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“And God said, Let there be light, and there was light.”
–Genesis 1:3





Abstract
With growing capabilities of high-intensity laser beams to generate ultra-short
pulses of light, the simulation of pulse propagation in nonlinear media is
expected to catch up with the front-line experimental setups. Among the chal-
lenges of nonlinear material response modeling is the ability to capture the
back-scatter effect - a phenomenon inherently elusive for the well-established
methods of unidirectional type. In this paper we consider a bidirectional shoot-
ing method proposed by P. Jakobsen in "Bidirectional pulse propagation equa-
tion for extreme nonlinear optics.", Physica Scripta, 89:095502, 2014.

We derive the method for a Transverse Magnetic (TM) field, propagating in a
material slab with a Kerr-type nonlinear polarization response, and delimited
by two material interfaces. By performing a proof-of-concept implementation
of the method, we demonstrate that it is indeed capable of reconstructing
the expected quantitative and qualitative properties of the modeled physical
system, including reflection from interfaces and third harmonic generation.
Nevertheless, we find that both the accuracy of the solution, as well as the
convergence of the iterative process, are negatively impacted by an increase in
the relative scale of the nonlinearity coefficient. That points to the limitations
of the underlying implementation and, potentially, the BPPE method itself.
In that context we conclude with a brief discussion of the interdependence
between the BPPE method and its numerical incarnations.
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1
Introduction
Modeling laser pulse propagation through material media has become more
challenging in the recent years, as the physically available lasers became capa-
ble of generating ultra-intense, ∼ 1016

[
W /cm2

]
, and ultra-short, ∼ 10−18 [s],

pulses of light. Such extreme conditions can easily excite new degrees of
freedom in the underlying system, leading to the emergence of complex inter-
actions between the external electric field and the response of the material.
In consequence, nonlinear polarization effects are induced in the material,
causing non-negligible scattering of light, and hence changing the direction of
light propagation.

A mathematical tool widely used in the modeling of pulse propagation, and
a well-established one too, is a Unidirectional Pulse Propagation Equation
(uppe) method [10], with generalizations presented in [8] and [9]. It is a
spectral method, suited for capturing nonlinear effects and multiple harmonic
generation in nonlinear media. However, as the name suggest, the assumptions
of the method break down as soon as there is a significant back-propagation of
light involved. That includes not only the back-scattering effect, but also the
reflection from material interfaces.

In response to that weakness, a bidirectional extension of the uppe method
was proposed in [6], called a bppe method. The method takes advantage of a
certain redundancy in the eigenmode representation of the solution, and poses
an additional constraint on the amplitudes of the eigenmodes. This constraint
is the key leverage that allows to introduce the back-propagation capability into

5



6 chapter 1 introduction

the method. That new, key feature is then employed in an iterative-shooting
regime approximating the light propagation solution.

The applicability of the bppe method is backed with the results of concrete
simulation experiments in [3]. In this paper we derive the bppe method for a
Transverse Magnetic (tm)-field propagating in a material medium with a Kerr-
type nonlinear response, and in presence of two material interfaces delimiting
thematerial slab. We also present a validation technique for thebppemethod, a
proof-of-concept numerical implementation, and the corresponding simulation
results.

∗ ∗ ∗

This paper is structured as follows. After presenting the modeling assumptions,
we proceed to deriving a pulse-propagation model from Maxwell’s equations.
We show how the system of differential equations in time can be reformulated
into an explicit system of first order differential equations in space, such that
a boundary problem can be posed for the propagation of the electric field
state, from an initial boundary into the rest of the spatial domain. We solve the
problem in spectral domain, deriving a system of coupled differential equations
for the amplitudes of the eigenmodes, called a bppe system.

We continue with addressing the issue of traversing material interfaces. Depart-
ing from the continuity conditions for the tm-field, we derive three continuity
equations, describing how the transition into and out-of the material slab is
performed. We also impose conditions guaranteeing that the solutions to the
model represent actual physical processes.

With all tools at hand, in Chapter 6 we present the full bppemodel, the core of
this thesis paper. We perform scaling of themodel, andmake a choice of physical
scales and parameters for the represented physical system. To accompany the
model, in the following chapter we present a dedicated Artificial Source Test
(ast). The testing technique was originally presented in [7] for a Transverse
Electric (te)-mode. We adapt it to incorporate the particularities of the tm-
mode.

In the second part of this paper we present the numerical implementation of
the bppemethod and the ast. We focus on particular implementation choices
made. Then, we introduce the scope of the simulations performed, and present
their results. We present two major simulation cases, with different emphasis
on the nonlinear Kerr-effect.

The paper concludes with a discussion of the findings from the simulation part,
proposing also a way forward, both for the bppe method, as well as for the
underlying implementation.



2
Modeling assumptions
2.1 Physical setup
The physical setup that we consider in this paper is presented in Figure 2.1. It
consists of a material slab placed in a vacuum. There are twomaterial interfaces
perpendicular to the z-axis, one at point z = a, and the other at z = b. The
slab is conceptually infinite in x -direction, there are no horizontal material
interfaces. We distinguish between the two faces of each interface, marking
them with z = a− and z = b− for the left-hand sides, and z = a+, z = b+ for
the right hand sides. This is formally introduced in interface-transition section
4.1.2. Interface point z = a is also denoted as za , and for point z = b we use
zb .

Further, we consider an electromagnetic pulse entering the slab at point z = a−,
propagating through the slab, and exiting the slab at point z = b+. Due to the
nonlinear polarization effect, some portion of the electromagnetic radiation
is expected to be back-scattered inside the slab, traveling in the opposite
direction. Internal reflection from the material interface is also expected, due
to the difference in the refractive indices of vacuum and the slab material.
The back-scattered or reflected light exits the slab back at the first interface
z = a.

Further discussion about light propagation in material slab are included in
section 5.3, and then continued in section 6.1.2, put into the perspective of
bppe method.

7



8 chapter 2 modeling assumptions

Figure 2.1: Physical setup.

2.2 TM field
In this paper we consider only the tm mode of an electromagnetic field. As
indicated in [6], analogous derivations can bemade for general electromagnetic
fields. Such derivations are to a certain extent provided in [5].

We model the electromagnetic wave as a plane wave, where the electric and
magnetic field components are perpendicular to each other. For the tm field,
as the name suggests, the magnetic field component is perpendicular to the
direction of propagation of the electromagnetic wave. Assuming a Cartesian
coordinate system, and placing the magnetic field vector parallel to the y-axis,
we must have the electric field vector lying in the xz-plane, as shown in Figure
2.2. We assume the direction of propagation along the z-axis.

The tm field and the nonlinear polarization can be written in component form
as:

E (z,x , t) = e1 (z,x , t) î

= e2 (z,x , t) k̂,
B (z,x , t) = b (z,x , t) ĵ,

PNL (z,x , t) = p1 (z,x , t) î

= p2 (z,x , t) k̂, (2.1)
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Figure 2.2: TM-field components.

where î, ĵ and k̂ are unit vectors along x ,y, and z axes respectively. We note
that magnetic field B has only one component. We delay writing out the
components of the electric flux density vector D until section 3.1.

2.3 Polarization model
Electromagnetic field present in a non-vacuum medium interacts with the
electrically charged particles of the medium by exerting an electromagnetic
force on them. In a dielectric material, the electrons are bound to atoms and do
not flow freely through the medium (no electric current). Nevertheless, they
can be pulled out from their equilibrium points by the acting force, causing
polarization of the medium.

The redistribution of electrons gives rise to a new electric field in the medium.
This new electric field interacts with the external electric field applied to the
dielectric in the first place. That, in turn, modifies the polarization of the
medium even further, and so on. The interaction between the two electric
fields becomes intertwined.

We consider a polarization vectorP (t ,x ,y, z) to be a sum of linear andnonlinear
functions of electric field E (t ,x ,y, z). Dropping the dependence on arguments
we have:

P = ϵ0 (PL + PNL) , (2.2)
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where

PL = L (E) ,

L (·) =

∫ t

−∞

dt ′ χ (t − t ′, z) (·) , (2.3)

PNL = ηE
2E, (2.4)

and η is a relatively small number, making the nonlinear polarization influence
much less profound. Such model, where the impact of nonlinear polarization
is much smaller than the impact of linear polarization, is reasonable in the
context of short-wave optics. We go back to determining the actual scale of the
nonlinearity factor η in section 6.2.3.

The linear polarization is determined by linear operator (2.3). This operator per-
forms a convolution of the electric field at previous times with time-dependent
susceptibility χ . Susceptibility of a dielectric material is a dimensionless quan-
tity, reflecting how easily the material polarizes in response to an electric
field.

The nonlinear polarization component (2.4) is of the form of Kerr-type nonlin-
earity. This is the only nonlinearity type that we consider in this paper.

2.4 Dispersion model
The dispersive properties of the material slab are of relevance in our consid-
erations. Different frequency modes travel through a dispersive medium with
different phase velocities, causing a dispersion of a temporal signal. This is
modeled by a frequency-dependent refractive index.

In Chapter 3 and Appendix B we show how the refractive index arises from
susceptibility when solving the light propagation model based on Maxwell’s
equations. Primarily, we consider linear susceptibility operator and a linear
refractive index n(ω). For the refractive index we assume a particular model,
which we present in this section as one of the modeling assumptions. In order
to account for the nonlinear polarization Kerr effect, we also introduce, in
section 6.2.3, a concept of nonlinear refractive index n2. This nonlinear index
is then incorporated into the overall nonlinearity coefficient η.

For modeling dispersion we use Lorentz oscillator model and write the suscepti-
bility χ̂ as a function of frequency ω as

χ̂ (ω) =
ω2
p

ω2
r − ω2 − iγω

, (2.5)
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where

ωp is plasma frequency, and ω2
p =

q2N
ϵ0me

, where q is electron charge, N is
electron density,me is mass of electron,

ωr is resonance frequency,

γ = 2
τ , where τ is pulse duration, or width in time domain.

Given susceptibility, we model the complex refractive index nc (ω) as

n2
c (ω) = (n(ω) + iα(ω))

2 = 1 + χ̂ (ω)
= 1 + Re{ χ̂ (ω)} + i Im{ χ̂ (ω)}, (2.6)

wheren(ω) andα(ω) are the real refractive index and the absorption coefficient
respectively. Separating out the real and imaginary parts of equation (2.6) we
get

ϵRe = 1 + Re{ χ̂ (ω)} = 1 +
ω2
p
(
ω2
r − ω

2)(
ω2
r − ω2

)2
+ ω2γ 2

,

ϵIm = Im{ χ̂ (ω)} =
ω2
pγω(

ω2
r − ω2

)2
+ ω2γ 2

.

With that we write the refractive index and the absorption coefficient as

n(ω) =

√
1
2

(
ϵRe +

√
ϵ2
Re + ϵ

2
Im

)
,

α(ω) =

√
1
2

(
−ϵRe +

√
ϵ2
Re + ϵ

2
Im

)
. (2.7)

For particular values of parameters ωp , ωr , γ those two functions of ω can
be graphed. We do this in scaling section 6.3.3. We also show there that
the absorption coefficient α(ω) is negligible under the chosen parameter set,
giving

nc (ω) ≈ Re{nc (ω)} = n(ω).

Thus, throughout this paper, we associate refractive index with the real refrac-
tive index n(ω), defined as in (2.7).





3
Light propagation
3.1 Maxwell’s equations in component form
For modeling of electromagnetism we naturally depart from Maxwell’s equa-
tions. We consider an isotropic, homogeneous, and non-magnetic material with
no free charges or currents1. Maxwell’s equations are given as

∇ × E + ∂tB = 0,
∇ ×H − ∂tD = 0,

∇ · B = 0,
∇ · D = 0, (3.1)

and using (2.2) we also have

H =
1
µ0

B,

D = ϵ0E + P

= ϵ0 (E + PL + PNL)

= ϵ0
(
E + L(E) + ηE2E

)
= ϵ0(1 + L)(E) + ϵ0ηE

2E,

1. nothing is assumed about the dispersive properties of the material yet

13



14 chapter 3 light propagation

which in component form becomes

H =
1
µ0
b,

D = ϵ0(1 + L)
[
e1
e2

]
+ ϵ0

[
p1
p2

]
(3.2)

= ϵ0(1 + L)
[
e1
e2

]
+ ϵ0η

(
e2

1 + e
2
2
) [
e1
e2

]
=

[
d1
d2

]
. (3.3)

Inserting polarization and electromagnetic field components (2.1) and (3.2)
into Maxwell’s equations (3.1) we get

∇ × E =

(
�
��*

0
∂ye2

)
î + (∂ze1 − ∂xe2) ĵ −

(
�
��*

0
∂ye1

)
k̂,

∂tB = ∂tb ĵ
⇒ (∂ze1 − ∂xe2 + ∂tb) ĵ = 0,

∇ ×H = 1
µ0

(
−∂zb î + ∂xb k̂

)
,

∂tD = ϵ0∂t

[
(1 + L)

[
e1
e2

]
+

[
p1
p2

] ]
⇒

(
−

1
µ0
∂zb

)
î = (ϵ0∂t [(1 + L)e1 + p1]) î,(

1
µ0
∂xb

)
k̂ = (ϵ0∂t [(1 + L)e2 + p2]) k̂,

∇ · B =��
�>

0
∂yb ⇒ 0 = 0,

∇ · D = ϵ0∂x [(1 + L)e1 + p1] + ϵ0∂z [(1 + L)e2 + p2] = 0.

We gather the above results into a systems of Maxwell’s equations for tmmode
in component form

∂ze1 − ∂xe2 + ∂tb = 0, (3.4)

− ∂zb =
1
c2 ∂t [(1 + L)e1 + p1] , (3.5)

∂xb =
1
c2 ∂t [(1 + L)e2 + p2] , (3.6)

∂x (1 + L)e1 + ∂z(1 + L)e2 = −∂xp1 − ∂zp2, (3.7)

where we have used that ϵ0µ0 =
1
c2 .
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In order to propagate the initial state along z, we write the above equations as
an explicit ∂z -propagation system

∂ze1 = ∂xe2 − ∂tb, (3.8)
∂z(1 + L)e2 = −∂x (1 + L)e1 − ∂xp1 − ∂zp2, (3.9)

∂zb = −
1
c2 ∂t [(1 + L)e1 + p1] , (3.10)

with an additional constraint

∂xb −
1
c2 ∂t [(1 + L)e2 + p2] = 0. (3.11)

For the system (3.8)-(3.10) to be explicit in ∂z , we must handle the ∂zp2 term on
the Right-Hand Side (rhs) of equation (3.9). We do it in section 3.2.1.

We now take a look at the constraint (3.11). Taking ∂z of (3.11) and inserting
equations (3.10) and (3.9) we get

∂xzb −
1
c2 ∂tz [(1 + L)e2 + p2]

= ∂x

(
−

1
c2 ∂t [(1 + L)e1 + p1]

)
−

1
c2 ∂tz [(1 + L)e2 + p2]

= −
1
c2 ∂t [(1 + L)∂xe1 + (1 + L)∂ze2 + ∂xp1 + ∂zp2]

= 0. (3.12)

Thus we have obtained that constraint (3.11) is conserved by the system (3.8)
- (3.10). However, that result bases on the assumption of differentiability of
(1 + L)e2 in the z-direction. Whether that assumption is acceptable, given
arbitrary refractive index step at the material interface, is not yet guaranteed
at this point. We come back to this matter in Chapter 4, where we look into
the conditions for crossing the material interfaces.

3.2 Solving the system of Maxwell’s equations
3.2.1 Explicit ∂z-system
For solving the system (3.8)-(3.10) numerically with an explicit method, we
need the system to be explicit in z. What is problematic about the current form
of the system, is the ∂zp2 term on the rhs of (3.9), making the system implicit
with respect to z.
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Let us expand ∂zp2 according to (2.4)

∂zp2 = η∂z
(
e2

1 + e
2
2
)
e2

= η
[
∂z

(
e2

1 + e
2
2
)
e2 +

(
e2

1 + e
2
2
)
∂ze2

]
= η

[
e2

(
∂ze

2
1 + ∂ze

2
2
)
+

(
e2

1 + e
2
2
)
∂ze2

]
= η

[
e2 (2e1 ∂ze1 + 2e2 ∂ze2) +

(
e2

1 + e
2
2
)
∂ze2

]
= η

[
2e1e2∂ze1 + 2e2

2 ∂ze2 + e
2
1∂ze2 + e

2
2∂ze2

]
= η

[
2e1e2∂ze1 + ∂ze2

(
3e2

2 + e
2
1
) ]
. (3.13)

We can now transform (3.9) as follows

∂ze2 = −∂xe1 − (1 + L)−1 [∂xp1 + ∂zp2] (3.14)

and substitute it for ∂ze2 in (3.13)

∂zp2 = η
[
2e1e2∂ze1 +

(
3e2

2 + e
2
1
) (
−∂xe1 − (1 + L)−1 [∂xp1 + ∂zp2]

) ]
.

(3.15)

We obtained a rather inconvenient form, where ∂zp2 on the Left-Hand Side
(lhs) is dependent on ∂zp2 on the rhs. We recall, however, that we assumed
the nonlinear polarization components p1 and p2 to be perturbations, as in
(2.4), with η being a relatively small number2. We can proceed to expanding
∂zp2 on the rhs of (3.15) recursively, using (3.13) and (3.14), and with each
expansion we get an additional factor of η coming from the perturbations
expansion. Neglecting the product of small quantities, with a factor η2 or
smaller, we obtain that (3.13) can be approximated as

∂zp2 = η
[
2e1e2∂ze1 +

(
3e2

2 + e
2
1
)
(−∂xe1)

]
. (3.16)

By choosing to perform this linear approximation, we managed to eliminate
∂ze2 dependence from the rhs of (3.9). Using (3.16) in (3.9) gives a system
which can be solved explicitly, given that the initial values of e1, ∂ze1 and e2
are known.

3.2.2 Normal modes
The strategy for solving the system of Maxwell’s equations (3.8)-(3.10) is to
express its solutions in terms of the normal modes, in spectral domain.

First, we eliminate the magnetic field from the system by taking cross deriva-
tives. Taking ∂z of (3.8) and substituting that into the ∂t of (3.10) gives the

2. the size of η is established in the process of scaling
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first equation of (3.17). Equation (3.9) is the second equation of (3.17).

∂zze1 = ∂xze2 − ∂tzb

= ∂xze2 +
1
c2 ∂t t [(1 + L)e1 + p1] ,

∂ze2 = −∂xe1 − (1 + L)−1 [∂xp1 + ∂zp2] . (3.17)

Linearizing system (3.17) as indicated in section 3.2.1 we obtain

∂zze1 = ∂xze2 +
1
c2 ∂t t [(1 + L)e1 + p1] ,

∂ze2 = −∂xe1. (3.18)

System (3.18) is linear to the leading order. We will now find the complete set
of modes solving this system. For a homogeneous medium we can take the
Fourier Transform (ft) of (3.18) in space and time, obtaining an algebraic
system to be solved, instead of a differential one. Doing so we get

−k2ê1 = −ξkê2 −

(ω
c

)2
n2(ω)ê1,

ikê2 = −iξ ê1, (3.19)

where

• k is the longitudinal wave number,

• ξ is the transverse wave number,

• ˆ denotes an element transformed by ft to spectral domain, according
to the ft conventions presented in Appendix A,

• F {(1 + L)e1} is presented in Appendix B, and it leads to the emergence
of refractive index n(ω).

We now rearrange system (3.19) and solve for different values of parameter



18 chapter 3 light propagation

k 3

ê1

[(ω
c
n(ω)

)2
− k2

]
= −ξkê2,

−ξ ê1 = kê2 ⇒ ê2 = −
ξ

k
ê1, k , 0 (3.20)

⇓

ê1

[(ω
c
n(ω)

)2
− k2

]
= −ξk

(
−
ξ

k
ê1

)
, k , 0

⇓(ω
c
n(ω)

)2
− k2 = ξ 2, k , 0.

Denoting

β (ω, ξ ) =

√(ω
c
n(ω)

)2
− ξ 2 (3.21)

we get that for k , 0
k2 = β2 ⇒ k = ±β .

Thus, in order to solve system (3.19) for ê1, ê2, we need to consider three cases
for the values of k:

k = +β; k = −β; k = 0.

