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Abstract 
 
Anthropogenic emission of greenhouse gases is causing an unbalance in the Earth’s climate 

system, leading to global climate change. The implications of these changes are dramatic, with 

a need for a global-scale assessment. The remaining carbon budget (RCB) is a measure of the 

amount of greenhouse gasses (GHGs) that can be emitted if we are to reach a specific temper-

ature target. Traditionally, carbon budgets are assessed from experiments in Earth System Mod-

els (ESMs) or less complicated reduced complexity models, such as the Model of the Assess-

ment of Greenhouse Gas Induced Climate Change (MAGICC). The large spread between ESMs 

implies that one would need to study an ensemble of models. An alternative approach, which 

so far has remained unexplored is to use simple response models to assess RCBs and to build 

in a non-linear effect framework explicitly. 

 

The construction of a simple response model (SRM) and estimated likelihood plots for the RCB 

show that the SRM estimates are consistent with MAGICC. A non-linear forcing effect frame-

work enables the implementation and study of non-linear Earth system feedbacks. The esti-

mates use a combination of emulators of 14 ESMs from the Coupled Model Intercomparison 

Project 5 (CMIP5) ensemble, to even out the climate sensitivity of each model. 
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1 Introduction  
 

Global climate change is one of the defining issues of our time. In 2019 the global mean surface 

temperature (GMST) has increased by 1.1±0.1°C relative to the industrial revolution, with a 

baseline period between 1850-1900 (World Meteorological Organization, 2020). The main fac-

tor for this warming is rising greenhouse gas (GHG) concentrations from emissions associated 

with consumption and production of fossil fuels driven by a dramatic increase in the use of 

global resources (Allen et al., 2018; J.  Rogelj et al., 2018).  

 

Through the Paris Agreement and its signatories, most of the global community aims to hold 

global average temperature well below 2°C and at the same time aspiring to constrain the warm-

ing below 1.5°C above a pre-industrial revolution average. According to results of the latest 

Special Report on Global Warming of 1.5°C (SR15) by the Intergovernmental Panel on Climate 

Change (IPCC), there is at least 66% probability that the 1.5°C-target will already fail between 

2030 and 2052 (J.  Rogelj et al., 2018). With a specified temperature target, it is possible to 

estimate an approximate remaining carbon budget (RCB) through a simple physical relation 

known as the transient climate response to cumulative emissions of CO2 (TCRE) (see Section 

2.4). Often, RCBs are estimated using complex Earth System Models (ESMs), with substantial 

variation between models. An alternative approach is to use reduced complexity models such 

as Model of the Assessment of Greenhouse Gas Induced Climate Change (MAGICC). How-

ever, since there are few such models, there is a risk to underestimate the model uncertainty. 

 

As a part of the fifth and last year of my integrated bachelor and master’s degree, I am partici-

pating in a research project with fellow students Andreas Johansen and Andreas Rostrup Mar-

tinsen, and our supervisor Martin Rypdal. The research project focuses on the construction of 

a simple response model (SRM) for estimates of the RCB. We verify our model results through 

Martinsen (2020) comparison with MAGICC6, demonstrate the estimate of the RCB with 

linked likelihoods for a given mitigation target, and analyse the impact on the RCBs when 

including the Arctic amplification factor.  

 

This study also reviews the concept of RCBs and how they are generally estimated, with the 

impact and challenges that arise from including or excluding different forcing factors, and feed-

back-mechanisms.  
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The SRM is a pure-play on the scenario-based approach. As of now, it consists of four forcing 

factors, with emissions from carbon dioxide and methane, emissions from anthropogenic aero-

sols, and an implemented non-linear forcing framework dependent on the GMST. In this study, 

we implement an example of non-linear forcing through the GHG release from the warming of 

wetlands and abrupt permafrost thaw, due to the interest in the Arctic amplification factor 

(Johansen, 2020). 

 

We can, with little effort, implement other forcing factors or feedback mechanisms in the flex-

ible SRM framework. For a given emission scenario of CO2 (typically given as GtCO2 per year), 

the model estimates a concentration through our simple carbon response model. Due to the 

nature of the different forcing factors, the relationship between concentrations and forcing is 

described separately for each forcing agent using standard relations of atmospheric physics. 

From the forcing estimates, we estimate the global temperature response using linear box-type 

climate models with parameters fitted to the different models in the Coupled Model Intercom-

parison Project 5 (CMIP5) ensemble. 

 

Even though climate change is a global challenge, the impacts are felt locally (Allen et al., 

2018). Modelling and observations show that there is an Arctic amplification factor for global 

warming. The temperature increase in the Arctic succeeds the GMST. For instance, GISTEMP 

model shows mean surface temperature north of 64°N in 2019 of 2.71°C (Dai, Luo, Song, & 

Liu, 2019; Lenssen et al., 2019; Team, 2020). As a part of our project, we have estimated and 

implemented the Arctic amplification factor to obtain RCBs for temperature targets for the 

Arctic (Section 3.7 and (Johansen, 2020)). 

 

Rather than studying scenarios that exceed the more optimistic temperature targets like 1.5°C 

or 2.0°C from the Paris Agreement, we focus on avoidance- and overshoot-scenarios (see Sec-

tion 2.4.4). Findings in SR15 underline that in order to limit global warming to more ambitious 

mitigation targets such as 1.5°C there has to be an almost pivotal shift in the global society, 

with the decoupling of GHG emissions from economic growth (Allen et al., 2018). If we con-

tinue in a business-as-usual (BAU) scenario for too long, the number of policy options dimin-

ishes quickly, leading to considerable challenges and a higher risk of failure for both the miti-

gation and adaptation efforts, likely leading to amassing total costs (Hurlbert et al., 2019).  
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Another uncertain factor is the impact of human mitigation and adaptation choices, underlining 

the need for an RCB estimate framework with a capability to run a high number of scenarios 

with several model combinations. This is where the SRM shows its forte, because of its sim-

plicity, low runtime, flexible framework and the included likelihood estimates. 
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2 Theory and background 

2.1 Climate change 

 

Observations from the National Aeronautics and Space Administration (NASA) and National 

Oceanic and Atmospheric Administration (NOAA) show that 2019 was the second warmest 

year on record since 1880, as illustrated in Figure 2.1 (NASA Earth Observatory, 2020). The 

estimated GMST in 2019 was 1.1±0.1°C above pre-industrial levels, i.e., a baseline period of 

1850-1900. Four of the past five years were the warmest since modern instrumental temperature 

recording started in 1880, and it is quite clear that the long-term trend of global warming seems 

to be continuing (NASA Earth Observatory, 2020; World Meteorological Organization, 2020).  

 

There is a broad consensus among climate scientists that rising concentration of GHGs in the 

atmosphere from anthropogenic emissions is the key factor in climate change and rising global 

temperatures. The most important greenhouse gases are carbon dioxide (CO2), methane (CH4) 

and nitrous oxide (N2O). In 2019 the average atmospheric concentration of CO2 was around 411 

particles per million (ppm), which, compared to pre-industrial levels, increased 47% from 

around 280 ppm (National Research Council, 2020; J.  Rogelj et al., 2018). This rise in global 

CO2 concentration reflects how the unbalance between the sources and sinks has changed due 

to an increasing ratio of anthropogenic emissions when comparing it to the carbon uptake by 

the ocean and biosphere (World Meteorological Organization, 2020). 

 

Both rising temperatures and the increasing unbalance in the changing climate system can lead 

to severe environmental effects and socio-economic impacts. The Special Report on the Ocean 

and Cryosphere in a Changing Climate (SROCC) concluded with 80% probability that climate 

change in the ocean and the cryosphere is leading to an increase in both single extreme weather 

events and extreme weather patterns, on a global scale (Collins et al., 2019). 
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Figure 2.1: Global annual surface temperature  anomalies (°C) in 2019 relative to a baseline period from 1951  to 
1980, using a 1200 km smoothing radius. The estimates of the global average temperature anomaly led to 0.98°C. 
Reproduced from (Lenssen et al., 2019; Team, 2020). 

 

Warming of the mean sea surface temperatures (SST) of 0.11°C per decade since the 1970s, 

has been leading to a warming of the ocean’s upper layer (depths of 0-700m). These changes 

leads to an increasing stratification of the upper ocean, thus lowering the carbon uptake (Hoegh-

Guldberg et al., 2018). In addition to a lower carbon uptake, it leads to an increased probability 

of marine heatwaves. The IPCC defines a marine heatwave as a short-term extreme warming 

event where the daily SST lies above the 99% confidence interval (CI) for a given local area 

for the period between 1982-2016 (Collins et al., 2019).  

 

Model results from ESMs indicate that with at least 90% probability, 84-90% of all the marine 

heatwaves on a global scale between 2006-2015 is attributable to the increase in GMST com-

pared to an 1850-1900 baseline. Frölicher, Fischer, and Gruber (2018) states that if the temper-

ature exceeds 2°C, almost 100% can be attributed to global warming. The marine heatwaves 

will become increasingly frequent, with an estimated factor increase of 16-24 under a Repre-

sentative Concentration Pathway (RCP) scenario, RCP2.6, in 2081-2100 relative to 1850-1900. 

These changes can push the marine ecosystems to the brink of their systems elasticity, thus 

maybe leading to irreversible changes (Collins et al., 2019; Frölicher et al., 2018). 
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Negative impacts on ecosystems often accompany climatic- and extreme weather events. In the 

case of marine ecosystems, there are impacts on fisheries and the globally and locally dependent 

economies (Collins et al., 2019). An example is the detrimental hurricane season in 2017 along 

the coastlines of the southern United States and the Caribbean, with hurricane Harvey being 

one of the most costly, causing estimated damage of USD$ 125 billion, compared to USD$ 265 

billion for the 2017 hurricane season in total (Blake & Zelinsky, 2018; Collins et al., 2019). In 

comparison, the Norwegian gross domestic product (GDP) for 2018 was USD$ 434 billion (The 

World Bank, 2020). 

 

2.2  The economics of climate-change mitigation 

 

The SR15 discovers through analysis of  Integrated Assessment Models (IAMs), that for sce-

narios with temperature targets between 1.5°C and 2.0°C there is an increase in GDP of 240% 

and an increase in energy consumption of 20% and 50%, respectively by the year 2050 (J.  

Rogelj et al., 2018). An analysis of 31 developing countries, shows evidence of significant 

causality between CO2 emissions, energy consumption and economic growth (Aye & Edoja, 

2017). The world population is estimated to increase to between 8.5-10 billion people by 2050, 

and since population, in general, is a significant factor in economic growth, the need for climate 

action is urgent (KC & Lutz, 2017; Peterson, 2017).   

 

All of the stated factors above, underline the need for the transition to low-, zero-, and negative 

carbon technologies like e.g. renewable energies and carbon capture and storage (CCS) (Aye 

& Edoja, 2017). To be able to meet a 1.5°C temperature target outlined in the Paris accord, 

drastic and immediate changes to the global society is required, with the combination of climate 

mitigation and adaptation. It requires a shift away from the causality between economic growth, 

the emissions of greenhouse gases, and the consumption of fossil fuels (Allen et al., 2018; 

Newman, 2017).  

 

In 2015, the global fossil fuel subsidies accounts for around 6.3% of the global GDP at around 

USD$4.7 trillion, where the coal and petroleum industries are responsible for about 85% of the 

total subsidies (Coady, Parry, Le, & Shang, 2019). These numbers includes both the direct price 

subsidies and indirect costs through both lost environmental and economic benefits. Through 
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the phase-out of fossil fuel subsidies, the global carbon emissions can decrease by 28% and 

raising the global GDP with almost 4% when comparing to 2015 numbers (Coady et al., 2019). 

 

However unlikely an abrupt stop in the fossil fuel subsidies is, it will be a drastic mitigation 

effort towards a 1.5-2°C temperature target. It will also come with many benefits for the global 

society in the form of, e.g. a reduction in aerosol emissions, leading to improvements in public 

health (further discussed in Section 2.4.2) (Allen et al., 2018).  

 

Even though mitigation action is the most critical factor for reaching the Paris accord tempera-

ture target of 2°C, climate adaptation is needed. Examples of adaptive measures is the transition 

to green infrastructure and strengthening its resilience, increasing sustainability in water man-

agement, ecosystem restoration and improving the public health system. The abovementioned 

measures are feasible and cost-effective (de Coninck et al., 2018), but, in general, adaptive 

measures will likely be very costly with considerable uncertainties in the effectiveness, with 

estimates for yearly costs in 2030 in the range of USD$ 140-300 billion (UNEP, 2018). Find-

ings in AR5 also indicate that there might exist a considerable gap between the actual need for 

global adaptation efforts and the available funding (IPCC, 2014). It is also found to in general 

be notably more cost-effective to focus on mitigation efforts, thus reducing greenhouse gas 

emissions instead of covering the damage costs induced by climate change (Sánchez et al., 

2016). 

 

Understanding where these limits lie is thus an area of research that needs focus. Findings in 

Assessment Report 5 (AR5) underline that present knowledge of adaptation limits is insuffi-

cient, with a lacking understanding of how the warming climate can impact the as of now char-

acterised limits. These problems in combination with a lack of or inadequate planning may lead 

to maladaptation, possibly increasing the vulnerability of certain areas or people (IPCC, 2014; 

Klein et al., 2014). This knowledge gap underlines the need for adaptation frameworks that are 

flexible to changes in scientific knowledge, leading to varying risks of success for the adapta-

tion efforts and their results both in an economic and climatic manner (UNEP, 2018). 

 

As briefly discussed in Section 3.7, global climate change will lead to uneven regional impacts 

and thus varying needs for adaptive measures and thus potentially higher adaptation costs. Find-

ings in the Adaptation Gap Report 2018 showed that for a 1.5°C mitigation target, ecosystem 

services and biodiversity would likely be the most vulnerable areas. These sectors were also 
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among the sectors with considerable lack of funding for adaptive measures and with a 

knowledge gap that likely leads to an increase in the adaptation costs, often located in many of 

the world’s poorest regions (UNEP, 2018). 

 

2.3 Radiative forcing and feedbacks 

 

To be able to analyse and quantify the impact natural and anthropogenic emissions of green-

house gases, aerosols, and other forcing factors have on the Earth’s climate system, one can use 

different metrics. The one most commonly practised is radiative forcing. Forcing is generally 

defined through the net change in the energy balance of the Earth’s climate system caused by a 

small change in the system (see Section 2.7.1 for further explanation). The standard unit is 

W/m2 and will vary with time and space (Myhre et al., 2013).  

 

In 2017, the observed total radiative anthropogenic forcing when not including aerosols, with 

respect to the pre-industrial levels in 1750 was 3.1 W/m2, an increase of 0.3 W/m2 compared to 

2011 levels. The main factors are carbon dioxide, methane and nitrous oxide, contributing about 

2.0 W/m2, 0.5 W/m2 and 0.2 W/m2, respectively (Bruhwiler et al., 2018). Other forcing factors, 

such as aerosols is more complicated with effects on both the radiation and interactions with 

clouds which in turn can lead to other feedback effects. In general, there is a consensus that 

aerosols produce a negative global mean radiative forcing of -0.35 W/m2 with an uncertainty 

range of -0.85 W/m2 to 0.15 W/m2, thus likely causing a cooling effect (Myhre et al., 2013).  

 

Some factors of the greenhouse effect are not forcing factors, but instead, feedback agents. 

Water vapour is an example, playing a principal role in the climate system as the main green-

house gas in the atmosphere. Changes in atmospheric concentrations of water vapour come 

from increasing air temperature rather than directly from emissions of greenhouse gases (Myhre 

et al., 2013). This is an example of what is known as positive feedback. A general definition of 

a positive feedback mechanism can be a reaction to the climate system that increases initial 

warming. In contrast, negative feedback leads to a cooling effect. 

 

Feedbacks can also lead to increasing or decreasing carbon fluxes to the atmosphere as a result 

of the warming temperatures and are then usually called carbon cycle-climate feedbacks 
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(Bruhwiler et al., 2018). An example can be increasing frequencies of forest fires through, e.g. 

warming and thus drying of soils, leading to linked emissions in the form of, e.g. burned biome 

or permafrost thaw, leading to non-linear forcing effects (discussed in Section 2.5.1) (Gibson 

et al., 2018). In an isolated manner, forest fires can also lead to negative feedbacks through a 

higher albedo due to, e.g. less forest cover, leading to a higher surface reflectivity, even if the 

net feedback might be positive.  

 

2.4 The remaining carbon budget 

 

Since the release of AR5 in 2013, the use of climate budgets has become the principal tool to 

guide climate policies around the world (Messner, Schellnhuber, Rahmstorf, & Klingenfeld, 

2010). A standard definition of an RCB is the finite and total amount of CO2 that can be emitted 

into the atmosphere by human activities while still holding the warming of global temperature 

to a given temperature limit (Rogelj, Forster, Kriegler, Smith, & Seferian, 2019). 

 

The concept behind the RCB builds on the anthropogenic influence on the global climate-car-

bon cycle system. Its main component is the TCRE, and the approximately linear relationship 

between cumulative anthropogenic CO2 emissions since the industrial revolution and its effect 

on the global temperature. Through this relationship, one can calculate a specific carbon budget 

for an assigned mitigation target, as illustrated in Figure 2.2.  

 

RCBs can be estimated using observational data or through simulations by using, e.g. ESMs, 

which includes a dynamic representation of the global carbon cycle, or from the observational 

record. The models are of varying complexity, where some of them only include CO2 forcing 

while others use multi-gas simulations (J.  Rogelj et al., 2018). 

 

The IPCC estimates that 77% of the anthropogenic forcing is a result of CO2 emissions while 

the remainder comes from non-CO2 sources, including both greenhouse gases and aerosols. 

Since the TCRE’s include different forcing factors, their respective carbon budgets also differ. 

Carbon budgets that only use CO2 emissions as forcing are known as CO2-only carbon budgets, 

while the ones that include other greenhouse gases and forcing factors are called effective car-

bon budgets (Myhre et al., 2013).  
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Figure 2.2: Estimates of two TCREs in a CO2-only carbon budget. The red line illustrates the estimate using 
observed temperature data, with a median value of 1.35°C/1000 GtC. The blue line represents an estimate using 
the CMIP5 model ensemble with a best estimate of 1.6°C/1000 GtC. The dashed lines show how TCREs affect 
the associated carbon budgets. The TCRE estimates were found in (Matthews et al., 2017).  

 

2.4.1 CO2-only carbon budgets 

Carbon budgets that only include CO2 as a forcing factor will never be accurate estimates. How-

ever, they can form a sort of upper limit for emissions. 

 

When using observational records to estimate a CO2-only TCRE, one needs to identify the 

amount of observed warming that is attributable to CO2 alone from fossil fuels and land-use 

change. Gillett, Arora, Matthews, and Allen (2013) estimates a TCRE with a 90% CI (5-95) of 

0.7-2.0°C/1000 GtC with a median of 1.35°C/1000 GtC. When using the CMIP5 model ensem-

ble, Matthews et al. (2017) estimates an interval of 0.8-2.4°C/1000 GtC, with a best estimate 

of 1.6°C/1000 GtC (5-95% range).  

 

Figure 2.2 illustrates the resulting carbon budgets for these estimates. For the model-based 

TCRE, the 1.5°C and 2°C targets have resulting carbon budgets of 940 GtC and 1250 GtC, 
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respectively, while the observation-based TCRE (with its lower slope) suggests larger carbon 

budgets of 1110 GtC and 1480 GtC for the 1.5°C and 2°C targets. Thus about 18% larger carbon 

budgets for the observationally-based TCRE from Gillett et al. (2013) than for the model-based 

TCRE. 

 

The difference between model-based estimates and estimates from observational data under-

lines the considerable uncertainty the temperature response to CO2 emissions. Also, there are 

other factors like non-CO2 greenhouse gases and aerosol emissions. We should note, however, 

that the model estimates have wider CIs than the estimates from observations (0.8-2.4 vs 0.7-

2.0), which means that the models are more uncertain than what we can infer from the observed 

data. We also note that the carbon budget becomes practically path-independent when only 

using CO2 forcing as a geophysical factor.  

2.4.2 Effective carbon budgets 

The carbon-climate cycle depends on forcing factors like non-CO2 greenhouse gases, aerosol 

emissions and effects like changes in the surface albedo due to land-use. The IPCC forcing 

estimate of non-CO2 emissions is about 23% of total anthropogenic forcing, and this implies 

that disregarding other forcing factors will give an inaccurate assessment of the climate system 

(Myhre et al., 2013). Due to a large number of forcing factors, with their varying lifetimes, 

there is no simple way of linearising it into a scaling factor to account for all the non-CO2 

emissions in the TCRE. 

 

There are several ways of simplifying this problem. One way is to adopt the IPCC estimates 

that 77% of the observed warming is attributable to CO2 emissions and thus define an “effective 

TCRE” which is adjusted to include the effect of non-CO2 forcing. Matthews et al. (2017) de-

fine the “effective TCRE” as the change in global mean temperature in relation to an 1861-

1880 average (0.99°C according to numbers from the Global Warming Index (Haustein et al., 

2017)) and total historical CO2 emissions between 1870-2015 (555 GtC according to (Le Quéré 

et al., 2015)). This translates from 0.99°C/555 GtC to 1.78°C/1000 GtC. It only uses CO2 emis-

sions but is scaled by the observed global mean temperature change from all emissions from 

1870 until 2015, which then should account for a temperature change from all forcing factors. 

The effective TCRE to the CO2-only TCRE should give a factor around 0.77 according to the 

IPCC forcing estimates. As it turns out, the factors for 2015 estimates indicates that this method 

might work as a simplification (1.35/1.78=0.76). 
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There are, however, problems with this approach. By assuming a constant factor one neglects 

the fact that mitigation efforts in different scenarios will affect the forcing ratios. Matthews et 

al. (2017) argue that the ratio can stay relatively constant for the next decade or two due to 

mitigation efforts linked to aerosol emissions which can keep the ratio nearly constant. Coun-

tries like China and India have seen an expansive industrial growth over the last few decades, 

fuelled by fossil fuels like coal, which leads to a strong increase in aerosol emissions in contrast 

to the global trend that is decreasing (Figure 2.3). 

 

With an increase in air pollution, China experienced harmful public health effects and resulting 

deaths. In 2013 they launched a clean-air policy to reduce the air pollution through lowering 

aerosol emissions by improving industrial emission standards, removing outdated industry and 

promoting cleaner fuels (Zhang et al., 2019). From 2013 to 2017, the policy resulted in a na-

tional decrease in yearly emissions of sulphur dioxide (SO2) and particle matters with a diameter 

smaller than 2.5 micrometres (PM2.5) of 59% and 33%, respectively. The reduction gave a de-

crease in yearly deaths due to PM2.5 by 0.41 million persons (95% CI: 0.38-0.43 million). Com-

pared to the estimated global deaths in 2015 due to aerosols of 8.9 million (95% CI: 7.5-10.3 

million) it was a decrease of around 5% (Burnett et al., 2018).  

 

The motivation in China was to improve their public health mainly, and not necessarily to mit-

igate climate change through the promotion of, e.g. greener energies, even though they did so 

as an indirect effect when solving air pollution problems.  

 

Even more recently, government confinement policies due to the COVID-19 pandemic leads to 

drastic changes in the global energy demand. Estimates from Le Quéré et al. (2020) show a 

decrease in daily global CO2 emissions by -17% (±1s  CI (-11%,-25%)) in early April in rela-

tion to mean 2019 levels, corresponding to emission concentrations in 2006. The temporary 

emission reductions depend on the level and duration of the confinement globally. A return to 

pre-COVID-19 conditions between June 2020 and 2022 will result in an estimate of annual 

emission decrease between -4.2% and -7.5%, which would need to continue for several decades 

to meet a 1.5°C mitigation target (IPCC, 2018; Le Quéré et al., 2020).  
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A changing ratio of CO2-attributable forcing to total forcing shows that having a flexible and 

scenario-based approach which includes non-CO2 forcing will be crucial and necessary to ad-

just the estimates of the RCBs. an estimate shows that on average for the CMIP5 models, the 

ratio between non-CO2 forcing factors and the total forcing in 2015 is 0.86 (Meinshausen et 

al., 2011). This estimate is also consistent for RCP2.6, RCP4.5 and RCP8.5. Since there are 

such apparent differences in the ratio (0.23 vs 0.14), it suggests that there are uncertainties about 

the impact of non-CO2 forcing and especially the negative forcing effect from aerosols. There 

is a consensus in the literature that the net aerosol forcing effect is negative, but the question is 

in which magnitude. Matthews et al. (2017) point out that difference between CMIP5 and IPCC 

estimates comes from a more notable negative aerosol effect in the CMIP5 estimates, which in 

turn leads to a smaller net non-CO2 forcing factor and thus a larger fraction of the total forcing 

coming from CO2 as illustrated (Figure 2.4). 

 

A way of accounting for a changing forcing ratio is to make the TCRE directly dependent on 

it. Matthews et al. (2017) uses the CMIP5 models best estimate of 1.6°C/1000 GtC and then 

scales it by dividing it by a moving forcing ratio. As previously mentioned, this ratio estimate 

is 0.86 in 2015, leading to an effective model-based TCRE of 1.6°C/1000 GtC 

*1/0.86=1.86°C/1000 GtC. The relation is then tested by looking at the estimated global tem-

perature change for this TCRE, through cumulative CO2 emissions from the industrial revolu-

tion in 1870 until 2015 of 555 GtC. 1.86°C/1000GtC*555GtC = 1.03°C, which is well within 

Figure 2.3: Global aerosol concentration trend between 1998 and 2012 measured in the unit-less metric “optical 
depth”. Reproduced from Smith et al. (2016)  
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the Global Warming Index’s 90% CI of 0.85°C-1.23°C and thus consistent with the observed 

warming (Haustein et al., 2017). 

 

The difference between the effective estimates (1.78 vs 1.86) is much smaller compared to the 

CO2-only TCRE’s (1.6 vs 1.35). Associated RCB estimates will have quite similar outcomes 

but with differences due to their differing estimates of the non-CO2 forcing factors.  

 

Figure 2.5 illustrates the TCRE with a direct dependency on the moving forcing ratio through 

different concentration pathways and their respective carbon budgets per degree of global tem-

perature warming. It also shows the linked carbon budgets for previously estimated observa-

tional- and model-based CO2-only TCREs. Figure 2.5 clearly demonstrates the need for a flex-

ible and path-dependent estimate method and that using a strictly linear TCRE is problematic. 

The more optimistic scenario RCP2.6, which is relevant for temperature targets of 1.5-2°C 

shows a considerable change in the forcing ratio due to the drastic mitigation regimes in the 

Figure 2.4: Ratio between human-induced CO2 forcing and the total anthropogenic forcing. From 1950 until 2015 
they consist of historically estimated data, while the ratios from 2015-2100 follow different RCP’s in the CMIP5 
model, as shown in the figure legend. CMIP5 models estimate a more substantial aerosol effect than the IPCC, 
leading to a larger negative forcing. Hence the fraction for non-CO2 forcing is smaller for CMIP5 estimates (0.14) 
than for the IPCC (0.23) in 2015. Reproduced from  (Matthews et al., 2017) 
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scenario. Due to the different lifetimes of the forcing agents, where CO2, in general, has the 

longest, the ratio will likely change closer towards 1. Looking at CO2, the critical factor for 

atmospheric concentration is the cumulative emissions (due to its long lifetime), while it for 

methane (with a lifetime of 9 years) is much more linked to the emissions. Thus, carbon budg-

ets, in general, should be considered to be dependent on the time when considering the different 

mitigation policies. 

 

2.4.3 TCRE limitations and assumptions 

Section 2.4.1-2.4.2 discusses four different ways to estimate carbon budgets through the TCRE. 

Some of them follow the traditional way of using an approximately linear relation, and one of 

them uses estimated TCRE and scale it with a moving forcing ratio which thus indirectly re-

moves the linearity. A common feature is their wide CIs which add uncertainties to the estimate 

of the carbon budget. AR5 states that a TCRE with at least a 66% probability is within 0.2-

0.7°C/1000GtCO2 (0.73-2.57°C/1000GtC) and is robust up to 7300 GtCO2. This relation would 

be robust up to 1990 GtC through the factor 44/12 due to the molecular weight of the CO2 

Figure 2.5: The effective carbon budget (GtC/°C) from related emission scenarios, as in Figure 2.4. The figure 
underlines the need for a flexible carbon budget estimation framework that can account for a changing forcing 
ratio over time. Reproduced from (Matthews et al., 2017) 
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molecule in comparison to the carbon atom (Collins et al., 2013). All realistic temperature goals 

(1.45°C-5.11°C) are well within when considering the estimates robust-limit of 1990 GtC. 

 

The TCRE robustness range estimated by IPCC is, however, only valid if the assumption about 

the linearity and the carbon-cycle systems stationarity is valid. Moreover, using at least 66% as 

a metric is not necessarily an exact science. As previously mentioned, adding numerous differ-

ent forcing agents adds uncertainty to the estimate since several factors like, e.g. thawing of 

permafrost. Another example of uncertainty is that the interaction effects between greenhouse 

gases are not well understood. In (Rypdal, 2016) he mentions that as long as the climate system 

is far away from a tipping point, this assumption thought to be valid. There are several potential 

tipping points for the carbon-cycle climate system, e.g. the runaway melting of the West-Ant-

arctic ice sheet (WAIS) (more detailed explanation in Section 2.5). 

 

In (Comyn-Platt et al., 2018) they mention that the release of methane in wetlands and carbon 

dioxide and methane from the thawing of permafrost will inflict a non-linear effect on the global 

temperature. According to their model simulations, the release would be more substantial be-

tween 1.0-1.5°C than for 1.5-2.0°C, which implies that the tipping point might be closer than 

previously thought. Currently, too few climate models incorporate the thawing of permafrost 

and its feedback mechanism, leading to an inadequate understanding of its impact on the car-

bon-cycle climate system and the effect on the TCRE assumptions of linearity and stationarity. 

The results from (MacDougall, Zickfeld, Knutti, & Matthews, 2015) states that it does not in-

validate the linearity assumption. 

 

The global carbon-cycle climate system could however be so affected by tipping points that it 

stops working in the way as it does now. The TCRE stationarity assumption claims that the 

climate system will work the same way now as it will in the future. Even if the climate system 

is not close to any tipping points, the assumption might already be wrong, as mentioned in 

(Rypdal, 2016), due to saturation effects in the land biosphere and in the ocean mixed layer that 

may lead to a reduction of fluxes in a different climate. 
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2.4.4 Scenario types 

 

Given a specific temperature threshold like, e.g., the 2.0°C target from the Paris Agreement, 

the corresponding emission scenarios can be classified as exceedance-, avoidance- or over-

shoot-scenarios. As illustrated in Figure 2.6, an exceedance scenario is a scenario with cumu-

lative anthropogenic emissions of CO2 and its temperature response that exceed a set tempera-

ture target. In Gasser et al. (2018), they define an avoidance scenario as a scenario where the 

cumulative emissions keep below a given threshold for the temperature target. An overshoot 

scenario does, on the other hand, surpass the threshold for cumulative emissions of a given 

temperature target, and thus has a peak warming above the temperature target. Due to negative 

emissions through, e.g. CCS, the emissions and thus temperature decreases and hits the tem-

perature target over time. 

