Liu et al. (2017a), Redmon and Farhadi (2017) and
Royer and Lampert (2020), τc = 0.4 appears to be an appropriate confidence
score threshold for the grid-based models. This is used throughout experiments
on grid-based architectures. The confidence score threshold τc for the proposal-
based Faster R-CNN is introduced in the subsequent section. The grid-based
models are operating in near real-time and often have a low confidence score
on small and cluttered objects. A relatively low τc will be more receptive to
such objects, but may also cause a higher false alarm rate.

To compensate for the data imbalance issue (section 7.2), only positive image
tiles are used in the training data set, i.e. images that have at least one an-
notated object. The Faster R-CNN2 and DRBox3 implementations used in the
following experiments are written in the Keras framework (Chollet et al., 2015).
Implementations of YOLOv2, Tiny YOLO and ODGI⁴ are written in Tensorflow
(Abadi et al., 2015).

9.1.1 Faster R-CNN:
The Faster R-CNN model is trained using k = 9 region proposals for each
sliding window in the RPN, similarly as for the official experiment (Ren et al.,
2015). These k = 9 region proposals include the scales {64, 128, 256} and the
aspect ratios {1 : 1, 1 : 2, 2 : 1}. The aspect ratios are adopted from those
suggested by Ren et al. (2015). The scales are halved with respected to the
suggested values, because the SuperView data set is of larger scale than the
multi-object category images used in the original experiments.

1. Already accepted predictions have a higher confidence score, as stressed in section 5.2.1.
2. Implementation of the Faster R-CNN is based on the open source code:

https://github.com/RockyXu66/Faster_RCNN_for_Open_Images_
Dataset_Keras.

3. Implementation of the DRBox is based on the open source code:
https://github.com/ppontisso/DRBox_keras.

4. Implementations of these models are based on the open source code:
https://github.com/ameroyer/ODGI.

https://github.com/RockyXu66/Faster_RCNN_for_Open_Images_Dataset_Keras
https://github.com/RockyXu66/Faster_RCNN_for_Open_Images_Dataset_Keras
https://github.com/ppontisso/DRBox_keras
https://github.com/ameroyer/ODGI
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The data is augmentedwith a probability of 0.7 for doing a transformation. If an
image is selected to be transformed, it is mapped using one of the equiprobable
modes: horizontal flip, vertical flip or 90◦ rotation. The model is trained using
the Adam optimizer (Kingma and Ba, 2014) with a learning rate of µ = 10−5 on
classifier and RPN separately (adopted from original source code). Additional
hyperparameters are set according to default values, stated in section 4.5.2.

Based on the original source code, VGG (Simonyan and Zisserman, 2014) is
used as the CNN for feature extraction, allowing the use of pretrained weights.
It is therefore initialized using weights pretrained on Image Net Large Scale
Visual Recognition (ILSVRC) (Russakovsky et al., 2015). Recall from section
6.3.1.2, the CNN is shared between the RPN and the RoI pooling layer. This will
lead to faster convergence during training, and potentially better precision.

Based on unreported experiments, a confidence score threshold τc = 0.6 has
proven to be appropriate for this problem, and is used during experimentation.
Dropout (Hinton et al., 2012b) is included in the cls classification layer for
increased generalization properties (based on original source code). Similar
activation functions as in the original Faster R-CNN architecture is used (Ren
et al., 2015). ReLU activation functions are used at intermediate layers. Out of
the cls classification layer, the multi-class version of sigmoid σ (x), the softmax
activation function, is used. This is a very common practice, allowing the class
scores to be interpreted as probabilities. For the reg regression layer, a simple
linear activation function is used. The straightforward Faster R-CNN is used,
thus all ships are labeled using traditional BBoxes.

9.1.2 DRBox
As suggested in Liu et al. (2017a), the DRBoxmodel is trained using 30 variations
of prior RBoxes at each cell location in the grid. These 30 variations are the
predefined shapes: {20 × 8, 40 × 14, 60 × 17, 80 × 20, 100 × 25} pixels,
and the angles: {0, 30, 60, . . . , 150} degrees, all inspired by the original source
code.

This architecture does also apply a VGG (Simonyan and Zisserman, 2014)
model as the CNN for feature extraction. It is therefore initialized with weights
pretrained on ILSVRC (Russakovsky et al., 2015) for a faster convergence, and
potentially to achieve better precision. Because the data set is of limited extent,
it is augmented with a probability of 0.5 for augmenting each image using
one of two equiprobable sequences: Sequence one will do a horizontal flip, a
vertical flip, random rotation and zoom in, all with an individual probability
of 0.5. Sequence two will do a horizontal flip, a vertical flip, random rotation
and zoom out, again with an individual probability of 0.5.
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Based on original architecture and source code, optimization is performed
using the Adam optimizer (Kingma and Ba, 2014) with a learning rate of
µ = 10−5. Additional hyperparameters are determined according to default
values, stated in section 4.5.2. The L2 norm regularization strategy is added
to the objective function for penalizing large parameter values, and hence
potentially increasing the generalization properties.

Activation functions are adopted from the original architecture. ReLU activation
functions are used at intermediate layers. The sigmoid activation function σ (x)
is applied to the confidence scores. The sigmoid activation function confines the
confidence score to c ∈ [0, 1], allowing for c to be interpreted as probabilities.
Simple linear activation functions are applied to the predicted box parameters.
All objects are labeled using RBoxes. This model is quite computer-intensive,
and was restricted by the available memory budget during training. The result
was to use batch_size = 2. This may cause the different batches to be more
variable.

9.1.3 YOLOv2
Redmon and Farhadi (2017) presented the YOLOv2 approach as a detection
followed by a classification problem. In section 6.3.2.2, the architecture was
presented as a detection problem, and the classification branch was omitted.
This is because the ship detection experiments performed in this thesis are
single-object category problems, and classification is hence irrelevant.