For k = ±β , system (3.19) is over-determined and we have certain freedom in
choosing the solutions ê1, ê2, and thus in choosing the basis for the solution
space.

Using (3.20) let us have for

• k = +β:
ê1 = β
ê2 = −ξ

}
⇒ ̂e =

[
β
−ξ

]
,

• k = −β:
ê1 = β
ê2 = ξ

}
⇒ ̂e =

[
β
ξ

]
,

• k = 0:
ê1 = 0
ê2 = 1 (arbitrary)

}
⇒ ̂e =

[
0
1

]
. (3.22)

3. Of the three parametersk,ξ ,ω, only two are independent (free parameters). It is customary
in optics to relate k = k(ξ ,ω).
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For each of the three cases of k-values we obtained in (3.22) the basis vectors
for the normal mode expansions. We will use those vectors to express the
solutions to our system of Maxwell’s equations in section 3.2.4.

3.2.3 Digression on the direction of propagation
In this section we relate the the ∂z -propagation of the differential system, with
the direction of propagation (travel) of the electromagnetic wave.

Without a loss of generality we chose a coordinate system such that the material
interface plane is perpendicular to z-axis, as depicted in Figure 3.1.

Figure 3.1: Placement of interface plane ⊥ to z-axis.

Assuming some Boundary Condition (bc) at za , we know the state of the
electric field at za for all times t , and along the x -axis. Hence, the respective
derivatives ∂t and ∂x are known and we can propagate the state from za plane
to all other planes along z-direction, using our explicit ∂z -system.

The bc state can be arbitrary, so it is possible to model different incidence
angles of the incoming laser pulse by choosing the bc carefully. Figure 3.2
indicates how bcs for perpendicular and oblique incident angles differ.

For a perpendicular incidence angle, all points along x oscillate in phase and
the corresponding electromagnetic wave propagates along the z-direction. The
state of such system is uniform in x -direction.

For an oblique incidence angle, different points along x experience a different
stage of oscillation. Such state is non-uniform in x . The direction of wave-
propagation has both x and z components, but the propagation of the bc-
state from za to other planes along z is done using the same ∂z -propagation
system.
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Figure 3.2: Laser-beam incident angles.

3.2.4 Expressing solutions in terms of normal modes
With the three basis vectors (3.22) we express the solutions to system (3.17) as
the superposition of z-dependent Fourier modes. Following the conventions in
Appendix A for the Inverse Fourier Transform (ift)s in x and t we get

e (z, t ,x) =
1
√

2π
2

∫ +∞

−∞

dω

∫ +∞

−∞

dξ ê (z,ω, ξ ) ei(ξ x−ωt )

=
1
√

2π
2

∫ +∞

−∞

dω

∫ +∞

−∞

dξ

{
A+ (z,ω, ξ )

[
β
−ξ

]
ei βz

+A− (z,ω, ξ )

[
β
ξ

]
e−i βz

+ Q (z,ω, ξ )

[
0
1

]}
ei(ξ x−ωt ), (3.23)

where A+, A− and Q are Fourier coefficients, representing the amplitudes of
the wave modes.

We follow here the same conventions as in [6]. Under those conventions we
have different sign in the Fourier modes for temporal and spatial fts. As
confusing as that might be, it results in a more intuitive direction of wave
travel. For an increasing time, the k > 0 wave mode travels to the right, while
the k < 0 mode travels to the left along z. That makes A+ the amplitude fo the
right-traveling wave, and A− the amplitude of the left-traveling wave. Q is the
amplitude of a transversely-traveling mode.
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3.2.5 The issue of physical interpretation
We note the fact that when expressing a physical electric field through equation
(3.23), we have to integrate over negative temporal frequencies ω. We present
here a justification of such approach.

In order for the electric field to be real (as opposed to imaginary), and thus
physical, we must have the following relations met for the complex ampli-
tudes

A− (z,ω, ξ ) = A∗+ (z,−ω,−ξ ) ,

A+ (z,ω, ξ ) = A∗− (z,−ω,−ξ ) ,

Q (z,ω, ξ ) = Q∗ (z,−ω,−ξ ) . (3.24)

The solution representation (3.23) can be written as a sum of integrals over the
physical frequency range ω ≥ 0, and the non-physical frequency range ω ≤ 0.
We drop the dependence on arguments and obtain

e =
1
√

2π
2

∫ +∞

−∞

dω

∫ +∞

−∞

dξ

{
A+

[
β
−ξ

]
ei βz +A−

[
β
ξ

]
e−i βz +Q

[
0
1

]}
ei(ξ x−ωt )

=
1

2π

∫ +∞

−∞

dξ

[∫ +∞

0
dω

{
A+

[
β
−ξ

]
ei βz +A−

[
β
ξ

]
e−i βz +Q

[
0
1

]}
ei(ξ x−ωt )

+

∫ 0

−∞

dω

{
A+

[
β
−ξ

]
ei βz +A−

[
β
ξ

]
e−i βz +Q

[
0
1

]}
ei(ξ x−ωt )

]
.

Using now relations (3.24), we modify the negative frequency range for the pos-
itive one, introducing the complex conjugates of the complex amplitudes

e =
1

2π

∫ +∞

−∞

dξ

[∫ +∞

0
dω

{
A+

[
β
−ξ

]
ei βz +A−

[
β
ξ

]
e−i βz +Q

[
0
1

]}
ei(ξ x−ωt )

+

∫ +∞

0
dω

{
A∗−

[
β
−ξ

]
e−i βz +A∗+

[
β
ξ

]
ei βz +Q∗

[
0
1

]}
e−i(ξ x−ωt )

]
=

1
2π

∫ +∞

−∞

dξ

∫ +∞

0
dω

[{
A+

[
β
−ξ

]
ei βz +A−

[
β
ξ

]
e−i βz +Q

[
0
1

]}
ei(ξ x−ωt ) + (∗)

]
,

where (∗) denotes the complex conjugate. We obtained a form where the
integration argument is a sum of a complex number and its complex conjugate.
Making assumptions (3.24) about the physicality of the electromagnetic field
we managed to transform the solution expansion (3.23) into the form which
does not include integrating over negative temporal frequencies ω ≤ 0. We
thus know, that the solutions of this form are physical⁴.

4. There is still an issue of the existence of a physical magnetic field b accompanying such
electric field. We address this matter in section 5.2
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3.2.6 Redundancy
Relations (3.24) bind the complex conjugates of the opposite frequency ranges,
so effectively out of the six unknowns: A+, A∗+, A−, A

∗
−, Q , Q∗, only three

are truly independent. The electric field considered in this paper has only two
components in tmmode,while there are three unknown amplitude coefficients
in expansion (3.23). This allows us to pose one additional condition without
restricting the solutions to the system (3.17) in any way.

Anticipating derivations of section 6.1,we choose to set this additional condition
to

∂zA+e
i βz + ∂zA−e

−i βz = 0. (3.25)

3.2.7 Spectral representation of Maxwell’s equations
We now use the normal modes expansion (3.23) in the system of equations
(3.17). First, we write out the two components of the electric field in terms of
their respective ifts. We drop the dependence on arguments henceforth.

e1 =
1
√

2π
2

∫ +∞

−∞

dω

∫ +∞

−∞

dξ

ê1︷                        ︸︸                        ︷{
A+βe

i βz +A−βe
−i βz

}
ei(ξ x−ωt ) (3.26)

e2 =
1
√

2π
2

∫ +∞

−∞

dω

∫ +∞

−∞

dξ
{
−A+ξe

i βz +A−ξe
−i βz +Q

}
︸                                ︷︷                                ︸

ê2

ei(ξ x−ωt ).

(3.27)

The required ∂z derivatives of e1, e2 in Fourier domain take the form

∂̂ze1 = ∂z

{
β

(
A+e

i βz +A−e
−i βz

)}
= β

[
∂zA+e

i βz + ∂zA−e
−i βz + iβ

(
A+e

i βz −A−e
−i βz

)]
= iβ2

(
A+e

i βz −A−e
−i βz

)
+ ∂zA+e

i βz + ∂zA−e
−i βz︸                       ︷︷                       ︸

=0 by (3.25)

, (3.28)

∂̂zze1 = iβ
2∂z

(
A+e

i βz −A−e
−i βz

)
= iβ2

[
∂zA+e

i βz − ∂zA−e
−i βz + iβ

(
A+e

i βz +A−e
−i βz

)]
= i2β3︸︷︷︸
−β3

(
A+e

i βz +A−e
−i βz

)
+ 2iβ2 ∂zA+e

i βz , (3.29)
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∂̂ze2 = ∂z

{
ξ

(
−A+e

i βz +A−e
−i βz

)
+Q

}
= ξ

[
−∂zA+e

i βz + ∂zA−e
−i βz − iβ

(
A+e

i βz +A−e
−i βz

)]
+ ∂zQ

= −iβξ
(
A+e

i βz +A−e
−i βz

)
+ 2ξ ∂zA−e−i βz + ∂zQ . (3.30)

In order to bring the system of Maxwell’s equations into spectral domain,
we insert the spectral z-derivatives (3.28), (3.29) and (3.30) into the system
(3.17)

−β3
(
A+e

i βz +A−e
−i βz

)
+ 2iβ2 ∂zA+e

i βz

−iξ
[
−iβξ

(
A+e

i βz +A−e
−i βz

)
− 2ξ ∂zA+ei βz + ∂zQ

]
−

[
−
ω2

c2 n
2(ω)β

(
A+e

i βz +A−e
−i βz

)]
= N̂L1,

−iβξ
(
A+e

i βz +A−e
−i βz

)
− 2ξ∂zA+ei βz + ∂zQ

+iξ β
(
A+e

i βz +A−e
−i βz

)
= N̂L2,

where for the ft of operator (1 + L) gives rise to the refractive index n(ω) as
derived in Appendix B, and

N̂L1 = F

{
1
c2 ∂t tp1

}
= −

ω2

c2 p̂1, (3.31)

N̂L2 = F
{
−(1 + L)−1 [∂xp1 + ∂zp2]

}
= −

1
n2(ω)

(
iξp̂1 + ∂zp̂2

)
. (3.32)

Performing algebraic transformations and using β2 =
(ω
c n(ω)

)2
−ξ 2, according

to (3.21), we get

���
���

���
���:

0[
−β2 − ξ 2 +

(ω
c
n(ω)

)2
]
β

(
A+e

i βz +A−e
−i βz

)
+2i

(
β2 + ξ 2) ∂zA+ei βz − iξ∂zQ = N̂L1,

��
���

�:0
(−iξ + iξ )β

(
A+e

i βz +A−e
−i βz

)
− 2ξ∂zA+ei βz + ∂zQ = N̂L2

⇓

2i
(
β2 + ξ 2) ∂zA+ei βz − iξ∂zQ = N̂L1,

−2ξ∂zA+ei βz + ∂zQ = N̂L2. (3.33)

The system of equations (3.33) is a spectral representation of the system of
equations (3.17), which in turn corresponds to the Maxwell’s equations for the
tm mode with magnetic field eliminated.



24 chapter 3 light propagation

3.3 BPPE system
3.3.1 The differential system
We simplify system (3.33) by addition and subtraction to the following form[

2i
(
β2 + ξ 2) − 2iξ 2] ∂zA+ei βz�����(−iξ + iξ ) ∂zQ = N̂L1 + iξ N̂L2,[
−2ξ − i

ξ

��β
2 (((

((((
(((([

2i
(
β2 + ξ 2) − 2iξ 2] ] ∂zA+ei βz

+∂zQ
�
��

�
��
�(

1 − i
ξ

β2 · 0
)
= N̂L2 − i

ξ

β2

(
N̂L1 + iξ N̂L2

)
⇓

2iβ2∂zA+e
i βz = N̂L1 + iξ N̂L2

def .
= N̂LA,

∂zQ = −i
ξ

β2 N̂L2 +

(
1 +

ξ 2

β2

)
N̂L2

def .
= N̂LQ . (3.34)

System (3.34) is valid for entire ω range, both its positive and negative values.
Transform the system for negative frequencies ω by using complex conjugates
and relations (3.24) we get

2iβ2∂zA+ (ω ≤ 0) ei βz = N̂LA (ω ≤ 0) ,

∂zQ (ω ≤ 0) = N̂LQ (ω ≤ 0)
↓ (∗)

−2iβ2∂zA
∗
+ (ω ≤ 0) e−i βz = N̂LA

∗
(ω ≤ 0) ,

∂zQ
∗ (ω ≤ 0) = N̂LQ

∗
(ω ≤ 0)

↓ relations (3.24)

−2iβ2∂zA− (ω ≥ 0) e−i βz = N̂LA (ω ≥ 0) ,

∂zQ (ω ≥ 0) = N̂LQ (ω ≥ 0) .

We obtained a system similar to (3.34), with the second equation exactly the
same, but the first equation involvingA− instead ofA+. Putting those equations
together we obtain a system of three equations, describing all three unknown
spectral amplitudes A+, A− and Q

2iβ2∂zA+e
i βz = N̂LA,

−2iβ2∂zA−e
−i βz = N̂LA,

∂zQ = N̂LQ . (3.35)
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We call system (3.35) a bppe system. It is the core mechanism of the model
presented in this paper.

Under the assumption that nonlinear polarization is only a perturbation to
the linear polarization vector (as discussed in section 3.2.1), system (3.35) is
equivalent to the full Maxwell’s equations (3.8)-(3.10).

Constraint (3.11) is preserved by the system as long as (1+L)e2 is differentiable
at all points along z-axis considered by the model, including interfaces in
particular. In Chapter 4 we show that (1 + L)e2 is indeed differentiable at the
interfaces.

3.3.2 The nonlinearity term
Let us look closer into the nonlinearity on the rhs of system (3.35). Using
(3.31) and (3.32) in (3.34) we write

N̂LA = N̂L1 + iξ N̂L2

= −
ω2

c2 p̂1 −
iξ

n2(ω)

(
iξp̂1 + ∂zp̂2

)
= p̂1

(
ξ 2

n2(ω)
−
ω2

c2

)
−

iξ

n2(ω)
∂zp̂2

= −
1

n2(ω)

(
β2p̂1 + iξ∂zp̂2

)
, (3.36)

N̂LQ = −i
ξ

β2 N̂L2 +

(
1 +

ξ 2

β2

)
N̂L2

=

�
�
�
�iξω2

β2c2 p̂1 −

(
1 +

ξ 2

β2

)
1

n2(ω)

(
�
��iξp̂1 + ∂zp̂2

)
= −

ω2

β2c2 ∂zp̂2, (3.37)

where in the first equation above we have used

ω2n2(ω)

c2 − ξ 2 = β2

⇓

ξ 2

n2(ω)
−
ω2

c2 = −
β2

n2(ω)
,
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and in the second equation we used that

−

(
1 +

ξ 2

β2

)
1

n2(ω)
ßξ = iξ

(β2 + ξ 2)

β2n2(ω)

= iξ
ω2
��
�n2(ω)

c2β2
�
��n2(ω)
= iξ

ω2

c2β2 .

With p1 as in (3.3) and ∂zp2 as in (3.16), both nonlinearities N̂LA and N̂LQ
are functions of electric field components e1 and e2 and their derivatives. The
constructing algorithm is presented below.

Algorithm: Computing nonlinear RHS’s N̂LA and N̂LQ

1. Build ê1, ê2, ∂z ê1 according to formulas (3.26), (3.27), (3.28), and ∂̂xe1 =

iξ β
(
A+e

i βz +A−e
−i βz ) .

2. Take the ifts of the quantities obtained in previous step.

3. Construct p1, p2, ∂zp2 according to (3.3) and (3.16).

4. Take the fts of the nonlinearities in previous step to obtain p̂1, p̂2, ∂̂zp2.

5. Construct the rhs nonlinearities N̂LA, N̂LQ according to (3.36) and
(3.37).

Note that if we totally neglect ∂zp̂2 to be equal to zero then N̂LQ = 0.



4
Material interfaces
4.1 Interface continuity conditions
4.1.1 Continuity of electric field components
For an electromagnetic wave crossing a material interface

i) the normal components of D and B (and hence H) are continuous,

ii) the tangential components of E and H (and hence B) are continuous.

To complete, neither the normal component of E nor the tangential component
ofD is required to be continuous. Those continuity restrictions are summarized
in Table 4.1.

E D B H
‖ 3 5 3 3

⊥ 5 3 3 3

Table 4.1: Continuity restrictions for em field components at interface.

In our considerations we reduced Maxwell’s equations to the electric field only,
making E and D the only relevant vectors. For a tm field those vectors have
both normal and tangential components, but we have to ensure the continuity

27
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only of the ‖ E and ⊥ D components when crossing the material interface. In
component form, following (2.1) and (3.3), we have to ensure the continuity
of

e1 (z,x , t) , (4.1)
d2 (z,x , t) = ϵ0(1 + L)e2 + ϵ0 η

(
e2

1 + e
2
2
)
e2︸          ︷︷          ︸

p2

(4.2)

components.

Note, that by ensuring the continuity of d2 = ϵ0(1 + L)e2 + p2 we ensure
that the constraint (3.11) is conserved across the interface - something that we
could not do before, due to the fact that the differentiability of (1 + L)e2 at
the interface could not have been assumed.

Note also, that neither ϵ0(1 + L)e2 nor p2 alone need to be continuous across
the interface, so the derivatives ∂zϵ0(1 + L)e2 or ∂zp2 may not exist at the
interface. This situation allows us to consider the dynamical system only inside
or outside the slab, not at the interface. In order to be able to step across
the interface, in section 4.1.2 we derive the transformations according to the
continuity conditions presented in this section.

4.1.2 Transition across interfaces
For propagating system (3.17) across the material interface, we need the conti-
nuity conditions for the components e1, ∂ze1, e2. We will be expressing those
conditions in spectral domain, to fit with the spectral Maxwell’s equations
(3.35).

We consider a laser pulse propagating from left to right along z-axis, and
traversing the interface at point z = a. We denote the electric field approaching
the interface at z = a from the left side as

e1 (a
−,x , t) = lim

z→a−
e1 (z,x , t) ,

and from the right side

e1
(
a+,x , t

)
= lim

z→a+
e1 (z,x , t) .

By analogy similar applies to other electric field components and their deriva-
tives, as well as spectral amplitudes and nonlinearities. For compactness, often
only the dependence on z is maintained, omitting the other two variables x
and t , or ξ and ω. When we do not specify which interface point is meant,
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distinguishing only between the state at its two sides, we write

e−1 - meaning e1in the limit of approaching the interface from the lhs,
e+1 - meaning e1in the limit of approaching the interface from the rhs.

In our scenario, the amplitude of the electric field is known on the lhs of the
interface, and we aim to express the unknown amplitude on the rhs in terms
of the known one. The continuity of a physical field requires that the limits
approaching from either side are the same. For passing e1 across the interface
we use equation (4.1) which gives

e1
(
a+,x , t

)
= e1 (a

−,x , t) . (4.3)

For e2 we use (4.2) which gives

ϵ0(1 + L+)e2
(
a+,x , t

)
+ ϵ0p2

(
a+,x , t

)
= ϵ0(1 + L−)e2 (a

−,x , t) + ϵ0p2 (a
−,x , t) , (4.4)

where we remind that for Kerr-type nonlinearity

p1 = η
(
e2

1 + e
2
2
)
e1,

p2 = η
(
e2

1 + e
2
2
)
e2. (4.5)

Finally, for ∂ze1, we use (3.8). As long as there are no magnetic interfaces at
za , then b is continuous across the interface and we have

∂ze1
(
a+,x , t

)
− ∂xe2

(
a+,x , t

)
= ∂ze1 (a

−,x , t) − ∂xe2
(
a+,x , t

)
. (4.6)

Continuity conditions (4.3), (4.4), (4.6) are three equations for the three un-
knowns: e1 (a

+,x , t), e2 (a
+,x , t), ∂ze1 (a

+,x , t).

We now take those equations into spectral domain by taking ft in x and t ,
and by inserting the relevant mode expansions (3.26) and (3.27). We index
n(ω) and β(ω, ξ ) as shown in Figure 4.1, in order to distinguish values of those
functions inside and outside of the slab.