 

 
Figure 2.6: Avoidance-, overshoot- and exceedance emission scenarios. The red curves illustrate an exceedance 
scenario showing a given emission scenario exceeding the temperature target. The green curves illustrate an avoid-
ance scenario and its temperature response, where the peak temperature has to be equal to or lower than the tem-
perature target. The orange curves represent the overshoot scenario, where the emissions peak leading to a peak 
temperature before it declines to a point colder than the temperature target.  
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2.5 Tipping points 

 

In the climate system, there may exist certain critical thresholds where a small perturbation can 

lead to the system transitioning from one stable state to another one. These changes are either 

global or regional, non-linear of nature and lead to irreversible transitions (Collins et al., 2019). 

In the case of potential global tipping points, they are often referred to as large-scale singular 

events that will lead to or be linked with extreme changes in the climate system. Examples are 

changes in the thermohaline circulation, runaway melting of the WAIS and Greenland ice sheet 

(GIS), or a shift in the El Niño-Southern Oscillation (Hoegh-Guldberg et al., 2018).   

 

Assessments in SR15 indicate that for the large-scale singular events, there has been an evident 

increase in the associated risk of occurrence since AR5. The estimates show the changes can 

happen at much lower temperatures, with a moderate and high risk for events happening at 1°C 

(1.6°C) and 2.5°C (4°C), respectively (Hoegh-Guldberg et al., 2018). The assessments of risk 

bases on model results and new observations of the WAIS show a possible acceleration in the 

ice retreat that supports the marine ice sheet instability (MISI) hypothesis (Meredith et al., 

2019).  

 

Climate change can also trigger regional tipping points, with examples being the collapse of 

the Asian monsoon system, the dieback of boreal forests, a deforestation threshold in the 

world’s rainforests and large scale thawing of permafrost and the linked release of carbon di-

oxide and methane (Hoegh-Guldberg et al., 2018). Due to our focus on Arctic amplification, 

we focus on the integration of permafrost as a factor in our model and will thus discuss it in 

more detail.  

2.5.1 Permafrost  

Recent estimates show that around 60% of the world’s soil carbon is stored in the northern 

permafrost regions, with a total of about 1460-1600 GtC. Permafrost occurs in areas where the 

ground temperature rarely reaches above 0°C and cover around 18 million km2, which accounts 

for about 15% of the global soil area. Most of this area is in the Northern Hemisphere, in areas 

such as Siberia, Northern Canada and the Tibetan Plateau. However, there is also permafrost 

on the Southern Hemisphere in, e.g., Antarctica. The surface permafrost carbon pool that is 

shallower than 3 meters is estimated to 1035 ± 150 GtC (95% CI). This estimate is about half 
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of the remaining Earth biomes, containing 2050 GtC, when not including the Arctic and Boreal 

regions (E. Schuur et al., 2015; E. A. G. Schuur, McGuire, Romanovsky, Schädel, & Mack, 

2018).  

 

These permafrost carbon pools have been accumulating over hundreds to thousands of years. 

However, due to the increasing air and soil temperatures in the Arctic and high latitudes, the 

permafrost is thawing, leading to an accelerating decomposition of the soils organic matter and 

increasing microbial respiration. These processes lead to increased emissions of GHGs such as 

CO2 and CH4 into the atmosphere. In the case of microbial respiration, which is known to occur 

in conditions as low as -20°C, estimates from Natali et al. show that it is the main contributor 

on the winter emissions of CO2 (Lawrence, Koven, Swenson, Riley, & Slater, 2015; Natali et 

al., 2019).  

 

With the Arctic amplification (Section 3.7), partial thawing of the 18 million km2 of permafrost 

is inevitable. Thus, through increased warming, the seasonally thawed active layer will increase 

both its thickness and lead to changes in the hydrological state. However, emissions are also 

occurring from abrupt permafrost thaw through different processes such as thermokarst, in ar-

eas where there is excess ground ice. Where gradual thawing is a slower process that happens 

over periods from a couple of years to decades, abrupt thaw happens severely quicker over a 

period between a few days to years (E. A. G. Schuur et al., 2018).  

 

Due to varying soil temperatures, the stability of the different permafrost zones will vary. 

Newer model estimates show that around 55% of the total permafrost region is continuous, with 

a classification that need a probability of presence in over 90% of a 1 km2 area. In general, the 

most susceptible permafrost lies where the soil temperatures is warmer. However, because a 

single weather extreme can trigger abrupt thaw, it means that areas with a colder mean temper-

ature still are vulnerable. The estimate of the mean annual ground temperature in the boundary 

point between the discontinuous and sporadic zones shows is -0.01 ± 0.37°C. In contrast, in 

between the sporadic and isolated zones, the estimate is 1.46 ± 0.44°C. If only considering the 

sporadic and isolated patches, they still account for about 34% of the estimated permafrost 

region (see Figure 2.7), underlining the vulnerability of the permafrost carbon pool (Obu et al., 

2019). 
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Figure 2.7: Estimated probability of permafrost zones in the Northern Hemisphere. The estimated permafrost 
distribution was based on the probability of modelled mean annual ground temperatures at the top of permafrost 
zones below 0°C for the period between 2000-2016. The zonal differences were classified through the modelled 
fraction of coverage of permafrost within a 1 km2 area. Reproduced from (Obu et al., 2019). 

 

At present date, estimates show that around 20% of the northern permafrost region is vulnerable 

to or has already experienced abrupt thaw. Most of these changes will likely happen, which in 

turn can lead to self-reinforcing feedbacks affecting about half of the total permafrost soil car-

bon through, e.g. increasing water depth, ground subsidence and erosion (Turetsky et al., 2020). 

A single weather extreme can trigger abrupt thaw, which with record-breaking temperatures 

the last decade (as discussed in Section 2.1) emphasises why abrupt thaw is already happening. 

The fear is that through these and other feedbacks, abrupt thaw can end up becoming more 

independent from the external climate factors. Indications that this might already be happening 

is visible through the increasing number of thermokarst lakes in the colder areas of the northern 

permafrost region (Lewkowicz & Way, 2019).  
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SROCC estimates show that by the year 2100 under an RCP2.6 scenario, there is at least a 90% 

probability that the near-surface permafrost area will decrease by 2-66%. This decrease leads 

to the release of vast amounts of soil carbon, with about 40-70% of the related forcing account-

able to methane emissions. The estimates are uncertain, with emissions between ten to several 

hundred gigatons carbon for a conservative scenario of RCP2.6 (Meredith et al., 2019). With 

estimates from 2014 that there is 217±12 GtC (95% CI) located in just the top 30 cm of the 

surface soil carbon pools in the northern circumpolar permafrost region, it underlines the im-

plications these potential emissions can have on the climate system as a whole (Hugelius et al., 

2014).  

 

With abrupt changes in thermokarst lake areas, there is, in general, low confidence in the ability 

to estimate the impact abrupt thaw will have on the regional permafrost and total permafrost 

region. It is found to be the central mechanism in rapid landscape change and hence a crucial 

part of permafrost estimates, emphasising the reason to research the area further (Kokelj, Lantz, 

Tunnicliffe, Segal, & Lacelle, 2017).  

 

Increased frequency and area burned from forest-fires in the northern permafrost region are 

other, not frequently included factors that lead to the underestimating of the warming effect of 

permafrost. Some indications show future drying of the Arctic soil through changes in temper-

ature and decreasing snow and permafrost cover, which seems to lead to a higher likelihood for 

forest fires (Meredith et al., 2019). A pulse disturbance such as forest fires can work as a feed-

back effect, further drying the soil and inducing more degradation of permafrost (Gibson et al., 

2018).  

 

Another uncertainty factor comes from excluding parts of the global permafrost such as the 

submerged permafrost in the East Siberian Sea, due to the uncertainty in quantification (E. 

Schuur et al., 2015). As of 2019, most CMIP5 models do not include a permafrost component 

at all, which is critical to improving the carbon cycle simulations for the Arctic, which under-

lines the possible estimate uncertainties and need to address them (Natali et al., 2019).  
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2.6 Iteration process in the non-linear framework 

 

As a part of our research project, a non-linear forcing framework is implemented in the SRM. 

The non-linear forcing framework is constructed in such a manner, that any relation can be 

researched (detailed explanation in Section 3.6). The temperature response estimate in the non-

linear forcing framework consists of a fixed-point iteration loop. The following section vali-

dates the iteration process for a linear model, including a non-linear forcing.   

 

We start with a proof that validates the system when not including non-linear forcing, 𝐹(𝑡).  

Due to simplicity reasons, the following calculations is performed on a 1-box model on the 

form: 

 

𝐶
𝑑𝑇
𝑑𝑡 = −𝜆𝑇 + 𝑓(𝑡). 

 

Through the differential operator, ℒ, the equation can be rewritten as: 

 

ℒ𝑇 = 𝑓(𝑡). (1) 

 

Where ℒ = 𝐶 𝑑𝑇 𝑑𝑡⁄ + 𝜆. This leads the original equation to the following form: 

 

(ℒ𝑇)(𝑡) = 	𝐶
𝑑𝑇
𝑑𝑡 + 𝜆𝑇. 

 

As long as the differential operator, ℒ, is a linear differential operator, any generic model such 

as an n-box or 1-box model is applicable. Hence, our climate models follow the form described 

in Equation 1. To solve this problem, a Green’s function 𝐺9(𝑡) is found on the form such that 

 

:ℒ𝐺9;(𝑡) = 𝛿(𝑡), 

 

Which leads to: 

 



 

Page 24 of 123 

𝑇(𝑡) = >𝐺9(𝑡 − 𝑠)
!

"

𝑓(𝑠)𝑑𝑠. 

Hence 𝑇(𝑡) is a solution to Equation 1. The proof of this solution’s validity follows: 

 

(ℒ𝑇)(𝑡) = ℒ>𝐺9(𝑡 − 𝑠)
!

"

𝑓(𝑠)𝑑𝑠	

= >(ℒ𝐺9)(𝑡 − 𝑠)
!

"

𝑓(𝑠)𝑑𝑠	

= >𝛿(𝑡 − 𝑠)
!

"

𝑓(𝑠)𝑑𝑠	

= 𝑓(𝑡). 

 

As briefly discussed in Section 3.2, it is worth noting that the Green’s function GA(𝑡), used in 

the greenhouse gas concentration estimates does not include the step-function,	𝜃(𝑡), while it in 

this proof does, where, GA(𝑡) = 𝐺(𝑡)𝜃(𝑡). 

 

When including a non-linear forcing factor,	𝐹(𝑇), the system’s equation follows the form: 

 

ℒ𝑇 = 𝑓(𝑡) + 𝐹(𝑇) (2) 

 

This relation is solvable through a 𝑇(𝑡) given as, 

 

𝑇(𝑡) = >𝐺9(𝑡 − 𝑠)C𝑓(𝑠) + 𝐹:𝑇(𝑠);D
!

"

𝑑𝑠. 

 

The proof follows: 

 

(ℒ𝑇)(𝑡) = ℒ>𝐺9(𝑡 − 𝑠)
!

"

C𝑓(𝑠) + 𝐹:𝑇(𝑠);D𝑑𝑠	
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= >(ℒ𝐺9)(𝑡 − 𝑠)
!

"

C𝑓(𝑠) + 𝐹:𝑇(𝑠);D𝑑𝑠	

= >𝛿(𝑡 − 𝑠)
!

"

C𝑓(𝑠) + 𝐹:𝑇(𝑠);D𝑑𝑠	

= 𝑓(𝑡) + 𝐹:𝑇(𝑡);. 

 

We then define an integral operator, ℛ, such that,  

 

ℛ𝑇 = >GA(𝑡 − 𝑠)
!

"

C𝑓(𝑠) + 𝐹:𝑇(𝑠);D𝑑𝑠. 

 

Hence, through the relation ℛ𝑇, Equation 2 is equivalent to Equation 3: 

 

ℛ𝑇 = 𝑇 (3) 

 

Where ℛ𝑇 is solvable through fixed-point iteration: 

 

𝑇#$% = ℛ(𝑇#). 

 

In the SRM we check for convergence numerically. However, one can also check the conver-

gence analytically even if it is not necessary in this case. The Contraction Mapping Principle is 

a theorem that states that the iterations of ℛ(𝑇#) will converge if 

 

‖ℛ(𝑇) − ℛ(𝑇′)‖ ≤ 𝑐‖𝑇 − 𝑇&‖, ∀𝑇, 𝑇′ 

 

For a constant, 𝑐𝜖(0,1). Hence, a 𝑐	close to 0 leads to a rapid convergence. Here, ‖∙‖ can be 

any norm for functions of T, e.g., 

 

‖𝑇‖= sup
"'!'!!"#

‖𝑇(𝑡)‖. 
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2.7 Climate models  

2.7.1 Energy balance models 

 

Through simplifications of the Earth’s radiative balance, one can still gain an understanding of 

the impacts on our climate system. By using simple climate models like energy balance models 

(EBMs) this can be done with simple, physical relations through a simple differential equation. 

Equation 4 describes the change in global storage of heat relative to the incoming and outgoing 

energy from the climate system, which in effect is the climate system’s forcing:  

 

𝐶
𝑑𝑇
𝑑𝑡

= 𝐸(# − 𝐸)*+ = (1 − 𝛼)
𝑆"
4
− 𝜀𝜎𝑇,. (4) 

 

The left-hand side of the equation represents the change in surface temperature. The global 

average heat capacity is denoted 𝐶, while 𝐸(# and 𝐸)*+	denotes the incoming and outgoing en-

ergy. Thus, the equation describes the radiative balance of the system. The only source of en-

ergy is the incoming solar radiation, represented with the solar constant 𝑆", the total solar irra-

diance per m2. From the Sun’s point of view, Earth is a disc. Thus, only a quarter is accessible 

to incoming solar energy. Only parts of this energy will reach the surface due to reflections 

back into space from, e.g. cloud cover, surface ice and the atmospheric composition, accounted 

to by the Earth’s average co-albedo, (1 − 𝛼), where the albedo, 𝛼 is the factor of reflected en-

ergy. Most of the outgoing radiation from Earth is infrared. Thus the Earth is assumed to work 

as an adjusted black body to account for the greenhouse effect, with the factor for emissivity 𝜀, 

a number between 0 and 1. The average amount of emitted energy per m2 is represented using 

the Stefan-Boltzmann law, where 𝜎 is the Stefan-Boltzmann constant and 𝑇 is the global mean 

surface temperature (Goosse, Barriat, Lefebvre, Loutre, & Zunz, 2010). 

 

In an equilibrium where 𝐶 -.
-!
= 0, Equation 1 yields an estimated surface temperature as illus-

trated, in Equation 5: 

 

𝑇 = 	U
(1 − 𝛼) 𝑆"4

𝜀𝜎 V

%
,

. (5) 
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This example is a zero-dimensional model, but energy balance models can, however, be of 

varying complexity. For instance with vertical layers in the atmosphere leading to a one-dimen-

sional model, where each layer would interact with each other with different factors due to the 

composition in each atmospheric layer (Gettelman & Rood, 2016).  

2.7.2 Reduced complexity models 

As our understanding of the global carbon-cycle climate system has improved, more and more 

factors have been added to climate models. Some models are so complex that there exists a 

natural cap on the number of scenarios the models can run due to the runtime. The increasing 

number of factors also increases the number of uncertainties to the carbon budget estimates. 

Minimising these uncertainties is essential to improve the RCB. This can be done by going for 

a more scenario-based approach where reducing the model complexity decreases the runtime, 

which increases its capability of running a larger number of scenarios. 

 

A possible approach is to use a reduced complexity model. The climate model MAGICC is one 

of the most used models of that complexity level. When comparing it to the very complex 

models ESMs in the CMIP5 model ensemble, it includes considerably fewer forcing factors. 

However, it still incorporates the essential gas- and carbon cycles, climate feedback-mecha-

nisms and radiative forcing. As previously mentioned, the strength of these models lies in their 

flexibility, so they can mimic the more complexed models without compromising the geophys-

ical relations. Since it can run a more substantial number of scenarios without using a super-

computer, it has become the baseline for less complex models and widely used. However, there 

is a shortage of different models in this category. This has led to MAGICC being used in such 

an extensive manner that it is hard to cross-check and validate the estimates. By focusing re-

search on models in this category, one could considerably increase the ability to run scenarios 

and hence likely increase our understanding of the climate system (MAGICC, 2015; Wigley, 

1995).  
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3 The Simple Response Model 
 

This section describes the developed SRM, produced in a team effort as a part of our research 

project leading up to the master thesis. The research partners were Andreas Johansen, Andreas 

Rostrup Martinsen, Endre Falck Mentzoni and our supervisor Martin Rypdal.  The following 

sub-sections describes and explains the process and results for each of the steps and compo-

nents. 

 

3.1 Emission scenarios 

	

The emission scenarios used as input consists of anthropogenic emissions of CO2 in the unit 

GtCO2, given as 𝐸(𝑡). Our CO2 emission scenarios consist of observed temperature data from 

a dataset from Boden, Marland, and Andres (2015), including data from 1751 until 2011, con-

sisting of CO2 emissions from fossil-fuel, burning, cement manufacture and gas-flaring. Given 

estimated global emissions of 37.1 GtCO2 in 2018, we performed an interpolation on the dataset 

from 2011 to 2018 (Le Quéré et al., 2018). We then merged the historical emissions with emis-

sion scenarios from 86 of 127 different Shared Socioeconomic Pathways (SSP) made from 

IAMs, collected from the SSP database, as illustrated in Figure 3.1 (Riahi et al., 2017; Joeri 

Rogelj et al., 2018).  

	

All of the discarded scenarios were exceedance scenarios with increasing emissions until 2100. 

To implement the other forcing factors, methane and aerosol emissions, we use the CO2 emis-

sion scenario and convert it to their respective emissions using a scaling method. Multiplying 

the emissions with two different factors forces the emissions to match observed emissions in 

2019 for both of the forcing factors. The emission scenario for methane is 𝐸/012340(𝑡) = 

𝑎𝐸(𝑡),	while it for aerosol emissions is scaled by a different and much smaller factor, 𝐸3056(𝑡) 

= 𝑏𝐸(𝑡).	Both factors are assumed to be constants. 
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Figure 3.1: Shows the 86 emission scenarios used in our climate model. In the period from the year 1750 until 
2018 the data is observed, global CO2 emissions from fossil-fuel burning, cement manufacture and gas-flaring. 
From the year 2019 until 2100, the historical data merges with 86 different SSPs from IAMs, leading to a total of 
81 different emission scenarios. Code to reproduce the plot is provided in Appendix C. 

 

Since the 86 emission- (and thus forcing scenarios) are widely different (Figure 3.1), their re-

spective temperature response will also vary substantially. In the same manner, the mitigation 

pathways for the different forcing factors will also likely be quite different. In the present situ-

ation with a BAU, the methane and aerosol emissions are directly proportional to the CO2 emis-

sions with factors 𝑎, and, 𝑏. Consequently, without any conditions to the relation, if carbon 

dioxide emissions became zero, so would the methane and aerosol emissions. That is, however, 

not true, since there are plenty of natural sources for methane emissions as, e.g. livestock and 

wetlands. 

 

In the more optimistic emission scenarios, this relation would likely become a problem, where 

emissions also become net negative in the simulation. Hence, the relation can only persist until 

a certain emission threshold in a given scenario. An analysis of the relation between estimated 

global annual methane and carbon dioxide emissions from IAMs is illustrated in Figure 3.2 (see 

code in Appendix C (Johansen, 2020)). 
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Figure 3.2: The relationship between global, annual CO2- and CH4 emissions per year estimated through IAMs. 
The scatterplot illustrates a relatively linear trend for CO2 and CH4 emissions between 30-50 Gt CO2/yr, with a 
worsening linearity approximation for lower magnitudes. Produced plot with data from (Huppmann et al., 2018; 
J.  Rogelj et al., 2018). Code to reproduce the plot is found in Appendix C.   

 

The analysed data consists of different IAMs scenarios for annual, global emissions of CO2 and 

CH4 per year, between 2010-2100 (Huppmann et al., 2018; J.  Rogelj et al., 2018). Figure 3.2 

illustrates that if the CO2 emissions decline towards zero and even go negative, the CH4 emis-

sions stall the decline and remain at a positive forcing rate of about 100-200 Mt CH4/yr. Which 

also is the case for the scenarios in AR5. The scatterplot confirms the assumption about the 

natural sources of methane emissions. It also shows that a constant proportionality factor, a will 

stop being a good approximation at a point between 20-30 Gt CO2/yr.  
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The same issues apply to anthropogenic aerosol emissions. There will likely always exist 

sources for emissions to occur such as through, e.g. the burning of biomass or sulphur dioxide 

(SO2) from volcano emissions. Due to the already negative forcing, a lower emission rate would 

lead to a smaller negative magnitude (see Figure 3.3).  

 

We have assumed an asymptotic behaviour when the forcing meets -0.4 W/m2 as illustrated in 

Figure 3.3, which is relatively consistent to the best estimate of the direct aerosol effect of -0.35 

W/m2 in AR5. However, because of the more limited knowledge and level of accuracy for the 

measurements of the aerosol emissions, it is the most uncertain forcing factor in the model 

(Myhre et al., 2013).   

 
Figure 3.3: Simulation of the forcing from the 86 emission scenarios using our best estimate carbon model. The 
GHG forcing from CO2 and CH4 is denoted by the 86 pathways with positive forcing, while 86 pathways with a 
negative magnitude denotes the aerosol forcing. Each of the scenarios thus shows a pathway for both the combined 
GHG- and the aerosol forcing. The flat top illustrates the assumed asymptotic behaviour for the aerosol forcing of 
-0.4W/m2. Code to reproduce the figure is found in Appendix C. 

3.2 Concentration estimate 

When the emission scenarios for the greenhouse gases are known, we can estimate the atmos-

pheric concentration for the greenhouse gases, as shown in Equation 6 and 7. By using the pre-

industrial atmospheric concentrations as a baseline, we integrate our carbon response model 
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and a given emission scenario from a baseline year to a specified year. The pre-industrial at-

mospheric concentration for carbon dioxide is 280 ppm (parts per million), while it for methane 

is 700 ppb (parts per billion). Factor 𝑢 is a conversion factor that is either 44/12 or 1 if the 

emission scenario is given in GtC or GtCO2, respectively: 

 

[CO7] = 280	ppm + 	𝑢> 𝐺835(𝑡 − 𝑠)𝐸(𝑠)𝑑𝑠
!

9:
(6) 

[CH,] = 700	ppb + 	𝑢 > 𝐺8359/(𝑡 − 𝑠)𝑎𝐸(𝑠)𝑑𝑠.
!

9:
(7) 

 

The general carbon model, as illustrated in Equation 8, is an exponential response function that 

in this case, consists of four exponential functions with differing timescales, 𝜏 and a constant. 

In general, a Green’s function also consists of a step-function, where GA(𝑡) = 𝐺(𝑡)𝜃(𝑡). The 

step-function is in our case is implemented in the SRM code, such that, e.g. Equation 8 is an 

approximated Green’s function. The estimate of the constants 𝑐%,	𝑐7, 𝑐;, 𝑐,	and 𝑐< was done 

through mathematical approximation, as illustrated below. In contrast, the constant 0.47 is 

equivalent to the mean atmospheric change to a 100 GtC pulse from a background concentration 

of 389 ppm (Joos et al., 2013). The constant 𝑐; works as a constraint to force the sum of con-

stants equal to 1, leading to 𝑐; = 1 − 𝑐%−𝑐7 − 𝑐, − 𝑐<. The timescales are 1, 10, 100 and 1000 

years and supposed to represent different components of the carbon-cycle system. Where, e.g. 

the thermohaline circulation in large part is represented through the slowest exponential func-

tion, compared to much more rapid parts of the carbon-cycle climate system represented 

through the shorter timescales like one year in our model: 

 

𝐺835(𝑡) = 0.47 e𝑐%𝑒
9 !
=$ + 𝑐7𝑒

9 !
=% + 𝑐;𝑒

9 !
=& + 𝑐,𝑒

9 !
=' + 𝑐<g . (8) 

 

The response function is obtained from a carbon pulse experiment with a magnitude of 100 GtC 

in an ESM. The actual carbon cycle in the ESM is a non-linear emission, but the exponential 

response function provides a linear approximation. Joos et al. (2013) performed a multi-model 

analysis to see the reaction of the different models to a 100 GtC carbon pulse to the present 

atmospheric background concentration at the time of 389 ppm. As illustrated in Figure 3.4, they 

estimated a multi-model mean from the different Earth System Models and the related ± 2 

standard deviations.  



 

Page 34 of 123 

 
Figure 3.4: The impulse response function for the greenhouse gas CO2 illustrated by the remainder of a 100 GtC 
emission pulse for 16 different  models over 1000 years. The atmospheric baseline concentration of carbon dioxide 
was 389 ppm. The solid lines represent the ESMs, while thin solid and dashed lines illustrate Earth system Models 
with Intermediate Complexity (EMIC). Illustrated by the dotted lines, are the reduced complexity models. Each 
model had the same weight, leading to a multi-model mean. The multi-model mean was used to estimate the carbon 
model GCAR-M(t) in our research project, while a modification of the ± 2 standard deviations produced carbon model 
2 and 3. The used code lies in the Appendix. Reproduced from (Joos et al., 2013). 

 

We fitted our four exponential functions from Equation 8 to find the constants 𝑐% ,	𝑐7 , 𝑐; , 

𝑐, and 𝑐< for both the mean and ± 2 standard deviations. Afterwards, we halved it to ± 1 stand-

ard deviation to look at a narrower range. The fit to the mean became our best estimate carbon 

model, while ± 1 standard deviation is our carbon model alternatives as carbon model number 

2 and 3. Table 1 presents the estimated parameters. 

 

Since the methane lifetime is much shorter than the carbon dioxide lifetime, there needs to be 

a different carbon response model for the estimate of the CH4 concentration. The best estimate 

of the total perturbation lifetime of methane was in AR5 estimated to be 𝜏> = 12.4 years (Myhre 

et al., 2013). Due to this, we made a methane carbon model that only consisted of one expo-

nential function. The estimate of the factor 𝑐> (see Table 1) is done by tuning exponential re-

sponse function to the methane concentration of 1880 ppb in the year 2019, leading to GCAR-M(t) 

as shown in Equation 9: 
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𝐺8359/(𝑡) = 	𝑐>𝑒
9 !
=! . (9)	

 
 
Table 1: Summary of estimated parameters for the produced SRM carbon models. The column, Carbon response 
model denotes the four different carbon response models, with the best estimate, ± 1 standard deviation (s) and 
the methane carbon response models. The implementation of the parameters 𝑐( ,	𝑐) , 𝑐* , 𝑐+  and 𝑐,  takes place 
through Equation 8. Parameter 𝑐!  tunes the methane concentration to a 2019 concentration of 1880 ppb.  
 

Carbon response model 𝑐% 𝑐7 𝑐; 𝑐, 𝑐< 𝑐> 

-1s 0.180 0.296 0.254 0.122 0.148  

Best estimate 0.152 0.246 0.274 0.134 0.194  

+1s 0.110 0.212 0.310 0.106 0.262  

Methane      0.34 

 

3.3 Forcing estimates  

 

In the case of aerosol concentrations, we made a qualified assumption that due to the short 

lifetime of aerosols in the scale of days, the concentration of aerosols is in general proportional 

to the emissions of anthropogenic aerosols into the atmosphere. Thus, the anthropogenic radi-

ative forcing from aerosols is also proportional to the aerosol emission scenario, as shown in 

Equation 10:  

 

𝐹3056(𝑡) ∝ [𝐴𝑒𝑟𝑜𝑠𝑜𝑙] ∝ 𝐸3056(𝑡) = 𝑏𝐸(𝑡). (10) 

 

When it comes to the two GHGs, the anthropogenic radiative forcing is computed using well-

known relations from the literature. Equation 11 shows the estimate of the CO2 forcing (Myhre, 

Highwood, Shine, & Stordal, 1998). The estimated concentration is denoted as [CO7],	where	

280 ppm is the pre-industrial revolution baseline concentration: 

 

𝐹86% = (5.35	Wm97) ln u1 +
[CO7] − 280	ppm

280	ppm v . (11) 

 

The calculation of the radiative forcing from anthropogenic emissions of methane uses a power-

law relation, as shown in Equation 12 (Myhre et al., 1998). The estimated concentration is as 
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previously denoted as [CH,], 700 ppb is the pre-industrial revolution baseline concentration 

while the constant p, incorporates the potency of methane as a greenhouse gas: 

 

𝐹82' = 𝑝 xy[CH,] − y700	ppbz . (12) 

 

The total anthropogenic radiative forcing from the three included forcing agents are then as-

sembled to one collected forcing factor, as shown in Figure A.3 and Equation 13: 

 

𝐹161(𝑡) = 𝐹86%(𝑡) + 𝐹82'(𝑡) + 𝐹3056(𝑡). (13) 

 

3.4 Temperature response function 

 

To estimate the temperature response for a given climate model we calculate it in a similar way 

as for the estimate of the concentrations, by convolving the climate models exponential re-

sponse function and the estimated forcing scenario as shown in Equation 14:  

 

𝑇(𝑡) = 	> 𝐺8?@(𝑡 − 𝑠)𝐹161(𝑠)𝑑𝑠.
!

9:
(14) 

 

The climate model consists of a similar framework as the carbon response model, with an ex-

ponential response function. For the research project, we included 14 of the ESMs in CMIP5 

model ensemble, where CNRM-CM5 and IPSL-CM5A-LR (Figure A.4 shows included ESMs) 

were considered irrelevant due to our focus on avoidance and overshoot carbon budgets (see 

Section 2.4.4). The constants and timescales for each of the CMIP5 ESMs use the parameters 

as advised in (Cummins, Stephenson, & Stott, 2020). These parameters were estimated using 

multi-box energy-balance models fitted to 4×CO2-runs for each of the selected models CMIP5 

ensemble. The resulting climate model framework is thus 14 ESM emulators through their pa-

rameters, executed through Equation 14. As illustrated in Figure A.4, the simulated temperature 

response for a given scenario widely differs for each of the 14 ESMs from CMIP5. This uncer-

tainty underlines the reason to construct the RCB framework discussed in Section 3.5 with 

varying carbon and climate models. Figure 3.5 illustrates the estimated temperature response 

for each of the 86 emissions scenarios using a single CMIP5 ESM. 
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Figure 3.5: The estimated temperature responses for the SRM for each of the 86 emission scenarios. Time is on 
the first axis (in years), and the associated temperature response on the second axis. The plot is reproducible 
through code in Appendix C.  

