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Abstract 
The recently described thraustochytrid diatom parasite Phycophthorum isakeiti has been isolated 

from the marine system of northern Norway (Hassett, 2020). Protist P. isakeiti’s ecological role, 

biodiscovery potential, and interactions with a possible diatom host, Pleurosigma sp. remain 

largely unexplored. Here I present culturing experiments to test whether P. isakeiti is an obligate 

parasite. To supplement this analysis, incidence of infection and division was explored in a P. 

isakeiti-Pleurosigma sp. model system and assessed as a function of time in the presence of 

standard and reduced silicate conditions. Nutrient analysis and cell counting experiments spanning 

15 to 31 days were conducted to investigate rates of free silicate uptake, free nitrate uptake, and 

the effect of P. isakeiti on rates of Pleurosigma sp. division and infection. Resin and ethyl acetate 

extractions were performed to characterize and screen for allelopathic chemicals involved in 

diatom defense or thraustochytrid parasitism. Lastly, bioassays were undertaken to detect whether 

any primary or secondary metabolites produced during host parasitism had biotechnologically 

relevant activities. Contrary to my hypothesis that P. isakeiti would be able to grow in the absence 

of its diatom host due to its presence in highly seasonal, light limited climates like northern 

Norway, I found no evidence to support a facultative strategy of P. isakeiti in a variety of tested 

medium. In coculturing experiments, the proportion of host Pleurosigma sp. cells dividing 

increased over time in the presence of the parasite, P. isakeiti. The silicate was depleted in media 

to a greater extent in parasitized cultures compared to non-parasitized cultures suggesting greater 

uptake of silicate in parasitized diatom populations. Two compounds, C17H27NO2 (4.2422 min; 

278.20923 m/z) and C23H16O2 (9.2357min, 325.12084 m/z), were detected through liquid 

chromatography mass spectrophotometry exclusively in Pleurosigma sp. cultures parasitized by 

P. isakeiti. Limited bioactivity was detected in anti-bacterial assays against gram-positive 

Staphylococcus aureus and in the inhibition of TNF-a production during the anti-inflammation 

screening. No bioactivity was observed in the anti-cancer or biofilm assays. Experiments and 

observations in this thesis characterize the role of silicate in the parasitism of Pleurosigma sp. by 

P. isakeiti. The present research is multidisciplinary, spanning the fields of ecology and 

biodiscovery to yield novel, fundamental knowledge on a newly described species, P. isakeiti and 

to describe the interaction with its host, Pleurosigma sp., an ecologically important diatom species. 

 
Keywords: Thraustochytrid, Pleurosigma, Silicate, Parasitism, Infection, Defense, Bioprospecting, 
Microalgae, Diatom, Marine, Coastal  
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1 Introduction 
Twenty percent of the photosynthesis on Earth is carried out by microscopic, eukaryotic 

phytoplankton known as diatoms (Field et al. 1998). These photosynthetic organisms are found in 

waters throughout the world wherever sufficient light and nutrients persist. The word Diatom 

stems from the Greek diatomos, referring to the symmetry of their characteristic two-part silica 

cell walls (Kooistra et al. 2007). Annually, photosynthesis by marine diatoms (Bacillariophyceae) 

generates the same amount of organic carbon as all terrestrial rainforests combined (Armbrust 

2009). Organic carbon photosynthesized by diatoms is consumed quickly in pelagic marine food 

webs (Okafor 2011).  Organic carbon from bacterial and phytoplankton is transferred to 

protozooplankton, mesozooplankton, and gelatinous predators where it becomes available to 

mesopredators (Vargas 2007), supporting fisheries in coastal waters (Sime-Ngando 2012). In the 

open ocean, most of the organic matter transformed by diatoms sinks from the surface, a process 

known as vertical flux, and thus becomes available for consumption by organisms living in deeper-

waters and remineralization (Spilling 2018; Rapp et al. 2018). A fraction of sinking organic matter 

eludes consumption and accumulates on the sea floor, (Armbrust 2009) where it is degraded and 

metabolized by a variety of microorganisms -- including thraustochytrids (Rapp et al. 2018). 

Thraustochytrids are protists present throughout the Earth’s oceans (Raghukumar 2002; Pernice et 

al. 2015). Novel molecular diversity of Thraustochytrids has been found in heterotrophic microbial 

communities in the coastal waters of Hawaii, southern China, Greenland, Norway, Japan, India, 

and throughout the littoral zones of the world (Naganuma et al. 2006; Damare and Raghukumar 

2008; Li et al. 2013; Liu et al. 2017). 

 

Phytoplankton production is, in part, controlled by parasitism (Chambouvet et al. 2008; Alves-de-

Souza et al. 2015). The focus of this thesis centers on the relationship between the first known 

thraustochytrid diatom parasite Phycophthorum isakeiti and its diatom host Pleurosigma sp. The 

observations presented in this thesis builds on the culturing and identification efforts of B. Hassett 

(2020). The unicellular, heterotrophic, eukaryotic parasite was isolated on the southern shore of 

Tromsøya, Norway with the diatom Pleurosigma sp. (Hassett 2020). Diatom hosts rely on silica 

for cell wall construction (Raven and Waite 2004), buoyancy (Gemmell et al. 2016), and key cues 

to initiate cell division (Dell’Aquila et al. 2017).  Consequently, I hypothesized that silicate 

concentrations may play a role in diatom susceptibility to infection by parasites like P. isakeiti. 
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Changes in local and global silicate will likely adversely impact diatom biomass and primary 

productivity (Smetacek 1998). Thraustochytrid parasites, such as P. isakeiti, may produce 

metabolites specifically to aid in the infection of Pleurosigma sp. Similarly, diatoms can synthesize 

defense compounds in order to defend themselves against parasites (Raghukumar 1992; Pohnert 

et al. 2000). Bioactive compounds have been isolated from both thraustochytrids and diatoms 

(Rowland et al. 2001; Grossi et al. 2004; Byreddy 2016). Extractions and bioassays can illuminate 

whether potentially novel products generated by the interaction between the P. isakeiti parasite 

and its Pleurosigma sp. host have biotechnological relevance. Bioassays can be used effectively 

to screen for cytotoxicity and other medical application potential of the primary and secondary 

metabolites extracted from cocultures (Haefner 2003). Undertaking bioactivity assays can prevent 

long arduous culture upscaling for compound isolation and detailed chemical analysis. By 

generating preliminary bioassay results, future bioprospecting efforts can narrow in on specific 

activities and assess their value, before committing valuable time prolonged isolation procedures. 

Bioactive compounds have been found in both diatoms (Bhattarai et al. 2009) and thraustochytrids 

(Xie et al. 2017), thus bioactivity screening of isakeiti and Pleurosigma sp. infected cocultures of 

Pleurosigma sp. with P. isakeiti are prime candidates for bioprospecting. 

1.1 Parasite Host Relationship  
Thraustochytrids are almost exclusively considered saprobes of decaying organic matter and 

opportunistic parasites of marine animals (Scholz et al. 2016). Reports of pathogenic species of 

thraustochytrids on marine mollusks (McLean and Porter 1982, Bower et al. 1989, Whyte et al. 

1994) seagrasses (Muehlstein et al. 1988) and flatworms (Schärer 2007) have raised interest in 

their relevance to ecosystems, especially under forecasted climate change. While parasitism of 

healthy diatoms is rarely reported, other protists closely related with P. isakeiti are regularly 

observed in other parasitic relationships with microalgae (Pan et al. 2017). While previous attempts 

to isolate P. isakeiti from its host have suggested it may be an obligate parasite, it is unknown if 

P. isakeiti has the capacity to live as a facultative parasite during winter seasons (Hassett 2020). 

Diatoms are well known to be highly infected in nature by stramenopilian zoosporic parasites 

(Rad-Menéndez et al. 2018) and parasitism among dense populations of the diatom Guinardia 

flaccida have been recorded as high as 65% (Tillmann et al. 2020) by Pirsonia and 

Cryothecomonas. 
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Thraustochytrid growth marginally decreases with chlorophyll a (Kimura et al. 2001, Raghukumar 

et al. 2001, Ueda et al. 2015). Marginal declines in chlorophyll a and thraustochytrid abundances 

may be explained by prevalent thraustochytrid parasitism (Hassett 2020). The identification of P. 

isakeiti-related sequences in sediment traps and at >200 m depth suggests diatom-associated 

vertical flux, as reported by Rapp et al. (2018). Parasites are known to physically follow their hosts 

in upwelling events (Gutiérrez 2016); however, their presence also suggests that the diatoms 

persist, survive, and scavenge throughout long dark winter months until spring-time blooms in 

Arctic regions (Hassett 2020). Thraustochytrid persistence within their diatom host population 

through extended seasonal variance suggest they may be facultative parasites, capable of a non-

parasitic mode of survival. 

1.1.1 Thraustochytrid Isolation 

Isolation of parasites, outside of the presence of their hosts, is essential to tracing the origin of 

chemicals detected in parasitic coculture by techniques like mass spectrometry. A common method 

for isolating thraustochytrid zoospores, the flagellate asexual spore stage, involves baiting 

environmental substrate with sterile pine pollen in sterile seawater (Gupta 2013). Thraustochytrids 

break the hard sporopollenin layer of the pollen grain using ectoplasmic net (EN) elements 

(Damare 2019). The protists colonize the pollen and get their nutrition from the pollen interior 

(Bennett et al. 2017). Once the thraustochytrid cells are visible under the microscope, a pollen 

grain is plated on antibacterial agar medium to promote growth. Antibacterial agents are added to 

limit common contaminants (Damare 2019).  

 

Within the coculture, compounds used by Pleurosigma sp. to defend against pathogens or P. 

isakeiti to parasitize are not distinguishable between the host and thraustochytrid because, without 

a juxtaposition of the profile of the metabolites the thraustochytrid produces when monocultured, 

no comparison with its host can be made. Determining the origin of primary or secondary 

metabolites extracted from a coculture requires monoculture analysis of both organisms, 

Pleurosigma sp. and P. isakeiti, individually.  
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1.1.2 Zoosporic Settlement 

Elucidating the lifecycle of thraustochytrids and how specific life history events are synchronized 

with the diatom host is necessary for understanding ecological dynamics and assessing possible 

biodiscovery avenues. Parasitic thraustochytrids lose their flagella on contact with their host 

(Bowler et al. 1989). Shortly after settlement in the host cell wall, prior to the complete 

development of the endoplasmic net (EN), bothrosomes form, and extracellular lytic activity 

interferes with the host cell walls (Bowler et al. 1989). The damaged cells are lysed, and the 

parasite zoospores enter holes in the cell wall (Figure 1). The ENs of the bothrosomes develop and 

can release lytic agents (Iwata et al. 2017). Some EN elements have been observed deep within 

the cytoplasm of host cells (Coleman and Vestal 1987).  

 

 
EN elements originate from one or more points on the thraustochytrid cell, generating a branched 

network of extensions associated with the bothrosome along the periphery of the cell (Bongiorni 

et al. 2005). The EN expands surface area of the thraustochytrid and secretes surface-bound 

Healthy
Chemotactic

Zoosporic attraction

Infection / degradation 
of chiten wall

1
2

3

4

5

6

Cell Penetration / 
zoosporic growth

Zoosporic cluster leaves 
collapsed diatom shell

Dead chiten shell

Figure 1 General sequence of P. isakeiti infection and proliferation among Pleurosigma sp. host. 1.) Healthy Pleurosigma sp. 
divide regularly and adhere to surfaces. 2.) Chemotactic zoosporic attraction brings Pleurosigma sp. host and parasite P. 
isakeiti close in proximity 3.) Parasite P. isakeiti attaches to the girdle band, valve or silica wall of host Pleurosigma sp. and 
penetrates the cell wall 4.) P. isakeiti, once attached to the cell wall, loses its whiplash flagellum, begins to form sporangium, 
zoospores begin to form, cleave away from their cohort and new whiplash flagellum gain motility 5.) Zoospores begin to 
stray away from their original host Pleurosigma sp. cell, seeking out new hosts. The original diatom host Pleurosigma sp. is 
fully lysed and is no longer viable. Zoospores can assume an amoeboid vegetative form 6.) Dead Pleurosigma sp. cell 
remains, while the sporangium continues to occupy the host cell while zoospores move on to infect new hosts. 
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hydrolytic enzymes enabling the digestion of organic material (Harel 2008). The EN attaches to 

surfaces and penetrates organic particles. Once entering the host by way of attachment and 

penetration of the girdle belt, P. isakeiti produces oil globules, forms sporangia, destroys 

chloroplasts, and eventually ruptures the entire cell wall structure, where upon zoospores are 

diffused and move freely among the host community (Hassett 2020). Secondary metabolites that 

relax the cell wall structure may be at play in zoosporic settlement of thraustochytrids on their 

hosts (Iwata 2017).  

 

The evolutionary history of the bothrosome – a characteristic feature of thraustochytrids – remains 

unclear (Iwata and Honda 2018). Zoospore transformation into a vegetative cell in Schizochytrium 

aggregatum leads to the disappearance of the whiplash flagellum during zoospore attachment and 

settlement. After attachment, the bothrosome, emerging from the anterior-ventral pole, draws 

closer to the Golgi (Iwata and Honda 2018). Iwata et al. (2017) described actin co-locating with 

the bothrosome within the EN, implying that actin filaments tug the endoplasmic reticulum toward 

the bothrosome and instigate evagination of the membrane within the ENs (Tsui et al. 2009; Iwata 

et al 2017). 

 

Freshly encysted zoospores are 4 to 5 mm in diameter (Bongiorni et al. 2005). Two different types 

of development have been observed – zoosporic formation and an amoeboid mode (Fossier 

Marchan et al. 2018).  In zoosporic formation, the zoospores appear first in the outer margins of 

the zoosporangia (Bahnweg and Sparrow 1974). Cleavage of zoospores away from the sporangia 

occurs quickly and an empty sporangium sac is left behind as zoospores move through tears in the 

host’s cell wall via the whiplash flagellum (Appendix 1; Schnepf et al. 1978; Dick 2001). Release 

of the zoospores takes about a minute and they can persist up to a month (Bongiorni et al. 2005).  

