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Abstract

It is an essential task to estimate the remaining useful life (RUL) of machinery in the mining

sector aimed at ensuring the production and the customer’s satisfaction. In this study, a con-

ceptual framework was used to determine the RUL under the reliability analysis in a frailty

model. The proposed framework was implemented on a Komatsu PC-1250 excavator from

the Sungun copper mine. Also, the Weibull-frailty model was selected to describe the failure

behavior and compare it with the classical-exponential model. The frailty model was also

used to evaluate the impact of unobserved environmental conditions on the RUL values.

Both applied models were fitted to the obtained data from 80 operational hours of the

Komatsu PC-1250 excavator. Plotting the results from the reliability analysis of two models

demonstrated that the mine system with the frailty model performs better than the classical

model before reaching the reliability of 80%. Besides, the frailty model shows a coherent

with the operational time of the excavator, while the classical model demonstrates a sinu-

soid variation. The obtained results may be used for the development of maintenance, pre-

ventive repairs planning, and the spare parts replacement intervals.

Introduction

The mining machinery sector of Iran has been faced with numerous difficulties in terms of the

production capacity and cost to compete in global markets. Problems arise, however, when the

opportunities are foreclosed in Iran as a worldwide attempt to implement the sanction policy

[1]. The existing accounts fail to resolve these difficulties, and a focus on new indicators and

approaches needs to be associated with higher efficiency in the mining machinery sector of

Iran.

Indicators such as reliability, availability, and security are recognized as significant factors

to determine the efficacy of the mining system. On the other hand, heavy-maintenance costs
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cause a complicated process in the mining system, especially mining engineers, who would

expand a support system with prevailing conditions. There would, therefore, seem to be a defi-

nite need for changing the traditional approaches and preventing heavy-maintenance costs.

Failure prognosis, which is to predict the occurrence of impending failure before its occur-

rence, can be used as one of the novel approaches in the mining system. Failure prognosis

approach estimates the occurrence risk in different states of failure in the future and predicts

the remaining useful life (RUL) of the system. Indeed, the RUL estimates the occurrence time

of the failure based on prevailing conditions in the system [2]. In other words, the past behav-

ior of the mining system is signified by using the RUL, which is indicated by the reliability

analysis. As a result, the failure prognosis approach provides an estimation of the RUL by

detecting the signs of failure on the maintenance schedule [3, 4]. Recently, engineers have

applied the RUL more widely in maintenance planning, checking system performance, spare

parts estimation, and product promotion.

In the reliability analysis, the remaining lifetime of a component after the time ‘t’ is consid-

ered as mean residual life (MRL). This function was first proposed by Watson and Wells [5] to

analyze failures during the infancy period (Bathtub Curve). Elsayed [6] studied the MRL of

industrial furnace pipes and proposed a method of estimating the MRL value based on the

pipe’s reliability level. This method has also sought to determine the optimal environmental

conditions for pipes at the lowest expense [6]. Xie et al. [7] examined the change points of fail-

ure rate and the MRL function and resulted that the failure rate is decreased by increasing the

MRL. Another study conducted by Xie et al. [8] shows that a flat portion occurs in the middle

of the Bathtub curve equivalent to the distance between the change points. Along with the eval-

uation of the RUL function in different industries, however, a model is required to have a flat

portion that is long in the mining system.

Liu et al. [9] proposed a reliability-oriented algorithm for predicting the RUL of rotary

machine bearings. The temperature and vibration signals are used in this algorithm, followed

by modeling the behavior of the vibrational time series by fuzzy logic. For the first time, Gho-

drati et al. [10] applied the reliability-based RUL to analyze the residual life of hydraulic jacks

in LHD loaders in the Swedish underground mines. Although a model proposed by Ghodrati

et al. [10] coincides with environmental conditions, it suffers from an accuracy estimation of

the RUL in terms of data availability. Therefore, this study seeks to obtain data for estimating

the RUL in the Sungun copper mine, which will help to address this research gap. To this aim,

a combination of Weibull analytical function [11] and fuzzy logic is employed, and the results

from the combined model are used for the maintenance planning.