 

3.5 Estimating the RCB 

 

Each of the 14 included CMIP5 ESMs estimated different temperature responses for given sce-

narios, as illustrated in Figure A.4. As previously mentioned, each of the model combinations 

with, e.g. our best estimate carbon response model, grant a particular TCRE relation when look-

ing at the temperature responses of scenarios with widely varying magnitudes. The TCRE’s can 

differ considerably, as illustrated in Figure 2.2, where we looked at CO2-only TCRE’s for ob-

served temperature data and the best estimate using the CMIP5 model ensemble. Thus, to do a 

thorough analysis of the impact each different model has on the RCB, a systematic review of 

their impacts on these estimates is needed. Since climate budgets are the main instrument for 

the guiding of climate policies around the world (as mentioned in Section 2.4), these estimates 

should be as accurate and understandable as possible. 
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3.5.1 Likelihood estimate 

By assigning likelihoods to the estimated carbon budgets for a linked temperature target, it 

becomes simpler for policymakers and politicians to make more qualified decisions for future 

mitigation policies. As previously mentioned, it will with a small conceptual climate model, 

such as our SRM be significantly easier to process a higher number of scenarios. The simplicity 

and lower computing times enable the opportunity to more effortlessly compare the resulting 

temperature response for many different carbon and climate models.  

 

As illustrated in Figure 3.1, the most optimistic scenarios end up with net negative emissions, 

and some of them do so for several decades until 2100. To be able to go to negative emissions 

of CO2, the technology development in areas such as CCS has to thrive in such a manner that 

what is now relatively successful in small scale, is scalable to large-scale (J.  Rogelj et al., 

2018). To account for the possibility that the technology does not reach its theoretical potential 

in time, we have as a precaution for our simulations removed the scenarios that turn net negative 

from the simulation.  

 

In the same way, as technology development incorporates uncertainty to carbon budget esti-

mates, so does human mitigation choices and the possible errors in the models themselves. 

Hence, by systematically looking at the impact the different carbon and climate models has on 

the RCB for a temperature target, one can account for a more comprehensive rundown of the 

included uncertainties.  

 

Assigning a likelihood to carbon budgets was a goal of the research project. In IPCC’s AR5, 

the assumption was a normal distribution (J.  Rogelj et al., 2018; Stocker et al., 2013), however 

recent studies have found that a log-normal distribution of the TCRE might be the case (Millar 

et al., 2018). Since there is still no broad consensus on a log-normal distribution, a normal 

distribution of the TCRE was assumed.  

 

Since our interest lies in the risk of reaching higher temperatures, we use maximum tempera-

tures when estimating the TCRE’s due to its link with the RCB estimate (see code in Appendix 
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C). Figure 3.6 illustrates the remaining positive emission pathways with their estimated maxi-

mum temperature, associated carbon budget and probability distribution for given temperature 

targets, through estimating with a single climate- and our best estimate carbon response model.  

 

The carbon budgets appear to have an approximately linear relation to the temperature response 

for a single carbon and climate model. Thus, the linearity assumption for the TCRE seems to 

be valid for this simulation. The calculation of the probability density function illustrated on 

the y-axis in Figure 3.6 was done in the same manner as in the paper by Cox, Huntingford, and 

Williamson (2018).  

 

By systematically changing the model combinations, we produced likelihood plots for the 

RCBs between 200-4000 GtC with steps of 100 GtC, for a temperature target between 1.0-
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Figure 3.6: Plot of the TCRE for a single climate model and our best-estimate carbon model. Each dot is an 
emission scenario. The pdfs on the y-axis show the probability distributions for the RCBs for temperature targets 
of 1.5°C and 2.5°C. Code to reproduce the plot is provided in Appendix C. 
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4.0°C with steps of 0.01°C, as illustrated in Figure 3.7. By estimating the likelihoods with com-

binations of the 14 different ESM’s from the CMIP5 ensemble, our best estimate and ±1 stand-

ard deviation carbon models and an added internal variability illustrate the uncertainty in the 

carbon budget estimates well. In general, it is worth noting that the higher the RCB, the higher 

the uncertainty becomes as demonstrated by the heteroscedastic nature of the likelihood lines 

in Figure 3.7(a,d).  

 

In Figure 3.7(a) the likelihood simulation for the RCBs is run with our best estimate carbon 

model GCAR-M(t), and each of the included 14 earth system models in the CMIP5 model ensem-

ble. The plot illustrates that for lower temperature targets, the uncertainty is lower, while it for 

higher temperature targets increases.  

 

In Figure 3.7(b) the simulation was done with a mean of the 14 ESM’s from CMIP5 and the ±1 

standard deviation carbon models estimated in Section 3.2. The narrow uncertainty range in 

comparison to Figure 3.7(a), makes it clear that the uncertainty does not come from our con-

structed carbon models.  

 

We then added internal variability to emulate seasonal variabilities in the temperature response. 

The implementation involved adding a forcing as an additive white Gaussian noise with a var-

iance of 1 and scaling it to the estimated temperature response for each of the 86 emission 

scenarios in the CMIP5 models. Through scaling the temperature output to the internal variance 

in the 14 earth system models from CMIP5, we emulate the short-term temperature variation. 

Our interest lies in the decadal trends, thus to remove the noise from more considerable tem-

perature variations, a simple moving average with a sample window of 10 was added. Figure 

A.2 illustrates the estimated seasonal temperature variations. 

 

The inclusion of the internal variability to the RCB estimate when including our best estimate 

carbon model and the mean of the 14 included ESM’s from the CMIP5 model ensemble exhib-

ited a linear trend. As assumed and illustrated in Figure 3.7(c), the internal variability has little 

impact on the estimate of the RCB, with an approximately linear relation as a TCRE. This plot 

underlines that the uncertainty lies in the spread between ESMs. Hence, in the process in Equa-

tion 14, where we convolve the forcing scenarios with the exponential response functions for 

the CMIP5 models. 
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Figure 3.7: Likelihood plots for the RCB for a continum of temperature targets. (a) Using our best estimate carbon 
model, and the 14 emulators of ESMs from the CMIP5 ensemble. (b) Using our ±1 standard deviation carbon 
models and the mean of the 14 ESM emulators. (c) Using our best estimate carbon model, the mean of the 14 ESM 
emulators and added internal variability. (d) Taking combinations of both the ±1 standard deviation carbon models, 
all of the 14 ESM’s and the internal variability. The probabilities are as indicated in the figure legends, where there 
is, e.g. a 90% probability that a temperature response will stay below the blue line for a given carbon budget. The 
temperature targets range from 1.0-4.0°C. Code to reproduce the figure is provided in Appendix C. 

 

When combining both of our ±1 standard deviation carbon models, all of the chosen CMIP5 

ESM emulators and the added internal variability we see in Figure 3.7(d), that the uncertainty 

in the estimate increases drastically. This gives a broader, and heavier-tailed probability distri-

bution which is indicated by, in general, both a higher maximum and minimum estimate of the 

temperature response for a range of carbon budget sizes when comparing Figure 3.7(d) to Fig-

ure 3.7(a). 
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The main result from this likelihood estimate is that through including all of the model combi-

nations and internal variability, the risk of higher temperature responses increases for almost 

the entirety of the carbon budget range. As illustrated in Figure 3.7(d), we also see a lowered 

90% probability line, which underlines the considerable increase in uncertainty for both higher 

and lower temperature responses. Estimates from SR15 state that an RCB of 580 GtCO2 and 

420 GtCO2 to limit warming to 1.5°C gives a probability of 50% and 66%, respectively (IPCC, 

2018). Figure 3.7(d) illustrates that the SRM is consistent with the SR15 estimates. Through 

varying the models, we even out the different climate sensitivities from the CMIP5 climate 

models, which illustrated through the TCRE’s in Figure A.5 and Figure B.1, can be quite con-

siderable. 

 

3.6 Non-linear forcing framework 

 

Our SRM does not include any non-linear effects, feedback-mechanisms or potential tipping 

points. To expand the complexity of the SRM, we wanted to construct a simple framework in 

the RCB estimate that could add non-linear forcing through both linear and non-linear equa-

tions, as illustrated through a generic relation in Figure 3.8. Since the whole notion of an RCB 

depends on the concept of an approximately linear relationship in a TCRE, this non-linear forc-

ing cannot be too prominent in comparison to the linear part, too continue to overhold the line-

arity assumption. As an assumption, we started with an extension of the temperature response 

in Equation 14, where we include a non-linear forcing factor, 𝐹9(𝑇) that depends on the global 

mean surface temperature, 𝑇, as illustrated in Equation 15:  

 

𝑇(𝑡) = 	> 𝐺8?@(𝑡 − 𝑠) x𝐹161(𝑠) + 𝐹9(𝑇)z 𝑑𝑠.
!

9:
(15) 

 

Through fixed-point iteration, we can illustrate that the non-linear forcing cannot be too prom-

inent. First, we need to translate Equation 15 to vector form, as shown in Equation 13: 

 

𝑇		#(𝑠) = 𝐺:𝐹	161(𝑠) + 𝐹9(𝑇	B9%);. (16) 
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Figure 3.8: Illustration of a hypothetical non-linear temperature-dependent forcing, i.e. the forcing is directly 
dependent on the temperature. The temperature is given on the x-axis, while the temperature-dependent non-linear 
forcing, 𝐹%(𝑇) is shown on the y-axis.   

 

Thus, the only way for the approximately linearity assumption to still hold is through treating  

𝐹9(𝑇) as a constant. Which only is true if the rate of change is slow compared to 𝐹	161(𝑠), and 

hence leading to a non-linearity of a relatively small magnitude, as illustrated in Equation 17 

and 18: 

 

𝑇	#$%(𝑠) = 𝐺:𝐹	161(𝑠) + 𝐹9(𝑇	B); (17) 

𝑇	#$%(𝑠) − 𝑇	#(𝑠) = 𝐺 x𝐹	161(𝑠) + 𝐹9:𝑇	B;z − 𝑇	#(s) = G x𝐹9:𝑇	B; −	𝐹9:𝑇	B9%;z . (18) 

 

The implementation of the non-linear forcing comes through a fixed-point iteration loop with 

a specific number of iterations inside the temperature response estimates (for details, see Sec-

tion 2.6 and code in Appendix C). The construction of the non-linear framework is flexible, 

such that one can test any hypothetical equation for accounting for a collected or specific non-

linear forcing effect or feedback mechanism. In this research project, we focused on the non-

linear forcing effect from GHG emissions from warming of wetlands and permafrost thaw due 

to the Arctic amplification factor as a part of Andreas Johansen’s thesis (Johansen, 2020). How-

ever, since there is no broad consensus for any specific relation for the added non-linear forcing 

effect from permafrost emissions, we looked at a relatively likely scenario with a hyperbolic 

tangent relation. We also tested a linear relation to show that any generic equation can apply 

non-linear forcing.  

 

We started the analysis by looking at TCRE’s for all the examined forcing equations summa-

rised in Table B.1 in the Appendix. With a magnitude of 2 W/m2 some of the computations led 
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to broken linearity assumptions, as illustrated in Figure A.24. In one of the cases, the forcing 

was so significant that it practically removed the difference between the two climate models 

TCRE’s, as shown in Figure A.23, which led to the discarding of both Equation B6 and B7 

from Table B.1. 

 

With a higher temperature threshold of 3°C, the linearity assumptions became increasingly 

poor. The worsening most likely happens due to our focus on overshoot- and avoidance emis-

sion scenarios where e.g. several of the scenarios never reach as much as 2°C warming above 

pre-industrial levels (1850-1900). Each of the different CMIP5 ESM emulators exhibits a dif-

fering forcing sensitivity, leading to very different TCRE estimates as illustrated in Figure 

3.9(a). 

 

The CSIRO model appears to be more sensitive to forcing, leading to temperature responses far 

above 3°C, which in effect induces a convex trend since it for the more aggressive scenarios 

generate higher temperature responses. On the other hand, for the more conservative scenarios, 

the non-linear forcing effect is essentially absent, which leads to a lower temperature response. 

The explanation reverses for the GFDL model. With what seems to be a smaller forcing sensi-

tivity, none of the scenarios meets the temperature threshold of 3°C, thus leading to a concave 

trend. Since none of the deviating scenarios has high residuals or leverage, they do not have a 

substantial influence on the TCRE. Still, however, it does impact the RCB estimate, leading to 

large uncertainties as illustrated in Figure 3.9(b).  

 

We also found that changing the number of iterations between 5 and 50 had a minimal impact 

on the estimated RCBs for the different equations, illustrated with appendix Figure A.29. To 

force an impact, we had to use one of the hyperbolic tangent equations with a magnitude of 2 

W/m2, Equation B5 from Table B.1. 
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According to findings in SR15, there is a greater risk of passing through tipping points when 

scenarios exceed a maximum temperature of 1.5°C. Several tipping points are estimated to be 

impacted dramatically in this temperature area. An example of this is the GIS that has an 

existing and well-documented instability with a best estimate of 1.6°C (95% CI: 0.8-3.2°C) 

(Hoegh-Guldberg et al., 2018; Robinson, Calov, & Ganopolski, 2012). Thus, in line with our 

conservative line of assumptions, we made a “best guess” equation with a lower temperature 

threshold of 2°C. Figure 3.10 illustrates the RCBs using Equation B1 from Table B.1 and the 

linear SRM (see Appendix A for more plots for Equation B1). Other complementary plots and 

the produced plots from examined equations such as Equation B10 from Table B.1 are found 

in Appendix A.  

 

Including the non-linear forcing effect impacts the RCB estimate in comparison to the linear 

SRM. With a feasible RCB of 600 GtCO2, corresponding to limiting warming in line with the 

2°C target of the Paris accord, the 10% and 90% probability line increase about 0.6°C and 

0.15°C, respectively. Once again, this underlines the dramatic consequences using traditional 

RCBs that does not include a linked likelihood can have on the result for Earth’s climate. 
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Figure 3.9: The effect of non-linear temperature-dependent forcing on our RCB estimates (using Equation B3). (a) 
The TCRE for two (emulators of) climate models in the CMIP5 model ensemble, and our best estimate carbon 
model. Each dot is one of the 86 emission scenarios. (b) Likelihood plots for the estimated RCB using combinations 
of both the ±1 standard deviation carbon models, all of the 14 ESM’s from the CMIP5 ensemble and the internal 
variability. The probabilities are as indicated in the figure legends, where there is, e.g. a 90% probability that a 
temperature response will stay below the blue line given a distinct carbon budget. The temperature targets range 
from 1.0-4.0°C. Code to reproduce the plot is provided in Appendix C. 
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Figure 3.10: Likelihood plots for estimated RCBs given a mitigation target. Both plots were produced using com-
binations of both the ±1 standard deviation carbon models, all of the 14 ESM’s and the internal variability. (a) The  
RCB estimate using the linear SRM, found in Figure 3.7(d). (b) The RCB estimate for the SRM, including the 
non-linear temperature-dependent forcing according to Equation B1 (Table B.1). Illustration of the probabilities 
is in the figure legends, where there is, e.g. a 90% probability that a temperature response will stay below the blue 
line given a distinct carbon budget. The temperature targets range from 1.0-4.0°C. Code to reproduce the figure is 
provided in the Appendix. 
 

3.7 Arctic amplification 

 

Another part of our collaborative research project was to estimate the temperature response in 

the Arctic region in comparison to a global GMST. A standard way to do this is through ana-

lysing the Arctic amplification factor, which is an estimate of the rate of change in Arctic tem-

peratures compared to typically global temperatures (Dai et al., 2019).  

 

(Johansen, 2020) took a look at how to implement this issue into our SRM. Through using the 

dataset of observed global annual mean surface temperatures and Arctic annual mean temper-

atures, a linear best fit was estimated, finding the equation for the Arctic amplification factor 

on the form 𝑇358 = 𝑣 + 𝑤 × 𝑇C?6, leading to Equation 19 (Lenssen et al., 2019; Team, 2020): 

 

𝑇358 = 0.100 + 2.23 × 𝑇C?6. (19) 
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𝑇358 denotes the Arctic temperature anomaly, 𝑇C?6	denotes the global temperature anomaly, 

while 𝑣 and 𝑤 were estimated to be 0.100 and 2.23, respectively (See illustration in Figure A.30 

and estimation in Appendix C).  

 

After estimating the Arctic amplification factor, the estimate of a linked Arctic RCB followed 

the same manner as in Section 3.5.1. If we aim to stay below global warming of a 2°C GMST 

increase in relation on pre-industrial levels, a global RCB of 600 GtCO2 could be the target as 

illustrated in Figure 3.7(d). Regional temperature responses in the Arctic will be different due 

to the Arctic amplification factor, thus increasing the likeliness of very severe temperature re-

sponses. 

 

Figure 3.11 illustrates the dramatic effect the Arctic amplification factor has on the estimated 

temperature response. For a global RCB of 600 GtCO2, the linked temperature response for the 

50% probability line increases by approximately 2°C, from around 1.6°C to 3.5°C. These ex-

treme regional temperature responses could induce tipping points such as the abrupt thaw of 

permafrost, and other Arctic regional tipping point leading to a possible feedback loop. Find-

ings in SR15 does, however, show that there is about a 50% chance that warming to a GMST 

of 2°C would not be sufficient to reach a permafrost tipping point. However, a GMST increase 

of 3°C could reach a tipping point through soil warming, leading to a change in the hydrological 

state of the permafrost (Hoegh-Guldberg et al., 2018). The fulfilment of these conditions might 

happen when considering extreme weather events in record-breaking years or through, e.g. for-

est fires, possibly leading to local tipping point events.  

 

Figure 3.11(b) also shows that there with a 90% probability for a 200 GtCO2 RCB estimates a 

temperature anomaly compared to the pre-industrial revolution of around 2.7°C. This estimate 

is also backed up by the estimated temperature between 64°N-90°N in 2019 of 2.71°C (Lenssen 

et al., 2019; Team, 2020).  

 

By combining the result from the non-linear effects from Section 3.6, we assumed that the 

estimated temperature response would worsen when including the Arctic amplification factor 

but were unsure about the magnitude.  

 



 

Page 48 of 123 

 
Figure 3.11: The estimated RCBs given a temperature target, ranging from 0.0-9.0°C. The estimates use combi-
nations of both the ±1 standard deviation carbon models, all of the 14 ESM’s and the internal variability. (a) is the 
same plot as in Figure 3.7(d), while (b) includes the Arctic amplification factor from equation 16. The figure 
legend indicate the probabilities associated with each coloured curve, where there is, e.g. a 90% probability that a 
temperature response will be on the blue line given a distinct carbon budget. Reproducible through code found in 
Appendix C (Johansen, 2020). 
 

The implementation of non-linear forcing resulted in a widening of the likelihood plots with 

generally, higher estimated temperatures. Johansen (2020) looked at our “best guess” for the 

non-linear forcing effect, Equation B1 and an additional relation in Equation B10. Figure 3.12 

illustrates that the non-linear effect on the estimate of the Arctic amplification factor RCBs, 

show the same, widening trend mentioned above, indicated primarily through increasing tem-

perature responses in the upper bounds as indicated by the red 10% probability line.  

 

When considering the more moderate non-linear forcing effect from Equation B10, there are 

apparent differences, as illustrated in Figure 3.12(c). Using the example global RCB of 600 

GtCO2 , the temperature responses for the 50% and 10% probability line, increases from around 

3.5°C and 4.4°C to 3.7°C and 4.9°C, respectively. These somewhat small differences can have 

drastic results when considering different Arctic tipping points. As illustrated in Figure 3.12(b), 

a more considerable non-linear forcing effect from Equation B1 will dramatically worsen the 

estimated temperature response. The 50% likelihood line indicates an increase of 0.9°C, to 

4.4°C in comparison to the non-linear Arctic RCB of 600 GtCO2.  
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Figure 3.12: Likelihood plots for the estimated RCBs when including the Arctic amplification factor, given a 
temperature target, ranging from 0.0-9.0°C. The estimates use combinations of both the ±1 standard deviation 
carbon models, all of the 14 ESM’s and the internal variability. (a) The RCB estimate of the linear SRM when 
including the Arctic amplification factor, illustrated in Figure 3.11(b). (b) includes the non-linear forcing from 
Equation B1. (c) includes the non-linear forcing from Equation B10. The figure legend explain the probabilities, 
where there is, e.g. a 90% probability that a temperature response will be on the blue line given a distinct carbon 
budget  Johansen (2020). Reproducible through code and non-linear forcing equations found in Appendix C. 
 

3.8 MAGICC comparison 

 

To compare the SRM performance with MAGICC, Martinsen (2020) extracted temperature 

simulations from MAGICC6 simulations in the SSP dataset, as seen in Figure A.33 (Riahi et 

al., 2017; Joeri Rogelj et al., 2018). It includes estimated global mean surface temperatures for 

each of the nine decades from 2020-2100 in all of the 86 included scenarios, leading to a total 

of 774 data points. These temperatures were compared in a scatterplot to the related estimates 

from our SRM. As illustrated in Figure 3.13(a), our model is very consistent with MAGICC, 

lightly underestimating it as shown by the black dashed line. Pinpointing which factors lead to 

this underestimate has not been done in this research project, but there are several principal 

differences in the model frameworks. Amongst these differences are the inclusion of other 

greenhouses gases such as ozone (O3) and N2O, and a changing forcing ratio between CH4/CO2 

(more detailed explanation of the forcing ratio in Section 3.1). Martinsen (2020) reviewed these 

and other factors, with a more comprehensive review of the differences located in his thesis. 
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Figure 3.13: Estimated GMSTs for the SRM and MAGICC6 using 86 SSP scenarios (Riahi et al., 2017; Joeri 
Rogelj et al., 2018). The MAGICC and SRM estimates for all scenarios are shown on the x-axis and y-axis, re-
spectively. (a) illustrates estimated GMST responses for each of the nine decades between 2020-2100, resulting 
in 774 data points. (b) illustrates the estimated maximum GMST for each of the SSP scenarios. Plot produced by 
Martinsen (2020). Reproducible through code in Appendix C.   

 

Due to our use of maximum temperatures in the RCB estimates (see Section 3.5.1) we analysed 

the maximum GMSTs for all of the scenarios, regardless of at what point in time that maximum 

GMST took place. As illustrated in Figure 3.13(b), it seems like the SRM is consistent with the 

more conservative SSP scenarios, while there is an increasing underestimation for the higher 

temperatures.  

 

There are several possible explanations for the underestimate, as mentioned above. Even though 

it was not a part of this research project, the difference might be accounted to a lower climate 

sensitivity for the SRM in comparison to MAGICC6. Figure 3.13(b) illustrates that with an 

estimated SRM temperature of 2.5°C, the linked MAGICC temperature lies around 2.7°C, lead-

ing to an underestimate of around 8%. However, there are only 86 data points clustered between 

about 1.5-2.7°C with a few outliers, leading to a limited conclusion basis.  

 

When including a non-linear forcing effect, we assumed that the SRM estimates would overes-

timate in comparison to MAGICC6. MAGICC does not include strong non-linear feedbacks or 

forcing factors that exhibit a non-linear forcing effect like, e.g. abrupt permafrost thaw, as dis-

cussed in Section 3.6.  
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In this example, we included a non-linear effect from Equation B1 (see Table B.1 in Appendix 

B), with a maximum added forcing magnitude of 1 W/m2 and a temperature threshold of 2°C. 

Figure 3.14 illustrates these estimates. 

 

 
Figure 3.14: Estimated GMSTs for MAGICC6 and the SRM when including non-linear forcing from Equation 
B1, using 86 SSP scenarios (Riahi et al., 2017; Joeri Rogelj et al., 2018). The MAGICC and non-linear SRM 
estimates for all scenarios are shown on the x-axis and y-axis, respectively. (a) illustrates estimated GMST re-
sponses for each of the nine decades between 2020-2100, resulting in 774 data points. (b) illustrates the estimated 
maximum GMST for each of the SSP scenarios. Reproducible through code in Appendix C (Martinsen, 2020). 

 

Figure 3.14(a) illustrates that with the inclusion of a non-linear forcing effect, there is an in-

creasing temperature trend for the SRM temperature response. Due to the moderately high-

temperature threshold of 2°C in Equation B1, when considering the risks for large-scale singu-

lar events found in SR15 (see Section 2.5), we see that most of the non-linear effect kicks in at 

higher temperatures in the SRM estimates. This leads to an increasing deviation from the ap-

proximately 1:1 linear relation for higher SRM temperatures, compared to Figure 3.13(a).  

 

The maximum temperature estimates in Figure 3.14(b) show a relatively similar picture, with 

a general increase in the estimated temperature response. However, there is an approximately 

linear relation, starting at a higher base maximum temperature of about 0.8°C for the SRM 

temperature response. 

 

Martinsen (2020) also looked at the non-linear forcing impact from Equation B10, found in 

Table B.1. Equation B10 illustrated a much more moderate temperature response from the non-
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linear forcing effect, for both the GMST and maximum GMST estimates, as illustrated in Figure 

A.34. However, there is a definite impact on the estimates, for even a relatively weak non-linear 

forcing, easily visualised in Figure A.35. These results underline the reason to implement non-

linear effects in climate modelling, in a similar way as just using CO2-only RCBs only sheds 

light on the part of the truth in comparison to an effective RCB as discussed in Section 2.4. 
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4 Conclusion 
 

In relation to many of the very complex ESMs used by, e.g. CMIP5, the developed Simple 

Response Model may seem very elementary. However, the resulting simulations for tempera-

ture responses seem to be very consistent with the literature. For instance, through interpolation 

of Figure B.1, an estimate of the mean TCRE for the SRM show a TCRE of 1.83°C/1000GtC 

(see calculation in Appendix B) in comparison to 1.86°C/1000GtC estimated by (Matthews et 

al., 2017). The SRM TCRE is also well within the 66% CI for the TCRE in AR5 of 0.2-

0.7°C/1000GtCO2 (0.5°C/1000GtCO2) (Collins et al., 2013). The SRM estimate is, however, 

an approximation, without adding a variation of carbon models and the internal variability.   

 

Due to the simplicity and flexibility of the SRM, it is considered to be a reasonable alternative 

to other simple- and reduced-complexity models, such as the benchmark model, MAGICC. The 

analysis conducted by Martinsen (2020) reinforced this by finding approximately perfect line-

arity when comparing the estimated temperature responses between the SRM and MAGICC, 

as seen in Figure 3.13. Through implementing likelihood estimate plots for the RCB, we believe 

that the results are easily comprehendible, such that policymakers without scientific back-

ground knowledge can make effective mitigation policies. For instance, policymakers in the 

Arctic region could easily be exposed to the potentially extreme regional impact global climate 

change can inflict on the regional temperatures, through the Arctic amplification factor, as il-

lustrated in Figure 3.11.  

 

The effect of non-linear forcing on the estimate of the RCB appears to be severe, as illustrated 

in Figure 3.10. The inclusion of the non-linear forcing framework enables the possibility of 

studying any possible non-linear forcing effect, which in this case ended up with the warming 

of wetlands and abrupt permafrost thaw. Since there is no consensus on any specific non-linear 

temperature relation to, e.g. abrupt permafrost thaw, a range of relations were studied (see Table 

B.1), all underlining the drastic effect on the RCB. With further research of the non-linear com-

ponents leading to more knowledge and understanding of their ability to impact the carbon 

cycle-climate system, a specific non-linear forcing effect or a combined effect, in general, could 

be studied through the SRM.  
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One of the principal findings from the RCB estimates is that generally, the larger the emissions 

of GHGs, the larger the uncertainty in the temperature response becomes. Thus, with less am-

bitious mitigation targets, there is an increasing possibility for extreme impacts both on the 

climate-, ecosystems and higher adaptation costs. AR5 also expects that the limits of climate 

change adaptation will intensify due to findings in AR5, that suggests that there is a finite ca-

pacity of adaptation efforts because of the underlying regional and sectoral vulnerability in 

climate change (Klein et al., 2014).  

 

With such an uncertain future, planning for adaptation efforts can be very difficult, where bad 

decision-making can lead to maladaptation. Choosing the wrong adaptive measure can lead to 

taking problematically high chances both for the climate system and the financial burden these 

impacts can have on the global economy (Klein et al., 2014; Mimura et al., 2014). With esti-

mates for yearly adaptation costs in 2030 already in the range of USD$ 140-300 billion, the 

global economy would gain from increasing the more cost-effective, mitigation efforts relative 

to climate change adaptation (Sánchez et al., 2016; UNEP, 2018). As briefly discussed in Sec-

tion 2.2, to substantially impact the RCB, the used efforts has to be of a large magnitude. By 

combining forces from both the adaptation-, mitigation efforts and transforming the energy 

sector towards a lower fossil fuel ratio, these changes can lead to the realisation of effective 

mitigation policies. 

 

4.1 Further work 
 

SRM performance can improve, and there are several possibilities for further work. First and 

foremost, repeating the study with the CMIP6 model ensemble can lead to more accurate find-

ings since it includes updated state-of-the-art science. The inclusion of other ESMs or EMICs 

not included in CMIP5 or CMIP6 would likely also strengthen the SRM without increasing its 

complexity. 

 

As mentioned in Section 3.5.1, new research debates that the probability distribution for the 

TCRE might be log-normal and not normal (Millar et al., 2018). Repeating the RCB estimates 

with varying probability distribution functions could thus be done to review the impact from a 

possibly wrong assumption. 
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In relation to ESMs, EMICs and reduced complexity models, the SRM includes quite few forc-

ing factors. Through the implementation of, e.g. climate feedback-mechanisms and other forc-

ing factors, the SRM could likely improve the replication of the carbon-cycle climate system. 

Forcing factors such as nitrous oxide (N2O) and chlorofluorocarbons (CFCs) with possible 

greenhouse gas interactions are additions that could equate the SRM to MAGICC.  

 

However, including too many forcing factors might also remove the simplicity of the SRM 

framework. A possibility is to incorporate a time dependency in the factors a and b such that 

the forcing ratios for methane and aerosols are non-constant until the conditions for stalling 

decline for methane emissions and the asymptotic behaviour in the case of aerosols are met. 

Due to the uncertainty in aerosols as a forcing factor, complicating it without further research 

and background might as well worsen the SRM performance.    
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Appendix A 
 

Additional plots illustrating supplementary results found in the SRM, as discussed in Sec-

tion 3.  

