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Abstract
New empiricalKp -based models for the equatorward and poleward boundaries
of the auroral oval in the Northern and Southern Hemispheres were developed,
with the purpose of reviewing the auroral ovals predicted by well-established
Feldstein auroral oval model. The new models were derived from particle and
energy flux measurements from six low-altitude (800− 900 km) POES/MetOp
satellites. All six satellites (NOAA-15 through NOAA-19 and MetOp-A) carried
identical TED and MEPED instruments, measuring the flux of precipitating
electrons and protons over different energy ranges. The data was collected
throughout 2012, with two or more satellites being operational simultaneously
for most of the year. The auroral oval boundary detection events for four
different particle species and energy range combinations were used as the
basis for the auroral oval models: electrons < 20 keV (TED), protons < 20 keV
(TED), electrons > 30 keV (MEPED) and protons 30− 80 keV (MEPED).

For each of these four particle types, the equatorward and poleward boundaries
of the auroral oval were defined. The location of the precipitation zones of the
four particles types corresponded well with the general precipitation regions
described in the literature. For most Kp values, the precipitation zones were
comparable in the Northern and Southern Hemispheres. However, for electrons
with energies < 20 keV (the visible auroral oval), a consistent asymmetry
between the hemispheres was found on the dayside. Furthermore,usingMEPED
measurements, the location of the electron and proton isotropic boundaries
were found to be located around the poleward boundary and just poleward of
the equatorward boundary, respectively.

Three different fitting methods were used to express the detected auroral
oval boundaries as a function of Kp : a fourth-order polynomial fit, a direct
least-squares ellipse fit and a second-order Fourier series fit. All three methods
had major caveats and could only provide rough estimates for the auroral oval
boundary locations. However, the Fourier series fit was chosen as the most
suitable method, since it incorporated the observed asymmetry between the
hemispheres for the TED electron boundaries.

The models based on the three methods were compared to the Feldstein model,

i



ii

derived from ground-based optical observations. The poleward boundaries of
the new models and the Feldstein model were found to be located within 5°
ILAT of each other. The equatorward boundaries could be more than 10° ILAT
equatorwards of the Feldstein equatorward boundary. Consequently, the new
models estimated much larger auroral ovals than does the Feldstein model.
The new models had the advantage of providing more information about the
various auroral particle precipitation zones in both hemispheres. However, the
models did not provide any indication about the location of the parts of the
auroral oval that are visible from the ground. This is important knowledge
when incorporating these types of models into aurora forecasting software
such as Aurora Forecast 3D. To further elaborate on these models, it will be
necessary to take into account the difference in altitude between the spacecraft
orbits and the visible aurora, in order to accurately estimate the region where
aurora may be observed from the ground.
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1
Introduction
1.1 Motivation
Auroral forecasting concerns itself with predicting when and where on the
Earth auroras will occur. One of the first to systematically map the occurrence
of auroras, Fritz (1881) defined the geographic areas where auroras were most
likely to appear. In the late 19th Century, using auroral observations in the
Northern Hemisphere spanning 172 years, from 1700 to 1872, Fritz developed a
map detailing where auroras were expected to occur with a given frequency (so-
called isochasms) (Vestine, 1944). Known as the auroral zone, this statistically
defined region consists of two bands between approximately 65° and 75°
geomagnetic latitude. During the International Geophysical Year (IGY, 1957-
58), following extensive imaging in the auroral zones using all-sky cameras,
Feldstein (1964) suggested that auroras occur in ovals roughly centred at the
geomagnetic poles in the Northern and Southern Hemispheres (see Figure 1.1).
Feldstein’s studies also revealed that the auroral oval is dynamic; its shape
and size is subject to diurnal, annual and long-term variations in geomagnetic
activity. Throughout the past 60 years, significant progress has been made
in the development of models for predicting the morphology of the auroral
oval. The advancement of auroral oval prediction techniques has benefited
tremendously from the technological developments initiated by the beginning
of the space age (coinciding with the IGY).