Each image tile has a probability of 0.7 to be transformed. This augments the
data to a great extent based on the limited original data set. If an image tile
is selected to be transformed, it is mapped using one of the modes: horizontal
flip, vertical flip, and additive Gaussian noise, each equally probable. Based on
original source code, the YOLOv2 model is trained using the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of µ = 10−5, and default parameters
beside this. No pretrained weights are applied. Instead, the He initialization
(He et al., 2015) is used for weight initialization. He initialization is inspired
from original source code, and is common to use in conjunction with ReLU
activation functions (or Leaky ReLU). Leaky ReLU activation functions⁵ are
used at intermediate stages, similarly is in the original source code. The
sigmoid activation function σ (x) is applied to the confidence scores, allowing
for probability interpretation.

Based on original source code, several regularization strategies are applied
to achieve better generalization properties. Batch normalization (Ioffe and
Szegedy, 2015) is applied to intermediate convolutional layers. The L2 norm is

5. Leaky ReLU is an offspring from the standard ReLU, where negative values are mapped
linearly to a small number different from zero.
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added to the objective function for penalizing large parameter values.

YOLOv2 experiments are performed on two architecture variations: YOLOv2
1024 and YOLOv2 512. These denotes grid cell sizes that correspond to image
sizes of 1024×1024 pixels and 512×512 pixels⁶, respectively. Because the grid
cell size corresponds to a downsampling factor of 32, YOLOv2 1024 and YOLOv2
512 operate with 32 × 32 and 16 × 16 pixels per grid cell⁷, respectively. Recall
that the cells in this grid can be interpreted as prior BBoxes. Thus, decreasing
the grid cell size does also decrease the model complexity. These models are
selected for experimentation because they are considered to have the highest
potential for producing adequate and interesting results.

In section 6.3.2.2, it was stated that λcoord = 1 and λnoobj = 5 are suggested
hyperparameters for the normal remote sensing data set (Royer and Lampert,
2020). These values are used in these experiments.

9.1.4 Tiny YOLO
Experiments on Tiny YOLO are conducted identically as for YOLOv2, but now
using the lightweight Tiny YOLO network. The same grid cell sizes as described
in section 9.1.3 apply. However, the extra lightweight version Tiny YOLO 512 is
omitted, as it is assumed to be too elementary for the SuperView data set.

9.1.5 ODGI
Royer and Lampert (2020) argued that S = 2 stages is sufficient for the ordinary
remote sensing data set. As the SuperView data set is considered an ordinary
remote sensing data set, S = 2 stages are used for experimentation in this
chapter. Different variants of the ODGI model are experimented on, with
the intention of analyzing its speed versus accuracy properties. This involves
different combinations of individual detectors in stage one ϕ1 and stage two
ϕ2, and different grid resolutions in the corresponding stages. YOLOv2 and
Tiny YOLO are the individual detectors used for experimentation. The ODGI
pipeline will be described by the individual detectors at the respective stages in
the following. An ODGI pipeline using YOLOv2 in stage one ϕ1 and Tiny YOLO
in stage two ϕ2 will hence be denoted as ODGI yt. The grid cell sizes used for
experiments on YOLOv2 and Tiny YOLO, as described in section 9.1.3, are used
for experimenting on ODGI as well. Hence, the ODGI yt 512-256 model denotes
a pipeline with YOLOv2 and grid cell size of 16 in ϕ1, and Tiny YOLO and grid
cell size of 8 in ϕ2.

6. Image tiles of size 1024× 1024, 512× 512 and 256× 256 pixels will hereby be appended
to the model name as labels 1024, 512 and 256, respectively.

7. Grid cell sizes of 32 × 32, 16 × 16 and 8 × 8 pixels per grid cell will hereby be denoted as
32, 16 and 8 cells, respectively.
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Augmentation, regularization and activation functions are applied likewise as
for YOLOv2 and Tiny YOLO, described in section 9.1.3. Similarly as in Royer
and Lampert (2020), Adam (Kingma and Ba, 2014) is used for optimization
with respect to the loss function, expressed by equation 6.12. Default values
are used for the Adam optimizer.

Royer and Lampert (2020) performed some experiments on different com-
binations of hyperparameters. Recall from section 6.3.3 that the total set of
hyperparameters in ODGI includes τlow , τhiдh, τnms , τs , S, λconf , λnoobj and δ ,
where τs is reduced to τ1 when using S = 2 stages. The thresholds τlow and
τhiдh are the weak (τlow ) and strong (τhiдh) confidence thresholds, τnms is the
NMS threshold, τs is the number of crops to evaluate at stage ϕs and S is the
total number of stages in the pipeline. The hyperparameters λconf and λnoobj
are for weighting loss terms, and δ is a margin hyperparameter regularizing
the minimum desirable overlap between a prediction and the corresponding
BBox. Diverse τlow , τhiдh, τnms and τ1 are practiced during training and infer-
ence. This sets few constraints on the abilities to learn during training, while
restricting the process time during inference. Based on the success of using
λconf = 5, λnoobj = 1 and δ = 0.0025 in experiments performed by Royer and
Lampert (2020), the same loss penalty terms are applied during experiments on
the SuperView data set, because these data sets are considered to be relatively
similar.

To let as many predictions flow through the training process as possible, no
thresholding is used, i.e. τ trainlow = 0, τ trainhiдh = 1, and τ trainnms = 1. The maximum
number of crops to output fromϕ1 during training,τ train1 , is adjusted according
to the maximum number that is allowed by the memory budget. For the
hardware used in these experiments, this corresponds to τ train1 = 10.

Based on hyperparameter experimentation, Royer and Lampert (2020) sug-
gested τ testlow ∈ {0, 0.1}, τ

test
hiдh ∈ {0.6, 0.7}, τ

test
nms = 0.25 and τ test1 = 6, depen-

dent on the data set complexity and the speed versus accuracy weighting⁸.
Based on the aforementioned suggested values and on unreported experiments
performed on the SuperView data, τ testlow = 0.05, τ testhiдh = 0.6, τ testnms = 0.5 and
τ test1 = 8 are used during all ODGI experiments in this thesis. τ testnms = 0.5 is
used for easier comparison to other models. τ test1 = 8 is determined based on
a worst case scenario: as harbor areas are of special interest in this grouped
instance analysis, scenes with numerous grouped instances, like the one visu-
alized in Figure 1.1, is a repetitive scenario.

