UiT Faculty of Science and Technology

THE ARCTIC Department of Physics and Technology

UNIVERSITY
OF NORWAY An investigation of the spatial and temporal distribution of

kinetic energy in the mesosphere

The high latitude mesosphere

Ole K. Nordaunet
FYS-3931: Master’s thesis in space physics 30 SP - July 2020

Photo on front page: Astronaut Ron Garan, 2011, NASA. https://solarsystem.
nasa.gov/resources/434/looking-down-on-a-shooting-star/

https://solarsystem.nasa.gov/resources/434/looking-down-on-a-shooting-star/
https://solarsystem.nasa.gov/resources/434/looking-down-on-a-shooting-star/

Abstract

The mesosphere is perhaps the least explored region in the atmosphere with
very few methods of observing. This thesis will primarily be exploring a new
technique for measuring the distribution of kinetic energy in the mesosphere
across a wide range of spatial and temporal scales. The method being used
relies on correlation functions between pairs of meteor measurements. These
measurements are made using a network of specular meteor radars located in
Northern Norway. This network produced 32 million meteor measurements over
a 2 year period. The correlation function estimation method has been previously
used on a smaller data set, but has so far not been used for a longer data set
and at high latitudes. The main advantage of the new technique is that by
studying the second order statistics of the wind field, we can obtain significantly
better temporal and spatial resolution than before. Such a large data set allows
for great resolution for both spatial and temporal correlation functions. By
using temporal correlation functions and the kinetic energy spectrum, different
atmospheric wave phenomena can be studied. These include diurnal and
semi diurnal tides. The horizontal and vertical correlation functions will be
used to verify that the kinetic energy follows a power law, as theoretically
expected by the Kolmogorov theory for turbulence. This was done by using a
second order structure function applied to correlation functions. The temporal
and horizontal correlation functions were used to study the summer-winter
variation in kinetic energy, some variation in the temporal domain is the impact
from large scale waves as well as in the power spectra were there is a steeper
power law slope during the winter. As for the horizontal domain there are
differences in kinetic energy in the zonal and meridional direction for both
large and small scale waves. The dataset in this thesis a lot more can be
found out about the mesosphere, in this thesis only a few of the possibilities
are explored. The results are in agreement with earlier work, confirming the
results obtained by the earlier study:.

CHAPTER 0. ABSTRACT

Preface

I would first and foremost like to thank my supervisor Professor Juha Vierinen
for suggesting the thesis subject as it has been very interesting, and also helping
me a lot during this thesis. I would also like to given an appreciation for my
fellow master students for helping me stay on the right course especially during
the covid-19 situation. As well as all the support from my family.

I would also like to thank Cecilie Glittum, for English correction help on a short
notice.

CHAPTER 0. PREFACE

List of Figures

2.1 First results of power law from observations by Nastrom in
1984 . . e

3.1 This figure illustrates Reynolds decomposition of wind, (From
J.Vierinen) e e e e e

3.2 This figure illustrates how the Bragg vector is measured, (From
J.Vierinen) e e e e e

4.1 Where the meteor measurements took place
4.2 Daily meteor measurements
4.3 Meteor measurements on altitude
4.4 Measurements on timeofday
4.5 2D plot of meteor pairs given horizontal and temporal lag . .
4.6 Temporal autocorrelation function and power spectra during

summermonths00
4.7 Temporal autocorrelation function and power spectra for sum-

mermonths
4.8 Simplified temporal autocorrelation function
4.9 Simplified horizontal autocorrelation function
4.10 Horizontal autocorrelation function and structure function for

summermonths
4.11 Horizontal autocorrelation function and structure function for

wintermonths
4.12 4 hour - 30 minutes fluctuatingwind

23
24
26
27

28

Vi

LIST OF FIGURES

Contents

Abstract

Preface

List of Figures

1

Introduction

1.1
1.2

1.3

Main features of mesospheric wind climatology
The role of gravity waves and tides in the MLT and in the
whole Earth’s atmosphere
Scopeof thisthesis

Background

2.1
2.2
2.3
24

Previous models of the mesosphere
The difficulty of measuring the mesosphere using observation
Previous measurements
A need for measurements

Theory and method

3.1
3.2

3.3
3.4

3.5
3.6

3.7

3.8

Temperature and altitude of the mesospause
Waves effect on the mesosphere
3.2.1 Gravity waveso e e e e e e e e
3.22 Tides
3.2.3 Planetarywavest
Reynolds decomposition
The technique for estimating the wind field velocity correla-
tionfunctiono
Techniques for measuring the MLT
Temporal and spatial resolution with the different measuring
techniques Lo
How a meteor radar measures the neutral wind velocity and
temperature of the mesosphere
The expected horizontal spatial spectrum of kinetic energy of
the mesosphere

Vil

iii

w e

o ooy U1 1

10
10
10
10

11
13

13

14

15

Viii CONTENTS

3.9 Structure function 15
4 Results and discussion 17
41 Datao 17
4.2 Seasonal variation in Temporal autocorrelation function . . . 23
4.3 Horizontal autocorrelation funciton and structure function . 25
4.4 The mean wind in the mesosphere 30
4.5 Codeproblems/fixes 31
5 Conclusions 33
5.1 Ourfindings 33
5.2 Suggestions for furtherwork 34
A Source code 35

Bibliography 89

Introduction

The mesosphere is not defined to a specific range but it is normally in the
range between 50-100 km. This altitude is in the range from Armstrong limit,
where astronauts need pressure suits, and the kdrman line, where planes can’t
fly due to insufficient lift. Even though the drag is low it is still high enough
for satellites being unable to stay in orbit at that altitude. The mesosphere
and also the layer above called the lower thermosphere are often useful to be
called as one region, the MLT region (Mesosphere and lower thermosphere
region).

The mesosphere has the lowest temperatures in our atmosphere with tempera-
tures below -100°C, the temperature decreases with increasing altitude until
the end of the mesosphere where the mesospause resides. The mesospause is
defined to be the coldest place in the atmosphere, the mesospause’s altitude
varies quite a lot depending on latitude and solstice season. The reason it is
cold is due to low absorption of solar radiation by thin atmosphere and CO5’s
radiative emission which causes photons to fly out towards space and heating
up the thermosphere where the temperature starts increasing rapidly with
altitude.

Atmospheric tides come from different periodic oscillations caused by certain
phenomena such as the big oscillation from the 24 hour day-night cycle which
is caused by the Sun’s heating where it gets significantly hotter during the
day, and colder during the night. This causes the main tide in the mesosphere
called the diurnal tide, there are also the 12-hour semi-diurnal tide which is also

2 CHAPTER 1. INTRODUCTION

quite significant as well as 8-hour and 6-hour tide which has a much smaller
amplitude. The biggest other effect than tides are gravity waves which are
formed in the troposphere and travel up and break in the mesosphere. (Smith,
2012)

1.1 Main features of mesospheric wind
climatology

Climatology is the study of climate using data for very long periods of time.
Climatology is a good way to make general predictions about a certain location
in a region at a certain time of year. The MSIS model (mass spectrometer
incoherent scatter) empirical model from (Hedin, 1991), which has been used
for a long time has a lot of uncertainty when it comes to small scale variations
such as gravity waves. There are also other models such as The Horizontal
Wind Model (HWMo7) from (Drob et al., 2008) describing the horizontal wind
in the whole Earth atmosphere. However, both these atmospheric models have
trouble due to the mesosphere having year to year variations. These variation
are results of the climate in this region being unstable. Some reasons the climate
is unstable is due to external forcing and change in the composition it self. As
human pollution is changing the composition in the mesosphere, processes
from above such as radiation from the Sun will have varied effects. And
externally forced changes is due process from regions below the mesosphere
such as the troposphere and stratosphere, where mainly gravity waves are
formed which impacts the mesosphere greatly.

1.2 The role of gravity waves and tides in the
MLT and in the whole Earth’s atmosphere

In the MLT gravity waves is important for circulation, which means gravity
waves are important for the global mean heating and cooling. Gravity waves
are formed in the troposphere and they travel all the way up to the MLT where
the gravity waves either dissipate or break depending on the initial amplitude.
When the initial amplitude is big the gravity wave will grow exponentially until
it breaks (Smith, 2012).

Gravity waves have an impact on the zonal wind in the middle-upper MLT, as
the zonal wind changes when interacting with dissipating or breaking gravity
waves. Gravity waves also have an effect on other waves such as planetary

waves, since stationary planetary waves in the MLT have been shown to be out
of phase with the planetary waves in the stratosphere (Smith, 2012).

Gravity waves also interact with the tides, wave breaking can damp or amplify
depending on the phase of the tide as described in (Smith, 2012).

Tides have an impact on the circulation in the atmosphere, especially the
diurnal tide, which is a migrating tide, because of its big amplitude. Gravity
waves will also depend on the phase of the diurnal tide, there are also other
tides such as the semi diurnal tide which is not as significant as the diurnal tide.
There are also even smaller tides but those are much less significant.

1.3 Scope of this thesis

The main goal of this thesis is to estimate the spatial and temporal correlation
function of the mesospheric wind vector field. The spatial correlation in the
horizontal direction will be used to validate that the kinetic energy of the
wind depletes as a power law of distance traveled. Previous observations of the
kinetic energy spectrum in the horizontal wind have been shown to follow a
power law of k=3 for larger scale waves on the meso-a scale, and for smaller
waves on the meso-/ scale it has been shown to be k3. This has been shown
with a lot of previous data as presented in (Liu, 2019). But when it comes to
the vertical wind all data have shown with the kinetic energy spectrum that for
waves on the meso-f scale to be flat which is unexpected as it wouldn’t follow
a power-law.

Han-Li Liu has called for measurements to validate global circulation models in
the mesosphere in (Liu, 2019). This thesis will help with that by using second
order statistics to verify the kinetic energy power law for small scale waves,
and by looking at how much of the kinetic energy in the mesosphere is due to
small scale waves.

These calculations will be made by using the Multi-static, Multi-frequency Agile
Radar for Investigation sof the Atmosphere (MMARIA) dataset which is located
in Northern Norway. The measurements are made by a network of specular
meteor radars (SMRs) which allows for significantly more measurements than
a singular SMR. Using the MMARIA dataset and applying the spatial and
temporal correlation function as (Vierinen et al., 2019) has done, these power
laws in the energy spectrums can be shown even in the vertical direction
with real data, and by applying a structure function the uncertainty will be
reduced. By using the temporal correlation function phenomenon such as

4 CHAPTER 1. INTRODUCTION

lunar tide, mountain waves, or planetary waves can be shown by how often
the measurements correlate.

Another method of looking for power law is to use the second order structure
function, which directly relates to the power law kinetic energy spectrum (k_%
and s%, where k is a spatial wave number and s is the related power law when
using a structure function). This relation is shown in (Kolmogorov (1941)). The
structure function has recently been used in this paper (Vierinen et al. (2019))
and shows that both the vertical- and horizontal wind follows the structure
function (s% which corresponds to k‘g), even though in Vierinen et al. (2019)
it’s said that "With only a 24 hour data set, we only measure two periods
of the 12 hour tide, which means that it is impossible to estimate error bars
for these quantities and to judge if the values are meaningful or not." it is
promising findings. Horizontal wind power law is also show in (Vierinen et al.
(2019)).

This thesis will be one of the first studies to estimate annual variability of
mesospheric kinetic energy using the new correlation function technique with
a multi-year data set for the mesospheric winds.

Background

The mesosphere is the least known region in our atmosphere, the reason being
is that it’s very hard to get in situ measurements. The only way to make in situ
measurements is to use sounding rockets which is an very expensive way of
getting data.

Some of the reasons this is interesting to study is to see if previous studies and
modeling of the mesosphere is accurate, as well as to verify previous studies
on how the energy behaves in horizontal distance. For the vertical direction
there haven’t been any paper that has shown the kinetic energy to deplete as a
power law.

2.1 Previous models of the mesosphere

One of the well known and most used models for the mesosphere is the
Whole Atmosphere Community Climate Model (WACCM) which is a component
of the Community Earth System Model which is a family of such models
made at the National Center for Atmospheric Research (NCAR). WACCM is
a model including everything from Earth’s surface and up to the start of the
thermosphere. There are a lot of different versions of this model including
WACCM-X which is an extension going all the way up to altitudes around 500
km. Another well known and used model is the Mass-Spectrometer-Incoherent-
Scatter (MSIS) which is an empirical model including temperature and densities

6 CHAPTER 2. BACKGROUND

from Earths surface up to the thermosphere, this model is mostly used for
general studies of the whole atmosphere. Consequently, the model is not able
to give detailed results for specific areas. All of these models and models in
general have a need for higher resolution observations to account for small
scale waves which not only affects the mesosphere but also the troposphere
since the downward influence is note worthy (Liu, 2019). Waves such as gravity
waves are noted to be important for circulation models in (Alexander et al.,
2010) and (McLandress, 1998).

2.2 The difficulty of measuring the mesosphere
using observation

Measuring the mesosphere is very difficult because the drag is too high for
satellites to measure directly and it is not high enough for planes to get enough
lift. Therefore, the only way of getting in situ measurements is by using rockets.
When using rockets for measurements there are big limitations in resolution
especially in the temporal domain but also in the spatial domain.

2.3 Previous measurements

The first time the kinetic energy of the horizontal wind in the atmosphere was
shown with data was in 1984 in the paper by (Nastrom et al., 1984). This was
done in the troposphere using research aircraft and the main result is in figure
2.1.

Using observations from a commercial aircraft in the troposphere and lower
stratosphere, (Bacmeister et al., 1996) have showed that the power spectra of
horizontal wind agrees relatively well with theoretical values. However, it also
showed the vertical power spectrum to be flat for longer scales. This seemed
to agree with WACCM as noted in (Liu, 2019). Further measurements from the
mesosphere regarding both horizontal and vertical wind power spectra has yet
to be done other than (Vierinen et al., 2019) which only had one day of data
available.

Wavenumber (rad m~")
10-° 10~ 10-* 10~ 10-2

10 -‘-L

Zonal wind

108 }— k-sp

Spectral density (m?s-7)
g

95% confidence interval) %
®

10% |—

-

104 10* 102 10! 10° 10=1

Figure 2.1: The first result of a power law in the troposphere, using measure-
ments from research aircraft. Original paper (Nastrom et al., 1984)

8 CHAPTER 2. BACKGROUND

2.4 A need for measurements

In the paper (Liu, 2019) a need for measurements in the mesospheric spatial
domain was called out for. The reason for this need is for the circulation models
to be more accurate. As of now these models have a lot of uncertainty when
it comes to the smaller scale waves, due to the breaking or dissipation of
smaller wave scales. This affects the mesosphere, but indeed also the lower
atmosphere.

Theory and method

3.1 Temperature and altitude of the mesospause

One of the main reasons why the mesosphere is an interesting region to study
is the big difference in the temperature in the solstice seasons, during the
winter for high latitudes and all season in low latitudes the temperature in
the mesospause is much smaller than in the summer in high latitudes. This
low temperature has been shown by Sounding the Atmosphere by Broadband
Emission Radiometry (SABER) measurements and in (Von Zahn et al., 1996)
the summer in high latitudes was shown to be in the 83-89 km range as for
other latitudes and time it was shown to be close to 100 km.

3.2 Waves effect on the mesosphere

A wave is a periodic disturbances of the wind field. Thus, a lot of waves
affecting the wind field results in a complicated structure. Waves have three
important features which are generation, propagation and dissipation. The
main waves that affect the mesosphere are gravity waves, tides and planetary
waves. These waves are generated outside the mesosphere, mostly from the
lower atmosphere. From (Andrews and Mcintyre, 1976) it is know that waves
will not interact with background atmosphere unless they are short-lived or
dissipating.

10 CHAPTER 3. THEORY AND METHOD

3.2.1 Gravity waves

Gravity waves is a phenomena that start in the troposphere where they are
produced by the equilibrium being displaced for reason such as winds going
over a tall mountain, or from frontal systems. Gravity waves are small scale
waves that travel from the troposphere through the stratosphere and dissipates
or breaks in the mesosphere. This has a huge effect on the zonal wind in the
mesosphere. Gravity waves are the main source of kinetic energy from the
atmosphere below mesosphere.