The auroral ovals may be referred to as the regions in the ionosphere receiving
the majority of the particle precipitation (Xiong & Lühr, 2014). Centred in the
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: The auroral ovals in the Northern (a) and Southern (b) hemispheres,
derived from all-sky camera surveys during the International Geophysical Year
(1957-1958). The numbers within the ovals indicate the frequency (in percent)
of observed aurora at zenith. From Feldstein (1964).

vicinity of the geomagnetic poles and taking the shape of continuous bands
with radii of roughly 3500 km, the auroral ovals are essentially a mapping of the
magnetosphere into the Earth’s atmosphere, i.e. the regions where aurora may
be observed at any given instant in time (Weiss, Reiff, Hilmer, Winningham, &
Lu, 1992). The size of the auroral oval is mainly controlled by the north-south
component of the interplanetary magnetic field (IMF) (Holzworth & Meng,
1975). The poleward boundary of the auroral oval tends to correspond to the
polar cap, inside which Earth’s magnetic field lines are open and merged with
the IMF (Xiong & Lühr, 2014). Consequently, the open-closed field line boundary
defines the approximate location of the poleward boundary of the auroral oval
(Johnsen, 2013). Processes in the magnetosphere are in turn related to the
activity of the Sun via the solar wind, meaning the size of the auroral oval
provides a proxy of the solar activity (Wagner & Neuhäuser, 2019).

The aurora has been an important factor for space weather predictions and
provides substantial information about the conditions in the upper atmosphere.
It may be considered to be the only visible manifestation of space weather
(Carbary, 2005). While the geomagnetic activity may be used to predict the
size and location of the auroral oval, the reverse process may be applied to
determine solar activity in the past. A set of historical observations of the aurora
may be linked to a parameter representing the magnetic activity, which in turn
provides information about the solar activity at the time of the observations.
Moreover, observations of the auroral ovals may be used to find the past
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locations of the geomagnetic poles (Wagner & Neuhäuser, 2019). Repeated
observations may give an indication of the drift of the geomagnetic poles. For
these purposes, it becomes evident that it is useful to derive a model to predict
the location and size of the auroral ovals. A common method used to develop
models for the auroral ovals is to determine the boundaries of the oval based
on empirical observations and correlate these observations with a magnetic
activity index, representing the level of geomagnetic activity at the time the
observations were made (Carbary, 2005). By implementing such a model, it is
possible to estimate the location of the equatorward and poleward boundaries
in the past, present or future, given that the level of magnetospheric disturbance
is known.

Particularly in the Northern Hemisphere, an entirely different incentive for
developing auroral oval models comes in the shape of auroral tourism. This
fairly new industry has seen rapid growth over the past decade. In Alaska
alone, 320,000 tourists visited during the winter months of 2018. The majority
of these tourists came to see the northern lights (Williams, 2019). Having a
reliable auroral forecasting service for the expected conditions at a particular
geographic location is a valuable asset for aurora guiding firms and tourists
alike. Access to aurora forecasting application software, such as Aurora Forecast
3D (Sigernes, 2016), make auroral forecasts easy to access and interpret by the
user.

Incentives to better understand the morphology of the auroral ovals also extend
beyond practical and commercial applications to the purely scientific. The
auroras in the two hemispheres are often assumed to be mirror images of
each other, where charged particles are evenly distributed among the two
hemispheres (Laundal & Østgaard, 2009). The first comparisons between
the auroral ovals in the Northern and Southern Hemispheres revealed a high
degree of conjugacy, particularly during quiet geomagnetic conditions (Akasofu,
1978). However, Laundal and Østgaard (2009), using more recent satellite
observations, reported significant asymmetries in the auroral pattern between
the Northern and Southern Hemispheres. Developing separate models for
auroral ovals in the Northern and Southern Hemispheres provides a step on
the way to better understand these asymmetries.

Beyond the Earth, observations of auroras on other planets in the Solar Sys-
tem are an important indicator for the existence of a magnetic field and an
atmosphere. In particular, the spectrum of the aurora may provide significant
information about the atmospheric composition of a planet’s atmosphere. For
instance, if the auroral spectrum from a given planet contains the 557.7 nm
"green line", the atmosphere is likely to contain oxygen (since the 557.7 nm
emission is due to the transition of atomic oxygen from the 1S state to the 1D
state (Brekke, 2013)). This in turn is an important prerequisite for the existence
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of both plant and animal life. Hence, auroral science may play a role in the
search for extraterrestrial life (Akasofu, 1999).

