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Abstract
Boundary integral equations (BIEs) are used to model surface waves in a wave
tank. Assuming an ideal fluid, the velocity of the fluid can be considered as a
potential flow and be modeled by the Laplace equation on the domain. The
domain in this case will be a section of a wave channel with an incoming wave
from the right, a rigid bottom, a reflective wall on the right and a time varying
surface that represent the surface waves. A numerical solution is implemented
and used to simulate a wave tank at the University of Oslo. The numerical
solution to the BIEs is tested for accuracy against a known solution to the
Laplace equation on the boundary and it was found that the BIEs gave a mostly
accurate solution except for around the parts of the parametrized boundary
that were non-smooth.

Two cases of instabilities were found:
1) when the number of discrete points in time was to low and
2) when the wave amplitude got to large.
Adding a diffuse term was tried in both cases and found to be ineffective.
In case 1) it was ineffective since increasing the number of discrete points in
time already made the solution stable and adding the diffusive term introduced
another relation ship between the discrete points in time and space which had
to be satisfied to remain stable.
In case 2) adding the diffusive term had little to no effect, except for when the
number of discrete points on time was to small, in which case the instability oc-
cured earlier. It is conjectured that improving the accuracies at the non-smooth
parts of the boundary will improve the stability for incoming waves.
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1
Introduction
It is known that, in the case of potential flow, surface waves can be modeled
using a boundary integral formulation[1][2]. The goal of this thesis is to model
surface waves in a wave tank of finite length and customizable bottom using
boundary integral equations (BIEs). It will be assumed that there are no
significant dynamics occurring in along the width of the channel such that
the surface wave can be modeled using only two spatial coordinates (length
and height). The physical boundary conditions on the water surface, derived
form the fluid equation assuming an ideal fluid, gives a relation between the
potential flow and the surface profile, however the spatial derivatives at the
boundary need to be found in order the solve for the surface profile. The spatial
derivatives of the potential flow at the surface can be expressed through the
normal derivative of the potential flow. Since the BIEs gives a relation between
the points of the potential flow and the normal derivative on the boundary of
the domain it is used to solve for the normal derivate on the surface such that
the spatial derivatives can be found.

The domain of the problem, shown in figure 1.1, is a part of a larger channel
where the fluid velocity on the left boundary is known. This means that the
way the waves form is not modeled such that it is done in [3], instead it is
assumed that the waves are already formed and simply enter our domain after
some time. The finite horizontal extent of the channel is an interval [0,L] on
the x -axis of a Cartesian coordinate system where z is used as the vertical
coordinate. The channel is assumed wide enough that there are no significant
dynamics occurring in the vertical coordinate and can therefore be ignored.

1



2 chapter 1 introduction

Figure 1.1: Shows the domain and each parametrized curve in the boundary.

The boundary in the domain is divided into four parts: surface (C0), left side
(C1), bottom (C2), right side (C3). Further the surface and bottom profile are
considered as a graph of the function z0(x , t) = η(x , t) and z2(x) = −h(x)
respectively. Note that this approach means that there can be no breaking
waves.

One of the goals in the thesis is to see if it possible to use parameters from
a physical wave tank. Parameters for a wave tank at the University of Oslo is
taken from the masters thesis’ of Jorde and Raustøl [4][5]. These parameters
will be present throughout the thesis in both testing, stability analysis and
actual simulations.



2
Fluid description
The fluid is assumed to be an ideal fluid in a gravitational field. This means
that there are no internal forces in the fluid and that the density is assumed to
be constant. Such fluid is described by the Euler equations

Dv

Dt
= −

1
ρ
∇p − д (2.1)

∇ ·v = 0 (2.2)

where ρ is the constant density, p is the pressure, д = дez = ∇(дz) is the
acceleration due to gravity in the direction of the z-coordinate and D

Dt =

∂t + (v · ∇) is the material derivative. Here the notation ∂t := ∂
∂t is used.

Equation (2.1) is called the momentum equation and is a variation on Newton’s
second law,while equation (2.2) is called the mass conservation equation.

2.1 Potential flow
To show that an ideal fluid clan be modeled as potential flow consider the
vorticity,w , of the velocity field defined by

w := ∇ ×v

If the vorticity of the velocity field is zero it means that the velocity is a
conservative vector field and can therefore be written as a scalar potential. If

3



4 chapter 2 �uid descript ion

w = 0 at t = 0 it implies w = 0 for all t . To show this consider the following
computation: using the vector identity

(∇ ×v) ×v = −
1
2
∇v2 +v · ∇v

equation (2.1) can be written as

∂tv +
1
2
∇v2 + (∇ ×v) ×v = −

1
ρ
∇p − ∇(дz) (2.3)

By taking the curl of equation (2.3), using that the curl of a gradient is zero
and noting thatw = ∇ ×v it can be written as

∂tw + ∇ × (w ×v) = 0 (2.4)

The relation∇×(w×v) can be rewritten using the vector calculus identity

∇ × (w ×v) = v · ∇w −w · ∇v − (∇ ·w)v + (∇ ·v)w

and noting that ∇ ·v = 0 and ∇ ·w = ∇ · (∇ ×v) = 0 equation (2.4) can be
written as

∂tw +v · ∇w −w · ∇v = 0

=⇒
Dw

Dt
= w · ∇v

This equation shows that if the initial condition w(x , t) = 0 is imposed it
implies that w(x , t) = 0 ∀t . Hence if the fluid is initially vorticity free it will
stay vorticity free. Therefore it will be required that the fluid is initially vorticity
free such that the velocity can be written as the gradient of a scalar potential
ϕ

v = ∇ϕ

Equation (2.2) can therefore be written as

∇2ϕ = 0

The fluid velocity can therefore be described by solving the Laplace equation
on our domain.

The momentum equation will now be transformed using potential flow. Sub-
stituting the velocity v with the scalar scalar potential ∇ϕ in equation (2.1)
gives

∂t∇ϕ + (∇ϕ · ∇)∇ϕ = −
1
ρ0
∇p − ∇(дz) (2.5)
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Notice that (∇ϕ ·∇)∇ϕ = 1
2∇(∇ϕ)

2 by considering the following index notation
derivation

∇(∇ϕ)2i = ∂xi (∂x jϕ∂x jϕ)

= ∂xi (∂x jϕ)∂x jϕ + ∂x jϕ∂xi (∂x jϕ)

= ∂x jϕ∂x j ∂xiϕ + ∂x jϕ∂x j ∂xiϕ

= 2(∇ϕ · ∇)∇ϕ

=⇒ (∇ϕ · ∇)∇ϕ =
1
2
∇(∇ϕ)2

where Einstein’s summation convention is used. Equation (2.5) can therefore
be written as

∇

[
ϕt +

1
2
(∇ϕ)2 +

p

ρ0
+ дz

]
= 0 (2.6)

where the notation fxi := ∂xi f is used. From equation (2.6) it is clear
that

ϕt +
1
2
(∇ϕ)2 +

p

ρ0
+ дz = α(t)

=⇒ p = ρ0(−ϕt −
1
2
(∇ϕ)2 − дz + α(t))

where α(t) is some arbitrary function of t . Since the pressure really measures
pressure differences the pressure can be shifted by a constant p0 without loss
of generality to get

p − p0

ρ0
= −ϕt −

1
2
(∇ϕ)2 − дz + α(t) (2.7)

where p0 represents air pressure at the top of the liquid in this case. Note that
if ϕ(x , z, t) is a solution to the Laplace equation, so is ϕ(x , z, t) + ψ (t) since
∇(ϕ(x , z, t) + ψ (t)) = ∇ϕ(x , z, t). Plugging such solution into equation (2.7)
yields

p − p0

ρ0
= −ϕt −ψ

′(t) −
1
2
(∇ϕ)2 − дz + α(t) (2.8)

ψ ′(t) can now always be chosen as the cancel α(t) such that equation (2.8) can
be written in its final form

p − p0

ρ0
= −ϕt −

1
2
(∇ϕ)2 − дz (2.9)
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2.2 Surface waves
The description of the surface waves in this paper does not not include breaking
waves, therefore it is assumed that the surface of the fluid can be written as
a graph of a function as shown in figure 1.1. With the assumption that no
important dynamics occur along the width of the wave channel the surface is
modeled as 1-dimensional horizontal motion such that the height of the fluid
is written as

z = η(x(t), t)

Thus, parts of the boundary of the domain is time dependent. The bottom is
modeled in a similar way, namely

z = −h(x)

As with the surface this description does not allow overhangs. Several bound-
ary conditions is needed to compute the surface profile and will now be
derived.

2.2.1 Kinematic surface boundary condition
Since the surface is defined as the interface between water and air, water
cannot cross the boundary. Thus, the fluid velocity at the surface must be
equal to the velocity of the surface. Let x(t) = (x(t), z(t)) be a time dependent
position vector for a point on the surface. Its velocity, d

dt x(t) = (x
′(t), z ′(t)),

must be equal to the velocity of the fluid at the surfacev(x(t), t), that is

x ′(t) = v(x(t), t), z(t) = η(x(t), t)

Differentiating z(t) with respect to time at the surface using the chain rule we
get that

z ′ = ηxx
′ + ηt (2.10)

Using that (x ′, z ′) = v = (ϕx ,ϕz) at the surface equation (2.10) becomes

ηt = ϕz − ηxϕx , z = η(x , t)

Thus, the surface profile is modeled using the potential flow ϕ(x , z, t).

2.2.2 Dynamic surface boundary condition
Assuming that the surface is massless and that there are no surface tension the
net force on the surface fluid element is p − p0. Since the surface element is
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massless this force must be zero, that is p − p0 = 0. Therefore equation (2.9)
can be written, on the surface, as

ϕt = −
1
2
(∇ϕ)2 − дz, z = η

2.2.3 Bottom boundary condition
The bottom is assumed to be impenetrable to water. This implies that the
velocity cannot have a component that is normal to the surface, that is

v · n = 0, z = −h(x)

where n is the unit normal vector at the bottom.





3
Boundary integralformulation
Using the boundary conditions on the surface a solution for the surface profile
η can be found by solving the following system of coupled partial differential
equations (PDEs)

ηt = ϕz − ηxϕx (3.1)

ϕt = −
1
2

(
ϕ2
x + ϕ

2
z
)
− дη, ϕ ∈ C0 (3.2)

This system will be numerically solved by considering discrete values of η andϕ
along the graph z(x , t) = η(x , t) and treating each discrete point as a separate
functions of time. The finite partial derivatives in space couples discrete points
in space together, therefore equation (3.1) and (3.2) will be a coupled system of
ordinary differential equations (ODEs) in time. To solve this system numerically
the values of the partial derivatives in space must be determined to step the
numerical integration process forward. The partial derivatives of ϕ cannot be
determined by a finite difference in space since that require values of ϕ in
immediate proximity in the respective spatial variable, which is in general
is not known since the values of ϕ is only known on C0. However, consider
the unit tangent t and unit normal n on the curve z = η(x , t) and define the

9



10 chapter 3 boundary integral formulation

tangential and normal derivative respectively as

∂tϕ := ∇ϕ · t = (ϕx ,ϕz) · t
∂nϕ := ∇ϕ · n = (ϕx ,ϕz) · n

From this definition it is clear that if ∂tϕ and ∂nϕ can be found ϕx and ϕz can
be determined. In this chapter BIEs will be used to determine ∂nϕ and later on
it will be explained how values for ∂tϕ can be determined. BIEs uses a Green’s
function together with an integral identity to relate points on the boundary to
each other.

3.1 Green’s functions and BIEs
Let L be a linear differential operator on functions ϕ : R2 → R. A Green’s
function, G(x ;ξξξ ), for L is then defined by the equation

LG(x ;ξξξ ) = δ (x − ξξξ )

where x = (x , z) and δ (x) is the two-dimensional Dirac delta generalized
function defined as the outer product between two one-dimensional Dirac
delta generalized functions

δ (x) := δ (x)δ (z)

with the property

δ (x) =

{
+∞ , x = 0
0 , x , 0

This is, however, just is a heuristic definition as no function defined on the real
numbers has these properties but since the rigorous detail are not important
they will be omitted.

A Green’s function for the Laplace operator and a BIE is derived in Appendix
A.1 and A.2 respectively and are found to be

G(x ;ξξξ ) =
1

2π
ln(|x − ξξξ |)

1
2
ϕ(ξξξ , t) = PV

∮
C
[ϕ(x , t)∂nG(x ;ξξξ ) − ∂nϕ(x , t)G(x ;ξξξ )]dx , ξξξ ∈ C

Where “PV” means that the integral should be evaluated as a principal value
integral. This integral identity shows the connection between any points ξξξ
on the boundary to the rest of the boundary. The principal value integral is
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needed to integrate over the Green’s function since ξξξ ∈ C which means that
at some point G(ξξξ ;ξξξ ) must be evaluated which is undefined since G(ξξξ ;ξξξ ) =
1

2π ln(0).