The present study has several practical applications. Firstly, the research results represent a

further step towards developing the RUL determination in the mine system like Sungun cop-

per mine, while previous studies are limited by weak designs and a failure to address the RUL

determination in the field of mining engineering. Secondly, it points to the steps after deter-

mining the RUL, as far too little attention has been paid to the RUL in the mine system. The

third and most crucial point is that the frailty model has not been studied in the mine system,

especially in the RUL determination. Thus, this study provides a novel approach to integrating

a frailty model in the RUL determination in the Sungun copper mine, Ahar, Iran.

Methods

Reliability analysis

Different types of mechanical failures were considered in the reliability analysis, such as insta-

bility, shear loading, crushing, and bending [12]. Failure was defined as the inability of an item

to timely perform the expected activity [13]. In the reliability analysis, these data were collected
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in the form of time between failures (TBF), time to failure (TTF), the time between mainte-

nance (TBM), and in the case of reparability topics in the form of time to repair (TTR), time to

corrective maintenance (TCM), time to do preventive maintenance (TPM), and procurement

and management stoppage times (TTDs). These data were also divided into two categories:

completed failure data and suspended data [12].

Four different functions were statistically defined to describe the failures as follows: (1) fail-

ure distribution known as probability density function (PDF) with the symbol f(t), (2) cumula-

tive distribution function (CDF) with the symbol F(t), (3) the co-function of F(t) called the

reliability function with the symbol R(t), and (4) the failure rate function or the hazard func-

tion with the symbol λ(t) or h(t). As shown in Fig 1, after entering the data, the relevant soft-

ware was selected in the first step of the appropriate statistical approach [14]. Then, the proper

function or model of one of the main functions (for example, f(t)) was fitted. Therefore, the

next three functions F(t), R(t), and λ(t) can be calculated using the fitted function [15].

The hazard rate was considered to be the rate of occurrence of failures over a specified time

(t1, t2). This rate was defined as the probability of occurring failure per unit time of the interval

(t1, t2) so that the failure has not occurred before t1 (beginning of the interval) [16, 17]. The sys-

tem reliability was defined as the ability of the mine system to perform and maintain the neces-

sary functions under certain conditions without the occurrence of the failure during the

specified time [18]. Eq (1) was applied to mathematically define the system reliability (R(x))

[15]:

RðxÞ ¼ 1 � FðtÞ ¼ 1 � ∫
t

0
f ðxÞ dx ð1Þ

Where R(x) denotes the system reliability (%) at the time t. Also, the processes used in the reli-

ability analysis were included: homogeneous Poisson process (HPP), renewal process (RP),

non-homogeneous Poisson process (NHPP), superimposed renewal process (SRP), branching

renewal process (BRP), branching Poisson process (BPP), Markov process (MP), and semi-

Markov process (SMP). The relationship between these processes was shown in Fig 2.

Fig 1. Data processing diagram in the reliability analysis; reprinted from Diallo et al. [14].

https://doi.org/10.1371/journal.pone.0236128.g001
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From Fig 2, n represents the number of the system components (in SRP) or the number of

states (in MP and SMP). Besides, the mean time to the occurrence of failure [20] in the mine

system is called the meantime (leading) to failure or MTTF (in short), which can be defined as

Eq (2).

MTTF ¼ ∫
1

0

fðtÞ
1 � FðtÞ

ð2Þ

The main difference between MTTF and MTBF was referred to their applications. The MTBF

was used in the case of repairable systems instead of the MTTF. The MTBF was considered as

the average time between a system’s failures while the MTTF was used in the case of unrepair-

able failure [15].

Frailty model

The frailty model was referred to unobserved risk factors such as the impact of management

on the progress of the mine system. However, ignoring observed risk factors such as rock type

and climatic conditions causes unbiasedness in the results [21, 22]. Therefore, the evaluation

of unobserved risk factors seems to be essential in the reliability analysis. To this aim, Eq (3)

was applied to integrate unobserved risk factors in the frailty model [23–25].

lðtjaÞ ¼ alðtÞ ð3Þ

Fig 2. The relationship between classical statistical methods; reprinted from Pijnenburg [19].

https://doi.org/10.1371/journal.pone.0236128.g002
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From Eq (3), λ(t) is the rate of fundamental hazard that depends on time. λ(t|α) is the condi-

tional hazard rate in the frailty model. α denotes the frailty as a positive random quantity,

assumed to have a mean 1θ variance. For values of α>1, the frailty increases the risk of failure,

and it would be vice versa for values of α< 1. The relationship between frailty and reliability

can also be achieved based on the relationship between the conditional hazard rate and the

reliability function (R(t)). The conditional reliability function (R(t|α)) depends on the frailty of

(α) and can be expressed as Eq (4).