 

In the amoeboid mode, motile zoospores transform to vegetative cells and undergo binary fission 

(Bower et al. 1989). Vegetative stages of thraustochytrids are globulose and sub-globulose single 

cells ~12-15 μm found growing on substrata epibiontically (i.e., living on the surface of another 

organism) (Bower et al. 1987). Thalli begin to assume an amoeboid shape about 30 μm in length 

and 20 μm in width (Honda et al 1999; Bongiorni et al. 2005). “Prominent, hyaline, and sheath-

like ectoplasm” with dense granular cells transform quickly back into the same dimensions as 
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normal zoosporangia (Bongiorni et al. 2005). The morphological ambiguity and transformation of 

thraustochytrid zoospores into a vegetative state, or ameboid mode, suggest a possible means of a 

non-parasitic existence.  

1.1.3 Associations with Bacteria 

Spring blooms cause succeeding microorganismic communities that cohabitate with diatoms 

enhancing and controlling their population growth (Garvetto et al. 2018). Open-ocean diatoms can 

live with nitrogen-fixing cyanobacteria under their silicate cell wall, while others fasten to silicate 

spines protruding out of the diatom cell walls. Observations have reported bacteria existing within 

the outside of the third and fourth membranes of freshwater diatom plastids (Schmid 2003). Such 

a coexistence could have evolved because metabolites are shared, both actively and coincidentally, 

across kingdoms in the diluted marine realm. Transferability, reliability, and redundancy of 

metabolic components among different environments likely predicts whether a cross-kingdom 

interaction is opportunistic or obligate symbiosis (Armbrust 2009).  

1.1.4 Taxonomy of Thraustochytrids 

The mode of production of zoospores varies between genera and forms the major taxonomic 

criterion distinguishing thraustochytrids (Fossier Marchan et al. 2018). As a group, the 

labyrinthulomycetes are saprotrophic, or less frequently, parasitic stramenopilan protists, typically 

occupying marine ecosystems. The taxonomic placement of labryinthmycota and thraustochytrids 

has been an ongoing question (Cavalier-Smith, 1998). F.K Sparrow Jr. first described 

thraustochytrids in Woods Hole, Massachusetts when studying the role of fungi in the 

decomposition of organic complexes in the ocean (Sparrow 1936). Since then, thraustochytrid 

lineages have been proposed to be both fungal and algal (Leyland 2017). Despite their past 

taxonomic association with fungi, thraustochytrids diverge from members of the Kingdom Fungi 

in myriad ways. Thraustochytrid cell walls are multi-lamellate and consisting of sulphated 

polysaccharides circular scales, rather than of chitin microfibrils (Darley et al. 1973; Chamberlain 

1980; Chamberlain and Moss 1988;). Thraustochytrids evolutionarily cluster closer with diatoms 

than with fungi (Baldauf 2003); however, thraustochytrids are genetically and ecologically 

distinctive from algae. Most fundamentally, algae rely on photosynthesis for energy while 

thraustochytrids are saprotrophic, absorbing and metabolizing nutrients for their core function 
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using a system of endoplasmic nets, gliding bodies and a distinct organelle known as the 

bothrosome (Song et al. 2018).   

 

Leander and Porter (2001) broadly characterized thraustochytrids as non-interconnected single 

cells with ENs and zoosporic reproduction. Thraustochytrid cell wall composition also suggests 

that the thraustochytrids and labyrinthuloids may form two distinct groups (Bahnweg and Jäckle 

1986). The thraustochytrid cell wall consists of mostly carbohydrate (Darley et al 1973), while 

species of Labyrinthuloides build cell walls of mostly fucose (Bahnweg and Jäckle 1986). Honda 

et al. (1999) proposes the Labyrinthulomycota consists of two phylogenetic groups, a Labyrinthula 

Phylogenetic Group (LPG) and Thraustochytrid Phylogenetic Group (TPG). Leander and Porter 

(2001) distinguishes Labyrinthulomycota in three groups: the labyrinthulids, the thraustochytrids, 

and the labyrinthuloids evidenced with small subunit ribosomal ribonucleic acid (SSU rRNA) 

sequence data (Pan et al. 2017; Bennett et al. 2017). 

 

Phylogenetic analysis confirmed three broad lineages of the compared taxa, namely the 

labyrinthulids, aplanochytrids, and the thraustochytrids (Honda et al. 1998; Leander and Porter 

2001). The phylogenetic tree (Pan et al. 2017; Figure 2) illustrates the placement of P. isakeiti, 

within the thraustochytrids, among the major polyphyletic genus Thraustochytrium and the 

monophyletic Schizochytrium genus. Similar observation had been made previously by Honda et 

al. (1999). Binary division, the amoeboid stage, or division of zoosporangia could have evolved 

within the thraustochytrids independently, making the classification based exclusively on 

morphological characters challenging (Sparmann et al. 2004). Working with a taxonomically 

complicated organism clouds the implications of measured effects – since morphology and life 

strategies within the thraustochytrids are not easily assigned to sections of a phylogenetic tree 

(Damare and Raghukumar 2016).   

 

Thraustochytrid P. isakeiti, the focus of the present work, was partially identified by observation 

of ectoplasmic threads penetrating diatoms frustules. The parasite reproduced through both binary 

division inside and outside the diatom, and epibiotically with biflagellated zoospores. Amorphic 

cells were observed migrating across the diatom cell wall at the girdle band. Bothrosomes, small 

absorption organelles, were also detected. Upon phylogenetic analysis of DNA sequences, the 
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protist clustered within the Thraustochytriidae on a novel branch within the environmental 

sequence clade Lab19 (Figure 2; Pan et al. 2017; Hassett 2020) 

 
Figure 2 Taxonomic placement of thraustochytrid P. isakeiti among the labyrinthulomycota shown in red; Groups containing host-
associated sequences are indicated by * (Adapted from Pan et al. 2017) 

1.2 Role of Silicate Limitation on Parasitism 
While considerable attention has been given to the relationship between iron levels in the ocean 

and diatom growth (Roncel et al. 2016), other elements like nitrogen (N), phosphorus (P), and 

dissolved silicate (SiO2) are also essential to diatom proliferation (Amo and Brzezinski 1999).  

Nearly all diatoms show a clear dependence on silica for growth and normal metabolism (Martin-

Jézéquel and Lopez 2003). Diatoms take up dissolved SiO2 and transform it into an amorphous 

form known as biogenic silica to construct cell walls (frustules) – their primary defense against 

antagonists (Smetacek 1998). If concentrations of dissolved SiO2  are low or depleted in the 

environment, diatom growth is limited and other phytoplankton species less reliant on SiO2 bloom 

in their place (Dutkiewicz 2020). Silicate is crucial for cell division and healthy immunosystems 

of diatoms (Smetacek 1998).  
 

Evolutionarily, the use of silica as a cell wall material prevented photosynthetic metabolism from 

becoming dominated by cell growth. Diatom communities evolved with the constant need to 

replenish silica, thus linking cell division and silica concentration (Darley & Volcani 1969); 
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however, under parasitism, it is unclear what role silicate has in cell division. The diatom cell wall 

evolved as a waste management mechanism for silica metabolism and was ultimately retained due 

to other advantages (Medlin 2002). Eventually, silica catalyzed diatom metabolic activities by 

providing surfaces with bioactive compounds (Lechner and Becker 2015).  

 

Sensing and transport of silicic acid are key aspects of understanding diatom SiO2 utilization 

(Hildebrand 1998). At low silicic acid concentrations (less than 30 μM), transport into the cell 

occurs via silicic acid transport proteins, and at higher concentrations, silicate enters the cell 

through diffusion (Hildebrand 1994). The transport role of the silicic acid transport proteins is 

relatively insignificant under conditions with adequate silicic acid. The primary role of silica 

transport proteins is to sense silicic acid levels concentrations and establish whether the cell can 

undertake cell wall formation and division processes (Shrestha and Hildebrand 2015). Modelers 

examining silicate in diatoms predict synthesis of valves exclusively during growth II, interphase, 

and metaphase, while setae and girdles are synthesized during growth phase I (Lee et al. 2014). 

Stress from reduced silicate results in a loss of setae, followed by thinning of valves in successive 

later generations until a minimum silicate cell quota is achieved to initiate division; after this point, 

the duration of growth phase II is prolonged, and growth is silicate-limited (Flynn and Martin-

Jézéquel 2000) Zoosporic parasitism, at the cell wall, could disrupt silicate sensing silicic transport 

proteins, potentially sending altered signals prompting division. 

 

Primary production in the ocean is limited by upwelling dissolved silicate (Smetacek 1998). 

Diatom blooms initiate a cascade of life; however, this cascade cannot be initiated without 

sufficient silicate to commence binary division. Nitrogen and phosphorus discharged into coastal 

zones have globally increased 2.5X and 2.0X (Oelsner and Stets 2019), respectively, from nitrogen 

fertilizer and phosphate mining (Bouwman et al. 2009). Global silicate in the ocean has been 

decreasing in recent years (Wasmund et al. 2013). Dramatic changes in nutrient loads and 

composition (NO3:SiO2:P ratios) entering coastal seas will have lasting effects on coastal 

ecosystems (Humborg et al. 2000) and limit the total primary production output of diatom blooms.   

 

Around the world, dissolved biogenic silica moves to estuaries by riverways (Tréguer and Rocha 

2013). Inputs of silicate into the ocean have been declining recently as river dams have hindered 
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natural discharge (Conley et al. 1993; Gupta et al. 2012). Diatom growth, from N and P induced 

eutrophication and consumption of fixed biogenic silica through sedimentation from the water 

column (Billen et al. 1991) could explain observed reduction in silicate (Ittekkot et al. 2000). The 

stoichiometric changes in nutrient elements (NO3:SiO2) result in observable changes in 

phytoplankton populations in marine and freshwater water (Admiral et al. 1990; Ittekkot et al. 

2000; Choudhury and Bhadury 2015; Käse and Geuer 2018).  

 

Marine diatoms have been ecologically successful despite their additional requirement for silicate; 

however, silicate limitation may offer some advantages to diatoms. Nitrogen and silicate 

metabolism models in diatoms (Flynn and Martin- Jézéquel 2000; Flynn et al. 2012) suggest 

silicate-starved diatoms recover faster than nitrogen-starved diatoms upon nutrient resupply. 

Diatoms descended from nitrate starved cultures never catch-up to cultures descended from silicate 

starved populations when both groups are simultaneously supplied with nutrients pulses (Flynn 

and Martin-Jézéquel 2000). The more time lapses between nutrient supply and growth in the 

nitrate-starved cells, the higher the proportion of nutrients are taken in by descendants of silicate 

starved diatoms. In the model, the silicate-starved cells took in more than three quarters of all the 

nutrients added while nitrate-starved diatoms consumed the remainder. Silicate limitation may 

allow diatoms to respond faster than other phytoplankton to nutrients in upwelling waters in the 

euphotic zone (Rocha and Passow 2004). 

 

Determining the infection rate of parasite P. isakeiti under standard and reduced silicate culturing 

conditions may shed light on the role of silicate in the primary metabolism of diatom Pleurosigma 

sp. under infection pressures. Measuring the free silicate and nitrate uptake in healthy and 

parasitized cultures of Pleurosigma sp., can further characterize the host response and its effect on 

critical cellular functions related to parasitism and nutritional uptake. While growth rate of 

thraustochytrids have been recorded (Jain et al. 2005), little information exists about host growth 

under infection pressures from thraustochytrids, warranting further time-series experiments of host 

infection and growth.  
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1.2.1 Silica Cell Wall of Diatom Pleurosigma sp. 

Diatom silicate utilization sustains debate (Simpson and Volcani 1981; Sumper Kröger 2002; 

Brunner et al. 2004; Bondoc et al. 2016). Defense is the primary suggestion (Pančić et al. 2019). 

Silicate metabolism and cell wall production was retained in diatoms due to the tensile strength of 

silica polymers and the protection it offered against enzymatic attack (Hamm et al. 2003). In a 

hypothetical intervening or temporary terrestrial habitat (Harwood et al. 2017), a silica wall could 

prevent desiccation thus allowing cells to enter a resting state. Raven and Waite (2004) have 

concluded that the externalization of silicate to the cell wall accelerated sinking, helping to move 

parasitized cells away from the population, ensuring species survival (Simms et al. 2006).  

 

Ancestral diatoms accumulated silica in the endoplasmic reticulum, where it was polymerized and 

packed into acidic vacuoles, where it would be eventually extruded from the cell (Sims et al. 2006). 

Consequently, diatoms developed a need to replenish their internal silicate, explaining the 

observed absolute silica requirement diatoms have for division (Darley and Volcani 1969). The 

silicified two-part cell walls of diatoms originate in intracellular compartments precipitated from 

supersaturated Si(OH)4 where they are externalized (Lechner and Becker 2015). Whatever the 

initial evolutionary advantage may have been, silicification increases density and sinking rates 

which can be offset by the regulation of solute content according to resource supply. Parasitism 

moves cells into resource supply conditions causing them to sink away from uninfected surface 

populations. If the earliest silicified diatoms were planktonic, increasing the sinking rate may have 

been an original defensive mechanism against parasites (Raven and Waite 2004). 

 

Drawing nutrients from diatom hosts via the EN element exposes thraustochytrids to the defense 

chemicals of algae (Raghukumar 1990; Sholtz et al. 2017). Thraustochytrids have been observed 

growing directly on the diatom cuticle, avoiding penetration of epidermal cells, and 

circumnavigating algal antagonism. Diatoms of the Arabian Sea harbor thraustochytrid Ulkenia 

visurgensis (Raghukumar 1986). The protist parasite failed to infect healthy cells, rather it dwelled 

on senescent cultures. Thraustochytrid parasite Schizochytrium has been observed disintegrating 

the diatom cell wall; however, it could not be isolated with pine pollen-sea water medium for 

further study (Raghukumar 1986).  
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1.2.2 Cell Cycle of the Host Pleurosigma sp. 
Pleurosigma sp., studied in this thesis, is a benthic diatom.  Pleurosigma sp. cells are several times 

longer than they are wide. The chromatophores appear as bright green ribbons under the 

microscope. The central nucleus forms the core of the cytoplasm. During anaphase, the daughter 

chromosomes congregate at the poles of the spindle and daughter chromosomes move farther 

apart. In telophase, the daughter nuclei organize. Similar to other observations (Subrahmanyan 

1945), Pleurosigma sp. cytokinesis has been observed commencing during anaphase as a small 

cleavage furrow slices the cytoplasm into two parts along the valvar plane.  