3.2.2 Tides

Tides seen in the mesosphere are from gravity waves with a period of 1 day or
a smaller fraction of a day. The two strongest tides are the diurnal tide with a
period of 24 hours, the semi diurnal tide with a period of 12 hours which is the
tide with the most effect in the middle to higher atmosphere, and is the most
dominant tide in mesosphere (Pancheva et al., 2009). There are also smaller
frequency waves like the 8 hour period tide as reported by (MJ et al., 1999)
using temperature data from airglow imager. Even a 6 hour tide has been
observed by (Smith et al., 2004).

3.2.3 Planetary waves
Planetary waves is a term for a lot of different wave phenomena. The general
planetary wave are large scale disturbances with low wavenumbers. The main

examples of planetary waves are Rossby waves observed in (Rossby, 1939).
These waves are created due to the Coriolis effect in Earth’s atmosphere.

3.3 Reynolds decomposition

Reynolds decomposition is a mathematical technique used to separate an actual
value (u) into the expected value (%) and the fluctuating value (u”).

u=ua+u’ (3.1)
In this case it is used to find the higher frequency fluctuating wind. This is
done by subtracting the low frequency expected value from the actual value.

Each of the components are illustrated in figure 3.1

W =u—1i (3.2)

M

Figure 3.1: This figure illustrates Reynolds decomposition of wind, (From J.
Vierinen)

==

Receiver Transmitter

Figure 3.2: This figure illustrates how the Bragg vector is measured, (From J.
Vierinen)

3.4 The technique for estimating the wind field
velocity correlation function

To get the necessary measurements to estimate the wind field velocity correla-
tion function, a network of five Specular Meteor Radars (SMRs) are used to get
the measurements needed. The network allows for 10* — 10° measurements
every day depending on the time of year. In the data set used which is data
from 2 years of measuring, there are 33.18 million measurements. Which can
allow for up to 10'° pairs.

The SMRs measure the Doppler shift of the meteor trail fp which is drifting with
the neutral wind in the mesosphere. With SMR the Bragg vector (k = ks — k;,
showed in 3.2) can also be obtained using the incident and scattered wave

12 CHAPTER 3. THEORY AND METHOD

vector(k;, ks), this is possible because the SMRs measure the location of the
meteor trail (ﬁ). Using these measurements the wind vector(o,,(t, ﬁ)) can be
represented by the given equation:

on(t, p) = u(t, p)x(p) + v(t, P)J(p) + w(t, p)2(p) (3.3)

Here x, y and z represent the East, North and Up(ENU) coordinates where ﬁ
is measured individually for each measurement.

Notation of k can be written as:

9B K=k A(p) (3.4)

bt

K =k-2p) kY=
The Doppler shift r of a measurement with error & is written as:
r=-w+é¢ w=k-3 (3.5)

Where o is the wave vector and k is the Bragg vector

r=-w+é (3.6)
w=k-3 (3.7)
r=u(t,p)k* + v(t, p)kY + w(t, p)k* + & (3.8)

& is assumed to be a zero mean independent normally distributed random
variable. u(t,p), v(t,p) and w(t, p) are the three components of the wind.
Namely the East-West, North-South and Vertical components.

To estimate the wind field velocity correlation function we need measurements
that we can correlate in time and position, given two measurements r; and
r; which is Doppler shift measurement of wind velocity in the East, North, Up
(ENU) coordinate system.

ri = u(ti, po)ki + U(tisﬁi)k? +w(ty, po)k? + & (3.9)
u(ty, ppk; + o(t, ppk] +w(ty, ppk; + & (3.10)

rj

Take the expected value (r,-rj>, and all products including the zero mean &
will be zero, assuming u, v and w are Gaussian random variables with some
unknown correlation. Expressing the expected values of the product <r,-rj> to
some correlation function G, (7, 5) where and f are the 6 unique variations
of u, vand w. 7 is the temporal lag 7 = t; — t; and § is the spatial displacement
§ = p; — p;. The 6 unique variations of the correlation function G can be

13

represented as:

Guu(1,3) = <u(t,~,ﬁ})u(tj,ﬁ]~)> (3.11)
Goo(1,3) = (v(ti, pi)o(ty, pj)) (3.12)
Guww(,3) = (w(ts, p)w(t;. p))) (3.13)
Guo(t,3) = (ults, pr)v(t;, ;) (3.14)
Guw(7,5) = <u(ti,ﬁi)w(tﬁp_’j)> (3.15)
Gow(7,5) = <(ti’ﬁi)w(t"ﬁj)> (3.16)

These Gq4(7, §) will be the wind field correlation function.

3.5 Techniques for measuring the MLT

There are no technique for measuring the full picture of the MLT, but putting
a few different methods together gives a pretty good overall picture. Different
methods used are: Active and passive ground based operations such as radar
and lidar, rockets, satellite.

There are several different techniques for measuring the MLT using radar and
lidar. Some of the more common are: Specular meteor radar (SMR), Medium
frequency (MF), lidar and passive optical techniques.

Techniques when using satellites are the same as with ground based operation,
but since the advantage of satellites is that there are no clouds in the way, lidars
are quite common as well as limb scanning such as Sounding the Atmosphere
with Broadband Emission Radiometry (SABER) and Microwave Limb Sounder
(MLS) used in this study (Huang et al., 2006).

3.6 Temporal and spatial resolution with the
different measuring techniques

Active ground based radar gives good local time variations as they can go
on continuously. When using a network of SMR as in ((Vierinen et al., 2019),
(Stober and Chau, 2015), (Chau et al., 2019)), it is possible to get one km vertical
resolution and know the position and time of each measurement. This network
of SMRs measures about 10* — 10° measurements every day depending on
how many radars in the network as well as the time of year. Thus, the temporal
resolution is very good and the horizontal resolution is good for the local area.

14 CHAPTER 3. THEORY AND METHOD

More on meteor radars is given in section 3.7.

Satellites give near-global coverage, but spatial resolution will be quite high
except for the use of limb scanning where the vertical resolution will be quite
low (a few km, (Smith, 2012))

Rockets will give good vertical coverage (a few km, (Smith, 2012)) and good
spatial resolution as it is in situ, but rocket operations takes long to plan and
are very expensive which means the temporal resolution is bad.

Using lidars makes out the properties of the atmospheres using airglow emis-
sions, but can only be used during near perfect conditions: night time and close
to clear sky. This method is also limited in altitude range, since the emission
only happens at certain altitudes around 87-100 km.

3.7 How a meteor radar measures the neutral
wind velocity and temperature of the
mesosphere

A SMR measures the Doppler shift of the meteor trail fp which is drifting
with the neutral wind in the mesosphere. SMR measures the location of the
meteor trail (ﬁ). Using these measurements the wind vector (0y,(t, ﬁ)) can be
represented by equation 3.3:

V(. p) = u(t, pIX(P) + v(t, P)Y(P) + w(t. p)2(P)

Here x, y and z represent the East, North and Up(ENU) coordinates where p is
measured individually for each measurement, this method is used in (Vierinen
et al., 2019).

The temperature is estimated using the decay time of a meteor trail, with
this method the accuracy is within 4-10 K as suppose to more than 10 K with
previous methods. These estimations are shown to work at altitude with the
most meteor detectability 86-92 km(Hocking, 1999). It is a big advantage to
be able to use meteor radars to estimate the temperature as other methods
(mentioned in (Smith, 2012)) for measuring the temperature rely on lidars
which mostly can’t be used during day time.

15

3.8 The expected horizontal spatial spectrum of
kinetic energy of the mesosphere

The kinetic energy spectrum of the mesosphere describes how the kinetic
energy decreases as the wave number increases. The kinetic energy in the
horizontal direction is expected to decrease with k™3 for larger scale waves
and k™3 for smaller scale waves. Waves on the larger scale size has wavelength
of 150-200 km or larger.

3.9 Structure function

The correlation function G, 4 can be expressed with the use of a second order
structure function assuming the wind field is a wide sense stationary and
horizontally homogeneous random process (Kolmogorov, 1941). This struc-
ture function can be expressed with two pairs of meteor data, uy(ty, pe) and
ug(tg, ﬁ/g) where p is the position and t is the time of the measurements and
a and f denotes two different measurements. The structure function for the
meteor data will be:

Sap(t.3) = ([ua(ta. pa) — up(ts. pp)l) (3.17)
= (ua(tas pa)®) + (up(tp, pp)?) — 2{ua(te. pa)up(ts. pp)) (3.18)

The two first components in 3.19 (uq(ta, Pa)®) + (up(tp, pp)*) will be the
zero lag correlation functions G, (0, 0) + Gg4(0, 0). And the last component
(ua(ta, pa)up(tp, pg)) will be the cross correlation between the two measure-
ments Gy g(te — tg, Pa — Pp) OF Gop(7,5) Where 7 is the temporal lag and § is
the spatial lag. We get the final relation for two measurements:

Saﬂ(fa g) = GD(O((O, O) + Gﬁﬁ(oa O) - 2Gaﬁ(T, g) (319)

and for the case of using the same component

Sap(7,5) = 2G4a(0,0) — 2Ga(7,) (3.20)

With these relations the structure function can be calculated from the correla-
tion functions.

16

CHAPTER 3. THEORY AND METHOD

Results and discussion

In this chapter the results from the MMARIA Norway (Stober et al., 2018)
data set will be presented and discussed. First some general statistics about
the data set will be presented to get an overall idea of where and when the
measurements occur. After that, the general picture about the data set the
temporal correlation functions will be presented divided into summer and
winter months which was decided to be June, July and August for summer and
November, December and January for winter. Using the temporal correlation
function and the spectral density we will figure out information about waves
and tides, as well as to find a power law following the kinetic energy over time.
For the spatial correlation function we use a second order structure function
to find if the kinetic energy over space follows a power law.

4.1 Data

For this study, we used meteor radar measurements from the MMARIA Norway
meteor radar network (Stober et al., 2018), which had 3 transmitters and 4
receivers. The transmitters were located in Alta, Andenes and Tromsg and the
receiver stations in Alta, Andenes, Tromsg and Straumen. The Alta radar is
owned and operated jointly by Nagoya University in Japan and the Tromsg
Geophysical Observatory (TGO). The Tromsg radar is owned and operated
jointly by the Japanese National Institute for Polar Research (NIPR) and TGO.
The Andenes and Straumen radar sites are owned and operated by the Institute

17

18 CHAPTER 4. RESULTS AND DISCUSSION

15°E 20°E 25°E

71°N 71°N
69°N

69°N

67°N ~{67°N

Figure 4.1: This is a plot of the measurements based on longitude and latitude
showing where the measurements are. Elevation cutoff is 37° above the horizon.
Only two days of data is used.

19

MMARIA Norway
unique detections per day

—— Alta_Alta
Andenes_Andenes
—— Andenes_Straumen
—— Tromso_Tromso
— All

80000 +

70000 +

60000

50000

40000 -

Counts per day

30000 -

20000 +

10000 4

2018-02 2018-05 2018-08 2018-11 2019-02 2019-05 2019-08 2019-11 2020-02
Date (UTC)

Figure 4.2: Daily number of meteor measurements, separated by transmitter
and receivers.

of Atmospheric Physics in Kithlungsborn, Germany.

The benefit of using a network of radars, is that we obtain more meteor counts,
a larger geographic coverage, and a diversity of Bragg scattering k-vectors.
The combination of the higher meteor count and diversity of Bragg scattering
k-vectors results in statistical better estimates of the correlation function of the
kinetic energy. Larger geographic coverage allows the distribution of kinetic
energy across a larger range of horizontal spatial scales to be studied, as
the longest spatial lag is defined by the longest distance between observed
meteors.

The geographic coverage of the meteor radar network is shown in Figure 4.1.
From this figure we can see how big of a horizontal coverage we have. We
have about 15 degrees in the zonal direction which is some where around 1000
km, and in the meridional direction we have about 5 degrees which is around
500 km. The reason the south most, Straumen, has such few measurements
is due it only being a receive-only station. The radii of the circles around the
receivers are limited due to only selecting meteor detections with elevation
angles higher than 37° above the horizon in order to select only high quality
measurements. This figure only show the coverage of the data it is only a plot
of a few days of data. The Andenes-Straumen link was only activated in the
end of 2018.

20 CHAPTER 4. RESULTS AND DISCUSSION

Number of measurements on altitude

105 4 —— Alta_Alta
Andenes_Andenes
—— Andenes_Straumen
100 —— Tromso_Tromso
All
95
E
=
L 90
=2
=
<
85 4
80 4
75

T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
of measurements

Figure 4.3: The number of measurements on altitude, for one month during
the winter 2019.

The number of specular meteors trail echoes per day is shown in Figure 4.2. The
total number of meteors per day is maximized during the fall, when Norway
is on the axis facing towards Earths orbital direction. When this is the case
the Earth crashes into more meteors than it would on any other time of year.
The short duration spikes in meteor count can be attributed to meteor showers.
The biggest spike is due to a meteor shower called Geminids, and is caused by
the object "3200 Phaethon" which is not a comet. The MMARIA data set from
January 2018 to February 2020 contains 33.18 million meteor measurements in
total.

Figure 4.4 shows how many measurements per 30 minutes at time of day,
the timing is in UTC. The reason there is a peak in measurements at around
4-UTC is because that is when Norway is facing Earths orbital direction and
are "crashing" into meteors similar to 4.2, at the nadir in the figure which will
be 12 hours later, will be when Norway is on the opposite side of Earths orbital
direction.

The altitude range shown in 4.3 shows that all measurements are in the range

21

Time of day when meteor measurements occur

35000

30000

25000 A

20000 1

15000 +

10000 +

number of measurments

3000 4

o0 2 4 & B 10 12 14 1 18 20 22 M
hour of day

Figure 4.4: This figure shows the distribution of measurements on time of day
during 5 days in winter 2019.

70-110 km, with most measurements around the 9o km altitude. The reason
for this specific altitude range is due to the atmospheric density. At around
110 km the atmosphere is dense enough for meteors to start burning up, and
most meteors will be burnt up at around 70 km.theerfore there are very few
if any measurements at a lower altitude. The histogram of meteor detections
as a function of altitude determines the altitude range at which measurements
of kinetic energy can be made using specular meteor trail measurements. The
altitude region where the count of meteors is highest is the region where the
highest quality measurements can be made.

Given a normal distribution of meteors in a space it is logical that there will be
an exponential increase in pairs as the lag gets bigger, the same applies for a
time period. As showed in 4.5 we can tell that the horizontal and temporal lag
increase the amount of pairs increase as expected. From this figure the spatial
and temporal limitations can be seen, as of (10 km, 10 sec) the amount of
measurement is sufficient. This figure is also only an example from the altitude
with the most measurements, all the other altitudes looks similar and often
identical.

22 CHAPTER 4. RESULTS AND DISCUSSION

Distribution of horizontal and temporal lags, h=90 km
6

6

rJ e8] - L

logip (counts)

Temporal distance logig (s)
[

(=]

-1
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Meridional distance logip (km)

Figure 4.5: This 2D histogram plot shows the number of pairs with given
horizontal and temporal lag for 9o km altitude.

23

— G 10?—;
800 — Gw]

106 4

600

10° 4

400

200

Cormrelation function (m?2/s?)
Power spectral density (m2/s2/Hz)

0 5 10 10-6 10~ 10-4
Time lag (days) Frequency (Hz)

Figure 4.6: This figure uses data from summer months of 2018, 2019. The left
plot in this figure shows Temporal ACF with up to 14 days of lag. And the
right plot shows spectral density compared with power law of -5/3 and -2. G,
represents the zonal direction and G, represents the meridional direction.

4.2 Seasonal variation in Temporal
autocorrelation function

The temporal autocorrelation function is calculated by using equation 3.11 on
the form G, g(Ar, Ap) by using a certain temporal resolution also needs to be
capped as there would be 10'° pairs if there were no cap. The temporal lag
resolution is set to 1800 s and it runs for lags up to 14 days. The displacement
in position is set to be 100 km, meaning that any two measurements of wind
need to be separated by less than 100 km in horizontal distance. The altitude
range is set to only take measurements between 85 and 95 km which is the
range where there is the most measurements. The time window is limited to
differentiate summer 4.6 and winter 4.7 months. Summer months are selected
as May, June and July. Winter months are November, December and January.
The measurement of temporal autocorrelation function is averaged over the
whole dataset for winter and summer months.