 

Additional figures estimated from the linear SRM code discussed in Section 3.1-3.5.  

 

 
Figure A.1: Estimate of 127 emission scenarios before removal of exceedance scenarios. 

 
Figure A.2: Internal temperature variabilities for each of the original 127 emission scenarios.  
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Figure A.3: Combined forcing from both the GHGs and the aerosols, for each of the 86 emission scenarios. 

 

Figure A.4: Estimated temperature response for an emission scenario for each of the 14 ESMs from CMIP5 (see 
figure legend) using the best estimate carbon model.  

 
Figure A.5: TCRE for two climate models from the CMIP5 model ensemble, and our best estimate carbon model. 
Neither the internal variability or the non-linear forcing framework was included. The figure legend denotes the 
TCRE for the CSIRO and GFDL models from the CMIP5 model ensemble. Each dot is one of the 86 emission 
scenarios. Produced through code in Appendix C. 

1750 1800 1850 1900 1950 2000 2050 2100

0

1

2

3

4

Fo
rc
in
g
(W

/m
2
)

2020 2040 2060 2080 2100

1.1

1.2

1.3

1.4

1.5

1.6

1.7

G
M
S
T
in
cr
ea
se

(°
C
)

b

Linear effect 

BCC-CSM1-1
BNU-ESM
CanESM2
CCSM4
CSIRO-Mk3.6.0
FGOALS-s2
GFDL-ESM2M
GISS-E2-R

HadGEM2-ES
INM-CM4
MIROC5
MPI-ESM-LR
MRI-CGCM3
NorESM1-M

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

1000

2000

3000

4000

Global temperature increase (°C)

C
ar
bo
n
bu
dg
et
af
te
r2
01
8
(G
tC
O
2)

CSIRO-Mk3.6.0

GFDL-ESM2M



 

Page 65 of 123 

Additional figures (Figure A.6-A.29) estimated through the non-linear framework in the SRM, 

as discussed in Section 3.6.  

 

Figure A.6-A.11 were produced with the non-linear forcing relation Equation B1 found in Table 

B.1.  

 

 
Figure A.6: Internal temperature variabilities for each of the original 127 emission scenarios when including the 
non-linear forcing from Equation B1.  

 
Figure A.7: Estimated temperature response for the SRM when including non-linear forcing from Equation B1. 
Each line is one of the 86 emission scenarios. 
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Figure A.8: Combined forcing from both the GHGs and the aerosols, for each of the 86 emission scenarios. In-
cludes non-linear forcing from Equation B1.  

 
Figure A.9: Forcing estimates for aerosols and the GHGs, for each of the 86 emission scenarios. Includes non-
linear forcing from Equation B1. See further explanation in figure text for Figure 3.3. 

 
Figure A.10: Estimated temperature response for an emission scenario for each of the 14 ESMs from CMIP5 (see 
figure legend) using the best estimate carbon model. The estimates includes non-linear forcing from Equation B1. 
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Figure A.11: Estimated TCRE in same manner as Figure 3.6, with an included non-linear forcing relation from 
Equation B1. Probability distribution for RCBs for a 2°C and 3°C mitigation target on y-axis.  

 

Figure A.12-A.17 were produced with the non-linear forcing relation Equation B10 found in 

Table B.1.  

 

 
Figure A.12: Internal temperature variabilities for each of the original 127 emission scenarios when including 
the non-linear forcing from Equation B10. 
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Figure A.13: Estimated temperature response for the SRM when including non-linear forcing from Equation 
B10. Each line is one of the 86 emission scenarios. 

 
Figure A.14: Combined forcing from both the GHGs and the aerosols, for each of the 86 emission scenarios. 

Includes non-linear forcing from Equation B10. 

 

Figure A.15: Forcing estimates for aerosols and the GHGs, for each of the 86 emission scenarios. Includes non-
linear forcing from Equation B1. See further explanation in figure text for Figure 3.3. 
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Figure A.16: Estimated temperature response for an emission scenario for each of the 14 ESMs from CMIP5 
(see figure legend) using the best estimate carbon model. The estimate includes non-linear forcing from Equation 
B10. 

 
Figure A.17: Estimated TCRE in same manner as Figure 3.6, with an included non-linear forcing relation from 
Equation B10. Probability distribution for RCBs for a 2°C and 3°C mitigation target on y-axis. 
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were estimated in the exactly same manner, where Figure A.18-A28(a) shows a TCRE plot in 

same manner as Figure A.5 (see figure text for more detailed explanation). Figure A.18-A.28(b) 

show RCB estimates in same manner as Figure 3.7(d) (see figure text for more detailed expla-

nation).  
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Figure A.18: Plots produced with non-linear forcing from Equation B1 from Table B.1.  

 
Figure A.19: Plots produced with non-linear forcing from Equation B2 from Table B.1. 

 

Figure A.20: Plots produced with non-linear forcing from Equation B3 from Table B.1. 
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Figure A.21: Plots produced with non-linear forcing from Equation B4 from Table B.1. 

 
Figure A.22: Plots produced with non-linear forcing from Equation B5 from Table B.1.  

 
Figure A.23: Plots produced with non-linear forcing from Equation B6 from Table B.1. 
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Figure A.24: Plots produced with non-linear forcing from Equation B7 from Table B.1. 

 
Figure A.25: Plots produced with non-linear forcing from Equation B8 from Table B.1. 

 
Figure A.26: Plots produced with non-linear forcing from Equation B9 from Table B.1. 
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Figure A.27: Plots produced with non-linear forcing from Equation B10 from Table B.1. 

 
Figure A.28: Plots produced with non-linear forcing from Equation B11 from Table B.1. 
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3.7(d). Thus including carbon-, climate model combinations and internal variability. The esti-

mates were done for Equation B1 and B5 from Table B.1, for 5, 10 and 50 iterations, as illus-

trated in Figure A.29.  
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Figure A.29: Illustration of the small impact the number of iterations had on the RCB estimates, based on Figure 
3.7(d). (a,b,c) denotes the estimate for Equation B1 in Table B.1, for 5, 10 and 50 iterations, respectively. (d,e,f) 
follow in the same manner of 5, 10 and 50 iterations for Equation B5.   

 

Our research partner Andreas Johansen produced additional plots for the study on the Arctic 

amplification factor (Johansen, 2020) (See Figure A.30-A.32). Each of the following plots were 

estimated using non-linear forcing relations from Table B.1. The illustration of the RCB esti-

mates with and without the Arctic amplification factor shows in (a) and (b), respectively.  

 
Figure A.30: Relationship between Global- and Arctic Land-Ocean Temperature Index. Estimate of the Arctic 
amplification factor illustrated with black line.  
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Figure A.31: Estimated when including non-linear forcing from Equation B1 from Table B.1. (a) and (b) shows 

the estimated RCB before and after the inclusion of the Arctic amplification factor, respectively.  

 
Figure A.32: Estimated when including non-linear forcing from Equation B10 from Table B.1. (a) and (b) shows 

the estimated RCB before and after the inclusion of the Arctic amplification factor, respectively. 

Martinsen (2020) produced additional plots for the study on the comparison between the RCB 

estimates of the Simple Response Model and MAGICC.  

 
Figure A.33: Estimated temperature response for the linear SRM and MAGICC using the same 86 emission sce-
narios. Visualised scatterplot in Figure A.18(a) and Figure A.18(d). (a) SRM estimate. (b) MAGICC estimate. 
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The following scatterplots compare the impact the non-linear forcing relations from Table B.1 

has on the RCB estimates (Martinsen, 2020). More detailed explanation found in figure text of 

Figure 3.13.  

 

 
Figure A.34: Estimated SRM impact from Equation B10 in Table B.1 when comparing to MAGICC. (a) illustrates 

the temperature response over each decade for 86 scenarios from 2020-2100, resulting in 774 datapoints. (b) illus-

trates the estimate maximum GMST regardless of time for each scenario.  

 
Figure A.35: Comparison between the linear SRM and when including Equation B1 and B10 as non-linear forc-

ing. In (a,b,c) we see the temperature response of the linear SRM, Equation B1 and B10, respectively, while (d,e,f) 

shows the estimated maximum temperature response from the linear SRM, Equation B1 and B10, respectively.  
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Appendix B 
Non-linear forcing equations 
For the inclusion of non-linear forcing we examined a number of equations. These equations 

are summarized in Table B.1 with their designated parameters, using one of the two equations 

below. The hyperbolic tangent relation consists of the variable 𝑇, illustrating the global mean 

surface temperature, the magnitude of the radiative forcing represented by 𝑀, the temperature 

threshold denoted by 𝑇1250D26?E and the steepness of the forcing through variable,	𝑆.  

 

∆𝑓BFB9GHB = 0.5 × 𝑀 × u1 + Tanh e
𝑇 − 𝑇1250D26?E

𝑆 gv . (B1 − B8) 

 

The linear relation consists of the GMST denoted by variable 𝑇 and the linear multiplication 

factor 𝐿. Tested equations are summarised in  

 

∆𝑓#)#9I(# = 𝐿 × 𝑇	 (B9 − B11) 
 

Table B.1: Summary of parameters for the two analysed equations for the non-linear forcing framework discussed 

in Section 3.6. The variable 𝑇, illustrates the GMST, the magnitude of the radiative forcing (W/m2) represented 

by 𝑀, the temperature threshold denoted by 𝑇-./01.234 and the steepness of the forcing through variable,	𝑆. The 

column Discarded denotes if the estimated TCRE’s broke the approximate linearity, i.e. if they could yield an valid 

RCB  

Equation # M(Wm-2) TTHRESHOLD(°C) S(°C) L(Wm-2°C-1) Discarded 

B1 1 2 0.5  No 

B2 1 2 1  No 

B3 1 3 0.5  No 

B4 1 3 1  No 

B5 2 2 0.5  No 

B6 2 2 1  Yes 

B7 2 3 0.5  Yes 

B8 2 3 1  No 

B9    0.1 No 

B10    0.2 No 

B11    0.45 No 
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Mean TCRE calculation 

This approximation for a SRM mean TCRE bases on Figure A.5, with the best estimate carbon 

model, 14 of the ESM’s from the CMIP5 ensemble. Neither the internal variability or the non-

linear forcing framework was included. 

By looking at temperature targets for 2°C and 3°C the related RCBs are visually approximated 

to 1600 GtCO2 and 2600 GtCO2, respectively. Thus we have a TCRE of 1°C/2000GtCO2 

(0.5°C/1000GtCO2) which translates to 1°C/545 GtC and 1.8°C/1000 GtC through factor 44/12, 

due to the molecular weight of the CO2 molecule in comparison to the carbon atom (Collins et 

al., 2013). 

 
Figure B.1: Illustration of the TCRE for two climate models (black and red line) from the CMIP5 model ensemble, 
and our best estimate carbon model. Each dot is one of the 86 emission scenarios. The black dashed line denotes 
the mean TCRE of each of the 14 CMIP5 models. 
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Appendix C 
 

Code for linear SRM 

The following code is used for plotting the linear SRM as described in Section 3.1-3.5. Pro-

duced in Mathematica 12.0.0.0 in collaboration with research partners Andreas Johansen, An-

dreas Martinsen and supervision from Martin Rypdal.  

Platform: Mac OS X x86 (64-bit). macOS Catalina: Version 10.15.3. 

In[283]:= SetDirectory["OneDrive	-	UiT	Office	365"];		
Z	=	Import["SSP_IAM_V2_201811.csv"];	
Z	=	Map[StringSplit[#,	","]	&,	Z];	 

In[5]:=  hh=157.65890684920566`+1.8942819330281027`zz+0.08520850267749702`zz2;		
 

In[6]:= Z[[1]]	 
Out[6]= {{MODEL,	"SCENARIO",	"REGION",	"VARIABLE",	"UNIT",	
2005,	2010,	2020,	2030,	2040,	2050,	2060,	2070,	2080,	2090,	2100}}	 

In[7]:= RR=Table[Z[[k]][[1]][[4]],{k,1,Length[Z]}];	
Union[RR] 

Out[8]= {"Agricultural	Demand|Crops",	"Agricultural	Demand|Crops|Energy",	
"Agricultural	Demand|Livestock",	"Agricultural	Production|Crops|Energy",		
"Agricultural	Production|Crops|Non-Energy","Agricultural	Production|Livestock",	"Capacity|Electricity",		
"Capacity|Electricity|Biomass",	"Capacity|Electricity|Coal",	"Capacity|Electricity|Gas",		
"Capacity|Electricity|Geothermal",	"Capacity|Electricity|Hydro",	"Capacity|Electricity|Nuclear",		
"Capacity|Electricity|Oil",	"Capacity|Electricity|Other",	"Capacity|Electricity|Solar",	"Capacity|Electricity|Solar|CSP",	
"Capacity|Electricity|Solar|PV",	"Capacity|Electricity|Wind",	"Capacity|Electricity|Wind|Offshore",		
"Capacity|Electricity|Wind|Onshore",	"Consumption",	"Diagnostics|MAGICC6|Concentration|CH4",		
"Diagnostics|MAGICC6|Concentration|CO2",	"Diagnostics|MAGICC6|Concentration|N2O",		
"Diagnostics|MAGICC6|Forcing",	"Diagnostics|MAGICC6|Forcing|Aerosol",	"Diagnostics|MAGICC6|Forcing|CH4",		
"Diagnostics|MAGICC6|Forcing|CO2",	"Diagnostics|MAGICC6|Forcing|F-Gases",		
"Diagnostics|MAGICC6|Forcing|Kyoto	Gases",	"Diagnostics|MAGICC6|Forcing|N2O",		
"Diagnostics|MAGICC6|Temperature|Global	Mean",	"Emissions|BC",	"Emissions|CH4",		
"Emissions|CH4|Fossil	Fuels	and	Industry",	"Emissions|CH4|Land	Use",	"Emissions|CO",		
"Emissions|CO2",	"Emissions|CO2|Carbon	Capture	and	Storage",		
"Emissions|CO2|Carbon	Capture	and	Storage|Biomass","Emissions|CO2|Fossil	Fuels	and	Industry",		
"Emissions|CO2|Land	Use",	"Emissions|F-Gases",	"Emissions|Kyoto	Gases",	"Emissions|N2O",		
"Emissions|N2O|Land	Use",	"Emissions|NH3",	"Emissions|NOx",	"Emissions|OC",	"Emissions|Sulfur",		
"Emissions|VOC",	"Energy	Service|Transportation|Freight",	"Energy	Service|Transportation|Passenger",		
"Final	Energy","Final	Energy|Electricity",	"Final	Energy|Gases",	"Final	Energy|Heat",	
"Final	Energy|Hydrogen",	"Final	Energy|Industry",	"Final	Energy|Liquids",		
"Final	Energy|Residential	and	Commercial",	"Final	Energy|Solar","Final	Energy|Solids",		
"Final	Energy|Solids|Biomass","Final	Energy|Solids|Biomass|Traditional",	"Final	Energy|Solids|Coal",	
"Final	Energy|Transportation",	"GDP|PPP",	"Harmonized	Emissions|BC",		
"Harmonized	Emissions|CH4|Fossil	Fuels	and	Industry","Harmonized	Emissions|CH4|Land	Use",		
"Harmonized	Emissions|CO","Harmonized	Emissions|CO2|Fossil	Fuels	and	Industry",	
"Harmonized	Emissions|CO2|Land	Use",	"Harmonized	Emissions|F-Gases",	"Harmonized	Emissions|Kyoto	Gases",	
"Harmonized	Emissions|NH3",	"Harmonized	Emissions|NOx",	"Harmonized	Emissions|OC",	
"Harmonized	Emissions|Sulfur",	"Harmonized	Emissions|VOC","Land	Cover|Built-up	Area",		
"Land	Cover|Cropland",	"Land	Cover|Forest",	"Land	Cover|Pasture",	"Population",	"Price|Carbon",	"Primary	Energy",	
"Primary	Energy|Biomass",	"Primary	Energy|Biomass|Traditional",	"Primary	Energy|Biomass|w/	CCS",		
"Primary	Energy|Biomass|w/o	CCS",	"Primary	Energy|Coal",	"Primary	Energy|Coal|w/	CCS",		
"Primary	Energy|Coal|w/o	CCS",	"Primary	Energy|Fossil",	"Primary	Energy|Fossil|w/	CCS",		
"Primary	Energy|Fossil|w/o	CCS","Primary	Energy|Gas",	"Primary	Energy|Gas|w/	CCS",	
"Primary	Energy|Gas|w/o	CCS",	"Primary	Energy|Geothermal","Primary	Energy|Hydro",		
"Primary	Energy|Non-Biomass	Renewables","Primary	Energy|Nuclear",	"Primary	Energy|Oil",	
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"Primary	Energy|Oil|w/	CCS",	"Primary	Energy|Oil|w/o	CCS","Primary	Energy|Other",		
"Primary	Energy|Secondary	Energy	Trade","Primary	Energy|Solar",	"Primary	Energy|Wind",	
"Secondary	Energy|Electricity",	"Secondary	Energy|Electricity|Biomass",		
"Secondary	Energy|Electricity|Biomass|w/	CCS","Secondary	Energy|Electricity|Biomass|w/o	CCS",	
"Secondary	Energy|Electricity|Coal","Secondary	Energy|Electricity|Coal|w/	CCS",	
"Secondary	Energy|Electricity|Coal|w/o	CCS","Secondary	Energy|Electricity|Gas",		
"Secondary	Energy|Electricity|Gas|w/	CCS",	"Secondary	Energy|Electricity|Gas|w/o	CCS",	
"Secondary	Energy|Electricity|Geothermal","Secondary	Energy|Electricity|Hydro",	
"Secondary	Energy|Electricity|Non-Biomass	Renewables","Secondary	Energy|Electricity|Nuclear",		
"Secondary	Energy|Electricity|Oil",	"Secondary	Energy|Electricity|Solar",	"Secondary	Energy|Electricity|Wind",		
"Secondary	Energy|Gases",	"Secondary	Energy|Gases|Biomass","Secondary	Energy|Gases|Coal",		
"Secondary	Energy|Gases|Natural	Gas",	"Secondary	Energy|Heat",	"Secondary	Energy|Heat|Geothermal",	
"Secondary	Energy|Hydrogen",	"Secondary	Energy|Hydrogen|Biomass",	
"Secondary	Energy|Hydrogen|Biomass|w/	CCS",	"Secondary	Energy|Hydrogen|Biomass|w/o	CCS",	
"Secondary	Energy|Hydrogen|Electricity",	"Secondary	Energy|Liquids",	"Secondary	Energy|Liquids|Biomass",		
"Secondary	Energy|Liquids|Biomass|w/	CCS",	"Secondary	Energy|Liquids|Biomass|w/o	CCS",	
"Secondary	Energy|Liquids|Coal",	"Secondary	Energy|Liquids|Coal|w/	CCS",		
"Secondary	Energy|Liquids|Coal|w/o	CCS",	"Secondary	Energy|Liquids|Gas",		
"Secondary	Energy|Liquids|Gas|w/	CCS",	"Secondary	Energy|Liquids|Gas|w/o	CCS",		
"Secondary	Energy|Liquids|Oil",	"Secondary	Energy|Solids",	"VARIABLE"}	 

In[9]:= RRR=Table[Z[[k]][[1]][[3]],{k,1,Length[Z]}];		
Union[RRR]	 

Out[10]= {"R5.2ASIA",	"R5.2LAM",	"R5.2MAF",	"R5.2OECD",	"R5.2REF",	"REGION",	"World"}	 

In[11]:= co2pos1=Position[RR,_?(#=="\"Emissions|CO2|FossilFuelsandIndustry\""&)];		
co2pos2	=	Position[RR,	_	?	(#	==	"\"Emissions|CO2|Land	Use\""	&)];	
co2pos3	=	Position[RRR,	_	?	(#	==	"\"World\""	&)];	 

In[14]:= ppos1=Intersection[co2pos3,co2pos1];		
ppos2	=	Intersection[co2pos3,	co2pos2];	 

In[16]:= Extract[Z,co2pos1][[1]]	 

Out[16]=  {{AIM/CGE,	"SSP1-19",	"R5.2ASIA",	"Emissions|CO2|Fossil	Fuels	and	Industry",	"Mt	CO2/yr",	8985.6725,	
10008.8152,	11790.747500000001,	
6131.6627,	3271.4353000000006,	1678.8029,	638.87,	259.4755,	82.29590000000003,	-7.9353000000000105,	-
103.9171}}	 

In[17]:= em1=ToExpression[Map[Drop[Flatten[#],7]&,Extract[Z,ppos1]]];		
em2	=	ToExpression[Map[Drop[Flatten[#],	7]	&,	Extract[Z,	ppos2]]];	 

In[19]:= ListPlot[em1,PlotRange→All,Joined→True]		

In[20]:= Length[em1]		
Out[20]= 127		

In[21]:= emissions=Map[#[[1;;2]]&,ToExpression[Map[StringSplit[#]	&,	Drop[ReadList["emissionsCO2.txt",	
String],	31]]]];	 
emissions	=	Table[{emissions[[i,	1]],	(44	/	12)	*	emissions[[i,	2]]	/	1000.},	{i,	1,	Length[emissions]}];	 
ListPlot[emissions,	Joined	→	True,	PlotStyle	→	{Black,	Thick},	PlotRange	→	All,	Axes	→	False,	Frame	→	True,	
FrameStyle	→	Directive[14,	Black],	
FrameLabel	→	{"year",	"CO2	emissions	(Gt	CO/yr)"}]	 
(*historical	emissions*)	 

EM	=	Join[emissions,	{{2018,	37.1}}];		
data2	=	Table[Prepend[Table[{t,	Interpolation[Join[EM,	Transpose[{{2030,	2040,	2050,	2060,	2070,	2080,	
2090,	2100},	0.001	*	Drop[em1[[k]],	1]}]]][t]},	{t,	1751,	2100}],	{1750,	0}],	{k,	1,	Length[em1]}];	totliste	=	Ta-
ble[data2[[k]][[All,	2]],	{k,	1,	Length[data2]}];		
PLAll	=	ListPlot[data2,	Joined	→	True,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotRange	→	All,	
FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"}]		
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positivepaths	=	Table[DeleteCases[Map[#	*	UnitStep[#]	&,	totliste[[k]][[269	;;	351]]],	_	?	(#	==	0	&)],	{k,	1,	
Length[totliste]}];	ListPlot[positivepaths,	Joined	→	True,	PlotRange	→	All]	
(*Before	removal	of	exceedance	scenarios*)	 

In[29]:= RCBliste2=Map[Plus@@#&,positivepaths];		

In[175]:= p1=Position[RCBliste2,_?(#<3300&)];	 

In[31]:= maxtemp=Map[Max[#]&,templiste];		
maxtemp2	=	Map[Max[#]	&,	uptempliste];		
maxtemp3	=	Map[Max[#]	&,	lowtempliste];	 

PL1	=	ListPlot[Extract[data2,	p1],	Joined	→	True,Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotRange	
→	All];	 
PL2	=	ListPlot[EM,	PlotStyle	→	Black,	Joined	→	True];	
FFC	=	Show[{PL1,	PL2},	FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"},	Epilog	→	Inset[Style["",	18],	
Scaled[{0.1,	0.9}]]]		
(*After	removal	of	exceedance	scenarios*)	 

In[37]:= PL1=ListPlot[data2[[1]],Joined→True,Frame→True,	FrameStyle	→	Directive[Black,	14],	PlotStyle	→	
Darker[Blue]];	 
PL2	=	ListPlot[EM,	PlotStyle	→	Black,	Joined	→	True];	
FFA	=	Show[{PL1,	PL2},	FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"},	Epilog	→	Inset[Style["a",	18],	
Scaled[{0.1,	0.9}]]]	 

In[40]:= n=Length[data2[[1]]];		
futuretime	=	2100	-	2020;		
τmetan	=	12.4;	 

In[43]:= (*	Carbon	model	*)		
τ1=1;	
τ2=10;	
τ3	=	100;	 
τ4	=	1000;	
c1mean	=	0.152;	
c2mean	=	0.246;	
c4mean	=	0.134;	
c5mean	=	0.194;	
	
Gmean	=	(12/44)	*0.47*	(c1mean	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	
+	c2mean	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	(1	-	c1mean	-	c2mean	-	c4mean	-	
c5mean)*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	
+	c4mean	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	Table[c5mean	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	
1,	n}]);	 

In[52]:= (*	Carbon	models	*)		
c1upper	=	0.11;	
c2upper	=	0.212;		
c4upper	=	0.106;		
c5upper	=	0.262;		
c1lower	=	0.18;	
c2lower	=	0.296;		
c4lower	=	0.122;		
c5lower	=	0.148;	
	
Glower	=	(12	/	44)	*	0.47	*	(c1lower	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	c2lower	*	Ta-
ble[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	(1	-	c1lower	-	c2lower	-	c4lower	-	c5lower)	*	Ta-
ble[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	c4lower	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	
n},	{j,	1,	n}]	+	Table[c5lower	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

Gupper	=	(12/44)	*0.47*	(c1upper	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	c2upper	*	Ta-
ble[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	(1	-	c1upper	-	c2upper	-	c4upper	-	c5upper)	*	
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Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	c4upper	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	
1,	n},	{j,	1,	n}]	+	Table[c5upper	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

In[62]:=  
(*Optimal	Estimation	of	Stochastic	Energy	Balance	Model	Parameters	*)		
	
 

In[63]:= (*	Climate	models	*)	
models	=	ReadList["CMIP5parameters.txt",	String];		
models	=	Delete[models,	{{5},	{12}}];	
boxes	=	StringSplit[models][[All,	2]];	
Klimaliste	=	{};	
Γliste	=	{};	
σ2liste	=	{};	
Monitor[ 
Do[ 

Clear[A];	
modelnr	=	p;	If[boxes[[p]]	==	"2",	 

{C1,	C2,	κ1,	κ2,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+	κ2)	/C1,	κ2/C1},	{κ2/C2,	-κ2/C2}};		
g	=	(MatrixExp[t	A].{1	/	C1,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	
	
If[	boxes[[p]]	==	"3",		
 
{C1,	C2,	C3,	κ1,	κ2,	κ3,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+	κ2)	/C1,	κ2/C1,	0},	{κ2/C2,	-(κ2+κ3)/C2,	κ3/C2},{0,	κ3/C3,	-	κ3/C3}};	 

g	=	(MatrixExp[t	A].{1	/	C1,	0,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	
	
If	[	boxes[[p]]	==	"4",	 

{C1,	C2,	C3,	C4,	κ1,	κ2,	κ3,	κ4,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+κ2)/C1,	κ2/C1,	0,	0}	,	{κ2/C2,	-(κ2+κ3)/C2,	κ3/C2,	0},{	0,	κ3/C3,	-(κ3+κ4)/C3,	κ4/C3},		
{0,	0,	κ4/C4,	-κ4/C4}};	 

g	=	(MatrixExp[t	A].{1	/	C1,	0,	0,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	 

Γliste	=	Append[Γliste,	Γ];		
σ2liste	=	Append[σ2liste,	σ2];		
,	{p,	1,	Length[models]}		
];	 
,	{p,	boxes[[p]]}		
];	 

In[70]:= RCBliste={};		
totliste	=	{};		
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templiste	=	{};		
uptempliste	=	{};		
lowtempliste	=	{};		
alltliste	=	{};		
Δfaeroliste	=	{};		
Δfghgliste	=	{};		
Δfliste	=	{};		
noiseliste	=	{};		
	
Monitor[	 
Do[	
tot	=	data2[[u]][[All,	2]];	meanco2	=	Gmean.tot	+	280;	 

(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];		
(*	The	factor	11.9	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)	;	 
del2	=	hh	/.	zz	→	tot[[Length[EM]	+	1	;;	Length[tot]]];		
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
metemis	=	Join[del1,	del2];	
	
Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.34	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);	 
Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfaer=	-0.02tot;	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;	
Δfaer2	=	Drop[Δfaer,	Length[EM]]	;	 
Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];		
Δfaer	=	Join[Δfaer1,	Δfaer2];	
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	 
 
Δfliste	=	Append[Δfliste,	Δf];	
Δfaeroliste	=	Append[Δfaeroliste,	Δfaer];		
Δfghgliste	=	Append[Δfghgliste,	Δfco2	+	Δfmetan];	 

Tliste	=	{};		
Do[	 
T2	=	Klimaliste[[p]].Δf;		
noise	=	σ2liste[[p]]	*	(Klimaliste[[p]].RandomReal[NormalDistribution[0,	1],	Length[Δf]]);		
noise	=	Drop[noise,	268	-	20];	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;	
T2	=	Drop[T2,	268];	 
T2=1.1+T2-T2[[1]];	
noiseliste	=	Append[noiseliste,	noise];	Tliste	=	Append[Tliste,	T2];	
,	{p,	1,	Length[models]}];	 

middel	=Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];	 
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 
lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 
RCB	=	Plus	@@	Drop[tot,	270];	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];		
alltliste	=	Join[alltliste,	Tliste];		
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];		
,	{u,	1,	Length[data2]}]		
,	u];	 
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In[183]:= Length[noise]	 
Out[183]= 103	 

In[82]:= Length[T2]	 
Out[82]= 83	 

In[83]:= window=10;	
noiseliste2	=	Table[MovingAverage[noiseliste[[i]],	window][[1	;;	Length[T2]]],	{i,	1,	Length[noiseliste]}];	
noiseliste2	=	Transpose[Partition[noiseliste2,	14]];	 

In[86]:= Length[noiseliste2]		
Out[86]= 14	 

In[87]:= Dimensions[noiseliste2]		
Out[87]= {14,	127,	83}	 

In[88]:= Length[noiseliste2[[1]]]	
Out[88]= 127	 

PLNoise	=	ListPlot[Map[Transpose[{2018	+	Range[Length[templiste[[1]]]],	#}]	&,	noiseliste2[[3]]],	Joined	→	
True];	 
FFNoise	=	Show[PLNoise,	PlotRange	→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Di-
rective[Black,	14],	Joined	→	True,	FrameLabel	→	{None,	"Internal	temperature	variability(°C)"},	Epilog	→	In-
set[Style["",	18],	Scaled[{0.1,	0.9}]]]	 
(*Plot	of	internal	variability*)	 

In[90]:= FFE=ListPlot[Map[Transpose[{2018+Range[Length[templiste[[1]]]],#}]&,	Extract[templiste,	p1]],	
PlotRange	→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	
→	{None,	"GMST	increase	(°C)"},Epilog	→	Inset[Style["e",	18],	Scaled[{0.1,	0.9}]]]	 
(*Temperature	response*)	 