1.3 Silicate and Nitrate Uptake Under Pressures of Parasitism  

The main driver of composition, diversity, and biomass of diatoms in coastal waters is nitrogen 

concentration and its temporal and spatial changes (Kafouris et al. 2019). While nitrogen is the 

major driver of diatoms in the ecosystem, silicate is also an essential inorganic nutrient necessary 

for growth. Most research on diatom metabolism has focused on nitrogen limitation; however, 

increasing NO3:SiO2 ratios in the environment may results in widespread silicate limitation (Gilpin 

et al. 2004).  

 

Consensus has built around the proposition that NO3:SiO2 ratios less than one, result in N 

limitation of diatom biomass accumulation and ratios greater than one, result in silicate limitation 

(Levasseur and Therriault, 1987; Dortch and Whitledge, 1992). The assumption of an approximate 

1:1 N: SiO2 ratio in diatom biomass (Officer and Ryther, 1980; Egge and Aksnes, 1992; Flynn and 

Martin-Jézéquel, 2000) was generally accepted after Brzezinski (1985) compared the N:SiO2 ratios 

of 27 different diatom species.  

1.4 Parasitism as a Bioprospecting Strategy 

The suspected scavenging and nutritional cycling roles of thraustochytrids suggest they may 

synthesize interesting extracellular enzymes (Raghukumar et al., 1994; Sharma et al. 1994; Bremer 

and Talbot 1995; Raghukumar 2008). Degradation and penetration of the diatom cell wall may be 

the result of thraustochytrid enzymatic activity synthesized by P. isakeiti during opportunistic 

encounters with diatoms like Pleurosigma sp. Nagano et al. (2010) detected cellulolytic activity in 

the genera Botryochytrium, Oblongichytrium, Parietichytrium, Schizochytrium, Sicyoidochytrium, 
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Thraustochytrium, Aplanochytrium and Ulkenia, but not in Aurantiochytrium. Taoka et al. (2009) 

did not observe any cellulolytic activity in Thraustochytrium, Schizochytrium and 

Aurantiochytrium. Other hydrolase activities have been detected in thraustochytrids, including 

agarase, amylase, proteinase, gelatinase, urease, lipase, α-glucosidase, phosphatase and xylanase. 

Chitinase, carrageenase, alginate lyase, and pectinase have been found less frequently 

(Raghukumar et al. 1994; Sharma et al. 1994; Taoka et al. 2009; Kanchana et al. 2011; Devasia 

and Muraleedharan, 2012). Kanchana et al. (2011) discovered a lipase with optimum activity at 

alkaline pH showing biotechnological potential as an additive in detergent, while Brevnova et al. 

(2013) patented cellobiohydrolase type I derived from Schizochytrium aggregatum (Fossier 

Marchan et al. 2018). Clearly, some thraustochytrids, demonstrate enzymatic function, and P. 

isakeiti has visible penetration capacity against its Pleurosigma sp. host's cell wall (Hassett 2020), 

suggesting its prospect as a bioactivity compound producing organism. 

 

Just as a thraustochytrids may use novel extracellular enzymes to absorb nutrients and invade 

hosts, diatoms may produce its own compliment of bioactive molecules to defend themselves. 

Both organisms are known to produce polyunsaturated fatty acids (PUFAs) (Li et al. 2014; Patel 

2020). This coevolved mechanism of extracellular predation and defense may characterize the 

relationship between P. isakeiti and its host Pleurosigma sp.; however, determining the precise 

biochemical relationship associating the diatom and its host remains outside the scope of this 

thesis. The aim, presented here, is to detect whether any bioactive enzymes or metabolites involved 

in P. isakeiti invasion of Pleurosigma sp. are bioactive and potentially biotechnologically relevant.  

 

Bioactive polysaccharides, synthesized by marine unicellular algae, released into the surrounding 

medium have been used in a myriad of technical applications (Rasposo et al. 2013). Diatoms, 

known to defend themselves against copepods, also produce bioactive metabolites to compete for 

resources and defend themselves from other predators (Pohnert 2005; Leflaive and Ten-Hage 

2009). Algae have coexisted longer with protists and fungi than with copepods (Knoll et al. 2006; 

del Campo et al. 2016;) and have been exposed to longer periods of extracellular competition with 

protists like P. isakeiti.  
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Triacylglycerides (TAGs) are typically synthesized during nutrient starvation because they 

constitute important energy storage compounds that prolong diatom cell survival in unfavorable 

conditions (Abida et al. 2013). Alternatively, oxylipin production by diatoms can be induced as a 

defense mechanism against their principal predators, crustacean copepods (Cadwell 2009; Fontana 

et al. 2007). Oxylipin production by diatoms also constitutes a system for allelopathic 

communication between diatom cells (Meyer et al. 2018), a cellular cross-talk mechanism thought 

to be essential to such marine communities (Abida et al. 2013). The cytotoxic effects of some of 

these diatom-derived aldehydes were also found in organisms belonging to different phyla ranging 

from bacteria to marine invertebrates (Adolph 2004). Furthermore, some molecules may even be 

generated as the result of cooperative chemistry between host and microbial photo-symbionts or 

bacterial symbionts. For example, it was demonstrated in Dysidea avara that the level of 

metabolites produced was dependent on co-locating bacteria (De Caralt 2013). It is therefore 

crucial to consider a variety of planktonic organisms for bioprospecting, rather than narrow the 

search down to a specific clade or size fraction (Abida et al. 2013). 

1.5 Bioassays of Diatoms and Thraustochytrids 

Numerous examples of case studies that initially started with ecological investigations of 

microorganisms have resulted in biotechnological leads as a result of discovery of new compounds 

with specific industrial or research applications (Lewis et al. 1999). Marine bioprospecting aims 

to uncover and commercialize novel products found in the sea (Svenson 2013). The ocean 

represents a highly competitive environment with longer evolutionary history and under-exploited 

biodiversity in comparison to terrestrial environments. Marine environments are characterized by 

constant dilution thus requiring organisms to produce highly potent bioactive molecules to be 

effective against antagonists, competitors, prey, hosts, and parasites making marine organisms 

suitable targets for bioprospecting research (Abida et al. 2013). Secondary metabolites are not 

strictly obligatory for survival, growth, development, or reproduction (Liu et al. 2010). Techniques 

have been developed to extract and isolate bioactive secondary metabolites efficiently (Abida et 

al 2013). Bioassay guided purifications detect bioactivity to inform the isolation process and 

reduce unnecessary characterization of compounds unsuited to target research areas (Svenson et 

al. 2013).  
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Thraustochytrids have piqued the interest of bioprospectors in recent years (Sholz et al. 2016). 

Thraustochytrids are increasingly being used to produce long chain omega-3 or omega-6 fatty 

acids, such as docosahexaenoic acid (Zhou et al. 2010), eicosatetraenoic acid, or arachidonic acid 

for nutraceutical, food additive, and aquaculture industries (Gupta et al. 2012). Carotenoids, 

including β-carotene, astaxanthin, zeaxanthin, cantaxanthin, phoenicoxanthin, and echinenone 

have been found in thraustochytrids and have been demonstrated to be useful in skin protection 

and the inhibition of adverse processes induced or mediated by solar ultraviolet radiation 

(Corinaldesi et al. 2017). While thraustochytrids have demonstrated their potential as research 

organisms, understanding their role in fundamental marine ecological processes may lead to 

unforeseeable discoveries. 
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2 Objectives & Hypotheses 

2.1 Objectives 

The overall objective of this thesis is to study the relationship between the parasite P. isakeiti and 

its diatom host, Pleurosigma sp. P. isakeiti may disintegrate the silica cell wall enzymatically or 

restrict host silica uptake, thin the host cell walls (Figure 3), prior to zoospore settlement. This 

thesis is comprised of five primary objectives to describe and document the novel diatom parasite 

and its means of infection: 

 

To determine whether P. isakeiti is an obligate parasite or whether it can live as a facultative 
parasite saprotrophically without its host.  

1. To determine the proportion of cells under division and infection by thraustochytrid 

parasite P. isakeiti under standard and reduced silicate culturing conditions among host 

Pleurosigma sp. cells. 

2. To investigate how the proportion of dividing host diatom Pleurosigma sp. cells is affected 

by SO2 and NO3 uptake in healthy and parasitized cultures.  

3. To detect chemical indicators of parasitism or defense. 

4. To perform bioassays to understand whether any primary or secondary metabolites 

produced under parasitism have biological activities with potential medical application.  

2.2 Hypotheses 

Hypothesis 1: P. isakeiti is an obligate parasite of diatom Pleurosigma sp. 

Hypothesis 2: (A) The infection rate of Pleurosigma sp. by P. isakeiti increases under reduced-

silicate treatment, and (B) the rate of division decreases under reduced silicate conditions.  

Hypothesis 3: (A) The division rate of Pleurosigma sp. increases as uptake of silicate 

decreases in parasitized Pleurosigma sp. cultures, and (B) available nitrate decreases over time. 

Hypothesis 4: Chemical variance can be detected among healthy and parasitized Pleurosigma 

sp. cultures. 

Hypothesis 5: Extracts from parasitized Pleurosigma sp. cultures have measurable 

effectiveness in cytotoxicity assays. 
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2.3 Testing the Null 

Each hypothesis has been evaluated by testing the null hypothesis using a variety of experiments: 

 

1) To test whether P. isakeiti is not an obligate parasite, culturing experiments were performed to 

isolate P. isakeiti. After culturing experiments, and detecting the presence of bacteria, follow-up 

16S sequencing was performed to identify other prokaryotic organisms found associated with the 

parasitic protist and its diatom host.  

 

2) To determine whether there was no effect of silicate on the infection and division rates of 

Pleurosigma sp. – time-series counting experiments were conducted (Figure 4). Observations were 

made of healthy, parasitized, dividing and dead Pleurosigma sp. cells and recorded. Observations 

were made by counting 500 living Pleurosigma sp. cells and recording the proportion of 

parasitized to healthy cells. Dividing cells were recorded as a subset of the healthy cells. Dead 

cells were recorded independently of the proportion of healthy to parasitized cells and the dividing 

cells. Each sample was counted twice, and the values were averaged. Counts were taken at each 

time-point using three biological replicates. The time-series experiment was performed over 31 

days. The infection rate of cultures using standard and silicate-reduced media were compared 

(Figure 3). 
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Figure 3 Hypothesized impact of reduced silicate and parasitism on diatom buoyancy 
2) To determine whether there was no effect of silicate on the infection and division rates of 

Pleurosigma sp. – time-series counting experiments were conducted. Observations were made of 

healthy, parasitized, dividing, and dead Pleurosigma sp. cells and recorded. Observations were 

made by counting 500 living Pleurosigma sp. cells and recording the proportion of parasitized to 

healthy cells. Dividing cells were recorded as a subset of the healthy cells. Dead cells were 

recorded independently of the proportion of healthy to parasitized cells and the dividing cells. Each 

sample was counted twice, and the values were averaged. Counts were taken at each time-point 

using three biological replicates. The time-series experiment was performed over 31 days. The 

infection rate of cultures using standard and silicate-reduced media were compared. 

 

3) To evaluate whether the uptake of silicate decreases in parasitized cultures of Pleurosigma sp., 

free silicate and nitrogen was measured in concert with the same counting procedure as described 

in (2) over a two-week period. Nutrient analysis, like the counting experiments, was performed in 

triplicate biological sampling and triplicate machine replicates. Non-parasitized healthy 

Pleurosigma sp. cultures were compared to parasitized Pleurosigma sp. cells. NO3:SO2 was plotted 

over time to compare the parasites physiological impact on its host.  
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4) To test whether measurable chemical differences in parasitized and healthy culture was 

detectable, extracts were made from both the parasitized and non-parasitized Pleurosigma sp. 

cultures, as well as media controls and were analyzed using a mass spectrometer. Principal 

component analysis was performed to identify the primary chemical signatures driving the 

differences between the three samples.  

 

5) To test whether parasitized Pleurosigma sp. cultures produce bio-active molecules effective in 

cytotoxic and anti-cancer screening, two primary experiments were conducted. Furthermore, anti-

inflammation, anti-oxidant, and biofilm assays were also conducted using extracts from parasitized 

and non-parasitized Pleurosigma sp. cultures and media controls.  

3 Materials and Methods 

3.1 Culturing 

The study organisms were provided by B. Hassett (UiT The Arctic University of Norway). Non-

parasitized Pleurosigma sp. cultures and cocultures of Pleurosigma sp. with thraustochytrid P. 

isakeiti were maintained in the extraction laboratory at Marbio– an analytical platform for natural 

products in Forskingsparken, in Tromsø, Norway. The cultures were held at 10 °C on a 10-14-

hour light cycle. Cultures were raised and maintained in Sigma-Aldrich F/2 media (Guillard 1975). 

The cocultures were periodically shaken for 30 minutes every two days.  