Figures 4.6 and 4.7 show the temporal autocorrelation functions of the zonal

24 CHAPTER 4. RESULTS AND DISCUSSION

lOE E 1 1

— G 3 Bk

1250 A — Ow 107 Lol

[

] [

= 4 1 11

__ 10001 I 10°+ Lo

% PR ol

1 1

E 750 £ 10°4 Ll

5 2 !
v c 4 4
5 500+ g 1
c T 1
g | ?; 10 5
5 250 =3 E
: 5 100
; g 10
0 £]
107 3
—250]
100 5
0 5 10 10-% 1075 10-%
Time lag (days) Frequency (Hz)

Figure 4.7: This figure uses data from winter months of 2018, 2019 and 2020.
The left plot in this figure shows temporal autocorrelation function with up to
14 days of lag. And the right plot shows spectral density compared with power
law of -5/3 and -2. G,,,, represents the zonal direction and G, represents the
meridional direction.

and meridional wind G,,,,, G, for the summer and winter months, respectively.
The three main features of G,,,,, G, are: 1) the 12 hour tide, which can be seen
as a sinusoidal oscillation with a 12 hour period; 2) a spike at short < 12 hour
temporal lags, which represents kinetic energy in the mesospheric fluid that
does not have long correlations. These are mostly due to short period gravity
waves; 3) There are long time scale correlations which manifest has a nearly
constant non-zero mean value for the correlation function, this component is
attributed to planetary waves.

The temporal autocorrelation function can be expressed like a sinusoidal
function with three components assuming these three main features are the
only periodic waves effecting the temporal autocorrelation function and that
the small scale waves kinetic energy is constant. This simplified function would
be on the form:

Gaa(r) = Agexp (—yt) + Aj cos (27 for) + Az

By comparing Figures 4.7 and 4.6 to the equation 4.1. A we can estimate the

25

amount of kinetic energy that comes from what type of waves. Ay will be the
small scale waves only happening at the first peak, A; will be the semi diurnal
tide meaning f, = 2.3 - 107> and A, will be the planetary waves. A simplified
version of the temporal autocorrelation function is showen in figure 4.8.

Table 4.1: This table describes how many percent of kinetic energy (KE) the tide
and the different waves contribute. Ag is planetary waves, A7 is semi diurnal
tide and A, is gravity waves.

Ay A1 Ay Ay A A
(%] [%] [%] [Z] [Z] [%]
Summer zonal (G,,,) 84 11 5 630 8g 40
Winter zonal (G,,) 68 21 11 950 300 150
Summer meridional (G,,) | 67 13 20 600 120 180
Winter meridional (G,,) 72 24 4 870 290 50

The kinetic energy in the mesosphere is mostly due to small scale waves which
is mainly gravity waves. As we can see from 4.1 they contribute about 70% or
more. For the semi diurnal tide which seem to contribute around 10% during
the summer and around 20% in the winter. The planetary waves has a big
seasonal dependence in the meridional direction with a contribution of 20% in
the summer and only 4% in the winter.

From Figure 4.7 and 4.6 we can also tell that there is a clear difference in
spectral density for the summer and winter months. For Figure 4.6 which is for
summer months, it is unclear whether the spectral density follows a power law
of -5/3 or -2. And for the winter 4.7 the spectral density clearly follow a power
law of <-2. The reason for this is unclear. The marked lines show where the
24 hour diurnal tide, the 12 hour semi diurnal tide and the 8 hour tide occurs.
The semi diurnal tide is by far the biggest spike.

4.3 Horizontal autocorrelation funciton and
structure function

The horizontal autocorrelation function is calculated in the same manner as
the temporal autocorrelation function. The lag resolution is however based on
the horizontal distance from each measurement. This horizontal lag resolution
is set to be 25 km and it runs all the way up to 500 km. The measurements are
taken from the altitude range 85-95 km and the temporal range from summer
months is shown in figure 4.10 and from winter months in figure 4.11. In the
right plot in figures 4.10 and 4.11 the second order structure function using

26 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.8: Simplified version of the temporal autocorrelation function.

the correlation fzunction calculation shows that the structure function follows
a power law if s3 which is what is expected as this relates to the power law of
k‘g in the auto correlation function (Kolmogorov, 1941). These plots are the
first plots showing a power law of k3 for the decrease in kinetic energy for
small scale waves in the mesosphere with a resolution up to 500 km.

There are some clear seasonal differences in the horizontal wind. In the winter
there is much more energy both for small and large scales waves. As well as
for the waves responding to the 350-400 km have a big spike in the winter
meridional wind. The structure function also indicates this increase around
350-400 km of horizontal lag. This peak could be an artefact.

By simplifying the horizontal autocorrelation function in figures 4.10 and 4.11
into an exponential function featuring the two main features, assuming the
large scale waves are near constant in our 500 km horizontal lag and the small
scale waves. The function can be expressed like this:

Gaa(s) = Agexp (—ks) + Ay

Where Ag will related to the small scale waves and A; will related to the
large scale waves like planetary waves as these large scale waves will always

27

Figure 4.9: Simplified version of the horizontal autocorrelation function.

correlate equally much over soo km distance. By using this equation the
seasonal differences are easier to express. This simplification is illustrated in
figure 4.9

Table 4.2 illustrates how much of the kinetic energy is contributed by planetary
waves and by gravity waves separated by direction and season. In the summer
planetary waves have a much greater impact on the meridional wind than the
zonal wind as well as gravity having a smaller significance in the meridional
wind. In the winter the impact seem to be pretty much the same in both the
meridional and zonal direction for both planetary and gravity waves.

The vertical wind might not seem as important as the horizontal wind since the
kinetic energy is a lot smaller it is still very important as it affects the horizontal
wind due to the momentum flux from small scale waves (Liu, 2019).

28 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.2: This table describes how many percent of kinetic energy (KE) the
different waves contribute in the horizontal wind. A; is planetary waves, and
Ay is gravity waves.

Ag A1 Ao A
%] [%] [%] [%]
Summer zonal (G,,,) 52 48 370 320
Winter zonal (G,,,) 43 57 550 720
Summer meridional (G,,) | 31 69 250 560
Winter meridional (G,) 43 57 470 630

Horizontal ACF

Asz;= 1.0 km, AT =600.0 s Asp =25.0 km Horizontal structure function
—— Suy
800 | Sy
52p’3
600
_ 2
o E
E 400 5
= 0
(=] =
s 2
Tl L]
200 4 =
© £
ol
0
102 4
—200 4
T T T T T T
o 100 200 300 400 102

Horizontal lag (km) Horizontal lag (km)

Figure 4.10: The left plot shows Horizontal autocorrelation function with with
up to 500 km spatial lag with 25 km resolution, during the summer 2018
and 2019. The right plot shows the structure function corresponding to the
left autocorrelation function. G,, represents the zonal direction and G,
represents the meridional direction.

29

Horizontal ACF

Asz=1.0 km, AT =600.0 s As, =25.0 km Horizontal structure function
1500 4 —— Sy
—o— Sw
SEH
1250 4
1000 A 107 1
_ kS
2 €
750 s
=
s g2
B 2
7l 7]
E 500 5
(=] =
[w] [¥)
2
A
250 4
0-
=250 1 T T T T T T — T
0 100 200 300 400 102
Horizontal lag (km) Horizontal lag (km)

Figure 4.11: The left plot shows Horizontal autocorrelation function with with
up to 500 km spatial lag with 25 km resolution, during the winter 2018, 2019
and 2020. The right plot shows the structure function corresponding to the
left autocorrelation function. G, represents the zonal direction and G,
represents the meridional direction.

30 CHAPTER 4. RESULTS AND DISCUSSION

Meridional mean wind (m/s) Zonal mean wind (m/s)
60 60
100
40 g 40
= ©
5 95 20 g 20
g] o 0
13
E 90 *g
= -20 = -20
< 85 E
o
—-40 @ —40
80 —60 —60
60 60
100
40 40
= &
5 95 20 ¢ 20
g 0 ® 0
90 =
£ 20 B 20
=] _ _
= =
< 85 o
—40 —40
80 —60 —60
20 20
100
= 10 10
E 95 =
W =
g 9 ° 3z 0
2 ¢
< -10 -10

85

80

Time (h) Time (h)

Figure 4.12: In this figure the 30 min mean wind, 4 hour mean wind and the 30
min - 4 hour fluctuating component is shown, the data is from January 2019.

4.4 The mean wind in the mesosphere

From Figure 4.12 the 30 min mean wind is plotted on top, as well as the 4 hour
mean wind. Using Reynolds decomposition and letting the 30 min mean wind
be @ and the 4 hour mean wind be u and using equation 3.2. We get the less
than 4 hour fluctuating wind showing that there are periodic waves smaller
than 4 hours in period. These fluctuations are most likely large horizontal
wavelength gravity waves.

31
4.5 Code problems/fixes

The first issue with the data was that there was duplicate measurements at
the start of each month which was fixed by calling only the unique measure-
ments.

Some other problems with the measurement was some noise appearing at o
lag, which was avoided by filtering the o lag data away.

Since there was a lot of data to process and on a different format then previous
data. A method for reading the data for use in pre-existing code was needed,
which was simply reading the data in a slightly different way.

As the file received was on a day by day basis, a way of reading the data
between certain temporal frames, as well as having a easier way to work with
the data was made. And this also made the processing faster.

Reading in all of the data was a problem for the laptop uses for these program-
ming, a fix was to read the data in at a shorter time period at a time, such as 7
days at a time, or longer depending on the use. As my laptop was also quite
slow some of the data ended up being processed on a computer server.

The code used is in an open repository in Github. https://github.com/OleNordaunet/cfi.

The addional software development effort to allow large datasets to be pro-
cessed using the CFI method has been a join effort between me and the
supervisor for this project, Juha Vierinen.

Since there was a lot of data to process and on a different format then previous
data. A method for reading the data for use in pre-existing code was needed,
which was simply reading the data in a slightly different way.

32

CHAPTER 4. RESULTS AND DISCUSSION

Conclusions

In this thesis a method of calculating the distribution of kinetic energy in the
mesosphere is presented, as well as the seasonal differences. This method is
using data from Multi-static, Multi-frequency Agile Radar for Investigations
of the Atmosphere (MMARIA) to find the temporal and spatial correlation
functions.

5.1 Our findings

Using the temporal correlation function and its power spectra we found that the
kinetic energy mainly oscillates with the semi diurnal tide, but the diurnal and
8-hour tides are also noticeable. For the distribution of kinetic energy the small
scale waves were found to be the most significant with a seasonal variation.
The semi diurnal tide however seem to have a clear seasonal variance in both
the zonal and meridional direction. The planetary wave has the strongest effect
during summer in the meridional direction, for the zonal direction during
summer the planetary wave has much lower significance. And for the winter
the significance is strongest in the zonal direction, and for the meridional
direction during winter the significance is low.

The power spectra of the temporal autocorrolation function shows that for

small scale waves energy reduces as a power law. There is also a seasonal
difference in this power spectra for small scale waves, in the summer the power

33

34 CHAPTER 5. CONCLUSIONS

5 . .
spectra seems to be k™3 but during the winter the power spectra seem to have
a faster decrease in energy following k2.

The spatial correlation function is used to look for a power law describing the
. _s .
small scale waves decreasing in energy k™3, and the relation to the second
.2, .
order structure function s3 is also used to reduce uncertainty.

5.2 Suggestions for further work

There is a lot that can be done using the MMARIA dataset, but for the matter
relevant to this thesis there is a finite amount to mention. The less than 4 hour
periodic waves found in the fluctuating wind can be explored.

For the temporal energy specter the exact power law can be explored. It might
be easier to find using a smaller temporal resolution.

The vertical auto correlation function can be found and related to a power law
using the added code the result for the vertical auto correlation function can
be shown as well as the structure function.

Source code

The main source code used in this thesis is the cfi_dac.py which is the base
of all calculations done in the other scripts. The sfizd_hor.py which calculates
the mean wind is also important as some of the scripts relies on calcula-
tions of the mean wind during the temporal range the given code are using.
mmaria_read.py is the last important base code which makes the dataset much
easier to work with.

The three next following scripts are for making the calculations for plotting
and are based on the previous main codes. The last remaining scrips are for
making the plots.

Listing A.1: ¢fi_dac.py; Core routines for correlation function inversion.
#!/usr/bin/env python
#
Correlation Function Inversion
#
find pairs using divide and conquer
#
Estimating the mesospheric neutral wind correlation
function with different spatial and temporal lags
using meteor radar measurements.
#
Juha Vierinen, 2018
#

35

36 APPENDIX'A. SOURCE CODE

import numpy as n

import h5py

import matplotlib.pyplot as plt
import itertools

import scipy.misc as sm

import scipy.signal as ss
import scipy.interpolate as si
import scipy.optimize as sio
import traceback

import sys

import geoid const as gc

n.set_printoptions(precision=3)
for parallel processing.
#from mpi4py import MPI

#comm = MPI.COMM WORLD

constants,

TBD add altitude and latitude dependence

(won't make a huge difference, but just to be
complete) .

latdeg2km=gc.latdeg2km#111.321

londeg2km=gc .londeg2km#65.122785

sf names=["uu","vv","ww" ,"uv", "uw","vw"]

end constants

def vel(t,alt,lats,lons,times,rgs,v,dt,dh):
evaluate mean wind without gradients.
tbd: implement better interpolation and linear
gradients for mean wind.
ti=n.array (n.round ((t—times[0])/dt) ,dtype=n.int)
hi=n.array(n. floor ((alt—rgs[0])/dh) ,dtype=n.int)
hi[hi>(v.shape[2]—-1)]=v.shape[2]-1
ti[ti <0]=0
ti[ti >(v.shape[l]—-1)]=(v.shape[1l]-1)
return (v[0,ti ,hi],v[1,ti,hi])

to use with mmaria file? h=mmaria_read () .read data(t0
,t1) but .value doesnt work here, must change this

script?
def get meas(meas file="res/
simone_nov2018_ multilink_juha 30min_1000m.h5",

read measurements 5

mean_rem=False ,

plot_dops=False,

dcos_thresh=0.8,

mean wind file="res/mean wind 4h.h5",
data='h5file '):

the mean wind is whatever is in the file

if data=='h5file ':
h=h5py. File (meas_file,"r")

else

)

t=n.copy(h["t"].value)
lats=n.copy(h["lats"].value)
lons=n.copy(h["lons"].value)
heights=n.copy(h["heights"].value)
braggs=n.copy(h["braggs"].value)
dops=n.copy(h["dops"]. value)
if "dcos" in h.keys():
dcoss=n.copy(h["dcos"].value)

else:

dcoss=n.zeros([len(t),2])

37

subtract mean wind if requested.