8. Royer and Lampert (2020) actually experimented on two data sets of different complexity.
However, the SuperView data set used for experimentation in this thesis is most comparable
to the data set of highest complexity, and is the one that will be referred to.
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Each stage {ϕs }2s=1 is trained separately, meaning that the loss of ϕ2 will
not penalize ϕ1 and vice versa. The input to ϕ2 is the result from ϕ1. Royer
and Lampert (2020) argue that it is cumbersome to wait for one stage to be
completely trained before training the consecutive stage, and that ϕ1 produces
results that are useful for trainingϕ2 after only a few training epochs. A training
procedure that involves training ϕ1 for ne epochs before including ϕ2 in the
training process is thereby proposed. Even though ne = 3 is suggested in Royer
and Lampert (2020), ne = 30 is used when training ODGI on the SuperView
data set because of the few data samples in this data set.

Experiments are performed on the ODGI yt 1024-512, ODGI yt 512-256 and ODGI
tt 1024-512 models, as these are considered the most relevant compositions with
the highest potential for producing adequate results on the relatively complex
SuperView data set.

9.2 Experimental Results
In this section, experimental results on the setups described in previous section
is presented. Inference time, AP and the number of parameters (network
weights) in the different setups are presented in Table 9.1. Example predictions
performed by the Faster R-CNN and the DRBox models are visualized in Figure
9.1 and 9.2, respectively. Scenes of higher object density is not represented by
figure 9.2 as no such images was included in the used inference data set. Recall
that scenes of special interest in this analysis are basic ships, larger ships, areas
of high object density and harbor scenes. Figure 9.3 and 9.4 visualizes example
scenes of a harbor and an area of high object density, respectively. Predicted
results produced by the YOLOv2 1024 and Tiny YOLO models are included in
these figures. These scenarios proved to be the most challenging scenarios, and
other scenarios are considered to be more elementary and thus less interesting.
Predicted figures by the more lightweight YOLOv2 512 model is omitted as it is
assumed to be too elementary for these complex scenes, and due to the failing
results reported in Table 9.1.

Particularly noteworthy details from Table 9.1 are the large inference time for
DRBox, and the improvement in precision of ODGI compared to the baseline
models. A noteworthy detail in Figure 9.1 is that smaller ships are not
assigned a small enough BBox. Because most ships in harbor areas are
difficult to detect, they are typically predicted with a low confidence
threshold. When generating Figure 9.3, a lower confidence score threshold τc
is used to achieve a more explanatory figure.
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Table 9.1: Results of experiments with the SuperView data set described in chapter
7 on different reference models with the experimental setups described in
section 9.1. Inference time are obtained with a GeForce RTX 2080 Ti GPU.

Model Inference time [s] AP # parameters
Faster R-CNN 0.373 0.631 137 M

DRBox 2.364 0.579 27 M
YOLOv2 1024 0.116 0.427 51 M
YOLOv2 512 0.042 0.321 51 M

Tiny YOLO 1024 0.103 0.425 11 M
ODGI yt 1024-512 0.126 0.602 62 M
ODGI yt 512-256 0.045 0.462 62 M
ODGI tt 1024-512 0.116 0.595 22 M

Figure 9.1: Visualization of Faster R-CNN results for three different scenarios. Scene
a) consists of two easily detectable adjacent ships. Because the ships are so
close and traditional BBox are used, additional predictions were removed
during NMS. Scene b) is a harbor with numerous smaller ships. The model
fails to describe all ships in the scene because of overlaps, and the result
is messy. Scene c) show that the predicted annotation is larger than the
actual ship size for small ships.
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Figure 9.2: Visualization of DRBox results in two scenes. Scene a) consists of two
larger ships. The adjacent dock interferes with the predictions. Scene b)
consist of one smaller ship that is successfully predicted.
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Figure 9.3: Visualization of one example tile projecting a harbor area with corre-
sponding predictions generated using the reference models YOLOv2 1024,
Tiny YOLO 1024, ODGI yt 1024-512, ODGI yt 512-256 and ODGI tt 1024-512.
Image dimensions are manipulated with respect to the original tile for
visualization, as part of the tile is outside the satellite product.
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Figure 9.4: Visualization of one example tile projecting an area of high ship den-
sity, and corresponding predictions generated using the reference models
YOLOv2 1024, Tiny YOLO 1024, ODGI yt 1024-512, ODGI yt 512-256 and
ODGI tt 1024-512. Image dimensions are manipulated with respect to the
original tile for visualization.





10
Experiments on NovelMethods
This chapter will present experiments on the novel models presented in chapter
8. As introduced in chapter 8, both Oriented YOLOv2 and Oriented Tiny YOLO
can be used with different grid cell sizes. The same applies for the OODGI
pipeline. Different complexities of these three models are experimented on
in this chapter, and discussed and analyzed further in part V. Experimental
setups will first be introduced in chapter 10.1, before experimental results are
presented in section 10.2.

10.1 Experimental Setup
Similarly as for experiments on reference models, the hyperparameters τIoU
and τc are included in all models. Although the IoU is calculated somewhat
different as for reference models experiments, τIoU = 0.5 is used for an easier
comparison to other models. All novel models are grid-based detectors1, and
all experiments are conducted using the exact SuperView data set, therefore,
τc = 0.4 is ascertained here already.

1. Although OODGI is a hybrid of grid- and proposal-based architecture, grid-based detectors
constitutes the individual stages.

103



104 CHAPTER 10 EXPER IMENTS ON NOVEL METHODS

Based on unreported experiments and suggested values for λcoord and λnoobj
in the standard YOLOv2 model, λor ientation = 1 is a reasonable value, causing
the optimization process to converge. This is used for all experiments in this
chapter. Similarly as for reference models experiments, only positive image tiles
are used in the training data set, i.e. images that have at least one annotated
object.

The implementations of Oriented YOLOv2, Oriented Tiny YOLO and OODGI
are extensions of the ODGI code base2, written in the Tensorflow framework
(Abadi et al., 2015), but is unfortunately not published due to commercial
interests.