While the likes of Fritz (1881), Vestine (1944) and Feldstein (1964) laid the
foundation of modern research into the morphology of the auroral oval, the
advent of the space age and Earth-observing satellites provided unparalleled
opportunities for auroral research. Not hampered by varying observational
conditions (cloudy or inclement weather, midnight sun, etc.), satellites have
the ability to make more extensive and accurate observations of the auroral
ovals. Consequently, most auroral models developed over the past decades are
based on satellite observations. Auroral oval boundary observations by satellite
may be divided into two main regimes: the first is particle measurements of
precipitating energetic particles causing the aurora (see e.g. Newell, Sotirelis,
and Wing (2009)), and the second is direct imaging of the auroral oval (see
e.g. Holzworth and Meng (1975), Zhang and Paxton (2008) and Wagner and
Neuhäuser (2019)). The first approach has the advantage of providing well-
defined oval boundaries, but only along the satellite orbit. The second regime
provides a global view of the auroral oval at any one instant in time, but comes
at the expense of lower spatial resolution and less well-defined boundaries
(Carbary, 2005). Alternative space-based methods include the use of magne-
tometers on spacecraft (see e.g. the CH-Aurora-2014 model by Xiong and Lühr
(2014)).

Although various auroral oval models have been developed over the past
decades, most models have limitations due to the fact that underlying as-
sumptions and simplifications need to be made in order to effectively predict
the size and location of the auroral ovals. For instance, the Feldstein model
does not distinguish between the auroral ovals in the Northern and Southern
Hemispheres (Feldstein, 1964). By continuing to develop new auroral oval
models based on different data and magnetic activity indices, progress is made
in establishing more accurate and reliable auroral forecasts. This thesis aims
to add a small piece to this puzzle.

1.2 Objectives
The objective of this master’s thesis is to develop a simple auroral oval model
consisting of separate approximations for the equatorward and poleward au-
roral oval boundaries in the Northern and Southern Hemispheres. The model
will be based on empirical data obtained throughout 2012, from particle detec-
tors carried on board five Polar-orbiting Operational Environmental Satellites
(POES) operated by the National Oceanic and Atmospheric Administration
(NOAA), as well as the MetOp-A satellite, operated by the European Organi-
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sation for the Exploitation of Meteorological Satellites (EUMETSAT) (NOAA,
2020). The detectors used in this work measure the flux of precipitating elec-
trons and protons over two different energy ranges per particle species. The
detected boundaries will be correlated to the Kp index, a common measure of
the level of geomagnetic disturbance (Thomsen, 2004). Once the correlation
coefficients have been determined, the equator and poleward boundaries of
the auroral oval may be determined for any arbitrary Kp value.

Four separate auroral ovals will be developed within each hemisphere: elec-
trons with energies less than 20 keV, electrons with energies greater than
30 keV, protons with energies less than 20 keV and protons with energies be-
tween 30 keV and 80 keV. To describe the oval boundaries, three different
functions will be fitted to the boundary detection events: (1) a polynomial fit,
(2) an ellipse fit and (3) a Fourier series fit. The resulting auroral oval models
based on these three methods will be evaluated with respect to the Feldstein
auroral oval model. Moreover, the boundary detections in the Northern and
Southern hemispheres will be compared to each other for different Kp values
to investigate for any apparent asymmetries in the morphology of the auroral
ovals between the hemispheres. Lastly, the location of the isotropic boundary
(IB) will be determined in both hemispheres and compared to the location of
the equatorward auroral oval boundaries in both hemispheres.

1.3 Thesis Structure
Chapter 2 provides a general introduction to central geophysical principles
relevant for the development of auroral oval models, including the magnetic
coordinate system in which the satellite data is expressed, general character-
istics of auroral particles and the physical principles underlying the existence
of the isotropic boundary. Subsequently, the POES and MetOp satellite pro-
grams and the six satellites used to conduct the observations are presented.
The two particle detector instruments carried on board each of the satellites
are described in detail. Furthermore, common magnetic activity indices are
introduced, with particular emphasis on the Kp index. The Feldstein auroral
oval model is presented, with emphasis on the equations used to determine the
boundaries as a function of Kp . The general features of the Aurora Forecast 3D
software application are described, and a visualization of the Feldstein auroral
oval as it appears in the application is provided. The methodology used to
create the three auroral oval models is detailed in Chapter 3. An overview
of the data set used to develop the models is provided, including the data
coverage of each individual satellite throughout 2012. The preliminary data
processing, including binning of the data into fixed Kp and MLT intervals is
described, followed by an explanation of the equations involved in each of
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the three fitting methods. The polynomial fit, ellipse fit and Fourier series fit
methods are all presented in turn. The method for calculating the location of
the isotropic boundary is presented at the end of the chapter.