As illustrated in figure 1.1 the pathC is divided into four parts. Let ϕ evaluated
at Ci be written as ϕ j := ϕ |Cj and similarly let (xi , zi ) := (x , z)|Ci . The path
C is parametrized using a parameter s ∈ [0, 1]. Note that parts of C is time
dependent and is therefore denoted byCi = Ci (s, t). Thus ϕ j (ξξξ , t) can be found
evaluating

1
2
ϕ j (ξξξ , t) =

3∑
i=0

∫
I
[ϕi (xi (s, t), zi (s, t), t)∂nG(xi (s, t), zi (s, t);ξξξ ) (3.3)

−∂nϕi (xi (s, t), zi (s, t), t)G(xi (s, t), zi (s, t);ξξξ )] |∂sCi (s, t)|ds

where I is the interval s is integrated over and a principal value integral must
be used when i = j. This equation can be simplified by noting that since x is a
function of s then ϕi is simply a function of s. The same is also true about G.
The two components of ξξξ will also vary only on the parametrization variable,
but will generally be a different value than s and will be called s ′. Equation
(3.3) can therefore be written as

1
2
ϕ j (s

′, t) = (3.4)

3∑
i=0

∫
I
[ϕi (s, t)∂nGi (s; s ′) − ∂nϕi (s, t)Gi (s; s ′)] |∂sCi (s, t)|ds

where Gi (s; s ′) = G(xi (s, t), zi (s, t);ξξξ ). Equation (3.4) shows a connection
between the points of ϕ and ∂nϕ on C, however the equation does not give
a solution to ϕ on C since ϕ also appear inside the integral. An approximate
solution can be found, however, by discretizing the integral.

3.2 Discretization
To get a solution for ϕ the integral is discretized. Let I be divided into Ni
equally spaced intervals denoted I l , where l ∈ [0,Ni − 1]. Equation (3.3) can
then be written as
1
2
ϕ j (s

′, t) =

3∑
i=0

Ni−1∑
l=0

∫
I l
[ϕi (s, t)∂nGi (s; s ′) − ∂nϕi (s, t)Gi (s; s ′)] |∂sCi (s, t)|ds
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Figure 3.1: Shows the partitions of I and the mid points.

Let ml be the midpoint of the interval I l as shown in figure 3.1. Given suffi-
ciently large Ni it is assumed that ϕi will wary little such that the integral
can be approximated using the midpoint rule. The considered values of ϕ is
therefore those evaluated at the midpoint. Discrete points of ϕ j can therefore
be approximated as

1
2
ϕ j

(
mk , t

)
≈ (3.5)

3∑
i=0

Ni−1∑
l=0

(
ϕi

(
ml , t

) ∫
I l
∂nGi

(
s;mk

) ���∂sCl
i (s, t)

���ds
− ∂nϕi

(
ml , t

) ∫
I l
Gi

(
s;mk

) ���∂sCl
i (s, t)

���ds)
Note that the principal value integral is now only needed when i = j and l = k.
To shorten the notation the following definitions are made

Alk
i j :=

∫
I l
∂nGi

(
s;mk

) ���∂sCl
i (s, t)

���ds
Blki j :=

∫
I l
Gi

(
s;mk

) ���∂sCl
i (s, t)

���ds
Equation (3.5) can then be written as

1
2
ϕ j

(
mk , t

)
=

3∑
i=0

Ni−1∑
l=0

(
Alk
i j ϕi

(
ml , t

)
− Blki j ∂nϕi

(
ml , t

))
(3.6)

This can now be considered a linear system of equations with respect to the
discrete values of ϕ and ∂nϕ. Observe that the system has N0 + N1 + N2 + N3
equations with 2(N0 + N1 + N2 + N3) variables. Thus, to get a unique solution
it is then required to supply enough boundary conditions which in particular
means that enough values of ϕ and ∂nϕ must be known before attempting to
solve (3.6). One should keep in the back of the mind that the ultimate goal
of solving this system is to find values for ∂nϕ0 so that a solution to (3.1)
can be found. It should therefore be noted that when equation (3.1) is solved
numerically system (3.6) must be solved at every discrete time step.
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3.3 Parametrization ofC
It is at this point appropriate to infrom how Ci = (xi , zi ) is parametrized
specifically. The boundary integral will be performed counter clockwise starting
at the upper right corner of the domain. All the parametrizations uses the
parameter s ∈ [0, 1] and are therefore parametrized as

xi (s, t) =


L(1 − s) , i = 0
0 , i = 1
Ls , i = 2
L , i = 3

zi (s, t) =


η(x0(s, t), t) , i = 0
η(0, t)(1 − s) − sh(0) , i = 1
−h(x2(s, t)) , i = 2
−h(L)(1 − s) + sη(L, t) , i = 3

3.4 Boundary conditions for the linear system
The boundary conditions for each region of C will now be decided such that
enough values of ϕ and ∂nϕ is know to solve system (3.6).

3.4.1 C0

When calculating a new time step ϕ0 is known from the previous calculation.
While, as mentioned, ∂nϕ0 is unknown.

3.4.2 C1

Since n = (−1, 0) on the left hand side it implies that ∂nϕ1 = −ϕx . Since ϕx
is the horizontal component of the fluid velocity ∂nϕ1 will be set as known
such that the incoming fluid velocity can be decided. ϕ1 will be set as un-
known.

3.4.3 C2

In section 2.2.3 it is stated that, at the bottom,v ·n = 0. Using thatv = ∇ϕ and
the definition of the normal derivative it is equivalent to the bottom boundary
condition to say that ∂nϕ2 = 0. Thus ∂nϕ2 is known. No data for ϕ2 is set, thus
it is unknown.
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3.4.4 C3

So far 3 of the 8 boundary values are known, which means that one more
boundary valuemust be known. To solve this issue the boundary value ∂nϕ3 = 0
is set. Physically this means that there is a wall on the right hand side of the
channel which will reflect all incoming waves. There is a slight problem with
this approach, namely that when the reflected wave reach the left hand side of
the channel it might be inconsistent with the boundary condition at the left side.
This problem can be avoided if the simulation stops before this happens. This
implies that the channel has to be very long to observe interesting phenomenon
before the reflected wave interfere. With the known boundary conditions out
of the way ϕ3 is set to be unknown.

3.5 Formulation of the linear system
Let ϕϕϕ j be a vector whose components are the the discrete values of ϕ j , that is
ϕϕϕ j :=

(
ϕ j

(
m0) ,ϕ j (m1) , · · · ,ϕ j (mNi−1) ) . Similarly let ∂nϕϕϕ j be a vector with

the discrete values of ∂nϕ j . Now let ΦΦΦ be the stacked vector of the unknown
values, that is

ΦΦΦ = (∂nϕϕϕ0,ϕϕϕ1,ϕϕϕ2,ϕϕϕ3)

and similarly

ΦΦΦ∗ = (ϕϕϕ0, ∂nϕϕϕ1, ∂nϕϕϕ2, ∂nϕϕϕ3)

is the stacked vector of known values. To make sure the system has a unique
solution there must be as many equations as there are unknowns. The number
of equations are still N0 + N1 + N2 + N3 and the number of unknowns are
N0 + N1 + N2 + N3. This means that the number of discrete points on each
section ofC can be chosen freely. The goal is now to set up a system on the form
Mv = b where v represents the unknown values. Choosing specific values
for i and j the values Alk

i j and Blki j can be considered components of Nj × Ni
matrices. In Appendix B a system on the form Mv = b is found to be


B00 −A10 −A20 −A30

B01
1
2 I11 − A11 −A21 −A31

B02 −A12
1
2 I22 − A22 −A32

B03 −A13 −A23
1
2 I33 − A33


ΦΦΦ =


− 1

2 I00 + A00 −B10 −B20 −B30

A01 −B11 −B21 −B31

A02 −B12 −B22 −B32

A03 −B13 −B23 −B33


ΦΦΦ∗ (3.7)

where Ij j is the Nj ×Nj identity matrix. Note that the elements of B2j and B3j
can be set to zero since ∂nϕ2 and ∂nϕ3 are always zero, however in testing
scenarios they will remain non-zero. Solving system (3.7) now yields the
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required values for ∂nϕ0 and we are one step closer to be able to calculate ϕx
and ϕz at the surface.

To solve system (3.7) the values of Alk
i j and Blki j must be calculated. It is again

reminded that this has to be done every discrete time step. One could somewhat
naively compute the integral for every combination of i, j, l and k however
in a realistic setting this operation would be very computationally intensive.
For this very reason most of the matrix elements is approximated using the
midpoint rule. In cases where x

(
ml ) are “close” to x (

mk ) the midpoint rule is
assumed to be a bad approximation for the integral since the Green’s function
is close to its singularity, thus in these cases a Gaussian quadrature numerical
integral is used. When i = j and l = k analytical expression for the integrals
are found. In chapter 4 these methods are explained in more detail.

3.6 Solving the surface wave equations
Given the solution of system (3.7) the discrete values of ∂nϕ0(s) are now known.
In addition the discrete values of ϕ0(s) and η(s) are known from the last time
step. Values for ηx , ϕx and ϕz must now be derived using these known values.
In the cases where d

ds f , where f = f (s) is any function of s, needs to be
evaluated numerically polynomial interpolation using neighboring points will
used to approximate d

ds f .

3.6.1 Calculating ηx
Since the discrete values of η(s) are known one can numerically calculate
d
dsη(s). By the chain rule it can also be determined that d

dsη(x) = ηx (x)x
′
0(s)

thus

ηx (x) =
1

x ′0(s)

d

ds
η(x)

3.6.2 Calculating ϕx and ϕz
Given the parametrization of C using the parameter s the unit tangential and
normal vector can be written as

t(s) =
(x ′(s), z ′(s))√
(x ′(s))2 + (z ′(s))2

n(s) =
(z ′(s),−x ′(s))√
(x ′(s))2 + (z ′(s))2
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Using the definition of the tangential and normal derivatives this gives the
relation

γ ∂tϕ(s) = ϕx (x , z)x
′(s) + ϕz(x , z)z

′(s) (3.8)
γ ∂nϕ(s) = ϕx (x , z)z

′(s) − ϕz(x , z)x
′(s) (3.9)

where γ :=
√
(x ′(s))2 + (z ′(s))2. In addition note that d

dsϕ(s) = ϕx (x , z)x
′(s)+

ϕz(x , z)z
′(s), which means that d

dsϕ(s) = γ ∂tϕ(s). Using equations (3.8) and
(3.9) the values for ϕx and ϕz can then be determined by

ϕx (x , z) =
z ′(s)γ ∂nϕ(s) + x

′(s)∂sϕ(s)

γ 2

ϕz(x , z) =
−x ′(s)γ ∂nϕ(s) + z

′(s)∂sϕ(s)

γ 2

using the values of ∂nϕ0(s) and by numerically calculating ∂sϕ0(s) from the
discrete values of ϕ0(s).

3.6.3 Calculating the fluid velocity field
The main focus of this thesis is the computation of surface waves. However, a
small note should be done on the fluid velocity field inside the domain defined
by the surface, edges and bottom. From the definition of potential flow it is
known that the velocity components of the fluid velocity v is given by

v = (ϕx ,ϕz)

It is therefore possible to calculate the fluid velocity inside the domain if
ϕ(x , z, t) is known inside the domain. There are several ways to compute the
solution to ϕ using the boundary data, however we will stick to the boundary
integral approach and use an integral identity to compute ϕ inside the domain.
In Appendix A.2 an integral identity is found connecting points at boundary to
points inside the domain. The integral identity is found to be

ϕ(ξξξ ) =

∮
C
(ϕ(x)∂nG(x ;ξξξ ) − G(x ;ξξξ )∂nϕ(x))dx

Since ϕ and ∂nϕ is known at the boundary the value of ϕ(ξξξ ) can be found for
any point ξξξ inside the boundary by computing the above line integral. The
partial derivatives of ϕ can then be found using a finite difference formula on
the points inside the domain. The exact details of choices made in regards to
discretization and normalization of the velocity field is explained in chapter
6



4
Calculation of the Aij and
Bij matrix elements
The matrix elements are given by

Alk
i j :=

∫
I l
∂nGi

(
s;mk

) ���∂sCl
i (s, t)

���ds
Blki j :=

∫
I l
Gi

(
s;mk

) ���∂sCl
i (s, t)

���ds
Since η(x0(s), t) and in turn G0(s;mk ) and ∂nG0(s;mk ) change with time the
matrix has to be generated again every discrete time step. To reduce run-time
a numerical integral will not be used for every element. Instead most elements
should be approximated using the mid-point rule. This is assumed to be a good
approximation since the Green’s function is assumed to vary little over I l , given
that there are enough discrete points in space. However, since the Green’s
function has a singularity the it will not vary little around this singularity.
Therefore numerical integration will be used close to this singularity. At the
singularity approximate analytical formulas will be derived.

Let ρ be a set threshold distance and letml
i be the point (xi (s), zi (s)) evaluated

on the midpoint of Il , that is ml
i =

(
xi

(
ml ) , zi (

ml ) ) . When
���ml

i −m
k
j

��� ≤ ρ

the pointsml
i andm

k
j are said to be close. The three methods for computing

the matrix elements will now be determined by the cases
���ml

i −m
k
j

��� > ρ,

17
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i −m

k
j

��� ≤ ρ and
���ml

i −m
k
j

��� = ρ. The exact value for ρ will be decided
based on how accurate the solution is and how much ρ has an effect on
runtime. Higher order approximations for the integral could also be used, but
it was determined that the first order approximations was satisfactory (section
5.1.1).