10.1.1 Oriented YOLOv2
The same experimentation principles as described in section 9.1.5 for the
standard YOLOv2 applies for experiments on Oriented YOLOv2. Identical reg-
ularization strategies, data augmentation (with different implementation),
weight initialization, and activation functions are used in these experiments
as well. The difference is the new loss function, expressed in equation 8.1,
different IoU concept and other modifications that are described in chapter 8.
A simple linear activation function is applied to the introduced θϕ parameter,
as no mapping of this regressed parameter is desired.

Hyperparameters are determined similarly as for the YOLOv2 experiments, in
addition to λor ientation = 1. Experiments are performed on Oriented YOLOv2
1024 and Oriented YOLOv2 512. These models are selected because they have
the highest potential of producing adequate and interesting results.

10.1.2 Oriented tiny-YOLO
Experiments on Oriented Tiny YOLO are conducted identically as for Oriented
YOLOv2, but now using a more light-weight CNN as described in section 8.3.
The same grid cell sizes as described in section 9.1.3 apply. Unlike the reference
model experiments, Oriented Tiny YOLO 512 is now included because of the
promising results of Oriented Tiny YOLO 1024 and Oriented YOLOv2 512 in
Table 10.1.

10.1.3 OODGI
A similar experimental setup as for ODGI, described in section 9.1, applies
for the OODGI experiments. When OODGI was presented, it was argued that
S = 2 stages in the pipeline is sufficient for the normal remote sensing data set.
Because the SuperView is considered a normal remote sensing data set, S = 2
is used in the OODGI experiments. The modifications described in chapter
8 are applied. The new loss function, expressed in equation 8.3, is used for

2. https://github.com/ameroyer/ODGI.

https://github.com/ameroyer/ODGI
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optimization. Except for λor ientation = 1, all hyperparameters are identical as
for ODGI.

For a holistic perspective on the novel OODGI model, all OODGI yt 1024-512,
OODGI yt 512-256, OODGI tt 1024-512 and OODGI tt 512-256 are included in
the experiments. These models are considered the most relevant compositions
with the highest potential for producing adequate results. Unfortunately, there
are some indications that the OODGI implementation has some errors and is
not fully completed. These indications included large losses for stage two, ϕ2,
and failing results.

10.2 Experimental Results
In this section, experimental results for the setups described in the previous
section is presented. Inference time,AP and the number of parameters (network
weights) for the different setups are presented in Table 10.1.

Oriented Tiny YOLO 512 and OODGI tt 512-256 are not included in the visual
prediction examples. Recall that basic ships, larger ships, areas of high ship
density and harbor scenes are considered scenarios of special interest. These
mentioned scenarios are together considered to constitute a holistic perspective
of potential scenarios. Figure 10.1 visualizes a basic scene with corresponding
predictions by the novelmodels. Figure 10.2 exemplifies predictions by the novel
models in a large ship scenario. Figure 10.3 visualizes one example scene where
all models proved to be struggling, and with corresponding predictions. Figure
10.4 displays one example harbor, known as a difficult scene, and corresponding
predictions. To generate Figure 10.4, a lower confidence score threshold τc and
IoU threshold τIoU were used to achieve a more explanatory figure.

Particularly noteworthy details from Table 10.1 are the favorable results of
Oriented YOLOv2 512, the weak performance of Oriented YOLOv2 1024, and
the weak performance of all OODGI models. The experimental results on
reference models in Table 9.1 report precisions that are relatively expected
from the model complexities. Some of the reported precisions in Table 10.1 are
somewhat more unexpected. A noteworthy detail from Figure 10.1 and 10.2 is
that OODGI yt 512-256 is the only model missing objects in both these scenes.
In Figure 10.3, most models miss ships and predict inaccurate ship
orientations. All models predict poor annotations for the harbor scene in
Figure 10.4, but the OODGI models barely manages to predict any objects at
all.
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Table 10.1: Results of experiments with the SuperView data set described in chapter
7 on the novel object detection models presented in chapter 8. Inference
times are obtained with a GeForce RTX 2080 Ti GPU.

Model Inference time [s] AP # parameters
Oriented YOLOv2 1024 0.157 0.400 51 M
Oriented YOLOv2 512 0.0635 0.451 51 M

Oriented Tiny YOLO 1024 0.175 0.4286 11 M
Oriented Tiny YOLO 512 0.054 0.417 11 M

OODGI yt 1024-512 0.171 0.375 62 M
OODGI yt 512-256 0.0634 0.351 62 M
OODGI tt 1024-512 0.165 0.341 22 M
OODGI tt 512-256 0.0558 0.244 22 M
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Figure 10.1: Visualization of one example basic scene with corresponding predictions
by the novel models. Predictions are generated using Oriented YOLOv2
1024, Oriented YOLOv2 512, Oriented Tiny YOLO 1024, OODGI yt 1024-
512, OODGI yt 512-256 and OODGI tt 1024-512. Image dimensions are
manipulated with respect to the original tile for visualization.
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Figure 10.2: Visualization of one scene displaying large ships and corresponding pre-
dictions by the novel models. Image dimensions are manipulated with
respect to the original tile for visualization.
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Figure 10.3: Visualization of one example scene that all novel models find troublesome.
Image dimensions are manipulated with respect to the original tile for
visualization.
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Figure 10.4: Visualization of one example harbor scenewith corresponding predictions
by the novel models. Image dimensions are manipulated with respect to
the original tile for visualization.



11
Additional Experiments onMain Models
This chapter will present some interesting analyses on the main models that are
not covered by the previous two chapters. Section 11.1 will present results that
are specifically interesting within the field of ship detection, andwill encompass
both reference and novel models. Section 11.2 studies the stochasticity of
validation results, inspired by several somewhat unforeseen precision results
in Table 10.1.

11.1 Error Analysis on Main Models
It was stated in section 4.7.1 that false alarms, errors, and correct predictions
are of specific interest in the scientific field of ship detection. These error
measures are often crucial when choosing a ship detection model. This section
studies these three error measures on the main reference and novel models.
The main models are selected according to promising results in Table 9.1 and
10.1, with diversity in mind, and are the models included for visualization in
section 9.2, Figure 9.4 and 9.3, and section 10.2.