Taking equation (4.3) into spectral domain and inserting the mode expansions
yields

ê1
(
a+, ξ ,ω

)
= ê1 (a

−, ξ ,ω)

m

β1A+
(
a+, ξ ,ω

)
ei β1z + β1A−

(
a+, ξ ,ω

)
e−i β1z

= β0A+ (a
−, ξ ,ω) ei β0z + β0A− (a

−, ξ ,ω) e−i β0z . (4.7)
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Figure 4.1: Indexing outside and inside the material slab.

Taking equation (4.4) into spectral domain and inserting the mode expansions
yields

ϵ0n
2
1(ω)ê2

(
a+, ξ ,ω

)
+ ϵ0p̂2

(
a+, ξ ,ω

)
= ϵ0n

2
0(ω)ê2 (a

−, ξ ,ω) + ϵ0p̂2 (a
−, ξ ,ω)

m

��>
1

ϵ0 n2
1(ω)

[
−ξA+

(
a+, ξ ,ω

)
ei β1z + ξA−

(
a+, ξ ,ω

)
e−i β1z +Q

(
a+, ξ ,ω

) ]
+ p̂2

(
a+, ξ ,ω

)
=��>

1
ϵ0 n2

0(ω)
[
−ξA+ (a

−, ξ ,ω) ei β0z + ξA− (a
−, ξ ,ω) e−i β0z +Q (a−, ξ ,ω)

]
+ p̂2 (a

−, ξ ,ω) . (4.8)

Taking equation (4.6) into spectral domain and inserting the mode expansions
yields

∂z ê1
(
a+,x , t

)
− iξ ê2

(
a+,x , t

)
= ∂z ê1 (a

−,x , t) − iξ ê2
(
a+,x , t

)
m

∂z

{
β1A+

(
a+, ξ ,ω

)
ei β1z + β1A−

(
a+, ξ ,ω

)
e−i β1z

}
− iξ

[
−ξA+

(
a+, ξ ,ω

)
ei β1z + ξA−

(
a+, ξ ,ω

)
e−i β1z +Q

(
a+, ξ ,ω

) ]
= ∂z

{
β0A+ (a

−, ξ ,ω) ei β0z + β0A− (a
−, ξ ,ω) e−i β0z

}
− iξ

[
−ξA+ (a

−, ξ ,ω) ei β0z + ξA− (a
−, ξ ,ω) e−i β0z +Q (a−, ξ ,ω)

]
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m

β1∂zA+
(
a+, ξ ,ω

)
ei β1z + iβ2

1A+
(
a+, ξ ,ω

)
ei β1z

+ β1∂zA−
(
a+, ξ ,ω

)
e−i β1z − iβ2

1A−
(
a+, ξ ,ω

)
e−i β1z

+ iξ 2A+
(
a+, ξ ,ω

)
ei β1z − iξ 2A−

(
a+, ξ ,ω

)
e−i β1z − iξQ

(
a+, ξ ,ω

)
= β0∂zA+ (a

−, ξ ,ω) ei β0z + iβ2
0A+ (a

−, ξ ,ω) ei β0z

+ β0∂zA− (a
−, ξ ,ω) e−i β0z − iβ2

0A− (a
−, ξ ,ω) e−i β0z

+ iξ 2A+ (a
−, ξ ,ω) ei β0z − iξ 2A− (a

−, ξ ,ω) e−i β0z − iξQ (a−, ξ ,ω)

m using (3.25)

i
(
β2

1 + ξ
2) [

A+
(
a+, ξ ,ω

)
ei β1z −A−

(
a+, ξ ,ω

)
e−i β1z

]
− iξQ

(
a+, ξ ,ω

)
= i

(
β2

0 + ξ
2) [

A+ (a
−, ξ ,ω) ei β0z −A− (a

−, ξ ,ω) e−i β0z
]
− iξQ (a−, ξ ,ω)

m using (3.21)

[ωc n1(ω)]
2︷     ︸︸     ︷(

β2
1 + ξ

2) [
A+

(
a+, ξ ,ω

)
ei β1z −A−

(
a+, ξ ,ω

)
e−i β1z

]
− ξQ

(
a+, ξ ,ω

)
=

(
β2

0 + ξ
2)︸     ︷︷     ︸

[ωc n0(ω)]
2

[
A+ (a

−, ξ ,ω) ei β0z −A− (a
−, ξ ,ω) e−i β0z

]
− ξQ (a−, ξ ,ω) .

(4.9)

Equations (4.7), (4.8), (4.9) constitute the three conditions for traversing in-
terface in a continuous manner. By analogy, similar relations can be derived
for the other interface at z = b, where the light beam exits the slab.

Note that spectral amplitudes A+, A− and Q are not physical quantities, and
thus they themselves are not expected to be continuous across interfaces.
Mathematically we express an arbitrary electromagnetic wave as an infinite
superposition of the normal modes. It is only that superposition that we expect
to be continuous, not its component modes.

4.2 Interface crossing setup
In total, we consider four interface crossings, from left-to-right and from right-
to-left at each interfaces. Those four cases are shown in Figure 4.2. Naming
of the four crossings as M12(a) etc. is provided for the purpose of further
sections.
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Figure 4.2: Modeled interface crossings.



5
Reality check
5.1 Existence of Q-mode
TheQ-mode appears in our equations as a consequence of providing a complete
basis for the normal-modes expansion. This mode does not travel along z, as
the A+ and A− modes do, and it is less intuitive how this mode could manifest
itself. In order to take up the topic of the elephant in the room, this section
reveals some of the findings of the further sections. This is a spoiler alert.

Analyzing the interface transition conditions, it is not straightforward to deduce
whether a non-zero Q mode can arise in the system if it is not already present
in the input source to begin with. For a system uniform in x , we have ξ = 0. In
consequenceQ becomes irrelevant in condition (4.9), and (4.8) is reduced to a
condition indicating thatQ must be zero for a physical system. This is formally
shown in section 8.2.2.

Therefore, in order to have a chance of non-zero Q arising, we need to allow
for a variability in x direction. In the scaling section, equation (6.20), we reveal
that the scale of Q is inversely proportional to the scale of x . The smaller the
scale of the input pulse in x -direction, the bigger the scale of Q .

Ensuring a small scale in the x -direction means mathematically to represent
the input pulse as a narrow function of x , e.g. a narrow Gaussian. We are
operating with very imprecise terms here, but they serve the purpose of a
qualitative discussion. Such a narrow Gaussian pulse represents a laser beam

33
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that is physically focused into a narrow spatial area along x -direction.

Such a setup gives greater chances of producing a non-zero Q , but it is still
only a scale that we are considering here. It does not guarantee that the
dimensionless factor scaled by this scale ever gets to be different than zero. We
do see, however, that a case uniform in x -direction corresponds to focusing a
beam into an infinite region, making the scale of Q inversely proportional to
infinity, and thus zero. That confirms the previous findings.

In any case, in order to confirm arising of theQ-mode, it needs to be distinguish-
able from the numerical errors occurring for particular tolerance thresholds
assumed. Also, we expect the shape of Q-mode envelope to follow the one of
the input pulse, distinguishing itself clearly from the numerical noise.

5.2 Solvability conditions for b-field
For the existence of magnetic field b consistent with Maxwell’s equations, we
need to impose the constraint (3.11) at some point of the system. As we have
shown in (3.12), this constraint is then preserved by the system. We now show
whether that is also true at the interface crossing.

First, let us impose the constraint and derive a solvability condition that ensures
the existence of b field. We consider equations (3.11) and (3.8), which involve
all electric and magnetic field components of interest: e1, e2 and b. Cross-
differentiating those two equations by taking ∂t of (3.11) and ∂x of (3.8) yields
a system

∂xtb =
1
c2 ∂t t [(1 + L)e2 + p2] ,

∂xtb = ∂xxe2 − ∂xze1.

Equating those two together and performing simple algebraic operations we
get

∂xze1 − ∂xxe2 = −
1
c2 ∂t t [(1 + L)e2] −

1
c2 ∂t tp2. (5.1)

Equation (5.1) is the condition for the solvability of Maxwell’s equations, whose
solution represents a physical magnetic field.

We will now determine whether condition (5.1) is maintained when crossing
an interface according to relations (4.3), (4.4), (4.6). We do it by imposing
constraint (5.1) on the lhs of the interface, applying the spatiotemporal inter-
face crossing conditions (4.3), (4.4), (4.6), and checking whether the resulting
relation taken to the rhs still meets the solvability condition.
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We start with interface condition (4.6) and take the ∂x derivative of it

∂xze
+
1 − ∂xxe

+
2 = ∂xze

−
1 − ∂xxe

−
2

↓ using solvability condition (5.1) for rhs

= −
1
c2 ∂t t

[
(1 + L−)e−2

]
−

1
c2 ∂t tp

−
2

↓ using interface condition (4.4)

= −
1
c2 ∂t t

[
(1 + L+)e+2 + p

+
2
]
,

which is consistent with the form of the solvability condition (5.1) for the rhs
of the interface

−
1
c2 ∂t t

[
(1 + L+)e+2 + p

+
2
]
= ∂xze

+
1 − ∂xxe

+
2 .

Note the chain of transformations here. We departed from the rhs of the
interface, traversed to the lhs of the interface using interface condition (4.6),
then we applied the solvability condition to the lhs, and we traversed back to
the rhs using another interface condition (4.4). Going there and back using
different interface conditions we arrived at the same result that we departed
from. That shows that traversing interfaces using our interface conditions
maintains the solvability condition.

We will now transform the solvability condition (5.1) into spectral domain,
which will be more convenient later. Taking the ft of (5.1) we get

iξ∂z ê1 + ξ
2ê2 =

ω2

c2 n
2(ω)ê2 +

ω2

c2 p̂2

↓ using (3.21)

iξ∂z ê1 − β
2ê2 =

ω2

c2 p̂2

↓ using (3.28) for ∂z ê1, (3.27) for ê2

i2ξ β2
(
A+e

i βz −A−e
−i βz

)
− β2

[
−ξ

(
A+e

i βz −A−e
−i βz

)
+Q

]
=
ω2

c2 p̂2

⇓

���
���−ξ β2A+e

i βz +���
���ξ β2A−e
−i βz +���

���ξ β2A+e
i βz −���

���ξ β2A−e
−i βz − β2Q =

ω2

c2 p̂2

⇓

Q = −
ω2

c2β2 p̂2. (5.2)

Equation (5.2) is a spectral equivalent of solvability condition (5.1). It is an
implicit relation forQ , where p̂2 depends on all spectral amplitudesA+,A− and
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Q . The method for applying such an implicit condition is discussed in Chapter
6.

Showing the continuity of the solvability condition can also be done for its
spectral form (5.2), instead of (5.1). This is done for example by inserting
spectral interface condition (4.9) into spectral interface condition (4.8) with
the application of spectral solvability condition (5.2) along the way.

We determined that the solvability condition (5.1), or (5.2) in spectral form, is
maintainedwhen crossing the interface. That allows us to enforce the condition
only once, for example through the bc at z = a−, and have it guaranteed to be
maintained all along the z-domain.

5.3 Understanding the back-scatter
In this section we discuss some concepts of light propagation through a material
slab with a nonlinear polarization response. We do it employing a less math-
ematical, and more intuitive approach, striving to provide the understanding
necessary for appreciating further chapters.

5.3.1 Light scattering
Let us recall the modeling setup presented in section 2.1 and in Figure 5.1.
We consider a source laser pulse composed only of the right-traveling wave.
It originates from a vacuum environment, travels towards the material slab
and hits the first material interface at z = a−. At that point, some of the light
gets reflected from the interface back into the vacuum, while the remaining
part travels through the slab. Some of the light traveling through the slab gets
scattered inside the slab, while the remaining part reaches the second interface
at z = b−. At the second interface some of the light gets reflected back into
the slab, while the other part goes through the interface, and continues on its
path to infinity through the vacuum environment.

From that description we point out several things:

i) The source of light is composed only of the right-traveling wave, with
amplitude A+.

ii) The total electric field on the lhs of the slab is composed also of the
reflected radiation, meaning it contains also the A− component. We do
not want this reflected radiation to impact our source, because we desire
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Figure 5.1: Light back-scaterring in nonlinear medium.

to have full control of it. We therefore assume that the source of radiation
is shielded from the electromagnetic field reflected from the slab.

iii) On the rhs of the slab there is the light portion that passed the entire
slab traveling towards infinity. We do not have any light source at infinity,
so we know that in total there is only A+ component on the rhs of the
slab, the A− component does not exist there.

iv) The existence ofQ-mode component in any point of the system is dictated
by meeting the solvability condition presented in section 5.2.

How light propagates in vacuum is rather straightforward. We now ponder
upon what happens inside the material slab with a nonlinear polarization
response.

Light propagation is not instantaneous. It takes certain amount of time, in which
the electromagnetic wave progresses through space. The electric field emerging
due to the polarization of the medium depends strongly on the interaction with
that passing light wave. That is a very dynamical system, where the electric
field changes considerably as the wave passes. The two electric fields, one from
the light source, and the other from the slab polarization, constantly affect
each other, recursively intertwining in an endlessly complicated manner.

Moreover, with nonlinear polarization in play, the arising electric field depends
on the cube of the source electric field. That means that the system might
produce a response that is seemingly inadequate to the input energy. For a
constant oscillation of the source wave, the response would not be linear, but
rather rise in a cubic manner.
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Similarly to being reflected from an interface, light is reflected also within
the slab, at practically every point of the slab. This occurs at an atomic level,
and due to somewhat uneven distribution of atoms, the back-scatter may be
uneven from point to point. We strive to depict this in Figure 5.1 to certain
extent.

We thus have two realms, one inside the slab, where light is constantly scat-
tered in many different directions, and the other, in the vacuum outside the
slab, where light propagation in a well-established direction that it never
changes.

5.3.2 Boundary between scatter and order
Clearly then, the omnipresent back-scatter produces a rather complicated elec-
tric field state at the interface z = a, long before the laser pulse manages to
travel through the slab, get reflected from the other interface and go back.
Our intention is to be able to set up a specific bc at that interface, be able to
control it, and do not have it impacted by the back-scatter. And that is indeed
guaranteed in out system. Let us explain how.

While the electric field is continuous across the interface, the medium on the
two sides of the interface is substantially different. The chaotic back-scatter
exists only within the slab. The act of passing through interface out of the slab
deprives the electromagnetic wave of the nonlinear environment which fuels
the hard-to-grasp scattering response.

This means that whatever wave we encounter on the lhs of the slab, its right-
traveling component can originate only from the laser pulse that we control.
There is no back-scatter in the vacuum, so the wave coming back from the
slab can not spontaneously change direction in the vacuum and add to the
right-traveling input source. For the same reason we are not expecting any A−
component on the rhs of the slab, because whatever comes out of the slab,
traveling to the right, can not change direction in a vacuum and be traveling
to the left. No external sources from +∞ are modeled either.

It is clear that the initial state at z = a−, when the laser pulse is just hitting
the interface, has only the right-traveling component. It is also clear that this
state must evolve in time in order to represent the reflection from the slab
interface, giving rise to the left-traveling component there at z = a−. We take
this thought to the next chapter. First we introduce the bppe iterative method,
and then, in section 6.1.2, we continue the intuitive approach.



6
The model
6.1 BPPE shooting method
So far we have developed a system of differential equations (3.35) describing
the propagation of light in medium according to Maxwell’s equations, and we
derived three continuity conditions (4.7), (4.8), (4.9) allowing us to propagate
light pulse across the material interfaces. In all those equations we use spectral
amplitudes A+, A−, Q as unknown Fourier coefficients.

It is now time to introduce a method for finding the unknown spectral ampli-
tudes and put everything together into a tool for simulating light propagation
in a nonlinear medium. The method we present here is a shooting method
proposed in [7] for a te field1.

6.1.1 The algorithm
The whole iterative process is illustrated in Figure 6.1, and the rest of this
section is dedicated to explaining it.

First, we introduce a notation which is used all throughout the remaining
chapters of this document. In order to distinguish the spectral amplitudes
inside and outside of the slab, we denote them as stated in Table 6.1.

1. the Q mode is considered in [6], but not in [7]
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Figure 6.1: Transitions in BPPE iteration map.

Symbol Spectral amplitudes
right-, left-, transversely-traveling modes:

Φ+, Φ−, ΦQ · at z = a− (outside the slab, on the lhs)
A+, A−, Q · between z = a+ and z = b− (inside the slab)
Ψ+, Ψ−, ΨQ · at z = b+(outside the slab, on the rhs)

Table 6.1: Spectral amplitudes naming conventions.
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We drop the dependence of the spectral amplitudes on ω, ξ . The spectral
amplitudes inside the slab remain dependent on z.

The main idea of the method is based on two facts

• we are capable of propagating electromagnetic wave through medium
and interfaces in both directions along z, meaning we can go there-and-
back,

• we know there is no electromagnetic source from +∞, meaning that the
solution must be such that Ψ− = 0.

The method then starts by solving light propagation system for an arbitrary
bc Φ, and checking the state of Ψ−. If this state is non-zero2, it is enforced
to be zero, and propagated back from z = b+ to z = a−, where it produces
an entirely new bc for A−. This new bc is used in the next iteration, and the
process is repeated until Ψ− is close enough to zero, with certain tolerance
range. The spectral amplitudes which are affected by enforcing Ψ− = 0 and
propagating back in the slab are marked in blue in in Figure 6.1.

We present the full algorithm of the bppe shooting method below, with some
comments following it. In square brackets we provide the reference to the
bppe iteration steps as they are named in [7].

Algorithm: BPPE iteration map
1. Provide the spectral amplitudes Φ+, Φ−, ΦQ before the first interface at

z = a.
[
Lf

]
2. Cross the first interface at z = a from a− → a+, according to continuity

conditions (4.7), (4.8), (4.9). [M12(a), P1]

3. Propagate the light pulse through the slab by finding solutions to the spec-
tral form of Maxwell’s equations (3.35), with bc given asA+(a+),A−(a+),
Q(a+), and the rhs nonlinearities as in (3.36) and (3.37). [Uab (z)]

4. Cross the second interface at z = b, according to interface continuity
conditions. [M21(b)]

5. Modify the electric field by enforcing Ψ− = 0 and recalculating ΨQ
according to solvability condition (5.2). [P2]

2. within certain tolerance range for numerical solution
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6. Step back into the material slab by crossing the interface at z = b in re-
verse direction,according to interface continuity conditions. [M12(b)]

7. Propagate the wave back through the slab up to z = a+, using constraint
(3.25) for A−, and solvability condition (5.2) for Q . [Vba]

8. Step out of the slab by crossing the interface at z = a in reverse direction,
according to interface continuity conditions. As a result new values of
Φ− and ΦQ are obtained, while Φ+ is not affected. [M21(a), P3]

9. Repeat steps 1.-8. until convergence of Φ− is reached for certain tolerance
range.

10. Reconstruct the electric field components e1, e2 from (3.26). (3.27) re-
spectively, by taking ift of ê1, ê2.

Comments for the BPPE iterative algorithm on page 41
Ad 1. The values of spectral amplitudes are constructed as follows

Φ+ is the laser pulse source that we wish to model for. Mathematically
the pulse can be represented with a Gaussian curve.

Φ− is an arbitrary initial guess in the first iteration, for example zero.
In every next iteration it is the value found in step 8 of the previous
iteration.

ΦQ is calculated from (5.2) in order to satisfy the solvability condition.
Since (5.2) is an implicit equation forQ , with highly nonlinear rhs,
the solution to Q is found via fixed-point iteration using Newton’s
method. Depending on the initial guess for the Newton’s algorithm,
the convergence of the algorithm might be an issue. Feasibility of
finding Q in that manner is evaluated in the testing phase.

Ad 5. Justification for the enforcement is that no electromagnetic field sources
from +∞ are present in the model.

Ad 5.
& 9. The stopping condition is not checked at z = b+, where Ψ− is enforced to

be zero, but rather after going back to z = a−, by comparing the previous
and current values of Φ−. If Ψ− was already close enough to zero before
being enforced to be zero, then the values of the two last consecutive
approximations of Φ− do not vary much. We make the choice to perform
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the entire iteration algorithm and propagate back to z = a− for every
iteration, including the one where stopping condition is met.