3.1.1 Agar Cultures 

The purpose of further isolating the thraustochytrid parasite in absence of its Pleurosigma sp. host 

was to 1) determine if the P. isakeiti is an obligate or facultative parasite, and 2) to compare with 

healthy diatom and coculture LC-MS data to trace the origin of chemical variances between host 

and parasite. Isolation of the thraustochytrid was attempted using six different media (Table 1; 

Rosa et al. 2011). Agar and filtered seawater were used as controls. Each media was plated with 

and without kanamycin and penicillin.  
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Table 1 List of media ingredients for isolation of thraustochytrid P. isakeiti into monoculture 

Components Media Composition (% w/v) 

 GPYb Hb KMVc SSAd MCd MC-BHB 

D-Glucose; Sigma D9434-1KG 2.00 0.20 0.1 - 0.20 0.10 

Peptone; Sigma 82303-5KG-F 1.00 - 0.01 - 0.10 0.05 

Yeast extract; Sigma 09182-1KG-F 0.50 0.02 0.01 - 0.10 0.05 

Monosodic glutamate; Sigma G1626-500G - 0.05 - - 0.10 0.05 

Gelatine hydrolysate; Sigma G0262-500G - - 0.10 - 0.20 0.10 

Corn-steep liquor –a; Sigma C4648-500G - - - - 0.10 0.05 

Artificial sea salt; Sigma S9883-1KG 1.75 1.75 1.75 1.75 1.75 1.75 

Horse serum; Sigma H1270-500ML - - - 1.00 - - 

Brain–heart broth; Sigma 53286-500G -  -  -  -  - 1.75 

Agar; VRW 20767.298 2.00 2.00 1.20 1.20 2.00 2.00 
GPY glucose-peptone-yeast extract medium, H Honda medium, KMV 

modified Vishniac’s medium, SSA serum seawater agar medium, MC 

Mar Chiquita medium, MC-BHB Mar Chiquita—brain heart broth 
a Concentration expressed as % (v/v) 
b Media used for Aurantiochytrium limacinum SR21 (Honda et al. 1998) 
c Current media used for thraustochytrids (Porter 1990) 

 

3.1.2 Characterization of Fungal and Bacterial Strains 

To determine whether any contaminants or partner associated microbes were present in the 

cocultures, growth strains were sequenced. The internal transcribed spacer (ITS) region of the 

nuclear ribosomal repeat unit was used to identify potential fungi while the 16S rRNA gene 

sequence was used for potential bacteria strains. These methods are quite similar, involving three 

general steps; polymerase chain reaction (PCR), purification of the amplicon, and finally 

sequencing. This analysis is possible with a small sample size and is cost-effective. 

3.1.2.1 PCR 

Firstly, a small amount of the organisms to be characterized were collected using a swab from the 

KMV and Honda agar plates. Then amplification of the DNA using a PCR reaction was conducted 

following the procedure in the DreamTaq kit (Thermo Scientific). Briefly, a 25 μl reaction mixture 
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was prepared using 12.5 μl of the 2x DreamTaq Master Mix (Thermo Scientific, Cat no K1081/82), 

1 μl of both forward and reverse primers (either  ITS4 and ITS5 for fungi or 27F primer and 1429R 

primer for bacteria (Table 2)) and 10.5 μl of double distilled water. This mixture was then cycled 

through the scheme outlined in Table 3 for amplification in an Eppendorf AG 22331 PCR 

thermocycler. The PCR product was determined through gel electrophoresis. The gel was prepared 

using a 1% solution of agarose (1 g, Life technologies, UltraPureTM Agarose, Cat # 15510-027) 

with 1x TBE buffer (100 ml, Life technologies, Cat # 15581-044) mixed with  10 μl of 10.000x 

GelRed (BioTium, Cat # 41003). Gels were left to set up in trays before loading with 6 μl of 1kb 

ladder solution (Life technologies, Cat # 10787-018.) and 6 μl of the amplified sample. Gels were 

run for 15 min at 180 V in the gel electrophoresis system (OWI separation system Inc, B2 model). 

Finally, gels were exposed to ultraviolet light and photographed (GeneFlash®, SYNGENE Bio 

imaging) to determine the success of the amplification. 

 

Purification of the amplified PCR sample was conducted following manufacturer's instructions 

and the QIAquick PCR Purification Kit (QIAGEN, Cat no 28104). The concentration and quality 

of the purified PCR products was measured using the NanoVue® (NanoVue PlusTM, GE Healthcare). 

The final stage of sequencing was performed using a mixture of  1 μl of BigDye 3.1, 2 μl of 5x 

sequencing buffer, 1 μl of the forward or reverse primer for fungi or bacteria (Table 2) and 6 μl of 

double distilled water together with the PCR sample swab. This new mixture was run through the 

cycle outlined in Table 3 in the PCR machine Eppendorf AG22331.  

Table 2 Fungal and Bacterial Primers for PCR Reactions 

Organism Primer Pair Sequence Product 

Fungi ITS5 5’-GGAAGTAAAAGTCGTAACAAGG-3’ ~500-1100bp 

Fungi ITS4 5’-TCCTCCGCTTATTGATATGC-3’ ~500-1100bp 

Bacteria 27F 5' - AGAGTTTGATCMTGGCTCAG-3’ ~1500bp 

Bacteria 1492R 5’- TACCTTGTTACGACTT-3’ ~1500bp 

 

Table 3 DNA Amplification Program 

Initial Denaturation 95 °C 3min (bacteria), 5 min (fungi) 

Cycle  Denature 95 °C 30sec 
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x 35 Annealing 47 °C* 30sec 

Elongation 72 °C 1min (1min <2kb products) 

Final Extension 72 °C 10min 

Hold   4 °C ∞ 

 

Table 4 16S DNA Sequencing Program 

Initial Denaturation 96 °C 1min 

Cycle  

x30 

Denature 96 °C 10sec 

Annealing 47 °C* 5sec 

Elongation 60 °C 2min (45 sec for <700bp) 

Hold   4 °C ∞ 

3.1.2.2 16S Ribosomal DNA Sequencing 

Successful PCRs were purified using either QIAquick PCR purification kit clean-up treatment per 

the manufacturer’s manual. Purified PCR products were prepared for two directional Sanger 

sequencing reaction using BigDye3.1 and a PCR program shown in Table 4. The sequencing was 

performed by the sequencing platform at the University Hospital of North Norway utilizing 

Applied Biosystems 3130xl Genetic Analyzer (Life Technologies/Applied Biosystems). The 

returned chromatograms were imported into Geneious v10.2.3 (https://www.geneious.com/), 

trimmed to 0.05 error probability assembled into consensus sequences and proofread according to 

guidelines proposed by Nilsson et al. (2012)  

3.1.2.3 Nucleotide Basic Local Alignment Search Tool 

Consensus sequences from UiT UNN were assembled in fasta format and blasted using the NCBI 

nucleotide BLAST National Center for Biotechnology Information (NCBI)[Internet]. Bethesda 

(MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] 

– [cited 2020 Apr 06]. Available from: https://www.ncbi.nlm.nih.gov/  
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3.2 Counting Methods 
40 ml flasks were inoculated with 38 ml of Pleurosigma sp. at ~500 cells/ml concentration and 2 

ml of Pleurosigma sp./ P. isakeiti cocultures at a concentration of ~500 cells/ml at a ~90% rate of 

infection. Cells were counted using a hemocytometer to estimate density. Counts of health status 

were taken daily for one month (healthy, parasitized, dividing, and dead). Each flask was counted 

twice for internal control. For time-series experiments, each timepoint was taken in triplicate. The 

health status (healthy, parasitized, dead, and dividing) Pleurosigma sp. cells were defined as 

(Appendix 1): 

1. Healthy cells included diatoms that did not show reduced chloroplasts. There were no 

visible penetrations of the cell wall. They demonstrated some motility. 

2. Parasitized cells showed reduced and irregular chloroplast shape and discoloration. 

Parasitized cells also showed clear signs of penetration by zoospores; however, they 

remained motile.   

3. Dead cells were recorded when they were empty of chloroplasts, their chloroplasts were 

dead, showed no sign of motility, had a ruptured cell wall or there was sporangium growing 

within the cell wall (Appendix 1).  

4. Dividing cells were recorded when anaphase had cytokinesis commenced and a cleavage 

was visible cutting the cytoplasm in two.  

Cell health status counts were enumerated using a light microscope (see section 4.1.3). Culture 

flasks were counted by using randomized fields of view. Each field of view was tallied and 

recorded until the total healthy + infected equaled 500. Dividing cells were recorded only among 

livings cells, (two sister silica shells void of life were not recorded). Dead cells were recorded 

concurrently as the healthy, infected, and dividing cells were observed and totaled.  
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Figure 4 Infection and division rate time-series in 1:50 F/2 and 1:50 F/2 reduced silicate media over 31 days. Host Pleurosigma sp. 
cells were recorded as parasitized, healthy, dead, and dividing  
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Figure 5 Infection and division rate with nutrient analysis of Pleurosigma sp. and P. isakeiti coculture time-series in 1:50 F/2 media 
over 15 days  
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Figure 6 Division rate with nutrient analysis of Pleurosigma sp. time-series in 1:50 F/2 media over 15 days  

3.2.1 Light Microscopy 

A Zeiss2 primo inverted microscope was used to visualize the cultures at 200X and 400X. 

Photographs were taken using a Zeiss AxioCam ERc5s.  

3.3 Nutrient Analysis 

Samples from time-series experiments of parasitized and healthy Pleurosigma sp. were tested 

(Figure 5 and 6). Silicate and nitrate depletion are attributed primarily to Pleurosigma sp. 

metabolism due to the greater relative size of the diatom cell compared to the parasite. Healthy 

and parasitized cultures were frozen at pre-determined time points. After sample flasks were 

counted, FSW + silicate reduced and standard F/2 media containing the diatoms and their parasites 

were filtered using a 0.2 µm filter. These samples were frozen at -20oC. At the end of the 

experiment the samples were collected. Nutrient analysis (silicate (SiO2), nitrate (NO-3), and nitrite 

Pleurosigma Counting / Nutrient analyzer time series
15

 d
ay

s

Every three day double 
counts of:
• Healthy
• Parasite
• Divide
• Dead

1 2 3
Replicates

… 

… 
Filter, freeze

Nutrient Analyzer

13 14 158 9 10

Each replicate run in triplicate through analyzer



 

Page 35  

(NO-2)) was performed on 120 samples. Samples were analyzed colorimetrically with a QuAAtro 

analyzer from SEAL Analytical, UK using a method developed by the Royal Netherlands Institute 

for Sea Research, Den Hoorn (Texel), The Netherlands. The analyzer was calibrated using 

synthetic seawater and analytical reagent grade standards for each nutrient. Briefly, nutrient 

determination was based on the reduction of the compound in an acidic environment to form a dye 

(either molybdenum blue or reddish-purple azo dye for silicate and nitrite / nitrate, respectively). 

The absorbance was then measured at a specific wavelength (820 or 520 nm, respectively) under 

an LED photometer. Samples were diluted 1:10 & 1:100 to fall into the range of the standards run. 

The analysis and calibration were performed by Paul Dubourg (AMB, UiT). 

3.4 Chemical Differences in Healthy and Infected Pleurosigma sp. 

Cultures 

3.4.1 Extractions 

Extractions were preformed using ethyl acetate and resin to test which method had the most 

appropriate capacity to capture primary and secondary metabolites in lysed media from cultures 

of Pleurosigma sp., cocultures of Pleurosigma sp., and P. isakeiti and F/2 media as a control 

(Figure 7). 

3.4.1.1 Ethyl Acetate Extraction 

The ethyl acetate extraction was performed by mixing 1 mL ethyl acetate and 1 mL of the 

concentrated culture sample. The samples were placed on the sonicator for 1.5 hours. The samples 

stood until a phase separation took place and the ethyl acetate slowly rose to the top. The ethyl 

acetate phase was collected. The ethyl acetate was evaporated under reduced pressure in a Laborota 

4011, Heidolph™ rotavapor system. The remaining samples were dissolved in dimethyl sulfoxide 

(DMSO) and prepared for liquid chromatography—mass spectrometry (LCMS) analysis. 

3.4.1.2 Resin Extraction 

The nonionic resin Amberlite® XAD7HP (Sigma Aldrich) was used to extract the content from 

the supernatant after centrifugation to get rid of cell residue. 60 g of Amberlite® XAD7HP was 

prepared by rinsing with 2 L distilled water (dH2O) thrice, sufficient 100% Methanol (MeOH) 
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was used to cover the resin grains and left to sit for 30 minutes. The resin was washed with 2 L 

dH2O another three times. Once the Amberlite® XAD7HP was washed thoroughly, it was left to 

air-dry and covered with aluminum foil to prevent dust from combining with the sample. The dry 

Amberlite® XAD7HP was distributed to three 250 mL Erlenmeyer flasks. The supernatant was 

centrifuged to remove remaining cell residue and combined with flasks containing 60 g dry 

Amberlite® XAD7HP. Flasks were covered with aluminum foil. Supernatant-resin mixture was 

agitated at low pace (150 rpm) overnight. Compounds present in the media adhere to the 

Amberlite® XAD7HP grains; however, the most polar and charged compounds will not absorb 

into the resin.  

 

The supernatant-resin mix was filtered on a porcelain filter holder with a Whatman® quality 1 

filter paper. Amberlite® XAD7HP was gathered and added to a 250 mL Erlenmeyer flask 

containing 50 mL of 100% MeOH and mixed slowly overnight. MeOH washed out and replaced 

the organic compounds attached to the Amberlite® XAD7HP grains. A rotary evaporation device 

(Laborota 4011, Heidolph™ rotavapor system) was employed at 40°C and reduced pressure to dry 

the solution. The dried matter was first dissolved in 3.3 mL of MilliQ, then 3.3 mL 50% MeOH 

followed by 3.3 mL 100% MeOH, and the fractions were mixed. The combined solution was 

aliquoted into 10 mL glass tubes and evaporated to dryness in SpeedVac Plus SC210A (Savant™) 

coupled with Refrigerated Condensation Trap RT400 (Savant™). When dry the solids were 

washed out with 250 µL MilliQ, 250 µL 50% MeOH and then 250 µL 100% MeOH, before being 

collected in High Performance Liquid Chromatography (HPLC) vials. The total dissolved matter 

is 750 µL in 1:1 MeOH:MQ. 
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Figure 7 General scheme of resin and ethyl acetate extractions for LCMS and bioassay experiments. Media controls (blue), healthy 
Pleurosigma sp. (green), and cocultures of Pleurosigma sp. and P. isakeiti (yellow) 
 

3.4.2 Mass Spectrometry 

Ethyl acetate and resin extracts were analyzed using ultra-high-performance liquid 

chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS). Before 
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injection volume used was 1 µL and the samples were run on the Acquity UPLC I-class system 
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L/h), desolvation temperature (350°C), desolvation gas (800 L/h), source temperature (120°C), 

and acquisition range (m/z 50–2000). The system was controlled, and data was processed using 

UNIFI 1.8.2 (Waters). Chromatographic separation was performed with an BEH C18 1.7 µm (2.1 

× 100 mm) column (Waters) maintained at 40°C. Selected peaks were dereplicated using MarinLit, 

ChemSpider, and Dictionary of Natural Products, as well as extensive literature searches. 