In Chapter 4 a step-by-step procedure to obtain the auroral oval boundaries
for a given Kp value is provided for each of the three models. Examples of
the resulting ovals for selected Kp values in both the Northern and Southern
Hemispheres are presented. The estimated location of the isotropic boundary
is shown relative to the equatorward and boundaries boundaries in both
hemispheres. The three auroral oval models are evaluated in Chapter 5, both
with respect to each other and to the Feldstein model. The models are assessed
on their ability to encompass the features observed in the equatorward and
poleward boundary detection data. In addition, the three models are evaluated
based on their relevance for potential future implementation and improvement
of the Aurora Forecast 3D software. Furthermore, any apparent differences
between the auroral ovals in the Northern and Southern Hemispheres for
different levels of magnetic activity are described. The location of the isotropic
boundary is discussed with respect to its location suggested by the literature.
Throughout the discussion particular emphasis will be but on the auroral
ovals caused by electrons with energies less than 20 keV, as these particles
are most closely associated with the visible auroral oval. At the end of the
chapter, suggestions for future work and further development of the model
are provided. Chapter 6 summarizes the most important results and provides
some concluding remarks.



2
Background
2.1 Magnetic Coordinate Systems
Phenomena in the near-Earth space environment, including the aurora, are
highly affected by the Earth’s magnetic field and disturbances within. The
sphere of influence of Earth’s magnetic field stretches to about 15 Earth radii
(1RE ≈ 6, 371 km) on the dayside hemisphere (the side of the Earth facing the
Sun) and up to several hundred Earth radii on the nightside. Since the charged
particles in space plasma are controlled by the magnetic field, it is useful to
describe such phenomena in a magnetic coordinate system, as opposed to, for
instance, a geographic coordinate system. However, there are many different
magnetic coordinate systems, each of which is useful to describe particular
phenomena in the magnetosphere and the ionosphere. Magnetic coordinate
systems are based on the spherical harmonic expansion coefficients of the
International Geomagnetic Reference Field (IGRF), and in some cases, the
position of the Sun. The nature of the magnetic coordinate systems may be
either orthogonal or non-orthogonal. Which coordinate system is most useful
to use depends on how far away from the Earth a phenomena of interest occurs
(Laundal & Richmond, 2016).

At ionospheric altitudes (approximately 60 − 800 km) (Brekke, 2013) the
centred dipole (CD) coordinate system may be used. This is one of the most
commonly usedmagnetic coordinate systems, and is often referred to by various
names, including the geomagnetic, the geomagnetic dipole and the magnetic
coordinate systems. The CD coordinate system is an orthogonal magnetic

7
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coordinate system, involving a translation of the poles from the rotational axis
to the the dipole axis of the Earth. Since auroras occur at altitudes around
100 km, the CD coordinate system is applicable for auroral phenomena (Laundal
& Richmond, 2016).

To perform the translation from the rotational axis to the dipole axis, the IGRF
dipole model may be used to. The IGRF is a mathematical model that describes
the Earth’s magnetic field on a large scale, by means of a 13th order spherical
harmonics function. The model has been developed by the International As-
sociation of Geomagnetism and Aeronomy (IAGA) since 1965 and is updated
every five years. The IGRF must be updated regularly in order to take into
account continuous changes in the Eath’s magnetic field caused by fluctuations
in the Earth’s outer core. The first generation IGRF model (IGRF-1) was valid for
epoch 1955 to 1975, whereas the 12th generation (IGRF-12) was valid from epoch
1900 to 2020 (Thébault et al., 2015). The current IGRF generation (IGRF-13)
was released by IAGA in December 2019 (Alken, 2019).