Ad 7. Equations (3.35) allow us to propagate the system from a → b, not the
other way round. What we use instead is the additional constraint (3.25)
that has been so conveniently introduced, foreseeing this moment. Using
the Fundamental Theorem of Calculus we integrate the constraint (3.25)
inside the material slab, as presented in Appendix D. As a result, we
obtain an equation for A− (a+) in terms of the known state of A− at the
interface z = b, where we enforced it to zero, and the known state ofA+,
as we propagated it through the slab in step 3. Constraint is integrated
as follows

A−
(
z = a+,ω, ξ

)
= A− (z = b

−,ω, ξ )

+

∫ b

a
dz ∂zA+ (z,ω, ξ ) e

2i β1z . [Iab ] (6.1)

At the end of this step we are in the disposition of

• A− (a
+), as calculated from (6.1),

• A+ (a
+), as calculated in step 2.,

• Q (a+) calculated from solvability condition (5.2).

Ad 9. The iterative process is done using Newton’s iteration. The tolerance
range, and thus the stopping condition, is assessed in the testing phase.

To summarize, the intent of the algorithm is to propagate the equations through
the slab there and back, enforcing no left-traveling wave from +∞. Once we
do that, in each iteration, we back-propagate the modified electric field to
z = a− and see how much the state of Φ− has changed. If the change is
within a tolerance range, it means that enforcing Ψ− = 0 did not make any
significant change to the electric field solution. That in turn means that the
spectral amplitudes solution that we just found already meets the assumption
of no electric field sources coming from +∞, and we can stop the iterative
shooting process. The electric field can be reconstructed inside the slab and at
the interfaces for an arbitrary3 point.

3. in practice according to the discretization of z
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6.1.2 System evolution vs. iterative approximation
We return to the intuitive discussion started in section 5.3. We proceed with
making a distinction between a temporal evolution of a physical system, and
the evolution of the iterative approximation process underlying the bppe
method.

The change of the approximated solution that we see from iteration to iteration
is not a reflection of how the physical state of the system evolves in time or
space. Consecutive iterations are not progression in time or space, but rather
they are consecutive approximations, a fine-tuning, of the entire solution state
in the entire solution space that we model for. Through the iterative process
we approximate the state of the system at spatiotemporal frequency spectrum
ξ -ω, for the entire z-range of the slab.

The starting point for guessing the state at z = a− is an arbitrary initial guess
for Φ−, and the solvability condition for ΦQ . Such a guess is most likely a poor
one, and represents a solution where there is a light source at +∞. The guess
is modified throughout the iterative process, with the output state Φ− at one
iteration being used as input to the next iteration. Modifying the guess and
performing iterations continues until a solution is reached in which Ψ− ≈ 0,
which is one of the assumptions of the model.

In the imperfect view of the system that we initially obtain, there is a light
source at +∞ (represented by Ψ− , 0) accommodating for our poor initial
guess of Φ−. By refining the bcs and iterating we bring the non-existing source
at +∞ down to zero⁴.

For example, if we set the initial guess Φ− = 0, then we most probably obtain
Ψ− , 0 after just one iteration. That nonzero Ψ− represents such a light
source from +∞, that it amounts to exactly Φ− = 0 after passing through
the nonlinear slab and the two interfaces. What we obtain on the rhs of
the slab, is a consequence of the error that we make in our initial guess on
the lhs. Refining the initial guess, brings the left-traveling wave from +∞
down to zero. This is done by iterating and forcing Ψ− = 0 with each iteration.
Better-and-better guesses for Φ− take us closer to the state Ψ− = 0 that we try
to achieve.

Once the desired state Ψ− = 0 is achieved, the electric field within the entire
slab can be reconstructed. In particular, we can reconstruct the state at the
interface z = a, and infer how much of the initial pulse energy was reflected
and traveled back. That includes the reflections from both slab interfaces, as

4. that is, given the iterative process converges
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well as the back-scatter inside the slab. By setting the nonlinear polarization
impact to be relatively smaller than the impact of linear polarization, we expect
the scattering of light inside the slab to be of significantly less impact than the
reflections from the interface planes.

6.1.3 A note on modeling the domain
The time it takes for the laser beam to travel the distance between the two
interfaces can be approximated based on the group velocity vд of the wave.
Thus, we can determine at which time point the returning pulse is back at the
interface z = a. The time domain for modeling should be such that both the
source pulse, and the returning reflection are within the domain. Plotting the
electric field amplitude for z = a and the entire time domain should reveal two
peaks, one belonging to Φ+ laser source, and the other to Φ− returning from
the slab. The distance between the two peaks corresponds to the time it takes
for the light to travel through the slab twice, there and back.

Since we model no horizontal interfaces, the x domain should be wide enough
to prevent any artificial reflections from the borders of the domain for the given
propagation time. That is especially important for modeling oblique angle of
incidence, for which the light wave has a component traveling in x -direction.
For perpendicular incidence angle only the scatter travels along x . By the
assumption of nonlinear polarization having considerably smaller impact, the
amplitude of the scatter will in any case be smaller than the amplitude of the
main pulse.

We established, that a reasonable model requires harmonizing the z, x and
t domains, as well as the proportion of the nonlinear polarization, such that
it takes effect but does not dominate the linear response. For that we must
perform the scaling and nondimensionalizing of the system.

6.2 Scaling of the system
Before jumping into implementation we scale the bppe system. The purpose
of that is to solve the model independent of physical units, where the dimen-
sionless variables are of similar order of magnitude, as much as possible.
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6.2.1 Dimensionless variables
We write out each of the relevant variables as a product of a dimensional
constant, with subscript 0, and a nondimensional variable, marked with ′

z = z0 z
′, c = c0c

′

t = t0 t
′, ω = ω0 ω

′,

x = x0 x
′, ξ = ξ0 ξ

′,

z = z0 z
′, λ = λ0 λ

′,

k = k0k
′, β = β0 β

′,

e1 = e10 e
′
1, e2 = e20 e

′
2. (6.2)

In particular we note the definition of the speed of light c, to be a product of
a dimensionless value c ′ = 2.998 and a dimensional constant c0 = 108ms−1.
In all our considerations we intend to keep the dimensionless constants of the
order of magnitude O(1), and place both the scaling factor, e.g. 108, and the
unit in the dimensional constant.

In the process of scaling, we group the dimensional constants together, into
new, combined dimensional parameters of the system. Reducing the number
of variables, we reduce the possibility of running the same parameter setup
repeatedly in our simulations. Another advantage of scaling is the possibility
to perform numerical calculations on dimensionless numbers of similar orders
of magnitude, which is beneficial for numerical accuracy.

We follow the same scaling pattern also for quantities such as p̂1, p̂2, A+, A−,
Q , η, N̂LA, N̂LQ . Their dimensional constants are expressed with the ones
already listed in (6.2). We also introduce relations

ω0 =
1
t0
, ω ′ =

2π
t ′

ξ0 =
1
x0
, ξ ′ =

2π
x ′

k0 =
1
λ0
, k ′ =

2π
λ′
, (6.3)

and the relation between spatial and temporal scales resulting from propagation
with the speed of light

z0 = c0t0 ⇒ c ′z0 = ct0. (6.4)

Finally, we introduce dimensionless derivatives. As an example we write ∂ze1
in terms of ∂z′e ′1

∂ze1 =
∂e1

∂z
=
∂

(
e10e

′
1
)

∂z ′
∂z ′

∂z
= e10

∂e ′1
∂z ′

1
z0
=
e10

z0
∂z′e

′
1.
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We see that each ∂z derivative introduces a 1
z0

factor. The e10 in the nominator
comes from e1 term written as e10e

′
1. Therefore, the second derivative is

∂zze1 =
∂2

∂z2

(
e10e

′
1
)
=
e10

z2
0
∂z′z′e

′
1.

By analogy, we can derive similar relations for e2, and the derivatives with
respect to the other variables.

In opposition to derivation we have the operation of integration, which we can
view as a summation over a distance along a particular direction. Therefore,
nondimensional integration is accompanied by a dimensional constant, by
analogy to nondimensional derivation preceded by a factor of an inverse of a
dimensional constant. For example, performing the ft along t introduces a
factor of t0 coming from the operation of integration. We will use this property
shortly.

6.2.2 Scaling Maxwell’s equations
First, we represent the nonlinear polarization components in terms of the scaled
electric fields. Using (3.2) we have

p1 = η
(
e2

1 + e
2
2
)
e1

= η
[ (
e10e

′
1
)2
+

(
e20e

′
2
)2

] (
e10e

′
1
)
,

p2 = η
(
e2

1 + e
2
2
)
e2

= η
[ (
e10e

′
1
)2
+

(
e20e

′
2
)2

] (
e20e

′
2
)
. (6.5)

We now insert the scaled variables into equations (3.17) for the electric fields

e10

z2
0
∂z′z′e

′
1 =

e20

x0z0
∂x ′z′e

′
2 +

e10

c2 t2
0
∂t ′t ′

[
(1 + L)e ′1

]
+
η e10

c2 t2
0
∂t ′t ′

[ (
e10e

′
1
)2
+

(
e20e

′
2
)2

]
e ′1,

e20

z0
∂z′e

′
2 = −

e10

x0
∂x ′e

′
1

− (1 + L)−1
[
η e10

x0
∂x ′

[ (
e10e

′
1
)2
+

(
e20e

′
2
)2

]
e ′1

+
η e20

z0
∂z′

[ (
e10e

′
1
)2
+

(
e20e

′
2
)2

]
e ′2

]
.

Using relation (6.4) and performing some algebraic simplifications, namely
multiplying the first equation by

z2
0

e10
, multiplying the second equation by z0

e20
,
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and taking a factor of e2
10 in front of the square brackets, we get

∂z′z′e
′
1 =

z0

x0

e20

e10
∂x ′z′e

′
2 +

1
c ′2
∂t ′t ′

[
(1 + L)e ′1

]
+

1
c ′2
∂t ′t ′ e

2
10η

[ (
e ′1

)2
+

(
e20

e10
e ′2

)2
]
e ′1,

∂z′e
′
2 = −

z0

x0

e10

e20
∂x ′e

′
1

− (1 + L)−1

[
z0

x0

e10

e20
∂x ′ e

2
10η

[ (
e ′1

)2
+

(
e20

e10
e ′2

)2
]
e ′1

+ ∂z′ e
2
10η

[ (
e ′1

)2
+

(
e20

e10
e ′2

)2
]
e ′2

]
.

We obtained two dimensionless fractions: z0
x0

and e20
e10

. They represent the
proportionality between the scales of spatial lengths x and z, and the propor-
tionality of the intensities of electric field components e1 and e2, respectively.
In general, we expect the scales of the electric field components e1 and e2 to be
different. In principle we know the scale of the incoming transverse component,
but we do not know how big longitudinal component can arise in the course
of simulation. That can be determined in the course of experiments, and the
scaling factor can be adjusted, if necessary. For simplicity, we assume both
spatial distances, and both electric field components to be of the same order
of magnitude, making the two proportionality fractions equal to one

e2

e1
= O(1) ⇒

e20

e10
= 1 ⇒ e10 = e20,

z

x
= O(1) ⇒

z0

x0
= 1 ⇒ z0 = x0. (6.6)

What we mean by z
x = O(1) is that the distances relevant for light propagation

in both directions are of the same scale.

With that, the above Maxwell’s equations simplify to

∂z′z′e
′
1 = ∂x ′z′e

′
2 +

1
c ′2
∂t ′t ′

[
(1 + L)e ′1

]
+

1
c ′2
∂t ′t ′ e

2
10 η

(
e ′21 + e

′2
2
)
e ′1︸           ︷︷           ︸

p′1

,

∂z′e
′
2 = −∂x ′e

′
1 − (1 + L)

−1

∂x
′ e2

10 η
(
e ′21 + e

′2
2
)
e ′1︸           ︷︷           ︸

p′1

+ ∂z′ e
2
10 η

(
e ′21 + e

′2
2
)
e ′2︸           ︷︷           ︸

p′2

 .
(6.7)

We note that there are two dimensional constants left in those equations,
namely e2

10 and η. They always appear together, in the expressions associated
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with polarization nonlinearities p1 and p2, as indicated by the braces. It must
be that the product e2

10η is dimensionless in order for the rhs’s of the above
equations to match the lhs’s. The International System of Units (si) unit of e2

10
is [V 2m−2]. The unit of η resulting from equations (3.17) is [m2V −2]. Indeed,
we see that the product of e2

10η has a unit of [1], the product is dimensionless.
We will denote

η′ = e2
10η, (6.8)

and the dimensionless polarization nonlinearities

p ′1 = η
′
(
e ′21 + e

′2
2
)
e ′1,

p ′2 = η
′
(
e ′21 + e

′2
2
)
e ′2. (6.9)

What is left is to be determined is the actual value of η′.

6.2.3 Proportionality of polarization nonlinearity
So far, we managed to reduce all the dimensional constants in Maxwell’s
equations to fractions equal to one, with the exception of e2

10η product. The
remaining dimensionless variables present in equations (6.7) are assumed to
be of the same order of magnitude. We would now like to determine what is
the order of magnitude of the polarization nonlinearity resulting from e2

10η
factor.

We return to the consideration of the nonlinear polarization resulting from
the optical Kerr effect. In equation (3.3) we represented it as nonlinear term
η(e2

1 + e
2
2), with η not being specified any further. Following [2], we note that

the source of nonlinear polarization is a nonlinear susceptibility component
χNL. We thus reconsider susceptibility to be a sum of linear an nonlinear
components

χ = χL + χNL .

Such χ builds up both the linear PL and the nonlinear PNL components of
polarization. The linear susceptibility is already considered in the refractive
index n(ω), as derived in Appendix B. With the addition of nonlinear suscepti-
bility, we reconsider the refractive index to also be composed of its linear and
nonlinear parts

n = nL + nNL = nL + n2I , (6.10)

where nL is the linear refractive index n(ω) derived in Appendix B, and I is the
intensity of the electric field

I =
1
2
ϵ0cn0E

2
0 ⇒ E2

0 =
2I

ϵ0cn0
. (6.11)
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The units of n2[m
2W −1] and I [Wm−2] cancel each other out into a dimension-

less quantity. We denoted by n0 the constant refractive index, which in our
case is the linear refractive index of the center frequency n(ωc ). The nonlinear
refractive indexn2 is material dependent, and its values are known for different
materials. It is given as

n2 =
3
4
χ (3)

1
ϵ0cn

2
0
. (6.12)

With the envelope of the nonlinear polarization equivalent to ⁵

P ≡
3
4
χ (3)E2

0E,

and using the product n2I according to (6.11) and (6.12)

2n2I =
3
4
χ (3)

1
n0

E2
0,

we estimate the nonlinear polarization as

P ≡ 2n0n2IE. (6.13)

Comparing equations (6.13) and (2.4) we draw the conclusion that

ηE2
0 ≡ 2n0n2I = n

2
0n2ϵ0cE

2
0

⇒ η ≡ ϵ0cn
2
0n2. (6.14)

That allows us to determine the actual value of η, since for a particular material
all the coefficients on the rhs of (6.14) are known. We do that in section
6.3.

6.2.4 Scaling the normal-mode expansions
We now look into the scaling of the equations for the electric field components
expressed as the superposition of the normal modes, namely the equations
(3.26) and (3.27). First we express the dispersion relation β(ω, ξ ) in equation
(3.21) in terms of dimensionless variables, using (6.4), (6.3) and (6.6)

β (ω, ξ ) =

√(
ω0ω ′

c ′z0ω0
n(ω0ω ′)

)2

−

(
1
x0
ξ ′

)2

=

√
ω ′2

c ′2z2
0
n2(ω0ω ′) −

1
z2

0
ξ ′2

=
1
z0

√
ω ′2

c ′2
n2(ω0ω ′) − ξ ′2︸                     ︷︷                     ︸

β ′

. (6.15)

5. note that we do not include ϵ0 into the nonlinear polarization, in order to be consistent
with (3.3)
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For β we obtained the dimensional scale of 1
z0
, since refractive index n(ω0ω

′)

is a dimensionless quantity. Stating explicitly the following relations

t =
1
ω0

t ′, β =
1
z0
β ′, ξ =

1
x0
ξ ′,

we see that the exponents in equations (3.26), (3.27) are dimensionless

±iβz = ±i
1
z0
β ′ z0z

′ = ±iβ ′z ′,

±iξx = ±i
1
x0
ξ ′ x0x

′ = ±iξ ′x ′,

±iωt = ±i ω0ω
′ 1
ω0

t ′ = ±iω ′t ′.

We also introduce dimensionless amplitudes A′+,A
′
−,Q

′ with scaling constants
A0 and Q0. With the same scaling constants for the left- and right-traveling
modes we have

A+ = A0A
′
+,

A− = A0A
′
−,

Q = Q0Q
′ =

A0

x0
Q ′ (see below). (6.16)

We proceed to writing the normal mode expansion equations in terms of
dimensionless variables

e10e
′
1 =

1
2π

ω0A0

x0z0

∫ +∞

−∞

dω ′
∫ +∞

−∞

dξ ′
[
β ′

(
A′+e

i β ′z′ +A′−e
−i β ′z′

)]
ei(ξ

′x ′−ω′t ′),

e20e
′
2 =

1
2π

ω0A0

x2
0

∫ +∞

−∞

dω ′
∫ +∞

−∞

dξ ′
[
ξ ′

(
−A′+e

i β ′z′ +A′−e
−i β ′z′

)
+
x0Q0

A0
Q ′

]
ei(ξ

′x ′−ω′t ′).
(6.17)

All the dimensional constants of the rhss are gathered in front of the integral
signs, except for the constant in front of theQ ′ mode amplitude. This constant
must be dimensionless, in order to be able to sum it up with the other dimen-
sionless quantities in the equation. Therefore, with respect to dimensions we
must have

e10 = e20 =
ω0A0

x0z0
=
ω0A0

x2
0
, (6.18)

which we know is true due to assuming z0 = x0. From the above we can infer
the scale of A0 to be

A0 =
x0z0e10

ω0
. (6.19)
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In order to get dimensional accordance in the second equation of (6.17) we
must also have

x0Q0 = A0 ⇒ Q0 =
A0

x0
=
z0e10

ω0
. (6.20)

Note, that the dimensions ofQ0 and A0 are different. In particular, the smaller
the spatial scale we choose to go for in the transverse direction x , the more
the scale of Q is amplified. Under experimental setup we would expect to see
a more pronounced Q mode whenever the along-x span of the laser pulse is
relatively small. Those are very imprecise notions, but they give intuition of the
experimental setups where the Q mode might arise more noticeably.

Using relations (6.18) and (6.20) we can write equations (6.17) as

e ′1 =
1

2π

∫ +∞

−∞

dω ′
∫ +∞

−∞

dξ ′
[
β ′

(
A′+e

i β ′z′ +A′−e
−i β ′z′

)]
ei(ξ

′x ′−ω′t ′),

e ′2 =
1

2π

∫ +∞

−∞

dω ′
∫ +∞

−∞

dξ ′
[
ξ ′

(
−A′+e

i β ′z′ +A′−e
−i β ′z′

)
+Q ′

]
ei(ξ

′x ′−ω′t ′).

(6.21)

Those are fully dimensionless equations. Dropping all the primes would give
us exactly the same formulas as the original equations (3.26), (3.27). What we
have gained, however, are the scaling relations for the amplitudes (6.19) and
(6.20). We put the resulting scales in Table 6.2.

6.2.5 Scaling the BPPE system
The final stretch in the scaling process is to determine the dimensionless
bppe system, together with corresponding dimensionless nonlinearities and
their scales. We start by writing the lhs of bppe system (3.35) in terms of
dimensionless variables

A0

z3
0

2iβ ′2∂z′A′+e
i β ′z′ = N̂LA,

−
A0

z3
0

2iβ ′2∂z′A′−e
−i β ′z′ = N̂LA,

A0

z0x0
∂z′Q

′ = N̂LQ .

From the above we infer that the dimensions of spectral nonlinearities are

dim. N̂LA =
A0

z3
0

=
e10

ω0z0
,

dim. N̂LQ =
A0

z2
0
=
e10

ω0
, (6.22)
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using (6.19). Let us verify this result by expressing the rhs of (3.35) in
terms of dimensionless constants. For that we need the dimension of spectral
polarization nonlinearities. From (6.7) and (6.5) we have

p1 = e10 e
2
10η

(
e ′21 + e

′2
2
)
e ′1 = e10 η

′
(
e ′21 + e

′2
2
)
e ′1 = e10 p

′
1,

p2 = e20 e
2
10η

(
e ′21 + e

′2
2
)
e ′2 = e10 η

′
(
e ′21 + e

′2
2
)
e ′2 = e10 p

′
2.