In[121]:= PL3=ListPlot[Map[Transpose[{1749+Range[Length[Δfaeroliste[[1]]]],#}]&,	Extract[Δfliste,	p1]],	Joined	
→	True];	 
FF3	=	Show[PL3,	PlotRange	→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	
14],	FrameLabel	→	{None,	"Forcing	(W/m2)"},	Epilog	→	Inset[Style["",	18],	Scaled[{0.1,	0.9}]]] 
(*Combined	forcing	for	both	ghg's	and	aerosols*)	 

In[150]:= PL1=ListPlot[Map[Transpose[{1749+Range[Length[Δfaeroliste[[1]]]],#}]&,	Extract[Δfaeroliste,	p1]],	
Joined	→	True];	 
PL2	=	ListPlot[Map[Transpose[{1749	+	Range[Length[Δfaeroliste[[1]]]],	#}]	&,	Extract[Δfghgliste,	p1]],	Joined	
→	True];	 
FFD	=	Show[{PL1,	PL2},	PlotRange	→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Di-
rective[Black,	14],	FrameLabel	→	{None,	"Forcing	(W/m2)"},	Epilog	→	Inset[Style["",	18],	Scaled[{0.1,	0.9}]]] 
(*Split	forcing	for	ghg's	and	aerosols*)		

In[94]:=modellfarger={,,,,,,,,,,,,,,,,,,,	};		
In[95]:= pan=LineLegend[modellfarger,Map[StringSplit[#]&,models][[All,1]]]	 
Out[95]= BCC-CSM1-1 BNU-ESM CanESM2 CCSM4 CSIRO-Mk3.6.0 FGOALS-s2 GFDL-ESM2M GISS-E2-R 
HadGEM2-ES INM-CM4 MIROC5 MPI-ESM-LR MRI-CGCM3 NorESM1-M  

FFB	=	ListPlot[Map[Transpose[{2018	+	Range[Length[alltliste[[1]]]],	#}]	&,	alltliste[[1	;;	14]]],	PlotRange	→	
All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	→	{None,	
"GMST	increase	(°C)"},Epilog	→	Inset[Style["",	18],	Scaled[{0.1,	0.9}]],PlotStyle	→	Map[{#}	&,	modellfarger]]	 
(*Plot	for	temperature	response,	1	scenario	and	14	ESMs*)	
	
In["]:= Grid[{{Show[FFA,ImageSize→400],Show[FFB,ImageSize→400],pan}}]	 
(*Grid	plot	for	one	scenario,	14	ESMs*)	 

Grid[{{Show[FFC,	ImageSize	→	400,Epilog	→	Inset[Style["a",	18],	Scaled[{0.1,	0.9}]]],	Show[FFD,	ImageSize	→	
400,	Epilog	→	Inset[Style["b",	18],	Scaled[{0.1,	0.9}]]]	,	Show[FFE,	ImageSize	→	400,	Epilog	→	Inset[Style["c",	
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18],	Scaled[{0.1,	0.9}]]]}}]	 
(*Grid	plot	for	emissions,	forcing	and	GMST	for	86	scenarios	and	1	esm*)	 

maxtemp	=	Map[Max[#]	&,	templiste];	(*mean*)		
maxtemp2	=	Map[Max[#]	&,	uptempliste];	(*+1sd*)		
maxtemp3	=	Map[Max[#]	&,	lowtempliste]	(*-1sd*)	 

 
In["]:= PL1=ListPlot[Extract[Transpose[{maxtemp,RCBliste2}],p1],	AspectRatio	→	1,	PlotRange	→	All];	 
PL3	=	ListPlot[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Red];	 
PL4	=	ListPlot[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Red];	 
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];	PL2	=	Plot[gg,	{zz,	1.2,	3}];	
gg2	=	Fit[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	{zz,	1},	zz];	PL4	=	Plot[gg2,	{zz,	1.2,	3}];	 
Show[{PL1,	PL2},	PlotRange	→	All]	 
(*TCRE	plot	w/o	pdf*)	 

In["]:= pairs=Extract[Transpose[{maxtemp,RCBliste2}],p1];		
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);		
S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	
σx	=	StandardDeviation[pairs[[All,	1]]];	 

σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	 

In["]:= pdf=(PDF[NormalDistribution[gg,σf[zz]]][p])/.zz→1.5;		
pdf2	=	(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	2.5;		
Plot[{pdf,	pdf2},	{p,	0,	5200},	PlotRange	→	All]	 

In["]:= PL1=ListPlot[Extract[Transpose[{maxtemp,RCBliste2}],p1],AspectRatio→1,	PlotRange	→	{{1,	4},	{0,	
4000}},	PlotStyle	→	Darker[Blue]];	 
PL2	=	Plot[gg,	{zz,	1,	3},	PlotStyle	→	Darker[Blue]];	
l1	=	Graphics[{Black,	Line[{{1.5,	0},	{1.5,	gg	/.	zz	→	1.5}}]}];	
l2	=	Graphics[{Black,	Line[{{1.5,	gg	/.	zz	→	1.5},	{1,	gg	/.	zz	→	1.5}}]}];	inset	=	ParametricPlot[{1	+	60	*	pdf,	p},	
{p,	0,	1200},	Axes	→	False,	PlotStyle	→	{Black,	Thickness[0.01]}];	 

l11	=	Graphics[{Black,	Line[{{2.5,	0},	{2.5,	gg	/.	zz	→	2.5}}]}];	
l22	=	Graphics[{Black,	Line[{{2.5,	gg	/.	zz	→	2.5},	{1,	gg	/.	zz	→	2.5}}]}];	inset2	=	ParametricPlot[{1	+	60	*	pdf2,	
p},	{p,	1900,	3000},	Axes	→	False,	PlotStyle	→	{Black,	Thickness[0.01]}];	 

FA	=	Show[{PL1,	PL2,	l1,	l2,	l11,	l22,	inset,	inset2},	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	
14],	FrameLabel	→	{"global	temperature	increase	(°C)",	"carbon	budget	after	2018	(Gt	CO2)"},	Epilog	→	In-
set[Style["a",	18],	Scaled[{0.1,	0.9}]],	ImageSize	→	400,	PlotRange	→	{{1,	4},	{0,	4500}}]	 
(*TCRE	with	pdf,	1	ESM*)		
	

ALL	CLIMATE	MODELS	
 
In["]:= maxtemp=Partition[Map[Max[#]&,alltliste],14][[All,5]];		
PL1	=	ListPlot[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Black];	
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];		
PL2	=	Plot[gg,	{zz,	1.2,	3.5},	PlotStyle	→	Black];	
QL1	=	Show[{PL1,	PL2},	PlotRange	→	All];	 
maxtemp	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	7]];		
PL1	=	ListPlot[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Darker[Red]];	
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];	PL2	=	Plot[gg,	{zz,	1.2,	3},	PlotStyle	→	
Darker[Red]];	
QL2	=	Show[{PL1,	PL2},	PlotRange	→	All];	
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FB	=	Show[{QL1,	QL2},	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	→	
{"global	temperature	increase	(°C)",	"carbon	budget	after	2018	(Gt	CO2)"},	Epilog	→	{Inset[Style["b",	18],	
Scaled[{0.1,	0.9}]],	Inset[LineLegend[{Black,	Darker[Red]},	{"CSIRO-Mk3.6.0",	"GFDL-ESM2M"}],	Scaled[{0.7,	
0.3}]]},	ImageSize	→	400,	PlotRange	→	{{1,	4},	{0,	4500}}]		
 
In["]:= Grid[{{FA,FB}}]	 
(*TCREs	for	two	ESM's*)	 

(*MEAN	TCRE	CALCULATION*) 

In["]:= maxtemp1=Partition[Map[Max[#]&,alltliste],14][[All,1]];		
maxtemp2	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	2]];		
maxtemp3	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	3]];		
maxtemp4	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	4]];		
maxtemp5	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	5]];		
maxtemp6	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	6]];		
maxtemp7	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	7]];		
maxtemp8	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	8]];		
maxtemp9	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	9]];		
maxtemp10	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	10]];		
maxtemp11	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	11]];		
maxtemp12	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	12]];		
maxtemp13	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	13]];		
maxtemp14	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	14]];	 

ggm1	=	Fit[Extract[Transpose[{maxtemp1,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm2	=	Fit[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm3	=	Fit[Extract[Transpose[{maxtemp3,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm4	=	Fit[Extract[Transpose[{maxtemp4,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm5	=	Fit[Extract[Transpose[{maxtemp5,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm6	=	Fit[Extract[Transpose[{maxtemp6,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm7	=	Fit[Extract[Transpose[{maxtemp7,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm8	=	Fit[Extract[Transpose[{maxtemp8,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm9	=	Fit[Extract[Transpose[{maxtemp9,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm10	=	Fit[Extract[Transpose[{maxtemp10,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm11	=	Fit[Extract[Transpose[{maxtemp11,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm12	=	Fit[Extract[Transpose[{maxtemp12,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm13	=	Fit[Extract[Transpose[{maxtemp13,	RCBliste2}],	p1],	{zz,	1},	zz];		
ggm14	=	Fit[Extract[Transpose[{maxtemp14,	RCBliste2}],	p1],	{zz,	1},	zz];	 

PLm5	=	ListPlot[Extract[Transpose[{maxtemp5,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	
→	Black];	 
PLm7	=	ListPlot[Extract[Transpose[{maxtemp7,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	
→	Darker[Red]];	 
PLm7dot	=	Plot[ggm7,	{zz,	1.2,	3},	PlotStyle	→	Darker[Red]];	PLm5dot	=	Plot[ggm5,	{zz,	1.2,	3},	PlotStyle	→	
Black];	 

meanTCRE=	
(ggm1+ggm2+ggm3+ggm4+ggm5+ggm6+ggm7+ggm8+ggm9+ggm10+ggm11+ggm12+ggm13+ggm14)/14;	 

PLmeanTCRE	=	Plot[meanTCRE,	{zz,	1.2,	3},	PlotStyle	→	{Black,	Dashed}];		
QLmeanTCRE	=	Show[{PLm5dot,	PLm5,	PLm7dot,	PLm7,	PLmeanTCRE},	Axes	→	False,	Frame	→	True,	Frame-
Style	→	Directive[Black,	14],	AspectRatio	→	1,	FrameLabel	→	{"global	temperature	increase	(°C)",	"carbon	
budget	after	2018	(Gt	CO2)"},	ImageSize	→	400,	PlotRange	→	{{1,	4},	{0,	4500}},Epilog	→	Inset[LineL-
egend[{Black,	{Black,	Dashed},	Darker[Red]},	{"CSIRO-Mk3.6.0",	"Mean	TCRE",	"GFDL-ESM2M"}],	Scaled[{0.7,	
0.3}]]]	 
(*mean	TCRE	plot*)		
	
PDF	estimation	 

In["]:= smliste={};		
tliste	=	{};	 
Monitor[	Do[		
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pdfliste	=	{};	Do[	 
maxtemp	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	kk]];	
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];		
pairs	=	Extract[Transpose[{maxtemp,	RCBliste2}],	p1];	
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);	
S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	
σx	=	StandardDeviation[pairs[[All,	1]]];	
σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	
pdf	=	Chop[(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	target];		
pdfliste	=	Append[pdfliste,	pdf];	
,	{kk,	1,	14}];	 

g	=	Mean[pdfliste];	
smooth	=	Convolve[PDF[NormalDistribution[0,	400]][p],	g,	p,	x];	sm	=	smooth	/.	x	→	Range[7000];	
smliste	=	Append[smliste,	sm];	
tliste	=	Append[tliste,	target];	
,	{target,	1.1,	4.0,	0.01}];	 
,	target];	 

In["]:= budget=500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 
In["]:= budget=1500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In["]:= bliste={};		
Do[	 
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	y	=	y/	((Plus@@y)	*	Δt);	
t1=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.90	&)]][[1]]	-	1]];		
t2	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.75	&)]][[1]]	-	1]];	
t3	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.5	&)]][[1]]	-	1]];		
t4=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.25	&)]][[1]]	-	1]];		
t5	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.10	&)]][[1]]	-	1]];	
bliste	=	Append[bliste,	{budget,	t1,	t2,	t3,	t4,	t5}];		
,	{budget,	200,	4000,	100}]	 

In["]:= farger={Red,Darker[Red],Black,Darker[Blue],Blue};	 

In["]:= GGA=ListPlot[{Transpose[{bliste[[All,1]],bliste[[All,2]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	3]]}],	
Transpose[{bliste[[All,	1]],	bliste[[All,	4]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	5]]}],	Trans-
pose[{bliste[[All,	1]],	bliste[[All,	6]]}]},	Joined	→	True,	AspectRatio	→	1,	PlotRange	→	{1,	4},	Axes	→	False,	
Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotStyle	→	Table[farger[[i]],	{i,	1,	5}],	GridLines	→	Auto-
matic,	FrameLabel	→	{"Carbon	budget	from	2018	(GtCO2)",	"Maximum	temperature	increase	(°C)"},	PlotLeg-
ends	→	Placed[{"10%	prob.",	"25%	prob.",	"even	chance",	"75%	prob.",	"90%	prob."},	{Scaled[{0.05,	0.7}],	{0,	
0.5}}]]		
	
(*RCB	plot	one	carbon,	14	ESMs*)		
	

TWO	CARBON	MODELS,	MEAN	CLIMATE	MODEL	
 
In["]:= RCBliste={};		
totliste	=	{};	 
templiste	=	{};		
uptempliste	=	{};		
lowtempliste	=	{};		
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alltliste	=	{};		
Monitor[	 
Do[	 
tot	=	data2[[u]][[All,	2]];		
meanco2	=	Gmean.tot	+	280;		
meanco2upper	=	Gupper.tot	+	280;		
meanco2lower	=	Glower.tot	+	280;	(*	forcing	*)	 

(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];	
(*	The	factor	3.0	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)		
del2	=	hh	/.	zz	→	tot[[Length[EM]	+	1	;;	Length[tot]]];	
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
metemis	=	Join[del1,	del2];	
	
Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.35	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);	 
Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfco2upper	=	5.35	Log[1	+	(meanco2upper	-	280)	/	280];	(*	CO2	til	forcing*)	
Δfco2lower	=	5.35	Log[1	+	(meanco2lower	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfaer=	-0.02tot;	(*	aerosols	*)	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;		
Δfaer2	=	Drop[Δfaer,	Length[EM]]	;		
Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];		(*-0.4	asymptote*)	
Δfaer	=	Join[Δfaer1,	Δfaer2];	 
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	
Δfupper	=	Δfco2upper	+	Δfaer	+	Δfmetan;		
Δflower	=	Δfco2lower	+	Δfaer	+	Δfmetan;		
	
Tliste	=	{};	
Do[	 
(*T2=Klimaliste[[p]].Δf;		
T2=T2*(Γliste[[p]]/Log[4.])/5.35;		
T2=Drop[T2,268];	T2=1.0+T2-T2[[1]];		
Tliste=Append[Tliste,T2];*)	 

T2	=	Klimaliste[[p]].Δfupper;	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;		
T2	=	Drop[T2,	268];	T2=1.1+T2-T2[[1]];	
Tliste	=	Append[Tliste,	T2];	 

T2	=	Klimaliste[[p]].Δflower;	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;		
T2	=	Drop[T2,	268];	T2=1.0+T2-T2[[1]];	
Tliste	=	Append[Tliste,	T2];	 
,	{p,	1,	Length[models]}];	 

Tlisteupper	=	Partition[Tliste,	2][[All,	1]];		
Tlistelower	=	Partition[Tliste,	2][[All,	2]];		
meanupper	=	Map[Mean[#]	&,	Transpose[Tlisteupper]];		
meanlower	=	Map[Mean[#]	&,	Transpose[Tlistelower]];		
Tliste	=	{meanupper,	meanlower};	 

middel	=Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];	 
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 
lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 

RCB	=	Plus	@@	Drop[tot,	270];	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];		
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alltliste	=	Join[alltliste,	Tliste];		
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];		
,	{u,	1,	Length[data2]}]	 
,u]	
	
In["]:= Dimensions[alltliste]	 
Out["]= {254,	83}		
 
In["]:= 3556/14	 
Out["]= 254	 

In["]:= CM	=	{};	 
cm1	=	
Table[Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2],	p1][[kk]],	2][[	All,	1]],	{kk,	1,	Length[p1]}];	
cm2	=	Table[Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2],	p1][[kk]],	2][[All,	2]],	{kk,	1,	
Length[p1]}];		
	
Do[	 
CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm1][[j]]}]];		
CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm2][[j]]}]];		
,	{j,	1,	Length[Transpose[cm2]]}];	 

In["]:= ListPlot[{CM[[1]],CM[[2]]}]	 

In["]:= smliste={};		
tliste	=	{};	 

Monitor[	Do[	 
pdfliste	=	{};	Do[	 
gg	=	Fit[Map[Reverse[#]	&,	CM[[kk]]],	{zz,	1},	zz];		
pairs	=	Map[Reverse[#]	&,	CM[[kk]]];	
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);		
S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	 
σx	=	StandardDeviation[pairs[[All,	1]]];		
σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	
pdf	=	Chop[(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	target];		
pdfliste	=	Append[pdfliste,	pdf];	
,	{kk,	1,	2}];	 

g	=	Mean[pdfliste];	
smooth	=	Convolve[PDF[NormalDistribution[0,	400]][p],	g,	p,	x];		
sm	=	smooth	/.	x	→	Range[7000];	
smliste	=	Append[smliste,	sm];	
tliste	=	Append[tliste,	target];	
,	{target,	1.1,	4.0,	0.01}];	 
,	target];	 

In["]:= budget=500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In["]:= budget=1500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In["]:= bliste={};		
Do[	 
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	y	=	y/	((Plus@@y)	*	Δt);	
t1=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.90	&)]][[1]]	-	1]];		
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t2	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.75	&)]][[1]]	-	1]];	
t3	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.5	&)]][[1]]	-	1]];		
t4=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.25	&)]][[1]]	-	1]];		
t5	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.10	&)]][[1]]	-	1]];	
bliste	=	Append[bliste,	{budget,	t1,	t2,	t3,	t4,	t5}];	,	{budget,	200,	4000,	100}]	 

In["]:= farger={Red,Darker[Red],Black,Darker[Blue],Blue};	 

In["]:= a=ListPlot[{Transpose[{bliste[[All,1]],bliste[[All,2]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	3]]}],	Trans-
pose[{bliste[[All,	1]],	bliste[[All,	4]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	5]]}],	Transpose[{bliste[[All,	1]],	
bliste[[All,	6]]}]},	Joined	→	True,	AspectRatio	→	1,	PlotRange	→	{1,	4},	Axes	→	False,	Frame	→	True,	FrameStyle	
→	Directive[Black,	14],PlotStyle	→	Table[farger[[i]],	{i,	1,	5}],	GridLines	→	Automatic,	FrameLabel	→	{"Carbon	
budget	from	2018	(GtCO2)",	"Maximum	temperature	increase	(°C)"},	PlotLegends	→	Placed[{"10%	prob.",	
"25%	prob.",	"even	chance",	"75%	prob.",	"90%	prob."},	{Scaled[{0.05,	0.7}],	{0,	0.5}}]];	l	=	Graphics[{Black,	
Line[{{1294,	1},	{1294,	2.5}}]}];	
GGB	=	Show[{a}]	 

(*RCB	estimate	two	carbons,	mean	ESM*)		
 

INTERNAL	VARIABILITY	
 
RCBliste	=	{};		
totliste	=	{};	 
templiste	=	{};		
uptempliste	=	{};		
lowtempliste	=	{};		
alltliste	=	{};		
	
Monitor[	Do[	
tot	=	data2[[u]][[All,	2]];		
meanco2	=	Gmean.tot	+	280;		
meanco2upper	=	Gupper.tot	+	280;		
meanco2lower	=	Glower.tot	+	280;	(*	forcing	*)		

(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];	
(*	The	factor	3.0	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)		
del2	=	hh	/.	zz	→	tot[[Length[EM]	+	1	;;	Length[tot]]];	
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
metemis	=	Join[del1,	del2];	
	
Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.35	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);	 
Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfco2upper	=	5.35	Log[1	+	(meanco2upper	-	280)	/	280];	(*	CO2	til	forcing*)	
Δfco2lower	=	5.35	Log[1	+	(meanco2lower	-	280)	/	280];	(*	CO2	til	forcing*)	 
(*	aerosols	*)	
Δfaer=	-0.02tot;	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;	Δfaer2	=	Drop[Δfaer,	Length[EM]]	;	Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];	
Δfaer	=	Join[Δfaer1,	Δfaer2];	 
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	
Δfupper	=	Δfco2upper	+	Δfaer	+	Δfmetan;		
Δflower	=	Δfco2lower	+	Δfaer	+	Δfmetan;		
	
Tliste	=	{};	
Do[	 
T2	=	Klimaliste[[p]].Δf;	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;		
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T2	=	Drop[T2,	268];		
T2=1.1+T2-T2[[1]];	 
Tliste	=	Append[Tliste,	T2	+	StandardDeviation[Flatten[noiseliste2[[p]]]]];	 
,	{p,	1,	Length[models]}];	 

Tlisteupper	=	Partition[Tliste,	2][[All,	1]];		
Tlistelower	=	Partition[Tliste,	2][[All,	2]];		
mupper	=	{};	
mlower	=	{};	 

Do[	
meanupper	=	Map[Mean[#]	&,	Transpose[Tlisteupper]]	+	StandardDeviation[Flatten[noiseliste2[[p]]]];		
meanlower	=	Map[Mean[#]	&,	Transpose[Tlistelower]]	-	StandardDeviation[Flatten[noiseliste2[[p]]]];	 
mupper	=	Append[mupper,	meanupper];	mlower	=	Append[mlower,	meanlower];	,	{p,	1,	14}];	 
Tliste	=	Join[mupper,	mlower];	 

middel	=Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];	 
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 
lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 
RCB	=	Plus	@@	Drop[tot,	270];	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];		
alltliste	=	Join[alltliste,	Tliste];		
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];		
,	{u,	1,	Length[data2]}]	 
,u]	 

In["]:= Dimensions[alltliste]		
Out["]= {3556,	83}	 

In["]:= CM	=	{};		
cm1	=	Table[Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2	*	14],	p1][[kk]],	2][[	All,	1]],	{kk,	1,	
Length[p1]}];	
cm2	=	Table[Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2	*	14],	p1][[	kk]],	2][[All,	2]],	{kk,	1,	
Length[p1]}];		
	
Do[	CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm1][[j]]}]];		
CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm2][[j]]}]];	,	{j,	1,	Length[Trans-
pose[cm2]]}];	 

In["]:= ListPlot[{CM[[1]],CM[[2]]}]	 

In["]:= smliste={};		
tliste	=	{};	 
Monitor[	Do[		
 
pdfliste	=	{};	Do[	 
gg	=	Fit[Map[Reverse[#]	&,	CM[[kk]]],	{zz,	1},	zz];		
pairs	=	Map[Reverse[#]	&,	CM[[kk]]];	
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);		
S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	 
σx	=	StandardDeviation[pairs[[All,	1]]];		
σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	
pdf	=	Chop[(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	target];		
pdfliste	=	Append[pdfliste,	pdf];	
,{kk,1,2*14}];	 

g	=	Mean[pdfliste];	
smooth	=	Convolve[PDF[NormalDistribution[0,	400]][p],	g,	p,	x];		
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sm	=	smooth	/.	x	→	Range[7000];	
smliste	=	Append[smliste,	sm];	
tliste	=	Append[tliste,	target];	
,	{target,	1.1,	4.0,	0.01}];	 
,	target];	 

In["]:= budget=500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In["]:= budget=1500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In["]:= bliste={};		
Do[	Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];		
y	=	y/	((Plus@@y)	*	Δt);	
t1=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.90	&)]][[1]]	-	1]];		
t2	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.75	&)]][[1]]	-	1]];	
t3	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.5	&)]][[1]]	-	1]];		
t4=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.25	&)]][[1]]	-	1]];		
t5	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.10	&)]][[1]]	-	1]];	
bliste	=	Append[bliste,	{budget,	t1,	t2,	t3,	t4,	t5}];		
,	{budget,	200,	4000,	100}]	 

In["]:= farger={Red,Darker[Red],Black,Darker[Blue],Blue};	 

In["]:= a=ListPlot[{Transpose[{bliste[[All,1]],bliste[[All,2]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	3]]}],	Trans-
pose[{bliste[[All,	1]],	bliste[[All,	4]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	5]]}],	Transpose[{bliste[[All,	1]],	
bliste[[All,	6]]}]},	Joined	→	True,	AspectRatio	→	1,	PlotRange	→	{1,	4.0},	Axes	→	False,	Frame	→	True,	Frame-
Style	→	Directive[Black,	14],	PlotStyle	→	Table[farger[[i]],	{i,	1,	5}],	GridLines	→	Automatic,	FrameLabel	→	
{"Carbon	budget	from	2018	(GtCO2)",	"Maximum	temperature	increase	(°C)"},	PlotLegends	→	Placed[{"10%	
prob.",	"25%	prob.",	"even	chance",	"75%	prob.",	"90%	prob."},	{Scaled[{0.05,	0.7}],	{0,	0.5}}]];		
l	=	Graphics[{Black,	Line[{{1294,	1},	{1294,	2.5}}]}];	
GGC	=	Show[{a}]	 
(*RCB	estimate	internal	variability*)		
 

COMBINATION	BETWEEN	TWO	CARBON	MODELS,	14	ESMs	AND	INTERNAL	VARIABILITY	
 
RCBliste	=	{};		
totliste	=	{};		
templiste	=	{};		
uptempliste	=	{};		
lowtempliste	=	{};		
alltliste	=	{};		
	
Monitor[	Do[	
tot	=	data2[[u]][[All,	2]];		
meanco2	=	Gmean.tot	+	280;		
meanco2upper	=	Gupper.tot	+	280;		
meanco2lower	=	Glower.tot	+	280;	(*	forcing	*)	 

(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];	
(*	The	factor	3.0	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)		
del2	=	hh	/.	zz	→	tot[[Length[EM]	+	1	;;	Length[tot]]];	
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
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metemis	=	Join[del1,	del2];	
	
Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.35	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);	 
Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfco2upper	=	5.35	Log[1	+	(meanco2upper	-	280)	/	280];	(*	CO2	til	forcing*)	
Δfco2lower	=	5.35	Log[1	+	(meanco2lower	-	280)	/	280];	(*	CO2	til	forcing*)	 
(*	aerosols	*)	
Δfaer=	-0.02tot;	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;	Δfaer2	=	Drop[Δfaer,	Length[EM]]	;	Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];	
Δfaer	=	Join[Δfaer1,	Δfaer2];	 
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	 
Δfupper	=	Δfco2upper	+	Δfaer	+	Δfmetan;		
Δflower	=	Δfco2lower	+	Δfaer	+	Δfmetan;		
	
Tliste	=	{};	
Do[	 

T2	=	Klimaliste[[p]].Δfupper;	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;	
T2	=	Drop[T2,	268];	
T2=1.1+T2-T2[[1]];	
Tliste	=	Append[Tliste,	T2	+	StandardDeviation[Flatten[noiseliste2[[p]]]]];	 

(*T2=Klimaliste[[p]].Δfupper;	
T2=T2*(Γliste[[p]]/Log[4.])/5.35;	
T2=Drop[T2,268];	
T2=1.1+T2-T2[[1]];	Tliste=Append[Tliste,T2-StandardDeviation[Flatten[noiseliste2[[p]]]]];*)	 

(*T2=Klimaliste[[p]].Δflower;	
T2=T2*(Γliste[[p]]/Log[4.])/5.35;	
T2=Drop[T2,268];	
T2=1.0+T2-T2[[1]];	Tliste=Append[Tliste,T2+StandardDeviation[Flatten[noiseliste2[[p]]]]];*)	 

T2	=	Klimaliste[[p]].Δflower;	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;	
T2	=	Drop[T2,	268];	
T2=1.0+T2-T2[[1]];	
Tliste	=	Append[Tliste,	T2	-	StandardDeviation[Flatten[noiseliste2[[p]]]]];	 

,	{p,	1,	Length[models]}];		

middel	=	Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];		
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];		
lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];		
RCB	=	Plus	@@	Drop[tot,	270];	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];	 

alltliste	=	Join[alltliste,	Tliste];		
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];		
,	{u,	1,	Length[data2]}]	 
,u]	
	
In["]:= Dimensions[alltliste]	 
Out["]= {3556,	83}		
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In["]:= CM	=	{};		
cm1	=	Table[	Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2	*	14],	p1][[kk]],	2][[	All,	1]],	{kk,	1,	
Length[p1]}];		
cm2	=	Table[Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2	*	14],	p1][[	kk]],	2][[All,	2]],	{kk,	1,	
Length[p1]}];		

Do[		
CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm1][[j]]}]];		
CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm2][[j]]}]];		
,	{j,	1,	Length[Transpose[cm2]]}];	 

In["]:= ListPlot[{CM[[1]],CM[[2]]}]	 

In["]:= smliste={};		
tliste	=	{};	 
Monitor[	Do[	 
pdfliste	=	{};	Do[	 

gg	=	Fit[Map[Reverse[#]	&,	CM[[kk]]],	{zz,	1},	zz];		
pairs	=	Map[Reverse[#]	&,	CM[[kk]]];	
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);		
S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	 
σx	=	StandardDeviation[pairs[[All,	1]]];		
σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	
pdf	=	Chop[(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	target];		
pdfliste	=	Append[pdfliste,	pdf];	
,{kk,1,2*14}];	 

g	=	Mean[pdfliste];	
smooth	=	Convolve[PDF[NormalDistribution[0,	400]][p],	g,	p,	x];		
sm	=	smooth	/.	x	→	Range[7000];	
smliste	=	Append[smliste,	sm];	
tliste	=	Append[tliste,	target];	
,	{target,	1.1,	4.0,	0.01}];	 
,	target];	 

In["]:= budget=500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In["]:= budget=1500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In["]:= bliste={};		
Do[	 
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];		
y	=	y/	((Plus@@y)	*	Δt);	
t1=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.90	&)]][[1]]	-	1]];		
t2	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.75	&)]][[1]]	-	1]];	
t3	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.5	&)]][[1]]	-	1]];		
t4=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.25	&)]][[1]]	-	1]];		
t5	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.10	&)]][[1]]	-	1]];	
bliste	=	Append[bliste,	{budget,	t1,	t2,	t3,	t4,	t5}];		
,	{budget,	200,	4000,	100}]	 

In["]:= farger={Red,Darker[Red],Black,Darker[Blue],Blue};	 

In["]:= a=ListPlot[{Transpose[{bliste[[All,1]],bliste[[All,2]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	3]]}],	Trans-
pose[{bliste[[All,	1]],	bliste[[All,	4]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	5]]}],	Transpose[{bliste[[All,	1]],	
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bliste[[All,	6]]}]},	Joined	→	True,	AspectRatio	→	1,	PlotRange	→	{1,	4.0},	Axes	→	False,	Frame	→	True,	Frame-
Style	→	Directive[Black,	14],	PlotStyle	→	Table[farger[[i]],	{i,	1,	5}],	GridLines	→	Automatic,	FrameLabel	→	
{"Carbon	budget	from	2018	(GtCO2)",	"Maximum	temperature	increase	(°C)"},	PlotLegends	→	Placed[{"10%	
prob.",	"25%	prob.",	"even	chance",	"75%	prob.",	"90%	prob."},	{Scaled[{0.05,	0.7}],	{0,	0.5}}]];		
l	=	Graphics[{Black,	Line[{{1294,	1},	{1294,	2.5}}]}];	
GGD	=	Show[{a}]	 
(*RCB	estimate	for	2	carbon	models,	14	ESMs	and	internal	variability*)		

(*Comparison	plot*) 

(*GGA	=	all	climate	-	GGB	=	mean	climate	+	2	carbon	-	GGC	=	mean	climate	+	mean	carbon	+	
internal	-	GGD	=	All	climate	+	2	carbon	+	internal*)	
	
Grid[{{		
Show[GGA,	PlotRange	→	{{0,	4000},	{1.1,	4.3}},	ImageSize	→	380,	Epilog	→	Inset[Style["a",	18],	Scaled[{0.1,	
0.9}]]],		
Show[GGB,	PlotRange	→	{{0,	4000},	{1.1,	4.3}},	ImageSize	→	380,	Epilog	→	Inset[Style["b",	18],	Scaled[{0.1,	
0.9}]]]},	 

{Show[GGC,	PlotRange	→	{{0,	4000},	{1.1,	4.3}},	ImageSize	→	380,	Epilog	→	Inset[Style["c",	18],	Scaled[{0.1,	
0.9}]]],	 
Show[GGD,	PlotRange	→	{{0,	4000},	{1.1,	4.3}},	ImageSize	→	380,	Epilog	→	Inset[Style["d",	18],	Scaled[{0.1,	
0.9}]]]}}]	 

(*Grid	plot	*)		
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CODE FOR IMPLEMENTATION OF NON-LINEAR FRAMEWORK. 
 