RðtjaÞ ¼ exp

(

� ∫t
0
lðujaÞdu

)

¼ exp � a∫
t

0

f ðuÞ
RðtÞ

du
� �

¼
n
RðtÞ

oa
ð4Þ

The non-conditional reliability function can also be estimated by integrating the value of

(α) in the frailty model. Eq (5) shows an integrated function [26] between the PDF of (α) and

the gamma (g(α)), which has a mean of 1θ variance.

gðaÞ ¼
a

1
y
� 1e� ay
1

y

� �
y

1
y

ð5Þ

In this case, the conditional reliability function [26] was obtained from Eq (6).

RyðtÞ ¼ ∫
1

0
fRðtÞgagðaÞda ð6Þ

In Eq (7), the subscript θ has been used for R to emphasize the dependence of frailty on the

variance θ [26].

RyðtÞ ¼ ½1 � ylnfRðtÞg�
� 1
y ð7Þ

RUL estimation

The RUL was widely used in reliability-based research [27]. The RUL in the mine system was

considered as the remaining time of proper operation before the occurrence of the failure. The

estimation of the RUL was recognized as a critical factor for condition-based maintenance

(CBM) [28–30]. According to Mazhar et al. [29], RUL estimation plays a crucial role in reusing

and recycling raw materials and products. The lifespan of products or raw materials [31] must

be high enough that they can be reused or recycled. This point highlights the RUL estimation

for the CBM. The RUL was calculated using Eq (8). The mean residual life (L) is the average

expected time to the occurrence of the failure in the mine system with a lifespan of t0 [10].

LðtÞ ¼ EðT � tjT � tÞ ¼ MTTFðt0Þ ¼ ∫
1

t0
ðt � t0Þfðtjt0Þdt t � 0 ð8Þ

f ðtjt0Þ ¼ hðtÞ � Rðtjt0Þ t > t0 ð9Þ

From Eqs 8 and 9, f(t|t0) is the conditional function of the PDF at time t, provided that the fail-

ure has not occurred until the time t. R(t|t0) is the conditional reliability of the mine system

until the time t that the failure does not happen in the mine system. In this case, the mine
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system was remained intact until the time t0. Thus, Eq (9) can be written as Eqs (10) and (11).

f ðtjt0Þ ¼ hðtÞ �
RðtÞ
Rðt0Þ

ð10Þ

f ðtjt0Þ ¼
f ðtÞ
Rðt0Þ

t > t0 ð11Þ

Using Eqs (8) and (11), we would have:

MTTFðt0Þ ¼ ∫
1

t0
t �

f ðtÞ
Rðt0Þ

dt � ∫
1

t0
t0 �

f ðtÞ
Rðt0Þ

dt ð12Þ

For the second part of Eq (12), we have:

∫
1

t0
t0 �

f ðtÞ
Rðt0Þ

dt ¼
t0
Rðt0Þ

∫
1

t0
fðtÞdt ¼

t0
Rðt0Þ

½FðtÞ1t0 � ¼
t0
Rðt0Þ

½1 � Fðt0Þ� ¼
t0
Rðt0Þ

½Rðt0Þ� ¼ t0 ð13Þ

Using Eqs (12) and (13), we will have:

MTTFðt0Þ ¼
1

Rðt0Þ
∫
1

t0
t� fðtÞdt � t0 ð14Þ

By expanding the integral of Eq (14), we would have:

MTTFðt0Þ ¼
1

Rðt0Þ
∫
1

0
t� fðtÞdt � ∫

t0

0
t� fðtÞdt

� �

� t0 ð15Þ

From Eq (15), the first integral is the same MTTF MTTF ¼ ∫1
0
t� fðtÞdt

� �
. For the second

integral, if we rewrite f(t) based on R(t), we will have:

f ðtÞ ¼ � RðtÞ ) f ðtÞ ¼ �
dRðtÞ
dt

ð16Þ

∫
t0

0
t� fðtÞdt ¼ ∫

t0

0
t� �

dRðtÞ
dt

� �

dt ¼ ∫
t0

0
� tdRðtÞ ð17Þ

By integrating Eq (17) using the partial method, we will have:

u ¼ � t

du ¼ dRðtÞ
)

du ¼ � dt

u ¼ RðtÞ
ð18Þ

8
<

:

8
<

:

∫
t0

0
� tdRðtÞ ¼ � tRðtÞt0

0
þ ∫

t0

0
RðtÞdt ð19Þ

∫
t0

0
t� fðtÞdt ¼ � t0Rðt0Þ þ ∫

t0

0
RðtÞdt ð20Þ
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Based on Eqs (15) and (20), we will have:

MTTFðt0Þ ¼
1

Rðt0Þ
MTTF �

 

� t0Rðt0Þ þ ∫
t0

0
RðtÞdt

!0

@

1

A � t0 ð21Þ

MTTFðt0Þ ¼
MTTF � ∫

t0

0
RðtÞ

Rðt0Þ
ð22Þ

Since we have the following for MTTF:

MTTF ¼ ∫
1

0
tfðtÞdt ¼ ∫

1

0
RðtÞdt ð23Þ

Then, based on Eqs (22) and (23), the general formula of the (RUL (t)) can be expressed as

Eq (24).

MTTFðt0Þ ¼
MTTF � ∫

t0

0
RðtÞ

Rðt0Þ
¼
∫
1

0
RðtÞdt � ∫

t0

0
RðtÞdt

Rðt0Þ
¼
∫
1

t0
RðtÞdt

Rðt0Þ
ð24Þ

Case of study

The Sungun copper mine is located 70 km northwest of Ahar and 105 km northeast of Tabriz,

East Azerbaijan Province, Iran. By reviewing all loading systems in the Sungun copper mine, a

Komatsu PC-1250 excavator was selected as the case of study. The limitations and hypotheses

of the research can be stated as follows:

1. The operational phases were only studied and, if needed, the maintenance phase was also

included but not the design phase.

2. The study was focused on the environment of mine system, and other environments out of

the mine system (e.g., climate, transportation) were not studied.

3. Previously recorded data were used to predict system performance indicators.

4. A significant priority in choosing a load system was its operational status and the possibility

of RUL analysis for it.

Fig 3 shows a conceptual framework of the research in five steps.

Step 1: Determining the boundaries of the mine system.

Step 2: Identifying the mechanism of failures and gathering the required data.

Step 3: Assessing the homogeneity hypothesis to select the appropriate model and performing

the goodness of fit (GOF) test to select the proper function for each model, including:

a. Homogeneity test

b. The reliability analysis

c. The reliability-based frailty model

d. The GOF, AIC (Akaike information criterion), and BIC (Bayesian information crite-

rion) tests.

Step 4: Determining the model parameters and calculating the reliability rate.

Step 5: Estimating the RUL of the mine system
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Results

The excavator database

Since the first step of the proposed algorithm has been performed in the field, this step was

rendered, and the second step was described in relation to the excavator database. As can be

seen in Eq (24), the RUL value was defined based on the duration of the operational system

and its reliability. Thus, the required time data would be the type of time between failures

(TBF). Such data were gathered from various sources such as recorded documents (notes of

the maintenance group, mechanics group, daily reports, etc.), archived documents (previous

reports, machinery manuals, etc.), appointments and interviews, and direct observations (see

Supporting Information (S1 Data)). The data of the excavator were recorded three times a day

in sheets containing information such as the reports row, device code, operational position,

operational level (level of stairs from the sea level), the number of services (depending on the

Fig 3. A conceptual framework of the RUL based on the reliability analysis in the frailty model.

https://doi.org/10.1371/journal.pone.0236128.g003
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type of load-bearing dump truck: 100 tons, 32 tons), type of rock, working hours, and the

number of stops (under repair, not in use but ready to use). The excavator had been working

from the beginning of February 2018 to the end of September 2018. Therefore, the data were

collected in eight months and sorted consecutively. For more information see Supporting

Information (S2 Data).