Taking ft in space and time using dimensionless variables introduces a factor
of x0

ω0
=

z0
ω0

. We thus have

p̂1 =
z0

ω0
e10 p̂

′
1,

p̂2 =
z0

ω0
e10 p̂

′
2.

We obtained that the dimension of spectral polarization nonlinearities is z0e10
ω0

.
Inserting that into bppe system’s rhs nonlinearities (3.36), (3.37), and using
relations (6.4), (6.6), (6.3), we get

N̂LA = −
e10

z0ω0

1
n2(ω0ω ′)

(
β ′2p̂ ′1 + iξ

′∂z′p̂
′
2

)
=

e10

z0ω0
N̂LA

′
,

N̂LQ = −
e10

ω0

ω ′2

c ′2β ′2
∂z′p̂

′
2 =

e10

ω0
N̂LQ

′
. (6.23)

As expected, we obtained the same dimensional scaling factors as indicated by
the lhs (6.22). To some extent that confirms the correctness of out derivations,
and it is in accordance with the expectation of non-dimensionality of the laws
of physics, in that case the Maxwell’s equations, which the bppe system is
derived from. The non-dimensional bppe system to solve is thus

2iβ ′2∂z′A′+e
i β ′z′ = N̂LA

′
,

−2iβ ′2∂z′A′−e
−i β ′z′ = N̂LA

′
,

∂z′Q
′ = N̂LQ

′
, (6.24)

with nonlinearities defined in (6.23) and all primed variables being dimension-
less.

6.3 Physical scales and parameters
6.3.1 Electromagnetic field and polarization nonlinearity
We have presented relations between various coefficients and variables in
the previous sections. We now proceed to setting the actual values of the
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physical quantities, in order to determine the dimensional constants for scaling
equations (6.7). We follow [1] in that regard, where parameters for fused silica
medium are used.⁶ The listing of all values is provided in Table 6.2. Those
values are used for numerical simulations.

We can now determine the values ofη and e2
10η, whichwere of interest in section

6.2.3. Using the values in Table 6.2 and the relation (6.14) we have

η = 1.97 · 10−22 [m2V −2],

E2
0η = 4.10 · 10−4.

From equation (6.11) we predict the expected magnitude of the electric field
solution, which will determine the scales of e2

10 and e2
20

E2
0 = 2.08 · 1018 [V 2m−2].

This is the same result that we would have obtained by dividing E2
0η by η. That

confirms that the nonlinearity term is relatively small. For the dimensional
constants we have

e10 = e20 = 109Vm−1. (6.25)

This is the scaling factor by which the dimensionless solutions e ′1, e
′
2 to system

(6.7) will be scaled from the numerical solutions in order to reconstruct the
values of physical entities e1, e2.

6.3.2 Space-time
In order to find appropriate scales for the space-time dimensions, we return
to relations between t , ω, k and λ, where the last two are wave number and
wavelength respectively. We would like to choose such scales ω0, k0 and λ0
that the corresponding dimensionless variables are of O(1). We use the usual
relations between frequency, wave number and wavelength

ω0 = vpk0 ⇒ k0 =
ω0

vp
,

where vp = c
n0

is the phase velocity of the wave, and for vacuum it is equal to
the speed of light c. Using (6.3) we have

1
λ0
=
ω0

vp
⇒ λ0 =

vp

ω0
.

6. We make an exception for the value of electromagnetic field intensity I . In [1] I =
O(1017)Wm−2, being the critical level leading to the optical damage of the medium. We
use the value of I smaller by two orders of magnitude.
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We obtained the formula for the wavelength scale as a function of frequency
scale. Electromagnetic oscillation happens at such spatial scale, so it is rea-
sonable to choose λ0 as the dimensional constant for spatial dimensionless
variables. We have

z0 = x0 = λ0

⇓

z = λ0z
′,

x = λ0x
′.

Naturally, from frequency scale we also deduce the dominating time scale
t = 1

ω0
t ′.

Choosing the physical frequency of oscillation of the laser pulse, determines the
entire spatiotemporal sizing of the system. High-intensity electric field oscillates
with femtosecond periods. This is the main frequency of oscillation, meaning
that the modes oscillating at that frequency have the largest magnitudes. Based
on that, we choose the center frequency of the pulse spectrum ωc = ω0 · ω

′
c ,

and from that we determine the central wavelength and oscillation period, as
well as the relevant scales ω0, λ0, t0. We follow [1] for ωc

ωc = 2.35 [f s−1] ⇒ ω0 = 1015 [s−1],

λc = 0.880 [µm] ⇒ λ0 = 10−7 [m],

τc = 2.67 [f s] ⇒ t0 = 10−15 [s],

where τc denotes the period of oscillation of the central mode, meaning the
mode with highest amplitude. Note, that those values are relevant for vacuum,
where vp = c. This is of interest to us since the laser pulse which is the input
to the model is the one that originates in vacuum. Those values help us design
a proper laser pulse input. For calculating values relevant for propagation in
slab we would need to take into account the refractive index as well. However,
since n(ω) = O(1) it will not impact the scale, and we can infer about the
propagation distance and time based on the above values for vacuum. Those
values are also indicated in Table 6.2.

6.3.3 Refractive index
Using now the same scaling approach we introduce dimensionless frequency
variables

ωp = ω0ω
′
p ,

ωr = ω0ω
′
r ,

γ = ω0γ
′,
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which allow to express equation (2.5) in fully nondimensional terms as

χ̂ (ω ′) =
ω2

0ω
′2
p

ω2
0ω
′2
r − ω

2
0ω
′2 − iω0γ ′ω0ω ′

=
ω ′2p

ω ′2r − ω ′2 − iγ ′ω ′
.

From that we can directly express n and α in terms of dimensionless frequency
ω ′ according to equations (2.7). We graph n(ω ′) and α(ω ′) for particular values
of ω ′r , ω

′
p and γ ′ in Figure 6.2.

Figure 6.2: Refractive index model.

Looking at Figure 6.2, we note that for certain ranges of frequency ω ′, the
refractive index is practically constant, and the absorption coefficient is zero.
Choosing the frequency of our input laser pulse in such a region allows us to
reduce the effect of dispersion in the medium. The laser pulse should not be
too close to the resonant frequency ω ′r = 12, nor should it be close to the zero
frequency. Following [1] we choose ω ′c = 2.35, and that indeed falls in the
desired region.

The parameter values we chose are relevant for silica quartz, following [4].
The obtained model is consistent with the values assumed in [1]. Evaluating
n(ω ′) at the center frequency ω ′c = 2.35 we obtain practically the same result
n(ω ′c ) ≈ 1.45⁷ and the derivative

dn(ω ′)

dω ′
|ω′c ≈ 0. (6.26)

7. the nonlinear refractive index part, n2I , is of negligible proportions
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6.3.4 Input laser pulse
We model the input laser pulse as a Gaussian envelope on top of the carrier
wave oscillating with frequency ω ′c

e(z = a−, t ′) = e−σt
′2
cos(ω ′ct

′).

Such pulse has an optical cycle τc at the center frequency ωc

τc =
2π
ωc
= 2.67 f s .

In [1] the simulations are conducted on single-cycle regime pulses, where not
much more than one carrier cycle is contained within Full Width at Half
Maximum (fwhm) of the envelope, making the pulse width τp ≈ τc . This

is modeled using σ =
(

1.67
τc

)2
≈ 0.39. We allow for slightly more than two

oscillations within the fwhm, which we achieve by maintaining the ω ′c but
broadening the Gaussian curve by setting σ = 0.1

e(z = a−, t ′) = e−0.1t ′2cos(2.35t ′). (6.27)

The pulse width is τp = 5.27 f s. Function in equation (6.27) is graphed in
Figure 6.3.

Figure 6.3: Input laser pulse model.

6.3.5 Temporal span of the result
In order to plan for sufficient temporal span of the solution, we would like to
predict the travel time of the light pulse. Once a distance in a slab zb − za
is established, it determines the time taken for the light pulse to propagate
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through the slab, reflect from the interface at zb and get back to za . To catch
the electric field amplitude getting back to za , we need to know what pulse
propagation time to allow for in the simulation.

The peak of the pulse travels through medium with certain group velocity vд .
For the direction of propagation k = β(ω, ξ ) we have

vд =
∂ω

∂k
=
∂ω

∂β
=

(
∂β

∂ω

)−1

.

We use equation (6.15) to compute the derivative of β with respect to ω

∂β

∂ω
=

1
ω0z0

∂β ′

∂ω ′
=

1
ω0z0c ′2

ω ′n2 + ω ′2n dn
dω′√

ω′2
c ′2 n

2 − ξ ′2
≈

1
ω0z0c ′2

ω ′n2√
ω′2
c ′2 n

2 − ξ ′2
,

using (6.26). That expressions is difficult to evaluate exactly, due to the de-
pendence on variable ξ ′, but we can safely assume that the magnitude of
the dimensionless component is O(1). We thus have the approximate scale of
vд

vд = O(ω0z0) = O(108)[ms−1] = O(c).

To allow for enough propagation time, we asses the lowest group velocity. We
find it by assuming ξ ′ = 0 and evaluating the expression for ω ′ = ω ′c . We then
obtain

vд '
ω0z0c

′

n
≈ 2 · 108[ms−1],

being about 2/3 the speed of light. In nondimensional terms

vд = v0v
′
д, v0 =

z0

t0
= 108ms−1, v ′д = 2.

With such speed the peak of the pulse travels roughly at least 3µm every
15f s, or in nondimensional terms it travels a distance z ′b − z

′
a = 30 in time

t ′ = 15. Choosing slab width of 30 units, and allowing the pulse to propagate
through the slab there and back, so 60 units in total, we need to allow for
propagation time of 30 units. We present the exact simulation setup for the
time of propagation and the slab length in the case-study section 9.2.

8. source [11]
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Quantity Symbol Value si unit

Constants
vacuum permittivity ϵ0 8.8541878128 · 10−12 Fm−1

light speed c = c ′ · c0 2.99792458 · 108 ms−1

vacuum refractive index nv 1 1

Physical quantities of choice
intensity I 4 · 1015 Wm−2

refractive index at ωc n0 = n(ωc ) 1.45 1
nonlinear refractive index⁸ n2 3.54 · 10−20 m2W −1

central frequency ωc 2.35 · 1015 s−1

Resulting scales
electric field scales e10, e20 109 Vm−1

frequency scale ω0 1015 s−1

length scales z0,x0 10−7 m
time scale t0 10−15 s

Resulting parameters of the model
central wavelength λc 8.02 · 10−7 m
central oscillation period τc 2.67 · 10−15 s
pulse width (intensity FWHM) τp 5.27 · 10−15 s
polarization nonlinearity factor η 1.97 · 10−22 m2V −2

polarization nonlinearity factor η′ = e2
10η 1.97 · 10−4 1

A+, A− modes scale A0 1010 mVs
Q mode scale Q0 = A0/x0 1017 Vs

Table 6.2: Physical constants, quantities and scales.





7
Verification method
7.1 Artificial source test
We present here a method for verifying the implementation of the bppe
shooting method. The method is of ast type. For an arbitrary solution state
at z = b+ it allows to construct the corresponding bc Φ that leads to that
state. This is done by solving a single, particularly modified bppe differential
system, without the iterative shooting involved. The ast presented here is
deeply inspired by [7], yet it is adapted to include the spectral amplitude Q
and to be relevant for the tm mode.

Using the ast method we could initialize it with a truly arbitrary seed-state,
potentially producing a physically-meaningless artificial source to be the input
for the scatter problem. In consequence, we would design a non-physical sim-
ulation problem - one that does not have a direct reflection in the physical
world, even though it follows the bppe equations derived from Maxwell’s
equations. Such problem would still be valid for testing the implementation of
mathematics, though.

Our approach, however, will be to combine the testing phase with solving
actual physical problems. We achieve it by initializing the ast with particularly
designed seed-state, such that the corresponding artificial source is a good
representation, a model, of an incoming laser beam. We present the details of
how this is achieved in section 9.1.1. It suffices to say now that we pick a model
for an incoming laser beam and solve a scatter problem using it as input. As
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part of the solution we receive a transmission spectrum at z = b+, which we
use as the initialization of the ast. The ast then generates an artificial source,
which is numerically close to the original incoming laser beam. We use it1 as
input for solving a new scatter problem, and compare the results against the
ast reference.

That is an intuition for the big picture of the testing approach. In this Chapter
we present only the particularities of the astmethod itself, without prescribing
any particular initialization states yet.

7.1.1 Problem
Let us consider a state at z = a− given by

ϕ+ (ω, ξ ) ,ϕ− (ω, ξ ) ,ϕQ (ω, ξ ) ,

and a state at z = b+ given by

ψ+ (ω, ξ ) ,ψ− (ω, ξ ) ,ψQ (ω, ξ ) .

Let us also use the usual notation for the solution to the bppe system (3.35)
within a < z < b, with interface continuity conditions (4.7), (4.8), (4.9)
expressed in terms of spectral amplitudes

A+ (z,ω, ξ ) ,A− (z,ω, ξ ) ,Q (z,ω, ξ ) .

The challenge is to find such a bc
(
ϕ+,ϕ−,ϕQ

)
that

©­«
ϕ+ (ω, ξ )
ϕ− (ω, ξ )
ϕQ (ω, ξ )

ª®¬
(4.7), (4.8), (4.9)

→
©­«
A+ (a

+,ω, ξ )
A− (a

+,ω, ξ )
Q (a+,ω, ξ )

ª®¬ (7.1)

and

©­«
A+ (b

−,ω, ξ )
A− (b

−,ω, ξ )
Q (b−,ω, ξ )

ª®¬
(4.7), (4.8), (4.9)

→
©­«
ψ+ (ω, ξ )
ψ− (ω, ξ )
ψQ (ω, ξ )

ª®¬ , (7.2)

where

ψ+ is arbitrarily chosen,

ψ− = 0, due to no light sources from +∞,

1. only the right-traveling component
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ψQ follows solvability condition (5.2),ψQ = ψQ (ψ+,ψ−,ψQ ).

What we are effectively aiming at, is to find a bcϕ for the end-stateψ controlled
by us, such that when solving the bppe system for that particular bc we know
that the solution at z = b+ should be the chosenψ .

7.1.2 Approach
Let us start with a wordy description of the approach. We solve the above
problem by considering a backwards problem. The desired arbitrary end-state
Ψ is used as a bc for a slightly modified bppe system, where we solve for
spectral amplitudes B+ (θ ,ω, ξ ), B− (θ ,ω, ξ ), R (θ ,ω, ξ ). This slightly modified
system follows all the same rules, but we start with Ψ at z = b+, and after
crossing the interface from z = b+ to z = b− we arrive at point θ = a for the
B+, B−, R system, where θ is defined in (7.5). This is by no means a physical
process, but it does not have to be - it is just a mathematical way of generating
the artificial source.

Moreover, B+ mode propagates in the same direction as A− mode, and B− in
the same direction as A+. What is an end of the journey for a pulse in B+,
B−, R system, is the beginning in A+, A−, Q system. An attempt to present
this intuition is presented in Figure 7.1, and the mathematical details follow
further.

Figure 7.1: Correspondence between two bppe systems in artificial-source test. De-
pendence of all spectral amplitudes on ω, ξ is dropped.

Also, since we merely wish to propagate the Ψ bc to the other side of the slab,
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we do not need to use the iterative shooting method presented in Chapter 6.
Solving a single differential bppe system inside a slab is enough to obtain the
spectral amplitudes solution in the slab. This solution becomes a reference for
our original A+, A−, Q bppe problem. Obtaining the Φ bc for the original
A+, A−, Q problem is done by crossing the interface at z = a2 from inside to
outside of the slab.

Summarizing the key points, in order to solve the given problem we consider
another bppe system, where

• the unique spectral amplitudes solution is given by

B+ (θ ,ω, ξ ) ,B− (θ ,ω, ξ ) ,R (θ ,ω, ξ ) ,

• the bc of the system is based on
(
ψ+,ψ−,ψQ

)
,

• the z-dependence in the system is flipped, meaning that the propagation
of light progresses in the opposite direction, as depicted in Figure 7.1
(note the direction of arrows representing wave travel direction),

• the nonlinearity on the rhs is modified in a particular manner with
respect to the original system, as indicated in (7.3).

For convenience we restate here the original bppe system (3.35)

2iβ2
1 ∂zA+ (z,ω, ξ ) e

i β1z = N̂LA (z,A+,A−,Q) ,

−2iβ2
1 ∂zA− (z,ω, ξ ) e

−i β1z = N̂LA (z,A+,A−,Q) ,

∂zQ (z,ω, ξ ) = N̂LQ (z,A+,A−,Q) ,

where we made explicit the dependence on arguments, and the value of β is for
the slab material. In such context, the modified bppe system that we consider
for the purpose of the artificial-source test is

2iβ2
1 ∂zB+ (θ ,ω, ξ ) e

i β1θ = Ŷ (z,B+,B−,R) ,

−2iβ2
1 ∂zB− (θ ,ω, ξ ) e

−i β1θ = Ŷ (z,B+,B−,R) ,

∂zR (θ ,ω, ξ ) = Ẑ (z,B+,B−,R) , (7.3)

with a bc such that

©­«
ψ+ (ω, ξ )
ψ− (ω, ξ )
ψQ (ω, ξ )

ª®¬
(4.7), (4.8), (4.9)

→ J
©­«
B+ (a

+,ω, ξ )
B− (a

+,ω, ξ )
R (a+,ω, ξ )

ª®¬ , (7.4)

2. indeed the interface at θ = b from the perspective of B+, B−, R system
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where matrix J is given by

J =


0 e−i β1(a+b) 0

ei β1(a+b) 0 0
0 0 −1

 .
Note, that despite the fact that in the original setupψ is the state after passing
the slab, in the modified setup it forms part of the bc at point θ = a−.ψ is not
exactly the bc due to the occurrence of matrix J on the rhs. The actual bc
for the for B+, B−, R system depends both onψ and the inverse matrix J−1. We
know that such inverse exists since det(J ) , 0.

Before proceeding to the application of the newly defined system (7.3) we note
several points

• Preserving the solvability condition (5.2) is the property of bppe system
equations, so it is maintained also for the B+, B−, R system. By imposing
the solvability condition on ψQ we introduce it into the modified bppe
system (7.3).

• Multiplication by J matrix stems from how the relation between A+, A−,
Q and B+, B−, R systems is defined in section 7.1.3.

• The nonlinearities for both systems are different, but related to each other.
That relation is specified in section 7.1.4. In physical terms it means that
the nonlinear response of the material slab is different. In particular, it
is not the solution A+, A−, Q flipped in z-direction, but it is rather an
entirely different solution, provoked by different nonlinear properties
of a physical material. However, the interface crossings are carried out
according to the usual conditions (4.7), (4.8), (4.9), so it is only strictly
inside the material slab that the nonlinear properties are modified.

7.1.3 Solution
This section provides a link between the two bppe problems considered so far,
and how the A+, A−, Q can be constructed from B+, B−, R.