 

Waters UNIFI and Progenesis software was used conduct variance analyses between Pleurosigma 

sp., Pleurosigma sp. infected with P. isakeiti, and media control extracts from ethyl acetate and 

resin methods by analysis of variance (ANOVA) tests and principal component analysis (PCA; 

Appendix 5). 

3.5 Testing for Bioactivity  

3.5.1 Anti-cancer Assay 

The cytotoxic activity of the extracted metabolites from the diatom culture samples was 

determined using the CellTiter96 ® Aqueous One Solution Cell Proliferation assay. Firstly, 

melanoma cells (A2058) were incubated in a 96 well plate overnight at 37°C, 5% carbon dioxide 

(CO2), and a density 2000 cells/well in RPMI-1640 media with 10% fetal bovine serum (FBS, 

Biochrom, FG1385). Following incubation, the media was removed and replaced with 100 μL new 

media together with extract samples in triplicate. Plates with samples were incubated for 72 h at 

37°C and 5 % CO2 before 10 µl Aqueous One Solution Reagent (Promega, G3581) was added to 

each well. Positive controls were 10% DMSO and negative controls contained media only. Plates 

were further incubated for 1 h. Absorbance at ~490 nm was measured in a spectrophotometer 

(Multimode detector DTX 880). This absorbance value is directly proportional to the number of 

living cells in the culture which can reduce the tetrazolium compound (yellow color) to a formazan 

product (blue color) and, as such, exhibit cytotoxicity against proliferating melanoma cancer cells. 

3.5.2 Anti-oxidant Assay 

The antioxidant potential of extracted metabolites from the diatom culture samples was assessed 

using the oxygen radical absorbance capacity (ORAC) assay. This assay measures the oxidative 

degeneration of fluorescein, an organic dye compound, by 2,2´-azobis (2-methylpropionamide) 

dihydrochloride (AAPH), which forms peroxyl free radicals with the addition of heat. These free 
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radicals decrease the fluorescence of fluorescein and antioxidants provide protection of fluorescein 

from the free radicals. 10.5 µL of the sample was combined with 14.5 µL of MilliQ water in 

duplicates of a black 96-well microtiter plate. A 6-point standard curve containing 25 µL of Trolox 

standard solution (stock solution prepared using 25 mg of Trolox (Sigma Aldrich,  53188-07-1) in 

10 mL of phosphate buffer (10.649 g Na2HPO4*2H2O dissolved in 1000 mL of MilliQ water with 

pH adjusted to 7.4) diluted to 18, 12.5, 6.25, 3.125 and 1.563 µM). Phosphate buffer was used in 

0 µM Trolox wells. 125 µL fluorescein (55 nM dilution of the stock solution prepared by 

dissolving 33 mg of fluorescein (Sigma Aldrich,  2321-07-5) in 10 mL of phosphate buffer) was 

added to each well and the plate was incubated for 15 minutes at 37°C. 60 µL of 57 mM AAPH 

(Sigma Aldrich, cat: 44,091-4, prepared using 705 mg AAPH dissolved in 13 mL of phosphate 

buffer) reagent was added to all sample wells before the plate was set in the Victor 3 plate reader 

set at 485 nm excitation, 520 nm emission for 45 minutes at 37°C. Samples were compared against 

the Trolox standard curve. For all the samples, the area under the curve (AUC) is calculated. The 

area between the curves (ABC) = AUCsample - AUCstandard. Ethyl acetate extraction samples from 

healthy Pleurosigma sp., cocultures of Pleurosigma sp. and P. isakeiti, and media controls far 

exceeded the standard TE calibration curve (Figure 8).  

 

Figure 8 Calibration curve using Trolox Equivalent (TE) standard units 

3.5.3 Anti-bacterial MIC Assay 

The antibacterial potential of the extracted secondary metabolites was tested using a minimum 

inhibitory concentration (MIC) assay against different bacteria strains. Bacteria strains (S. aureus, 
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ATCC 25923; E. coli, ATCC 25922; E. faecalis, ATCC 29212; P. aeruginosa, ATCC 27853; 

Streptococcus b., ATCC 12386) are maintained in the Marbio lab for these tests. To prepare the 

bacteria for testing, an agar plate (ordered from UNNs media kitchen) was inoculated with a scoop 

of the bacteria stock taken from the freezer. The blood agar plate was incubated overnight at 37ºC. 

Mueller Hinton Broth (MH, Becton Dickinson, 275730) and brain heart infusion (BHI, Becton 

Dickinson, 237500) growth media was prepared according to the manufacturer's instructions and 

then autoclaved for 60 min at 121°C before use. Bacteria from blood agar plates were added to the 

growth media according to Table 5 and incubated at 37°C overnight. Following incubation, 2 mL 

of the bacterial suspension was transferred into 25 mL of the growth medium. 

Table 5 Bacteria, growth medium, and incubation period 

Bacteria Growth 

medium 

Incubation Bacterial density (colony forming units) 

S. aureus  MH 2,5 h 0,5-3x105 CFU/ml (2500-15000 CFU/well) 

E. coli   MH 1,5 h 0,5-3x105 CFU/ml (2500-15000 CFU/well) 

E. faecalis   BHI 1,5 h 0,5-3x105 CFU/ml (2500-15000 CFU/well) 

P. aeruginosa   MH 2,5 h 3-7x104 CFU/ml (1500-3500 CFU/well) 

Streptococcus b BHI 1,5 h 0,5-3x105 CFU/ml (2500-15000 CFU/well) 

 

Extract samples of 40 μg/ml were added in parallel to 5 microtiter plates (Nunc, 734-2097) together 

with 50 µl diluted (1:1000) bacteria growth medium solution and incubated overnight at 37ºC. 

Negative controls were comprised of growth medium (without bacteria) and autoclaved MilliQ 

water. Positive controls were growth medium (with bacteria) and autoclaved MilliQ water. A 

dilutions series of Gentamicin (Amresco, E737), a known antibacterial compound, was run in a 

separate plate at a concentration between 0.01- 32 μg/ml together with 50 µl of bacterial 

suspension. Plates were run with a Victor3 plate reader. 

3.5.4 Anti-bacterial Biofilm Assay  

The antibacterial activity of extracted secondary metabolites was tested using Staphylococcus 

epidermidis and this bacteria's ability to potentially form a biofilm. Firstly, a scoop of bacteria 

(Staphylococcus epidermidis, RP62A 42-77; Staphylococcus haemolyticus (clinical isolate 8-7A) 
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was transferred from the blood agar (detailed in MIC assay) into 5 mL of Tryptic soy broth 

(prepared according to manufacturer's instructions, Merk, 1.05459) and incubate at 37°C overnight 

on a shaker. Dilute bacterial solution further in 1:100 Tryptic soy broth with 1% glucose (Sigma, 

D9434). Then 50 μl of the samples 40 μg/ml in triplicates were pipetted into microtiter plates 

together with 50 µl bacteria. The negative control was comprised of 50 µl S. haemolyticus and 

50µl MilliQ water. The positive control was comprised 50 µl S. epidermidis and 50 µl MilliQ 

water. A medium blank was included made of 50 µl Tryptic soy broth and 50 µl MilliQ water. 

Plates were incubated overnight at 37°C.  

 

Following the 2nd incubation, bacteria was removed from the plates using cell paper and the plates 

were rinsed with tap water 2-3 times. The biofilm now on the inside of the plate wells was allowed 

to fixate for 1 hr at 65°C before adding 70 μl 0.1 % crystal violet solution (Merck, 1.15940) into 

each well then incubating for 10 min. The crystal violet solution was then removed from the wells 

with cell paper and plates were again washed with tap water 2-3 times. Plates were set to dry for 

1 hr at 65°C. Finally, 70 μl 70 % ethanol was added to each well and plates were incubated on a 

shaker for 5-10 min. The antibacterial potential of the extract was measured at 600 nm using the 

Victor3 plate reader and the WorkOut 2.5 software. Samples that inhibit biofilm formation will 

results in wells with little or no violet color. 

3.5.5 Anti-inflammation Assay 

The purpose of this method is to find compounds, fractions, or extracts that inhibit 

lipopolysaccharides (LPS) induced secretion of tumor necrosis factor (TNF-α). Thp-1 cells (human 

acute monocytic leukemia cell line) differentiated from monocytes to macrophages are added 

compounds, fractions or extracts. After one hour of incubation LPS is added and the cells are 

incubated for 6 hours. TNF-α secreted into the cell culture media is measured by a TNF-α enzyme-

linked immunosorbent assay (ELISA) assay. Endotoxin levels are measured in Endotoxin units 

per milliliter (EU/mL). One EU equals approximately 0.1-0.2 ng endotoxin/mL of solution. Thp-

1 cells are very sensitive to endotoxins. 
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Thp-1 cells grow in suspension as single cells or small lumps of cells. Split cells twice a week to 

maintain the culture by transferring 2-3 x 105 cells/mL to a new tissue culture (TC) flask. Cells 

grow exponentially 3-8 x 105 cells/ml. Cell density must be kept over 1 x 105 cells/ml. 

Thp-1 cells will be differentiated from monocytes to macrophages when stimulated with phorbol 

12-myrisate 13-acetate (PMA). Microtiter plates had negative and positive control duplicates with 

growth media and 1 ng/ml LPS, respectively.  

3.5.5.1 Cell Line Maintenance  

To maintain and seed cells, growth media was pre-heated to 37oC. TC-flasks and microtiter plates 

were labeled with cell line, passage number, date and initials. Cells were observed under a 

microscope. TC-flasks were wiped with 70% ethanol and placed in a laminar flow hood. Cells 

were transferred from the TC-flask to 50 mL centrifuge tubes. Cells were spun at 150 g for 5 min. 

Old media was removed and cells were re-suspended in 25-30 mL of fresh growth media. 50 µl of 

cell suspension was transferred to a tube containing 450 µl trypan blue and stirred. 10 µl of cells 

was transferred in trypan blue to a cell-counting chamber. Living cells were counted under the 

microscope. Dead cells were blue. The cells were counted in two squares and the number of cells 

in cell suspension was determined. The volume of cell-suspension needed to maintain and seed 

cells in microtiter plates by using the formula C1 x V1 = C2 x V2 was found. Cells were maintained 

in 175 cm2 TC-flask at a density of 2-3 x 105 cells/mL in 50-60 mL growth media. Cells were 

incubated at 37°C with 5 % CO2 for 3-4 days. Cells were split every 3-4 days. A cell suspension 

was made at a density of 1 x 106 cells/mL for seeding cells in microtiter plates. 50 ng/mL PMA 

was added to the cell suspension (0.5 µl PMA stock solution per 10 ml) to differentiate cells from 

monocytes to macrophages. A 10 mL cell suspension was made for each microtiter plate plus 5 

mL extra. 100 µl cell suspension was added to each well in a microtiter plate. Cells were incubated 

at 37°C with 5 % CO2 for 48 hours. Cells were observed under the microscope after 24 hours. 

Cells were washed with endotoxin tested PBS and add new growth media. Cells were incubated at 

37°C with 5 % CO2 for 24 hours. 

3.5.5.2 Anti-inflammation Assay Prep 

Endotoxin tested phosphate-buffered saline (PBS), new growth media, and cell suspension were 

pre-heated to 37oC. Old media was removed and 80 µl RPMI (Roswell Park Memorial Institute) 
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growth media was added to each well. 90 µl RPMI media was added to LPS controls and 100 µl 

RPMI media to cell controls. 10 µl of extracts from Pleurosigma sp., cocultures with P. isakeiti, 

and media controls was added to each well. Each sample was made in duplicate. Samples and 

controls were added. Cells were then incubated at 37oC with 5 % CO2 for 1 hour. 

 

10 ng/mL LPS solution was prepared and 10 µl was added to each well except the cell control. 

LPS concentration will be 1 ng/ml. LPS was diluted in two steps; 1) 10 µL LPS was added to 990 

µL RPMI and mixed well. 2) LPS was diluted to 1:1000, mixed well and added to cells. Cells were 

incubated at 37oC with 5 % CO2 for 6 hours. Plates were incubated at -80oC freezer for storage.  

3.5.5.3 Human TNF-α ELISA Assay: 

Affinity purified anti-human TNF-α was diluted to 2 µg/mL in 10 mM Tris-buffered saline (TBS). 

100 µL was added to each well in a 96-well Maxisorp plate and incubated at 4oC overnight. The 

blocking buffer, assay diluent, and wash buffer were prepared. The plate was washed with the 

Aquamax plate washer. 200 µl 10 mM TBS with 2 % bovine serum albumin (BSA) was added to 

each well and incubated for 1 hour on the shaker. Plate was washed with the Aquamax plate 

washer. Samples and standards were diluted in assay diluent directly in ELISA plate. The plate 

was incubated for two hours on shaker. Biotin anti-human TNF-α was diluted to 3 µg/mL in assay 

diluent.100 µl was added to each well and incubated for 1 hour on shaker. Plate was washed with 

the Aquamax plate washer. ExtrAvidin-Alkaline phosphatase was diluted 1:20000 in assay diluent. 

100 µl was added to each well and incubated for 30 min on shaker. Para-nitrophenylphosphate in 

1 M diethanolamin buffer was diluted to 1 mg/ml. 100 µL was added to each well for 30-45 

minutes. Absorbance was read at 405 nm.  