The IGRF model describes the Earth’s main magnetic field B on and above the
Earth’s surface (considering only internal sources of magnetism) in terms of
the scalar potential V , where B(r , θ,ϕ, t) = −∇V . The scalar potential V is a
function of the radial distance r from the centre of the Earth, the geocentric
co-latitude θ , the eastward longitude ϕ and time t . The following finite series
expansion approximates the potential (Thébault et al., 2015):

V (r , θ ,ϕ, t) = a
N∑
n=1

n∑
m=0

(a
r

)n+1 [
дmn (t) cos(mϕ) + hmn (t) sin(mϕ)

]
Pmn (cosθ)

(2.1)

where a = 6, 371.2 is the geomagnetic conventional mean spherical radius of
the Earth. The degree of truncation N = 13 (Alken, 2019). The term Pmn (cosθ)
represents the Schmidt quasi-normalized associated Legendre functions of de-
gree n and orderm, whileдmn andhmn are the time dependent Gauss coefficients
of the internal magnetic field. It is these coefficients that are updated every
five years (Laundal & Richmond, 2016). Describing the dipole magnetic field
requires the first three Gauss coefficients: д01 , д

1
1 and h

1
1. The magnetic moment

unit vector of the dipole field m̂ is given by

m̂ = −
1
B0


д11
h1
1
д01

 (2.2)
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where the reference magnetic field B0 may be expressed as:

B0 =
√(
д01

)2 + (
д11

)2 + (
h1
1

)2 (2.3)

The magnetic moment is anti-parallel to the dipole axis, hence the negative sign
in Equation 2.2. This is due to the convention of letting the geomagnetic dipole
be positive northwards, despite the fact that dipole axis of the Earth’s magnetic
field points southwards (i.e. the North Pole of the dipole is geographically in
the Southern Hemisphere).

The Cartesian base vectors for the CD coordinate system are as follows:

ẑcd = m̂

ŷcd =
ẑдeo × ẑcd

‖ẑдeo × ẑcd ‖

x̂cd = ŷcd × ẑcd

(2.4)

The z axis is aligned with the dipole axis, pointing along m̂. The y axis is
perpendicular to the plane spanned by the Earth’s rotation axis and the dipole
axis. The unit vector ẑдeo is aligned with the Earth’s rotation axis. The right-
handed coordinate system is completed by the x axis (Laundal & Richmond,
2016).

Like many other magnetic coordinate systems, CD coordinates are defined to
be fixed relative to the Earth. In space physics, however, it is often useful to
express models and data with respect to the position of the Sun. A common way
to do this is to express magnetic longitude and latitude in terms of magnetic
local time (MLT) and magnetic latitude (MLAT), which are fixed with respect
to the Sun. There are several definitions of MLT, the principle idea being
that the Earth, centred at the magnetic poles, is divided into a 24-hour clock
where 1 hour corresponds to 15° magnetic longitude. Midnight (MLT 00) is
at the magnetic prime meridian, counting positive towards the east. MLT 12
represents the subsolar point, i.e. the point at which the Sun would be directly
overhead. This means that the MLT-MLAT coordinate system will rotate with
respect to the surface of the Earth. The rate at which the subsolar point crosses
the magnetic meridians determines the rotation rate of the MLT-MLAT system.
The rotation rate may be either constant of varying, depending on the magnetic
coordinate system and the spacing of the meridians for the coordinate system
in question (Laundal & Richmond, 2016).

Another definition of MLT is given by Equation 2.5, where ϕ is the magnetic
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longitude of a given point, ΦN is the geographic longitude of the CD North
Pole, and UT is universal time in hours. However, this particular definition does
not yield MLT 12 for the subsolar point (Baker & Wing, 1989).

MLT = UT +
ϕ + ΦN

15
(2.5)

An alternative definition is

MLT =
ϕ + ϕcds

15
+ 12 (2.6)

where ϕcds is the longitude of the subsolar point in CD coordinates. The
magnetic longitude ϕ of the point in question can be in CD coordinates or
in a number of other magnetic coordinate systems (Laundal & Richmond,
2016).

O'Brien, Laughlin,Allen, and Frank (1962) introduced an alternative tomagnetic
latitude, referred to as the invariant latitude Λ (ILAT), which is particularly
useful for studying trapped particles in the inner magnetosphere.