Let us define

θ = a + b − z,
∂θ

∂z
= −1 ⇒ ∂z = −∂θ . (7.5)

The solutions to the original bppe problem (3.35) are defined in terms of the
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solutions to (7.3) as follows

©­«
A+ (z,ω, ξ )
A− (z,ω, ξ )
Q (z,ω, ξ )

ª®¬ = J ©­«
B+ (a + b − z,ω, ξ )
B− (a + b − z,ω, ξ )
R (a + b − z,ω, ξ )

ª®¬ = ©­«
B− (a + b − z,ω, ξ ) e

−i β1(a+b)

B+ (a + b − z,ω, ξ ) e
i β1(a+b)

−R (a + b − z,ω, ξ )

ª®¬ .
(7.6)

Using relations (7.10), and the reasoning which we elaborate on in section
7.1.4, the lhs of the first equation of (3.35) can be expressed as

2iβ2
1 ∂zA+ (z,ω, ξ ) e

i β1z = −2iβ2
1 ∂θB− (θ ,ω, ξ ) e

−i β1

θ︷      ︸︸      ︷
(a + b − z)

= Ŷ (θ ,B+,B−,R)

= f

( [
д̂1
−д̂2

] )
= f

( [
β1

(
B+ (θ ,ω, ξ ) e

i β1θ + B− (θ ,ω, ξ ) e
−i β1θ

)
−

[
−ξ

(
B+ (θ ,ω, ξ ) e

i β1θ − B− (θ ,ω, ξ ) e
−i β1θ

)
+ R

] ] )
= f

( [
β1

(
B+ (θ ,ω, ξ ) e

i β1(a+b)e−i β1z + B− (θ ,ω, ξ ) e
−i β1(a+b)ei β1z

)
ξ

(
B+ (θ ,ω, ξ ) e

i β1(a+b)e−i β1z − B− (θ ,ω, ξ ) e
−i β1(a+b)ei β1z

)
− R

] )
↓ using (7.6)

= f

( [
β1

(
A− (z,ω, ξ ) e

−i β1z +A+ (z,ω, ξ ) e
i β1z

)
ξ

(
A− (z,ω, ξ ) e

−i β1z −A+ (z,ω, ξ ) e
i β1z

)
+Q

] )
= f

( [
ê1
ê2

] )
= N̂LA (z,A+,A−,Q) . (7.7)

The arguments of function f are arranged in a vector form.

We expressed the lhs of the first equation in (3.35) in terms of B+, B−, R, and
after some algebraic operations we arrived at the rhs of the same equation.
We can perform analogous transformation for the other two equations in the
system (3.35). We summarize it below

−2iβ2
1∂zA− (z,ω, ξ ) e

−i β1z = 2iβ2
1 ∂θB+ (θ ,ω, ξ ) e

i β1θ

= Ŷ (θ ,B+,B−,R)

= N̂LA (z,A+,A−,Q) ,

∂zQ (z,ω, ξ ) = −∂θ (−R (θ ,ω, ξ ))

= ∂θR (θ ,ω, ξ )

= Ẑ (θ ,B+,B−,R)

= N̂LQ (z,A+,A−,Q) .
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Therefore, we conclude that the spectral amplitudes A+, A−, Q constructed
according to (7.6) from the unique solutions to B+, B−, R system (7.3), are the
unique solutions to bppe system (3.35). That allows us to define the bc ϕ+,
ϕ−, ϕQ at z = a− in terms of A+, A−, Q at z = a+ according to (7.1), using
the usual interface crossing relations. In other words, we must solve bppe
system (7.3), construct A+, A−, Q at z = a+ from (7.6), and construct the bc
ϕ+, ϕ−, ϕQ at z = a− according to the interface-crossing conditions (4.7), (4.8),
(4.9).

7.1.4 Relation between RHS nonlinearities
This section intends to present a formal reasoning for the transformation (7.7)
presented in previous section.

The algorithm for constructing nonlinearities N̂LA and N̂LQ is already ad-
dressed in section 3.3.2. We will now specify the algorithm for constructing
nonlinearities Ŷ and Ẑ for the rhs of bppe system (7.3) in relation to that
algorithm.

Following the algorithm in section 3.3.2, computing nonlinearities N̂LA and
N̂LQ from spectral amplitudesA+,A−,Q consists of performing five consecutive
steps

N̂LA (z,A+,A−,Q) ,

N̂LQ (z,A+,A−,Q)
: steps: 1.→ 2.→ 3.→ 4.→ 5.

Let us now introduce an additional algorithm step

1a. Flip sign of ê2 such that
ê2 → −ê2.

Using the new step, we define the way of computing nonlinearities Ŷ and Ẑ
from spectral amplitudes B+, B−, R as

Ŷ (θ ,B+,B−,R) ,

Ẑ (θ ,B+,B−,R)
: steps: 1.→ 1a.→ 2.→ 3.→ 4.→ 5.

This definition is sufficient to implement the rhs nonlinearity of system (7.3)
and perform the ast. In the remaining part of this section we formally show
how such definition allows to perform the passages in (7.7).

Let us, for convenience, define certain auxiliary transformations using the six
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available algorithm steps. We define

fAUX : step: 1.
fYZ : steps: 1a.→ 2.→ 3.→ 4.→ 5.
fAQ : steps: 2.→ 3.→ 4.→ 5., (7.8)

and a definition
f

def .
= fAQ ◦ fAUX . (7.9)

The arguments of function fAUX are z,A+,A−,Q for system (3.35) or θ ,B+,B−,
R for system (7.3). The arguments of fYZ and fAQ are electric field components
in spectral domain, constructed from spectral amplitudes in fAUX . We denote
by ê the electric field constructed from solutions to system (3.35), and by д̂ the
electric field constructed from solutions to system (7.3).

With that we write the full dependence of the functions on their arguments for
system (3.35)

fAUX = fAUX (z,A+,A−,Q) ,

fYZ = fYZ
(
ê1, ∂̂xe1, ∂̂ze1, ê2

)
,

fAQ = fAQ
(
ê1, ∂̂xe1, ∂̂ze1, ê2

)
,

f = f
(
ê1, ∂̂xe1, ∂̂ze1, ê2

)
,

and by analogywewould have (θ ,B+,B−,R) and
(
д̂1, ∂̂xд1, ∂̂θд1, д̂2

)
arguments

for system (7.3). We drop the dependence on ∂̂xe1, ∂̂ze1, ∂̂xд1 and ∂̂θд1 for
the purpose of clarity, and note from (7.8) that

fYZ (ê1, ê2) = fAQ (ê1,−ê2)

due to the introduction of step 1a. in fYZ .

Going back to the rhs nonlinearities, we define them in terms of transforma-
tions (7.8) and (7.9) as

N̂LA (z,A+,A−,Q) = fAQ (ê1, ê2) ◦ fAUX (z,A+,A−,Q) = f (ê1, ê2) ,

Ŷ (θ ,B+,B−,R) = fYZ (д̂1, д̂2) ◦ fAUX (θ ,B+,B−,R)

= fAQ (д̂1,−д̂2) ◦ fAUX (θ ,B+,B−,R) = f (д̂1,−д̂2) .
(7.10)

By analogy we can perform similar derivations forrhs nonlinearities N̂LQ and
Ẑ . Those relations allow us to perform the reasoning presented in (7.7).
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8
Implementation
8.1 Environment
The implementation of the bppe iteration system was done using Python 3.6
scripting language. Python allows for a fast prototype development and offers
a wide range of scientific libraries, primarily available in the well-established
mathematical tools, such asMathematica orMATLAB. All of the core mathemat-
ical transformations were performed using built-in libraries, as it is indicated
in more detail in section 8.3. In particular numpy 1.15.1 and scipy 1.4.1 libraries
were used. numpy provides support for handling large matrices and performing
combined operations on all their elements without the need of iteration, and
scipy handles scientific computations.

The simulations were performed on MacBook Pro:
CPU: Intel i5 2x2.3 GHz,
RAM: 16 GB DDR4,
Disk: 128 GB SSD,
OS: Linux Ubuntu 18.04 x86_64.
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8.2 Complexity alleviation
8.2.1 Rationale & choices
Themore dimensionswe allow for in the physical setup, themore the complexity
of the system grows. In the mathematical model we are considering a two-
dimensional slab, where the tm electric field propagates in time. We thus
require a three-dimensional grid of discreet points. While the discretization of
z may be fairly low in order to reconstruct a reasonably well-behaved field, the
discretizations of x and t need to be fairly high in order to accurately represent
the signal in the spectral form, using ξ and ω respectively.

In terms of x and t , dismissing z for the moment, we can say that the com-
putational complexity of the problem is proportional to O(N a), where N is
the number of discrete points for a dimension, and a is the number of spatial
dimensions. In order to represent frequencies indicated in the scaling section
6.2, we need at least 256 discrete points for each dimension. We see that the
complexity of a x − t problem is 256 times bigger than the complexity of a
t -problem.

As we established in the testing phase, a t -problem takes between several
seconds to several minutes to be solved, depending on the size of nonlinearity
coefficient. Estimated simulation time for the simplest of x − t problems is at
least 20 minutes, while the more nonlinear ones reaching hours or days.

For this reason we decided to eliminate the x -direction from the model imple-
mentation, effectively reducing the slab to a one-dimensional entity, where the
electric field wave propagates. Removing x -dependence can also be thought
of as considering a two-dimensional slab, which is perfectly uniform in the
x -direction, thus no matter which x position is considered, the electric field
remains the same. A similar simplification is used in physics when considering
a 2D-flow, where columns of liquid constitute a physically three-dimensional
volume of liquid.

Such choice has its consequences for the particularities of the mathematical
model and the representable results. We discuss this issue in section 8.2.2.

The implementation does not take advantage of the parallelization of opera-
tions. This is due to the specifics of Kerr nonlinearity and it is addressed further
in section 8.3.2.
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8.2.2 Adaptations to mathematical model
The mathematical model presented in the first part of this paper is a general
derivation, which applies also to the simplified case with x -dimension removed.
The entire reasoning can be repeated, and the derivations can be re-done
simply by removing the dependence on x and ξ variables. We do not repeat
the derivation process, but we state the resulting most fundamental formulas
for completeness.

Dispersion relation
β(ω) = ±

ω

c
n(ω).

As indicated in section 8.3.4, numerical computations are performed only for
the positive ω-range. The spectral amplitudes for the negative ω-range are
reconstructed based on the condition for physical solution, (3.24).

Solutions in terms of normal modes expansions
Electric field components and their respective ft’s are

e1(z, t) =
1
√

2π

∫ +∞

−∞

dω

ê1(z,ω)︷                    ︸︸                    ︷{
A+e

i βz +A−e
−i βz

}
e−iωt , (8.1)

e2(z, t) =
1
√

2π

∫ +∞

−∞

dω {Q}︸︷︷︸
ê2(z,ω)

e−iωt . (8.2)

BPPE system
The bppe differential system is

2iβ∂zA+ei βz = N̂LA,

−2iβ∂zA−e−i βz = N̂LA,

∂zQ = N̂LQ ,

with nonlinearities

N̂LA = −
β2(ω)

n2(ω)
p̂1, (8.3)

N̂LQ = −
1

n2(ω)
∂zp̂2, (8.4)
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where we have used the new dispersion relation β (ω) to simplify N̂LQ .

Interface transition
The nonlinear system of three dependent equations describing the interface
crossing becomes

A+
(
a+,ω

)
ei β1z +A−

(
a+,ω

)
e−i β1z

= A+ (a
−,ω) ei β0z +A− (a

−,ω) e−i β0z ,

n2
1(ω)Q

(
a+,ω

)
+ p̂2

(
a+,ω

)
= n2

0(ω) Q (a
−,ω) + p̂2 (a

−,ω) ,

β1

[
A+

(
a+,ω

)
ei β1z −A−

(
a+,ω

)
e−i β1z

]
,

= β2
0

[
A+ (a

−,ω) ei β0z −A− (a
−,ω) e−i β0z

]
.

It is important to note that the above system is decoupled between the modes
A+, A− and the Q-mode, and the nonlinearity appears only in the condition
forQ . That allows us to solve a linear system of the first and the third equation,
and then compute Q through iterative root-finding process.

It is also worth noting that the second interface crossing condition has simplified
to exactly the same form as the Q-solvability condition has. That explicitly
shows that there is no difference between crossing the interface with Q , and
computing Q itself, in order to guarantee a physical solution. The interfaces
do not exist as far as Q-mode is concerned. In practical terms, whenever a
recalculation of Q is needed due to the modification of A−, this is already
handled by the act of crossing the interface.

Scaling
Due to reducing ft to integration only in ω − t , the scaling factors 1

x0
and

1
z0

are eliminated. The dimensions of the resulting electric field dimensional
constants are

e10 = ω0A0, e20 = ω0Q0.

We expect the dimension of electric field in both directions to be the same

e10 = e20 ⇒ Q0 = A0.
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Unlike before, we obtained the same dimensions for the amplitudes of all the
modes. We remind that in the general case we had

Q0 =
A0

x0
.

The difference between those two cases is a reflection of something more
profound. In the general case it is possible to focus the laser beam into a
particular region of x -axis, and the magnitude of Q depends largely on how
small that region is. In the simplified case the system is uniform in x -direction,
and no focusing is possible. The scale of Q is the same as it is of A+ or A−. As
we show next, consequences for the Q mode are even more radical.

Q-solvability condition
The solvability condition forQ remains unchanged, but due to a new dispersion
relation it can be further simplified into

Q(z,ω) = −
1

n2(ω)
p̂2 (z,ω) .

However, to fully understand the consequences of the simplified case for theQ-
mode, we need to find the possible solutions to this condition. Using simplified
ê2 we rewrite (8.2.2) as

ê2(z,ω) +
1

n2(ω)
p̂2 (z,ω) = 0.

As shown in the scaling section 6.2, the refractive index for the ω-range under
consideration can be approximated with a constant. Taking the ift of the
above equation and using n(ω) → n ∼ const . we get

F −1
{
ê2 +

1
n2 p̂2

}
= F −1 {0}

⇓

e2 +
1
n2p2 = 0

⇓

e2 +
1
n2η

(
e2

1 + e
2
2
)
e2 = 0

⇓

e2

[(
1 +

η

n2e
2
1

)
+
η

n2e
2
2

]
= 0.

The above equation has a solution when either e2 = 0⇒ Q = 0 or(
1 +

η

n2e
2
1

)
+
η

n2e
2
2 = 0.
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We recall that e1 does not depend on Q , it only depends on A+ and A−, which
are already known at the time of solving the solvability condition. Thus, with
known e1, we rewrite the above expression as an explicit formula for e2, from
which Q is computed by taking ft

e2
2 = −

( η
n2 + e

2
1

)
< 0.

Since the expression in parenthesis is always positive, we obtain that for a
non-zero solutions to exist we have to have

e2
2 < 0,

meaning that e2 would have to be purely imaginary. This is not a solution
we can accept as physical, and therefore the only solution to the solvability
condition in the simplified case is Q = 0⇒ e2 = 0.

As disappointing as it might be, we are not expecting theQ-mode to arise from
our simulations. Nevertheless, we will include the amplitude of the longitudinal
mode in our implementation in order to observe that it indeed is solved as
zero.

The restrictions to the simulation setup mean that we can only simulate a
perpendicular angle of incidence with respect to the interface, and we loose
variability along x -direction. That results in the absence of e2 component of
the electric field.

8.3 Particularities
8.3.1 Discretization resolution
We allow the discretization of the z-domain to be chosen dynamically by the
ODE solver, depending on the rate of change of function, which in practical
terms depends on the size of the nonlinearity. As observed during the testing
phase, the number of discrete points ranges from a couple to couple of tens for
a reasonable size nonlinearity.

The solver used for solving thebppe differential system is scipy.integrate.solve_ivp
with explicit Runge-Kutta method of order 5(4) (RK45). For performing inte-
gration scipy.integrate.simps method is used. It performs integration according
to Simpson’s trapezoidal rule.

For the temporal and spectral resolution we use a fixed number of points
required to represent signal oscillation. We establish the number of points in
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ω-domain in order to achieve sufficient sampling frequency, and apply the same
discretization to the t -domain. The module performing the ft maintains the
same discretization when transforming between the two domains. More details
regarding the implementation of ft are presented in section 8.3.4.

8.3.2 Spectral nonlinearity
The rhs of the bppe system involves computing nonlinear polarization terms
with each iteration. This is done in analogy to the algorithm presented in
section 3.3.2, using the analogical equations for the simplified system. The ft
and ift are taken only in t and ω respectively.

The presence of nonlinearity impacts greatly the possibilities of parallelization
of the implementation. It is due to the emergence of new, tripled frequencies
in case of Kerr nonlinearity. For a linear case, a system of three bppe equations
for each discrete value of ω could be solved separately, as there would be
no interdependence between different frequencies. Such a system is easily
parallelizable, into what is called an embarrassingly parallel problem.

The presence of nonlinearity requires that all discrete ω ’s are involved at once,
such that a ft (or ift) can be performed across the entire domain. During that
transformation a mixing of spectral amplitudes occurs between different ω ’s.
Parallelization of such system is non-trivial to say the least. One could envision
a way of decoupling certain frequencies from one another, or devising an
algorithm for passing results between smaller sub-tasks. Whether such solution
would get a performance boost, considering all the overheads, requires further
pondering. For that reason, the implementation performed for the purpose of
this thesis is strictly sequential.

8.3.3 Fixed-point iteration
All the nonlinear problems in the implementation are solved using Newton’s
iterative root-finding algorithm implemented by scipy.optimize.newtonmethod.
The function whose root is searched is a single iteration of the bppe iterative
process. Since a derivative of such function cannot be provided, a secant
method is used, with sub-quadratic convergence1. In the testing phase it was
confirmed that convergence within a given relative tolerance is obtained for all
the discrete points, andwithin a reasonable number of iterations and processing

1. Following the documentation, for a well-behaved function with quadratic convergence the
actual error in the estimated zero after the n-th iteration is approximately the square of
the error after the (n-1)-th step.
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time.

Different root finding methods were also tested, namely scipy.optimize.root
with its plethora of available methods, scipy.optimize.fixed_point, as well as a
naive iteration scheme. None of those methods shown to surpass the Newton’s-
method implementation, either due to longer processing time or the inability
to find the root in the first place. Some of the methods were comparable
though.

The Newton’s iteration was used to perform the bppe iterative shooting and
solving Q solvability condition. For bppe iteration the starting guess for the
Newton’s iteration is obtained from solving equivalent linear bppe problem.
With that we experienced the iterative process to always converge.

For theQ solvability condition also the scipy.optimize.fsolve method was tested.
Interestingly enough, for that method the obtained solution toQ was a perfect
zero, while for the Newton’s method implementation it was a negligible noise
around zero. We have maintained the Newton’s noisy solution to Q in order to
demonstrate better that it indeed is computed through iteration.

8.3.4 Fast Fourier Transform
Handling incompatible conventions
Computing fts is done using methods from numpy.fft module, which imple-
ments Fast Fourier Transform (fft) algorithms. However, the ft conventions
used by the library differ from the ones presented in Appendix A and used in
the derivations in this document. Namely, they are2

FT: f̂ (ω) =

∫ +∞

−∞

dt f (t) e−iωt

IFT: f (t) =
1

2π

∫ +∞

−∞

dω f̂ (ω) eiωt .

For the ft in t − w the above convention differs both by the normalization
coefficient in front of the integrals and by the sign of the exponents. That is
crucial for distinguishing the left- and right-traveling modes.

Let us consider equation (3.23), where the electric field is expressed in terms
of the normal modes. In order to determine the direction of travel of the modes
we consider the sign of the exponent. The exponentials in the normal modes

2. following the documentation of Discrete Fourier Transform (dft) conventions fornumpy.fft
module.
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are
eikzeξ x−ωt .

Let us consider the exponential standing byA+, thus k = +β > 0. In such case,
for an increasing time t the wave travels to the right, since the minus sign in−ωt
introduces a time delay. For k = −β < 0, which is the case for the exponential
by A−, we have that the wave travels to the left if time t increases. It is the
minus sign byωt that inspires such interpretation. Since the ft exponent sign is
different in our model and the numpy.fft library conventions, the interpretation
of which modes are traveling in which directions is the opposite.

In order to align this, we swap the forward and backward ft’s that we use
in the implementation. That means that for performing a forward ft in our
model we can use an Inverse Fast Fourier Transform (ifft) implementation
numpy.fft.ifft. Similarly, for performing ift in the model we can use forward
fft implementation numpy.fft.fft.

Making use of the real signal
However, we take our adaptations one step further. Since we model all the
temporal signals to be real, namely the electric field e, we know that their
respective ft’s are Hermitian.3 That allows us to cut by half the ω domain in
which the calculations are performed,maintaining only the positive frequencies,
and abandoning the negative ones. This is because the spectral amplitudes for
the negative frequencies can be fully reconstructed from the positive-frequency
amplitudes. Under such regime the ift function accepts only a signal which
is Hermitian (complex), in order to reconstruct a signal that is real.