3.6 Statistical Analysis of Silicate Treatments and Nutrient Levels on 

Parasitism 

Data collected was imported into Rstudio version 1.2.5003 running R 3.5.1 GUI 1.70 El Capitan 

build (7543) written by Simon Urbanek, Hans-Jörg Bibiko, Stefano M. Iacus. Quasi-binomial 

generalized linear models (glm) in the base R “stats” package were used to model the proportion 

of infected cells were calculated as infected / (health + infected cells) and dividing cells were 

calculated as dividing / healthy cells. The data was cleaned by removing the control replicates. 
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Generalized linear models were created to explore the relationship between percent infected and 

percent under division over time (Day) by silicate treatment. The quasi-binomial distribution was 

chosen for the glm as counts were done by categorizing cells as either healthy or infected, dividing 

and dead, a natural choice for a binomial distribution. Furthermore, the quasi-binomial distribution 

allows for greater variation in the data without losing statistical power (Consul, 1990). 

 

The nutrient analysis dataset was divided into culture groups. Quasi-binomial generalized linear 

models were generated to test the effect of SiO2, NO3, and NO3:SiO2 on the proportion of infected 

and dividing Pleurosigma sp. infected with P. isakeiti over time. NO3:SiO2 was calculated by 

dividing NO3/SiO2 at the dilution concentrations used. Quasi-binomial generalized linear models 

were also generated for healthy Pleurosigma sp. cells over time to test the effect of SiO2, NO3, and 

NO3:SiO2 on the proportion of dividing cells. The models were visualized and extracted using the 

lattice (Sarkar 2008) and ggplot2 (Wickham 2019) packages. Models and estimated values and t-

values for each model parameter are presented for each test. T-values represent the magnitude of 

the departure of the estimated value from the predicted value for each parameter relative to its 

standard error. Significance was set to α=0.05 for model outputs (Appendix 6). 

4 Results 

4.1 Isolation of the Thraustochytrid P. isakeiti into Monoculture 

None of the common thraustochytrid isolation media (Rosa et al. 2011) used to attempt a transfer 

and monoculture of parasite P. isakeiti in the present study were successful (Table 1). Unsuccessful 

media isolation experiments conducted in this thesis limit the ability to accept the hypothesis that 

P. isakeiti is an obligate parasite of Pleurosigma sp.; however, no evidence presented here supports 

any other life strategy. No growth was found on GPYb, KMVc, Hb, SSAd, MCd, and MC-BHB 

media. Plates were checked every three days for three weeks and only bacterial growth was 

observed on select media. Two different bacteria were responsible for bacterial growth on KMVc 

and Hb media. Bacteria were stained and visualized on a light field microscope and inverted light 

microscope. FSW was lightly added to visualize the movement of bacterial cells. 
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4.1.1 Characterization of Cocultured Bacterial Strains 

Colony PCR was conducted, amplifying 16S DNA directly from the PCR reaction from two 

bacterial colonies. Fungal primers failed to amplify the DNA. Bacterial sequencing and BLAST 

(NCBI) revealed two distinct bacteria (clear and red pigments) present. Nucleotide BLAST hit 

tables from DNA sequencing of PCR reaction products of bacterial colonies growing on KMV 

revealed that bacterium present was an Alteromonas species closely affiliated with A. genoviensis 

(Table 6). On the Honda media, nucleotide BLAST hit tables from DNA sequencing of PCR 

reaction products of bacterial colonies revealed that samples represented a Marinobacter species 

(Table 7). 

Table 6 BLAST hit table of DNA sequence from PCR reaction products of bacteria colonies picked from KMV media. 
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Table 7. Blast hit table of DNA sequence from PCR reaction products of bacteria colonies picked from Honda media. 

 

4.2 Rate of Infection and Division 

The infection rate experiment (Figure 9) revealed that the parasitism of Pleurosigma sp. by P. 

isakeiti is significantly affected by silicate (Table 8). Time significantly impacts both infection and 

division with higher proportions of both occurring later in the incubation period (Table 8 and 9, 

respectively). Time agonistically interacts with the silicate treatment to lower the proportion of 

infected cells as the incubation period progresses (Table 8; Figure 9A). The infection rate of 

Pleurosigma sp. by P. isakeiti increases under reduced-silicate treatment although not visually 

different until day 10 (Figure 9A). While the infection rate difference with silicate treatment is 

subtle, it is statistically significant (Table 8; Appendix 2). Notably, the initial rate of infection for 

the silicate treatment started slightly higher than the reduced silicate treatment. The reduced 

silicate treatment resulted in a slightly faster infection, however the increase in infection rate did 

not have dramatic impact on the outcome of the infection process. By the twentieth day, the total 

proportion of infected to healthy cells was not different and by the end of the experiment both 

cultures were nearly 99% infected. Therefore, the hypothesis 2A which states the infection rate of 

Pleurosigma sp. by P. isakeiti is affected by silicate treatment can be accepted.  
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Figure 9 A) Incidence of parasitism and B) division of pennate diatom Pleurosigma sp. cultures by thraustochytrid parasite P. 
isakeiti over 31 days. Total dead enumerated during counting observations (C).  Quasi-binomial generalized linear models are 
transposed over the data points. Cultures treated with reduced-silicate media are shown in green while non-silicate-reduced media 
are shown in red. Grey ribbons around lines are the 95% confidence intervals around the predicted value from the glm 
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Table 8 Statistical variance of generalized linear model of the interaction between incidence of host infection on day and treatment 
Model: glm(proportion of Infected cells ~ Day * Treatment) 

Model Parameters Estimate t value p value 

Intercept -2.73526 -24.977 < 2e-16 

Day 0.36670 30.731 < 2e-16 
Silicate Treatment 0.43341 2.993 0.00282 
Day*Silicate Treatment -0.06926 -4.572 5.35e-06 

 

The proposed hypothesis (2B) that the rate of division of infected Pleurosigma sp. would decrease 

in response to reduced silicate treatment was rejected (Table 9; Figure 9B). Cocultures of 

thraustochytrid P. isakeiti and Pleurosigma sp. incubated in the reduced silicate treatment had 

slightly lower rates of division than those reared in the abundant silicate media although not 

significantly different statistically. The rate of division clearly increased over time in both cultures 

observed in standard and reduced silicate media. The response of division to infection was more 

immediate in reduced silicate samples. The incidence of division in samples with more available 

silicate visibly reached greater total proportions by day 20. By the end of the 31-day experiment, 

the rate of division in both treatments converged on roughly 30% with no significant difference 

between the two treatments. 

 
Table 9 Statistical variance of generalized linear model of the interaction between the incidence of host division on day and 
treatment 
Model: glm(proportion of Dividing cells ~ Day * Treatment) 

Model Parameters Estimate t value p value 

Intercept -1.750838    -20.579   < 2e-16 

Day 0.024691    5.564 3.25e-08 
Silicate Treatment -0.027083    -0.226     0.822     

Day*Silicate Treatment 0.007261    1.159     0.247     

 

4.3 Effect of Free Silicate and Nitrate on Division Over Time 

The third objective, to assess the uptake of silicate and nitrate nutrients under healthy and parasitic 

conditions, resulted in confounding results. The initial hypothesis, that the uptake of silicate 

decreases in parasitized Pleurosigma sp. cultures, could not be rejected (Figure 10B; Figure 11A). 

Silicate abundance in the media decreased over time (Figure 11), and thus uptake by diatoms 

increased in response to parasitism. The ratio of nitrate to silicate increased over the course of a 

two-week period as the infection rate rose steadily and rate of division increased (Figure 11). This 
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ratio increased as a result of increasing nitrogen abundance in both cultures and decreasing silicate 

abundance in infected cultures (Figure 11). Plotting raw silicate and nitrate over time demonstrates 

the impact of increased silicate uptake during parasitism on nitrate:silicate ratio (Figure 10; Figure 

11). Slight increases in nitrate were observed in both healthy and infected Pleurosigma sp. culture 

mediums.  

 

In infected cultures, the proportion of infected cells increased significantly with increasing nitrate 

levels, increasing nitrate to silicate ratios, and over time (Table 10). The proportion of dividing 

cells in infected cultures was significantly affected by the interaction of time and nitrate levels 

(Table 10). In healthy Pleurosigma sp. cultures, the proportion of dividing cells was negatively 

affected by silicate levels, the interaction between time and silicate levels, and time (Table 11). 

The nitrate to silicate ratio positively affected the proportion of dividing cells in healthy cultures 

independent of time (Table 11). Silicate concentration decreased faster over time in the coculture 

including P. isakeiti in comparison with the healthy Pleurosigma sp. cultures (Table 10).  

4.3.1  Pleurosigma sp. Division Over Time 

Pleurosigma sp. cocultured with thraustochytrid Phycophthorum isakeiti divided at an increased 

rate over the course of the experiment when compared to healthy Pleurosigma sp. cells (Figure 10 

C).  
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Table 10 Statistical variance of generalized linear model of the interaction between incidence of host infection on day and silicate 
level, host division on day and silicate level, host infection on day and nitrate level, host division on day and nitrate level, host 
infection on day and nitrate: silicate level, and host division on day and nitrate: silicate level 
Model: glm(proportion of Infected cells in Coculture~ Day * Silicate Level) 

Model Parameters Estimate t value p value 

Intercept -1.760268    -15.116   < 2e-16 

Day 0.248591    17.729   < 2e-16 
Silicate Level -0.024659    -0.872   0.38509     

Day*Silicate Level 0.012915    2.711   0.00767 
Model: glm(proportion of Dividing cells in Coculture ~ Day * Silicate Level) 

Model Parameters Estimate t value p value 

Intercept -2.333688    -16.007   < 2e-16 

Day 0.103879    6.820 3.74e-10 
Silicate Level 0.035656    1.054     0.294     

Day*Silicate Level -0.006581    -1.285     0.201     

Model: glm(proportion of Infected cells in Coculture~ Day * Nitrate Level) 

Model Parameters Estimate t value p value 

Intercept -2.320532    -12.368   < 2e-16 

Day 0.368657    14.499   < 2e-16 
Nitrate Level 0.149341    3.134   0.00216 
Day* Nitrate Level -0.023762    -4.253 4.16e-05 
Model: glm(proportion of Dividing cells in Coculture ~ Day * Nitrate Level) 

Model Parameters Estimate t value p value 

Intercept -1.877246    -8.826 9.48e-15 

Day -0.006440    -0.252   0.80134     

Nitrate Level -0.069263    -1.227   0.22229     

Day* Nitrate Level 0.019184    3.286   0.00133 
Model: glm(proportion of Infected cells in Coculture~ Day * Nitrate:Silicate ratio) 

Model Parameters Estimate t value p value 

Intercept -1.864089    -21.523   < 2e-16 

Day 0.292928    23.882   < 2e-16 
Nitrate:Silicate ratio 0.060321    2.004   0.04727 
Day* Nitrate:Silicate ratio -0.008835    -2.856   0.00505 
Model: glm(proportion of Dividing cells in Coculture ~ Day * Nitrate:Silicate ratio) 

Model Parameters Estimate t value p value 

Intercept -2.125474    -20.178   < 2e-16 

Day 0.072244    5.542 1.75e-07 
Nitrate:Silicate ratio -0.047708    -1.251     0.213     

Day* Nitrate:Silicate ratio 0.005685    1.619     0.108 
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Table 11 Statistical variance of generalized linear model of the interaction between incidence of host division on day and silicate 
level, incidence of host division on day and nitrate level, incidence of host division on day and nitrate:silicate level 
Model: glm(proportion of Dividing cells in Pleurosigma culture~ Day * Silicate Level) 

Model Parameters Estimate t value p value 

Intercept -1.085690    -4.418 7.13e-05 

Day -0.075000    -2.229   0.03139 
Silicate Level -0.094247    -3.472   0.00123 
Day* Silicate Level 0.008104    2.174   0.03551 
Model: glm(proportion of Dividing cells in Pleurosigma culture ~ Day * Nitrate Level) 

Model Parameters Estimate t value p value 

Intercept -1.924547    -5.306 4.18e-06 

Day 0.021629    0.471     0.640     

Nitrate Level -0.001182    -0.036     0.971     

Day* Nitrate Level -0.001828    -0.470     0.641      

Model: glm(proportion of Dividing cells in Pleurosigma culture ~ Day * Nitrate:Silicate ratio) 

Model Parameters Estimate t value p value 

Intercept -2.37003     -12.393 1.89e-15 

Day 0.03552     1.462    0.1514     

Nitrate:Silicate ratio 0.34685     2.440    0.0191 
Day*Nitrate:Silicate ratio -0.02979     -1.705    0.0957 
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Figure 10 Incidence of A) parasitism, B) abundance of free NO3:SO2 and C) incidence of division of pennate diatom Pleurosigma 
sp. cultures by thraustochytrid parasite P. isakeiti over 15 days. Quasi-binomial generalized linear models are transposed over the 
data points. Healthy Pleurosigma sp. cultures are shown in green while Pleurosigma sp + P. isakeiti cocultures are shown in red. 
Grey ribbons around lines are the 95% confidence intervals around the predicted value from the glm 
 

 

 

Pleurosigma sp. + P. isakei t i Pleurosigma sp.

0.00

0.25

0.50

0.75

5 10

%
 In

fe
ct

ed

A

0

5

10

5 10

NO
3

:S
i(p

pm
)

B

0.1

0.2

0.3

0.4

5 10
Days post infection

%
 H

ea
lth

y 
Ce

lls
 U

nd
er

 D
ivi

so
nC



 

Page 53  

 

 

 

 

 

 

 

Figure 11 Silicate (A) and nitrate (B) over 15 days in Healthy Pleurosigma sp. (red) and Cocultures of Pleurosigma sp. and P. 
isakeiti (green). Grey ribbons around lines are the 95% confidence intervals around the predicted value from the glm 

4.4 Detection of Chemical Differences in Parasitized Pleurosigma sp.  

The fourth objective, to determine whether chemical differences could be detected among healthy 

and parasitized Pleurosigma sp. cultures were resolved using LC-MS, which revealed measurable 

chemical variances (Figure 12). Clearly, compounds were detected in parasitized cultures that 

could not be found in healthy cultures; however, the origin of the variance remains unknown. 

Without LC-MS data of extracts from isolated P. isakeiti to compare healthy and parasitized 

Pleurosigma sp. extracts against, it is unclear if compounds found in the coculture were produced 

by the parasite, the host, or a bacterial cohabitant. Several differences in chemical signatures were 

detected when comparing the spectra from extracts of healthy Pleurosigma sp., cocultures of 

Pleurosigma sp. and P. isakeiti, and controls of F/2 media diluted in 1:50 FSW. The delta area 
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under the curve between healthy Pleurosigma sp.(red) cultures and cocultures with P. isakeiti 

(blue) is represented with a green line below.  