The following code is used the non-linear framework in the SRM as described in Section 3.6. 

Produced in Mathematica: Version: 12.0.0.0 in collaboration with research partners Andreas 

Johansen, Andreas Martinsen and supervision from Martin Rypdal.  

Platform: Mac OS X x86 (64-bit). macOS Catalina: Version 10.15.3. 

In[283]:= SetDirectory["OneDrive	-	UiT	Office	365"];		
Z	=	Import["SSP_IAM_V2_201811.csv"];	
Z	=	Map[StringSplit[#,	","]	&,	Z];	 

In[5]:=  hh=157.65890684920566`+1.8942819330281027`zz+0.08520850267749702`zz2;		
 

In[6]:= Z[[1]]	 
Out[6]= {{MODEL,	"SCENARIO",	"REGION",	"VARIABLE",	"UNIT",	
2005,	2010,	2020,	2030,	2040,	2050,	2060,	2070,	2080,	2090,	2100}}	 

In[7]:= RR=Table[Z[[k]][[1]][[4]],{k,1,Length[Z]}];	
Union[RR] 

Out[8]= {"Agricultural	Demand|Crops",	"Agricultural	Demand|Crops|Energy",	
"Agricultural	Demand|Livestock",	"Agricultural	Production|Crops|Energy",		
"Agricultural	Production|Crops|Non-Energy","Agricultural	Production|Livestock",	"Capacity|Electricity",		
"Capacity|Electricity|Biomass",	"Capacity|Electricity|Coal",	"Capacity|Electricity|Gas",		
"Capacity|Electricity|Geothermal",	"Capacity|Electricity|Hydro",	"Capacity|Electricity|Nuclear",		
"Capacity|Electricity|Oil",	"Capacity|Electricity|Other",	"Capacity|Electricity|Solar",	"Capacity|Electricity|Solar|CSP",	
"Capacity|Electricity|Solar|PV",	"Capacity|Electricity|Wind",	"Capacity|Electricity|Wind|Offshore",		
"Capacity|Electricity|Wind|Onshore",	"Consumption",	"Diagnostics|MAGICC6|Concentration|CH4",		
"Diagnostics|MAGICC6|Concentration|CO2",	"Diagnostics|MAGICC6|Concentration|N2O",		
"Diagnostics|MAGICC6|Forcing",	"Diagnostics|MAGICC6|Forcing|Aerosol",	"Diagnostics|MAGICC6|Forcing|CH4",		
"Diagnostics|MAGICC6|Forcing|CO2",	"Diagnostics|MAGICC6|Forcing|F-Gases",		
"Diagnostics|MAGICC6|Forcing|Kyoto	Gases",	"Diagnostics|MAGICC6|Forcing|N2O",		
"Diagnostics|MAGICC6|Temperature|Global	Mean",	"Emissions|BC",	"Emissions|CH4",		
"Emissions|CH4|Fossil	Fuels	and	Industry",	"Emissions|CH4|Land	Use",	"Emissions|CO",		
"Emissions|CO2",	"Emissions|CO2|Carbon	Capture	and	Storage",		
"Emissions|CO2|Carbon	Capture	and	Storage|Biomass","Emissions|CO2|Fossil	Fuels	and	Industry",		
"Emissions|CO2|Land	Use",	"Emissions|F-Gases",	"Emissions|Kyoto	Gases",	"Emissions|N2O",		
"Emissions|N2O|Land	Use",	"Emissions|NH3",	"Emissions|NOx",	"Emissions|OC",	"Emissions|Sulfur",		
"Emissions|VOC",	"Energy	Service|Transportation|Freight",	"Energy	Service|Transportation|Passenger",		
"Final	Energy","Final	Energy|Electricity",	"Final	Energy|Gases",	"Final	Energy|Heat",	
"Final	Energy|Hydrogen",	"Final	Energy|Industry",	"Final	Energy|Liquids",		
"Final	Energy|Residential	and	Commercial",	"Final	Energy|Solar","Final	Energy|Solids",		
"Final	Energy|Solids|Biomass","Final	Energy|Solids|Biomass|Traditional",	"Final	Energy|Solids|Coal",	
"Final	Energy|Transportation",	"GDP|PPP",	"Harmonized	Emissions|BC",		
"Harmonized	Emissions|CH4|Fossil	Fuels	and	Industry","Harmonized	Emissions|CH4|Land	Use",		
"Harmonized	Emissions|CO","Harmonized	Emissions|CO2|Fossil	Fuels	and	Industry",	
"Harmonized	Emissions|CO2|Land	Use",	"Harmonized	Emissions|F-Gases",	"Harmonized	Emissions|Kyoto	Gases",	
"Harmonized	Emissions|NH3",	"Harmonized	Emissions|NOx",	"Harmonized	Emissions|OC",	
"Harmonized	Emissions|Sulfur",	"Harmonized	Emissions|VOC","Land	Cover|Built-up	Area",		
"Land	Cover|Cropland",	"Land	Cover|Forest",	"Land	Cover|Pasture",	"Population",	"Price|Carbon",	"Primary	Energy",	
"Primary	Energy|Biomass",	"Primary	Energy|Biomass|Traditional",	"Primary	Energy|Biomass|w/	CCS",		
"Primary	Energy|Biomass|w/o	CCS",	"Primary	Energy|Coal",	"Primary	Energy|Coal|w/	CCS",		
"Primary	Energy|Coal|w/o	CCS",	"Primary	Energy|Fossil",	"Primary	Energy|Fossil|w/	CCS",		
"Primary	Energy|Fossil|w/o	CCS","Primary	Energy|Gas",	"Primary	Energy|Gas|w/	CCS",	
"Primary	Energy|Gas|w/o	CCS",	"Primary	Energy|Geothermal","Primary	Energy|Hydro",		
"Primary	Energy|Non-Biomass	Renewables","Primary	Energy|Nuclear",	"Primary	Energy|Oil",	
"Primary	Energy|Oil|w/	CCS",	"Primary	Energy|Oil|w/o	CCS","Primary	Energy|Other",		
"Primary	Energy|Secondary	Energy	Trade","Primary	Energy|Solar",	"Primary	Energy|Wind",	
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"Secondary	Energy|Electricity",	"Secondary	Energy|Electricity|Biomass",		
"Secondary	Energy|Electricity|Biomass|w/	CCS","Secondary	Energy|Electricity|Biomass|w/o	CCS",	
"Secondary	Energy|Electricity|Coal","Secondary	Energy|Electricity|Coal|w/	CCS",	
"Secondary	Energy|Electricity|Coal|w/o	CCS","Secondary	Energy|Electricity|Gas",		
"Secondary	Energy|Electricity|Gas|w/	CCS",	"Secondary	Energy|Electricity|Gas|w/o	CCS",	
"Secondary	Energy|Electricity|Geothermal","Secondary	Energy|Electricity|Hydro",	
"Secondary	Energy|Electricity|Non-Biomass	Renewables","Secondary	Energy|Electricity|Nuclear",		
"Secondary	Energy|Electricity|Oil",	"Secondary	Energy|Electricity|Solar",	"Secondary	Energy|Electricity|Wind",		
"Secondary	Energy|Gases",	"Secondary	Energy|Gases|Biomass","Secondary	Energy|Gases|Coal",		
"Secondary	Energy|Gases|Natural	Gas",	"Secondary	Energy|Heat",	"Secondary	Energy|Heat|Geothermal",	
"Secondary	Energy|Hydrogen",	"Secondary	Energy|Hydrogen|Biomass",	
"Secondary	Energy|Hydrogen|Biomass|w/	CCS",	"Secondary	Energy|Hydrogen|Biomass|w/o	CCS",	
"Secondary	Energy|Hydrogen|Electricity",	"Secondary	Energy|Liquids",	"Secondary	Energy|Liquids|Biomass",		
"Secondary	Energy|Liquids|Biomass|w/	CCS",	"Secondary	Energy|Liquids|Biomass|w/o	CCS",	
"Secondary	Energy|Liquids|Coal",	"Secondary	Energy|Liquids|Coal|w/	CCS",		
"Secondary	Energy|Liquids|Coal|w/o	CCS",	"Secondary	Energy|Liquids|Gas",		
"Secondary	Energy|Liquids|Gas|w/	CCS",	"Secondary	Energy|Liquids|Gas|w/o	CCS",		
"Secondary	Energy|Liquids|Oil",	"Secondary	Energy|Solids",	"VARIABLE"}	 

In[9]:= RRR=Table[Z[[k]][[1]][[3]],{k,1,Length[Z]}];		
Union[RRR]	 

Out[10]= {"R5.2ASIA",	"R5.2LAM",	"R5.2MAF",	"R5.2OECD",	"R5.2REF",	"REGION",	"World"}	 

In[11]:= co2pos1=Position[RR,_?(#=="\"Emissions|CO2|FossilFuelsandIndustry\""&)];		
co2pos2	=	Position[RR,	_	?	(#	==	"\"Emissions|CO2|Land	Use\""	&)];	
co2pos3	=	Position[RRR,	_	?	(#	==	"\"World\""	&)];	 

In[14]:= ppos1=Intersection[co2pos3,co2pos1];		
ppos2	=	Intersection[co2pos3,	co2pos2];	 

In[16]:= Extract[Z,co2pos1][[1]]	 

Out[16]=  {{AIM/CGE,	"SSP1-19",	"R5.2ASIA",	"Emissions|CO2|Fossil	Fuels	and	Industry",	"Mt	CO2/yr",	8985.6725,	
10008.8152,	11790.747500000001,	
6131.6627,	3271.4353000000006,	1678.8029,	638.87,	259.4755,	82.29590000000003,	-7.9353000000000105,	-
103.9171}}	 

In[17]:= em1=ToExpression[Map[Drop[Flatten[#],7]&,Extract[Z,ppos1]]];		
em2	=	ToExpression[Map[Drop[Flatten[#],	7]	&,	Extract[Z,	ppos2]]];	 

In[19]:= ListPlot[em1,PlotRange→All,Joined→True]		

In[20]:= Length[em1]		
Out[20]= 127		

In[21]:= emissions=Map[#[[1;;2]]&,ToExpression[Map[StringSplit[#]	&,	Drop[ReadList["emissionsCO2.txt",	
String],	31]]]];	 
emissions	=	Table[{emissions[[i,	1]],	(44	/	12)	*	emissions[[i,	2]]	/	1000.},	{i,	1,	Length[emissions]}];	 
ListPlot[emissions,	Joined	→	True,	PlotStyle	→	{Black,	Thick},	PlotRange	→	All,	Axes	→	False,	Frame	→	True,	
FrameStyle	→	Directive[14,	Black],	
FrameLabel	→	{"year",	"CO2	emissions	(Gt	CO/yr)"}]	 
(*historical	emissions*)	 

EM	=	Join[emissions,	{{2018,	37.1}}];		
data2	=	Table[Prepend[Table[{t,	Interpolation[Join[EM,	Transpose[{{2030,	2040,	2050,	2060,	2070,	2080,	
2090,	2100},	0.001	*	Drop[em1[[k]],	1]}]]][t]},	{t,	1751,	2100}],	{1750,	0}],	{k,	1,	Length[em1]}];	totliste	=	Ta-
ble[data2[[k]][[All,	2]],	{k,	1,	Length[data2]}];		
PLAll	=	ListPlot[data2,	Joined	→	True,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotRange	→	All,	
FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"}]		
positivepaths	=	Table[DeleteCases[Map[#	*	UnitStep[#]	&,	totliste[[k]][[269	;;	351]]],	_	?	(#	==	0	&)],	{k,	1,	



 

Page 98 of 123 

Length[totliste]}];	ListPlot[positivepaths,	Joined	→	True,	PlotRange	→	All]	
(*Before	removal	of	exceedance	scenarios*)	 

In[29]:= RCBliste2=Map[Plus@@#&,positivepaths];		

In[175]:= p1=Position[RCBliste2,_?(#<3300&)];	 

In[31]:= maxtemp=Map[Max[#]&,templiste];		
maxtemp2	=	Map[Max[#]	&,	uptempliste];		
maxtemp3	=	Map[Max[#]	&,	lowtempliste];	 

PL1	=	ListPlot[Extract[data2,	p1],	Joined	→	True,Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotRange	
→	All];	 
PL2	=	ListPlot[EM,	PlotStyle	→	Black,	Joined	→	True];	
FFC	=	Show[{PL1,	PL2},	FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"},	Epilog	→	Inset[Style["",	18],	
Scaled[{0.1,	0.9}]]]		
(*After	removal	of	exceedance	scenarios*)	 

In[37]:= PL1=ListPlot[data2[[1]],Joined→True,Frame→True,	FrameStyle	→	Directive[Black,	14],	PlotStyle	→	
Darker[Blue]];	 
PL2	=	ListPlot[EM,	PlotStyle	→	Black,	Joined	→	True];	
FFA	=	Show[{PL1,	PL2},	FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"},	Epilog	→	Inset[Style["a",	18],	
Scaled[{0.1,	0.9}]]]	 

In[40]:= n=Length[data2[[1]]];		
futuretime	=	2100	-	2020;		
τmetan	=	12.4;	 

In[43]:= (*	Carbon	model	*)		
τ1=1;	
τ2=10;	
τ3	=	100;	 
τ4	=	1000;	
c1mean	=	0.152;	
c2mean	=	0.246;	
c4mean	=	0.134;	
c5mean	=	0.194;	
	
Gmean	=	(12/44)	*0.47*	(c1mean	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	
+	c2mean	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	(1	-	c1mean	-	c2mean	-	c4mean	-	
c5mean)*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	
+	c4mean	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	Table[c5mean	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	
1,	n}]);	 

In[52]:= (*	Carbon	models	*)		
c1upper	=	0.11;	
c2upper	=	0.212;		
c4upper	=	0.106;		
c5upper	=	0.262;		
c1lower	=	0.18;	
c2lower	=	0.296;		
c4lower	=	0.122;		
c5lower	=	0.148;	
	
Glower	=	(12	/	44)	*	0.47	*	(c1lower	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c2lower	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
(1	-	c1lower	-	c2lower	-	c4lower	-	c5lower)	*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c4lower	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
Table[c5lower	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

Gupper	=	(12/44)	*0.47*	(c1upper	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c2upper	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
(1	-	c1upper	-	c2upper	-	c4upper	-	c5upper)	*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	
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c4upper	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
Table[c5upper	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

In[62]:=  
(*Optimal	Estimation	of	Stochastic	Energy	Balance	Model	Parameters	*)	 

In[63]:= (*	Climate	models	*)	
models	=	ReadList["CMIP5parameters.txt",	String];		
models	=	Delete[models,	{{5},	{12}}];	
boxes	=	StringSplit[models][[All,	2]];	
Klimaliste	=	{};	
Γliste	=	{};	
σ2liste	=	{};	
Monitor[ 
Do[ 

Clear[A];	
modelnr	=	p;	If[boxes[[p]]	==	"2",	 

{C1,	C2,	κ1,	κ2,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+	κ2)	/C1,	κ2/C1},	{κ2/C2,	-κ2/C2}};		
g	=	(MatrixExp[t	A].{1	/	C1,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	
	
If[	boxes[[p]]	==	"3",		
 
{C1,	C2,	C3,	κ1,	κ2,	κ3,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+	κ2)	/C1,	κ2/C1,	0},	{κ2/C2,	-(κ2+κ3)/C2,	κ3/C2},{0,	κ3/C3,	-	κ3/C3}};	 

g	=	(MatrixExp[t	A].{1	/	C1,	0,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	
	
If	[	boxes[[p]]	==	"4",	 

{C1,	C2,	C3,	C4,	κ1,	κ2,	κ3,	κ4,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+κ2)/C1,	κ2/C1,	0,	0}	,	{κ2/C2,	-(κ2+κ3)/C2,	κ3/C2,	0},{	0,	κ3/C3,	-(κ3+κ4)/C3,	κ4/C3},		
{0,	0,	κ4/C4,	-κ4/C4}};	 

g	=	(MatrixExp[t	A].{1	/	C1,	0,	0,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	 

Γliste	=	Append[Γliste,	Γ];		
σ2liste	=	Append[σ2liste,	σ2];		
,	{p,	1,	Length[models]}		
];	 
,	{p,	boxes[[p]]}		
];		
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(*Nonlin	parameter	changes*)		

styrke	=	1;	(*w/m^2*)	
terskel	=	2;	(*grader*)		
bratthet	=	0.5;	 
Plot[styrke	*	0.5	*	(1	+	Tanh[(T	-	terskel)	/	bratthet]),	{T,	0,	4}]		
(*Test	plot	to	visualise	the	non-linear	forcing*) 

RCBliste={};		
totliste	=	{};		
templiste	=	{};		
uptempliste	=	{};		
lowtempliste	=	{};		
alltliste	=	{};		
Δfaeroliste	=	{};		
Δfghgliste	=	{};		
Δfliste	=	{};		
noiseliste	=	{};		
	
Monitor[	Do[	
tot	=	data2[[u]][[All,	2]];		
meanco2	=	Gmean.tot	+	280;		
(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];		
(*	The	factor	11.9	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)		
del2	=	hh	/.	zz	→	tot[[Length[EM]	+	1	;;	Length[tot]]];	
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
metemis	=	Join[del1,	del2];	
	
Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.34	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);	 

Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfaer=	-0.02tot;	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;	
Δfaer2	=	Drop[Δfaer,	Length[EM]]	;	 
Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];		
Δfaer	=	Join[Δfaer1,	Δfaer2];	
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	 
Δfliste	=	Append[Δfliste,	Δf];	 
Δfaeroliste	=	Append[Δfaeroliste,	Δfaer];		
Δfghgliste	=	Append[Δfghgliste,	Δfco2	+	Δfmetan];	 

Tliste	=	{};	Do[	 
T2	=	Klimaliste[[p]].Δf;	 

(*nonlin	loop*)		
Do[		
T2	=	Klimaliste[[p]].(Δf	+	styrke	*	0.5	*	(1	+	Tanh[(T2	-	terskel)	/	bratthet]));	,	{10}];	(*number	of	iterations*) 
noise	=	σ2liste[[p]]	*	(Klimaliste[[p]].RandomReal[NormalDistribution[0,	1],	Length[Δf]]);	 
noise	=	Drop[noise,	268	-	20];	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;		
T2	=	Drop[T2,	268];	T2=1.1+T2-T2[[1]];	
noiseliste	=	Append[noiseliste,	noise];		
Tliste	=	Append[Tliste,	T2];	
,	{p,	1,	Length[models]}];	 

middel	=Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];	 
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 
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lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 

RCB	=	Plus	@@	Drop[tot,	270];	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];	alltliste	=	Join[alltliste,	Tliste];		
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];	,	{u,	1,	Length[data2]}]	 
,	u];	 

In[258]:= Length[noise]		
Out[!]= 103	 

In[259]:=	Length[T2]		
Out[!]= 83 

In[260]:= window=10;	
noiseliste2	=	Table[MovingAverage[noiseliste[[i]],	window][[1	;;	Length[T2]]],	{i,	1,	Length[noiseliste]}];	
noiseliste2	=	Transpose[Partition[noiseliste2,	14]];		

In[263]:= Length[noiseliste2] 
Out[!]= 14	 

In[264]:= Dimensions[noiseliste2] 
Out[!]= {14,	127,	83}	 

In[265]:= Length[noiseliste2[[1]]] 
Out[!]= 127	 

PLNoise	=	ListPlot[Map[Transpose[{2018	+	Range[Length[templiste[[1]]]],	#}]	&,	noiseliste2[[3]]],	Joined	→	
True];	 
FFNoise	=	Show[PLNoise,	PlotRange	→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Di-
rective[Black,	14],	Joined	→	True,	FrameLabel	→	{None,	"Internal	temperature	variability(°C)"},	Epilog	→	In-
set[Style["",	18],	Scaled[{0.1,	0.9}]]]	 

FFE=ListPlot[Map[Transpose[{2018+Range[Length[templiste[[1]]]],#}]&,	Extract[templiste,	p1]],	PlotRange	
→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	→	{None,	
"GMST	increase	(°C)"},	Epilog	→	Inset[Style["e",	18],	Scaled[{0.1,	0.9}]]]	 
PL1	=	ListPlot[Map[Transpose[{1749	+	Range[Length[Δfaeroliste[[1]]]],	#}]	&,	Extract[Δfaeroliste,	p1]],	
Joined	→	True];	 
PL2	=	ListPlot[Map[Transpose[{1749	+	Range[Length[Δfaeroliste[[1]]]],	#}]	&,	Extract[Δfghgliste,	p1]],	Joined	
→	True];	 
FFD	=	Show�{PL1,	PL2},	PlotRange	→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Di-
rective[Black,	14],	FrameLabel	→	�None,	"Forcing	(W/m2)"',	Epilog	→	Inset[Style["d",	18],	Scaled[{0.1,	0.9}]]] 

In[267]:=  

In[271]:=modellfarger={,,,,,,,,,,,,,,,,,,,	};		
In[272]:= pan=LineLegend[modellfarger,Map[StringSplit[#]&,models][[All,1]]]	 

In[273]:= FFB=ListPlot[Map[Transpose[{2018+Range[Length[alltliste[[1]]]],#}]&,	alltliste[[1	;;	14]]],	PlotRange	→	
All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	→	{None,	
"GMST	increase	(°C)"},	Epilog	→	Inset[Style["b",	18],	Scaled[{0.1,	0.9}]],	PlotStyle	→	Map[{#}	&,	modellfarger]]	 

In[!]:= Grid[{{Show[FFA,ImageSize→400],Show[FFB,ImageSize→400],pan}}]	 

In[!]:= Grid[{{Show[FFC,ImageSize→400,	Epilog	→	Inset[Style["a",	18],	Scaled[{0.1,	0.9}]]],	Show[FFD,	ImageSize	
→	400,	Epilog	→	Inset[Style["b",	18],	Scaled[{0.1,	0.9}]]]	,	Show[FFE,	ImageSize	→	400,	Epilog	→	Inset[Style["c",	
18],	Scaled[{0.1,	0.9}]]]}}]	 
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In[!]:= maxtemp=Map[Max[#]&,templiste];		
maxtemp2	=	Map[Max[#]	&,	uptempliste];		
maxtemp3	=	Map[Max[#]	&,	lowtempliste];	 

In[!]:= PL1=ListPlot[Extract[Transpose[{maxtemp,RCBliste2}],p1],	AspectRatio	→	1,	PlotRange	→	All];	 
PL3	=	ListPlot[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Red];	 
PL4	=	ListPlot[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Red];	 
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];	PL2	=	Plot[gg,	{zz,	1.2,	3.5}];	
gg2	=	Fit[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	{zz,	1},	zz];	PL4	=	Plot[gg2,	{zz,	1.2,	3}];	 
Show[{PL1,	PL2},	PlotRange	→	All]	 

In[!]:= pairs=Extract[Transpose[{maxtemp,RCBliste2}],p1];		
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);		
S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	
σx	=	StandardDeviation[pairs[[All,	1]]];	 
σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	 

In[!]:= pdf=(PDF[NormalDistribution[gg,σf[zz]]][p])/.zz→2.0;		
pdf2	=	(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	3.0;		
Plot[{pdf,	pdf2},	{p,	0,	5200},	PlotRange	→	All]	 

PL1	=	ListPlot[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	{{1,	4},	{0,	
4000}},	PlotStyle	→	Darker[Blue]];	 

PL2	=	Plot[gg,	{zz,	1,	3.5},	PlotStyle	→	Darker[Blue]];	
l1	=	Graphics[{Black,	Line[{{2.0,	0},	{2.0,	gg	/.	zz	→	2.0}}]}];	
l2	=	Graphics[{Black,	Line[{{2.0,	gg	/.	zz	→	2.0},	{1,	gg	/.	zz	→	2.0}}]}];	inset	=	ParametricPlot[{1	+	60	*	pdf,	p},	
{p,	400,	1200},	Axes	→	False,	PlotStyle	→	{Black,	Thickness[0.01]}];	(*{p,	budget	low,	budget	high}*)	 
l11	=	Graphics[{Black,	Line[{{3.0,	0},	{3.0,	gg	/.	zz	→	3.0}}]}];	
l22	=	Graphics[{Black,	Line[{{3.0,	gg	/.	zz	→	3.0},	{1,	gg	/.	zz	→	3.0}}]}];	inset2	=	ParametricPlot[{1	+	60	*	pdf2,	
p},	{p,	1900,	2700},	Axes	→	False,	PlotStyle	→	{Black,	Thickness[0.01]}];(*{p,	budget	low,	budget	high}*)	 

FA	=	Show[{PL1,	PL2,	l1,	l2,	l11,	l22,	inset,	inset2},	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	
14],	FrameLabel	→	{"Global	temperature	increase	(°C)",	"Carbon	budget	after	2018	(Gt	CO2)"},	Epilog	→	In-
set[Style["a",	18],	Scaled[{0.1,	0.9}]],	ImageSize	→	400,	PlotRange	→	{{1,	4},	{0,	4500}}]		
(*TCRE	for	1	ESM,	86	scenarios*)	
	

ALL	CLIMATE	MODELS		
	
(*Just	to	get	the	TCRE	plots*)	

maxtemp	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	5]];	PL1	=	ListPlot[Extract[Transpose[{maxtemp,	
RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	Black];	
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];		
PL2	=	Plot[gg,	{zz,	1.2,	3.5},	PlotStyle	→	Black];	
QL1	=	Show[{PL1,	PL2},	PlotRange	→	All];	 
	
maxtemp	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	7]];		
PL1	=	ListPlot[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Darker[Red]];	
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];		
PL2	=	Plot[gg,	{zz,	1.2,	3.5},	PlotStyle	→	Darker[Red]];	
QL2	=	Show[{PL1,	PL2},	PlotRange	→	All];	
FB	=	Show[{QL1,	QL2},	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	→	
{"Global	temperature	increase	(°C)",	"Carbon	budget	after	2018	(Gt	CO2)"},	Epilog	→	{Inset[Style["b",	18],	
Scaled[{0.1,	0.9}]],	Inset[LineLegend[{Black,	Darker[Red]},	{"CSIRO-Mk3.6.0",	"GFDL-ESM2M"}],	Scaled[{0.7,	
0.3}]]},	ImageSize	→	400,	PlotRange	→	{{1,	4},	{0,	4500}}]		
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In[!]:= Grid[{{FA,FB}}]		
(*Grid	plot	of	TCRE’s	*)	
 

ALL	CLIMATE	MODELS,	2	CARBON	MODELS	AND	INTERNAL	VARIABILITY	

	

RCBliste	=	{};		
totliste	=	{};		
templiste	=	{};		
uptempliste	=	{};		
lowtempliste	=	{};		
alltliste	=	{};		
	
Monitor[	Do[	
tot	=	data2[[u]][[All,	2]];		
meanco2	=	Gmean.tot	+	280;		
meanco2upper	=	Gupper.tot	+	280;		
meanco2lower	=	Glower.tot	+	280;	(*	forcing	*)	 

(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];	
(*	The	factor	3.0	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)		
del2	=	hh	/.	zz	→	tot[[Length[EM]	+	1	;;	Length[tot]]];	
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
metemis	=	Join[del1,	del2];	
	
Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.35	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);	 
Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfco2upper	=	5.35	Log[1	+	(meanco2upper	-	280)	/	280];(*	CO2	til	forcing*)	
Δfco2lower	=	5.35	Log[1	+	(meanco2lower	-	280)	/	280];	(*	CO2	til	forcing*)	 
(*	aerosols	*)	
Δfaer=	-0.02tot;	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;	 
Δfaer2	=	Drop[Δfaer,	Length[EM]]	;		
Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];		
Δfaer	=	Join[Δfaer1,	Δfaer2];	 
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	
Δfupper	=	Δfco2upper	+	Δfaer	+	Δfmetan;		
Δflower	=	Δfco2lower	+	Δfaer	+	Δfmetan;	 

Tliste	=	{};		
Do[	 
T2	=	Klimaliste[[p]].Δfupper;	 

(*nonlin	loop*)		
Do[	 
T2	=	Klimaliste[[p]].	
(Δfupper	+	styrke	*	0.5	*	(1	+	Tanh[(T2	-	terskel)	/	bratthet]));	 
,	{10}];	(*number	of	iterations*)	 

T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;	
T2	=	Drop[T2,	268];	
T2=1.1+T2-T2[[1]];	
Tliste	=	Append[Tliste,	T2	+	StandardDeviation[Flatten[noiseliste2[[p]]]]];	 
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(*T2=Klimaliste[[p]].Δfupper;	
T2=T2*(Γliste[[p]]/Log[4.])/5.35;	
T2=Drop[T2,268];	
T2=1.1+T2-T2[[1]];	Tliste=Append[Tliste,T2-StandardDeviation[Flatten[noiseliste2[[p]]]]];*)	 