For such handling numpy.fft provides rfft and irfft functions. However, since we
have to use reverse-convention functions in order to account for the direction of
travel, we would need to use rfft to perform the backward transform. That is not
possible, since since rfft accepts only real input, while the spectral amplitudes
in our model are complex. Therefore, we use yet another pair of numpy.fft
methods, namely ihfft and hfft for performing the ft and ift respectively.
Those two methods have similar but opposite expectation about the input
signal. The temporal signal is expected to be Hermitian (complex), and the
spectral signal, input to inverse transform, is expected to be real. It suits
our needs of reversed-convention perfectly, because we can use the inverse
transform implementation ihfft in order to perform a ft on our real temporal
signal. By analogy we use hfft, which expects Hermitian, to perform ift on
the spectral signal.

3. meaning that the component at discrete frequency ωi is the complex conjugate of the
component at frequency −ωi
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As complicated as it might sound, the following three methods are used

• numpy.fft.ihfft for performing ft,

• numpy.fft.hfft for performing ift,

• numpy.fft.rfftfreq for obtaining discretization ofω-domain for non-negative
frequencies only.

Normalization coefficient
Using the same library for all ft-related transformations ensures maintaining
consistency between the forward and the inverse fts, and the correct handling
of the normalization coefficient. We accept that due to the difference in the
normalization coefficient the spectral amplitudes are scaled differently in the
implementation than in our model by a factor of 1√

2π
. This does not affect the

testing or the final solution of the electric field amplitude, because consistency
is maintained.

In Appendix B we indicate a particular ft convention that allows for aligning
the derivation of the refractive index with the one most common in optics, and
applying the n(ω) model presented in section 2.4. The convention provided
through using numpy.fft module is that named convention.



9
Results
The first section of this chapter is a user manual of sorts, intended to answer
any doubts one might have about what the simulation plots actually present.
We address the scope of testing and simulation, introduce conventions and
configuration used, and cover the topics of how the initialization of ast is
done, and how performing the tests is combined with simulating real-life
problems.

In the case-study section 9.2 we present both the solutions to certain scatter-
problems, as well as the comparison against the reference results obtained
from the ast method.

9.1 Presentation approach
9.1.1 AST initialization
What you sow is what you reap
For a better visualization of the narrative of this section we recall Figure 7.1,
which intends to encompass the idea behind the ast in a single image.

The ast method presented in Chapter 7 can be initialized with an arbitrary
Ψ bc. Clearly, depending on the choice of that bc, the corresponding scatter

81
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problem for which the artificial source is generated resembles an actual physical
problem to a different extent. Our aim is to choose such a Ψ bc that the
corresponding scatter problem is realistic. We now explain how we achieve
that.

As shown earlier, there is a correspondence between the B+, B−, R andA+,A−,
Q problems. One can think of propagating B+, B−, R once as corresponding
to iteratively shooting in reverse direction to get A+, A−, Q . We use this
correspondence to generate an ast reference for the particular scatter problem
that is of interest to us. We use the object under test to initialize an independent
testing procedure.

In short, we solve the problem of interest, then we use it to initialize the ast,
and then we use the ast to generate a bc for a problem that is very close to the
original problem of interest. More systematically, the procedure is performed
as indicated below.

AST initialization and testing procedure:
1. Choose a scatter problem of interest, and solve it using bppe shooting

method. As a result, spectral amplitudes inside the slab and on the
interfaces are obtained. Collect the transmission state Ψ+, Ψ−, ΨQ right
outside the slab at z = b+.

2. Surely, the Ψ+, Ψ−, ΨQ state is not an exact representation of the physical
state, due to numerical errors and any accuracy limitations of the bppe
method. How much Ψ+ is distorted is uncertain, but it is known that Ψ−
should be exactly zero, due to no light sources from +∞. Thus, enforce
Ψ− = 0, ΨQ = 0, and together with Ψ+ use it as the Ψ bc for initializing
the ast.

3. Perform the ast generation. This propagates the Ψ bc to the other side
of the slab, yielding Φ bc state at z = a−.

4. Construct the input for the new scatter problem, using Φ+ from point
3. as the incoming laser beam, and zero for both Φ− and ΦQ . Solve the
scatter problem and compare the results against the ones generated by
the ast B+, B−, R propagation.

What is immediately apparent here, is that we take the effort to solve almost
the same scatter problem1 twice in order to obtain the reference and the

1. the two scatter problems are very similar due to only minor modification of Ψ−
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iterated results. For the chosen test cases this is not a big computational effort
though. We do not compare the results of the first scatter problem against the
ast reference for reasons of diligence, and in order to follow the principles of
artificial source testing.

We note also that we do not use the left-traveling wave generated by the ast
to initialize the Φ− input for the scatter problem. We set Φ− = 0, as it would
normally be done when solving a scatter problem without the ast involved.
This way allows us to verify that the iterative process converges with initial
guess for the reflected beam being zero.

The gain discussion
Choosing a physical2 bc for the first scatter problem guarantees that the second
scatter problem simulates a physical system to as much extent as reasonably
possible, which we consider a desirable thing. Of course, had we known what
the distortion of Ψ+ is, we could also eliminate it in order to generate an even
more realistic reference.

In our simplified case, crossing the interface is a purely linear step, and it does
not cause the magnitudes at the 3ωc range to increase due to Kerr effect. Thus
for a Gaussian bc, the nonlinear polarization effect is initially non-existing,
and it builds up as the mode propagates through the slab from z = a to z = b.
After crossing the second interface, the outgoing Ψ at z = b+ is not a perfect
Gaussian any more, but has this bulge of higher amplitudes in the 3ωc range,
as depicted in Figure 9.1. This is representative of a physical phenomenon of
propagation of light through a nonlinear medium. This Ψ is used to initialize
ast according to the procedure above.

Figure 9.1: Relation between Φ and Ψ states on the two sides of the slab.

If we instead chose to initialize the ast with a perfect Gaussian, not enriched

2. one that models a physical laser pulse, e.g. a Gaussian curve
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with any higher amplitudes in the 3ωc range, then propagating B+, B−, R
effectively backwards, from z = b to z = a, might naturally develop those
amplitudes. The nonlinear polarization effect in the system would grow from
z = b to z = a. The state Φ at z = a− would have a bulge of amplitudes in the
3ωc range. Since Φ is used as bc for the scatter problem under test, we would
construct a simulation case where the nonlinear polarization effect dies-off
instead of building-up due to passing through the slab. In other words, the
input lase pulse would have such a bulge of spectral amplitudes in the 3ωc
range, that by passing through the slab and interacting with its material would
get exactly canceled out, and produce a perfect Gaussian at the other end of
the slab, at z = b+. While physically conceivable, this case is quite unlikely to
be pursued in the experiments.

For that reason we choose to follow the initialization procedure presented
above to generate the reference and iterated results.

9.1.2 Scope of simulations
η nonlinearity factor
What we consider of the biggest interest is the impact of the nonlinear polariza-
tion coefficient η on the shape of spectral amplitudes. We present simulation
results for two different values of η′:

• η′ = 1.97 · 10−4, as resulted from scaling and presented in Table 6.2,

• η′ = 5.97 · 10−2, increased ∼ 300-fold with respect to the first choice.

Following equation (6.14), increasing η corresponds to increasing the nonlinear
refractive index n2, and thus changing the properties of the material.

This choice of increasing η′ by two orders of magnitude was made in the
experimentation phase. Such factor is big enough to demonstrate the Kerr
effect clearly, while it is still small enough to not overload the system.

Solution grid
The spectral and temporal state of the system is presented right before the
pulse enters the slab at z = a−, right after it goes out of the slab at z = b+, and
for certain points inside the slab.

The comparison with the ast reference is made at both faces of both interfaces,
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Plot element Description

Φ+, Φ−, ΦQ ,
A+, A−, Q ,
Ψ+, Ψ−, ΨQ

Spectral amplitudes solutions:
· at z = a−, right before entering the slab,
· inside the slab,
· at z = b+, right after exiting the slab.

Re{·}, Im{·} Real and imaginary parts of complex spectral amplitudes.
e1, e2 Electric field components, in z and x direction respectively.
reference /
iterated

Reference results generated by ast /
Scatter results from bppe iterative shooting.

z =
z-coordinate for which the result is presented,
e.g. z = 0 indicates the first interface.

(inside) /
(outside)

A redundant⁴indication of whether the presented state is on the
inside or outside of the slab. Maintained for easier orientation.

| · |

Denotes absolute value of a complex argument ·, or an envelope
of a real signal, computed with
numpy.abs(scipy.signal.hilbert(·))

Table 9.1: Plotting conventions.

effectively in the four points: z = a−, z = a+, z = b−, z = b+. This is due to the
fact that the z-grid where the solution is available inside the slab is dynamically
chosen by the ODE solver. As a result, the z-grids of the reference and the
iterated solutions are different in the majority of simulations. Nevertheless,
through the analysis of the test results we concluded that cross-referencing
only at the interface points is representative of the overall accuracy of the
method.

9.1.3 Conventions
Table 9.1 presents the conventions used on the plots. We note also that:

• Both the spectral amplitudes solutions and the reconstructed temporal
electric field components are presented.

• All quantities are dimensionless. In order to obtain the physical unit and
scale the values indicated along the axes ought to be scaled according to
Table 6.2.

• The ω ′ range presented in the spectral plots is wide enough to include
the 3ω ′c frequencies, with enough margin from the peak amplitude.

4. names of spectral amplitudes Φ, Ψ and A or Q already indicate that
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• Cubic interpolation is used for connecting the discrete solution points.

9.1.4 Configuration
Configuration follows Table 6.2 and the scaling sections 6.2, 6.3, except for
the increased value of η′ in the second study case. Additionally, we set the
propagation-time and slab-length parameters as presented in the first part of
Table 9.2.

Dimensionless parameter Symbol & formula Value
group velocity at ω ′c v ′д = c

′/n(ω ′c ) 2.07
propagation time t ′p 66
start time −1

6t
′
p −11

stop time +5
6t
′
p +55

nr slab lengths s 4
slab start point za 0
slab end point (=slab length) zb = v

′
дt
′
p/s 34

Discretization status
nr discrete points
for t -domain and ω-domain N 256
sampling time interval dt 0.26
sampling frequency ω ′s 24.28
folding frequency ω ′max 12.14

Table 9.2: Common configuration setup.

For a given propagation time and group velocity, we choose the slab length to
be such that the light pulse travels an exact, predefined number of slab lengths
s. This allows us to control the number of reflections from the interfaces that
we wish to see in the simulation results. In the second section of the table we
present the resulting sampling and folding frequency values.

We choose a negative start time of the simulation, such that the peak of the
input pulse arrives at the first interface za at time t = 0. Under this setup the
pulse arrives at each interface two times.

With such common configuration the two presented study cases differ only by
the order of magnitude of the nonlinearity coefficient η′.
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9.2 Case study
We present here the results of experiments, following the approach presented
in section 9.1.

9.2.1 Case 1: ordinary nonlinearity
Nonlinearity coefficient in slab, and in vacuum outside of the slab:
η′ = 1.97 · 10−4.

Table 9.3 shows the statistics from the simulation run.

Convergence
Homogeneous problem: 9 iterations, 256/256⁵points converged.
Full problem: 13 iterations, 256/256 points converged.
Electric field (e1) discrepancies at z=0
Max magnitude error: 5e − 04 (0.068% of peak magnitude).
Avg magnitude error: 7e − 05 (0.009% of peak magnitude).
Electric field (e1) discrepancies at z=34
Max magnitude error: 5e − 04 (0.055% of peak magnitude).
Avg magnitude error: 5e − 05 (0.006% of peak magnitude).

Table 9.3: Case 1 statistics.

Figures 9.2, 9.3, 9.4, 9.5 present the spectral amplitude solutions on both sides
of the two interfaces, one figure per each interface face. Different modes are
presented in rows, Re and Im parts of each mode are in different columns.

The state of Ψ− in Figure 9.5 indicates the level of accuracy obtained with this
implementation of the bppe method. The solution diverges from perfect zero
by about 2 · 10−5.

The obtained amplitudes of the transversely-traveling modes, ΦQ , Q , ΨQ , are
of the order of magnitude of numerical noise, O(10−26). That confirms the
theoretical findings of section 8.2.2, stating that theQ-mode is zero if the system
is uniform in x -direction. For that reason, and for clarity of the presentation,
we do not include the plots of theQ mode or the e2 component, which is purely
dependent on Q and thus equal to zero as well.

5. The positive ω spectrum for which solution is computed has 128 discrete points, but for
each of them convergence of Re and Im parts is traced separately.
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Figure 9.2: Case 1: Spectral amplitudes solutions at the first interface, on the outside
of the slab.

Figure 9.3: Case 1: Spectral amplitudes solutions at the first interface, on the inside
of the slab.
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Figure 9.4: Case 1: Spectral amplitudes solutions at the second interface, on the inside
of the slab.

Figure 9.5: Case 1: Spectral amplitudes solutions at the second interface, on the
outside of the slab.
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Comparing the state at both interfaces we notice that the spectrum changes
only very little by going through the slab and the interfaces. The Kerr effect
in this study-case is negligible. For a closer look on the emergence of the Kerr
effect in this case, in Figures 9.6 and 9.7 we present a zoom on the 3ω ′c range at
the same four interface face-points. Only the Re part of the complex amplitudes
is presented. The scale of the zoom plots is aligned.

At both interfaces the right-traveling mode follows the reference better than the
left-traveling mode. At the second interface the left traveling mode struggles
to align to a perfect zero, which affects also the accuracy of the right-traveling
mode, since both modes are coupled.

Figure 9.6: Case 1: Spectral amplitudes solutions at the first interface, zoom on Kerr-
affected 3ω ′c range.

In Figure 9.8 we present the state of the reconstructed electric field at the two
interfaces, only inside the slab. Figure 9.9 shows a zoom on regions between
the pulse peaks.

The electric field is reconstructed according to the reference, with the biggest
discrepancies between the peak amplitudes. There, the electric field experi-
ences fluctuations, presumably caused by the Kerr effect. The bppe method
implementation has been able to find the prevalent oscillation pattern, but not
follow the fluctuations exactly. The discrepancies are O(10−4), while the peak
magnitude is O(1).
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Figure 9.7: Case 1: Spectral amplitudes solutions at the second interface, zoom on
Kerr-affected 3ω ′c range.

Figure 9.8: Case 1: Electric field solutions at both interfaces.
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Figure 9.9: Case 1: Electric field solutions at both interfaces, zoom between field
peaks.

9.2.2 Case 2: increased nonlinearity
Nonlinearity coefficient in slab, and in vacuum outside of the slab:
η′ = 5.97 · 10−2.

Table 9.4 shows the statistics from the simulation run.

Convergence
Homogeneous problem: 81 iterations, 256/256 points converged.
Full problem: 268 iterations, 256/256 points converged.
Electric field (e1) discrepancies at z=0
Max magnitude error: 1e − 02 (1.458% of peak magnitude).
Avg magnitude error: 1e − 03 (0.165% of peak magnitude).
Electric field (e1) discrepancies at z=34
Max magnitude error: 6e − 03 (0.606% of peak magnitude).
Avg magnitude error: 1e − 03 (0.110% of peak magnitude).

Table 9.4: Case 2 statistics.

Increasing the nonlinearity factor by two orders of magnitude resulted in a
similar increase of the discrepancies of the reconstructed electric field between
the ast reference and the iterated solution.

Since the main propagation pattern remains the same, for this case we present
only the essential elements linked to Kerr effect boosting. Figure 9.10 presents
the spectral amplitudes. Consecutive rows present the state at further points
along the z-axis. Right- and left-traveling modes are presented in separate
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columns.

Figure 9.10: Case 2: Spectral amplitudes solutions at both interfaces.

Even without zooming in, the increased amplitude of the frequencies at 3ω ′c ≈ 7
range is clearly visible. As already observed for Case 1, the right-traveling mode
follows its reference much more closely than the left-traveling mode, which
diverges notably in the 3ω ′c range. We go back to this observation in the
discussion Chapter 10.

The extent of the discrepancies is best visible in the bottom-right plot of Figure
9.10. Ψ− discrepancies reach 3 · 10−4.

Figure 9.11 presents the temporal electric field. We note the arising of oscilla-
tions at higher frequencies, presumably from the 3ω ′c range. Those oscillations
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are of relatively small amplitude on top of the main oscillation pattern.

Figure 9.11: Case 2: Electric field solutions at both interfaces.

9.2.3 Bird’s-eye view
Last but not least, we present the entire state of the system in the slab at
once, through a series of quasi-3D plots. The entire slab length falls along the
horizontal axis, and the temporal or spectral domain along the vertical axis.
Color-coding marks the magnitude of the electric field for each point in the
2D-plane. The configuration follows the high-nonlinearity Case 2.

The plots are generated by solving a scatter-problem directly, not by solving an
ast. In a scatter problem we initialize the input pulse as a perfect Gaussian. If
we generated the input Φ in the ast regime, it would be a slightly distorted
Gaussian, due to the accumulation of numerical errors. We observed that this
high-nonlinearity case is already quite sensitive to changes in the bc, and we
do not wish to introduce even more noise to it. The 3D plots show certain
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emergent structures, which are the more apparent the less noise there is in the
system to begin with.

Figure 9.12 shows the magnitude of the temporal electric field. The vertical
lines mark the discrete z-points, for which the solution to the bppe system
was found. The Kerr effect is not visible on this plot, but we clearly see how the
laser pulse propagates through the slab in time. The first leg, with the highest
amplitude, is the initial input pulse propagating through the slab, from z = 0 to
z = 34. Each next leg is a reflected pulse. It is clear how the amplitude quickly
diminishes, meaning that the most of the energy of the pulse goes right through
the slab, and only about a tenth of it gets reflected from the interface.

Figure 9.12: Case 2: Electric field solution in the entire slab.

Figure 9.13 presents spectral magnitudes by analogy. We see a relatively strong
magnitude around the main frequency ω ′c = 2.35, which does not change
noticeably when the wave propagates through the slab.

For the Kerr-excited frequency range, around 3ω ′c ≈ 7, we se a faint pattern,
too week to appreciate in that context. Therefore, we present a zoom on the
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3ω ′c range in Figure 9.14. A new magnitude color-bar is set in order to expose
the emerging pattern better. We come back to analyzing those two 3D spectral
plots in the discussion Chapter 10.

Figure 9.13: Case 2: Spectral amplitudes solution in the entire slab.



9.2 case study 97

Figure 9.14: Case 2: Spectral amplitudes solution in the entire slab, zoom on Kerr-
affected 3ω ′c range.





10
Discussion
10.1 BPPE method accuracy
Error analysis
Addressing the topic of accuracy of the bppe method we need to keep in
mind that we do not have the exact solutions available as reference. The ast
reference that we use is obtained by solving a nonlinear ODE system with a
numerical solver, and as such it is also prone to error.

The tolerance for the numerical ODE solver used is a combination of absolute
and relative tolerance thresholds, summing up to 3.6e −5. This is the accuracy
we can expect from the reference solution. Given that the iterated solution
depends on repeated calls to the ODE solver, we would expect those errors to
accumulate.

Simultaneously, the Newton’s algorithm has its own convergence tolerance
threshold, expressed as the allowable error of the zero value and set to 1.5e −8.
It tells us about the backward error of the approximation (how far the function
of approximated root is from the exact zero). We do not know what the forward
error is, namely what the error of Φ− is. We do know, however, the error of Ψ−.
Ψ− should be exactly zero, while we obtain at maximum about 2e−5 and 3e−4
discrepancies for Case 1 and Case 2 respectively. This is visible in Figures 9.5
and 9.10. That result seems to be aligned with the ODE solver tolerance.
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Decreasing both the ODE solver tolerance and the Newton’s method conver-
gence threshold,we observed clearly that the iterative process took considerably
more iterations to converge. However, we did not observe the decrease of maxi-
mum Ψ− discrepancies with respect to the exact zero, nor did the reconstructed
electric field alignment improved. The issue of what those errors are attributed
to requires further investigation, especially in combination with increasing the
number of discrete points in the ω-domain. Given the complexity of the system
one could expect that the interdependence of errors is also non-trivial.

Nonlinearity-factor impact on accuracy and convergence
We recall that the discrepancies of the reconstructed electric field magnitudes
were:

• Case 1 discrepancies: maximum: 1e − 4, average: 1e − 5,

• Case 2 discrepancies: maximum: 1e − 2, average: 1e − 3.