Λ = cos−1
(√

1
L

)
(2.7)

The invariant latitude essentially describes where a given magnetic field line
touches the surface of the Earth. It is based upon the L parameter, which is
constant along a given magnetic field line. The L parameter is defined in such a
way that in a perfect dipole field, it would correspond to the equatorial radius
of the field line in Earth radii. L is a function of the magnetic field strength
B and the longitudinal adiabatic invariant (or integral invariant) I (McIlwain,
1961). In this thesis, the detected auroral oval boundaries and the models that
are derived fro those boundaries are expressed in the MLT-ILAT coordinate
system.

2.2 Characteristics of the Auroral Ovals
The auroras that are visible in the night sky are caused by the emission of
radiation from atoms and molecules in the atmosphere (predominantly atomic
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oxygen and nitrogen), that are excited by precipitating energetic particles (elec-
trons and ions/protons). The precipitating auroral particles collide with the
atmospheric constituents in the upper polar atmosphere. During the collision,
the kinetic energy of the precipitating particles is partly converted into energy
stored in chemically excited states of the atmospheric atoms and molecules. As
the excited states relax, the stored energy is emitted in the form of radiation,
the wavelength of which is determined by the energy transition in the excita-
tion process. Depending on the atom or molecules, several different excitation
transitions are possible. Consequently, the emission spectrum of the aurora
spans a wide range of spectral lines, from infrared to ultraviolet wavelengths.
The brightest visible auroral emission is the 557.7 nm "green line", caused by
the transition of an electron in atomic oxygen from the 1S excited state to the
1D state (Kivelson & Russell, 1995). The strongest auroral emissions occur at
an altitude of approximately 110 km (Brekke, 2013).

The population of auroral particles consists primarily of electrons and ions
(protons) with energies from less than 100 eV to a few 100 keV. The sources of
these particles are in the plasma sheet of the magnetic tail and in the polar cusp
region of the magnetosphere (see Figure 2.1). Near the Earth, the particles that
precipitate into the atmosphere are found polewards of 55° MLAT. The visible
aurora is caused by medium-energy particles (approximately 0.5 − 20 keV),
according to Kivelson and Russell (1995). Brekke (2013) defines the majority
of visible aurora to be caused by electrons with energies < 21 keV. These
particles are located on a circle shifted towards the midnight sector and away
from the Sun. The dayside aurora in this circle is associated with low-energy
electrons and protons (energies < 1 keV), that are channelled down to the
upper atmosphere in the cusp region without significant acceleration. The
dayside auroral particles originate from the magnetosheath (the area between
the magntopause and the bow shock caused by the solar wind) and precipitate
into the polar atmosphere around 78° MLAT. Due to this asymmetry in the
in the location of auroras between the nightside and dayside, this region is
known as the auroral oval (Kivelson & Russell, 1995).

Figures 2.2 2.3 provide an simplified overview of the precipitation zones of
particles with various energies. The auroral oval is represented the region with
diagonal lines in Figure 2.2. The most energetic particles are located on a
circle of constant latitude around the magnetic pole, equatorwards of the main
auroral oval (Kivelson &Russell, 1995),with highly energetic electrons (energies
> 40 keV) concentrated on the morning side and protons with energies > 4 keV
located on the evening side (Brekke, 2013).
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Figure 2.1: Three-dimensional illustration of the main magnetic fields, currents
and plasma regions in the Magnetosphere. Auroral particles originate from the
plasma sheet in the magnetic tail. From Kivelson and Russell (1995).

Figure 2.2: Generalized overview of the precipitation zones of various auroral
particles at high latitudes in a MLT coordinate system. The region with diagonal
stripes, associated with electrons with energies E < 21 keV, represents the
visible auroral oval. The dashed line indicates the poleward boundary of trapped
electrons with E > 40 keV. A proton precipitation zone is located on the
evening side, and a highly energetic election precipitation zone is found on the
morning side. Both of these regions are equatorward of the main auroral oval.
From Tohmatsu (1990).
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Figure 2.3: (a) A highly idealized overview of the precipitation zones of various
auroral particles in a MLT coordinate system. The triangles represent the
medium-energy (0.5 − 20 keV) particle precipitation associated with the main
auroral oval, the dots represent the high-energy (> 20 keV) precipitation,while
the stars around noon MLT indicate the low-energy (< 1 keV) precipitation in
the cusp region. The density of the symbols is an indication of the flux. From
Hartz (1971). (b) Integrated enegy flux of elections and ions in the dawn-dusk
MLT plane. From Kivelson and Russell (1995).