 

Figure 12 Chromatogram of TOF MSe (150-2000) 5eV ESI+ of base peak intensities of ethyl acetate extracts from healthy pennate 
diatom Pleurosigma sp. (red) and cocultures of Pleurosigma sp and P. isakeiti (blue). The difference between peak integrals (red 
and blue) is shown in the chromatogram below (green) 
 

The two significantly different compounds that eluted from the coculture extracts in all three 

replicates at retention times 4.24 min and 9.23 min were not observed in the media controls or the 

healthy Pleurosigma sp. cultures (Figure 12). Analysis of variance revealed that the compound 

with retention time (Rt) 4.24 and m/z 278.2110 (Appendix 3), when compared to healthy 

Pleurosigma sp. and media controls, had a p-value of 2.4e-07, q-value of 7.61e-08 and power ≥ 

0.9995 in variance analysis. The elemental composition was calculated as C17H27NO2 ([M+H]+) 

with an iFit score of 100%, i.e., the experimental data had a perfect fit with theoretical data for this 

elemental composition. The compound that eluted at Rt 9.22 had a m/z of 325.1208 (Appendix 4) 

and p-value of 6.67e-05 and q-value of 6.67e-06 and power ≥ 0.9995 in variance analysis with 

healthy Pleurosigma sp. and controls. Its elemental composition, C23H16O2 ([M+H]+), also had an 

iFit score of 100%.     
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The unknown compound that appears at 4.24 minutes in cocultures is also present at low ion 

concentrations in the media control and healthy Pleurosigma sp. cultures, however; peaks detected 

in the control and healthy Pleurosigma sp. extracts are barely distinguishable from noise. There 

were several hits in marine literature databases for this elemental composition; however, it remains 

uncertain if any of these known natural products can be associated with Pleurosigma sp. or P. 

isakeiti. While the two compounds, C17H27NO2 and C23H16O2, were detected only in cocultures of 

Pleurosigma sp., without isolated biomass from P. isakeiti, determination of whether the 

compound was produced by the thraustochytrid to infect its host or the diatom to defend itself from 

parasitism cannot be distinguished.  

4.5 Bioassay Results 

Results from five different bioassays led to the rejection of the final null hypothesis that extracts 

from cocultures of Pleurosigma sp. and P. isakeiti contain no cytotoxic activity. No activity was 

observed against melanoma cells in the anti-cancer assay (Table 12). Thraustochytrid cultures 

showed limited activity against Staphylococcus aureus in the MIC assay (Table 13) and induced 

marginal LPS secretion of TNF-α in the anti-oxidant assay (Table 14).  No activity was observed 

against S. epidermidis in the anti-biofilm assay (Table 15). The positive results of resin extracts 

from healthy Pleurosigma sp. cultures, cocultures with P. isakeiti, and media controls (Table 16) 

were not further investigated because media control results indicated that whatever activity was 

detected in the Pleurosigma sp. cultures and P. isakeiti cocultures could not be disassociated with 

the media extracts.  

4.5.1 Anti-cancer Assay 

Cell proliferation was not significantly affected by resin or ethyl acetate extracts of the 

Pleurosigma sp. coculture, healthy Pleurosigma sp. or media controls 
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Table 12 ~490 nm absorbance values directly proportion to cell concentration. Positive controls (10% DMSO) and Negative 
controls (media) 

 
The absorbance values presented (Table 12) are directly proportional to the number of living cells 

in the culture. Cytotoxic activity against proliferating melanoma cancer cells produces results 

which reduce the tetrazolium compound (yellow color) to a formazan product (blue color).  
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4.5.2 Anti-bacterial MIC Assay 

Table 13 Anti-bacterial results values are presented as optical density (OD) values at 600nm.  Active extracts have OD-values under 0.25. 
 

Extraction Culture Concentration Enterococcus faecalis Escherichia coli Staphylococcus aureus Streptococcus agalactiae Pseudomonas 
aeruginosa  

Resin Pleurosigma sp. High 0.36 0.56 0.34 0.35 0.64  
Resin Pleurosigma sp. Medium 0.29 0.51 0.28 0.36 0.6  
Resin Pleurosigma sp. Low 0.31 0.51 0.26 0.38 0.6  
Resin Pleurosigma sp. + P. Isakeiti High 0.23 0.49 0.25 0.37 0.5  
Resin Pleurosigma sp. + P. Isakeiti Medium 0.29 0.49 0.24 0.34 0.51  
Resin Pleurosigma sp. + P. Isakeiti Low 0.34 0.49 0.28 0.36 0.55  
Resin Media Control High 0.36 0.51 0.36 0.39 0.53  
Resin Media Control Medium 0.28 0.46 0.25 0.34 0.51  
Resin Media Control Low 0.29 0.45 0.26 0.36 0.49  
Ethyl 

Acetate Pleurosigma sp. High 0.29 0.56 0.24 0.4 0.66  

Ethyl 
Acetate Pleurosigma sp. Medium 0.31 0.51 0.23 0.36 0.63  

Ethyl 
Acetate Pleurosigma sp. Low 0.31 0.51 0.25 0.36 0.64  

Ethyl 
Acetate Pleurosigma sp. + P. Isakeiti High 0.3 0.55 0.24 0.36 0.58  

Ethyl 
Acetate Pleurosigma sp. + P. Isakeiti Medium 0.27 0.51 0.25 0.37 0.63  

Ethyl 
Acetate Pleurosigma sp. + P. Isakeiti Low 0.28 0.49 0.26 0.37 0.58  

Ethyl 
Acetate 

Media Control High 0.29 0.5 0.28 0.36 0.67  

Ethyl 
Acetate 

Media Control Medium 0.3 0.48 0.27 0.38 0.58  

Ethyl 
Acetate 

Media Control Low 0.3 0.48 0.25 0.38 0.61  
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Anti-bacterial activity was detected in resin and extracts of Pleurosigma sp. + P. isakeiti at medium 

concentrations among S. aureus. Ethyl acetate extractions of healthy Pleurosigma sp. cultures and 

Pleurosigma sp. + P. isakeiti cocultures were active against S. aureus at high and medium 

concentrations.  

4.5.3 Anti-oxidant Assay 

The antioxidant assay showed resins extractions to have marginal free radical absorption capacity 

(Table 14). Activity outside of the calibration curve was observed in all of the resin extractions. 

Table 14 Irradiance at 485-520nm of Trolox (TE) equivalent units of resin and ethyl acetate extractions of healthy Pleurosigma 
sp. Cultures, Pleurosigma sp. with P. isakeiti cocultures, and media controls 

 
Resin Extraction 

 
Ethyl Acetate Extraction 

 
Pleurosigma sp. Coculture Media Control Pleurosigma sp. Coculture Media Control 

30.53691367 31.8011573 32.1457396 7.84646321 24.0667278 16.18661341 
Negative Control (Concentration µg/ml) Positive Control (Concentration µg/ml) 

0 µg/ml 1.56 µg/ml 3.125 µg/ml 6.25 µg/ml 12.5 µg/ml 25 µg/ml 
-2.293065948 2.27795029 4.47498735 7.55399915 11.4207351 15.60045415 
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4.5.4 Anti-bacterial Biofilm Assay 

No biofilm degradation activity was detected in either the methanolic resin or ethyl acetate 

extractions of the coculture, healthy Pleurosigma sp., or media controls against S. epidermis (Table 

15). 
Table 15 Anti-bacterial results values are presented as optical density (OD) values at 600nm.  Active extracts have OD-values 
under 0.25. 

Extraction Culture Concentration S. epidermidis 

Resin Pleurosigma sp. High  0.39 

Resin Pleurosigma sp. Medium 0.32 

Resin Pleurosigma sp. Low 0.33 

Resin Pleurosigma sp. + P. Isakeiti High  0.38 

Resin Pleurosigma sp. + P. Isakeiti Medium 0.38 

Resin Pleurosigma sp. + P. Isakeiti Low 0.39 

Resin Media Control High  0.38 

Resin Media Control Medium 0.39 

Resin Media Control Low 0.33 

Ethyl Acetate Pleurosigma sp. High  0.3 

Ethyl Acetate Pleurosigma sp. Medium 0.3 

Ethyl Acetate Pleurosigma sp. Low 0.26 

Ethyl Acetate Pleurosigma sp. + P. Isakeiti High  0.4 

Ethyl Acetate Pleurosigma sp. + P. Isakeiti Medium 0.48 

Ethyl Acetate Pleurosigma sp. + P. Isakeiti Low 0.49 

Ethyl Acetate Media Control High  0.53 

Ethyl Acetate Media Control Medium 0.45 

Ethyl Acetate Media Control Low 0.39 

4.5.5 Anti-inflammatory Assay 

Anti-inflammatory activity was detected in the Pleurosigma sp., coculture, and media extracts at 

levels higher than the calibration curve. No follow-up was pursued because any activity could 

not be attributed to the cultures because it was detected at such high levels in the media controls 

(Table 16). Ethyl acetate extracts of Pleurosigma sp. and P. isakeiti cocultures showed some 

inhibition of LPS induced secretion of TNF-α at concentrations of 31.3 μg/ml. 
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Table 16 Values presented below are shown in endotoxin units/ml  

                         Concentration 

Sample 1000 500 250 125 62.5 31.3 15.6 0 

Ethyl Acetate Coculture 1.5733 1.778 1.6546 1.7237 2.0517 2.1544 0.0779 0.0782 

Ethyl Acetate Pleurosigma 1.3862 1.3942 1.6885 1.7984 1.7934 1.9568 0.0788 0.0765 

Ethyl Acetate Media 1.211 1.3154 1.3354 1.4964 1.4081 1.6666 0.0788 0.0783 

Resin Coculture 0.0768 0.0755 0.074 0.0758 0.074 0.0759 0.0763 0.077 

Resin Pleurosigma 0.0755 0.0744 0.0736 0.0752 0.0762 0.0764 0.0778 0.0772 

Resin Media 0.0742 0.0745 0.0775 0.0759 0.0753 0.0751 0.0758 0.0755 

Positive Control 1.9446 2.2259 2.1824 0.0761 0.0764 0.077 0.0764 0.0777 

Negative Control 0.0884 0.0788 0.0845 0.076 0.0764 0.0767 0.0769 0.0777 
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5 Discussion 
No direct observations suggest that the proliferation of the amorphic ameboid stages of P. isakeiti 

form a long-term or reiterative resting stage for the thraustochytrid protist; however, their ability 

to survive extended winter seasons at 69.6492° N, 18.9553° E (e.i., Tromsø, Norway) raises 

questions about whether they can live saprotrophically as facultative parasites without a host. As 

host concentrations dip in winter months in the absence of light, it remains curious how they persist 

through dramatic seasonal variance.   

 

Findings from this work support the local depletion of silicate by diatoms and diatom 

thraustochytrid cocultures. Silicate concentration varies considerably throughout the ocean 

(Tréguer et al. 1995) and parasites can affect local silicate concentration gradients along coastal 

regions (Raven and Waite 2004). As silicate is reduced in the sea, diatoms loose setae, decreasing 

their motility, control of buoyancy, and natural defense systems (Flynn and Martin-Jézéquel, 2000; 

Figure 3). Loss of buoyancy may be a community protection method to prevent parasitic spread 

and aid in nutrient uptake (Gemmell et al. 2016). Buoyancy control allows diatoms to reach photon 

rich surface waters for photosynthesis while dropping lower in the water column to take up 

nitrogen, phosphorus, and silicate in deeper, nutrient rich waters (Armbrust 2009; Gemmell et al. 

2016). Pleurosigma sp., which tends to adhere to surfaces, especially during the winter, is not 

continuously living in the water column and cannot always rely on buoyancy protection from 

parasitism when resting on the sea floor.  

 

Reduced silicate increases rate of infection and decreases the rate of division of Pleurosigma sp.  

during coculturing with P. isakeiti. As increased division occurs in silicate stressed conditions, 

future generations of the diatom may become less robust, with thinner silica walls, and greater 

vulnerability to other microbial parasites. When infected cells divide, in response to parasitism, 

local silicate decreases as result of the increased silicate uptake under division, perpetuating a cycle 

of diatom vulnerability to thraustochytrid parasites.  Moreover, infection and division rates are 

cofounded with silicate uptake, and thus codependent (Figure 13).  
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Figure 13 Schematic of diatom growth factors and the role of parasitism, division, silicate reduction, and uptake in the relationship 
between parasite P. isakeiti and Pleurosigma sp. 

 
Contrarily, laboratory observations of the proportion of dividing Pleurosigma sp. may not be an 

adequate measure of biomass accumulation or growth in the environment (Passche 1973). Algal 

growth is most often measured using chlorophyll a rather than observations of division (Wang et 

al. 2017). Measures of chlorophyll a over the same period of time can estimate how accurate the 

rate of division is as a metric of predicting overall increases in biomass (Furnas 1990). Cells may 

be dividing at an increased rate; however, their division may take longer under reduced silicate 

conditions. In these experiments, prolonged division or arrested division in a response to parasitism 

may have led to over-represented observations of dividing cells.  Yet, converting the incidence of 

division over time to doublings per day to chlorophyll a absorbance values may not be an accurate 

way to associate intrinsically different growth metrics. Additionally, increased incidence of 

division without adequate silicate to build cell walls may not result in a healthy photosynthesizing 

population of diatoms (Lippemeier et al. 1999).   

 

Once silicate is incorporated into a diatom cell wall, it is no longer available to be incorporated 

into newly dividing diatoms. When diatoms are infected and overwhelmed by the parasite, the 

silica they sequester into their frustules sinks to the bottom of the ocean, or in the case of this study, 

to the bottom of the flasks, excluded from future utilization. During nutrient analysis sampling, 

this silica ‘sink’ of dead diatoms is removed via filter before analysis. Bacteria, or a saprotrophic 
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form of the thraustochytrid, may degrade empty silicate shells and reintroduce silicate back into 

the flask environment. Marine bacteria also have been observed to dramatically increased silicate 

dissolution in two taxa of lysed marine diatoms relative to bacteria-free controls (Bidle and Azam 

1999). If chitin/silica degrading prokaryotic bacteria were present, the results from the nutrient 

analysis experiments should be re-examined. Moreover, observations have been made of the silica 

shell being penetrated by the parasite (Hassett 2020).  