4.1 ���ml
i −m

k
j

��� > ρ
In these cases the integral is approximated using the mid point rule, that
is

Alk
i j ≈ ∂nG(m

l
i ;m

k
j )|∂sC(m

l
i , t)|L̂

(
I li

)
Blki j ≈ G(m

l
i ;m

k
j )|∂sC(m

l
i , t)|L̂

(
I li

)
where L̂

(
I l
)
is the length of the line I l . The length of each small interval L̂

(
I li
)

is simply given by

L̂
(
I li

)
=

1
Ni

since s ∈ [0, 1].

4.2 ���ml
i −m

k
j

��� ≤ ρ
For these matrix elements the Gaussian quadrature method is used to evaluate
the integrals. A slight approximation is still be used though, namely that
everything that is not singular when ml

i = mk
j is taken out of the integral

and evaluated using the midpoint rule. Note that when evaluating the matrix
coefficients at the surface only discrete values of z0 = η is known. When
evaluating Alk

00 and Blk00 the pointsml−1
0 ,ml

0 andml+1
0 are used for polynomial

interpolation of degree 2 as an approximation for η. When the polynomial
expression is found the derivative with respect to s can easily be calculated
so that all necessary expressions are known such that the integral over I l can
be performed. Observe that for the integral over I0 and INi−1 the pointsml−1

0
and ml+1

0 are not defined. In these cases the points ml
0,m

l+1
0 and ml+2

0 for
l = 0 andml−2

0 ,ml−1
0 andml

0 for l = N0 − 1 are used instead. This causes a
small extrapolation of the interpolated polynomials but it is assumed that with
sufficiently large N0 this will not pose a problem. This is the case for all the
cases where polynomial interpolation is used is this paper.



4.3 = ρ 19

4.3 ���ml
i −m

k
j

��� = 0

These matrix elements are calculated by simplifying the principal value in-
tegral. Again, all that is not singular will be taken outside the integral and
be approximated using the midpoint rule. The Idea now is to express the x
and z as polynomials of degree 2 with coefficients given by the polynomial
interpolation using Newton’s divided difference. Then, try to find simplified
analytical solutions to the integral over the Green’s function.

4.3.1 Bkkjj

Bkkj j is evaluated as

Bkkj j =
1

2π
PV

∫ pk+1

pk−1
ln

(���(x j (s, t), zj (s, t)) −mk
j

���) |∂sC(s, t)|ds
where pk+1 and pk−1 represents the end and start point of the interval Ik

respectively. Since the following computations are time independent and in-
dependent of which part of C that are discussed the variable t and subscripts
i and j are omitted. To make this integral possible and easier to evaluate
analytically several simplifications are made. Firstly a change of variable is
made. Remember thatmk is the mid point in the interval Ik . A new variable u
is defined by

s =mk + ϵu, u ∈ [−1, 1]

Note that since s ∈ [0, 1] the following expressions holds:mk = ∆s(k+ 1
2 ),∆s =

1
N . ϵ is chosen such thatmk + ϵ = pk+1 andmk − ϵ = pk . In general x(s) and
z(s) are arbitrary functions of s, but η(x(s)) and h(x(s)) will be approximated
using polynomial interpolation of degree 2 in s and since x is parametrized as
a polynomial of maximum degree 1 they can be written using the change of
variables as

x = α0 + α1ϵu

z = β0 + β1ϵu + β2ϵ
2u2

where the polynomial coefficients depends on the parametrization. Since xi (s)
is always a polynomial of degree 1 it has the general form

x(s) = a0 + a1s

=⇒ x(u) = a0 + a1(m + ϵu)

=⇒

{
α0 = a0 + a1m

α1 = a1
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Here a0 and a1 can be taken directly from the parametrization described in 3.3.
z(s) is in general a polynomial of degree 2 which is expressed by polynomial
interpolation using newton divided difference, thus it is written as

z(s) = b0 + b1(s − (m
k − ∆s)) + b2(s − (m

k − ∆s))(s −mk )

=⇒ z(u) = b0 + b1(ϵu + ∆s) + b2(ϵu + ∆s)(ϵu)

=⇒


β0 = b0 + b1∆s

β1 = b1 + b2∆s

β2 = b2

As in section 4.2; since C(s) is not singular it is assumed to vary little over the
domain of integration and therefore approximated using the midpoint rule.
Using that ln

(√
f (x)

)
= 1

2 ln(f (x)) and the change of variables the integral
becomes

Bkkj j =
1

4π
|∂sC(m

k )|PV

∫ 1

−1
ln

(
(α0 + α1ϵu − τ

k )2 + (β0 + β1ϵu + β2ϵ
2u2 − ζ k )2

)
ϵdu

where mk := (τ k , ζ k ). Note that the polynomial coefficients are dependent
on k. Given sufficiently many discrete points ϵ is assumed small enough to
disregard terms of higher order of ϵ . Since the integral are known to be singular
at u = 0 the coefficients α0 = τ

k and β0 = ζ
k . Multiplying out the parenthesis

it was found that the leading order of epsilon inside the Green’s function is ϵ2.
Disregarding terms of O(ϵ3) the integral becomes

Bkkj j =
1

4π
|∂sC(m

k )|ϵPV

∫ 1

−1
ln

( [
(α1)

2 + (β1)
2] ϵ2u2) du

Evaluating the integral gives

Bkkj j =
1

4π
|∂sC(m

l )|ϵ
[
−2u + u ln

( [
(α1)

2 + (β1)
2] ϵ2u2) ]1

−1

4.3.2 Akk
jj

Akk
j j is evaluated as

Akk
j j =

1
2π

PV

∫ pk+1
j

pkj

∂n ln
(���(x j (s, t), zj (s, t)) −mk

j

���) |∂sC(s)|ds
Using the definition of the normal derivative with the unit normal vector given
in section 3.6 gives that

∂nG(x j (s), zj (s);mk
j ) =

1
2π

(x j − τ
k
j )z
′
j − (zj − ζ

k
j )x
′
j(

(x j − τ
k
j )

2 + (zj − ζ
k
j )

2
) √

x ′2 + z ′2
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As before everything that is not singular are taken out of the integral and
evaluated with the mid point rule. Note that (x − τ k )z ′ − (z − ζ k )x ′ evaluated
at the mid point is zero, thus leading to

Akk
j j = 0

if one disregard terms of O(ϵ3), therefore it was decided that the leading order
of ϵ should be used. Doing the same process as for Bkkj j , but keeping terms of
O(ϵ3) it was found that Akk

j j should be evaluated as

Akk
j j =

1
2π
|∂sC(m

k )|ϵ

∫ 1

−1

α1β2

α2
1 + β

2
1
du

=
1
π
|∂sC(m

k )|ϵ
α1β2

α2
1 + β

2
1





5
Verification of the model
To verify that the boundary integral is implemented correctly, and that it gives
the right solution two tests will now be made. These tests are a direct test
of the solution to the linear system given in (3.7) and a comparison to an
eigenfunction expansion. For the comparison to the eigenfunction expansion
the model needs to be linearized.

5.1 Verification of the linear system provided by
the boundary integral equation

To verify that solving system (3.7) gives the right solution to the Laplace
equation on C it can be tested against a case where the solution is known. To
find a function that satisfy the Laplace equation consider a complex function
f : C → C. If f is holomorphic on a open interval Ω then its real part
<{ f } (and imaginary part ={ f }) will satisfy the Laplace equation[6]. There
are many such functions, however it is preferable to choose one that might
represent the the dynamic in the x - and z-direction. A function that is assumed
to replicate the dynamic somewhat is a functions that is periodic in the x -
direction and hyperbolic in the z-direction. To get a solution ϕ that satisfy

23
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these conditions consider the the complex function

f (ζ ) = cos(ζ )

=
eiζ + e−iζ

2
Writing ζ as ζ = x + iz where x , z ∈ R the function can be written as

f (x + iz) =
1
2

(
eixe−z + e−ixez

)
=

1
2
[(cos(x) + i sin(x))e−z + (cos(x) − i sin(x))ez]

Choosing ϕ(x , z) = <{ f (x + iz)} gives

ϕ(x , z) = cos(x) (e−z + ez)
= 2 cos(x) cosh(z)

Observe thatϕ(x , z) is not guarantied to satisfy the boundary conditions ∂nϕ2 =

0 and ∂nϕ3 = 0, however this is not a problem since the test function only has
the purpose to check if the linear system gives the right solution given some
boundary conditions, hence this is the reason why the matrix elements B2j and
B3j are not set to zero.

When choosing ϕ the value of both the stacked vectorsΦΦΦ andΦΦΦ∗ will be known.
By choosing h(x) and η(x) the matrices can be generated and the system can
be solved. When the system is solved an approximated value for ΦΦΦ, called Φ̂ΦΦ,
can be compared to the real solution. Let ΦΦΦi and Φ̂ΦΦi be the component of the
stacked vector. The mean difference (MD) defined as

MD :=
1

N − 1

N−1∑
i=0

��ΦΦΦi − Φ̂ΦΦi
��

is then used to determine the accuracy of the approximate solution where N
is the total number of elements in the stacked vectors.

5.1.1 Result of linear system verification
Mainly two cases was done to check if the BIEs gave the right solution to the
Laplace equation on C. The parameters used in these two runs are listed in
table 5.1 with the function h for the second case chosen as

h2(x) =



H , x < 10.6
−0.2625(x − 10.6) + H , 10.6 ≤x < 12.2

0.11, 12.2 ≤x < 13.8
0.2625(x − 15.4) + H , 13.8 ≤x < 15.4

H , x ≥ 15.4
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Table 5.1: Parameters for the two main tests performed to verify that linear system
gives the right solution.

Parameter L H η(x) h(x)

Case 1 30 1 0.1 sin
(
x

(
1 + e−4(x−10)2

)
+ 1

)
H − 0.25e−0.2(x−10)2

Case 2 30 0.53 0.1 sin
(
x

(
1 + e−4(x−10)2

)
+ 1

)
See h2(x)

Both cases are illustrated in figure 5.1. The particular choice of surface profile

Figure 5.1: Shows the functions η(x) and −h(x) for the first and second case respec-
tively. Note that the axis are not entirely to scale.

was made to represent both high and low frequencies and the wave amplitude
expected. It is also very important that the surface profile doesn’t overlap with
the bottom profile since these cases are not handled by the model. This is also
a good opportunity to test for which ρ the approximations described in chapter
4 are satisfactory.

The two solutions for case 2 with N0 = N2 = 2000, N1 = N3 = 65 and ρ = ∞
is plotted in figure 5.2. From the results seen in table 5.2 it is clear that case 2
need higher resolution in space and a higher value for the threshold ρ. This is
reasonable since the distance from the surface to the bottom is smaller in case 2
which means that there are more cases where the distance between two points
are close to ρ. It is also expected that the sharp edges on the bottom profile
should effect the numerical result. Since ρ can be chosen quite small (ρ = 2)
without effecting the result to much (MD < 10−3) given enough discrete points
it was decided that higher order approximation for the matrix elements was
not necessary. The time required to construct and solve the matrix was also
measured. It was observed that for case 2 with N0 = N2 = 2000,N1 = N3 = 65
and ρ = ∞ the runtime for constructing and solving the systemwasT = 8.548s.
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Table 5.2: Results for the two main tests performed to verify that linear system gives
the right solution. Here ρ = ∞ practically means that Gaussian integration
is used for every element except for the singularities. The difference in the
number of discrete points along the x - and z-axis is chosen such there are
about the same number of discrete points per meter.

N0 N1 N2 N3 ρ MD

Case 1

100 5 100 5 ∞ / 1.5 / 0.5 / 0.1 6.7 × 10−3 / 6.3 × 10−3 / 9.8 × 10−3 / 1.8 × 10−2

300 10 300 10 ∞ / 1.5 / 0.5 / 0.1 8.9 × 10−4 / 8.4 × 10−4 / 1.2 × 10−3 / 2.5 × 10−3

800 25 800 25 ∞ / 10 / 2 / 0.5 1.7 × 10−4 / 1.7 × 10−4 / 1.6 × 10−4 / 2.2 × 10−4

2000 65 2000 65 ∞ / 10 / 2 / 0.5 4.2 × 10−5 / 4.2 × 10−5 / 4.2 × 10−5 / 5.0 × 10−5

Case 2

100 5 100 5 ∞ / 1.5 / 0.5 / 0.1 8.6 × 10−3 / 9.8 × 10−3 / 1.4 × 10−2 / 2.2 × 10−2

300 10 300 10 ∞ / 1.5 / 0.5 / 0.1 1.9 × 10−3 / 1.9 × 10−3 / 2.2 × 10−3 / 2.8 × 10−3

800 25 800 25 ∞ / 15 / 10 / 2 / 0.5 5.7 × 10−4 / 5.8 × 10−4 / 6.2 × 10−4 / 8.1 × 10−4 / 1.3 × 10−3

2000 65 2000 65 ∞ / 15 / 10 / 2 / 0.5 2.0 × 10−4 / 2.1 × 10−4 / 2.4 × 10−4 / 3.2 × 10−4 / 5.2 × 10−4

Given 200001 discrete points in time this will approximately equate to 48 hours
for the whole solution process. Going to ρ = 2 the runtime for constructing and
solving was lowered to T = 7.417s which equate to approximately 41.2 hours
which was considered a significant improvement in runtime. Further, going to
ρ = 0.5 reduced to runtimeT = 7.394s→ 41.1 hours and was not considered
significant improvement in runtime such that improving the accuracy with
higher order approximations was again not considered necessary.