A prediction is considered to overlap a ground truth ship if the intersection
between these boxes is greater than 10−4. This will include all overlapping
boxes (with overlap greater than 10−4), and is not considering the size of the
boxes. In theory, a prediction covering the entire image will coincide with all
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ground truth ships. Fortunately, no such predictions have emerged in analyzed
images. All hyperparameters and thresholds are set according to described
values in section 9.1 and 10.1.

True positive rate (tp-rate) is equivalent to correct prediction rate. False positive
rate (fp-rate) is equivalent to false alarm rate (also equivalent to Type I errors).
False negative rate (fn-rate) is equivalent to the rate of misses (also equivalent
to Type II errors). The ideal situation is tp-rate = 1.0, fp-rate = 0.0 and fn-rate
= 0.0. The results of this error analysis are given in Table 11.1, and graphed
in Figure 11.1. Noteworthy details are the improved rates for Oriented YOLOv2
and Oriented Tiny YOLO compared to the non-oriented equivalents, and the
failing fp-rates for the OODGI models.

Table 11.1: Performance measures of main reference and novel models. The included
measures are true positive rate (tp-rate), false positive rate (fp-rate) and
false negative rate (fn-rate).

Model tp-rate fp-rate fn-rate
YOLOv2 1024 0.743 0.046 0.104

Tiny YOLO 1024 0.756 0.086 0.163
ODGI yt 1024-512 0.875 0.046 0.126
ODGI yt 512-256 0.761 0.081 0.148
ODGI tt 1024-512 0.890 0.110 0.092

Oriented YOLOv2 1024 0.861 0.139 0.074
Oriented YOLOv2 512 0.885 0.115 0.094

Oriented Tiny YOLO 1024 0.857 0.143 0.170
OODGI yt 1024-512 0.593 0.007 0.120
OODGI yt 512-256 0.388 0.113 0.255
OODGI tt 1024-512 0.593 0.007 0.076

Figure 11.1: Chart of performance measures. Visualization of the values in Table 11.1.
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11.2 Stochasticity Analysis
Inspired by several somewhat unforeseen precision results in Table 10.1, and
the previously mentioned model stochasticity introduced by batch processing
(stated in section 4.5.1), an analysis of varying results in different training ses-
sions seemed appropriate. This section studies the AP results when evaluating
9 different training sessions. It is performed on Oriented YOLOv2 1024, as this
model may be considered one of the main presented novelties. In addition, this
model converges faster than the OODGI variants.

The exact same split of training, validation and test data is used for all 9
experiments, and they are trained with an equal amount of epochs, same batch
size, and identical hyperparameters.

The results are summarized in Figure 11.2. The sample mean of these 9 AP
results is x̄ = 0.401, and the sample standard deviation is σ̂ = 0.024. Worth
noting is that the sample mean of these data points (0.401) is relatively
similar to the reported AP result of Oriented YOLOv2 in Table 10.1 (0.400).
The results will be discussed further in chapter 12.

Figure 11.2: AP results from 9 different Oriented YOLOv2 1024 training sessions. Sam-
ple mean x̄ = 0.401 (solid line) and sample standard deviations (dotted
lines) are added. The sample standard deviation is σ̂ = 0.024.
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12
Discussion
The results presented in part IV will be discussed in this chapter. An important
and interesting issue when studying model performance is the emphasis of
speed versus accuracy. Slower models are typically more precise, and vice versa,
often making this issue decisive when choosing a model. The issue of speed
versus accuracy trade-off will be reviewed in the beginning.

12.1 Speed versus Accuracy Trade-Off
Model inference speed can often have an impact on model selection. Processing
time per image ranges typically from tens of milliseconds to almost a second,
dependent on image resolution and model complexity (Huang et al., 2017).
Long inference time tends to produce more precise results, and vice versa.
Several proposal-based object detectors are initially slower but more accurate,
but may achieve increased inference speed if the maximum number of region
proposals are restricted. For the ship detection problem, where harbor scenes
similar to the one visualized in Figure 1.1 are recurring, this is not feasible.

Ship detection service providers are typically interested in running near real-
time analyses. Recall from section 3.4 that a SuperView satellite product consists
of ∼ 3.2×104 pixels. When using a tile size of 1024 pixels, one satellite product
is equivalent to ∼ 103 images tiles. With an inference time of one second,
the total computation time will demand over 16 minutes. A paradigm says
that “coarse predictions are better than none” (Royer and Lampert, 2020).
Consequently, a simpler non-complex model may often be considered adequate
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for given problems. For ship detection, such a model will typically result in a
higher false alarm and miss rate.

12.2 Discussion of Results
Chapter 9 and 10 presented results on reference and novel models, respectively,
and chapter 11 presented error and stochasticity results on selectedmodels. The
following sections will discuss these results, the overall model performances,
and a general discussion.

12.2.1 Reference Models
The studied reference models include Faster R-CNN, DRBox, YOLOv2 1024,
YOLOv2 512, Tiny YOLOv2 1024, ODGI yt 1024-512, ODGI yt 512-256 and ODGI
tt 1024-512. Table 9.1 presented main experimental results on these reference
models. Faster R-CNN and YOLOv2 512 achieves the highest and lowest AP re-
sults, respectively. YOLOv2 512 andDRBox have the lowest and highest inference
time, respectively. Although being a grid-based detector, DRBox operates with
an inference time as high as 2.364 seconds. This is probably largely because
of the computer-intensive IoU calculation. Because this calculation is also per-
formed during inference and testing, it is considered to be too slow to be used
in most real world applications. Liu et al. (2017a) presents a significantly lower
inference time than reported here, which indicates that a slow implementation
is used in the current work. Although Royer and Lampert (2020) claims that the
motivation behind the ODGI model is to reduce computational intensity, and
hence reducing inference time, while sustaining satisfying precision, Table 9.1
reveals increased precision and competitive speed as compared to the regular
YOLOv2 and Tiny YOLO models. The table also indicates that models which
was initialized using pretrained weights (Faster R-CNN and DRBox) tend to
result in a higher precision.