(*T2=Klimaliste[[p]].Δflower;	
T2=T2*(Γliste[[p]]/Log[4.])/5.35;	
T2=Drop[T2,268];	
T2=1.0+T2-T2[[1]];	Tliste=Append[Tliste,T2+StandardDeviation[Flatten[noiseliste2[[p]]]]];*)	 

T2	=	Klimaliste[[p]].Δflower;		
(*nonlin	loop*)	
Do[	 
T2	=	Klimaliste[[p]].	
(Δflower	+	styrke	*	0.5	*	(1	+	Tanh[(T2	-	terskel)	/	bratthet]));	 
,	{10}];	(*number	of	iterations*)	 

T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;		
T2	=	Drop[T2,	268];	T2=1.0+T2-T2[[1]];	 

Tliste	=	Append[Tliste,	T2	-	StandardDeviation[Flatten[noiseliste2[[p]]]]];	 
,	{p,	1,	Length[models]}];		
	
middel	=	Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];		
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];		
lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	RCB	=	Plus	@@	Drop[tot,	270];	
	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];	 
alltliste	=	Join[alltliste,	Tliste];		
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];		
,	{u,	1,	Length[data2]}]	 
,u]	
	
In[!]:= Dimensions[alltliste]	 
Out[!]= {3556,	83}		
	
In[!]:= CM	=	{};		
cm1	=	Table[	Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2	*	14],	p1][[kk]],	2][[	All,	1]],	{kk,	1,	
Length[p1]}];	 
cm2	=	Table[Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2	*	14],	p1][[	kk]],	2][[All,	2]],	{kk,	1,	
Length[p1]}];	 

Do[	
CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm1][[j]]}]];		
CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm2][[j]]}]];		
,	{j,	1,	Length[Transpose[cm2]]}];	 

In[!]:= ListPlot[{CM[[1]],CM[[2]]}]	 

In[!]:= smliste={};		
tliste	=	{};		
 
Monitor[	Do[	 
pdfliste	=	{};	Do[	 

gg	=	Fit[Map[Reverse[#]	&,	CM[[kk]]],	{zz,	1},	zz];		
pairs	=	Map[Reverse[#]	&,	CM[[kk]]];	
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);		
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S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	 
σx	=	StandardDeviation[pairs[[All,	1]]];		
σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	
pdf	=	Chop[(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	target];		
pdfliste	=	Append[pdfliste,	pdf];	
,{kk,1,2*14}];	 

g	=	Mean[pdfliste];	
smooth	=	Convolve[PDF[NormalDistribution[0,	400]][p],	g,	p,	x];		
sm	=	smooth	/.	x	→	Range[7000];	
smliste	=	Append[smliste,	sm];	
tliste	=	Append[tliste,	target];	
,	{target,	1.1,	4.0,	0.01}];	 
,	target];	 

In[!]:= budget=500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In[!]:= budget=1500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]		
	
In[!]:= bliste={};		
	
Do[	 
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];		
y	=	y/	((Plus@@y)	*	Δt);	
	
t1=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.90	&)]][[1]]	-	1]];		
t2	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.75	&)]][[1]]	-	1]];	
t3	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.5	&)]][[1]]	-	1]];		
t4=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.25	&)]][[1]]	-	1]];		
t5	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.10	&)]][[1]]	-	1]];	
bliste	=	Append[bliste,	{budget,	t1,	t2,	t3,	t4,	t5}];		
,	{budget,	200,	4000,	100}]	 

In[!]:= farger={Red,Darker[Red],Black,Darker[Blue],Blue};	
a	=	ListPlot[{Transpose[{bliste[[All,	1]],	bliste[[All,	2]]}],	 

Transpose[{bliste[[All,	1]],	bliste[[All,	3]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	4]]}],	Trans-
pose[{bliste[[All,	1]],	bliste[[All,	5]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	6]]}]},	Joined	→	True,	AspectRatio	
→	1,	PlotRange	→	{1,	4.0},	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotStyle	→	Ta-
ble[farger[[i]],	{i,	1,	5}],	GridLines	→	Automatic,	FrameLabel	→	{"Carbon	budget	from	2018	(GtCO2)",	"Maxi-
mum	temperature	increase	(°C)"},	PlotLegends	→	Placed[{"10%	prob.",	"25%	prob.",	"even	chance",	"75%	
prob.",	"90%	prob."},	{Scaled[{0.05,	0.7}],	{0,	0.5}}]];	l	=	Graphics[{Black,	Line[{{1294,	1},	{1294,	2.5}}]}];	
GGD	=	Show[{a},	PlotRange	→	{{0,	4000},	{1,	4.3}}]	

(*RCB	estimates	for	non-linear	framework	*) 
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CODE FOR IMPLEMENTATION OF THE ARCTIC AMPLIFICATION FACTOR 

The following code is used the non-linear framework in the SRM as described in Section 3.7. 

Produced in Mathematica: Version: 12.0.0.0 in collaboration with research partners Andreas 

Johansen, Andreas Martinsen and supervision from Martin Rypdal.  

Platform: Mac OS X x86 (64-bit). macOS Catalina: Version 10.15.3. 

 
In[283]:= SetDirectory["OneDrive	-	UiT	Office	365"];		
Z	=	Import["SSP_IAM_V2_201811.csv"];	
Z	=	Map[StringSplit[#,	","]	&,	Z];	 

In[5]:=  hh=157.65890684920566`+1.8942819330281027`zz+0.08520850267749702`zz2;		
 

In[6]:= Z[[1]]	 
Out[6]= {{MODEL,	"SCENARIO",	"REGION",	"VARIABLE",	"UNIT",	
2005,	2010,	2020,	2030,	2040,	2050,	2060,	2070,	2080,	2090,	2100}}	 

In[7]:= RR=Table[Z[[k]][[1]][[4]],{k,1,Length[Z]}];	
Union[RR] 

Out[8]= {"Agricultural	Demand|Crops",	"Agricultural	Demand|Crops|Energy",	
"Agricultural	Demand|Livestock",	"Agricultural	Production|Crops|Energy",		
"Agricultural	Production|Crops|Non-Energy","Agricultural	Production|Livestock",	"Capacity|Electricity",		
"Capacity|Electricity|Biomass",	"Capacity|Electricity|Coal",	"Capacity|Electricity|Gas",		
"Capacity|Electricity|Geothermal",	"Capacity|Electricity|Hydro",	"Capacity|Electricity|Nuclear",		
"Capacity|Electricity|Oil",	"Capacity|Electricity|Other",	"Capacity|Electricity|Solar",	"Capacity|Electricity|Solar|CSP",	
"Capacity|Electricity|Solar|PV",	"Capacity|Electricity|Wind",	"Capacity|Electricity|Wind|Offshore",		
"Capacity|Electricity|Wind|Onshore",	"Consumption",	"Diagnostics|MAGICC6|Concentration|CH4",		
"Diagnostics|MAGICC6|Concentration|CO2",	"Diagnostics|MAGICC6|Concentration|N2O",		
"Diagnostics|MAGICC6|Forcing",	"Diagnostics|MAGICC6|Forcing|Aerosol",	"Diagnostics|MAGICC6|Forcing|CH4",		
"Diagnostics|MAGICC6|Forcing|CO2",	"Diagnostics|MAGICC6|Forcing|F-Gases",		
"Diagnostics|MAGICC6|Forcing|Kyoto	Gases",	"Diagnostics|MAGICC6|Forcing|N2O",		
"Diagnostics|MAGICC6|Temperature|Global	Mean",	"Emissions|BC",	"Emissions|CH4",		
"Emissions|CH4|Fossil	Fuels	and	Industry",	"Emissions|CH4|Land	Use",	"Emissions|CO",		
"Emissions|CO2",	"Emissions|CO2|Carbon	Capture	and	Storage",		
"Emissions|CO2|Carbon	Capture	and	Storage|Biomass","Emissions|CO2|Fossil	Fuels	and	Industry",		
"Emissions|CO2|Land	Use",	"Emissions|F-Gases",	"Emissions|Kyoto	Gases",	"Emissions|N2O",		
"Emissions|N2O|Land	Use",	"Emissions|NH3",	"Emissions|NOx",	"Emissions|OC",	"Emissions|Sulfur",		
"Emissions|VOC",	"Energy	Service|Transportation|Freight",	"Energy	Service|Transportation|Passenger",		
"Final	Energy","Final	Energy|Electricity",	"Final	Energy|Gases",	"Final	Energy|Heat",	
"Final	Energy|Hydrogen",	"Final	Energy|Industry",	"Final	Energy|Liquids",		
"Final	Energy|Residential	and	Commercial",	"Final	Energy|Solar","Final	Energy|Solids",		
"Final	Energy|Solids|Biomass","Final	Energy|Solids|Biomass|Traditional",	"Final	Energy|Solids|Coal",	
"Final	Energy|Transportation",	"GDP|PPP",	"Harmonized	Emissions|BC",		
"Harmonized	Emissions|CH4|Fossil	Fuels	and	Industry","Harmonized	Emissions|CH4|Land	Use",		
"Harmonized	Emissions|CO","Harmonized	Emissions|CO2|Fossil	Fuels	and	Industry",	
"Harmonized	Emissions|CO2|Land	Use",	"Harmonized	Emissions|F-Gases",	"Harmonized	Emissions|Kyoto	Gases",	
"Harmonized	Emissions|NH3",	"Harmonized	Emissions|NOx",	"Harmonized	Emissions|OC",	
"Harmonized	Emissions|Sulfur",	"Harmonized	Emissions|VOC","Land	Cover|Built-up	Area",		
"Land	Cover|Cropland",	"Land	Cover|Forest",	"Land	Cover|Pasture",	"Population",	"Price|Carbon",	"Primary	Energy",	
"Primary	Energy|Biomass",	"Primary	Energy|Biomass|Traditional",	"Primary	Energy|Biomass|w/	CCS",		
"Primary	Energy|Biomass|w/o	CCS",	"Primary	Energy|Coal",	"Primary	Energy|Coal|w/	CCS",		
"Primary	Energy|Coal|w/o	CCS",	"Primary	Energy|Fossil",	"Primary	Energy|Fossil|w/	CCS",		
"Primary	Energy|Fossil|w/o	CCS","Primary	Energy|Gas",	"Primary	Energy|Gas|w/	CCS",	
"Primary	Energy|Gas|w/o	CCS",	"Primary	Energy|Geothermal","Primary	Energy|Hydro",		
"Primary	Energy|Non-Biomass	Renewables","Primary	Energy|Nuclear",	"Primary	Energy|Oil",	
"Primary	Energy|Oil|w/	CCS",	"Primary	Energy|Oil|w/o	CCS","Primary	Energy|Other",		
"Primary	Energy|Secondary	Energy	Trade","Primary	Energy|Solar",	"Primary	Energy|Wind",	



 

Page 107 of 123 

"Secondary	Energy|Electricity",	"Secondary	Energy|Electricity|Biomass",		
"Secondary	Energy|Electricity|Biomass|w/	CCS","Secondary	Energy|Electricity|Biomass|w/o	CCS",	
"Secondary	Energy|Electricity|Coal","Secondary	Energy|Electricity|Coal|w/	CCS",	
"Secondary	Energy|Electricity|Coal|w/o	CCS","Secondary	Energy|Electricity|Gas",		
"Secondary	Energy|Electricity|Gas|w/	CCS",	"Secondary	Energy|Electricity|Gas|w/o	CCS",	
"Secondary	Energy|Electricity|Geothermal","Secondary	Energy|Electricity|Hydro",	
"Secondary	Energy|Electricity|Non-Biomass	Renewables","Secondary	Energy|Electricity|Nuclear",		
"Secondary	Energy|Electricity|Oil",	"Secondary	Energy|Electricity|Solar",	"Secondary	Energy|Electricity|Wind",		
"Secondary	Energy|Gases",	"Secondary	Energy|Gases|Biomass","Secondary	Energy|Gases|Coal",		
"Secondary	Energy|Gases|Natural	Gas",	"Secondary	Energy|Heat",	"Secondary	Energy|Heat|Geothermal",	
"Secondary	Energy|Hydrogen",	"Secondary	Energy|Hydrogen|Biomass",	
"Secondary	Energy|Hydrogen|Biomass|w/	CCS",	"Secondary	Energy|Hydrogen|Biomass|w/o	CCS",	
"Secondary	Energy|Hydrogen|Electricity",	"Secondary	Energy|Liquids",	"Secondary	Energy|Liquids|Biomass",		
"Secondary	Energy|Liquids|Biomass|w/	CCS",	"Secondary	Energy|Liquids|Biomass|w/o	CCS",	
"Secondary	Energy|Liquids|Coal",	"Secondary	Energy|Liquids|Coal|w/	CCS",		
"Secondary	Energy|Liquids|Coal|w/o	CCS",	"Secondary	Energy|Liquids|Gas",		
"Secondary	Energy|Liquids|Gas|w/	CCS",	"Secondary	Energy|Liquids|Gas|w/o	CCS",		
"Secondary	Energy|Liquids|Oil",	"Secondary	Energy|Solids",	"VARIABLE"}	 

In[9]:= RRR=Table[Z[[k]][[1]][[3]],{k,1,Length[Z]}];		
Union[RRR]	 

Out[10]= {"R5.2ASIA",	"R5.2LAM",	"R5.2MAF",	"R5.2OECD",	"R5.2REF",	"REGION",	"World"}	 

In[11]:= co2pos1=Position[RR,_?(#=="\"Emissions|CO2|FossilFuelsandIndustry\""&)];		
co2pos2	=	Position[RR,	_	?	(#	==	"\"Emissions|CO2|Land	Use\""	&)];	
co2pos3	=	Position[RRR,	_	?	(#	==	"\"World\""	&)];	 

In[14]:= ppos1=Intersection[co2pos3,co2pos1];		
ppos2	=	Intersection[co2pos3,	co2pos2];	 

In[16]:= Extract[Z,co2pos1][[1]]	 

Out[16]=  {{AIM/CGE,	"SSP1-19",	"R5.2ASIA",	"Emissions|CO2|Fossil	Fuels	and	Industry",	"Mt	CO2/yr",	8985.6725,	
10008.8152,	11790.747500000001,	
6131.6627,	3271.4353000000006,	1678.8029,	638.87,	259.4755,	82.29590000000003,	-7.9353000000000105,	-
103.9171}}	 

In[17]:= em1=ToExpression[Map[Drop[Flatten[#],7]&,Extract[Z,ppos1]]];		
em2	=	ToExpression[Map[Drop[Flatten[#],	7]	&,	Extract[Z,	ppos2]]];	 

In[19]:= ListPlot[em1,PlotRange→All,Joined→True]		

In[20]:= Length[em1]		
Out[20]= 127		

In[21]:= emissions=Map[#[[1;;2]]&,ToExpression[Map[StringSplit[#]	&,	Drop[ReadList["emissionsCO2.txt",	
String],	31]]]];	 
emissions	=	Table[{emissions[[i,	1]],	(44	/	12)	*	emissions[[i,	2]]	/	1000.},	{i,	1,	Length[emissions]}];	 
ListPlot[emissions,	Joined	→	True,	PlotStyle	→	{Black,	Thick},	PlotRange	→	All,	Axes	→	False,	Frame	→	True,	
FrameStyle	→	Directive[14,	Black],	
FrameLabel	→	{"year",	"CO2	emissions	(Gt	CO/yr)"}]	 
(*historical	emissions*)	 

EM	=	Join[emissions,	{{2018,	37.1}}];		
data2	=	Table[Prepend[Table[{t,	Interpolation[Join[EM,	Transpose[{{2030,	2040,	2050,	2060,	2070,	2080,	
2090,	2100},	0.001	*	Drop[em1[[k]],	1]}]]][t]},	{t,	1751,	2100}],	{1750,	0}],	{k,	1,	Length[em1]}];	totliste	=	Ta-
ble[data2[[k]][[All,	2]],	{k,	1,	Length[data2]}];		
PLAll	=	ListPlot[data2,	Joined	→	True,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotRange	→	All,	
FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"}]		
	
positivepaths	=	Table[DeleteCases[Map[#	*	UnitStep[#]	&,	totliste[[k]][[269	;;	351]]],	_	?	(#	==	0	&)],	{k,	1,	
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Length[totliste]}];	ListPlot[positivepaths,	Joined	→	True,	PlotRange	→	All]	
(*Before	removal	of	exceedance	scenarios*)	 

In[29]:= RCBliste2=Map[Plus@@#&,positivepaths];		

In[175]:= p1=Position[RCBliste2,_?(#<3300&)];	 

In[31]:= maxtemp=Map[Max[#]&,templiste];		
maxtemp2	=	Map[Max[#]	&,	uptempliste];		
maxtemp3	=	Map[Max[#]	&,	lowtempliste];	 

PL1	=	ListPlot[Extract[data2,	p1],	Joined	→	True,Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotRange	
→	All];	 
PL2	=	ListPlot[EM,	PlotStyle	→	Black,	Joined	→	True];	
FFC	=	Show[{PL1,	PL2},	FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"},	Epilog	→	Inset[Style["",	18],	
Scaled[{0.1,	0.9}]]]		
(*After	removal	of	exceedance	scenarios*)	 

In[37]:= PL1=ListPlot[data2[[1]],Joined→True,Frame→True,	FrameStyle	→	Directive[Black,	14],	PlotStyle	→	
Darker[Blue]];	 
PL2	=	ListPlot[EM,	PlotStyle	→	Black,	Joined	→	True];	
FFA	=	Show[{PL1,	PL2},	FrameLabel	→	{None,	"CO2	emissions	(Gt	CO2)"},	Epilog	→	Inset[Style["a",	18],	
Scaled[{0.1,	0.9}]]]	 

In[40]:= n=Length[data2[[1]]];		
futuretime	=	2100	-	2020;		
τmetan	=	12.4;	 

In[43]:= (*	Carbon	model	*)		
τ1=1;	
τ2=10;	
τ3	=	100;	 
τ4	=	1000;	
c1mean	=	0.152;	
c2mean	=	0.246;	
c4mean	=	0.134;	
c5mean	=	0.194;	
	
Gmean	=	(12/44)	*0.47*	(c1mean	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	
+	c2mean	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	(1	-	c1mean	-	c2mean	-	c4mean	-	
c5mean)*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	
+	c4mean	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	Table[c5mean	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	
1,	n}]);	 

In[52]:= (*	Carbon	models	*)		
c1upper	=	0.11;	
c2upper	=	0.212;		
c4upper	=	0.106;		
c5upper	=	0.262;		
c1lower	=	0.18;	
c2lower	=	0.296;		
c4lower	=	0.122;		
c5lower	=	0.148;	
	
Glower	=	(12	/	44)	*	0.47	*	(c1lower	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c2lower	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
(1	-	c1lower	-	c2lower	-	c4lower	-	c5lower)	*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c4lower	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
Table[c5lower	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

Gupper	=	(12/44)	*0.47*	(c1upper	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c2upper	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
(1	-	c1upper	-	c2upper	-	c4upper	-	c5upper)	*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	



 

Page 109 of 123 

c4upper	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
Table[c5upper	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

In[62]:=  
(*Optimal	Estimation	of	Stochastic	Energy	Balance	Model	Parameters	*)	 

In[63]:= (*	Climate	models	*)	
models	=	ReadList["CMIP5parameters.txt",	String];		
models	=	Delete[models,	{{5},	{12}}];	
boxes	=	StringSplit[models][[All,	2]];	
Klimaliste	=	{};	
Γliste	=	{};	
σ2liste	=	{};	
Monitor[ 
Do[ 

Clear[A];	
modelnr	=	p;	If[boxes[[p]]	==	"2",	 

{C1,	C2,	κ1,	κ2,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+	κ2)	/C1,	κ2/C1},	{κ2/C2,	-κ2/C2}};		
g	=	(MatrixExp[t	A].{1	/	C1,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	
	
If[	boxes[[p]]	==	"3",		
 
{C1,	C2,	C3,	κ1,	κ2,	κ3,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+	κ2)	/C1,	κ2/C1,	0},	{κ2/C2,	-(κ2+κ3)/C2,	κ3/C2},{0,	κ3/C3,	-	κ3/C3}};	 

g	=	(MatrixExp[t	A].{1	/	C1,	0,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	
	
If	[	boxes[[p]]	==	"4",	 

{C1,	C2,	C3,	C4,	κ1,	κ2,	κ3,	κ4,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+κ2)/C1,	κ2/C1,	0,	0}	,	{κ2/C2,	-(κ2+κ3)/C2,	κ3/C2,	0},{	0,	κ3/C3,	-(κ3+κ4)/C3,	κ4/C3},		
{0,	0,	κ4/C4,	-κ4/C4}};	 

g	=	(MatrixExp[t	A].{1	/	C1,	0,	0,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	 

Γliste	=	Append[Γliste,	Γ];		
σ2liste	=	Append[σ2liste,	σ2];		
,	{p,	1,	Length[models]}		
];	 
,	{p,	boxes[[p]]}		
];		
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(*Nonlin	parameter	changes*)		

styrke	=	1;	(*w/m^2*)	
terskel	=	2;	(*grader*)		
bratthet	=	0.5;	 
Plot[styrke	*	0.5	*	(1	+	Tanh[(T	-	terskel)	/	bratthet]),	{T,	0,	4}]		
(*Test	plot	to	visualise	the	non-linear	forcing*) 

In[!]:= RCBliste={};		
totliste	=	{};	 
templiste	=	{};		
uptempliste	=	{};		
lowtempliste	=	{};		
alltliste	=	{};		
Δfaeroliste	=	{};		
Δfghgliste	=	{};		
Δfliste	=	{};		
noiseliste	=	{};		
	
Monitor[		
Do[	
tot	=	data2[[u]][[All,	2]];	meanco2	=	Gmean.tot	+	280;		
(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];		
(*	The	factor	11.9	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)		
del2	=	hh	/.	zz	→	tot[[Length[EM]	+	1	;;	Length[tot]]];	
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
metemis	=	Join[del1,	del2];	
	
Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.34	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);		

Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfaer=	-0.02tot;	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;	
Δfaer2	=	Drop[Δfaer,	Length[EM]]	;	 
Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];		
Δfaer	=	Join[Δfaer1,	Δfaer2];	
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	 
Δfliste	=	Append[Δfliste,	Δf];	
Δfaeroliste	=	Append[Δfaeroliste,	Δfaer];		
Δfghgliste	=	Append[Δfghgliste,	Δfco2	+	Δfmetan];	 

Tliste	=	{};		
Do[	 
T2	=	Klimaliste[[p]].Δf;	 

(*nonlin	nonlin	loop*)	(*Do[	 
T2=Klimaliste[[p]].(Δf+styrke*0.5*(1+Tanh[(T2-terskel)/bratthet]));	,{10}];*)	 
(*nonlin	lin	loop*)		
Do[	 
T2	=	Klimaliste[[p]].(Δf	+	0.2	T2);	,	{10}];	 
noise	=	σ2liste[[p]]	*	(Klimaliste[[p]].RandomReal[NormalDistribution[0,	1],	Length[Δf]]);	 
noise	=	Drop[noise,	268	-	20];	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;	T2	=	Drop[T2,	268];	T2=1.1+T2-T2[[1]];	
noiseliste	=	Append[noiseliste,	noise];	Tliste	=	Append[Tliste,	T2];	
,	{p,	1,	Length[models]}];	 

middel	=Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];	 
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 
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lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 

RCB	=	Plus	@@	Drop[tot,	270];	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];		
alltliste	=	Join[alltliste,	Tliste];	
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];		
,	{u,	1,	Length[data2]}]	 
,	u];	
 
In[!]:= Length[noise]	 
Out[!]= 103	 
In[!]:= Length[T2]		
Out[!]= 83	 

In[!]:= window=10;	
noiseliste2	=	Table[MovingAverage[noiseliste[[i]],	window][[1	;;	Length[T2]]],	{i,	1,	Length[noiseliste]}];	
noiseliste2	=	Transpose[Partition[noiseliste2,	14]];	 

In[!]:= Length[noiseliste2]		
Out[!]= 14	 
In[!]:= Dimensions[noiseliste2]		
Out[!]= {14,	127,	83}	 
In[!]:= Length[noiseliste2[[1]]]		
Out[!]= 127	 

In[!]:= ListPlot[noiseliste2[[3]],Joined→True]	 
In[!]:= FFE=ListPlot[Map[Transpose[{2018+Range[Length[templiste[[1]]]],#}]&,	Extract[templiste,	p1]],	
PlotRange	→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	
→	{None,	"GMST	increase	(°C)"},	Epilog	→	Inset[Style["e",	18],	Scaled[{0.1,	0.9}]]]	 

In[!]:= PL1=ListPlot[Map[Transpose[{1749+Range[Length[Δfaeroliste[[1]]]],#}]&,	Extract[Δfaeroliste,	p1]],	
Joined	→	True];	 
PL2	=	ListPlot[Map[Transpose[{1749	+	Range[Length[Δfaeroliste[[1]]]],	#}]	&,	Extract[Δfghgliste,	p1]],	Joined	
→	True];	 

FFD	=	Show[{PL1,	PL2},	PlotRange	→	All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Di-
rective[Black,	14],	FrameLabel	→	{None,	"forcing"},Epilog	→	Inset[Style["d",	18],	Scaled[{0.1,	0.9}]]]		

modellfarger={,,,,,,,,,,,,,,,,,,,	};		
In[!]:= pan=LineLegend[modellfarger,Map[StringSplit[#]&,models][[All,1]]]	 
Out[!]= BCC-CSM1-1 BNU-ESM CanESM2 CCSM4 CSIRO-Mk3.6.0 FGOALS-s2 GFDL-ESM2M GISS-E2-R  
HadGEM2-ES INM-CM4 MIROC5 MPI-ESM-LR MRI-CGCM3 NorESM1-M  

In[!]:= FFB=ListPlot[Map[Transpose[{2018+Range[Length[alltliste[[1]]]],#}]&,	alltliste[[1	;;	14]]],	PlotRange	→	
All,	Joined	→	True,	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	→	{None,	
"GMST	increase	(°C)"},Epilog	→	Inset[Style["b",	18],	Scaled[{0.1,	0.9}]],	PlotStyle	→	Map[{#}	&,	modellfarger]]	 

In[!]:= Grid[{{Show[FFA,ImageSize→400],Show[FFB,ImageSize→400],pan}}]	 

In[!]:= Grid[{{Show[FFC,ImageSize→400,	Epilog	→	Inset[Style["a",	18],	Scaled[{0.1,	0.9}]]],	Show[FFD,	ImageSize	
→	400,	Epilog	→	Inset[Style["b",	18],	Scaled[{0.1,	0.9}]]]	,	Show[FFE,	ImageSize	→	400,	Epilog	→	Inset[Style["c",	
18],	Scaled[{0.1,	0.9}]]]}}]	 

In[!]:= maxtemp=Map[Max[#]&,templiste];		
maxtemp2	=	Map[Max[#]	&,	uptempliste];		
maxtemp3	=	Map[Max[#]	&,	lowtempliste];	 

In[!]:= PL1=ListPlot[Extract[Transpose[{maxtemp,RCBliste2}],p1],	AspectRatio	→	1,	PlotRange	→	All];	 
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PL3	=	ListPlot[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Red];	 
PL4	=	ListPlot[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Red];	 
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];	PL2	=	Plot[gg,	{zz,	1.2,	3}];	
gg2	=	Fit[Extract[Transpose[{maxtemp2,	RCBliste2}],	p1],	{zz,	1},	zz];	PL4	=	Plot[gg2,	{zz,	1.2,	3}];	 
Show[{PL1,	PL2},	PlotRange	→	All]	 

In[!]:= pairs=Extract[Transpose[{maxtemp,RCBliste2}],p1];		
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);		
S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	
σx	=	StandardDeviation[pairs[[All,	1]]];	 
σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	 

In[!]:= pdf=(PDF[NormalDistribution[gg,σf[zz]]][p])/.zz→1.5;		
pdf2	=	(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	2.5;		
Plot[{pdf,	pdf2},	{p,	0,	5200},	PlotRange	→	All]	 

In[!]:= PL1=ListPlot[Extract[Transpose[{maxtemp,RCBliste2}],p1],AspectRatio→1,	PlotRange	→	{{1,	4},	{0,	
4000}},	PlotStyle	→	Darker[Blue]];	 
PL2	=	Plot[gg,	{zz,	1,	3},	PlotStyle	→	Darker[Blue]];	
l1	=	Graphics[{Black,	Line[{{1.5,	0},	{1.5,	gg	/.	zz	→	1.5}}]}];	
l2	=	Graphics[{Black,	Line[{{1.5,	gg	/.	zz	→	1.5},	{1,	gg	/.	zz	→	1.5}}]}];	inset	=	ParametricPlot[{1	+	60	*	pdf,	p},	
{p,	0,	1200},	Axes	→	False,	PlotStyle	→	{Black,	Thickness[0.01]}];	 

l11	=	Graphics[{Black,	Line[{{2.5,	0},	{2.5,	gg	/.	zz	→	2.5}}]}];	
l22	=	Graphics[{Black,	Line[{{2.5,	gg	/.	zz	→	2.5},	{1,	gg	/.	zz	→	2.5}}]}];	inset2	=	ParametricPlot[{1	+	60	*	pdf2,	
p},	{p,	1900,	3000},	Axes	→	False,	PlotStyle	→	{Black,	Thickness[0.01]}];	 

FA	=	Show[{PL1,	PL2,	l1,	l2,	l11,	l22,	inset,	inset2},	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	
14],	FrameLabel	→	{"global	temperature	increase	(°C)",	"carbon	budget	after	2018	(Gt	CO2)"},	Epilog	→	In-
set[Style["a",	18],	Scaled[{0.1,	0.9}]],ImageSize	→	400,	PlotRange	→	{{1,	4},	{0,	4500}}]	 

In[!]:= maxtemp=Partition[Map[Max[#]&,alltliste],14][[All,5]];		
PL1	=	ListPlot[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Black];	
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];		
PL2	=	Plot[gg,	{zz,	1.2,	4},	PlotStyle	→	Black];	
QL1	=	Show[{PL1,	PL2},	PlotRange	→	All];	 

maxtemp	=	Partition[Map[Max[#]	&,	alltliste],	14][[All,	7]];		
PL1	=	ListPlot[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	AspectRatio	→	1,	PlotRange	→	All,	PlotStyle	→	
Darker[Red]];	
gg	=	Fit[Extract[Transpose[{maxtemp,	RCBliste2}],	p1],	{zz,	1},	zz];		
PL2	=	Plot[gg,	{zz,	1.2,	3.5},	PlotStyle	→	Darker[Red]];	
QL2	=	Show[{PL1,	PL2},	PlotRange	→	All];	
FB	=	Show[{QL1,	QL2},	Axes	→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	FrameLabel	→	
{"global	temperature	increase	(°C)",	"carbon	budget	after	2018	(Gt	CO2)"},	Epilog	→	{Inset[Style["b",	18],	
Scaled[{0.1,	0.9}]],	Inset[LineLegend[{Black,	Darker[Red]},	{"CSIRO-Mk3.6.0",	"GFDL-ESM2M"}],	 