An important note is that the MD does not represent the error perfectly. The
parametrized curve C has some sharp edges where the tangent of the curve
is not well defined, such as the corners of the domain and in case 2 the
bottom profile. Since the BIEs relies on the derivative along the curve it
should be expected that the solution to the Laplace equation close to these
points has higher error than the rest of C. This is illustrated for case 2 with
N0 = N2 = 2000, N1 = N3 = 65 and ρ = ∞ in figure 5.3 where the peaks in
the difference is the points in the arrays that corresponds to points on C that
are close to the sharp edged. Note that the four peaks at around i = 1000 is the
part of the surface that is directly above the sharp edges on the bottom and it is
clear that the solution at these points are also effected. Furthermore, in figure
5.4 it is clear that the error stays around 2.5× 10−5 most of the time except for
close to the sharp edges which means that the method is more accurate than
the MD suggests at the points whereC is not sharp. These results suggest that
the implementation of the BIEs give an mostly accurate solution to the Laplace
equation onC, but looses accuracy on points onC that are close to non-smooth
points.

The fact that the difference in the numerical solution and analytical solution
is almost as high as 5 × 10−2 around non-smooth parts of C can be seen as a
weakness in the model. If this model were to be improved one could investigate

1. The number of discrete points in time is an educated guess. This guess is somewhat based
on the discussion in chapter 8
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Figure 5.2: Shows the analytical and numerical solution to the Laplace equation on
C plotted together.

the possibility of using a finite difference rule similar to Jenssen in [7] to find
a value for d

dsC(s). In his thesis, Jenssen uses these finite difference rules to
find a value for the derivate at sharp points on a complex contour. However,
these difference rules require a grid point on the sharp point. In the current
implementation of the BIEs the grid points are on the mid points of intervals
such that the grid points will never be on the corners of C. In addition, since
the discrete points on C are not chosen directly but instead decided by the
parametrization parameter s it is difficult to ensure that discrete points of x
and z is on the sharp points on C. Further, Jenssen uses these finite difference
rules to implement the “perfectly matched layer” to avoid reflections at the
edges of his boundary. Using this method together with the boundary integral
method one could avoid the reflection caused by the boundary condition on
the right hand side. It is important to note that to combine the themes in
this thesis and the perfectly matched layer one would have to reformulate the
descriptions of the discretization.
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Figure 5.3: Shows the difference between the analytical solution and the numerical
solution for the Laplace equation on C.

5.2 Linearization
To make sure that the boundary integral method gives the correct solution
it should be compared to another solution method. If the boundary integral
method is linearlized it can be compared to a solution foundusing eigenfunction
expansion. Another benefit of linearization is that if there are any instabilities
in the linear scheme it suggest that the linear terms themselves is a cause of
instabilities.

5.2.1 Linearization of the surface waves equations
The surface wave equations derived earlier are

ηt = ϕz − ηxϕx , z = η

ϕt = −
1
2

(
ϕ2
x + ϕ

2
z
)
− дη, z = η
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Figure 5.4: Shows the zoomed in difference between the analytical solution and the
numerical solution for the Laplace equation on C.

These equations will be linearized by assuming that the functions are small
perturbation to a constant mean quantity, that is

η := η̄ + η′

ϕ := ϕ̄ + ϕ ′

where bar over the variables signify the mean constant value and the prime
signify the small perturbation. Plugging these definition into the non-linear
system gives

η′t = ϕ
′
z − η

′
xϕ
′
x , z = η̄ + η′

ϕ ′t = −
1
2

(
ϕ ′2x + ϕ

′2
z
)
− д(η̄ + η′), z = η̄ + η′

The small perturbations is now assumed to be small enough that their products
are negligible, and since the water surface starts at rest at z = 0 it make sense
to set η̄ = 0. The primes are now longer necessary and the linearized equations
are now written as

ηt = ϕz , z = 0
ϕt = −дη, z = 0

Note that the linear system are evaluated at z = 0. This is because ϕ in general
depends on z in a non-linear way. This can be seen for example with the Taylor
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expansion of ϕz in z around the mean value z = η̄ = 0

ϕz(x , z, t) = ϕz(x , 0, t) + ϕzz(x , 0, t)η + O(η2)

It is now clear that all but the first term is a product of small quantities and
can be disregarded. In this linear case the bottom profile will be assumed flat,
that is the value for z at the bottom will be given by

z2 = −H

where H is a constant.

5.2.2 Linearization of the boundary integral method
Since ϕ and its partial derivatives now should be evaluated at z0 = 0 and
z2 = −H the boundary integral is now performed around a rectangle with
width L and height H . This also means that the computation of the matrix
elements of the system derived in sections 3.5 only needs to be done once.
This is because the only thing that changes in these computation through
the numerical integration process is where the Green’s function should be
evaluated and that does not change since the evaluation of z0 are no longer
dependent on time. This also has the effect of speeding up the computation
process.

5.3 Eigenfunction expansion
The method of eigenfunction expansion works by expressing the solution of a
initial boundary value problem as a series of eigenfunctions. The coefficients in
this series will be determined by from the differential equation (DE), boundary
conditions and initial conditions by plugging the series into the PDE.

To use eigenfunction expansion methods the linear problem needs to be refor-
mulated as an initial boundary value problem for the Laplace equation. The
initial conditions will simply be ϕ(x , z, 0) = η(x , 0) = 0. The task is then to
reformulate the boundary conditions.

5.3.1 Surface boundary condition
The linear system of equations for the surface profile will now be transformed
into a boundary condition at z = 0. The equations where derived in section



5.3 eigenfunction expansion 31

5.2.1 and were found to be {
ηt = ϕz
ϕt = −дη

, z = 0

One equation can eliminated by differentiating the second equation with
respect to time and plugging into the first one giving

ϕt t = −дϕz

=⇒ ϕt t + дϕz = 0, z = 0

which concludes the boundary condition at the surface.

5.3.2 Bottom boundary condition
The boundary condition on the bottom was given in section 3.4 and is given
as

∇ϕ · n = 0, z = −h(x)

Let F : R2 → R be defined as

F (x , z) = z + h(x)

It is clear that for if F (x , z) = 0 it implies that z = −h(x). Since z = −h(x) is a
contour line of F it implies that ∇F is normal to z = −h(x). Since ∇F = (hx , 1)
is invariant in z the gradient of F will always be normal to the bottom. Therefore
the unit normal on the bottom can be written as

n =
∇F

|∇F |

=
(hx , 1)√
h2
x + 1

The boundary condition on the bottom can then be written as

(ϕx ,ϕz) ·
(hx , 1)√
h2
x + 1

= 0

=⇒ ϕxhx + ϕz = 0

For simplicity the bottom will be assumes flat, thus

ϕz = 0, z = −H
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5.3.3 Edge boundary conditions
On the right hand side of the domain it will be assumed that all the incoming
water will be reflected. This means that no water can penetrate the boundary,
thus

ϕx = 0, x = L

On the left hand side there will be a wave pulse that is invariant in the
z-direction, thus

ϕx = f (t), x = 0

where f (t) is the incoming wave pulse. Note that ϕx is the x -component of
the velocity, thus the function f describes the incoming fluid velocity from the
left-hand side.

5.3.4 Solution to the initial boundary value problem
The final linear system is described by the Laplace equation on a rectangle with
the boundary conditions described above. To summarize, the linear system
is

∇2ϕ = 0
ϕ = 0, t = 0
η = 0, t = 0

ϕt t + дϕz = 0, z = 0
ϕz = 0, z = −H

ϕx = 0, x = L

ϕx = f (t), x = 0

This is a linear PDE with an inhomogeneous boundary condition. The idea is
to do an eigenvalue expansion in x and solve for the coefficients. However, the
inhomogeneous boundary condition at x = 0 must first be made homogeneous.
This is done by transforming ϕ into an inhomogeneous PDE with homogeneous
boundary conditions in x . To find such transformation a simple function is
found that satisfy the boundary condition at x = 0 and x = L. A simple such
function is

ϕbd =

(
x −

1
2L

x2
)
f (t)

The following definition is now made

u(x , z, t) = ϕ(x , z, t) − ϕbd (x , z, t)
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The transformed problem then becomes

∇2u =
1
L
f (t) (5.1)

u = 0, t = 0

ut t + дuz = −

(
x −

1
2L

x2
)
f ′′(t), z = 0

uz = 0, z = −H

ux = 0, x = L

ux = 0, x = 0

By solving this problem a solution forϕ can be determined byϕ = u+ϕbd .

To solve the initial boundary value problem the solution u(x , z, t) is expressed
as an eigenvalue expansion

u(x , z, t) =
∞∑
k=0

Nk (z, t)Mk (x)

whereMk are the eigenfunctions and Nk are the z and time dependent Fourier
coefficients. The eigenfunctions should be orthonormal with respect to the
inner product defined as

〈f (x),д(x)〉 =

∫ L

0
f (x)д(x)dx

That is; the eigenfunction should satisfy the equation

〈Mk ,Mk ′〉 = δkk ′

where δkk ′ is the Kronecker delta defined as

δkk ′ =

{
1 , k = k ′

0 , k , k ′

To find an expression for the coefficients Nk note that

〈u,Mk 〉 =

∫ L

0

∑
k ′
(Nk ′Mk ′)Mkdx

=
∑
k ′

Nk ′

∫ L

0
Mk ′Mkdx

=
∑
k ′

Nk ′〈Mk ′,Mk 〉

= Nk
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This also implies that for two eigenfunction expansion for the same function
the coefficients are equal since doing the same derivation withu =

∑
k ′ N

′
k ′Mk ′

would result in N ′k = Nk .

Since the differential operator in this problem is ∇2 the eigenfunctions Mk
should satisfy the eigenfunction equation

d2

dx2Mk (x) = −λ
2
kMk (x)

where −λ2
k are the eigenvalues for the operator d2

dx2 . Solving the eigenfunction
equation gives

Mk (x) = C1 cos(λkx) +C2 sin(λkx)

Having that d
dxMk (x) = −λkC1 sin(λkx) + λkC2 cos(λkx) gives the following

system of equation for the boundary conditions at x = 0 and x = L[
0 λk

−λk sin(λkL) λk cos(λkL)

] [
C1
C2

]
=

[
0
0

]
For non trivial solutions to C1 andC2 it must be required that the determinant
of the coefficient matrix must be zero, thus

λ2
k sin(λkL) = 0

=⇒ λk =
kπ

L
, n = 0, 1, 2, . . .

It is then clear that for the above system to be consistent it must be required
that C2 = 0. The basis eigenfunctions is therefore

Mk,basis(x) = cos(λkx), k = 0, 1, 2, . . .

The normalization constant, Cn , can now be found using

〈Mk ,Mk 〉 = 1

=⇒ C2
n

∫ L

0
M2

k (x)dx = 1

=⇒ C2
n

∫ L

0
cos2(λkx)dx = 1

=⇒ C2
n
L(2πk + sin(2πk))

4πk
= 1

Notice that k , 0 and must be treated separately. Using that k = 1, 2, 3, . . .
the above equation reduces to

C2
n
L

2
= 1

=⇒ Cn =

√
2
L
, k = 1, 2, 3, . . .
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For k = 0 the normalization gives

〈M0,M0〉 = 1

=⇒ C2
n

∫ L

0
1dx = 1

=⇒ C2
nL = 1

=⇒ Cn =

√
1
L
, k = 0

This gives the orthonormal eigenfunctions

Mk (x) =


√

1
L , k = 0√
2
L cos(λkx), k = 1, 2, 3, . . .

Given the eigenfunctions and their normalization factors the expansion is now
written as

u(x , z, t) =

√
1
L
N0(z, t) +

∞∑
k=1

Nk (z, t)Mk (x)

This is now a Fourier-cosine series with z and time dependent coefficients.
Plugging this expansion into the inhomogeneous boundary value problem (5.1)
gives√

1
L
∂zzN0(z, t) +

∞∑
k=1

(∂zzNk (z, t)Mk (x) + Nk (z, t)∂xxMk (x)) =
1
L
f (t)

By the eigenfunction equation defining Mk this can be written as√
1
L
∂zzN0(z, t) +

∞∑
k=1

(
∂zzNk (z, t) − λ

2
kNk (z, t)

)
Mk (x) =

1
L
f (t)

Since there is an eigenfunction expansion on the left the right hand side can
also be written as an eigenfunction expansion. That is, the right hand side can
be written as

1
L
f (t) = b0(t)M0 +

∞∑
k=1

bk (t)Mk

where bk (t) must be the Fourier-cosine coefficients of the function 1
L f (t). The

coefficients can therefore be written as

bk (t) =
1
L
f (t)

∫ L

0
Mkdx , k = 1, 2, 3, . . .

=⇒ bk (t) =
1
L
f (t)

√
2
L

∫ L

0
cos

(
kπ

L
x

)
dx

=⇒ bk (t) = 0, k = 1, 2, 3, . . .
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Since bk (t) = 0 for k = 1, 2, 3, . . . it implies then that b0(t)M0 =
1
L f (t).

Matching the coefficients for each k then gives√
1
L
∂zz N0(z, t) =

1
L
f (t)

∂zzNk (z, t) − λ
2
kNk (z, t) = 0, k = 1, 2, 3, . . .