Figure 9.1 displays Faster R-CNN predictions at three typical scenes. In Subfig-
ure (a), the two adjacent ships are so close that the NMS step silences one true
prediction because of overlap. This exemplifies the drawback of using BBox to
describe arbitrarily oriented objects. Subfigure (b) visualizes a failing attempt
to predict ships in a harbor. Subfigure (c) shows that the predicted bounding
box is not small and precise enough to correctly enclose the small ship. This is
a recurring situation for small ship predictions, and is due to limitations of the
Faster R-CNN, specifically the receptive field. Figure 9.2 visualizes sufficient
results for two larger adjacent ships, and one smaller ship, predicted by the
DRBox.

Figure 9.3 visualizes YOLOv2, Tiny YOLO and ODGI predictions in a demanding
harbor scene. YOLOv2 1024 and Tiny YOLO 1024 (Subfigure (a) and (b),
respectively) performs poorly, whereas the ODGI models performs slightly
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better. Recall from section 9.1 that τ test1 = 8 crops are used during inference
for these experiments. This is clearly evident in Subfigure (c), (d) and (e).
Only a limited number of regions in the image (8 regions) are refined at stage
two ϕ2. This is a typical scene with many object groupings and a large τ test1
would have been appropriate. There is no indications of S = 2 stages being to
shallow for the scenarios encountered in this SuperView data set. The number
of misses is unacceptable in all these results. Figure 9.4 visualizes a scene with
numerous smaller ships in a confined area, and corresponding predictions by
selected reference models. YOLOv2 1024 and Tiny YOLO 1024 (Subfigure (a)
and (b), respectively) generate reasonably good predictions, but with some
misses andmisplacements. Most ships are not sufficiently close to be considered
as groupings by the ODGI models. From the figure, it appears that ODGI yt
1024-512 produced the most solid predictions for this scene.

12.2.2 Novel Models
The variants of novel models used for experimenting are Oriented YOLOv2
1024, Oriented YOLOv2 512, Oriented Tiny YOLO 1024, Oriented Tiny YOLO
512, OODGI yt 1024-512, OODGI yt 512-256, OODGI tt 1024-512 and OODGI tt
512-256. Table 10.1 presents the main experimental results on these novelties.
Oriented YOLOv2 512 and OODGI tt 512-256 achieve the highest and lowest AP
scores, respectively. Oriented Tiny YOLO 512 and OODGI yt 1024-512 operate
with the lowest and highest inference time, respectively. An unanticipated
result is the robust precision of Oriented YOLOv2 512 and Oriented Tiny YOLO
512 as compared to Oriented YOLOv2 1024 and Oriented Tiny YOLO 1024,
respectively. These versions operate with half the number of prior boxes, and
have a significantly shorter inference time. As a result of an implementation
fault that could not be resolved within the time frame of the project, all OODGI
models achieve disappointing precisions.

A comparison of the Oriented YOLOv2 and Oriented Tiny YOLO in Table 10.1
with the non-oriented equivalents in Table 9.1 reveals fairly comparable re-
sults. The more lightweight reference model YOLOv2 512 achieved significant
improved precision when extended to Oriented YOLOv2 512.

Figure 10.1 visualizes one example basic scene with multiple smaller ships,
and corresponding predictions by selected novelties. Oriented YOLOv2 512
(Subfigure (b)) reports one misoriented prediction, and OODGI yt 512-256
(Subfigure (e)) has three misses. Except for this, the results are relatively
robust. Figure 10.2 illustrates predictions in a scene with two larger ships and
an adjacent dock. Again, OODGI yt 512-256 (Subfigure (e)) is the only model
missing a ship. Other than this, the predictions are sufficient.

The scene considered in Figure 10.3 is found troublesome by all models used
for experimenting. Few of these predictions are considered to have successfully



120 CHAPTER 12 D ISCUSS ION

recognized orientations. Oriented YOLOv2 512, OODGI yt 512-256 and OODGI
tt 1024-512 (Subfigure (b), (e) and (f), respectively) have some misses. Beyond
this, most objects are detected, but with inaccurate rotations. The reason is
assumed to be objects being too small and cluttered. Most of these ships are
not sufficiently close to be considered object groupings by the OODGI models.

Figure 10.4 visualizes one example of a troublesome harbor scene and corre-
sponding predictions by novel models. All Oriented YOLOv2 and Oriented Tiny
YOLO versions (Subfigure (a), (b) and (c)) produce numerous false alarms,
have several misses and inaccurate shapes and rotations. The OODGI models
have an unsatisfactory amount of misses and produce incomplete results. This
is a typical scene with many intermediate predictions that need refinement
in stage two ϕ2. Because of the assumed implementation fault, these refined
predictions become incorrect, and hence achieve a low confidence score which
causes them to be silenced during NMS. The implementation fault has been
attempted to be corrected, but could not be completed due to time limitations.
Because of large losses in the stage two object detection network ϕ2 during
training, and incorrect predictions especially in areas of high object density,
the implementation fault is assumed to be at the stage transition or when for-
matting predictions from the concluding stage, ϕ2. It can be debated whether
the imprecision is caused by weakness in the introduced model, rather than
being an implementation fault. However, the very large losses in stage two ϕ2
compared to stage one ϕ1 indicate that this may not be the cause.

Recall from section 8 that angle prediction in all novel models is performed
using a direct regression approach. It was also stated that this approach was
suggested with some uncertainty about how well it was going to perform,
and that the experiments in chapter 10.2 should reveal its performance. The
results in Table 10.1 and the predictions visualized in section 10.2 describes
overall adequate predictions of object rotations, indicating that solving this
task with direct regression is sufficient. Based on satisfactory results for most
scenes in section 10.2, which indicates a potential of sufficient object orientation
recognition, it is tempting to think that the weaker results in Figure 10.3 could
be improved with more training data.