The increase of η′ by two orders of magnitude resulted in the increase of the
discrepancies with respect to the ast reference also by two orders ofmagnitude.
We have seen that those discrepancies occur practically only between the
field peaks, where the electric field received an additional oscillation of small
amplitude, likely caused by the increase of amplitudes in the 3ωc range. We
have also seen that in the spectral domain the discrepancies occurred mostly
for this 3ωc range.

Based on those observations we conclude that the presented implementation
of the bppe shooting method

• was able to reproduce the linear part of the propagation problem accu-
rately,

• despite having converged, it struggled to reproduce the exact oscillations
emerging due to Kerr-nonlinearity, but it was able to reproduce (mimic)
the prevalent oscillation pattern (we recall Figures 9.6, 9.7 and 9.9),

• has accuracy and convergence rate dependent on the size of the nonlin-
earity coefficient η′.

Nevertheless, it is fair to note that for higher choices of η′, and sufficiently long
slab length and propagation time, the iterative process either failed to converge
within 500 iterations, or the numerical values exceeded the representable
range. We observed a quick build-up of spectral amplitudes, that led to out-
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of-range values in numerical terms. Such sensitivity to the increase in η′

strongly suggests a cautious optimism towards the numerical results obtained
in such cases. Assuming that the convergence properties of the bppe shooting
method itself are not affected by the increase of the nonlinearity coefficient,
we conclude that the robustness of the presented implementation requires
a thorough investigation, both by analyzing the results against theoretical
expectations, and by performing further tests of the implementation.

Forcing left-traveling modes to zero
Throughout the experiments, especially in Figures 9.5 and 9.10, we showed
that the discrepancies for the left-traveling modes are much bigger than for the
right-traveling modes. This can be explained by the method of initializing the
ast. For the ast bc we first solved a bppe problem, and forced Ψ− to be to
zero, while maintaining Ψ+ as it was. The new scatter problem was challenged
to get aligned to this new, only partially-modified state, while both states (left-
and right-traveling modes) are in fact coupled.

Since the amplitude of the right-travelingmode is the dominant one, converging
with the left-traveling mode to a modified state must have been more difficult,
andwe indeed observed larger discrepancies there. In other experiments,where
Ψ− state was not forced to zero in the reference, we observed that the size of
the discrepancies decreased.

The bppe method itself also repeats the step of forcing the left-traveling mode
to zero at each iteration. This is the crucial step of the method. It is a matter
of further investigation to determine how this step impacts the accuracy of the
left-traveling mode solution. Especially when the internal reflection rate in slab
is much higher, and the magnitudes of both left- and right-traveling modes are
comparable.

Final note on convergence
The convergence of the method has already been addressed in various context
in this section. The final remark we would like to stress regards the impact of
the bc on the ability to converge.

In section 9.1.1 we make argument for why we choose to initialize the ast
with a solution from a previously solved scatter problem, instead of using a
perfect Gaussian as ast bc. Apart from the reasons presented there, in our
experiments we also observed that setting Ψ+ to be a perfect Gaussian causes
notably worse convergence of the bppe iteration solving the scatter problem.
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This manifested itself in both

• notably higher number of iterations required to converge,

• discrepancies increased by 1 order of magnitude.

We know that in general convergence rate is determined by an initial guess.
In this case we observe that it is also determined by the end-result to which
the iterative process is expected to converge. Given the coupling of right- and
left-traveling modes, it might be that converging to certain results is more
difficult than to others. However, making a statement of such loose hypothesis
requires further investigation of the convergence properties of the proposed
implementation.

10.2 Qualitative results
Light-propagation features
Certain aspects of the qualitative behavior of the simulated system are already
mentioned in section 9.2.3. Figure 9.12 is a testimony to the fact that the pre-
sented implementation of the bppe method simulates correctly the following
phenomena:

• The reflection of the beam from material interfaces.

Following Fresnel equations the reflectivity should be about 4% for the
center frequency ωc . What we obtain is that the amplitude of the electric
field reflected from the interface at z = b is around 15% of the incoming
beam. This result is rather high, but given a relatively high polarization
nonlinearity coefficient η′, and the fact that the refractive index n(ω) is
not exactly constant, we cannot immediately dismiss it. We have also
seen that the error of Ψ− is non-zero, so we expect certain deviation from
the theoretical predictions. Establishing the exact expected reflection rate
for this case requires further analysis.

• The rate of propagation of the pulse is consistent with the group velocity
vд computed for the center frequency ωc .

Also, as we have demonstrated in various figures in Chapter 9:

• Spectral amplitudes in the Kerr-affected frequency range arise as the
pulse propagates through the material slab.



10.2 qualitative results 103

• Increase of the amplitudes in the 3ωc range is also detectable in the
reconstructed electric field, as an additional oscillation on top of the
main oscillation of the carrier wave (presented in Figure 9.11).

The above observations confirm that the bppemethod, and its implementation
presented in this paper, are able to successfully represent the nonlinear polar-
ization impact and the qualitative properties of pulse-propagation through a
material medium with interfaces. An important result is that the bppemethod
delivered what it was designed for, namely to capture the back-scatter of light
beam.

Emergent structures
We return now to the results of Figure 9.14, which presents a zoom on the
Kerr-affected frequency range of the spectral amplitudes.

The amplitudes in that range are driven by polarization nonlinearity p1, which
with e2 ≈ 0, is practically dependent only on e3

1 . In Figures 9.13, 9.13 we see a
clear hierarchy of terms, where

|A+ |ωc ≈ 100% of |A+ |ωc ,
|A− |ωc ≈ 18% of |A+ |ωc ,
|A+ |3ωc ≈ 3% of |A+ |ωc ,
|A− |3ωc ≈ 1% of |A+ |ωc .

The magnitude |A+ |ωc exceeds |A− |ωc approximately by 1 order of magnitude.
Building e3

1 makes that disproportion grow to three orders of magnitude. Thus
A+ seems to be the driving element for both A+ and A− amplitudes in 3ωc
range. Presumably, this is why we observe |A− |3ωc to remain fairly constant,
being dominated by |A+ |ωc . On the other hand, |A+ |3ωc depends also on itself
to a certain degree, which might be enough to generate the ripple-pattern
visible at the top of Figure 9.14. We are, of course, far from explaining the
origin of that pattern, as the underlying interplay of participating elements is
rather complex.

The highlight here is that, potentially, by means of applying the bppe method,
we have been able to uncover in our simulation an emergent structure - a
large-scale entity, that is seemingly detached from the properties of individual
elements, but that clearly emerges when large collections of those elements are
considered. One might say that an emergent structure is an added value, which
can only be appreciated once many building blocks are assembled together,
and it is very hard, if not impossible, to predict from the properties of a single
building block.
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Had we not obtained any emergent pattern in our results, that would go
unnoticed. The structure we see is hard enough to explain once it is already
there, yet alone predict and foresee it. It is, of course, easy to get carried away
and draw far-fetched conclusions. The pattern that we observe might, after all,
be an emergent structure of numerical errors or ODE solver properties, for all
we know. Nevertheless, it is not the first time that a structure emerged from
a complex system, so we take this as an encouraging result, and one of the
starting points for future work.



11
Future work
bppe method is a fairly new method, and as such it offers many yet-to-be
explored directions. With respect to the work presented in this paper, we see
the two major focus areas.

The first area is the investigation of the limitations of the method, and of any
practical, numerical implementations that it might incarnate as. Many of the
ideas were already indicated in the Discussion Chapter 10. They involve, among
others, studies of

• accuracy and errors, especially for the left-traveling mode,

• convergence, also in the context of sensitivity to initial conditions,

• the ability to reproduce physical behavior for high-nonlinearity cases.

Another field with much room for improvement is the flexibility and perfor-
mance of the underlying implementation. That includes

• adding spatial dimensions to the slab representation,

• allowing for non-uniformity in those spatial dimensions, thus allowing
for focusing of the beam and simulating oblique incidence angles, and
increasing the potential for the emergence of the Q-mode,
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• investigating the possibilities of parallelization of the source code for
certain types of nonlinearities and implementing them. For the highly-
mixing Kerr-type nonlinearity handled in this paper, parallelizing the
solution of the bppe system is non-trivial. However, one can design other
types of third-order nonlinearities to promote a more decoupled bppe
system. An example of such spectrally-local nonlinearity is presented in
[7].

In this paper we have not investigated how the bppe method implementation
reacts to variation of certain parameters. For example, we have treated only
very short propagation distances. Allowing for longer slabs would give insight
into how the method handles further evolution of the Kerr-effect. Another
example is the refractive index. By assuming an almost constant refractive
index, we did not leave much room for dispersion to arise. Representing this
phenomenon is a crucial feature of the method, and could be investigated
further. Also, designing the input pulse to be of even higher intensity and
shorter temporal duration would put the method to test in terms of handling
the ultra-fast field variations of femtosecond pulses.

Given the well-established reign of uppe methods in physics of pulse propaga-
tion, it would be reasonable to carry out a more thorough comparison of the
simulation results yielded by each method, and isolating cases where each of
methods is potentially superior to the other one.

Finally, the bppe method has shown promise of ability to model emergence of
the underlying complex system. The study of that topic is a completely separate
one, and a very young too. Developing a bppe implementation and pushing it
to the limits might also prove to be a tool in the study of the phenomenon of
emergence.



12
Summary
In this paper we considered the bppe method and its capability for modeling
the secondary electromagnetic field, arising as a response of a material to an
externally applied electric pulse.

We presented the details of derivation for a tm field in a material slab with
Kerr-type polarization response, delimited by two material interfaces. We
demonstrated that by making a reasonable assumption about the nonlinear
polarization being a perturbation on top of the linear response, the system of
Maxwell’s equations can be transformed into an explicit z-propagation system,
such that a boundary-value problem can be formulated for pulse propagation in
a natural way. We have shown that solving the system in spectral domain reveals
a redundancy in the normal-modes expansion of the electric field solution.
That allows for posing an additional constraint, which then plays a key role in
supplying the back-propagation capabilities to the bppe method.

The bppe shooting method is built around the fact that no incoming modes are
expected on the far side of the slab, and iteratively enforcing that expectation
onto the intermediate state of the system. By performing case-study simulations,
we showed that convergence of such iterative process can indeed be reached,
producing a viable solution. However, the size of nonlinearity coefficient η,
and the initial conditions, impact the convergence of the numerical iterative
process. Separating the limitations of the underlying implementation from the
properties of the bppe method itself requires further investigation.
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Apart from the left- and right-traveling modes, we devoted certain attention to
the existence of the transversely-propagating mode. The Q-mode cannot arise
in a system with a uniformity in the transverse-direction. In general case, the
scale of Q is different than the scale of the longitudinally-propagating modes,
and it is proportional to the degree of focusing of the beam along the transverse
direction.

Employing a dedicated ast procedure allowed for cross-referencing the sim-
ulation results and performing an error analysis. We found the errors to be
comparable to the tolerance thresholds of the internal solvers, indicating a
reasonable accuracy of the solution. The increase of η resulted in a corre-
sponding increase of the errors, which was clearly connected to the arising of
high-frequency perturbation on top of the main electric field oscillation. The
iterative solution had trouble following the reference perturbation exactly, but
it was nonetheless capable of reproducing the overall perturbation pattern,
maintaining similar amplitudes and frequencies of oscillation. In the context
of the obtained simulation results, we indicated several areas of testing the
underlying implementation further.

Qualitatively, we have seen all the key phenomena of light propagation recon-
structed in the iterative solution, including partial reflection form the interfaces,
group velocity of the temporal pulse, and third harmonic generation due to
Kerr effect. For the Kerr-affected frequencies we observed intriguing patterns
emerging from the field of spectral magnitudes. That inspires further research
directions, related to the ability of the method to capture prevalent patterns
of various nature in the system.
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Appendices
A Fourier Transform conventions
We present here the ft conventions used in this paper. Different conventions
are used for the transforms of temporal and spatial variables.

A.1 Convention for spatial variable x

FT: f̂ (ξ ) =
1
√

2π

∫ +∞

−∞

dx f (x) e−iξ x

IFT: f (x) =
1
√

2π

∫ +∞

−∞

dξ f̂ (ξ ) eiξ x

We now consider an example showing the ft of the derivative ∂x .

Example Using ift to represent e(x) we can write

F {∂xe(x)} =F

{
1
√

2π

∫ +∞

−∞

dξ ê(ξ ) ∂x e
iξ x

}
= F

{
iξ

1
√

2π

∫ +∞

−∞

dξ ê(ξ ) eiξ x
}

= F {iξ e(x)}

=
1
√

2π

∫ +∞

−∞

dx (iξ e(x)) e−iξ x

= iξ
1
√

2π

∫ +∞

−∞

dx e(x) e−iξ x

= iξ ê(ξ ).

We obtained that under this convention

∂x → iξ ,

∂xx → (iξ )
2 = −ξ 2.
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A.2 Convention for temporal variable t

FT: f̂ (ω) =
1
√

2π

∫ +∞

−∞

dt f (t) eiωt

IFT: f (t) =
1
√

2π

∫ +∞

−∞

dω f̂ (ω) e−iωt

We now consider an example showing the ft of the derivative ∂t .

Example Using ift to represent e(t) we can write

F {∂te(t)} =F

{
1
√

2π

∫ +∞

−∞

dω ê(ω) ∂t e
−iωt

}
= F

{
−iω

1
√

2π

∫ +∞

−∞

dω ê(ω) e−iωt
}

= F {−iω e(t)}

=
1
√

2π

∫ +∞

−∞

dt (−iω e(t)) eiωt

= −iω
1
√

2π

∫ +∞

−∞

dt e(t) eiωt

= −iω ê(ω).

We obtained that under this convention

∂t → −iω,

∂t t → (−iω)
2 = −ω2.

B Origin of refractive index
This section shows how the refractive index n(ω) originates from the ft of
(1 + L) operator acting on an electric field component. We apply ft in x
and t variables. For susceptibility χ we consider only temporal dispersion (not
spatial) such that χ = χ (t − t ′) and ft of χ is taken only with respect to
temporal variable.

We are interested in taking the following ft

F {(1 + L)e (z,x , t)} = F
{
e (z,x , t) +

∫ t

−∞

dt ′ χ (t − t ′)e (z,x , t ′)

}
. (1)



We express e and χ in terms of their respective ifts as

e (z,x , t ′) =
1
√

2π
2

∫ +∞

−∞

dω

∫ +∞

−∞

dξ ê (ω, ξ , z) eiξ x−iωt
′

,

χ (τ = t − t ′) =
1
√

2π

∫ +∞

−∞

dω ′′ χ̂ (ω ′′) e−iω
′′τ .

Now, we extend χ to negative time. For t ′ > t we have χ (τ < 0) and
χ̂ (ω < 0) = 0. Thus we can extend the integration scope for χ

∫ t

−∞

dt ′ χ (τ ) →

∫ +∞

−∞

dt ′ χ (τ ).

We can now write (1) as

F

{
e (z,x , t) +

∫ t

−∞

dt ′
1
√

2π

∫ +∞

−∞

dω ′′ χ̂ (ω ′′) e−iω
′′(t−t ′)︸                                      ︷︷                                      ︸

χ (τ )

1
√

2π
2

∫ +∞

−∞

dω

∫ +∞

−∞

dξ ê (ω, ξ , z) eiξ x−iωt
′
}

︸                                                        ︷︷                                                        ︸
®e(z,x,t ′)

.

Dropping the dependence on arguments for the electric field, and changing
the order of integration we obtain

F


e +

1
√

2π
3

∫ +∞

−∞

dω ′′ χ̂ (ω ′′) e−iω
′′t

∫ +∞

−∞

dω

∫ +∞

−∞

dξ ê eiξ x
∫ t

−∞

dt ′ ei(ω
′′−ω)t ′︸                ︷︷                ︸

2π δ (ω′′−ω)


.



Using the properties ofDiracδ -distribution shown in Appendix Cwewrite

F


e +

1
√

2π
3

∫ +∞

−∞

dω

∫ +∞

−∞

dξ

∫ +∞

−∞

dω ′′ χ̂ (ω ′′) e−iω
′′t 2π δ (ω ′′ − ω)︸                                              ︷︷                                              ︸

no contribution unless ω′′=ω

ê eiξ x


= F

{
e +

1
√

2π

∫ +∞

−∞

dω

∫ +∞

−∞

dξ χ̂ (ω) e−iωt ê eiξ x
}

= ê + F

{
1
√

2π

∫ +∞

−∞

dω

∫ +∞

−∞

dξ χ̂ (ω) ê ei(ξ x−ωt )
}

= ê +
√

2π F


1
√

2π
2

∫ +∞

−∞

dω

∫ +∞

−∞

dξ χ̂ (ω) ê ei(ξ x−ωt )︸                                                  ︷︷                                                  ︸
F−1 form


= ê +

√
2π χ̂ (ω) ê

=
(
1 +
√

2π χ̂ (ω)
)

︸              ︷︷              ︸
n2(ω)

ê (ω, ξ , z) ,

where we have used the fact that F
{
F −1 {(·)}

}
= (·).

We have obtained that under ft, the operator is transformed as follows

(1 + L)
F
−→

(
1 +
√

2π χ̂ (ω)
) def .
= n2(ω).

It must be noted that the definition of the refractive index n(ω)most commonly
used in optics is n2(ω) = (1 + χ̂ (ω)). That difference stems from the ft conven-
tions used in this paper. Had we chosen a convention where the normalization
factor 1

2π is not evenly distributed among F and F −1, but rather present in
its entirety in F −1, the definition of n(ω) would be aligned with the one most
common in optics.

The take-away point in those considerations is that the refractive index is
obtained from the ft of a convolution operator L acting on ê, and the exact
conventions of the ft do not change the final result of out considerations, as
long as consistency between ft and ift is maintained. As revealed in section
8.3.4, the convention used for the implementation follows the one common
in optics, and so does the refractive index model used, presented in section
2.4.



We also use that
F

{
(1 + L)−1} def .

=
1

n2(ω)
.

C Dirac δ -distribution
Using ft conventions as in Appendix A, the following relations apply for Dirac
δ -distribution

δ (ξ ) =
1
√

2π

∫ +∞

−∞

dx δ (x) e−iξ x =
1
√

2π
⇓

δ (ξ ) =
1
√

2π

∫ +∞

−∞

dx
1
√

2π
e−iξ x

⇓

2πδ (ξ ) =
∫ +∞

−∞

dx e−iξ x .

By analogy we have

δ (x) =
1
√

2π

∫ +∞

−∞

dξ δ (ξ ) eiξ x =
1
√

2π
⇓

δ (x) =
1
√

2π

∫ +∞

−∞

dξ
1
√

2π
eiξ x

⇓

2πδ (x) =
∫ +∞

−∞

dξ eiξ x ,

and

δ (ω) =
1
√

2π

∫ +∞

−∞

dt δ (t) eiωt =
1
√

2π
⇓

δ (ω) =
1
√

2π

∫ +∞

−∞

dt
1
√

2π
eiωt

⇓

2πδ (ω) =
∫ +∞

−∞

dt e−iξ x .

Also, we have the basic property of∫ ∞

−∞

dα f (α) δ (α − γ ) = f (γ ).



D Deriving back-propagation formula from
additional constraint

This appendix contains the details of deriving integral formula (6.1) from the
constraint (3.25).

We apply the Fundamental Theorem of Calculus (ftc)∫ b

a
dz

d f (z)

dz
=

∫ b

a
dz h(z)

m

f (b) − f (a) =

∫ b

a
dz h(z)

m

f (a) = f (b) −

∫ b

a
dz h(z),

to (3.25), dropping the dependence ofA+ andA− on arguments (z,ω, ξ )

∂zA+e
i βz + ∂zA−e

−i βz = 0
⇓

−∂zA− = ∂zA+e
2i βz

↓ integrating over
∫ b

a

−

∫ b

a
dz ∂zA− =

∫ b

a
dz ∂zA+e

2i βz

↓ ftc

− [A−(b) −A−(a)] =

∫ b

a
dz ∂zA+e

2i βz

⇓

A−(a) −A−(b) =

∫ b

a
dz ∂zA+e

2i βz

⇓

A−(a) = A−(b) +

∫ b

a
dz ∂zA+e

2i βz .
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