These DEs can now be solved to determine the Fourier-coefficients Nk . For
k = 0 a trial solution

N0(z, t) = A(t)z2 + B(t)z +C(t)

is made. Plugging the trial solution into the DE gives√
1
L

2A(t) =
1
L
f (t)

=⇒ A(t) =
1

2
√
L
f (t)

For k , 0 the solution is

Nk (z, t) = D(t)eλkz + E(t)e−λkz , k = 1, 2, 3, . . .

The solution to u therefore becomes

u(x , z, t) =

√
1
L

(
1

2
√
L
f (t)z2 + B(t)z +C(t)

)
+

∞∑
k=1

(
Dk (t)e

λkz + Ek (t)e
−λkz

)
Mk (x)

The time dependent constants must now be found by matching the solution
with the boundary conditions. First the necessary derivatives must be computed.
These are

uz(x , z, t) =

√
1
L

(
1
√
L
f (t)z + B(t)

)
+

∞∑
k=1

λk

(
D(t)eλkz − E(t)e−λkz

)
Mk (x)

ut t (x , z, t) =

√
1
L

(
1

2
√
L
f ′′(t)z2 + B′′(t)z +C ′′(t)

)
+

∞∑
k=1

(
D ′′k (t)e

λkz + E ′′k (t)e
−λkz

)
Mk (x)
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Boundary condition: uz = 0, z = −H

Have that

uz(x ,−H , t) =

√
1
L

(
−

1
√
L
f (t)H + B(t)

)
+

∞∑
k=1

λk

(
D(t)e−λkH − E(t)eλkH

)
Mk (x) = 0

Since the first two terms does not depend on x the above expression im-
plies √

1
L

(
−

1
√
L
f (t)H + B(t)

)
= 0

=⇒ B(t) =
1
√
L
f (t)H

and that

Dk (t)e
−λkH − Ek (t)e

λkH = 0

=⇒ Ek (t) = e−2λkHDk (t)

Boundary condition: ut t + дuz = − (
x − 1

2Lx
2) f ′′(t), z = 0

√
1
L
C ′′(t) +

∞∑
k=1

(
1 + e−2λkH

)
D ′′k (t)Mk (x) + д

[√
1
L

(
H
√
L
f (t)

)
+

∞∑
k=1

λk

(
1 − e−2λkH

)
Dk (t)Mk (x)

]

= −

(
x −

1
2L

x2
)
f ′′(t)

=⇒

√
1
L

(
C ′′(t) + д

H
√
L
f (t)

)
+

∞∑
k=1

((
1 + e−2λkH

)
D ′′k (t) + дλk

(
1 − e−2λkH

)
Dk (t)

)
Mk (x)

= −

(
x −

1
2L

x2
)
f ′′(t)

The function on the right hand side can be expanded as an eigenfunction
expansion so that the Fourier coefficients can be matched. The function on the
right hand side will be expanded as

−

(
x −

1
2L

x2
)
f ′′(t) =

√
1
L
c0(t) +

∞∑
k=1

ck (t)Mk
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where the coefficients for k , 0 will be given by

ck (t) = −f
′′(t)

√
2
L

∫ L

0

(
x −

1
2L

x2
)

cos
(
kπ

L
x

)
dx

= f ′′(t)

√
2
L

L2

k2π 2

= f ′′(t)

√
2
L

1
λ2
k

and for k = 0

c0(t) = −f
′′(t)

√
1
L

∫ L

0

(
x −

1
2L

x2
)
dx

= −f ′′(t)

√
1
L

L2

3

= −f ′′(t)
L

3
2

3

The coefficients can now be matched to give for k = 0

C ′′(t) + д
H
√
L
f (t) = −f ′′(t)

L
3
2

3

=⇒ C ′′(t) = −д
H
√
L
f (t) −

L
3
2

3
f ′′(t)

and for k = 1, 2, 3, . . .

f ′′(t)

√
2
L

1
λ2
k

=
(
1 + e−2λkH

)
D ′′k (t) + дλk

(
1 − e−2λkH

)
Dk (t)

=⇒ D ′′k (t) = −дλk

(
1 − e−2λkH

)(
1 + e−2λkH

)Dk (t) +
1

1 + e−2λkH

√
2
L

1
λ2
k

f ′′(t)

Using the hyperbolic identity tanh(θ ) = 1−e−2θ

1+e−2θ this can finally be written
as

D ′′k (t) = −дλk tanh(λkH )Dk (t) +
1

1 + e−2λkH

√
2
L

1
λ2
k

f ′′(t)
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Final solution
The final solution for ϕ will finally be

ϕ(x , z, t) = u(x , z, t) + ϕbd (x , z, t)

=⇒ ϕ(x , z, t) =

(
x −

1
2L

x2
)
f (t) +

√
1
L

[(
1

2
√
L
z2 +

H
√
L
z

)
f (t) +C(t)

]
+

∞∑
k=1

Dk (t)
(
eλkz + e−2λkHe−λkz

) √
2
L

cos (λkx)

where Dk (t) must satisfy

D ′′k (t) = −дλk tanh(λkH )Dk (t) +
1

1 + e−2λkH

√
2
L

1
λ2
k

f ′′(t) (5.2)

and C(t) must satisfy

C ′′(t) = −д
H
√
L
f (t) −

L
3
2

3
f ′′(t)

To compute the surface profile the equation

η(x , t) = −
1
д
ϕt (x , z, t), z = 0

can be used. Using this equation the surface profile will be given by

η(x , t) = −
1
д

[(
x −

1
2L

x2
)
f ′(t) +

√
1
L

[(
1

2
√
L
z2 +

H
√
L
z

)
f ′(t) +C ′(t)

]

+

∞∑
k=1

D ′k (t)
(
eλkz + e−2λkHe−λkz

) √
2
L

cos (λkx)

]
, z = 0

=⇒ η(x , t) = −
1
д

[(
x −

1
2L

x2
)
f ′(t) +

√
1
L
C ′(t)

+

∞∑
k=1

D ′k (t)
(
1 + e−2λkH

) √
2
L

cos (λkx)

]
Now let F (t) be the anti-derivative of f (t). The functionC ′ can then be written
as

C ′(t) = −д
H
√
L
F (t) −

L
3
2

3
f ′(t) + κ
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where κ is an arbitrary constant. From the initial conditions ϕ = η = 0, t = 0 it
must be required that f (0) = f ′(0) = C(0) = C ′(0) = E(0) = E ′(0) = 0. These
conditions restricts the incoming fluid velocity f (t). For D this is easily solved
by using this condition as initial condition for solving equation (5.2). To achieve
the condition on C the constants of integrations must be set accordingly. For
C ′ the requirement is that

κ = д
H
√
L
F (0) +

L
3
2

3
f ′(0)

In the actual numerical computation it will only be required that these functions
are approximately zero.

The DE for Dk (t) will be solved numerically, but note that depending on how
many terms in the Fourier series determine for how many k ’s Dk (t) must be
solved for. Equation (5.2) can be solved by reducing it to a system of first order
equation by writing

D1
k (t) := Dk (t)

D2
k (t) := D ′k (t)

Using this notation the second order equation can be written as

d

dt
D1
k (t) = D2

k

d

dt
D2
k (t) = −дλk tanh(λkH )D1

k (t) +
1

1 + e−2λkH

√
2
L

1
λ2
k

f ′′(t)

or as

d

dt

[
D1
k

D2
k

]
=

[
0 1

−дλk tanh(λkH ) 0

] [
D1
k

D2
k

]
+

[
0

1
1+e−2λkH

√
2
L

1
λ2
k
f ′′(t)

]

Since this equation should be solved for multiple k ’s one can write this as
an uncoupled system of ODEs. Let K be the number of terms included in the
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Fourier expansion. The full system will then be written as

d

dt



D1
1

D2
1

D1
2

D2
2
...

D1
K

D2
K


=



0 1 0 0 0 0
−дλ1 tanh(λ1H ) 0 0 0 · · · 0 0

0 0 0 1 0 0
0 0 −дλ2 tanh(λ2H ) 0 0 0

...
. . .

...
0 0 0 0 0 1
0 0 0 0 · · · −дλK tanh(λKH ) 0





D1
1

D2
1

D1
2

D2
2
...

D1
K

D2
K



+ f ′′(t)



0
1

1+e−2λ1H

√
2
L

1
λ2

1
0

1
1+e−2λ2H

√
2
L

1
λ2

2
...
0

1
1+e−2λKH

√
2
L

1
λ2
K


With the numerical solution of D(t) and D ′(t) the surface profile can be com-
puted.

5.4 Comparison of the linear models
Table 5.3: Parameters for the linear boundary integral method in the linear test. The

same parameters was used for the Fourier methods solution in addition
that the number of terms was chosen to be K = 300.

Parameter д L H tfinal η(x , 0) ϕ(x , z, 0) ∂nϕ1(z, t) h(x) N0 N1 N2 N3 Nt

Value 9.81 20 1 8 0 0 −0.4e−6(t−2)2 H 500 25 500 25 800

Now that two solution methods to the linear surface waves have been derived
they can be compared to see if they yield the same result. Using the parameters
seen in table 5.3 a test was ran to compare the two solution methods. In this
test the number of terms in the Fourier expansion was 300. Figure 5.5 shows
a time evolution of the two solutions plotted together. The time evolution of
the MD is seen 5.6 and it is clear that the max MD ≈ 4 × 10−4. It is therefore
concluded based on this test and the test performed in section 5.1 that the
boundary integral method is implemented correctly and that it gives the right
solution to the surface wave equations.
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Figure 5.5: Shows the two solutions to the linear surface wave equation. Here ηF is
the solution found with eigenfunctions expansion and ηB is the solution
found with the boundary integral method.

No instabilities were observed for the linear boundary integral method, thus any
instabilities that might occur is most likely due to the non-linear formulation
of the problem.
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Figure 5.6: Shows time evolution of the MD where N is the number of discrete points
in the x -direction.





6
Design andimplementation
The source codewill eventually be available at https://github.com/Tyggesnusk/
MasterThesisCode-SurfaceWaves.git

The numerical implementation was done in C++ using the external libraries
“Boost” [8] for numerical solutions of ODE-systems and “Intel Math Kernel
Library” (MKL) [9] for necessary linear algebra routines. For plotting the
computing data was imported into a python script that used the libraries
“numpy” and “matplotlib”.

6.1 Numerical integration
To solve the system of ODEs described in the beginning of chapter 3 numerically
the “Odeint” part of the Boost library was used. The library lets the user solve
problems of the form

dy

dt
= f (t ,y), y(t0) = y0

where y is potentially a vector of functions. The library routines can solves the
system using a number of implemented steppers including “Explicit Euler” and

45
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“Runge-Kutta 4”. In this case the Runge-Kutta 4 method was chosen as it is a
generally accurate scheme [10].

6.2 Discretization choices
As discussed in section 3.2 the number of discrete points on each section of C
can be chosen independently. Since the surface and bottom will in all cases be
longer that the edges the choice will usually be that N0 = N2 > N1 = N3. The
number of discrete time steps will be a discussion later, but is should be noted
here that this choice has an effect on the stability of the system.

When computing the fluid velocity field a grid was chosen in terms of the
number of points in the x - and z-direction called Nx and Nz respectively. Note
that there are no necessity to chose Nx and Nz in relation to the number of
discrete points on the boundary. In fact there are several reasons not do it: 1)
the code should be general enough that for example N0 , N2. The choice ofNx
would now be ambiguous. 2) choosing Nx equal the number of points on the
surface would potentially leave the vector field very cluttered when plotting.
3) choosing to many points on the grid would be computationally intensive
since for each point in the grid a numerical integral will be computed.

When the grids of points of ϕ are computed the partials ϕx and ϕz can be
computed. To do so the central finite difference formula was used given
by

∂

∂x
ϕ(x , z) ≈

ϕ(x + ∆x , z) − ϕ(x − ∆x , z)

2∆x
∂

∂z
ϕ(x , z) ≈

ϕ(x , z + ∆z) − ϕ(x , z − ∆z)

2∆z

where ∆x and ∆z is the distance between between the grid points in the x - and
z-direction respectively. This choice has the consequence that the differentiated
values (and in extension the vector field) is not known on the grid points closest
the the boundary. Note that the points on the boundary can not in general be
used to compute the partial derivatives since a point on the boundary is not
necessarily aligned with the grid points. It can be argued that for this reason
the number of grid points should be in direct relation the the number of points
on the boundary, but the points above was deemed more important. Another
approach might have been that say N0 could be an integer multiple of Nx .
That way not all, but some points at a regular interval would be aligned with
the grid. The problem with this approach, and perhaps the biggest problem
choosing Nx and Nz in relation to Ni , is that the boundary is not a rectangle.
This has the effect that for a point x = (x , z) immediately close to the boundary
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need a point x ′ = (x + ∆x , z) to compute the derivative. Since the boundary
in general has more points than the grid the point x ′ might lie outside the
boundary. This would not be the case if the domain was a rectangle, but for
example if the boundary has a steep slope this is bound to happen. Taking the
above discussion into account Nx and Nz was chosen independently.

To further avoid clutter when plotting the fluid velocity field the vectors are
normalized. To avoid numerical overflow for vectors that has size close to zero
the normalization

v 7→
v√

v2
x +v

2
z + 1

was chosen.