The heterogeneity test

Likelihood ratio (LR), AIC, and BIC tests were proposed to test the heterogeneity and to exam-

ine the opposite hypothesis (H1) suggesting the presence of heterogeneity versus the zero

hypotheses (H0) indicating the absence of heterogeneity (θ = 0). Results from the AIC and test

present an excellent performance for small values of heterogeneity, while the BIC test shows a

proper performance for larger values [21, 32, 33]. We used the LR test in this study, which eval-

uates the absence of heterogeneity. If the basic hazard rate function is the Weibull model, the

maximum LR is as follows:

R ¼ 2 ln Lðl̂; b̂; Ẑ; ŷÞ � lnLðl̂0; b̂0; Ẑ0; 0Þ

� �

ð25Þ

From Eq (25), l̂ and b̂are the parameters of the basic function. Ẑ and ŷ are the regression

coefficient for observed risk factors and the degree of heterogeneity, respectively. These

parameters were estimated by maximizing the complete likelihood function. Since Ẑ ¼ 0 is

not within the parameter space (Ẑ < 0 is not allowed), thus, R does not have a normal convex

chi-square (w2
1
) distribution. Indeed, Ẑ has asymptotically chi-square distribution with a degree

of freedom of 1 (w2
1
) and the probability mass of 0.5 at R = 0. This result implies that at the con-

fidence level of 5%, (H0), the absence of heterogeneity will be rejected if R� 2.706. Moreover,

under the minimal repairs strategy, we can use the PLP model as the intensity function.

Assuming the PLP model, as an intensity function of the failure to examine the presence of the

significant value of heterogeneity in the units (subsystems), we can use the following steps in

the LR test [21]:

1. In the first step, the H0 equals toH0: λ1 = λ2, λm = λ0, β1 = β2, βm = β0, which was tested ver-

sus the H1(H1: λ1 6¼ λ2, βm 6¼ β0, β1 6¼ β2, and λm 6¼ λ0).

2. In the second and third steps, normal λ and non-normal β and non-normal λ and normal β
were obtained, respectively [34].

From the excavator data, the value of R is 3.96, calculated by the STATA software (Eq 26).

R ¼ 2 ln L
�
l̂; β̂; Ẑ; ŷÞ � lnLðl̂0; b̂0; Ẑ0; 0

�� �

¼ 3:96 ð26Þ

For this value of R from the test, the p-value is 0.023, indicating the effect of “unobserved

Table 1. The GOF values of classical and frailty models for the excavator failure data.

Model Functions AIC BIC

Classic Weibull 171.43 175.622

Exponential 169.44 171.533

Gompertz 171.13 175.321

Frailty Weibull-frailty 169.48 175.7612

Exponential-frailty 171.03 175.2224

Gompertz-frailty 171.43 175.622

https://doi.org/10.1371/journal.pone.0236128.t001
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heterogeneity” on the excavator reliability. It can be concluded that reliability analysis in the

frailty model tends to the left side of the proposed algorithm in Fig 3.

Model fitting

BIC and AIC criteria were used as the statistics of the GOF test. These two criteria were relied

on the compare data from the maximum LR to select the appropriate model. These two criteria

were formulated as follows:

AIC ¼ � 2� lnðlikelihoodÞ þ 2� k ð27Þ

BIC ¼ � 2� lnðlikelihoodÞ þ lnðNÞ � k ð28Þ

From Eqs (27) and (28), k represents the number of parameters estimated, and N indicates

the number of observations (failures). The results of both criteria were analyzed together since

BIC is more conservative than AIC. Both criteria were recognized as estimators that are capa-

ble of fitting the model by calculating the negative value (−2 × ln(likehood)), and positive val-

ues (2 × k) for AIC and (ln(N) × k) for BIC. The model with the smallest values of AIC and

BIC criteria is the most appropriate model fitting [35–38].