#Generaly only for mmaria_read (for now

h=meas file

t=n.copy(h["t"])

lats=n.copy(h["lats"])

lons=n.copy(h["lons"])

heights=n.copy(h["heights"])

heights=heights/1000

braggs=n.copy(h["braggs"])

dops=n.copy(h["dops"])

if "dcos" in h.keys():
dcoss=n.copy(h["dcos"])

else:

dcoss=n.zeros([len(t),2])

38

APPENDIX'A. SOURCE CODE

dcos thresh

dcos2=n.sqrt (dcoss[:,0]**2.0+ dcoss[:,1]**2.0)

ok idx=n.where(dcos2 < dcos_thresh)[0]

if outlier filter:
dc2=n.linspace (0,1.0,num=100)
plt.axvline(dcos thresh)
ok idx=n.where(((n.abs(dops) < (n.abs(dcos2)

*354+15))) & (dcos2 < dcos_thresh))[O0]

if plot outlier filter:

plt.plot(dcos2,n.abs(dops),".",label="All_
measurements")

plt.plot(dcos2[ok_idx],n.abs(dops[ok _idx]),".",
label="Filtered _measurements")

plt.plot(dc2,35.0*%dc2+15)

plt.xlabel ("Magnitude_of_Doppler_velocity_(m/s)
")

plt.ylabel ("Direction_cosine")

plt.show()

t=t[ok_idx]

lats=lats [ok idx]
lons=lons[ok idx]
heights=heights[ok idx]
braggs=braggs[ok idx,:]
dops=dops[ok idx]
dcoss=dcoss[ok_idx,:]

remove mean wind (high—pass filter)
if mean rem:
hm=h5py. File (mean_wind file,"r")
grid
times=n.copy (hm["times"].value)
rgs=n.copy(hm["rgs"].value)
v=n.copy(hm["v"].value)
dt=n.copy(hm["dt"].value)
print (dt)
dh=n.copy(hm["dh"].value)
mlatO=n.copy(hm["lat0"].value)
mlonO=n. copy (hm["lon0"]. value)
hm. close ()

interpolate zonal and merid wind
vu,vv,dudy,dvdy,dudx,dvdx=vel (t, heights , lats ,
lons , times,rgs,v,dt,dh)

don't remove gradients
mean_dops=vu*braggs[:,0]+vv*braggs[:,1]+\
dudy*(lats —mlat0)*gc.latdeg2km*
braggs[:,0]+\
dvdy*(lats —mlat0)*gc.latdeg2km*
braggs[:,1]+\
dudx*(lons—mlon0) *gc.londeg2km *
braggs[:,0]+\
dvdx*(lons—mlon0) *gc.londeg2km *
braggs|[:,1]

residual vel after removing mean horizontal
wind

(negative sign in analysis)

dopsp = dops + mean_dops/2.0/n. pi

stdev_est=n.nanmedian(n.abs(n.nanmean(dopsp)-
dopsp))

stdev_est2=n.nanmedian (n.abs(n.nanmean (dops)-—
dops))

if plot _dops:
plt.plot(dops,".",label="orig")
plt.plot(dopsp,".",label="hp")
print(stdev_est)
print(stdev_est2)
plt.axhline (5*stdev_est)
plt.axhline(—5*stdev_est)
plt.legend ()
plt.show()
resid=n.abs(n.nanmean (dopsp)—dopsp)

ok _idx=n.where(n.isfinite (dopsp) & (resid < 5%

stdev_est))[0]

t=t[ok_idx]

lats=lats [ok_idx]
lons=lons[ok _idx]
heights=heights[ok idx]

39

40 APPENDIX'A. SOURCE CODE

braggs=braggs[ok idx,:]
dops=dopsp[ok idx]
dcoss=dcoss[ok_idx,:]
if data=='file ':
h.close ()
return({"t":t,"lats":lats,"lons":lons,"heights":
heights ,"braggs":braggs,"dops":dops,"dcoss":

dcoss})

def cfi(m,
h0=90, # The height that we want (km)
dh=2, # delta height (how much the height

can differ from hO)
ds z=1.0, # delta s_z how much the vertical
lag can differ from one another
vertical lag is s z +/- ds _z/2

s z=0.0, # vertical component of the spatial
lag (s_z)
s x=0.0, # east—west component of the

spatial lag
ds x=1.0, # delta s _x lag—resolution
s y=0.0, # north—south component of the
spatial lag
ds y=0.0, # lag resolution
s h=0.0, # horizontal distance of the
spatial lag (used instead of s x and s y if
horizontal dist=True)
ds_h=100.0, # lag-resolution
tau=0.0, # temporal lag
dtau=300.0, # temporal lag resolution (lag can
be tau +/- dtau/2)
horizontal dist=False, # do we use spatial lag
specified using horigontal distance
if true, then s_h
specifies the
horizontal lag,
otherwise
s x and s y specify it

hour_of day=0.0, # hour of day
dhour_of day=48.0, # length of a time bin
min_ds h=5.0,

min_dt=30.0,
plot thist=False):

L]

Calculate various lags. Use tree—like sorting of
measurements to reduce the time

to find pairs of measurements (not 100% tested).

this is where we read measurements from the
measurement object.

t=m["t"]

heights=m["heights"]

dops=m["dops"]

lats=m["lats"]

lons=m["lons"]

braggs=m["braggs"]

Figure out hour of day (UTC)
hod=n.mod(t/3600.0,24.0)

(idx_for_dimension_ 0, idx _for _dimension_ 1, ...)
t idx=n.where((n.abs(hod—hour of day)<=(
dhour_of day/2.0)) | (n.abs(hod—24-hour_of day)
<=(dhour_of day/2.0)) | (n.abs(hod+24-
hour of day)<=(dhour of day/2.0)))[O]

select only the subset of measurements
t=t[t_idx]

heights=heights[t idx]

dops=dops[t_idx]

lats=lats[t_idx]

lons=lons[t_idx]

braggs=braggs[t idx,:]

acf=n.zeros (6)
err=n.zeros (6)

pairs =[]
pair_dict={}
tods =[]
taus=1[]

s xs=[]

41

42 APPENDIX'A. SOURCE CODE

s _ys=Il
s _zs=[]
s _hs=[]

hor dists=[]

n_times=int ((n.max(t)-n.min(t))/(dtau))
tO=n.min(t)

for i in range(n_times):
it0O=i*dtau+t0
if i == (n_times—1):
itl=n.max(t)
else:
itl=i*dtau+t0O+2*dtau

filter heights

idxO=n.where((heights > (h0-dh*0.5)) & (
heights < (h0O+dh*0.5)) & (t>it0) & (t<itl))
[0]

idx1=n.where((heights > (hO+s_z—-0.5*dh)) & (
heights < (hO+s z+0.5*dh)) & (t > (itO+tau))
& (t< (itl4tau)))I[O]

if False:
plt.plot(t[idx0],heights[idx0],"+")
plt.plot(t[idx1],heights[idx1],"o")
plt.xlim ([n.min(t) ,n.max(t)])
plt.show ()

print("%d/%d s _z %1.2f hO %1.2f hl %1.2f tau
%1.2f"%(i,n_times,s z,n.mean(heights[idx0]) ,n.mean(
heights [idx1]) ,tau))

for ki,k in enumerate(idx0):
latO=lats [k]
lonO=lons[k]
mtO=t [k]
hgO=heights [k]

if horizontal dist:
dist filter = (n.abs(n.sqrt((latdeg2km
*(lats [idx1]-1at0))**2.0 + (

43

londeg2km*(lons[idx1]—1lon0))**2.0)—
s h) < ds_h/2.0)
else:
dist _filter = (n.abs((latdeg2km=*(lats|[
idx1]-lat0))-s y) < ds y/2.0) & (n
.abs ((londeg2km*(lons[idx1]—-1lon0))—
s x) < ds x/2.0)

idxt=idx1[n.where(dist_ filter &
(n.abs((heights[idx1]-
hg0) — s z) < (ds_z
/2.0)) &
(idx1 !'= k) &
(n.abs(t[idx1] — mt0 —
tau) < dtau/2.0))
[0]]
for 1 in idxt:
if "%d9%d"%(k,1) not in pair_dict:
hor dist = n.sqrt((latdeg2km=*(lats
[1]-1at0))**2.0+ (londeg2km* (lons
[11-1lon0)) **2.0)
filter our measurements that are
too close
if hor dist > min ds h and n.abs(t[
11-t[k])> min_dt:
pair_dict["%d—%d"%(k, 1)]=True
pair_dict["%d—2%d"%(1 ,k)]=True
pairs.append ((k, 1))
tods.append (t[k])
taus.append (t[1]—-t[k])
s_zs.append(heights[1]-heights[
k1)
s_xs.append (londeg2km*(lons[1]—
lon0))
s_ys.append(latdeg2km*(lats [1]—
lat0))
s_hs.append(n.sqrt((latdeg2km
*(lats[1]-1at0)) **2.0+(
londeg2km=*(lons[1]—-1on0))
*%2.0))

histogram and interpolate the number of
measurements as a function of day

44

APPENDIX'A. SOURCE CODE

tods=n.array (tods)

30 minute bins, 0..24 hours utc histogram

thist ,tbins=n. histogram (n.mod(tods/3600.0,24) ,bins
=48)

if plot thist:
plt.plot(tbins[0:len(thist)], thist)
plt.show ()

make sure that weight is at least 1.0 (one
measurement per hour)

thist[thist < 1.0]=1.0

tbins2 =0.5*(tbins [0:(len(tbins)—1)]+tbins[1:(len(
tbins))])

start with 0 hours

tbins2[0]=0.0

end with 24 hours

tbins2[len(tbins2)-1]1=24.0

countf=si.interpld (tbins2 , thist)

n_meas=len (pairs)

A=n.zeros ([n _meas,6])
Ao=n.zeros ([n_meas,6])

mEn. zeros (n_meas)
mo=n. zeros (n_meas)

print ("n_meas_%d"%(n_meas))
ws=[]

for pi in range(n_meas):
k=pairs[pi][0]
l=pairs[pi][1]

w=1.0/countf(n.mod((t[k]-t0)/3600,24.0))
ws. append (w)

A[pi,0O]=w*braggs[k,0]*braggs[1,0] # kul*ku2
Ao[pi,0]=braggs[k,0]*braggs[1,0] # kul*ku2

Alpi,1]=w*braggs[k,1]*braggs[1,1] # kvl*kv2
Ao[pi,1]=braggs[k,1]*braggs[l,1] # kvl*kv2

45

A[pi,2]1=w*braggs[k,2]*braggs[1,2] # kwl kw2
Ao[pi,2]=braggs[k,2]*braggs[1,2] # kwl*kw2

Alpi,3]=w*(braggs[k,0]*braggs[l,1]+braggs[k,1]*
braggs[1,0]) # kul*kv2 + kv1*ku2

Ao[pi,3]=braggs[k,0]*braggs[l,1]+braggs[k,1]*
braggs[l,0] # kul*kv2 + kvI*ku2

Alpi,4]=w*(braggs[k,0]*braggs[l,2]+braggs[k,2]*
braggs[1,0]) # kul*kw2 + kwl*ku2

Ao[pi,4]=braggs[k,0]*braggs[1,2]+braggs[k,2]*
braggs[1,0] # kul*kw2 + kwl*ku2

Alpi,5]=w*(braggs[k,1]*braggs[1,2]+braggs[k,2]*
braggs[1,1]) # kvl*kw2 + kwl*kv2

Ao[pi,5]=braggs[k,1]*braggs[l,2]+braggs[k,2]*
braggs[1,1] # kvl*kw2 + kwl*kv2

m[pi]=w*((2*n.pi) **2.0) *dops[k]*dops[1]
mo[pi]=((2*n.pi)**2.0)*dops[k]*dops[1]

try:

ws=n.array (w)
xhat=n.linalg.lstsq (A,m) [0]

inverse scale weights
resid=(mo-n.dot (Ao, xhat))

mean_err=n.median(resid)
resid_std=n.median(n.abs(resid —-mean_err))

if debug plot:
plt.plot(resid,".")
plt.axhline(resid std *5.0,color="red")
plt.axhline(—resid std *5.0,color="red")
plt.show()

remove extreme outliers
good_idx=n.where(n.abs(resid_std —-mean_err) <
5.0*resid_std)[0]

An=A[good idx,:]
mn=m[good_idx]

46 APPENDIX'A. SOURCE CODE

xhat=n.linalg.Istsq (A,m) [O]

stdev=n.sqrt(n.mean(n.abs(resid) **2.0))

assuming all measurements are independent

sigma=n.sqrt(n.diag(n.linalg.inv(n.dot(n.
transpose (Ao) ,Ao)))) *stdev

acf[:]=xhat

err[:]=sigma

except:
traceback. print_exc(file=sys.stdout)
acf[:]=n.nan
err[:]=n.nan

if False:
plt.hist (taus)
plt.show()
plt.hist(s_xs)
plt.show ()
plt.hist(s_ys)
plt.show ()
plt. hist(s_zs)
plt.show()
return(acf, err, n.mean(taus), n.mean(s_xs), n.mean
(s_ys), n.mean(s_zs), n.mean(s_hs))

def hor_acfs(meas,h0=90,dh=2,tau=0.0,s_h=n.arange
(0,400.0,25.0),
ds h=25.0, ds_z=1.0, dtau=900, title="
hor acf"):

LI

Horigontal distance spatial correlation function

1

n_lags=len(s h)
acfs=n.zeros([n_lags,6])
errs=n.zeros([n_lags,6])

names=["$G _{uu}$","$G {vv}$","G_{ww}",
"$G_{uv}s$","$G_{uw}r$","G_{vw}"]

shs=[]
for 1i in range(n _lags):

47

acf ,err ,tau,sx,sy,sz,sh= cfi(meas, hO=h0, dh=dh
, $ z=0.0, s h=s h[li], ds h=ds h, ds z=ds z
, tau=tau, dtau=dtau,
horizontal dist=
True, min_dt
=10.0,min_ds_h
=10.0)
shs.append(sh)
print("s_h_%1.2f"%(sh))
print (acf)
acfs[li,:]=acf
errs[li,:]=err
shs=n.array (shs)

ho=h5py. File (title ,"w")
ho["h0"]=hO
ho["dtau"]=dtau
ho["ds_h"]=ds_h
ho["acfs"]=acfs
ho["errs"]=errs
ho["shs"]=shs
ho["sho"]=s_h
ho.close ()

return (hO, dtau,ds_h,acfs,errs,shs,s h,names)

def plot hor_acfs(shs,
names,
acfs,
ds z,
dtau,
ds h,
err_vars,
colors,
zlag,
n_avg):
plt.subplot(121)
for i in range(6):
#plt.plot(shs,acfs[:,i],label=names[i])
plt.errorbar(shs,acfs[:,i],yerr=n.sqrt(err_vars

48

plt
plt
plt
plt

plt
e

APPENDIX'A. SOURCE CODE

[:,i]/n_avg),color=colors[i],label=names[i])
.legend ()
.xlabel ("Horizontal _lag_(km)")
.ylabel ("Correlation_(m$"2$/s$°2$)")
.title ("Horizontal ACF\n$\Delta_s z=%1.1f$ _km, _$
\Delta_\\tau_=_%1.1f$_s_$\Delta_s h=%1.1f$ _km"%(
ds_z,dtau,ds _h))

.subplot(122)
stimate structure function

tbd, estimate zero lag with exp function

sfu
sfv
d
plt
plt
a=s
sh
plt
plt
plt
plt

plt.
plt.

plt

def ver

1

=2.0*zlag*acfs[0,0]—-2.0*acfs[:,0]
=2.0*zlag*acfs[0,1]-2.0*acfs[:,1]

on't show zero—lag. it doesn't make sense.
.loglog(shs,sfu,"o—",label="$S' {uu}$")
.loglog (shs,sfv,"o-",label="$S"' {vv}$")
ful[2]/shs[2]**(2.0/3.0)

s[0]=0.0

.loglog(shs,a*shs**(2.0/3.0) ,label="$s"{2/3}$")
.legend ()

.xlabel("Horizontal_lag_(km)")

.ylabel ("Structure_function_(m$"2%$/s72)")
title ("Horizontal _structure_function")
tight layout ()

.show ()

_acfs (meas,
h0=90,
dh=1,
tau=0.0,
s _z=n.arange(-10,10.0,1.0),
s h=0.0,
ds h=50.0,
ds z=1.0,
dtau=900,
plot_acfs=False

)

Vertical lag spatial correlation function

1

n_lags=len(s_z)
acfs=n.zeros([n_lags,6])

49

errs=n.zeros ([n_lags,6])

names=["G_{uu}","G_{vv}","G_{ww}",

SZS
for

"G_{uv}","G_{uw}","G_{vw}§"]

=[]

li in range(n lags):

print("s z_%1.1f"%(s_z[1li]))

acf,err ,tau,sx,sy,sz,sh= cfi(meas, hO=h0, dh=dh
, s z=s z[li], s h=0.0, ds _ h=ds h, ds z=ds z
, tau=tau, dtau=dtau, horizontal dist=True)

szs .append (sz)

print("s z_%1.2f"%(sz))

print (acf)

acfs[li,:]=acf

errs[li,:]=err

szs=n.array(szs)

if

plot_acfs:
plot_ver acf(szs,acfs ,names,ds z,dtau)

return (szs, acfs ,errs ,names,ds z,dtau)

def plot ver acf(szs,acfs,names,ds z,dtau,err_vars,
colors ,n_avg):

plt.
plt.

for

plt
plt
plt
plt

plt

figure (figsize =(8%1.5,6*1.5))

subplot (121)

i in range(6):

plt.plot(szs,acfs[:,i],label=names[i])

plt.errorbar(szs,acfs[:,i],yerr=n.sqrt(err_vars
[:,i]/n _avg),color=colors[i])

.legend ()

.xlabel ("Vertical __lag_(km)")

.ylabel ("Correlation_(m$"2%$/s72)")

.title ("Vertical _ACF_$\Delta_s z=%1.1f$, _$\Delta

\\tau_=_%1.1f$_s"%(ds_z,dtau))

.subplot(122)