6.3 Parallelization and hardware
Each time step the system matrices described in section 3.5 must be filled. The
system that must the be solved is

B00 −A10 −A20 −A30

B01
1
2 I11 − A11 −A21 −A31

B02 −A12
1
2 I22 − A22 −A32

B03 −A13 −A23
1
2 I33 − A33


ΦΦΦ =


− 1

2 I00 + A00 −B10 −B20 −B30

A01 −B11 −B21 −B31

A02 −B12 −B22 −B32

A03 −B13 −B23 −B33


ΦΦΦ∗

After filling the system matrices a matrix-vector product must be computed at
the right-hand side for the linear system to be solved. LetN = N0+N1+N2+N3
be the total number if discrete points on the boundary. Since the number
of elements in the system matrices are N 2 the time complexity for filling
the matrices will be O(N 2) while solving the linear system of equation with
Gaussian elimination will have time complexity O(N 3) [11]. It is therefore
clear that the computation time will increase extensively when increasing the
system size. In addition the solution might also require fine details in time,
which will further increase computation time. It will therefore be great help if
the code can be parallelized. Since the computation of one matrix element is
independent of the computation of any of the other elements this process can
easily be parallelized. In addition there exists algorithms for parallelizing the
matrix-vector product and for solving a system of linear equations.

There were mainly two parallelization techniques considered in this implemen-
tation: OpenMP [12] and MPI [13]. Generally OpenMP is chosen on shared
memory computers with several CPU-cores while MPI is chosen clusters of
computers where communication between nodes is essential. MKL has rou-
tines for both cases so the choice comes down to hardware. For this thesis
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the main computations was done on a computer owned by the Department
of Mathematics and Statistics. The computer is running Linux (Contos) and
has 2 Intel Xeon Platinum 8168 with 24 cores with 768GB memory with the
addition of hyper-threading which allows two threads on each core[14]. Since
each processor has shared memory OpenMP was chosen.

Amdahl’s law is states that the speedup factor S(p) as a function of the number
of processors p is

S(p) =
p

1 + (p − 1)f

where f is the fraction of the code that cannot be divided into concurrent
tasks[11]. To get an idea of how much of the code that was parallelize the time

Table 6.1: Parameters used to test the speedup.

Parameter д L H η(x) ϕ(x , z) ρ N0 N1 N2 N3

Value 9.81 30 0.53 0.1 sin
(
x

(
1 + e−4(x−10)2

)
+ 1

)
2 cos(x) cosh(z) 2 2000 65 2000 65

it took to generate the matrix and to solve the system using the parameters
seen in table 6.1 using

h(x) =



H , x < 10.6
−0.2625(x − 10.6) + H , 10.6 ≤x < 12.2

0.11, 12.2 ≤x < 13.8
0.2625(x − 15.4) + H , 13.8 ≤x < 15.4

H , x ≥ 15.4

was measured and is plotted as a function of number of threads in figure
6.1 As seen in the figure it seems reasonable that about about 37.5% of the
matrix generation and system solving process can not be parallelized. Both
the two CPUs could be taken advantage of using MPI, however parallelizing
the system solution through MPI is quite tedious work and was not prioritized.
In addition the speedup achieved by utilizing more than 48 threads was not
considered worth it. According the estimated percent of non-parallizable code
the potential speedup going from 48 to 96 thread would only be S(48) = 2.58
to S(96) = 2.62. It might also be that the overhead caused by MPI could
increase run time, however this point was not explored further.

Two methods for solving the linear system was implemented. The first one
using LU-decomposition using the MKL routine “dgetrf” and then solving the
reduced system with the MKL routine “dgetrs”. The second method was using
MKLs implementation[15] of the iterative solver GMRES. In both cases the
matrix-vector product had to be computed which was done using the MKL
routine “dgemv”. According to the MKL documentation [16] a lot the linear
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Figure 6.1: Shows the speedup as a function of the number of threads.

algebra routines in MKL are threaded for OpenMP. In this case the relevant
MKL functions that are threaded with OpenMP are “dgetrf” for computing
the LU factorization of the system matrix and “dgemv” for computing the
matrix-vector product.





7
Simulations

Table 7.1: Parameters for the small test.

Parameter д L H tfinal η(x , 0) ϕ(x , z, 0) ∂nϕ1(z, t) h(x) N0 N1 N2 N3 Nt

Value 9.81 10 1 5 0 0 −0.4e−6(t−2)2 H − 0.25e−4(x−3)2 200 50 200 50 2500

As general small test of the method a run was done using the parameters
listed in table 7.1 which yielded the result seen in figure 7.1. Here the orange
line represent the bottom while the blue represent the surface. Note that the
figures are not to scale. The horizontal axis shows 10 meters while the vertical
only shows 1.5 meters. The vector field inside the domain represent the fluid
velocity field.

7.1 Matching the wave tank at the University of
Oslo

In this section parameters for the bottom and tank-length are taken from a
master thesis by Anne Raustøl[5]. The bottom has an upward linear ramp
followed by a shallow flat top followed again by a downward ramp. This type
of ramp is shown in figure 7.2 and was first proposed by [17]. To achieve the
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Figure 7.1: Shows a small test for the non-linear boundary integral method together
with the computed vector field.

specific bottom used by Raustøl h(x) was chosen as

h(x) =



H , x < 10.6
−0.2625(x − 10.6) + H , 10.6 ≤x < 12.2

0.11, 12.2 ≤x < 13.8
0.2625(x − 15.4) + H , 13.8 ≤x < 15.4

H , x ≥ 15.4

where H = 0.53. The wave tank is 24.5 meters long and 0.5 meters wide and
it assumed that the tank is wide enough that the waves can be modeled as
1-dimensional horizontal motion. At the end of the tank there is a dampening
shore[4], however in this thesis no methods for avoiding reflection were ex-
plored. Because of this the simulated tank was simply extended to 30 meters to
allow the wave interaction over the shallow bottom to happen before reflected
waves interfere. The incoming fluid velocity was chosen as Gaussian in time
and invariant in space. This means that the fluid velocity is equal at all points
at the right hand edge, but start of as approximately zero at t = 0 and stays
approximately zero after the incoming wave has passed. Table 7.2 shows all
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Figure 7.2: Shows the type of bottom proposed by [17].

Table 7.2: Parameters for a run simulating the wave tank at UiO.

Parameter д L H tfinal η(x , 0) ϕ(x , z, 0) ∂nϕ1(z, t) ρ N0 N1 N2 N3 Nt

Value 9.81 30 0.53 15 0 0 −0.4e−6(t−2)2 2 500 25 500 25 5000

the parameters used for the simulated run. In figure 7.3 the time evolution of
the simulated run is shown. Note that the wave does not hit the right edge
before the end of the simulation this was also confirmed by manually looking
at the data produces by the simulation. In Figure 7.4 a smaller section of the

Figure 7.3: Shows simulation based on the wave tank at UiO.

tank is shown to better show the wave interaction. Even though the tank is
made longer it may be that waves can be reflected from the start of the first
ramp on the bottom. If water is reflected here it will reach the left hand side
of the tank. This can be a potential problem if the returning water velocity is
inconsistent with the boundary condition on the left hand side. In the case of
∂nϕ1(z, t) = −0.4e−6(t−2)2 it might be that the incoming wave has passed be-
fore the returning fluid reach the left edge. In that case the boundary condition
at the left edge will be approximately zero, which will mean that the returning
fluid will reflect again from the left hand side. This doubly reflected water will
after a time reach the interacting waves at the shallow bottom. Depending
on the experimental setup this might be representable of the experiment if
reflected water reflect of a wave paddle. However, if the model is used to model
a tank where the wave paddle continuously creates waves it might lead to
inconsistencies in the model. In figure 7.5 it can be seen in the fluid velocity
field that some water returns from the bottom profile and is reflected from the
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Figure 7.4: Shows the time evolution of a section of the wave tank.

left hand side.
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Figure 7.5: Shows the time evolution the first section of the tank. The red circle
indicate water that may have been reflected from the bottom profile. The
vectors are artificially scaled to better show the reflected fluid.





8
Instabilities
There are mainly two cases of known instabilities: when the number of discrete
points in time are to small compared to the number of discrete points on
space, and when the wave amplitude gets to large. These cases will now be
discussed and will be followed by a discussion on how to possibly deal with
said instabilities

8.1 Relationship between step sizes in space and
time

Table 8.1: Parameters for an unstable run caused by to few discrete points in time.

Parameter д L H tfinal η(x , 0) ϕ(x , z, 0) ∂nϕ1(z, t) h(x) N0 N1 N2 N3 Nt

Value 9.81 10 1 5 0 0 −0.4e−6(t−2)2 H − 0.25e−4(x−3)2 200 50 200 50 800

Running a test with the parameters seen in 8.1 yields the numerical instability
seen in figure 8.1. These parameters are the same as in the test performed in
section 7 with fewer discrete points in time. It is therefore reason to believe that
there exist some condition on the relation between discrete points in time and
space which determine numerical stability or rather a relationship between
the step size in space ∆x and the step size in time ∆t . To further test existence
of such relationship the same parameters as the stable run in section 7 was
again used, but with N0 = N2 = 400 and it was then observed that instabilities

57



58 chapter 8 instabil it ies

Figure 8.1: Shows the evolution of the numerical instabilities from a test run with
few discrete points in time.

occurred. Furthermore, increasing L from 10m to 20m with N0 = N2 = 400
yielded a stable solution. This clearly support the idea that the instabilities
come from not satisfying a specific relation between ∆x and ∆t . This relation
has consequences for the runtime of the numerical implementation. For a
specific length L increasing accuracy for the BIEs requiring smaller ∆x which
in itself slows down the computation process. In addition, smaller ∆x require
smaller ∆t to keep stability, thus slowing down the computation process even
more.

8.1.1 A note on initial condition
When therewas no incomingwave,but instead an initial surface elevation

η(x , 0) = 0.1e−5(x−L)2

it was observed that fewer discrete points in time was needed to ensure stability.
Using the same number of discrete points in space as for the stable test run in
section 7 it was observed that Nt = 800 was enough to keep stability, which
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was not enough for an incoming wave. This scenario is shown in figure 8.2.
Lowering to Nt = 200 however broke stability. There indeed seem to be a

Figure 8.2: Shows the evolution of the test run with an initial surface elevation.

relation between ∆x and ∆t in this case as well, however not as strict as for
incoming waves. Note that this scenario is not necessarily physical as it’s not
entirely clear how such surface elevation could occur without any initial fluid
velocity present, but it serves to illustrate that the condition on the relation
between ∆x and ∆t seem to depend on how the waves are formed.

8.2 Wave amplitudes effect on stability
Using the same parameters as the stable test run in section 7 but with the
magnitude of the incoming fluid velocity increased from 0.4 to 0.8, specifically
setting ∂nϕ1(z, t) = −0.8e−6(t−2)2 , leads to the instabilities seen in figure 8.3. A
higher magnitude in incoming fluid velocity over the same period in time will
naturally increase the wave amplitude and it seem as if this higher amplitude
wave causes an unstable solution. It might be, however that it is not the surface
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Figure 8.3: Shows the evolution of the numerical instabilities from a test run with
higher incoming fluid velocity.

elevation but the higher fluid velocity itself that causes the instability, or a
combination of the fluid velocity and the amplitude. To test what causes the
stability the incoming velocity was changed to

∂nϕ1(z, t) = −0.8e−6(t−2)2e−75(z+0.5)2

That way, the middle of the left edge will still have the high fluid velocity as
in the last test, but since the fluid velocity is lower near the edges the surface
elevation will not be as large. If the higher fluid velocity is responsible for the
instabilities this test run should still be unstable. If it’s stable it suggest that
the surface elevation is responsible for the instability. From the result seen in
figure 8.4 it is clear that this scenario results in no instabilities suggesting that
the instabilities arise from the surface elevation. Instabilities was also observed
for the case with an initial surface elevation without incoming fluid velocity
when the initial surface elevation was chosen as

η(x , 0) = 0.2e−5(x−L)2

which is twice the amplitude of the stable one. It was observed that increasing
Nt did not remove, nor delayed the instabilities. The fact that increasing Nt
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did not effect the stability for “higher” amplitude waves suggest another cause
for these kind of instabilities and it might be the case that these must be treated
differently.

Figure 8.4: Shows the stable run with higher incoming fluid velocity in the middle for
the left edge. The solution is plotted to scale and with the fluid velocity
field to better visualize the difference in incoming fluid velocity along the
left edge.

Again an initial surface elevation case was tested and it was indeed seen that
a larger magnitude initial surface elevation caused an instability. As with the
incoming wave increasing Nt had no effect on stability.