Table 1 presents the values of AIC and BIC for classic and frailty models, and three func-

tions of Weibull, exponential, and Gompertz. In the meantime, the exponential function with

169.43 and 371.53 values for AIC and BIC, respectively, has the lowest value for the classic

model. It seems to be the best function to describe the failure behavior. In the case of the frailty

model, the lowest AIC value belongs to the Weibull function (i.e., 169.48). For the BIC (i.e.,

175.7612), the Weibull-Frailty function was selected as the appropriate model. It is due to the

values of Weibull, and exponential functions are close to each other, and the AIC has the low-

est value among other functions

Table 2 shows the parameter of the classical-exponential model as a constant value with a

mean coefficient of -4.601. From Table 2, the third column indicates the standard error value

of the calculated coefficient. The fourth column is the value of the z coefficient by considering

H0. As a result, the effect of z coefficient on the function equals to zero, as the corresponding

hazard rate equals to one. It can be seen in the fifth column of Table 2 that the p-value of the z-

test is zero at a confidence level of 0.05 in the fifth column. Given the zero value, in this case,

the corresponding H0 will be rejected. The last two columns also contain the values of the cal-

culated coefficient at the confidence level of 95% for subsequent analyses.

Table 2. The exponential function in the classical model for the excavator’s failure data.

Parameter Coef. Std. err. z P>|z| [95% Conf. interval]

Cons. -4.061 0.143 - 0.000 -4.881 -4.321

https://doi.org/10.1371/journal.pone.0236128.t002

Table 3. The parameter of λ in the classical-exponential model for the excavator’s failure data.

Parameter Coef. Std. err. z P>|z| [95% Conf. interval]

λ 0.010 0.001 7.000 0.000 0.007 0.013

https://doi.org/10.1371/journal.pone.0236128.t003
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Table 3 shows the value of the λ parameter in the classical-exponential model for the exca-

vator’s failure data. The λ is calculated from Eq (29) and obtained data from Table 2.

l ¼
1

expð� consÞ
¼ 0:010039851 ð29Þ

Also, Table 4 presents the parameters of the classical Weibull-frailty model for the excava-

tor’s failure data. From Table 4 and Eq (7), θ or the variance of the gamma function equals to

3.575 for the reliability analysis in frailty model. Therefore, the only remaining part of the reli-

ability analysis is to determine the Weibull function.

According to the p-shape parameter and the constant value (cons.), Eq (30) provides the

results of Weibull function, as one-parameter Weibull.

R ¼ expð� tpÞ ¼ expð� t2:817Þ ð30Þ

Eqs (31) and (32) were applied to achieve the parameters of α and β. To unify and convert

these parameters in a general form of the Weibull function (Table 5), results from Table 4 were

used to achieve the values of 2.817 and 30.565 for the parameters of α and β, respectively.

a ¼ p ¼ 2:817 ð31Þ

b ¼ exp �
cons
a

� �
¼ 30:565 ð32Þ

The reliability analysis of the excavator

The reliability analysis in the classic-exponential and the Weibull-frailty models is shown as

Eqs (33) and (34), respectively.

RðtÞ ¼ expð� 0:010039851� tÞ ð33Þ

RyðtÞ ¼ 1 � yln e�
t
bð Þ

an oh i� 1
y

ð34Þ

Table 4. The parameters of the classical Weibull-frailty function for the excavator failure data.

Parameter Coef. Std. err. z P>|z| [95% Conf. Interval]

Cons -9.634667 4.369024 -2.21 0.027 -18.1978 -1.071537

/ln_p 1.036 0.574 1.8 0.071 -0.089 2.161

/ln_the 1.274 0.853 1.49 0.135 -0.399 2.947

P 2.817 1.617 0.914 8.679

1/p 0.355 0.204 0.115 1.094

Theta 3.575 3.051 0.671 19.043

https://doi.org/10.1371/journal.pone.0236128.t004

Table 5. The parameters of the Weibull-frailty function for the excavator’s failure data.

Parameter Coef. Std. err. z P>|z| [95% Conf. Interval]

α 2.817 1.617 1.740 0.082 -0.353 5.987

β 30.565 13.562 2.250 0.024 3.983 57.147

https://doi.org/10.1371/journal.pone.0236128.t005
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After substituting the relevant values, we will have:

RyðtÞ ¼ 1 � 3:575ln e�
t

30:565ð Þ
2:817n oh i � 1

3:575

ð35Þ

From Eq (35), Fig 4 shows the reliability analysis for two models of the classic-exponential

and the Weibull-frailty. As shown in Fig 4, the failure value changes the reliability behavior. In

the reliability of less than 80%, the mine system with the failure rate shows a better perfor-

mance compared to the state without the failure rate. When the reliability is between 80% and

20%, the system performance decreases. The reliability of less than 20%, the mine system per-

forms better than the range of 20–80%. These changes indicate the effects of applying or ignor-

ing the impact of the failure rate in the reliability analysis and the behavior of the mine system.