Recall from the DRBox introduction in section 6.3.2.1 and the IoU calculation
for novel models, described in chapter 8, that the novel models maps RBoxes to
BBoxes when calculating IoU, whereas DRBox uses an approximate approach
for determining this measure. Although DRBox operates with a significant
higher inference time, it appears to produce a higher precision (ref. Table 9.1).
Thus, testing this approximated IoU calculation for the novel models would
have been an interesting experiment.
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In section 5.2.5, it was stated that the RBox omits background noise which is
included in the BBox. This is claimed to result in better decision-making, and
is the origin of Hypothesis 1: Annotating objects in remote sensing images using
rotatable bounding boxes gives technical improvements leading to increased preci-
sion over traditional bounding boxes for deep learning models, and gives a visually
more prominent description. An AP comparison of architectures using RBoxes
and architectures using BBoxes in Table 9.1 and 10.1 may indicate a slightly
improved AP for oriented architectures. However, this is not statistically tested.
Numerous figures have exemplified the visual and descriptive advantages of
adopting RBoxes.

As a conclusion of this section, Oriented YOLOv2 and Oriented Tiny YOLO
have shown competitive and promising results. They report relatively good
precisions, while operating relatively fast during inference, and appealing
visualizations have resulted from these models. OODGI reports weaker results
for precision. It operates adequately in scenes with lower object density, but
struggles once the density increases.

12.2.3 Additional Analysis
The error and stochasticity analysis presented in chapter 11 will be reviewed
and discussed in this section. The error analysis includes selected reference and
novel models. The stochasticity analysis is performed on the Oriented YOLOv2
1024 model.

12.2.3.1 Error Analysis
Table 11.1 and Figure 11.1 reveals that OODGI tt 1024-512 has the highest rate of
correct predictions, OODGI yt 1024-512 and OODGI tt 1024-512 share the medal
for lowest false alarm rate, and Oriented YOLOv2 1024 has the lowest number
of misses.

Figure 11.1 also reveals the gratifying indicator that the Oriented YOLOv2 and
Oriented Tiny YOLO variants have a higher rate of correct predictions compared
to the non-oriented equivalents. A hypothesis test to evaluate whether this
is a statistically valid statement would have been highly interesting, but is
omitted as multiple subexperiments would have been needed, and due to time
limitations. In return, these oriented models do also appear to have a higher
rate of false alarms and misses. The OODGI models operates in general with a
low rate of correct predictions, few false alarms and a high rate of misses.
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12.2.3.2 Stochasticity Analysis
Figure 11.2 shows a plot of the AP evaluation results for 9 individually trained
Oriented YOLOv2 1024 models, used to study the variance between training
sessions. All models are trained identically with the exact same data. The only
factor causing variations in the AP results are, to the authors best knowledge,
random batch compositions and successions from the stochastic weight initial-
ization. The sample mean of these 9 AP results is x̄ = 0.401, and the sample
standard deviation is σ̂ = 0.024. This sample mean is relatively similar to the
reported AP result of Oriented YOLOv2 in Table 10.1 (0.400). However, the
sample standard deviation σ̂ = 0.024 suggests that this result is sampled from
a stochastic variable, and thus that this similarity is a coincidence.

Achieving these varying results when using the exact same data may indicate
that the optimization process had not yet converged. The validation results were
alternating for numerous epochs before the training session was completed,
and there was no indications of further stabilization.

These experimental results may indicate that the data set is not of sufficient
scale. One troublesome sample in the test data set can make a big impact on
the evaluation process. A greater extent of the data set would possibly have
decreased the observed variance.

12.3 General
A statistical analysis of a null hypothesis concerning similarity of AP in the
novel oriented versions compared to the standard non-oriented equivalents
would have been highly interesting. Specifically, this could have been used to
conclude on Hypothesis 1 concerning technical improvements in the model
when adopting RBoxes. Because the oriented models are not resulting from
the same stochastic process, multiple subexperiments are necessary for doing
such a statistical analysis. The same applies for the non-oriented models. This
is omitted due to time limitations.

In part II, there was some mentions of the topic of ship detection using seg-
mentation networks. The inclusion of a segmentation-based model in the
experiments could have been valuable for the sake of comparison. However,
as discussed in section 7.2, there is a class imbalance on pixel level. When ap-
plying segmentation-based ship detection models, it is common to ignore land
areas using a land mask. This will, i.a., guide the network to get a monotone
understanding of the two classes of interest: ship and ocean (background).
Experimentation on segmentation-based architectures are omitted due to time
limitations, as it is outside the scope of this thesis.
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The advantage of the ability to describe shape and rotation of oriented objects
is, in this thesis, presented as highly desirable. The number of problems where
this is applicable may still be debatable. The advantages of using RBoxes over
traditional BBoxes must be taken into consideration when choosing an object
detector. Predicted rotations have in some examples in this thesis appeared
to be somewhat unstable, which is assumed to be a particular problem if
the training data set extent is not sufficient. Besides this, the benefits of using
RBoxes have proven to be many, and is the motivation behindmost experiments
in this thesis. Scenes of high object density have also been particularly studied
in this thesis. Most such scenes have proven to be difficult to handle for all
reviewed architectures. The necessity of detecting ships at harbors or near
shore may be debatable.

Optical remote sensing images, and the accompanying high resolution and fine
details, have worked well for ship detection experiments. The resolution has
generally been sufficient for rotation recognition. After different appearances
of the SuperView data was studied in section 7.1, it became clear that lots of
training data is vital when training deep neural networks on this data. Varying
experimental results may indicate that better precisions and accuracy rates
could be obtained with more training data.

None of the models studied in this thesis predict a ship heading ∈ [0, 360)◦,
i.e., they do not differentiate bow and stern of a ship. This is partly because
DRBox is not doing so, and comparability is desired. All concepts introduced
for the three neural network architectures supports such an expansion. The
annotations in the SuperView data set also supports this extension1.

1. The orientations were mapped to [0, 180)◦ as a pre-processing step to be used in the
studied models.





13
Concluding Remarks
The thesis has studied ship detection using deep learning in optical remote
sensing images. Five reference models of different complexities have been
studied. Some of these have again been decomposed and implemented with
different complexities for experimentation. Three novel neural network archi-
tectures predicting object rotations have been proposed: Oriented YOLOv2,
Oriented Tiny YOLO and Oriented Object Detection with Grouped Instances
(OODGI). The first two demonstrated adequate results, whereas OODGI needs
some implementation adjustments to demonstrate its full potential. Differ-
ent compositions of these architectures have been reviewed and are used for
experimentation. A complete SuperView data set suited for deep learning
applications has been washed and finalized.