8.3 Smoothing using artificial diffusion
It is now hypothesized that the instabilities manifest them selfs as perturbations
of high frequencies in the spatial frequency domain. To illustrate the perturba-
tion of high frequencies the discrete spatial Fourier transform is performed on
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the unstable numerical solution of η(x , t). Note that a numerical implementa-
tion of the Fourier transform (such as the “Fast Fourier Transform”) requires
periodic boundary conditions. Since η(0, t) = f (t) , η(L, t) = 0 the solution
must be transformed into a functions with periodic boundary conditions. This
can be done by subtracting the solution by the function

д(x , t) =
η(L, t) − η(0, t)

L
x + η(0, t)

The function µ defined as

µ(x , t) = η(x , t) − д(x , t)

will now satisfy the periodic boundary conditions µ(0, t) = µ(L, t) = 0. The
Fourier transform

µ(x , t)
F
−→ µ̂(k, t)

where k is the wave number in space, will now give the frequency spectrum
µ̂(k, t) of µ(x , t) and can be used to see the perturbation of high frequencies.
Figure 8.5 shows the discrete Fourier transform of the unstable run shown in
figure 8.1 and one can see that high frequencies starts to form at around 2.73
seconds. In some cases kinds these high frequencies can be canceled by adding

Figure 8.5: Shows the time evolution of the spatial-frequency domain. Note that the
variable x̂ is connected to the wave number k through x̂ = 2πk. The circle
emphasizes the perturbation of high frequencies around the 2.73 second
mark.

diffusive terms to the original PDE[18]. To illustrate this consider the following
PDE

∂tη(x , t) = ϵ∂xxη(x , t)

where ϵ is a real positive number. This is now of course the one-dimensional
heat equation. The idea now is to show that high frequencies in space for the
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solution to the heat equation are damped heavily if ϵ is large enough. Consider
the Fourier transform in space given by

F (η(x , t)) = η̂(k, t) =

∫ ∞

−∞

e−ikxη(x , t)dx

where k is the wave number in space. Doing the Fourier transform on the heat
equation gives

∂t η̂(k, t) = ϵ

∫ ∞

−∞

e−ikx∂xxη(x , t)dx

which after doing integration by parts two times gives

∂t η̂(k, t) = −ϵk
2η̂(k, t)

This is now a differential equation for the frequency spectrum as a function
of time and the wave number k. This DE can be solved by integrating in time
yielding

η̂(k, t) = η̂0e
−ϵk2t

where η̂0 is a constant. It is now clear that high frequencies (large k) will be
small, especially when t also get large, thus ϵ∂xxη(x , t) can be considered a
diffusive term. The instabilities presented in this chapter is now attempted
diffused by modifying the surface wave equation into

ηt = ϕz − ηxϕx + ϵηxx

The goal then is to adjust ϵ such that ϵk2 is large for large k as to dampen
high frequencies but small for low frequencies such that it does not dampen
the physical frequencies in the solution.

The diffusive terms did not work on the instability shown in figure 8.1. This is
somewhat expected since adding a diffusing term (or any other type of term
for that matter) will introduce another stability condition on ∆x and ∆t . This
idea was further supported when the diffusive terms was added to the already
stable scenario with an initial surface elevation. In that case the solution went
from stable to unstable by adding the diffusive term, which suggest a stability
condition regarding ∆x and ∆t . However, when increasing Nt both the initial
surface elevation case just mentioned and the test run shown in figure 8.1
became stable when adding the diffusive term. This result is rather unhelpful
since the instability shown in 8.1 was already fixed by increasing Nt , therefore
it is no point adding the diffusive term since it also requires to increase Nt to
remain stable.

For instabilities caused by higher amplitude waves for incoming the diffusive
term had little to no effect on the stability, unless Nt was to low in which case
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made the instability occur earlier. For example running with the incoming fluid
velocity

∂nϕ1(z, t) = −2.8e−6(t−2)2e−75(z+0.5)2

and otherwise the same parameters as the stable test run in section 7 that
an instability occurred at t = 1.92. This is an instability occurring on an
incoming wave where the wave amplitude gets to large. When adding adding
the diffusive term 0.25ηxx the instability occurred at t = 1.86. When Nt was
increased to Nt = 5000 the instability again occurred at t = 2.01. Increasing
to Nt = 8000 delayed the instability to t = 2.14. With the substantial increase
in runtime by increasing Nt adding the diffusive terms on unstable incoming
waves was considered non-successful. The diffusive term did, however, have
a successful effect on the case with initial surface elevation. This is curious
and there seem to be a big difference between incoming waves and initial
surface elevation which might be connected to the discovery in section 5.1.1
that there are higher inaccuracies around the non-smooth parts of C. It is
therefore conjectured that improving the accuracies at the non-smooth parts
of C will improve the stability for incoming waves.

An alternative view on surface elevation stability is explored in Appendix
C
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Concluding remarks
In this thesis surface waves in a wave tank was modeled using a boundary
integral approach. It was discovered that the BIEs gave a mostly correct solution
to the Laplace equation on the boundary, however having rather large error
(∼ 5 × 10−2) close to non-smooth parts of the boundary. This was somewhat
expected since the boundary integral relies on the directional derivative of the
parametrized boundary, which is undefined at the sharp edged. Nonetheless
the model was used to run with parameters based on a wave tank at the
University of Oslo and it was observed that the model predicts reflections from
the bottom profile used.

Two types of instabilities was explored. It was found that to keep the solutions
stable it was required to satisfy a relationship between the discrete step size
around the boundary and the discrete step size in time. It was concluded
removing there instabilities using artificial diffusion was not helpful since by
discretizing the diffusive term one is required to satisfy yet another relationship
between the discrete step size around the boundary and the discrete step size
in time. The second kind of instability was thought to come from to high
surface elevations. It was observed that artificial diffusion had little to no effect
on incoming waves with to large surface elevation.

For further work improving the models regarding inaccuracies around non-
smooth boundary points should be a priority, and in that regard investigate the
possibility for using perfectly matched layer to avoid reflecting waves from the
left hand side of the channel. Further, exploring ways to optimize the numerical
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implementation could prove beneficial. E.g. looking at alternative libraries for
linear algebra, other parallelization techniques or general optimizing.



A
Green’s functions
A.1 Green’s function for Laplace operator
In this section a particular Green’s function for the Laplace operator is found.
With L = ∇2 the Green’s function, G(x − ξξξ ), must satisfy

∇2G(x − ξξξ ) = δ (x − ξξξ ) (A.1)

To make notation easier the substitution µ := x − ξξξ is made. Thus if G(µ) is a
solution to the equation

∇2G(µ) = δ (µ) (A.2)

then G(x − ξξξ ) is a solution to equation (A.1). The following computation can
be justified using the theory of generalized functions[19], but the derivation
here are done heuristically. Hence the Dirac delta function is assumed to have
the following properties

δ (x) =

{
+∞ , x = 0
0 , x , 0∫

V
δ (x)dV = 1, 0 ∈ V

A condition for the Green’s function in two dimensions will now be found.
Consider a circular disk Sϵ with radius ϵ centered atη = 0. Integrating equation
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(A.2) over Sϵ then gives ∫
Sϵ
∇2G(µ)dV =

∫
Sϵ
δ (µ)dV

=⇒

∫
Sϵ
∇ · (∇G(µ))dV = 1

=⇒

∮
Cϵ
∇G(µ)n · dS = 1

where Cϵ = ∂Sϵ and n is a normal vector out of the circle Cϵ . Taking the limit
as ϵ → 0 gives the following constraint on G

lim
ϵ→0

∮
Cϵ
∇G(µ)n · dS = 1 (A.3)

Now consider polar coordinate systemwith r andθ being the radial and angular
coordinates respectively with solutions of G being rotationally invariant. That
is G(r ,θ ) = G(r ). For such solution equation (A.3) simplifies to

lim
ϵ→0

∫ 2π

0
ϵ∂rG(ϵ)dθ = 1

=⇒ lim
ϵ→0

ϵ∂rG(ϵ) =
1

2π
(A.4)

Now note that any solution to equation (A.2) also satisfy the equation

∇2G(µ) = 0 µ , 0 (A.5)

Writing this equation in polar coordinates and constraining G to be rotational
invariant equation (A.5) becomes

1
r
∂r (r∂rG(r )) = 0, r = 0

=⇒ r∂rG(r ) = C

=⇒ ∂rG(r ) =
C

r
(A.6)

where C is a constant. A solution for (A.6) is

G(r ) = C ln(r )

Condition (A.4) now gives

lim
ϵ→0

ϵ∂r (C ln(r )) |r=ϵ =
1

2π

=⇒ lim
ϵ→0

ϵ

(
C

ϵ

)
=

1
2π

=⇒ C =
1

2π
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Hence a Green’s function to the Laplace operator is

G(r ) =
1

2π
ln(r )

which in case of Cartesian coordinates becomes

G(µ) =
1

2π
ln(|µ |)

Reverting back to the original problem then gives

G(x ;ξξξ ) =
1

2π
ln(|x − ξξξ |)

A.2 Boundary integral equation for the Laplace
operator

To find a boundary integral equation an integral identity must first be found.
With L = ∇2 consider the following integral over space∫

V
ϕ∇2ψdV

Using the identity ∇ · (ϕ∇ψ ) = ∇ϕ · ∇ψ + ϕ∇2ψ the above integral can be
written as∫

V
ϕ∇2ψdV =

∫
V
(∇ · (ϕ∇ψ ) − ∇ϕ · ∇ψ )dV

=

∮
S
ϕ∇ψ · ndA −

∫
V
∇ϕ · ∇ψdV

=

∮
S
ϕ∇ψ · ndA −

∫
V

(
∇ · (ψ∇ϕ) − ϕ∇2ψ

)
dV

=

∮
S
ϕ∇ψ · ndA −

∮
S
ψ∇ϕ · ndA +

∫
V
ψ∇2ϕdV

Now let ϕ = ϕ(x) be a function of interest and ψ = G(x ;ξξξ ) be a Green’s
function of the Laplace operator the integral becomes∫
V
ϕ(x)∇2G(x ;ξξξ )dV =

∮
S
(ϕ(x)∇G(x ;ξξξ ) · n − G(x ;ξξξ )∇ϕ(x) · n)dA +

∫
V
G(x ;ξξξ )∇2ϕ(x)dV

The notation that∇f ·n = ∂n f will now be used. In our case the conservation of
mass equation ∇2ϕ = 0 can be used together with the fundamental property of
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the Green’s functionLG(x ;ξξξ ) = δ (x−ξξξ ) and the property
∫
V ϕ(x)δ (x−ξξξ )dV =

ϕ(ξξξ ) to write the integral as

ϕ(ξξξ ) =

∮
S
(ϕ(x)∂nG(x ;ξξξ ) − G(x ;ξξξ )∂nϕ(x))dA (A.7)

This is now an integral identity connecting points inside a domain to the points
on the boundary. Since the goal is to get an identity for the connection between
points on the boundary the point ξξξ is evaluated on the boundary S = ∂V using
equation (A.7). There is a complication with this approach however, and it’s
that when integrating over the boundary for a point ξξξ ∈ S the value G(ξξξ ;ξξξ )
must at some point be evaluated. Using the Green’s function found in Appendix
A.1 this means evaluating 1

2π ln(|ξξξ − ξξξ |) = 1
2π ln(0) which is nonsense. To deal

with this a Cauchy principal value integral is used. This is done in the following
way: Letξξξ a point on S that should be evaluated. The surface S is than deformed
to form a small semi circle with radius ϵ around ξξξ called Cϵ . The part of S
with the semi circle removed is called Sϵ , that is limϵ→0 Sϵ ∪Cϵ = S . This is
all shown in figure A.1. The point ϕ(ξξξ ) is then evaluated through the limiting

Figure A.1: Shows the deformed surface Sϵ .

process

ϕ(ξξξ ) = lim
ϵ→0

∫
Sϵ∪Cϵ

(ϕ(x)∂nG(x ;ξξξ ) − G(x ;ξξξ )∂nϕ(x))dA (A.8)

= PV
∮
S
(ϕ(x)∂nG(x ;ξξξ ) − G(x ;ξξξ )∂nϕ(x))dA + lim

ϵ→0
Rϵ

where PV means that a Cauchy principal value integral should be used and Rϵ
is

Rϵ =

∫
Cϵ
(ϕ(x)∂nG(x ;ξξξ ) − G(x ;ξξξ )∂nϕ(x))dA
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To evaluate limϵ→0 Rϵ the normal derivatives must now be analyzed. SinceCϵ
is a semi circle with radius ϵ centered at ξξξ the unit normal vector will be

n =
x − ξξξ

|x − ξξξ |

The normal derivative of the Green’s function will then be

∂nG(x ;ξξξ ) =
(
∇

1
2π

ln(|x − ξξξ |)
)
·
x − ξξξ

|x − ξξξ |

=

(
1

2π
1

|x − ξξξ |
∇|x − ξξξ |

)
·
x − ξξξ

|x − ξξξ |

=

(
1

2π
1

|x − ξξξ |

x − ξξξ

|x − ξξξ |

)
·
x − ξξξ

|x − ξξξ |

=

(
1

2π
x − ξξξ

|x − ξξξ |3

)
· (x − ξξξ )

Now note that for x on a circle with radius ϵ centered at ξξξ the radius can be
expressed as

ϵ = |x − ξξξ |

Also noting that (x − ξξξ ) · (x − ξξξ ) = |x − ξξξ |2 the normal derivate of the Green’s
function then becomes

∂nG(x ;ξξξ ) =
1

2πϵ

Since Cϵ is semi circle it is parametrized as

Cϵ (θ ) = ξξξ + ϵ(cos(θ ), sin(θ )), θ ∈ [θ0,θ0 + π ]

where θ0 is chosen such that the semi circle starts a the point connection it to
the rest of Sϵ . The integral then becomes

Rϵ =

∫ θ0+π

θ0

(
ϕ(Cϵ(θ ))