Fig 4. The reliability analysis in the classic-exponential model compared to the Weibull-frailty-model.

https://doi.org/10.1371/journal.pone.0236128.g004

Table 6. RUL values during 80 operational hours of the excavator in the classical-exponential model.

Performance index t0 (h)
0 8 16 24 32 40 48 56 64 72 80

Reliability 1.000 0.923 0.852 0.786 0.725 0.669 0.618 0.570 0.526 0.485 0.448

RUL (h) 99.603 99.603 99.603 99.603 99.604 99.603 99.603 99.602 99.603 99.603 99.603

https://doi.org/10.1371/journal.pone.0236128.t006
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The RUL of the excavator

As mentioned in sub-section 2.3, Eq (24) was used to estimate the RUL of the excavator. The

results from subsections 3.2 and 3.3 showed that the reliability analysis in the classical model is

an exponential function. Thus, the RUL of the excavator would be as Eq (36).

RULðt0Þ ¼
∫
1

t0
expð� 0:010039851� t0Þdt

expð� 0:010039851� t0Þ
ð36Þ

Table 6 and Fig 5 show the calculated values of the RUL during 80 operational hours of the

excavator.

From Eq (24) in subsection 2.3, the RUL values depend on the reliability analysis and also

refer to Eq (35) for the Weibull-frailty model. Therefore, the RUL values of the excavator in

the Weibull-frailty model would be as Eq (37). Table 7 and Fig 6 show the calculated values of

the RUL during 80 operational hours of the excavator in the Weibull-frailty model. The reli-

ability analysis using the Weibull-frailty model revealed that the mine system would be

improved in the long term, and thereby, it does not require any maintenance for the time

being. In contrast, the classic-exponential model presents a chaotic situation of the mine

Fig 5. The plot of RUL values during 80 operational hours of the excavator in the classical-exponential model.

https://doi.org/10.1371/journal.pone.0236128.g005

Table 7. RUL values during 80 operational hours of the excavator in the Weibull-frailty model.

Performance index t0 (h)
0 8 16 24 32 40 48 56 64 72 80

Reliability 1.000 0.99 0.94 0.85 0.75 0.66 0.59 0.53 0.48 0.44 0.41

RUL (h) 1232.04 1237.62 1299.24 1429.96 1610.75 1817.79 2035.74 2256.66 2476.66 2693.98 2907.8

https://doi.org/10.1371/journal.pone.0236128.t007
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system, and it was not possible to make any decision accordingly.

RULðt0; aÞ ¼

∫1t0 1 � 3:575ln e�
t0

30:565

� �2:817
� �� �� 1=3:575

dt

�

1 � 3:575ln e�
t0

30:565

� �2:817
� �� �� 1=3:575

ð37Þ

Conclusions

The present study was designed to determine the RUL values of the excavator in the Sungun cop-

per mine. The conceptual framework relied on the reliability analysis in two classical and frailty

models. The frailty model was also used to evaluate the impact of unobserved environmental con-

ditions on the RUL values. The presence of heterogeneity was detected in the frailty model by

examining the data behavior through a statistical test. The data behavior was evaluated from Feb-

ruary to September 2018. Both applied models were fitted to the obtained data from 80 opera-

tional hours of the Komatsu PC-1250 excavator. Plotting the results from the reliability analysis

of two models demonstrated that the mine system with the frailty model performs better than the

classical model before reaching the reliability of 80%. When the reliability was ranged between

80% and 20%, the system performance decreased. The mining system showed a better perfor-

mance in the reliability of less than 20%. These changes indicate the impact of the failure rate in

the reliability analysis and the behavior of the mine system. As a result of plotting the RUL values,

the frailty model shows a coherent with the operational time of the excavator, caused the

improvement of the mine system, while the classical model demonstrates a sinusoid variation.
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S1 Data. Collected data in relation to the type of time between failures (TBF).
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Fig 6. The plot of RUL values during 80 operational hours of the excavator in the Weibull-frailty model.
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S2 Data. Weather conditions recorded for working hours of the Komatsu excavator from

the beginning of February 2018 to the end of September 2018.
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