50 APPENDIX'A. SOURCE CODE

estimate structure function
tbd, estimate zero lag with exp function
sfu=2.0*1.01*acfs[0,0]—2.0*acfs[:,0]
sfv=2.0%1.01*acfs[0,1]—-2.0*acfs [:,1]
don't show gzero—lag. it doesn't make sense.
plt.loglog(szs,sfu,"o-",label="$S"' {uu}$")
plt.loglog(szs,sfv,"o-",label="$S"' {vv}$")
a=sful2]/szs[2]**(2.0/3.0)

shs[0]=0.0
plt.loglog(szs ,a*szs**(2.0/3.0) ,label="$s"~{2/3}$")
plt.legend ()
plt.xlabel ("Vertical _lag_(km)")
plt.ylabel ("Structure_function_(m$"~28/s$72$)")
plt.title ("Vertical _structure_function")
plt.tight layout ()
plt.show()

def temporal acfs(meas,

h0=91, # height

dh=1, # width of height range

tau=n.arange(96) *900.0,

dtau=300.0, # temporal lag resolution

ds_ h=25.0, # horizontal lag
resolution

ds_z=1.0,

title="title '): # vertical lag
resolution

1

Temporal lag spatial correlation function

LI

n_lags=len(tau)
acfs=n.zeros([n_lags,6])
errs=n.zeros([n_lags,6])

names=["G_{uu}","$G _{vv}$","G_{ww}",
"$G {uv}$","G_{uw}","$G {vw}$"]

for 1i in range(n lags):

print("tau_%1.1f"%(taul[li]))

51

acf ,err ,mtau, msx, msy, msz,msh = cfi (meas,

print(acf)

return (acfs ,errs ,tau,dtau,ds_h,names)

acfs[li,:]=acf
errs[li,:]=err

h0=ho,
dh=dh,
s z=0.0,
s h=0.0,
ds_h=ds h,
ds z=ds_z,
tau=tau[li],
dtau=dtau,
min_dt=
min_dt,
horizontal dist
=True)

def plot temporal acfs(acfs,errs,tau,names,ds h,dtau,
title):
for i in range(6):

plt.plot(tau,acfs[:,i],label=names[i])

plt.legend ()

plt.xlabel ("Temporal_lag_(s)")
plt.ylabel("Correlation_(m$~2$/s$"2$)")
plt.title ("%s"%(title))

plt.savefig("C:/Users/OleK/Master thesis/figs/fig %

s.png"%(title))

plt.show ()

ho=h5py. File ("%s_tacf dtau %1.0f tau %1.0f ds h
%1.2f . h5"%(title , dtau,n.max(tau) ,ds _h),"w"

ho["tau"]=tau
ho["acf"]=acfs
ho["dtau"]=dtau
ho["ds_h"]=ds_h
ho.close ()

return (tau, acfs)

52

def

def

def

def

APPENDIX'A. SOURCE CODE

examplel () :

estimate a temporally high pass filtered
horizontal acf

meas=get _meas (mean_rem=True, plot dops=False,
mean wind file="res/mean wind 4h.h5")

hor_acfs(meas,h0=92.0,dh=5,ds z=1.0,ds_h=25.0,s_h=n
.arange (0,400.0,25.0) ,dtau=600.0)

example2 () :

estimate a high pass filtered vertical acf

meas=get _meas (mean_rem=True, plot _dops=False,
mean_wind_file="res/mean_wind_1h.h5")

ver acfs(meas,h0=89.0,dh=4.0,s z=n.arange
(0.0,10.0,1.0) ,dtau=300.0, tau=0.0, s h=0.0,
ds_ h=100.0)

example3 () :

estimate a temporal autocorrelation function

meas=get_meas (mean_rem=False , plot_dops=False,
mean wind_file="res/mean wind 4h.h5")

dtau=900.0
h max=72.0
n_t=int(h max*3600.0/dtau)

temporal acfs(meas,h0=91.0,dh=4,ds z=1.0,ds_h=50.0,
dtau=dtau, tau=n.arange (float(n_t))*dtau)

example4 () :

estimate a temporal autocorrelation function for
high pass filtered measurements

at most 12 hours lag

meas=get _meas (mean rem=True, plot _dops=False,
mean_wind_file="res/mean_wind_4h.h5")

dtau=600.0
h max=12.0
n_t=int(h max*3600.0/dtau)

def

def

53

temporal acfs(meas,h0=93.5,dh=5,ds z=1.0,ds h=25.0,
dtau=dtau, tau=n.arange (float(n_t))*dtau)

example5 () :
full horigontal correlation function
25 km resolution, 25 km lag spacing
900 second lag resolution (+/— 450 seconds)
meas=get _meas (mean rem=False , plot dops=False,
mean _wind file="res/mean _wind 4h.h5")
hor_acfs(meas,h0=92.0,dh=5,ds z=1.0,ds_h=25.0,s_h=n
.arange (0,400.0,25.0) ,dtau=900.0)

mean_wind cf(heights=n.arange(80,111),
hour_of day=n.arange(48)*0.5,
dtau=1800.0, # half hour time
resolution
ds h=300.0): # horizontal lag
resolution
mean wind correlation functions for times of day
at 30 minute time resolution
and 1 km height resolution
#
read measurements. don't remove mean wind, as we
are interested in the full correlation function
meas=get_meas (mean _rem=False, plot _dops=False,
mean_wind_file="res/mean_wind 4h.h5")

n_heights=len(heights)
n_hods=len (hour_of day)

this is where we store the correlation functions
C=n.zeros([n_hods,n _heights,6])

for hi,h0O in enumerate(heights):
for ti ,t0 in enumerate(hour of day):
print ("doing_height_%1.2f_hour_of_day_%1.2f
"%(h0,t0))

acf ,err ,tau,sx,sy,sz,sh= cfi(meas,

hO=h0, dh=2.0,
only
use

54

def

APPENDIX'A. SOURCE CODE

measurements
at height
hOo +/- dh
/2.0
hour_of day=t0
, # only
use
measurements
where utc
hour of day
is t0 +/-
dhour_of day
/2
dhour_of day
=1.0,
s z=0.0, ds_z
=2.0,
s_ h=0.0, ds_h=
ds h,
tau=0.0 ,dtau
=1800.0,
horizontal dist
=True)
print(acf)
C[ti,hi,:]=acf
ho=h5py. File ("mean_cf.h5","w")
ho["C"]=C
ho["heights"]=heights
ho["hour_of day"]=hour_of day
ho.close ()

ho=h5py. File ("mean_cf.h5","w")
ho["C"]=C
ho["heights"]=heights
ho["hour of day"]=hour of day
ho. close ()

return (C)

meas_groundpoint () :

#task2, plot groundpoints of al metor data
measurments.

meas=get_meas (mean_rem=False, plot dops=False,

def

55

mean_wind_file="res/mean_wind 4h.h5")
lats=meas["lats"] #~45-61 lats
lons=meas["lons"] #~2-24 lons
img = plt.imread("minlonslats maxlonlats.png")
fig, ax = plt.subplots ()
plt.xticks (n.arange (2, 33, step=2))
plt.yticks (n.arange (44, 64, step=2))
ax.imshow(img, extent=[1.5, 33, 44, 62])
ax.plot(lons, lats, 'ro', markersize=0.5, alpha
=0.1)
plt.title ('Ground_point_of_meteor_measurements ')
plt.xlabel('longitude ')
plt.ylabel ('latitude ')
plt.show ()

meas_time_ of day(hour_ of day=n.arange(48)*0.5,
dtau=1800.0):

meas=get_meas (mean rem=False , plot dops=False,
mean wind file="res/mean_wind 4h.h5")
time=meas["t"]

n_times=int ((n.max(time)-n.min(time))/(dtau))
tO=n.min(time)

#y—axis=number of meas during the 30 min interval
#x—axis=30 min time bins

hod=n.mod(time/3600.0,24)

histogram and interpolate the number of
measurements as a function of day

hods=n. array (hod)

30 minute bins, 0..24 hours utc histogram

thist, tbins=n.histogram (n.mod(hods/3600.0,24) ,bins
=48)

plt.bar (hour_of day, thist)

plt.title ('Time_of_day_when_meteor_measurements,
occur ')

plt.xlabel ('hour_of_day"')

plt.ylabel ('number_of_measurments ')

plt.xticks (n.arange (0,25, step=2))

plt.show ()

56

def

def

def

APPENDIX'A. SOURCE CODE

mean_wind _cf plot():

ho=h5py. File ("mean_cf.h5", "r")

hour_of day=n.copy(ho["hour_of day"].value)
heights=n.copy(ho["heights"].value)
C=n.copy(ho["C"].value)

a=n. genfromtxt('msis. txt ')
dens=si.interpld(al[:,0],al[:,1])

Guu vv=(C[:,:,0].T+C[:,:,1].T)

E=n.zeros (Guu_vv.shape)

for i in range(len(heights)):
E[i,:]1=0.5*dens(heights[i]) *Guu_vv[i,:]*1e3

plt.pcolormesh (hour of day, heights, n.loglO(E))
#C[:,:,0]=Guu(0,0)

plt.title ('Kinetic_energy[$log {10}(J/m"3)$]")
plt.xlabel ('time_of_day_[hours] ")
plt.ylabel ('altitude [km] ')

plt.colorbar ()
plt.clim(-4,-1)

plt.show ()

km500 horizontal acf():

estimate a temporally high pass filtered
horizontal acf

meas=get _meas (mean rem=True, plot dops=False,
mean_wind file="res/mean wind 4h.h5")

hor_acfs(meas,h0=90.0,dh=5,ds _z=1.0,ds_h=25.0,s_h=n
.arange (0,500.0,50.0) ,dtau=600.0)

temporal acf():

estimate a temporal autocorrelation function for
high pass filtered measurements

at most 7 days lag

meas=get _meas (mean rem=False , plot dops=False,

57

mean_wind_file="res/mean_wind 4h.h5")

dtau=1800.0
h max=7%24.0
n_t=int(h_max*3600.0/dtau)

temporal acfs(meas,h0=93.5,dh=2,ds z=1.0,ds h=25.0,
dtau=dtau, tau=n.arange (float(n_t))*dtau)

def vertical acf():

estimate a high pass filtered vertical acf
meas=get meas (mean rem=True, plot dops=False,
mean_wind_file="res/mean_wind_1h.h5")

ver_acfs(meas,h0=80.0,dh=4.0,s z=n.arange
(0.0,20.0,1.0) ,dtau=300.0, tau=0.0, s h=0.0,
ds_ h=100.0)

#mean_wind_cf ()
#mean_wind _cf plot ()

#plot_tacf()

#examplel ()
#example2 ()
#example3 ()
#example4 ()
#example5 ()

#meas_groundpoint ()
#meas_time_of day(hour_of day=n.arange(48) *0.5, dtau
=1800.0)

#temporal _acf()

#if __name__ == "__main__
vertical _acf ()
#km500_horizontal _acf ()

".

Listing A.2: sfizd_hor.py; Script to calculate the mean wind.

#!/usr/bin/env python
#

58 APPENDIX'A. SOURCE CODE

simple mean horigontal wind

#

import h5py

import matplotlib.pyplot as plt

import glob

from mpl toolkits.mplot3d import Axes3D
import numpy as n

import mmaria read as mr
import cfi dac as cfi
import cfi config as c¢
import time

import datetime

import geoid const as gc

latdeg2km=gc.latdeg2km #111.321
londeg2km=gc.londeg2km# n.pi*6371.0*n.cos(n. pi
*69.0/180.0)/180.0#65.122785

high time resolution mean wind

#t _avg=1800

low time resolution mean wind (used for high pass
filtering)

#If t avg=4%3600.0

#dcos_thresh=0.8

#ofname="res/mean_wind_4h.h5"

def mean wind(meas="res/
simone _nov2018 multilink juha 30min_1000m.h5",
dt=60%60,t step=900,dh=1.0,max_alt=105,
min_alt=80,dcos _thresh=0.8,
ofname="res/mean_wind.h5",
data='h5file '): #data is the type of
input values.

if data=='h5file ':
h=h5py. File (meas,"r")
print(h.keys())
heights=n.copy(h["heights"].value)
ts=n.copy(h["t"].value)
dops=n.copy(h["dops"]. value)
braggs=n.copy(h["braggs"].value)

lats=n.copy(h["lats"].value)
if "dcos" in h.keys():
dcoss=n.copy(h["dcos"].value)
else:
dcoss=n.zeros ([len(heights) ,2])

lons=n.copy(h["lons"].value)

else: #for now only for mmaria_read.py
h=meas
heights=n.copy(h["heights"])
heights=heights/1000
ts=n.copy(h["t"])
dops=n.copy(h["dops"])
braggs=n.copy(h["braggs"])
lats=n.copy(h["lats"])
if "dcos" in h.keys():
dcoss=n.copy(h["dcos"])
else:
dcoss=n.zeros ([len(heights) ,2])

lons=n.copy(h["lons"])

dcos2=n.sqrt(dcoss[:,0]**2.0+ dcoss[:,1]**2.0)

ok _idx=n.where(dcos2 < dcos_thresh) [0]
ts=ts [ok idx]

lats=lats [ok_idx]

lons=lons[ok idx]
heights=heights[ok idx]
braggs=braggs[ok idx,:]
dops=dops[ok idx]

dcoss=dcoss[ok idx,:]

latO=n.median(lats)
lon0=n.median(lons)

rgs=n.arange (min_alt ,max_alt,int(dh))

59

times=n.arange(int(n.min(ts)),int(n.max(ts)),t _step

)

n_rgs=len(rgs)

60

APPENDIX'A. SOURCE CODE

np=2

v=n.zeros ([np,len(times) ,len(rgs)])
ve=n.zeros ([np,len(times) ,len(rgs)])
vel[:,:,:]=n.nan

v[:,:,:]=n.nan

for ti,t in enumerate(times):
print ("%d/%d"%(ti ,len(times)))
ridxs =[]
n_r=[]
for r in rgs:
hidx=n.where ((heights > r)&(heights < (r+dh
V) &(ts>t—dt/2) &(ts <(t+dt/2))) [0]
ridxs .append (hidx)
n_r.append(len(hidx))

n _r=n.array(n_r)
n_meas=n.sum(n_r)

#v.X =v.Xx

#vy=vy

A=n.zeros ([n_meas,np*n_rgs])
mEn. zeros (n_meas)

nm=0

g ridx2 =[]

g ridx=[]

for ri in range(len(rgs)):
m_idx=n.arange (n_ m,n m+len(ridxs[ri]))
meas
m[m_idx]=-2.0*n.pi*dops[ridxs[ri]]
theory
v u
A[m_idx, ri*np+0]=braggs[ridxs[ri],0]
v v
A[m_idx, ri*np+1]=braggs[ridxs[ri],1]

n mt+=len(ridxs[ri])
if len(ridxs[ri]) > 10:
for pi in range(np):
g ridx2.append(ri*np+pi)
g ridx.append(ri)

61

else:
pass
print ("bad range %d"%(ri))
g ridx2=n.array(g_ridx2)
g ridx=n.array(g_ridx)

if len(g ridx2) > O:
xhat=n.linalg.lstsq(A[:,g ridx2],m)[0]
resid=m-n.dot(A[:, g ridx2],xhat)
gidx=n.where(n.abs(resid) < 100.0)[0]

plt.plot(resid)
plt.show()

g ridx_f=[]

g ridx2 f=[]

for ri in g _ridx:
n_meas_per_rg=len(n.where(n.abs(A[:,np*
ri])>0)[0])
if n meas per rg > np:
g ridx_f.append(ri)
for pi in range(np):
g ridx2 f.append(np*ri+pi)

g ridx f=n.array(g ridx f,dtype=n.int)
g ridx2 f=n.array(g_ridx2 f,dtype=n.int)

estimate stdev

stdev=n.sqrt(n.diag(n.linalg.inv(n.dot(n.
transpose (A[:,g ridx2 f]),A[:,g ridx2 f
1D)))*n.std(resid)

n_gridx=len(g _ridx_f)
for pi in range(np):
vipi,ti,g ridx f]=xhat[np*n.arange (
n_gridx)+pi]
ve[pi,ti,g ridx f]=stdev[np*n.arange(
n_gridx)+pi]

times_h=(times—times[0])/3600.0
dt2=times[1]—times[O0]
dh2=rgs[1]—-rgs[0]

ho=h5py. File (ofname, "w"

62

if

__name__ == " main__

APPENDIX'A. SOURCE CODE

ho["times"]=times
ho["rgs"]=rgs
ho["v"]=v

#ho["v _ fluct"]=v2—vy
ho["ve"]=ve
ho["dt"]=dt2
ho["dh"]=dh2
ho["lat0"]=1at0
ho["lon0"]=1lon0

ho. close ()

return (times , times _h ,v,ve,rgs,lat0 ,lon0,dt2,dh2)