 

Slight increases in nitrate were observed in both healthy and infected Pleurosigma sp. cultures 

suggesting that diatoms are not taking up nitrate as was originally hypothesized. A rise in nitrate 

over time is uncommon in similar experiments using healthy diatoms (Fawcett and Ward 2011). 

The observed rise in nitrate could have been a result of the internal contents of the compromised 

diatom shell spilling into the culture media. Therefore, nitrate may be introduced into the cultures 

from moribund cells’ uncontrolled excreting of lysed cytoplasmic contents – amino acids, proteins, 

and nucleic acids. Clear observations of thraustochytrid penetrations of the cell wall suggest that 

once their cell wall has been infiltrated, and sporangium have formed, host cell proteins of the 

cytoplasm, that cannot be easily utilized by the parasite, are released into the culture medium 

(Appendix 1). These proteins are eventually detected in greater abundance as the host culture is 

weakened and dead cells dominate the culture flask (Figure 9C). It remains unclear why nitrate 

also increased over time in healthy Pleurosigma sp. cultures.  

 

Division among parasitized diatoms in silicate rich environments appears to have a prolonged 

response of division in comparison to reduced-silicate conditions (Figure 11C).The parasitism 

process of P. isakeiti in the laboratory culturing flask is effective (Hassett 2020; Figure 9A; Figure 

10A); however, the dispersal of diatoms in the marine environment from currents, tides, upwelling, 

and wind shearing in shallow waters may disperse zoospores to a greater extent, decreasing the 

possibility of contact with host diatoms (Cermeño and Falkowski 2009).  

 

While recent studies have linked diatoms and thraustochytrids to docosahexaenoic acid (Wang et 

al. 2018) and eicosapentaenoic acid production (Kobayashi et al. 2011), neither PUFA was 

detected freely in the ethyl acetate or resin extractions in the LC-MS experiment (Figure 12). As 

diatoms stop dividing, they stop forming phospholipids, disrupting the inclusion of PUFAs into 
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the cell wall (Jónasdóttir 2019), preventing potential lipid defense mechanisms (Sabharwal et al. 

2017; Damare et al. 2020). In the present study, division increased in response to parasitism (Figure 

10A; Figure 10C), suggesting a possible continued production of defensive phospholipids. 

Membrane fatty acids and aldehydes may be released in seawater following diatom cell lysis 

(Ribalet et al. 2014) and could also act against parasites –as a community scale defense response.  

 

Although none of the extracts used in the bioassays demonstrated bioactivity of high potency, more 

strategic screening may yield different results. If any defense lipids or polyunsaturated aldehydes 

were released, they were only marginally effective at inhibiting the parasitism process under the 

present laboratory conditions (Figures 10A and 11A); however, in the natural environment, 

compounds, such as C23H16O2 or C17H27NO2 could play critical roles in parasitism or defense, or 

participate in signaling surrounding diatom cells to continue dividing or to begin incorporating 

silicate inside the cell to increase density (Poulson et al. 2009). C23H16O2 and C17H27NO2 could be 

integral to direct attachment, degradation, or invasion of the Pleurosigma sp. cell wall. 

 

In the present study, in all cultures, some healthy diatoms continued to persist despite 

overwhelming zoospores and massive infection rates in infected cultures (Figures 10A and 11A). 

These persistent diatoms may have developed a resilience to the parasite (Scholz et al. 2017); 

however, to determine whether some Pleurosigma sp. acquired a resistance would require a 

reseeding of new culture flasks with the resilient diatoms and a replication of the infection counting 

experiments. Ultimately, parasites that totally kill their host are unable to proliferate; however, no 

evidence exists to suggest there is an internal mechanism, feedback loop or control in which P. 

isakeiti resists infecting all Pleurosigma sp. cells to persist longer.  

 

Ultra-high performance-liquid chromatography in combination with resolution mass spectrometry 

gave highly complex chromatograms. However, there were subtle differences between healthy 

Pleurosigma sp. cultures, cocultures with P. isakeiti, and media controls (Figure 12). Two 

compounds characterized the major differences between healthy and parasitized extracts. One 

eluted at retention time 4.2422 min (m/z 278.20923; C17H27NO2) and the second at retention time 

9.2357 (m/z 325.12084; C23H16O2). Molecular formulas of both compounds had iFit-scores of 

100% confirming their elemental compositions calculated from variance between accurate masses 
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and isotope intensities (Hancock et al. 2006). Both compounds returned hits when queried among 

marine chemistry literature databases; however, their identities remain uncertain without 

compound isolation and structural elucidation using nuclear magnetic resonance. One 

distinguishing characteristic of C17H27NO2 is the presence of nitrogen, indicating an alkaloid nature 

of the compound. Compound C23H16O2 has a higher ratio of C:H, suggesting a possible polycyclic 

structure. In order to characterize the compounds further, they need to be isolated and structurally 

elucidated, which will require an upscaling of the cultivations in order to provide more biomass. 

 

6 Future Perspectives 
 

The non-distinctive evolutionary history of thraustochytrids, sharing both fungal and algal 

characteristics, suggests they may produce metabolic chemicals that can bridge different signaling 

pathways responsible for their parasitic success (Leyland 2017). The metabolism of algal defense 

and genetic regulation of PUFAs has been studied in recent years (Ward and Singh 2005); 

however, questions remain – including the ability of thraustochytrids to compete with algae and 

marine bacteria for nutrients while they invade and compromise the cell wall of their algal hosts 

(Scholz et al. 2016; Nagano et al 2011; Song et al. 2018).   

 

If cocultures of P. isakeiti parasitizing a different host could be collected, comparison between 

healthy and parasitized host metabolic profiles could determine which organism produces the 

coculture-specific compounds. Further, bioassays conducted without individual extracts from both 

isolated host and parasite, prevent determination of which organisms is ultimately responsible for 

the bioactive results. The inherent life strategy of putative biotrophs makes metabolomic analyses 

a challenge and such an experimental dilemma limits deep investigation into positive bioactivity 

results. However, the basic observations of infection, division, and nutrient uptake in the present 

study, may contribute to the foundation of available knowledge for future examinations of the 

thraustochytrid-diatom, parasite-host relationship. Further, it remains plausible that the variances 

in LC-MS data among healthy Pleurosigma sp. cultures and P. isakeiti coculture extracts could be 

associated with physiological processes unrelated to parasitism, unintentionally induced by 

laboratory conditions. 
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In retrospect, objectives 2 and 3 could have been evaluated more concertedly by collecting division 

rate, infection rate, nutrient analysis, and chlorophyll a from parasitized and healthy culturing 

conditions under treatments of standard and reduced silicate in a single experiment, rather than 

collecting this information in two experiments. Nutrient analysis data was not collected on healthy 

and parasitized cultures under reduced silicate conditions limiting the juxtaposition of the silicate 

and nitrate uptake under these different nutrient conditions. Conducting such time-series 

experiments could elucidate the differences in effects of available silicate levels on silicate:nitrate 

retention and division during infection. The statistical modeling for percentage dividing over time 

in response to silicate treatment could be developed further. Splines modelling (Perperoglou 2019) 

could be used to compare multiple generalized linear models in Figure 11B to determine statistical 

differences between each slope. Effectively, this method could determine differences in variance 

in slopes modeled at different increments of the time-series to determine which part of the trend is 

most robustly different.  

 

Counting experiments are time consuming and can be prone to bias. Despite committed discipline 

to sampling, in the infection and division rate experiments under different silicate treatments 

(Figure 4) only 31 timepoints were observed with 10 replicates and 3 controls under two silicate 

treatments. Concerns about pseudo-replication arose when two dilutions were necessary for the 

NA calibration requiring data cleaning and consolidation between experiments. Randomization of 

field of views during observations and sampling could have been biased by a single data collector 

(Figure 4-6). Counting experiment sampling required long periods of focused attention over a 

microscope that may have introduced bias. Throughout this study, silicate and nitrate depletion 

has been attributed primarily to Pleurosigma sp. metabolism due to the greater relative size of the 

diatom cell compared to the parasite; however, this assumption may have been overly simplistic. 

The presumption that thraustochytrid P. isakeiti does not significantly contribute to nutrient 

depletion requires further testing. 

7 Conclusion 
 

P. isakeiti has only been observed as an obligate parasite. After exposure to the parasite, 

observations of the incidence of infected diatom Pleurosigma sp. host cells increased over time 

and in response to reduced-silicate treatments. The proportion of dividing diatom Pleurosigma sp. 
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host cells during infection by P. isakeiti increased over time under standard and reduced silicate 

treatments. During the infection, available silicate decreased while available nitrate increased. 

Available nitrate:silicate ratio in standard F/2 1:50 FSW culture media increased in parasitized 

cultures of Pleurosigma sp. Two compounds with elemental formulas of C17H27NO2 and C23H16O2 

were eluted from cocultures of Pleurosigma sp. with P. isakeiti. that were not present in healthy 

diatom or media controls. Limited bioactivity was detected in anti-inflammation and anti-bacterial 

MIC assays. No bioactivity was observed in the anti-cancer or biofilm assays. The present research 

is multidisciplinary, spanning the fields of ecology and biodiscovery to yield novel, fundamental 

knowledge on a newly described species, P. isakeiti and describe the interaction with its host, 

Pleurosigma sp., an ecologically important diatom species.  
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9 Appendix 
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Appendix 1 Table of observational examples of health status (healthy, infected, dividing and dead) of Pleurosigma sp. under 
standard and reduced silicate media during infection by P. isakeiti from counting and nutrient analysis sampling  

 
 
Appendix 2 Rate of infection (log) in GGEffect (Pr.infect~Day*Silicate) 
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Appendix 3 Compound eluted at retention time 4.2422 min (m/z 278.20923; C17H27NO2) in extracts of infected Pleurosigma sp 
by P. isakeiti not detected in healthy Pleurosigma sp. cultures and media control extracts 

 

Appendix 4 Compound eluted at retention time 9.2357 (m/z 325.12084; C23H16O2) in extracts of infected Pleurosigma sp by P. 
isakeiti not detected in healthy Pleurosigma sp. cultures and media control extracts 

 
Appendix 5 PCA of healthy and parasitized Pleurosigma sp. extracts by P. isakeiti, and media controls 
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#Import and calculate proportions of infected and dividing 
dt <- read.delim("thraustochytridinfection.txt", header = T) 
dt$pr.Infect <- dt$Infect / (dt$Health + dt$Infect) 
dt$pr.Divide <- dt$Divide / (dt$Health) 
#Clean data 
dt <- dt[dt$Rep != "Control",] 
dt.corr=dt[which(dt$pr.Divide<=1),] 
#Create models 
Infmod <- glm(pr.Infect ~ Day * Treatment, data = dt.corr, family = "quasibinomial") 
Divmod <- glm(pr.Divide ~ Day * Treatment, data = dt.corr, family = "quasibinomial") 
#visualize models 
plot(effects::allEffects(Infmod)) 
plot(effects::allEffects(Divmod)) 
#Extract model summaries 
summary(Infmod) 
summary(Divmod) 
##Objective 3## 
#How are the cells division and infection affected by silicate and nitrate uptake in infected and healthy 
cultures? 

##Import data 
NAt <- read.delim("NAt.corr.txt", header = T) 
#Calculate Proportions 
NAt$Infect <- NAt$Dead 
NAt$pr.Infect <- NAt$Infect / (NAt$Health + NAt$Infect) 
NAt$pr.Divide <- NAt$Divide / (NAt$Health) 
NAt$NS <- NAt$NAtNO3.NO3 / (NAt$Silicate) 
##Divide Cultures 
NAtCoc=NAt[which(NAt$Culture=="Coculture"),] 
NAtPl=NAt[which(NAt$Culture=="Pluerosigma"),] 
##Create models## 
#Coculture 
Infmodco <- glm(pr.Infect ~ Day * Silicate, data = NAtCoc, family = "quasibinomial") 
Divmodco <- glm(pr.Divide ~ Day * Silicate, data = NAtCoc, family = "quasibinomial") 
InfmodcoN <- glm(pr.Infect ~ Day * NAtNO3.NO3, data = NAtCoc, family = "quasibinomial") 
DivmodcoN <- glm(pr.Divide ~ Day * NAtNO3.NO3, data = NAtCoc, family = "quasibinomial") 
InfmodcoNS <- glm(pr.Infect ~ Day * NS, data = NAtCoc, family = "quasibinomial") 
DivmodcoNS <- glm(pr.Divide ~ Day * NS, data = NAtCoc, family = "quasibinomial") 
#Healthy Pluerosigma culture 
Divmodpl <- glm(pr.Divide ~ Day * Silicate, data = NAtPl, family = "quasibinomial") 
DivmodplN <- glm(pr.Divide ~ Day * NAtNO3.NO3, data = NAtPl, family = "quasibinomial") 
DivmodplNS <- glm(pr.Divide ~ Day * NS, data = NAtPl, family = "quasibinomial") 
##Visualize models 
plot(effects::allEffects(Infmodco)) 
plot(effects::allEffects(Divmodco)) 
plot(effects::allEffects(InfmodcoN)) 
plot(effects::allEffects(DivmodcoN)) 
plot(effects::allEffects(InfmodcoNS)) 
plot(effects::allEffects(DivmodcoNS)) 
plot(effects::allEffects(Divmodpl)) 
plot(effects::allEffects(DivmodplN)) 
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plot(effects::allEffects(DivmodplNS)) 
##Extract model summaries 
summary(Infmodco) 
summary(Divmodco) 
summary(InfmodcoN) 
summary(DivmodcoN) 
summary(InfmodcoNS) 
summary(DivmodcoNS) 
summary(Divmodpl) 
summary(DivmodplN) 
summary(DivmodplNS) 
 

 
Appendix 6 R script for data analysis  

 