Scaled[{0.7,	0.3}]]},	ImageSize	→	400,	PlotRange	→	{{1,	4},	{0,	4500}}]	In[!]:= Grid[{{FA,FB}}]		
	

14	ESMS	FROM	CMIP5,	2	CARBONMODELS	FROM	SRM,	INTERNAL	VARIABILITY	
	
RCBliste	=	{};		
totliste	=	{};		
templiste	=	{};		
uptempliste	=	{};		
lowtempliste	=	{};		
alltliste	=	{};		
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Monitor[		
Do[	
tot	=	data2[[u]][[All,	2]];		
meanco2	=	Gmean.tot	+	280;		
meanco2upper	=	Gupper.tot	+	280;		
meanco2lower	=	Glower.tot	+	280;	(*	forcing	*)	 

(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];	
(*	The	factor	3.0	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)		
del2	=	hh	/.	zz	→	tot[[Length[EM]	+	1	;;	Length[tot]]];	
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
metemis	=	Join[del1,	del2];	
	
Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.35	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);	 
Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfco2upper	=	5.35	Log[1	+	(meanco2upper	-	280)	/	280];	(*	CO2	til	forcing*)	
Δfco2lower	=	5.35	Log[1	+	(meanco2lower	-	280)	/	280];	(*	CO2	til	forcing*)	 
(*	aerosols	*)	
Δfaer=	-0.02tot;	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;		
Δfaer2	=	Drop[Δfaer,	Length[EM]]	;		 
Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];		
Δfaer	=	Join[Δfaer1,	Δfaer2];	 
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	
Δfupper	=	Δfco2upper	+	Δfaer	+	Δfmetan;	
Δflower	=	Δfco2lower	+	Δfaer	+	Δfmetan;		
	
Tliste	=	{};	
Do[	 
T2	=	Klimaliste[[p]].Δfupper;	 

(*nonlin	loop*)	(*Do[	 
T2=Klimaliste[[p]].(Δfupper+styrke*0.5*(1+Tanh[(T2-terskel)/bratthet]));		
,{10}];*)	 

(*nonlin	lin	loop*)	Do[	 
T2	=	Klimaliste[[p]].(Δfupper	+	0.2	T2);		
,	{10}];	 

T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;	
T2	=	Drop[T2,	268];	
T2=1.1+T2-T2[[1]];	
Tliste	=	Append[Tliste,	T2	+	StandardDeviation[Flatten[noiseliste2[[p]]]]];	 

(*T2=Klimaliste[[p]].Δfupper;	
T2=T2*(Γliste[[p]]/Log[4.])/5.35;	
T2=Drop[T2,268];	
T2=1.1+T2-T2[[1]];	Tliste=Append[Tliste,T2-StandardDeviation[Flatten[noiseliste2[[p]]]]];*)	 

(*T2=Klimaliste[[p]].Δflower;	
T2=T2*(Γliste[[p]]/Log[4.])/5.35;	
T2=Drop[T2,268];	
T2=1.0+T2-T2[[1]];	Tliste=Append[Tliste,T2+StandardDeviation[Flatten[noiseliste2[[p]]]]];*)	 

T2	=	Klimaliste[[p]].Δflower;	 

(*nonlin	loop*)	(*Do[	 
T2=Klimaliste[[p]].(Δflower+styrke*0.5*(1+Tanh[(T2-terskel)/bratthet]));		
,{10}];*)	 
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(*nonlin	lin	loop*)	Do[	 
T2	=	Klimaliste[[p]].(Δflower	+	0.2	T2);	 
,	{10}];	
(*	Comment	out	everything	between:	Do[	T2=Klimaliste[[p]].Δfupper;	to	here	to	look	at	linear	comparison*)		
	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;	
T2	=	Drop[T2,	268];	
T2=1.0+T2-T2[[1]];	 
Tliste	=	Append[Tliste,	T2	-	StandardDeviation[Flatten[noiseliste2[[p]]]]];	 
,	{p,	1,	Length[models]}];		
	
middel	=	Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];		
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];		
lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	RCB	=	Plus	@@	Drop[tot,	270];	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];	 

alltliste	=	Join[alltliste,	Tliste];		
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];		
,	{u,	1,	Length[data2]}]	 
,u]	
	
In[!]:= Dimensions[alltliste]	 
Out[!]= {3556,	83}		
	
In[!]:= CM	=	{};		
cm1	=	Table[	Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2	*	14],	p1][[kk]],	2][[	All,	1]],	{kk,	1,	
Length[p1]}];	 
cm2	=	Table[Partition[Extract[Partition[Map[Max[#]	&,	alltliste],	2	*	14],	p1][[	kk]],	2][[All,	2]],	{kk,	1,	
Length[p1]}];	 

Do[	
CM	=	Append[CM,	Transpose[{Extract[RCBliste2,	p1],	Transpose[cm1][[j]]}]];	CM	=	Append[CM,	Trans-
pose[{Extract[RCBliste2,	p1],	Transpose[cm2][[j]]}]];	,	{j,	1,	Length[Transpose[cm2]]}];	 

In[!]:= ListPlot[{CM[[1]],CM[[2]]}]	 

In[!]:= smliste={};		
tliste	=	{};	 

Monitor[	Do[	 
pdfliste	=	{};		
Do[	 
gg	=	Fit[Map[Reverse[#]	&,	CM[[kk]]],	{zz,	1},	zz];		
pairs	=	Map[Reverse[#]	&,	CM[[kk]]];	
error	=	pairs[[All,	2]]	-	(gg	/.	zz	→	pairs[[All,	1]]);		
S	=	Sqrt[(Plus	@@	(error^2))	/	(Length[pairs]	-	2)];	 
σx	=	StandardDeviation[pairs[[All,	1]]];		
σf[x_]	:=	S	*	Sqrt[1	+	1	/	Length[pairs]	+	(x	-	Mean[pairs[[All,	1]]])^2	/	(Length[pairs]	*	σx^2)];	
pdf	=	Chop[(PDF[NormalDistribution[gg,	σf[zz]]][p])	/.	zz	→	target];		
pdfliste	=	Append[pdfliste,	pdf];	
,{kk,1,2*14}];	 

g	=	Mean[pdfliste];	
smooth	=	Convolve[PDF[NormalDistribution[0,	400]][p],	g,	p,	x];		
sm	=	smooth	/.	x	→	Range[7000];	
smliste	=	Append[smliste,	sm];	
tliste	=	Append[tliste,	target];	
,	{target,	1.1,	4.0,	0.01}];	 
,	target];		
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In[!]:= (*forsterkningsfaktor	a+bT:	0.10034007260683281`+2.2321837475237376`	x*)	 

In[!]:= a=0.10034;		
b	=	2.23218;	 
Δtarc	=	a+b*	Δt;	 

In[!]:= budget=500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In[!]:= budget=1500;	
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];	
y	=	y/	((Plus@@y)	*	Δt);	ListPlot[Transpose[{tliste,	y}],	Joined	→	True]	 

In[!]:= bliste={};		
Do[	 
Δt	=	tliste[[2]]	-	tliste[[1]];	
y	=	Transpose[smliste][[budget]];		
y	=	y/	((Plus@@y)	*	Δt);	
t1=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.90	&)]][[1]]	-	1]];		
t2	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.75	&)]][[1]]	-	1]];	
t3	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.5	&)]][[1]]	-	1]];		
t4=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.25	&)]][[1]]	-	1]];		
t5	=	tliste[[First[Position[FoldList[Plus,	0,	y	*	Δt],	_	?	(#	>	0.10	&)]][[1]]	-	1]];	
bliste	=	Append[bliste,	{budget,	t1,	t2,	t3,	t4,	t5}];	,	{budget,	200,	4000,	100}]	 

In[!]:= farger={Red,Darker[Red],Black,Darker[Blue],Blue};	
aa	=	ListPlot[{Transpose[{bliste[[All,	1]],	bliste[[All,	2]]}],	 

Transpose[{bliste[[All,	1]],	bliste[[All,	3]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	4]]}],	Trans-
pose[{bliste[[All,	1]],	bliste[[All,	5]]}],	Transpose[{bliste[[All,	1]],	bliste[[All,	6]]}]},	Joined	→	True,	AspectRatio	
→	1,	PlotRange	→	{{1,	9}},	Axes	→	False,Frame	→	True,	FrameStyle	→	Directive[Black,	14]	,PlotStyle	→	Ta-
ble[farger[[i]],	{i,	1,	5}],	GridLines	→	Automatic,	FrameLabel	→	{"Carbon	budget	from	2018	(GtCO2)",	"Maxi-
mum	temperature	increase	(°C)"},	PlotLegends	→	Placed[{"10%	prob.",	"25%	prob.",	"even	chance",	"75%	
prob.",	"90%	prob."},	{Scaled[{0.05,	0.7}],	{0,	0.5}}]];	l	=	Graphics[{Black,	Line[{{1294,	1},	{1294,	2.5}}]}];	
GGD	=	Show[{aa}]	 

In[!]:= Tclow=Graphics[{Black,Line[{{0,8},{4000,8}}]}];	(*Greenland	paper	critical	values*)	
Tcupper	=	Graphics[{Black,	Line[{{0,	8.5},	{4000,	8.5}}]}];	 

In[!]:= farger={Red,Darker[Red],Black,Darker[Blue],Blue};	
aaa	=	ListPlot[{Transpose[{bliste[[All,	1]],	a	+	b	*	bliste[[All,	2]]}],	Transpose[{bliste[[All,	1]],	a	+	b	*	bliste[[All,	
3]]}],	Transpose[{bliste[[All,	1]],	a	+	b	*	bliste[[All,	4]]}],	Transpose[{bliste[[All,	1]],	a	+	b	*	bliste[[All,	5]]}],	
Transpose[{bliste[[All,	1]],	a	+	b	*	bliste[[All,	6]]}]},	Joined	→	True,	AspectRatio	→	1,	PlotRange	→	{{1,	9}}	,	Axes	
→	False,	Frame	→	True,	FrameStyle	→	Directive[Black,	14],	PlotStyle	→	Table[farger[[i]],	{i,	1,	5}],	GridLines	→	
Automatic,	FrameLabel	→	{"Carbon	budget	from	2018	(GtCO2)",	"Maximum	temperature	increase	(°C)"},	
PlotLegends	→	Placed[{"10%	prob.",	"25%	prob.",	"even	chance",	"75%	prob.",	"90%	prob."},	{Scaled[{0.05,	
0.7}],	{0,	0.5}}]];	l	=	Graphics[{Black,	Line[{{1294,	1},	{1294,	2.5}}]}];	
GGD	=	Show[{aaa,	Tclow,	Tcupper},	PlotRange	→	{{0,	4000},	{1.1,	10}}]	 

In[!]:= Max[a+b*bliste[[All,2]]]		
Out[!]= 8.7612		

COMPARISON 

In[!]:= Grid[{{Show[aa,PlotRange→{{0,4000},{1.1,9}},	ImageSize	→	400,	Epilog	→	Inset[Style["a",	18],	Scaled[{0.1,	
0.9}]]],	Show[aaa,	PlotRange	→	{{0,	4000},	{1.1,	9}}	,	ImageSize	→	400,	Epilog	→	Inset[Style["b",	18],	
Scaled[{0.1,	0.9}]]]	 
}}]	
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ESTIMATION	OF	THE	ARCTIC	AMPLIFICATION	FACTOR	

	

(*	GLOBAL	LAND-OCEAN	TEMPERATURE*)	

SetDirectory["OneDrive	-	UiT	Office	365"];	

global	=	Drop[Drop[Import["GLB.Ts+dSST.csv",	{"Data",	All,	14}],	2],	-	1];	 
In[!]:= PL1=ListPlot[global,Joined→True,PlotRange	→	All,	DataRange	→	{1880,	1880	+	Length[global]}]	 
(*base	period	1951-1980*)		

In[!]:= global;	 

(*	ANNUAL	MEAN	LAND-OCEAN	TEMPERATURE	64N-90N	(ARCTIC	IS	66.34N)*)		

arctic	=	Drop[Import["ZonAnn.Ts+dSST.csv",	{"Data",	All,	8}],	1];	 
In[!]:= PL2=ListPlot[arctic,Joined→True,PlotRange→All,	PlotStyle	→	Orange,	DataRange	→	{1880,	1880	+	

Length[arctic]}]	 
(*base	period	1951-1980*)	

In[!]:= Show[{PL1,PL2},	PlotRange->All]		 
(*	COMPARISON*)	

comp	=	Transpose[{global,	arctic}]; 

In[!]:= compPlot=ListPlot[comp,PlotRange→All,	AxesLabel	→	{"global",	"arctic"},	AspectRatio	→	1]	 
In[!]:= lm=LinearModelFit[comp,x,x](*forsterkningsfaktor=2.23218*)		

Out[!]= FittedModel	0.10034	+	2.23218	x	 
In[!]:= Fit[comp,{zz,1},zz]		

Out[!]= 0.10034+2.23218zz	 
In[!]:= fit=Plot[lm[x],{x,-3,5}];		

In[!]:= Show[{compPlot,fit},	PlotRange->All,	FrameStyle	→	Directive[Black,	14],	Axes	→	False,	Frame	→	True,	

FrameLabel	→	{"Global	Land-Ocean	Temperature	Index	(°C)",	"Arctic	Land-Ocean	Temperature	Index	(°C)"}]	 
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CODE FOR COMPARISON OF A SIMPLE RESPONSE MODEL TO MAGICC6. 

The following code is used the non-linear framework in the SRM as described in Section 3.8. 

Produced in Mathematica: Version: 12.0.0.0 in collaboration with research partners Andreas 

Johansen, Andreas Martinsen and supervision from Martin Rypdal.  

Platform: Mac OS X x86 (64-bit). macOS Catalina: Version 10.15.3. 

SetDirectory["OneDrive	-	UiT	Office	365"]	M	=	Import["SSP_IAM_V2_201811.csv"];		
M[[1]]	 
Out[!]= {MODEL,"SCENARIO","REGION","VARIABLE","UNIT",2005,2010,2020,2030,2040,2050,2060	
,2070,2080,2090,2100}	 

In[!]:= M=Map[StringSplit[#,","]&,M];	 
In[!]:= TT=Table[M[[k]][[1]][[4]],{k,1,Length[M]}];	Union[TT];	 
TTT	=	Table[M[[k]][[1]][[3]],	{k,	1,	Length[M]}];	 

In[!]:= MAG=Position[TT,_?(#=="\"Diagnostics|MAGICC6|Temperature|GlobalMean\""&)];	 
In[!]:= MAGpos=Position[TTT,_?(#=="\"World\""&)];	 
In[!]:= mpos1=Intersection[MAGpos,MAG];	Extract[M,	MAG][[1]];	 
In[!]:= temp1=ToExpression[Map[Drop[Flatten[#],6]&,Extract[M,mpos1]]];	ListPlot[temp1,	Joined	→	True]	

SRM	MODEL	 
In[!]:= hh=157.65890684920566`+1.8942819330281027`zz+0.08520850267749702`zz2;		
In[!]:= RR=Table[M[[k]][[1]][[4]],{k,1,Length[M]}];	 
Union[RR];	
In[!]:= RRR=Table[M[[k]][[1]][[3]],{k,1,Length[M]}];	 

Union[RRR]	
Out[!]= {"R5.2ASIA",	"R5.2LAM",	"R5.2MAF",	"R5.2OECD",	"R5.2REF",	"REGION",	"World"}	 

In[!]:= co2pos1=Position[RR,_?(#=="\"Emissions|CO2|FossilFuelsandIndustry\""&)];		
co2pos2	=	Position[RR,	_	?	(#	==	"\"Emissions|CO2|Land	Use\""	&)];	
co2pos3	=	Position[RRR,	_	?	(#	==	"\"World\""	&)];	 

In[!]:= ppos1=Intersection[co2pos3,co2pos1];		
ppos2	=	Intersection[co2pos3,	co2pos2];	 

In[!]:= Extract[M,co2pos1][[1]]	 

Out[!]= {{AIM/CGE,	"SSP1-19",	"R5.2ASIA",	"Emissions|CO2|Fossil	Fuels	and	Industry",		
"Mt	CO2/yr",	8985.6725,	10008.8152,	11790.747500000001,	
6131.6627,	3271.4353000000006,	1678.8029,	638.87,	259.4755,	82.29590000000003,	-7.9353000000000105,	-
103.9171}}	 

In[!]:= em1=ToExpression[Map[Drop[Flatten[#],7]&,Extract[M,ppos1]]];		
em2	=	ToExpression[Map[Drop[Flatten[#],	7]	&,	Extract[M,	ppos2]]];	 

In[!]:= ListPlot[em1,PlotRange→All,Joined→True]		
emissions	=	Map[#[[1	;;	2]]	&,	ToExpression[	Map[StringSplit[#]	&,	Drop[ReadList["emissionsCO2.txt",	String],	
31]]]];		

In[!]:= emissions=Table[{emissions[[i,1]],(44/12)*emissions[[i,2]]/1000.}	
,	{i,	1,	Length[emissions]}];	 
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In[!]:= EM=Join[emissions,{{2018,37.1}}];		
data2	=	Table[Prepend[Table[{t,	Interpolation[Join[EM,	Transpose[{{2030,	2040,	2050,	2060,	2070,	2080,	
2090,	2100},	0.001	*	Drop[em1[[k]],	1]}]]][t]},	{t,	1751,	2100}],	{1750,	0}],	{k,	1,	Length[em1]}];		
totliste	=	Table[data2[[k]][[All,	2]],	{k,	1,	Length[data2]}];	 

In[!]:= positivepaths=	Table[DeleteCases[Map[#	*	UnitStep[#]	&,	totliste[[k]][[269	;;	351]]],	_?(#	
==0&)],{k,1,Length[totliste]}];	ListPlot[positivepaths,	Joined	→	True]	 

In[!]:= RCBliste2=Map[Plus@@#&,positivepaths];	
In[!]:= p1=Position[RCBliste2,_?(#<3300&)];	
In[!]:= ListPlot[data2,Joined→True,PlotRange→All]	 

In[!]:= n=Length[data2[[1]]];		
futuretime	=	2100	-	2020;		
τmetan	=	12.4;	 

In[43]:= (*	Carbon	model	*)		
τ1=1;	
τ2=10;	
τ3	=	100;	 
τ4	=	1000;	
c1mean	=	0.152;	
c2mean	=	0.246;	
c4mean	=	0.134;	
c5mean	=	0.194;	
	
Gmean	=	(12/44)	*0.47*	(c1mean	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]+		
c2mean	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
(1	-	c1mean	-	c2mean	-	c4mean	-	c5mean)*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]+		
c4mean	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
Table[c5mean	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

In[52]:= (*	Carbon	models	*)		
c1upper	=	0.11;	
c2upper	=	0.212;		
c4upper	=	0.106;		
c5upper	=	0.262;		
c1lower	=	0.18;	
c2lower	=	0.296;		
c4lower	=	0.122;		
c5lower	=	0.148;	
	
Glower	=	(12	/	44)	*	0.47	*	(c1lower	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c2lower	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
(1	-	c1lower	-	c2lower	-	c4lower	-	c5lower)	*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c4lower	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
Table[c5lower	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

Gupper	=	(12/44)	*0.47*	(c1upper	*	Table[Exp[-	(i	-	j)	/	τ1]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
c2upper	*	Table[Exp[-	(i	-	j)	/	τ2]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
(1	-	c1upper	-	c2upper	-	c4upper	-	c5upper)	*	Table[Exp[-	(i	-	j)	/	τ3]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+	c4up-
per	*	Table[Exp[-	(i	-	j)	/	τ4]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]	+		
Table[c5upper	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}]);	 

In[62]:=  
(*Optimal	Estimation	of	Stochastic	Energy	Balance	Model	Parameters	*)	 

In[63]:= (*	Climate	models	*)	
models	=	ReadList["CMIP5parameters.txt",	String];		
models	=	Delete[models,	{{5},	{12}}];	
boxes	=	StringSplit[models][[All,	2]];	
Klimaliste	=	{};	
Γliste	=	{};	
σ2liste	=	{};	
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Monitor[ 
Do[ 

Clear[A];	
modelnr	=	p;	If[boxes[[p]]	==	"2",	 

{C1,	C2,	κ1,	κ2,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+	κ2)	/C1,	κ2/C1},	{κ2/C2,	-κ2/C2}};		
g	=	(MatrixExp[t	A].{1	/	C1,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	
	
If[	boxes[[p]]	==	"3",		
 
{C1,	C2,	C3,	κ1,	κ2,	κ3,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+	κ2)	/C1,	κ2/C1,	0},	{κ2/C2,	-(κ2+κ3)/C2,	κ3/C2},{0,	κ3/C3,	-	κ3/C3}};	 

g	=	(MatrixExp[t	A].{1	/	C1,	0,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	
	
If	[	boxes[[p]]	==	"4",	 

{C1,	C2,	C3,	C4,	κ1,	κ2,	κ3,	κ4,	σ1,	Γ,	σ2}	=	ToExpression[Drop[StringSplit[models[[modelnr]]],	2]];	 

A	=	{{-(κ1+κ2)/C1,	κ2/C1,	0,	0}	,	{κ2/C2,	-(κ2+κ3)/C2,	κ3/C2,	0},{	0,	κ3/C3,	-(κ3+κ4)/C3,	κ4/C3},		
{0,	0,	κ4/C4,	-κ4/C4}};	 

g	=	(MatrixExp[t	A].{1	/	C1,	0,	0,	0})[[1]];	
Gklima	=	Table[Chop[(g	/.	t	→	(i	-	j))	*	UnitStep[i	-	j]],	{i,	1,	n},	{j,	1,	n}];		
Klimaliste	=	Append[Klimaliste,	Gklima];	 
];	 

Γliste	=	Append[Γliste,	Γ];		
σ2liste	=	Append[σ2liste,	σ2];		
,	{p,	1,	Length[models]}		
];	 
,	{p,	boxes[[p]]}		
];		

	

 

(*Nonlin	parameter	changes*)		

styrke	=	1;	(*w/m^2*)	
terskel	=	2;	(*grader*)		
bratthet	=	0.5;	 
Plot[styrke	*	0.5	*	(1	+	Tanh[(T	-	terskel)	/	bratthet]),	{T,	0,	4}]		
(*Test	plot	to	visualise	the	non-linear	forcing*)	

RCBliste	=	{};	totliste	=	{};	templiste	=	{};	uptempliste	=	{};	lowtempliste	=	{};	alltliste	=	{};	Δfaeroliste	=	{};	
Δfghgliste	=	{};	Δfliste	=	{};	noiseliste	=	{};	Monitor[	 
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Do[	
tot	=	data2[[u]][[All,	2]];	meanco2	=	Gmean.tot	+	280;	 

(*	metan	*)	
del1	=	11.9	*	tot[[1	;;	Length[EM]]];		
(*	The	factor	11.9	tunes	2019	methane	emmisions	in	2019	to	440	Tg	Methane	*)	del2	=	hh	/.	zz	→	
tot[[Length[EM]	+	1	;;	Length[tot]]];	
del2	=	Last[del1]	+	(del2	-	First[del2])	*	(Last[del1]	-	Last[del2])	/	(First[del2]	-	Last[del2]);		
metemis	=	Join[del1,	del2];	
	

Gmetan	=	0.34	*	Table[Exp[-	(i	-	j)	/	τmetan]	*	UnitStep[i	-	j],	{i,	1,	n},	{j,	1,	n}];	
(*	The	factor	0.34	tunes	2019	methane	concentration	to	around	1880	ppb	*)		
metan	=	Map[Max[#,	0]	&,	700	+	Gmetan.metemis];	
	
Δfmetan	=	0.036	*	(Sqrt[metan]	-	Sqrt[700]);	 
Δfco2	=	5.35	Log[1	+	(meanco2	-	280)	/	280];	(*	CO2	til	forcing*)		
Δfaer=	-0.02tot;	
Δfaer1	=	Δfaer[[1	;;	Length[EM]]]	;	
Δfaer2	=	Drop[Δfaer,	Length[EM]]	;	 
Δfaer2	=	Map[Min[-0.4,	#]	&,	Δfaer2];		
Δfaer	=	Join[Δfaer1,	Δfaer2];	
Δf	=	Δfco2	+	Δfaer	+	Δfmetan;	 
Δfliste	=	Append[Δfliste,	Δf];	
Δfaeroliste	=	Append[Δfaeroliste,	Δfaer];		
Δfghgliste	=	Append[Δfghgliste,	Δfco2	+	Δfmetan];	 

Tliste	=	{};	Do[	T2	=	Klimaliste[[p]].Δf;		
 
(*	Remove	this	part	to	run	the	linear	SRM	comparison*)		
	
Do[	 
T2	=	Klimaliste[[p]].(Δf	+	0.2	T2);	 
,	{10}];	
	
(*	End	of	part	*)	 

noise	=	σ2liste[[p]]	*	(Klimaliste[[p]].RandomReal[NormalDistribution[0,	1],	Length[Δf]]);	 
noise	=	Drop[noise,	268	-	20];	
T2	=	T2	*	(Γliste[[p]]	/	Log[4.])	/	5.35;	T2	=	Drop[T2,	268];	T2=1.1+T2-T2[[1]];	
noiseliste	=	Append[noiseliste,	noise];	Tliste	=	Append[Tliste,	T2];	
,	{p,	1,	Length[models]}];	 

middel	=	Table[Mean[Transpose[Tliste][[i]]],	{i,	1,	Length[Transpose[Tliste]]}];	 
upper	=	Table[Mean[Transpose[Tliste][[i]]]	+	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 
lower	=	Table[Mean[Transpose[Tliste][[i]]]	-	StandardDeviation[	Transpose[Tliste][[i]]],	{i,	1,	Length[Trans-
pose[Tliste]]}];	 

RCB	=	Plus	@@	Drop[tot,	270];	
RCBliste	=	Append[RCBliste,	RCB];	
totliste	=	Append[totliste,	tot];		
alltliste	=	Join[alltliste,	Tliste];		
templiste	=	Append[templiste,	middel];		
uptempliste	=	Append[uptempliste,	upper];		
lowtempliste	=	Append[lowtempliste,	lower];		
,	{u,	1,	Length[data2]}]	 
,	u];	 

In[!]:= Length[noise]		
Out[!]= 103	 
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In[!]:= Length[T2]		
Out[!]= 83	 

In[!]:= window=10;	
noiseliste2	=	Table[MovingAverage[noiseliste[[i]],	window][[1	;;	Length[T2]]],	{i,	1,	Length[noiseliste]}];	
noiseliste2	=	Transpose[Partition[noiseliste2,	14]];	 

In[!]:= Length[noiseliste2]		
Out[!]= 14	 

In[!]:= Dimensions[noiseliste2]		
Out[!]= {14,	127,	83}	 

In[!]:= Length[noiseliste2[[1]]]		
Out[!]= 127	 

In[!]:= ListPlot[noiseliste2[[3]],Joined→True]	 
In[!]:= ListPlot[Extract[templiste,p1],Joined→True]	 
In[!]:= ListPlot[Extract[temp1,p1],Joined→True,Axes→False,Frame→True,	FrameStyle	→	Directive[Black,	14],	
FrameLabel	→	{None,	"GMST	increase	(°C)"}]	 

In[!]:= OURMODEL=Extract[templiste,p1];		
MAGICC	=	Extract[temp1,	p1];	 

In[!]:= Length[OURMODEL]		
Out[!]= 86	 
In[!]:= Length[MAGICC]		
Out[!]= 86	 

In[!]:= ListPlot[{OURMODEL[[1]],MAGICC[[1]]}]	 

In[!]:= parliste={};		
	
Do[	 
x	=	Drop[MAGICC[[i]],	1];	
y	=	OURMODEL[[i]][[{3,	13,	23,	33,	43,	53,	63,	73,	83}]];	par	=	Transpose[{x,	y}];	
parliste	=	Append[parliste,	par];	
,	{i,	1,	Length[OURMODEL]}]	 

In[!]:= y=OURMODEL[[1]][[{3,13,23,33,43,53,63,73,83}]]	
Out[!]= {1.16787,	1.54466,	1.64649,	1.64045,	1.60513,	1.56572,	1.53297,	1.50672,	1.48457}	 
PL1	=	ListPlot[parliste,	AspectRatio	→	1,	PlotRange	→	{{0.5,	4},	{0.5,	4}}];	PL2	=	Plot[zz,	{zz,	0.5,	4},	PlotStyle	→	
Black];	
gg	=	Fit[Partition[Flatten[parliste],	2],	{zz,	1},	zz];	
PL3	=	Plot[gg,	{zz,	0.5,	4},	PlotStyle	→	{Black,	Dashed}];	 
Show[{PL1,	PL2,	PL3},	FrameStyle	→	Directive[Black,	14],	Axes	→	False,	Frame	→	True,	FrameLabel	→	
{"MAGICC	GMST	(°C)",	"Response	model	GMST	(°C)"}]		
(*	All	774	datapoints	*) 
In[!]:= parliste2={};		
	
Do[	 
x	=	Drop[MAGICC[[i]],	1];	
y	=	OURMODEL[[i]][[{3,	13,	23,	33,	43,	53,	63,	73,	83}]];	par	=	{Max[x],	Max[y]};	
parliste2	=	Append[parliste2,	par];	
,	{i,	1,	Length[OURMODEL]}];	 

PL1	=	ListPlot[Map[{#}	&,	parliste2],	
AspectRatio	→	1,	PlotRange	→	{{0.5,	4},	{0.5,	4}}];	 

PL2	=	Plot[zz,	{zz,	0.5,	4},	PlotStyle	→	Black];	
gg	=	Fit[parliste2,	{zz,	1},	zz];	
PL3	=	Plot[gg,	{zz,	0.5,	4},	PlotStyle	→	{Black,	Dashed}];	Show[{PL1,	PL2,	PL3},	FrameStyle	→	Directive[Black,	
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14],	Axes	→	False,	Frame	→	True,	FrameLabel	→	{"MAGICC	maximum	GMST	(°C)",	"Response	model	maximum	
GMST	(°C)"}]		
(*	Max	temperature	comparison	for	86	scenarios	*)	 
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