" "o,

md=mr. mmaria_data(c.data_directory)#for many files
in a directory
b=md. get bounds ()

d=md.read data date(dO=datetime.date(2019,1,1) ,d1=
datetime.date (2019,1,3))

If t avg=4*3600

t avg=1800.0

times ,times_h,v,ve,rgs,lat0,lon0,dt,dh=mean wind(
meas=d, dt=If t avg ,dh=1.0,max_alt=105,min_alt
=78,dcos_thresh=0.8,data="dict ")

#times , times_h ,v,ve,rgs, lat0,lon0,dt,dh=mean_wind(
dt=1800,dh=1.0,max_alt=105,min_alt=78,
dcos _thresh =0.8)

times2 ,times_h2 ,v2,ve2,rgs2,lat02 ,lon02,dt2,dh2=
mean_wind (meas=d, dt=t avg,dh=1.0,max_alt=105,
min_alt=78,dcos_thresh=0.8,data="'dict ")

print (dh)

plt.figure(figsize =(8,8))

plt.subplot(322)
plt.pcolormesh(times h,rgs ,n.transpose(v2[0,:,:]),

63

vmin=-70,vmax=70,cmap="jet")
plt. title ("Zonal_mean_wind_(m/s)")
#plt.xlabel ("Time (h)")
plt.ylabel ("%d_minute_average"%(t avg/60.0))
plt.colorbar ()

plt.subplot(321)

plt.pcolormesh(times h,rgs,n.transpose(v2[1,:,:]),
vmin=-70,vmax=70,cmap="jet")

plt.title ("Meridional __mean_wind_(m/s)")

#plt.xlabel ("Time (h)")

plt.ylabel ("Altitude_(km)")

plt.colorbar ()

plt.subplot(324)

plt.pcolormesh(times _h,rgs,n.transpose(v[0,:,:]),
vmin=-70,vmax=70,cmap="jet")

#plt. title ("Zonal mean wind (m/s)")

#plt.xlabel ("Time (h)")

plt.ylabel ("4_hour_average")

plt.colorbar ()

plt.subplot(323)

plt.pcolormesh (times h,rgs,n.transpose(v[1,:,:]),
vmin=-70,vmax=70,cmap="jet")

#plt. title ("Meridional mean wind (m/s)")

#plt.xlabel ("Time (h)")

plt.ylabel ("Altitude_(km)")

plt.colorbar ()

plt.subplot (326)

plt.pcolormesh(times h,rgs,n.transpose(v2[0,:,:] -V
[0,:,:]) ,vmin=-25,vmax=25,cmap="jet")

#plt. title ("Zonal mean wind (m/s)")

plt.xlabel ("Time_(h)")

plt.ylabel ("Residual")

plt.colorbar ()

plt.subplot(325)

plt.pcolormesh(times h,rgs,n.transpose(v2[1,:,:] -V
[1,:,:]),vmin=-25,vmax=25,cmap="jet")

#plt. title ("Meridional mean wind (m/s)")

plt.xlabel ("Time_(h)")

64 APPENDIX'A. SOURCE CODE

#plt.ylabel ("Residual")
plt.ylabel ("Altitude_(km)")
plt.colorbar ()

plt.tight layout ()
plt.savefig ("mean wind.png")
plt.show()

Listing A.3: mmaria_read.py; Script to read the MMARIA dataset in an efficient
and easy way.

#!/usr/bin/env python

import numpy as n

import glob

import h5py

import matplotlib.pyplot as plt
import cfi config as c¢

import time

import datetime

#alpha _norm Dataset {56452}
#braggs Dataset {56452, 3}
#dcos Dataset {56452, 2}
#dh Dataset {SCALAR}
#dop errs Dataset {56452}
#dops Dataset {56452}
#dt Dataset {SCALAR}
#heights Dataset {56452}
#lats Dataset {56452}
#link Dataset {56452}
#lons Dataset {56452}
#rgs Dataset {30}

#t Dataset {56452}
#times Dataset {48}

#v Dataset {2, 48, 30}
#v resid Dataset {56452}
#ve Dataset {2, 48, 30}

keys=["alpha norm","braggs","dcos","dh","dop_errs","
dops",
HdtH ,"heightS" s " latS n s "n link!l , Hlons " , HrgSH ’HtH , n
l‘gS" ,

65

”t" ,”times” ,"V” ’H.V_resid" ,”Ve”]

class mmaria data:
def __init__ (self ,dname,debug=False):
self.fl = glob.glob ("%s/*.h5"%(dname))
self.fl.sort()
self . mint=[]
self.maxt=[]
self.debug=debug

for f in self.fl:

if self.debug:
print("reading, %s "%(f))

h=h5py. File (f,"r")
t=h["t"].value
self . mint.append (n.min(t))
self.maxt.append (n.max(t))
h.close ()

self . mint=n.array(self.mint)

self .maxt=n.array(self.maxt)

def get bounds(self):
return ([n.min(self.mint) ,n.max(self.maxt)])

def read data date(self ,d0,d1l,read all detections=
True) :#is datetime.date(d0) valid to run a
function, so can just put in 2019,1,1
#d0,dl is a date like dO=datetime. date
(2019,1,5)

tO=time . mktime (dO. timetuple ())
tl=time .mktime (d1l. timetuple ())
return(self.read data(tO,tl,read_all detections

)

def read data(self ,t0,tl,read all detections=True):
Read all meteor radar network data between
these times (unix)

nnn

file idx=[]
for fi in range(len(self.fl)):

APPENDIX'A. SOURCE CODE

if self.maxt[fi] > tO and self.mint[fi] <
tl:
file idx .append(fi)

alpha norm=n.zeros ([0],dtype=n. float32)
braggs=n.zeros ([0,3],dtype=n.float32)
dcos=n.zeros ([0,2],dtype=n. float32)
dh=1.5

dop_errs=n.zeros ([0],dtype=n. float32)
dops=n.zeros ([0],dtype=n.float32)
dt=0

heights=n.zeros ([0],dtype=n. float32)
lats=n.zeros ([0],dtype=n.float32)
lons=n.zeros ([0],dtype=n. float32)
link=n.zeros ([0],dtype="<U60")
rgs=n.zeros ([30],dtype=n.float32)
t=n.zeros ([0],dtype=n. float32)
times=n.zeros ([0],dtype=n.float32)
v=n.zeros ([2,0,30],dtype=n. float32)
v_resid=n.zeros ([0],dtype=n. float32)
ve=n.zeros ([2,0,30],dtype=n. float32)
print("reading")

h0=75

h1=105

for i in file idx:#range(first_idx ,last_idx+1):
print (i)
h=h5py. File (self.f1[i],"r")
if read all detections:
didx=n.where(((h["t"].value) > t0) &
((h["t"].value) < t1) &
(h["heights"].value/1e3 >
h0) &
(h["heights"].value/1e3 <
h1)) [0]

t = n.concatenate ((t,h["t"].value[didx
1))

alpha norm = n.concatenate ((alpha norm,
h["alpha norm"].value[didx]))

braggs = n.concatenate ((braggs ,h["
braggs"].value[didx,:]))

67

dcos = n.concatenate ((dcos,h["dcos"].
value[didx ,:]1))

dh=h["dh"].value

dop _errs = n.concatenate ((dop_errs ,h["
dop_errs"].value[didx]))

dops = n.concatenate ((dops,h["dops"].
value[didx]))

dt=h["dt"].value

heights=n.concatenate ((heights ,h["
heights"].value[didx]))

lats=n.concatenate ((lats ,h["lats"].
value [didx]))

lons=n.concatenate ((lons ,h["lons"].
value [didx]))

link=n.concatenate ((link ,h["link"].
value [didx]))

v_resid=n.concatenate ((v_resid ,h["
v_resid"].value[didx]))

mean horizontal wind model

rgs=h["rgs"].value

times=n.concatenate ((times ,h["times"].value
))

v=n.concatenate ((v,h["v"].value),axis=1)

ve=n.concatenate ((ve,h["ve"].value),axis=1)

if self.debug:

print("file_idx _%d"%(i))
tu,idx=n.unique (t,return_index=True)
return ({"t":t[idx],

"alpha norm":alpha norm[idx],

"braggs":braggs[idx,:],

"dcos":dcos[idx,:],

"dh":dh,

"dop_errs":dop_errs[idx],

"dops":dops[idx],

"dt":dt,

"heights":heights[idx],

"lats":lats[idx],

"lons":lons[idx],

"link":link [idx],

"rgs":rgs,

"v_resid":v_resid,

68

if name == "_main__

APPENDIX'A. SOURCE CODE

"times":times ,
Hvll :V,
"ve":ve})

" "o,

nnn

Example usage

nnn

directory with all mmaria network data
md=mmaria_data(c.data directory)
what is the data bounds (first and last time

stamp)

print (md. get_bounds())

read all meteor radar data between these two

timestamps

d=md.read data(1514774804,1514974804)

plt.pcolormesh(d["times"],d["rgs"]/1e3,n.transpose (

d["v"][0,:,:]) ,vmin=-—100,vmax=100)

plt.xlabel ("Time_ (unix)")
plt.ylabel ("Altitude_(km)")
plt.colorbar ()

plt.show()

import
import
import
import
import

time
datetime
numpy as n

hbpy
matplotlib.pyplot as plt

our internal modules

import
import
import
import

mmaria_read as mr
cfi_dac as cfi
cfi_config as ¢
mean_wind_est as mw

md=mr.mmaria_data(c.data_directory)#for many files in a directory
b=md.get_bounds ()

def avg_hor_acfs(dcos_thresh=0.8,

mean_wind_time_avg=4*3600.0,
h0=90.0,

dh=5,

ds_h=25.0,

dtau=300.0,

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

42
43
44
45
46

47

48

49

50

51

52

53

54
55
56
57
58
59
60
61
62

63
64
65

69

s_h=n.arange(25.0,500.0,25.0),
ds_z=1,
years=[2018,2019,2020],
months=[5,6,7],
name="summer_hacf",
remove_mean=False,
n_days=31):

n_lags=len(s_h)

all_acfs=[]

all_errs=[]

n_avg=0.0

for year in years:
for month in months:
dO=datetime.date(year,month,1)
tO0=time.mktime (d0.timetuple())

for day in range(n_days):
d=md.read_data(t0=t0+day*24*3600.0,t1=t0+(day+1)*24*3600.0)
n_meas=len(d["t"])
print("n_meteors %d"’%(n_meas))
if n_meas > 100:
if remove_mean:
< times,times_h,v,ve,rgs,lat0,lon0,dt,dh=mw.mean_wind(meas=d,
— dt=mean_wind_time_avg,
— dh=1.0,
— max_alt=105,
— min_alt=78,
«— dcos_thresh=dcos_thresh,
< ofname="res/tmp.h5",
— data='dict')
meas=cfi.get_meas(meas_file=d,
mean_rem=remove_mean,
plot_dops=False,
dcos_thresh=dcos_thresh,
mean_wind_file="res/tmp.h5",
data='mmaria')
#title='Vertical AFC with data from date {}.{}.{} to

— {}.{}.{}'.format(y,m0,day,yl,ml,day)
return(hO,dtau,ds_h,acfs,errs,shs,s_h,names)

< ih0,idtau,dis_h,acfs,errs,ishs,si_h,names=cfi.hor_acfs(meas,

111
112
113
114
115
116
17
118

119

70

summer:
winter:

APPENDIX A.

all_acfs.append(acfs)#+=acfs
all_errs.append(errs)
n_avg+=1.0

all_acfs=n.array(all_acfs)
all_errs=n.array(all_errs)
err_vars=n.zeros([len(s_h),6])
acfs=n.zeros([len(s_h),6])
for i in range(len(s_h)):
for ci in range(6):
err_vars[i,cil=n.var(all_acfs[:,i,ci])

ws=0.0

for mi in range(int(n_avg)):

w=1.

0/all_errs[mi,i,ci]

ws+=yw
acfs[i,ci]+=w*all_acfs[mi,i,ci]
acfs[i,cil=(1.0/ws)*acfs[i,ci]

#print (all_acfs.

shape)

colors:[ncou s "o s ngon s ekl s ncan s lIC5Il]

cfi.plot_hor_acfs(shs=s_h,
names=names,
acfs=acfs,
ds_z=ds_z,
dtau=dtau,
ds_h=ds_h,
err_vars=err_vars,
colors=colors,

n_

avg=n_avg)

SOURCE CODE

h0=hoO,
dh=dh,
ds_z=ds_z,
ds_h=ds_h,
s_h=s_h,
dtau=dtau,
title=name)

plt.savefig("C:/Users/0leK/Master_thesis/figs/fig_%s.png"% (name))
ho=h5py.File("res/%s.h5"% (name),"w")

ho["acf"]=acfs
hol["s_h"]=s_h

ho["err_var"]=err_vars/n.sqrt(n_avg)

ho["h0"]=h0
ho["dtau"]=dtau
ho["ds_h"]=ds_h
ho.close()

2018 to 2020
5,6,7
11,12,1

120

122
123
124
125
126
127
128
129
130
131
132

133

135
136
137
138
139
140
141

142

144
145
146
147
148
149
150

151

N

[N B NV

71

fall: 8,9,10
spring: 2,3,4
#y=2019
#y1=2019

#m0=5

#m1=8

#day=1

avg_hor_acfs(dcos_thresh=0.8,
mean_wind_time_avg=4*3600.0,
h0=90.0,
dh=5,
ds_h=25.0,
dtau=300.0,
s_h=n.arange(25.0,500.0,25.0),
ds_z=1,
years=[2018,2019,2020],
months=[5,6,7],
name="summer_hacf",
remove_mean=False,
n_days=31)

#avg_ver_acfs(dcos_thresh=0.8,
mean_wind_time_avg=4%3600.0,
h0=80.0,

ds_h=100.0,

dtau=300.0,
s_z=n.arange(0.0,20.0,1.0),
years=[2018,2019,2020],
months=[11,12,1],
name="winter_vacf",

HOoH H O OH H H R

n_days=31)

import time

import datetime

import numpy as n

import hbpy

import matplotlib.pyplot as plt
import os

our internal modules
import mmaria_read as mr
import cfi_dac as cfi
import cfi_config as c
import mean_wind_est as mw

from mpi4py import MPI
comm=MPI.COMM_WORLD
size=comm.Get_size()
rank=comm.Get_rank()

md=mr .mmaria_data(c.data_directory)#for many files in a directory
b=md.get_bounds ()

60
61

62

63

64

65

66

67
68

72

def avg_ver_acfs(dcos_thresh=0.8,
mean_wind_time_avg=4%*3600.0,
h0=80.0,
ds_h=100.0,
dtau=300.0,
s_z=n.arange(0.0,20.0,1.0),
years=[2018,2019,2020],
months=[5,6,7],
mean_rem=False,
name="summer_vacf",
n_days=31):

os.system("mkdir -p mpi/%s"%(name))
os.system("rm mpi/%s/*.h5"%(name))

pars=[]

for year in years:
#for month in [5,6,7]:
for month in months:

pars.append((year,month,1))

n_pars=len(pars)

print("n_pars %d"%(n_pars))

for pi in range(rank,n_pars,size):
year=pars [pi] [0]
month=pars [pi] [1]
dO=datetime.date(year,month,1)
tO=time.mktime (dO.timetuple())

APPENDIX'A. SOURCE CODE

d=md.read_data(t0=t0,t1=t0+n_days*24x3600)

n_meas=len(d["t"])
print("n_meteors %d"%(n_meas))
if n_meas > 100:

mwname="res/temp-7f.h5"% (time.time())

if mean_rem:

times,times_h,v,ve,rgs,lat0,lon0,dt,dh=mw.mean_wind(meas=d,

meas=cfi.get_meas(meas_file=d,
mean_rem=mean_rem,

< dt=mean_wind_time_avg,
dh=1.0,

< max_alt=105,

— min_alt=78,

«— dcos_thresh=dcos_thresh,
< ofname=mwname,

— data='dict')

69
70
71
72
73
74
75
76
77
78
79
80

82
83
84
85

86
87
88
89

90

92
93
94
95
96
97
98
99

100

103
104
105
106
107
108
109
110
111
112
13
114
115
116
17
118

119

121

73

plot_dops=False,
dcos_thresh=dcos_thresh,
mean_wind_file=mwname,
data='mmaria')
if mean_rem:
os.system("rm %s"%(mwname))

sz,acfs,errs,names,ds_z,tlag=cfi.ver_acfs(meas,
h0=hoO,
dh=2.0,
s_z=s_z,
dtau=dtau,
tau=0.0,
s_h=0.0,
ds_h=ds_h)