1
2πϵ
−

1
2π

ln(ϵ)∂nϕ (Cϵ (θ ))
) ���� ddθ (Cϵ (θ ))����dθ

From the parametrization it is clear that���� ddθ (Cϵ (θ ))���� = |ϵ(− sin(θ ), cos(θ ))|

= ϵ

thus the integral becomes

Rϵ =

∫ θ0+π

θ0

(
ϕ(ξξξ + ϵ[cos(θ ), sin(θ )])

1
2π
− ϵ

1
2π

ln(ϵ)∂nϕ (Cϵ (θ ))
)
dθ
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When ϵ → 0 the integral can be written as

Rϵ ∼ ϕ(ξξξ )
1

2π

∫ θ0+π

θ0

dθ − ϵ
1

2π
ln(ϵ)∂nϕ(ξξξ )

∫ θ0+π

θ0

dθ , ϵ → 0

=⇒ lim
ϵ→0

Rϵ =
1
2
ϕ(ξξξ )

since

ϕ(ξξξ )
1

2π

∫ θ0+π

θ0

dθ = ϕ(ξξξ )
1
2

and

lim
ϵ→0

ϵ
1

2π
ln(ϵ)∂nϕ(ξξξ )

∫ θ0+π

θ0

dθ =
1
2
∂nϕ(ξξξ ) lim

ϵ→0
ϵ ln(ϵ) = 0

Thus equation (A.8) becomes

ϕ(ξξξ ) = PV
∮
S
(ϕ(x)∂nG(x ;ξξξ ) − G(x ;ξξξ )∂nϕ(x))dA +

1
2
ϕ(ξξξ )

which gives the final boundary integral equation

1
2
ϕ(ξξξ ) = PV

∮
S
(ϕ(x)∂nG(x ;ξξξ ) − G(x ;ξξξ )∂nϕ(x))dA



B
Linear system for the thevalues of ϕ |C
Using the notation that the elements of ΦΦΦ = (∂nϕϕϕ0,ϕϕϕ1,ϕϕϕ2,ϕϕϕ3) and ΦΦΦ∗ =
(ϕϕϕ0, ∂nϕϕϕ1, ∂nϕϕϕ2, ∂nϕϕϕ3) are vectors and thatAi j and Bi j are matrices containing
the values Alk

i j and Blki j respectively, equation (3.6) for all j can be written
as

1
2
I00ϕϕϕ0 = A00ϕϕϕ0 − B00∂nϕϕϕ0 +A10ϕϕϕ1 − B10∂nϕϕϕ1 +A20ϕϕϕ2 − B20∂nϕϕϕ2 +A30ϕϕϕ3 − B30∂nϕϕϕ3

1
2
I11ϕϕϕ1 = A01ϕϕϕ0 − B01∂nϕϕϕ0 +A11ϕϕϕ1 − B11∂nϕϕϕ1 +A21ϕϕϕ2 − B21∂nϕϕϕ2 +A31ϕϕϕ3 − B31∂nϕϕϕ3

1
2
I22ϕϕϕ2 = A02ϕϕϕ0 − B02∂nϕϕϕ0 +A12ϕϕϕ1 − B12∂nϕϕϕ1 +A22ϕϕϕ2 − B22∂nϕϕϕ2 +A32ϕϕϕ3 − B32∂nϕϕϕ3

1
2
I33ϕϕϕ3 = A03ϕϕϕ0 − B03∂nϕϕϕ0 +A13ϕϕϕ1 − B13∂nϕϕϕ1 +A23ϕϕϕ2 − B23∂nϕϕϕ2 +A33ϕϕϕ3 − B33∂nϕϕϕ3

73



74 appendix b linear system for the the values of ϕ |c

where Ij j is the Nj × Nj identity matrix. Putting all the unknown values in the
left hand side, and the known values on the right hand side gives

B00∂nϕϕϕ0 −A10ϕϕϕ1 −A20ϕϕϕ2 −A30ϕϕϕ3 =

(
−

1
2
I00 +A00

)
ϕϕϕ0 − B10∂nϕϕϕ1 − B20∂nϕϕϕ2 − B30∂nϕϕϕ3

B01∂nϕϕϕ0 +

(
1
2
I11 −A11

)
ϕϕϕ1 −A21ϕϕϕ2 −A31ϕϕϕ3 = −A01ϕϕϕ0 − B11∂nϕϕϕ1 − B21∂nϕϕϕ2 − B31∂nϕϕϕ3

B02∂nϕϕϕ0 −A12ϕϕϕ1 +

(
1
2
I22 −A22

)
ϕϕϕ2 −A32ϕϕϕ3 = −A02ϕϕϕ0 − B12∂nϕϕϕ1 − B22∂nϕϕϕ2 − B32∂nϕϕϕ3

B03∂nϕϕϕ0 −A13ϕϕϕ1 −A23ϕϕϕ2 +

(
1
2
I33 −A33

)
ϕϕϕ3 = −A03ϕϕϕ0 − B13∂nϕϕϕ1 − B23∂nϕϕϕ2 − B33∂nϕϕϕ3

This can now be written as a matrix system where Ai j and Bi j are block
matrices
B00 −A10 −A20 −A30
B01

1
2 I11 −A11 −A21 −A31

B02 −A12
1
2 I22 −A22 −A32

B03 −A13 −A23
1
2 I33 −A33

 ΦΦΦ =

−1

2 I00 +A00 −B10 −B20 −B30
A01 −B11 −B21 −B31
A02 −B12 −B22 −B32
A03 −B13 −B23 −B33

 ΦΦΦ
∗



C
A somewhat related systemof ODEs
In section 8.2 it is shown that the numerical solution is unstable for cases where
the wave amplitude gets lo large. In this chapter an unconventional view on
the source of the instabilities is taken.

C.1 Motivation
Consider the surface wave equations

ηt = ϕz − ηxϕx

ϕt = −
1
2

(
ϕ2
x + ϕ

2
z
)
− дη

When these equations are discretized they can be viewed as a system of
coupled ODEs. Given that the partial derivatives are approximated using some
finite difference formula using neighboring points this system will be in the

75
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form

...

(ηi )t = f (ηi−1,ηi ,ηi+1,ϕi−1,ϕi ,ϕi+1)

(ϕi )t = h(ηi−1,ηi ,ηi+1,ϕi−1,ϕi ,ϕi+1)

...

where f and h are functions based on the original system of PDEs and the
specific approximation used to calculate the partial derivatives. It is now clear
that the partial derivatives in space will couple the ODEs together. Now consider
the somewhat strange modification to the original system of PDEs

ηt = ϕ − ηϕ (C.1)
ϕt = −ϕ

2 − дη (C.2)

Hereη andϕ are functions of a single variable t . This system of ODEs are related
to the original system of PDEs in that the partial derivatives are replaced by the
function that was differentiated, so for example ϕx → ϕ. This system of ODEs
are related also related to the discretization of the PDE system in that if one
assumes that ∆x = ∆z and for example the partial derivatives are discretized
using central difference then f and h will be the form

f (ηi−1,ηi ,ηi+1,ϕi−1,ϕi ,ϕi+1) = ϕi − ηiϕi +C1

h(ηi−1,ηi ,ηi+1,ϕi−1,ϕi ,ϕi+1) = −ϕ
2
i − дηi +C2

where C1 and C2 are the coupling terms, thus equation (C.1) and (C.2) will
exist in the discretization of the PDE system, in fact it will be as many as
discrete points of η and ϕ. Now if the coupling terms are small equation (C.1)
and (C.2) might give some insight into the stability of the discretized. There
are of course a lot of assumptions leading to this analysis, but it was considered
an academic curiosity and put here in the appendix.

C.2 Analytical solution
Through some luck it was found that it was actually possible to find an analytical
solution to equation (C.1) and (C.2). This was done through the following
process: First we want to remove the parameter д from the system of ODEs.
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Differentiating equation (C.2) in time gives

ϕt t = −2ϕϕt − дηt
= −2ϕϕt − д(ϕ − ηϕ)

= −2ϕϕt − д
(
ϕ −

1
д
(−ϕ2 − ϕt )ϕ

)
= −2ϕϕt − дϕ − ϕ3 − ϕϕt

=⇒ ϕt t = −3ϕϕt − дϕ − ϕ3 (C.3)

A change of variables is now chosen as

ϕ(t) =
√
дϕ̃[
√
дt]

Inserting into equation (C.3) gives(
√
д
d2

dt2 ϕ̃[
√
дt]

)
= −3

√
дϕ̃[
√
дt]

(
√
д
d

dt
ϕ̃[
√
дt]

)
− д
√
дϕ̃[
√
дt] − (

√
дϕ̃[
√
дt])3

ϕ̃ ′′(
√
дt)д

3
2 = −3ϕ̃[

√
дt]ϕ̃ ′[

√
дt]д

3
2 − д

3
2 ϕ̃[
√
дt] − д

3
2 ϕ̃[
√
дt]3

Multiplying with д
2
3 on both sides and scaling t as t̃ =

√
д t finally gives

ϕ̃t̃ t̃ = −3ϕ̃ϕ̃t̃ − ϕ̃ − ϕ̃
3 (C.4)

In a conversation with Dennis The[20] it was found through a computation
in Maple that equation (C.4) had the same number of symmetries as the
equation

y ′′(t) = 0

which motivated to try using Maple to compute an analytical solution. The
analytical solution was then found to be

ϕ̃(t̃) =
b cos

(
t̃
)
− sin

(
t̃
)

a + b sin
(
t̃
)
+ cos

(
t̃
)

wherea andb are arbitrary constants. Using the definition of ϕ̃ and t̃ gives

ϕ(t) =
√
д

b cos
(√
дt

)
− sin

(√
дt

)
a + b sin

(√
дt

)
+ cos

(√
дt

)
Plugging this solution into equation (C.1) a solution for η(t) can be found. The
solution was again found using Maple and was found to be

η(t) =
c + cos

(√
дt

)
+ b sin

(√
дt

)
a + b sin

(√
дt

)
+ cos

(√
дt

)
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where c is an arbitrary constant. The goal now i to match the constants
with the initial conditions such that one can find a constraint on the initial
conditions that gives bounded solutions of the ODE system. Notice, however,
that only two equations can be made using the initial conditions, but there are
three constants. One of these constants are introduced through differentiating
equation (C.2). By this step one might introduce false solutions. To see this
consider the equation

d

dt
(f (t)) = 0

where f (t) is some differentiable function of t . It is clear that by adding any
constants to the function f the equation will still hold. Therefore one must
make sure that any additional constant introduced through this step satisfy
the equation. The equation

d

dt

(
ϕt + ϕ

2 + дη
)
= 0

will now be used to determine the third constant c. By substituting the solution
into this equation we get

−cд
3
2

b cos
(√
дt

)
− sin

(√
дt

)(
a + b sin

(√
дt

)
+ cos

(√
дt

) )2 = 0

It is clear that if this equation should hold for all t it must be required that c = 0.
The constants can now be matched with the initial conditions as follows

ϕ(0) =
√
д

b

a + 1

η(0) =
1

a + 1

With the notation η0 := η(0) and ϕ0 := ϕ(0) it gives

a =
1
η0
− 1

b =
1
√
д

ϕ0

η0

From the solutions of η and ϕ it is clear that they are unbounded if the
denominator becomes 0 for any t ≥ 0. The condition for unbounded solution
can therefore be found by finding for which initial condition the equation(

1
η0
− 1

)
+

1
√
д

ϕ0

η0
sin

(√
дt

)
+ cos

(√
дt

)
= 0
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has a solution in t . By defining 1√
д
ϕ0
η0
= tan(α) = sin(α )

cos(α ) the equation can be
written as

sin(α)
cos(α)

sin
(√
дt

)
+ cos

(√
дt

)
=

(
1 −

1
η0

)
=⇒

1
cos(α)

[
sin(α) sin

(√
дt

)
+ cos

(√
дt

)
cos (α)

]
=

(
1 −

1
η0

)
=⇒ cos

(√
дt − α

)
=

(
1 −

1
η0

)
cos (α)

It is now clear the this equation only has a solution for t if����(1 − 1
η0

)
cos (α)

���� ≤ 1

By using the definition α = arctan
(
ϕ0
√
дη0

)
and the fact that cos(arctan(α)) =

1√
1+α 2

the condition becomes���������
(
1 −

1
η0

)
1√

1 +
(
ϕ0
√
дη0

)2

��������� ≤ 1

In figure C.1 the phase space of the ODE system is plotted together with its
stream plot. The stability condition was used to determine the stable and
unstable regions of the phase space. From figure C.1 it is clear that there are

-4 -2 0 2

-10

-5

0

5

10

η

ϕ

Figure C.1: Shows the stable (blue) and unstable (red) regions in the phase space of
ODE system.

exist some η and ϕ that leads to unbounded solutions. Note that positive values
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for η corresponds to positive surface elevation, therefore this could indicate
that the discrete coupling terms that comes from the PDE system could be the
source of instabilities when η gets to large. However, no direct connection was
found between the unstable threshold for η found here and the actual surface
elevation that lead to instabilities. This is of course no surprise since one would
expect the coupling terms in the discretized PDE system to effect the exact
surface elevation that will cause on instability. Even though this analysis is far
from general for the instabilities there are a case where it is somewhat valid. If
there is an initial surface elevation which is very flat on the top such that the
spatial derivatives are very small it can be argued that the coupling terms are
indeed small.
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