Hypothesis 1 claimed that adopting RBoxes gives technical improvements
leading to increased precision and gives a more prominent description over
the traditional BBoxes. The novel models Oriented YOLOv2 and Oriented
Tiny YOLO have given indications of improved precision and rate of correct
predictions compared to the non-oriented equivalents, and hence a technical
improvement. This indication originates from a comparison of APs in Table
9.1 and 10.1, and accuracy rates in Figure 11.1. However, this is not statistically
tested, and therefore cannot be used to conclude Hypothesis 1. Numerous
figures have exemplified the visual and descriptive advantages of adopting
RBoxes, and hence concludes parts of Hypothesis 1.
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Hypothesis 2 claimed that the advantage of grouped objects being more visually
salient than individual objects will result in increased precision when applying
deep learning architectures based on object groupings to the SuperView data
set. YOLOv2 and Tiny YOLO had a low inference time, and acceptable results.
However, ODGI reported increased performance compared to the baseline
models YOLOv2 and Tiny YOLO, while operating with equivalent inference
time. These results are presented in Table 9.1. Thus, ODGI achieved improved
precision, concluding Hypothesis 2.

Faster R-CNN reported the overall best precision results. However, this model
is relatively slow and struggles with enclosing smaller ships. DRBox reported
a high inference time, but fairly good precision.

Hypothesis 3 claimed that expanding a deep learning architecture based on
object groupings to predict RBoxes (over the traditional BBoxes) will describe
objects more orderly, while safeguarding the advantages of utilizing object
groupings. The expansion of an object detector based on grouped object in-
stances to detection of orientation has theoretically been achieved, as a full
description of OODGI highlighting the necessary modifications of ODGI was
presented. However, the failing experimental results indicates that the advan-
tages of utilizing object groupings are not safeguarded, and the investigation
of Hypothesis 3 cannot be considered as concluded.

All models reviewed in this thesis are struggling with harbor scenes, and scenes
of high object density. This will remain as an unsolved issue1. The performance
consistency of Oriented YOLOv2 1024 using the exact same SuperView data
set has been reviewed. Varying results was achieved over 9 different training
sessions used in the experiment. It was discussed that the reason for this
varying results were random batch compositions and successions from the
stochastic weight initialization. It was also discussed that a greater training
data set would possibly have decreased the variance.

1. It was predicted already in introduction chapter 1 that no object detectors will be able to
process such challenging scenes perfectly.
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13.1 Future Work
Numerous interesting aspects have emerged in this thesis. A further study,
an extension of this thesis, would have been pleasant. Some moments were
omitted due to time limitations, and some moments were excluded because of
irrelevance. Ideas for future works include:

• Rectification of the OODGI implementation fault.

• Initialization of the novel models with pretrained weights to obtain
improved performance.

• Experimentation on using the IoU approximation approach used in DR-
Box for our novel models.

• Inclusion of 360◦ orientation recognition.

• Inclusion of vessel type classification.

• Expansion of the SuperView data set.

• Experimentation on Faster R-CNN with all classification components
excluded to obtain improved detection performance.

• Performance comparison between bounding box-based and segmentation-
based detectors on the SuperView data set.

• Implementation of a complete pipeline that splits the satellite image
into convenient image tiles, processes these image tiles individually, and
reassembles the results. This process must not loose decisive information.

This concludes the thesis Ë
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Appendix
14.1 RBox to BBox Mapping
Originally, annotations in the SuperView data set are given in the θRBox =
{θx , θy, θw , θl , θϕ} (xywh-format) format. Several models expect the θBBox =
{θx , θy, θw , θh} format. A common representation is also the θBBox = {θx_min,
θy_min, θx_max , θy_max } format. A mapping from the RBox to a BBox repre-
sentation is therefore necessary. This mapping is also performed several times
for some of the models studied in this thesis. The following Python3 function
is designed to perform this mapping:

import numpy as np
def convert_RBox_to_BBox(RBox, xywh_format=True):

x, y, w, l, r = RBox
hyp = np.sqrt((w / 2)**2 + (l / 2)**2)

x1 = int(x - hyp * np.cos(r) - (w / 2) * np.sin(r))
y1 = int(y - hyp * np.sin(r) - (w / 2) * np.cos(r))

x2 = int(x + hyp * np.cos(r) - (w / 2) * np.sin(r))
y2 = int(y + hyp * np.sin(r) + (w / 2) * np.cos(r))

x3 = int(x + hyp * np.cos(r) + (w / 2) * np.sin(r))
y3 = int(y + hyp * np.sin(r) - (w / 2) * np.cos(r))

x4 = int(x - hyp * np.cos(r) + (w / 2) * np.sin(r))
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y4 = int(y - hyp * np.sin(r) + (w / 2) * np.cos(r))

x_min = np.min([x1, x2, x3, x4])
x_max = np.max([x1, x2, x3, x4])

y_min = np.min([y1, y2, y3, y4])
y_max = np.max([y1, y2, y3, y4])

if xywh_format:
return (x_max + x_min)/2, (y_max + y_min)/2,

x_max - x_min, y_max - y_min
else:

return x_min, y_min, x_max, y_max

14.2 Crop-Relative Annotation Mapping
The following Python3 code snippet is designed to map one annotation from
original coordinate system to a crop relative coordinate system. Notations are
described in equation 8.2.

import tensorflow as tf
rbox_sub = tf.concat([crop_mins_x,

crop_mins_y,
tf.zeros_like(crop_w),
tf.zeros_like(crop_h),
tf.zeros_like(crop_r)], axis=-1)

rboxes -= rbox_sub
new_rbox_w = (w_rbox*(tf.sin(rbox_angle)

+ tf.cos(rbox_angle)))
/tf.maximum(1e-6, crop_width)

new_rbox_l = (l_rbox*(tf.cos(rbox_angle)
+ tf.sin(rbox_angle)))
/tf.maximum(1e-6, crop_height)

rboxes = tf.concat([rboxes[..., 0], # rbox_x
rboxes[..., 1], # rbox_y
new_rbox_w,
new_rbox_l,
rbox_angle], axis=-1)
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