— ho=hbpy.File("mpi/Js/ver_res-%d-%f.h5"} (name ,month,time.time()),"w")
ho["acf"]=acfs

ho["err"]=errs

hol["s z"]=s_z

ho["ds_z"]=ds_z

ho["ds_h"]=ds_h

ho["dtau"]=dtau

ho["h0"]=hO

ho.close()

2018 to 2020

summer: 5,6,7
winter: 11,12,1
fall: 8,9,10

spring: 2,3,4
#y=2019

#y1=2019

#m0=5

#m1=8

#day=1

#avg_ver_acfs(dcos_thresh=0.8,
mean_wind_time_avg=4*3600.0,
h0=80.0,

ds_h=100.0,

dtau=300.0,
s_z=n.arange(0.0,20.0,1.0),
years=[2018,2019,2020],
months=[5,6,7],
name="summer_vacf",

HOH H O H O O H

n_days=31)

def winter_large_scale():
avg_ver_acfs(dcos_thresh=0.8,
mean_wind_time_avg=4%*3600.0,
h0=88.0,

123
124
125
126
127

128

130

141

153

74

ds_h=500.0,

dtau=3600.0,
s_z=n.arange(0.0,20.0,1.0),
years=[2018,2019,2020],
months=[11,12,1],
name="winter_88_vacf_ls",
n_days=31)

def winter_small_scale():
avg_ver_acfs(dcos_thresh=0.8,

mean_wind_time_avg=4*3600.0,
h0=88.0,

ds_h=50.0,

dtau=600.0,
s_z=n.arange(0.0,20.0,1.0),
years=[2018,2019,2020],
months=[11,12,1],
name="winter_88_vacf",
n_days=31)

def summer_large_scale():
avg_ver_acfs(dcos_thresh=0.8,

mean_wind_time_avg=4*3600.0,
h0=88.0,

ds_h=500.0,

dtau=3600.0,
s_z=n.arange(0.0,20.0,1.0),
years=[2018,2019,2020],
months=[11,12,1],
name="summer_88_vacf_1ls",

n_days=31)

def summer_small_scale():
avg_ver_acfs(dcos_thresh=0.8,

mean_wind_time_avg=4*3600.0,
h0=88.0,

ds_h=50.0,

dtau=600.0,
s_z=n.arange(0.0,20.0,1.0),
years=[2018,2019,2020],
months=[11,12,1],
name="summer_88_vacf",

n_days=31)

#summer_small_scale()
#summer_large_scale()
#winter_small_scale()
winter_large_scale()

import time
import datetime
import numpy as n
import hbpy

import matplotlib.pyplot as plt

APPENDIX'A. SOURCE CODE

21
22
23
24
25
26
27
28
29

30

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

import

oS

our internal modules

import
import
import
import

mmaria_read as mr
cfi_dac as cfi
cfi_config as c
mean_wind_est as mw

from mpi4py import MPI
comm=MPI.COMM_WORLD
size=comm.Get_size()
rank=comm.Get_rank()

md=mr .mmaria_data(c.data_directory)#for many files in a directory

b=md.get_bounds ()

def avg_temporal_acfs(dcos_thresh=0.8,

if

mean_wind_time_avg=4*3600.0,
h0=90.0,
dh=5,
ds_h=50.0,
dtau=300.0,
tau=n.arange (0.0,7*24%3600,300.0) ,
ds_z=1,
years=[2018,2019,2020],
months=[5,6,7],
name="summer_tacf"):
rank ==
os.system("rm mpi/Y%s/tacf_res*.h5"%(name))
os.system("mkdir -p mpi/%s"%(name))

comm.Barrier ()

n_lags=len(tau)

max_lag=n.max (tau)

pars=[]
for year in years:

for month in months:
pars.append([year,month,1])

n_pars=len(pars)
print("n_runs %d"%(n_pars))

for pi in range(rank,n_pars,size):

year=pars [pi] [0]
month=pars [pi] [1]
day=pars [pi] [2]
dO=datetime.date(year,month,day)
tO0=time.mktime (d0.timetuple())

75

103
104
105
106
107
108
109
110

111

112

113

76 APPENDIX'A. SOURCE CODE

d=md.read_data(t0=t0,t1=tO+max_lag+31%24%3600)

n_meas=len(d["t"])

print("n_meteors %d"%(n_meas))

if n_meas > 100:

meas=cfi.get_meas(meas_file=d,

mean_rem=False,
plot_dops=False,
dcos_thresh=dcos_thresh,
mean_wind_file="res/tmp.h5",
data='mmaria')

acfs,errs,tau,dtau,ds_h,names=cfi.temporal_acfs(meas,
h0=ho0,
tau=tau,
dtau=dtau,
min_dt=10,
ds_h=ds_h)

ofname="mpi/%s/tacf_res-%06d.h5"% (name,pi)

print (ofname)

ho=h5py.File(ofname, "uw")

ho["acfs"]=acfs

ho["errs"]=errs

ho["tau"]=tau

ho["dtau"]=dtau

ho["ds h"]=ds_h

ho["ds_z"]=ds_z

ho["h0"]=hO

ho["dh"]=dh

ho.close()

def summer_day():
avg_temporal_acfs(dcos_thresh=0.8,

h0=90.0,

dh=2,

ds_h=50.0,

dtau=100.0,

tau=n.arange (0.0,24*3600,100.0),
ds_z=1,

years=[2018,2019],
months=[5,6,7],

dstep=2,
name="summer_tacf_1_120_50km")

def summer_small_scale():

avg_temporal_acfs(dcos_thresh=0.8,
h0=90.0,
dh=2,
ds_h=100.0,
dtau=1800.0,
tau=n.arange (0.0, 14%24%3600,1800.0),
ds_z=1,
years=[2018,2019],
months=[5,6,7],
name="summer_tacf_test")

114
115
116
117
18
119

120

122
123
124
125
126
127
128

129

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

77

def winter_small_scale():
avg_temporal_acfs(dcos_thresh=0.8,

h0=90.0,
dh=2,
ds_h=100.0,

dtau=1800.0,

tau=n.arange (0.0,14%24%*3600,1800.0) ,
ds_z=1,

years=[2018,2019,2020],
months=[11,12,1],
name="winter_tacf_koki")

winter_small_scale(name="test")
summer_small_scale(name="test")

#!/usr/bin/env python

#

Estimate the number of horizontal and temporal lags
#

import hbpy

import numpy as n

import matplotlib.pyplot as plt

from matplotlib.colors import LogNorm

from mpi4py import MPI

import cfi_config as c
import mmaria_read as mr

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

latdeg2km=gc.latdeg2km
londeg2km=gc.londeg2km

#works for mmaria_data
md=mr .mmaria_data(c.data_directory)#for many files in a directory
b=md.get_bounds ()

tO=stuffr.date2unix(2019,6,1,0,0,0)
tl=stuffr.date2unix(2019,6,15,0,0,0)

about two weeks of data in June 2019
d=md.read_data(t0,t1)

dcos_thresh=0.8

lats=d["lats"]

lons=d["lons"]

heights=d["heights"] #hights in meters
heights=heights/1000

dcoss=d["dcos"]

t=d["t"]

37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

78 APPENDIX'A. SOURCE CODE

dcos2=n.sqrt(dcoss[:,0]**2.0+dcoss[:,1]**2.0)
ok_idx=n.where(dcos2 < dcos_thresh) [0]

lats=lats[ok_idx]
lons=lons[ok_idx]
heights=heights[ok_idx]
t=t [ok_idx]

#h=hbpy.File("res/simone_nov2018_multilink_juha_30min_1000m.h5","r")# For a
— single file

#lats=h["lats"].value

#lons=h["lons"] .value

#heights=h["heights"] .value #heights in km

#t=h["t"].value

#works for mmaria_data
md=mr .mmaria_data(c.data_directory)#for many files in a directory
b=md.get_bounds ()

=md.read_data(1514774804,1515974804)

lats=d["lats"]

lons=d["lons"]

heights=d["heights"] #hights in meters
heights=heights/1000

t=d["t"]

In(]
print("total number of measurements %d"%(len(t)))

define a histogram
n_m=len(lats)
rgs=n.arange (80,105)
dh=1.0

h_bins=100

base 10 log horizontal distance

mer_dist_bins=n.linspace(-2,3.2,num=h_bins+1)
zon_dist_bins=n.linspace(-2,3.2,num=h_bins+1)
hor_dist_bins=n.linspace(-2,3.2,num=h_bins+1)
ver_dist_bins=n.linspace(-50,50,num=h_bins+1)

base 10 log temporal distance
tdist_bins=n.linspace(-2,6.2,num=h_bins+1)

zonal, meridional, horizontal, and vertical distances
HZ=n.zeros([h_bins,h_bins])
HM=n.zeros([h_bins,h_bins])
HH=n.zeros([h_bins,h_bins])
HV=n.zeros([h_bins,h_bins])

93

13
114
115
116
17
118

119

121
122
123
124
125
126
127
128

129

130
131
132
133
134
135
136
137
138
139
140

141

79

parallel processing.

processor number=comm.rank

number if processes=comm.size

for ri in range(comm.rank,len(rgs),comm.size):

HZ[:,:1=0.0
HM[:,:1=0.0
HH[:,:]1=0.0
HV[:,:1=0.0
rg=rgs[ri]

zon_dists=[]
mer_dists=[]
hor_dists=[]
ver_dists=[]
t_dists=[]

max_zon_dist=0
max_mer_dist=0
max_hor_dist=0

idx0=n.where((heights >= rg) & (heights < (zrg+dh)))[0]

— print("number of measurements between %1.2f and %1.2f km = %d"%(rg,rg+dh,len(idx0)))

latsO = n.copy(lats[idx0])
lonsO = n.copy(lons[idx0])
t0s = n.copy(t[idx0])

hOs = n.copy(heights[idx0])

for mi in range(len(lats0)):
if mi % 100 == O:
print ("rank %d %d/%d"%(comm.rank,mi,len(idx0)))
latO=latsO[mi]
lon0=lonsO[mi]
t0=t0s [mi]
h0=h0s [mi]

horizontal distances
hor_dists=n.sqrt((n.abs(latsO[mi:len(lats0)]-1lat0)*latdegkm)**2.0 +
— (n.abs(lonsO[mi:len(lats0)]-1lon0)*londeg2km)**2.0)
mer_dists=n.abs(latsO[mi:len(lats0)]-1lat0)*latdeg2km
zon_dists=n.abs(lonsO[mi:len(lats0)]-1lon0)*londeg2km
ver_dists=hOs[mi:len(h0s)]-hO

mmd=n.max (mer_dists)
if mmd > max_mer_dist:
max_mer_dist=mmd
mzd=n.max(zon_dists)
if mzd > max_zon_dist:
max_zon_dist=mzd
mhd=n.max (hor_dists)
if mhd > max_mer_dist:

142
143
144

145

146

147

148
149
150
151
152
153
154
155
156

157

169
170
171
172
173
174
175
176
177
178

179

181

183
184
185
186
187
188

80

plt.

APPENDIX'A. SOURCE CODE

max_hor_dist=mhd
temporal_dists = n.abs(t[mi:len(lats0)]-t0)
— HZ0,zxe,zye=n.histogram2d(n.loglO(zon_dists+0.01) ,n.logl0(temporal_dists+0.01) ,bins=
— HMO,mxe,mye=n.histogram2d(n.logl0(mer_dists+0.01) ,n.logl0(temporal_dists+0.01) ,bins=
— HHO,hxe,hye=n.histogram2d(n.logl0(hor_dists+0.01) ,n.loglO(temporal_dists+0.01) ,bins=
HZ+=HZO0
HM+=HMO

HH+=HHO

pcolormesh(mxe,mye,n.transpose(n.logl0(HH+1)))

cb=plt.colorbar()
cb.set_label("\log_{10} (counts)")

plt.
plt.

—

plt.
plt.
plt.
plt.

plt.

xlabel("Horizontal distance \log_{10} (km)")
ylabel("Temporal distance \log_{10} (s)")

plt.title("Distribution of horizontal and temporal lags, h=%1.0f km\nMax distance=%1.0f

tight_layout ()
savefig("./figs/fig_hor_%03d.png"%(rg))
close()

clf Q)
pcolormesh(zxe,zye,n.transpose(n.logl0(HZ+1)))

cb=plt.colorbar()
cb.set_label("\log_{10} (counts)")

plt.
plt.

—

plt.
plt.
plt.

plt

plt.

xlabel("Zonal distance \log_{10} (km)")
ylabel("Temporal distance \log_{10} (s)")

plt.title("Distribution of zonal and temporal lags, h=/1.0f km\nMax distance=7%1.0f km"%(:

tight_layout ()
savefig("./figs/fig_zon_%03d.png"%(rg))
close()

.clf Q)
pcolormesh(mxe,mye,n.transpose(n.logl0(HM+1)))

cb=plt.colorbar ()
cb.set_label("\log_{10} (counts)")

plt.
plt.

plt.
plt.

xlabel("Meridional distance \log_{10} (km)")
ylabel("Temporal distance \log_{10} (s)")

plt.title("Distribution of horizontal and temporal lags, h=}1.0f km"%(rg))
plt.savefig("C:/Users/0leK/Master_thesis/figs/fig_%s_%1.2f.png"%(fpref,rg))

close()
clf()

ho=h5py.File("hist_%1.2f.h5"%(xg),"w")
ho["time_diff_loglO_s"]=tdist_bins

N

[N, BN

21
22
23
24
25
26
27
28
29

30

32
33
34
35
36
37
38

ho["horizontal_diff_loglO_km"]=hor_dist_bins
ho["H_hor"]=HH
ho["H_zon"]=HZ
ho["H_mer"]=HM
ho["tbins"]=tdist_bins
ho["hx"]=hxe
ho["hy"]l=hye
ho["zx"]=zxe
ho["zy"]l=zye
ho["mx"]=mxe
ho["my"]=mye
ho.close()

d.close()

from mpl_toolkits.basemap import Basemap

import numpy as n

import matplotlib.pyplot as plt
import cfi_config as ¢

import mmaria_read as mr

import stuffr

#works for mmaria_data
md=mr .mmaria_data(c.data_directory)#for many files in a directory
b=md.get_bounds ()

tO=stuffr.date2unix(2019,1,1,0,0,0)
til=stuffr.date2unix(2019,1,2,0,0,0)

about two weeks of data in June 2019
d=md.read_data(t0,t1)

direction cosine filter

dcos_thresh=0.8

lats=d["lats"]

lons=d["lons"]

dcoss=d["dcos"]
dcos2=n.sqrt(dcoss[:,0]**2.0+dcoss[:,1]**2.0)
ok_idx=n.where(dcos2 < dcos_thresh) [0]

latO=n.median(lats)
lon0=n.median(lons)

m=Basemap (projection="stere",

lat_0=1latO,
lon_0=1lonO0,
llcrnrlat=66,
urcrnrlat=72,
llcrnrlon=11,
urcrnrlon=32,
resolution="h")

81

39
40
41
42
43
44
45
46
47
48
49

82 APPENDIX'A. SOURCE CODE

m.drawcoastlines()

pars=n.arange(67,72,2)
m.drawparallels(pars,labels=pars)

mers=n.arange(15,30,5)
m.drawmeridians (mers,labels=mers)

x,y=m(lons [ok_idx],lats[ok_idx])
plt.plot(x,y,".",alpha=0.1)
plt.show()

#!/usr/bin/env python

import glob

import numpy as n

import matplotlib.pyplot as plt
import hbpy

import datetime

import cfi_config as conf

fl=glob.glob("%s/*.h5"% (conf.data_directory))
fl.sort()
n_files=len(f1)

links=["Alta_Alta","Andenes_Andenes",'"Andenes_Straumen","Tromso_Tromso","Al1l"]

for link in links:
print (link)
counts=[]
countso=[]
dates=[]

for £ in f1:
h=h5py.File(f,"r")
if link=="A11":
idx=n.arange(len(h["1link"].value))
else:
idx=n.where(h["link"].value==1ink) [0]
if len(idx)> O:
it seems like sometimes the measurements are included twice.
counts.append(len(n.unique(h["t"].value[idx])))
print(n.unique(h["1link"].value))
countso.append(len(h["t"].value[idx]))
dt_object =
— datetime.datetime.fromtimestamp(n.min(h["t"].value[idx]))
dates.append(dt_object)
h.close()
plt.plot(dates,counts,label=1ink)

plt.legend()
plt.xlabel("Date (UTC)")
plt.ylabel("Counts per day")

41
42
43
44

19
20
21
22
23
24
25

27
28
29

30

32
33

35
36
37
38
39
40

42
43
44
45
46
47
48

plt.title("MMARIA Norway\nunique detections per day")

plt.show()

#!/usr/bin/env python

import numpy as n

import matplotlib.pyplot as plt
import glob

import scipy.signal as ss
import hbpy

import cfi_dac as cfi

name="summer_tacf_koki"
#name="winter_tacf_koki"
fl=glob.glob("D:\Data\mpi\mpi/%s/*.h5"%(name))
fl.sort()
h=h5py.File(£1[0],"r")
tau=n.copy(h["tau"].value)
acfs=n.copy(h["acfs"].value)
acfs[:,:]1=0.0
ws=n.copy(h["acfs"].value)
ws[:,:1=0.0

print (ws)

print(acfs)

h.close()

n_avg=1.0

for £ in f1:
h=h5py.File(f,"r")
w=1/(h["errs"] .value)

wacf=w*n.copy(h["acfs"].value)
print(n.sum(wacf))
print(n.sum(n.isnan(wacf)))

print(n.sum(w))
print(n.sum(n.isnan(w)))
if (n.sum(n.isnan(wacf))) ==
acfs+=wact
ws+=w

n_avg+=1.0

if False:
plt.plot(tau,w[:,0])
plt.show()

plt.plot(tau,h["acfs"].value[:,0])
plt.plot(tau,h["acfs"].valuel:,1])
plt.show()

83

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

[S NS, B NI

84 APPENDIX'A. SOURCE CODE

h.close()
print (ws)
acfs=acfs/ws
wf=ss.hann(len(tau)*2) [len(tau) : (2*len(tau))]
plt.subplot (121)
plt.plot(tau/(24%3600) ,acfs[:,0],1label="G_{uu}")
plt.plot(tau/(24%3600) ,acfs[:,1],label="G_{vv}")
plt.xlabel("Time lag (days)")
plt.ylabel("Correlation function (m$~2$/s$2%)")
plt.legend()

plt.subplot(122)
wf=1.0

Suu=n.fft.hfft(wf*acfs[:,0])
Svv=n.fft.hfft(wf*acfs[:,1])

dt=n.diff (tau) [0]
f=n.fft.fftfreq(len(Suu) ,d=dt)
#print (Suu)

Suu[0]=0

fi=n.argmax(Suu)

print(£fi)

print (Suulfil])

fO=n.abs (f [fi])

print (£0)

#b=Suu[fi] /f0**(a)

plt.loglog(n.real(n.fft.fftshift(£f)),n.fft.fftshift(Suu),label="\hat{G}_{uul}")
plt.loglog(n.real(n.fft.fftshift(£f)),n.fft. fftshift(Svv),label="\hat{G}_{vv}")

b=Suu[fi]/f0**(-5/3.0)

print(b)
plt.loglog(n.abs(n.fft.fftshift(£)),0.1*b*n.abs(n.fft.fftshift(£f))**(-5/3.0),label="-5/3",alpha=
b=Suu[£i]/£0**(-2)
plt.loglog(n.abs(n.fft.fftshift(£)),0.1*b*n.abs(n.fft.fftshift(f))**(-2),label="-2",alpha=0.3)
plt.legend()

plt.xlabel("Frequency (Hz)")

plt.ylabel("Power spectral density (m$~2$/s$°2$/Hz)")

plt.axvline(1.0/(24%3600.0),color="gray",linestyle="--")
plt.axvline(1.0/(12%3600.0),color="gray",linestyle="--")
plt.axvline(1.0/(8%3600.0),color="gray",linestyle="--")
plt.tight_layout ()

plt.show()

import time

import datetime

import numpy as n

import hbpy

import matplotlib.pyplot as plt

19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

52
53
54
55
56
57
58
59
60

our internal modules

import
import
import
import
import

mmaria_read as mr
cfi_dac as cfi
cfi_config as c
mean_wind_est as mw
glob

def read_acf (name="summer_88_vacf"):

fl=
f1.

glob.glob("mpi/%s/*.h5"%(name))
sort ()

print (£1)
h=h5py.File(£1[0],"r")
acf=n.copy(h["acf"].value)
err=n.copy(h["err"].value)
s_z=n.copy(h["s_z"].value)
dtau=n.copy(h["dtau"].value)

hoO=

n.copy (h["h0"] .value)

#ds_h=n.copy(h["ds_h"].value)
h.close()

acf[:,:]1=0

err[:,:]1=0

all_acfs=[]

all_errs=[]

all_sz=[]

n_avg=0

for £ in f1:

h=h5py.File(f,"r")

plt.plot(h["acf"].valuel[:,0])

plt.show()

if n.sum(n.isnan(h["acf"].value)) == 0:
all_acfs.append(n.copy(h["acf"].value))
all_errs.append(n.copy(h["err"].value))
all_sz.append(n.copy(h["s_z"].value))
n_avg+=1

h.close()

all_acfs=n.array(all_acfs)
all_errs=n.array(all_errs)
all_sz=n.array(all_sz)
err_vars=n.zeros([len(s_z),6])
acfs=n.zeros([len(s_z),6])
s_z[:1=0.0

for i in range(len(s_z)):

s_z[i]l=n.mean(all_sz[:,i])
for ci in range(6):
err_vars([i,cil=n.var(all_acfs[:,i,cil)
ws=0.0
for mi in range(int(n_avg)):
if n.sum(n.isnan(all_acfs[mi,i,ci]))==
w=1.0/all_errs[mi,i,cil
ws+=w
acfs[i,ci]+=w*all_acfs[mi,i,ci]
else:
print("nans")

85

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86 APPENDIX'A. SOURCE CODE

acfs[i,ci]l=(1.0/ws)*acfs[i,ci]
err_vars([i,cil=1/us

return(s_z,acfs,err_vars)

s_z,acfs_h,errs= read_acf (name="summer_vacf")
s_z,acfs_l,errs_l= read_acf (name="summer_vacf_1ls")

acfs=acfs_h#-acfs_1

plt.subplot(121)
plt.plot(s_z,acfs_h[:,0],label=cfi.cf_names[0])
plt.plot(s_z,acfs_1[:,0],label=cfi.cf_names[1])
#plt.plot(s_z,acfs_h[:,1])
#plt.plot(s_z,acfs_1[:,1])

plt.xlabel("Vertical lag (km)")
plt.ylabel("Correlation function (m$~2$/s$"2$)")
plt.title("Autocorrelation function")
plt.subplot(122)
plt.loglog(s_z,2*1.2%acfs[1,0]-2*%acfs[:,0])
plt.loglog(s_z,2*1.2*acfs[1,1]-2xacfs[:,1])
plt.loglog(s_z,100.0%s_z**(2.0/3.0))
plt.xlabel("Vertical lag (km)")
plt.ylabel("Structure function (m$~2$/s$72%)")
plt.title("Structure function")

plt.show()

import time

import datetime

import numpy as n

import hbpy

import matplotlib.pyplot as plt

our internal modules
import mmaria_read as mr
import cfi_dac as cfi
import cfi_config as c
import mean_wind_est as mw
import glob

name="summer_hacf"
#name="winter_hacf"
#name="summer_hp_hacf"

fl=glob.glob("D:\Data\mpi\mpi/%s/*.h5"%(name))
fl.sort()

print (£1)
h=hb5py.File(£1[0],"r")
acf=n.copy(h["acfs"].value)
err=n.copy(h["errs"] .value)
s_h=n.copy(h["s_h"].value)
dtau=n.copy(h["dtau"] .value)
ds_z=n.copy(h["ds_z"].value)

28
29

30

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

ds_h=n.copy(h["ds_h"].value)
h.close()
acf[:,:]1=0
err[:,:]1=0
all_acfs=[]
all_errs=[]
all_sh=[]
n_avg=0.0
for £ in f1:
h=h5py.File(f,"r")
plt.plot(h["acfs"].value[:,0])
plt.show()
if n.sum(n.isnan(h["acfs"].value)) ==
all_acfs.append(n.copy(h["acfs"].value))
all_errs.append(n.copy(h["errs"].value))
all_sh.append(n.copy(h["s_h"].value))
n_avg+=1.0
h.close()

all_acfs=n.array(all_acfs)
all_errs=n.array(all_errs)
all_sh=n.array(all_sh)
err_vars=n.zeros([len(s_h),6])
acfs=n.zeros([len(s_h),6])
s_h[:]1=0.0
for i in range(len(s_h)):
s_h[il=n.mean(all_sh[:,i])
for ci in range(6):
err_vars[i,ci]=n.var(all_acfs[:,i,ci])
ws=0.0
for mi in range(int(n_avg)):

if n.sum(n.isnan(all_acfs[mi,i,ci]))==

w=1.0/all_errs[mi,i,cil

print (w)
ws+=w
acfs[i,cil+=w*all_acfs[mi,i,ci]
else:
print ("nans")
print (ws)

acfs[i,cil=(1.0/ws)*acfs[i,ci]

names=["G_{uu}","G_{vv}", "G_{wwl",
"G_{uvr", "G_{uwr", "G_{vw}"]

colors=["CO","C1","C2","C3","C4","C5"]
cfi.plot_hor_acfs(shs=s_h,

names=names,

acfs=acfs,

ds_z=1.0,

dtau=dtau,

ds_h=ds_h,

err_vars=err_vars,

87

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

88

H O H HF O OH H

APPENDIX A. SOURCE CODE

colors=colors,
zlag=1.1,
n_avg=n_avg)

plt.savefig("C:/Users/0leK/Master_thesis/figs/fig_%s.png"%(name))
ho=h5py.File("res/%s.h5"} (name) ,"w")

ho["acf"]=acfs

ho["s_h"]=s_h

ho["err_var"]=err_vars/n.sqrt(n_avg)

ho["h0"]=h0

ho["dtau"]=dtau

ho["ds_h"]=ds_h

ho.close()

Bibliography

Alexander, M., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F.,
Sato, K., Eckermann, S., Ern, M., Hertzog, A., et al. (2010). Recent develop-
ments in gravity-wave effects in climate models and the global distribution
of gravity-wave momentum flux from observations and models. Quarterly
Journal of the Royal Meteorological Society, 136(650):1103—1124.

Andrews, D. and Mcintyre, M. E. (1976). Planetary waves in horizontal and
vertical shear: The generalized eliassen-palm relation and the mean zonal
acceleration. Journal of the Atmospheric Sciences, 33(11):2031—2048.

Bacmeister, J. T., Eckermann, S. D., Newman, P. A., Lait, L., Chan, K. R., Loewen-
stein, M., Proffitt, M. H., and Gary, B. L. (1996). Stratospheric horizontal
wavenumber spectra of winds, potential temperature, and atmospheric trac-
ers observed by high-altitude aircraft. Journal of Geophysical Research: At-
mospheres, 101(D5):9441-9470.

Chau, J. L., Urco, M., Vierinen, J., Volz, R., Clahsen, M., Pfeffer, N., and Trautner, J.
(2019). Novel specular meteor radar systems using coherent mimo techniques
to study the mesosphere and lower thermosphere.

Drob, D., Emmert, J., Crowley, G., Picone, J., Shepherd, G., Skinner, W., Hays,
P., Niciejewski, R., Larsen, M., She, C., et al. (2008). An empirical model of
the earth’s horizontal wind fields: Hwmoy. Journal of Geophysical Research:
Space Physics, 113(A12).

Hedin, A. E. (1991). Extension of the msis thermosphere model into the
middle and lower atmosphere. Journal of Geophysical Research: Space Physics,
96(A2):1159-1172.

Hocking, W. (1999). Temperatures using radar-meteor decay times. Geophysical
Research Letters, 26(21):3297-3300.

Huang, F., Mayr, H., Reber, C., Russell, J., Mlynczak, M., and Mengel, J. (2006).
Stratospheric and mesospheric temperature variations for the quasi-biennial

89

90 BIBLIOGRAPHY

and semiannual (gbo and sao) oscillations based on measurements from
saber (timed) and mls (uars).

Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible
viscous fluid for very large reynolds numbers. Proceedings of the Royal Society
of London. Series A: Mathematical and Physical Sciences, 434(1890).

Liu, H.-L. (2019). Quantifying gravity wave forcing using scale invariance.
Nature communications, 10.

McLandress, C. (1998). On the importance of gravity waves in the middle at-
mosphere and their parameterization in general circulation models. Journal
of Atmospheric and Solar-Terrestrial Physics, 60(14):1357-1383.

MJ, T., WR Jr, P., et al. (1999). Comparison of terdiurnal tidal oscillations in
mesospheric oh rotational temperature and na lidar temperature measure-
ments at mid-latitudes for fall/spring conditions. Earth, planets and space,
51(7-8):877-885.

Nastrom, G., Gage, K., and Jasperson, W. (1984). Kinetic energy spectrum of
large-and mesoscale atmospheric processes. Nature, 310(5972):36—38.

Pancheva, D., Mukhtarov, P., Andonov, B., Mitchell, N. J., and Forbes, J. (2009).
Planetary waves observed by timed/saber in coupling the stratosphere-
mesosphere-lower thermosphere during the winter of 2003/2004: part
1—comparison with the ukmo temperature results. Journal of Atmospheric
and Solar-Terrestrial Physics, 71(1):61-74.

Rossby, C.-G. (1939). Relation between variations in the intensity of the zonal
circulation of the atmosphere and the displacements of the semi-permanent
centers of action. J. Mar. Res., 2:38-55.

Smith, A. K. (2012). Global dynamics of the mlt. Surveys in Geophysics,
33(6):1177-1230.

Smith, A. K., Pancheva, D. V., and Mitchell, N. J. (2004). Observations and
modeling of the 6-hour tide in the upper mesosphere. Journal of Geophysical
Research: Atmospheres, 109(D10).

Stober, G. and Chau, J. (2015). A multistatic and multifrequency novel approach
for specular meteor radars to improve wind measurements in the mlt region.

Radio Science, 50(5):431-442.

Stober, G., Chau, J. L., Vierinen, J., Jacobi, C., and Wilhelm, S. (2018). Re-

AN

trieving horizontally resolved wind fields using multi-static meteor radar
observations.

Vierinen, J., Chau, J. L., Charuvil, H., Urco, J. M., Clahsen, M., Avsarkisov, V.,
Marino, R., and Volz, R. (2019). Observing mesospheric turbulence with
specular meteor radars: A novel method for estimating second-order statistics
of wind velocity. Earth and Space Science, 6(7):1171-1195.

Von Zahn, U., Hoffner, J., Eska, V., and Alpers, M. (1996). The mesopause
altitude: Only two distinctive levels worldwide? Geophysical research letters,
23(22):3231-3234.

	Abstract
	Preface
	List of Figures
	1 Introduction
	1.1 Main features of mesospheric wind climatology
	1.2 The role of gravity waves and tides in the MLT and in the whole Earth's atmosphere
	1.3 Scope of this thesis

	2 Background
	2.1 Previous models of the mesosphere
	2.2 The difficulty of measuring the mesosphere using observation
	2.3 Previous measurements
	2.4 A need for measurements

	3 Theory and method
	3.1 Temperature and altitude of the mesospause
	3.2 Waves effect on the mesosphere
	3.2.1 Gravity waves
	3.2.2 Tides
	3.2.3 Planetary waves

	3.3 Reynolds decomposition
	3.4 The technique for estimating the wind field velocity correlation function
	3.5 Techniques for measuring the MLT
	3.6 Temporal and spatial resolution with the different measuring techniques
	3.7 How a meteor radar measures the neutral wind velocity and temperature of the mesosphere
	3.8 The expected horizontal spatial spectrum of kinetic energy of the mesosphere
	3.9 Structure function

	4 Results and discussion
	4.1 Data
	4.2 Seasonal variation in Temporal autocorrelation function
	4.3 Horizontal autocorrelation funciton and structure function
	4.4 The mean wind in the mesosphere
	4.5 Code problems/fixes

	5 Conclusions
	5.1 Our findings
	5.2 Suggestions for further work

	A Source code
	Bibliography