While auroras may take on various shapes and structures, it is useful to dis-
tinguish between discrete aurora and diffuse aurora. The former is associated
with well defined structures, such as arcs and rays. Diffuse aurora, on the other
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hand, is identified by weak emissions and less well-defined structures, which
may be hard to observe optically. Associated with the precipitation region
where the proton flux is the highest, diffuse aurora tends to be found on a
circle around the magnetic poles. Even tough it is practical to categorize aurora
by means of these two types, discrete structures may still be found inside
diffuse aurora.

The first comparisons between the auroral ovals in the Northern and Southern
Hemispheres revealed a high degree of conjugacy, particularly for diffuse au-
rora during quiet geomagnetic conditions. The conjugacy between the aurora
borealis and aurora australis was less prominent for discrete auroras, during
active conditions (Akasofu, 1978). It has been proposed that this is due to
the mechanisms by which the two categories of auroras are excited and the
acceleration mechanisms of the precipitating particles (Akasofu, 1978). Nev-
ertheless, the auroras in the two hemispheres are in general often assumed
to be mirror images of each other, where charged particles are evenly dis-
tributed among the two hemispheres. However, Laundal and Østgaard (2009)
report significant asymmetries in the auroral pattern between the Northern
and Southern Hemispheres. These asymmetries are thought to be caused by
differences in the ionospheric conductivities in the two hemispheres, resulting
in season-dependent inter-hemispheric currents.

The differences in ionospheric conductivity are season dependent due to the
changing orientation of the Earth relative to the Sun throughout the year. For
most of the year, one polar region will be sunlit, while the other will be in
darkness. The sunlit hemisphere will experience a higher degree of ionization
due to the Sun, causing an enhanced ionospheric conductivity. The opposite
hemisphere would have a lower ionospheric conductivity, which is typically
associated with more intense auroras (Laundal & Østgaard, 2009).

2.3 Isotropic Boundary
Within the auroral zones, there is a distinct boundary between a poleward
region with isotropic particle precipitation and an equatorward region with
anisotropic particle fluxes. In the first region the loss cone is filled, meaning
that the flux of particles moving along the magnetic field is equal to the
flux of particles moving with 90° relative to the local magnetic field. In the
case of anisotropic particle fluxes, the loss cone is empty, meaning that the
majority of particles are trapped and gyrate along the magnetic filed lines. The
boundary between these two regions is known as the isotropic boundary (IB)
(Ganushkina et al., 2005).
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The isotropic particle precipitation on the nightside has a number of charac-
teristic features. First of all, the IB is observed for ions for all MLT values and
for all levels of magnetic activity. Secondly, the latitude of the IB is dependent
on the particle species that is precipitating, the MLT and the level of magnetic
activity. Thirdly, the latitude of the IB is not equal for all MLT for a given particle
species with the same energy. The IB will be further polewards at local noon
than at local midnight. Lastly, the higher the energy of a given particle species,
the lower the latitude of the IB (Ganushkina et al., 2005). In general the IB
concept is mostly applicable to ions due to their larger gyro radius compared
to electrons.

The IB arises due to pitch angle scattering. A particle’s pitch angle is defined as
the angle between the particle’s velocity vector and the local direction of the
magnetic field (Kivelson & Russell, 1995). The pitch angle scattering observed
in the polar region is associatedwith the violation of the first adiabatic invariant.
The term "Adiabatic invariant" refers to a constant of motion that does not
change when a slow change (relative to the period of motion) is made to a
system. In plasma physics there are three such invariants. The first adiabatic
invariant µ is equivalent to the magnetic moment of a gyrating particle (Chen,
2015).

µ =
mv⊥

2

2B
(2.8)

In Equation 2.8,m is the mass of the particle, v⊥ is the velocity component of
the particle that is perpendicular to the magnetic field B. The first adiabatic
variant is violated when ω << ωc , i.e. when the frequency ω, characterizing
the rate of change of the magnetic field B, is less than the cyclotron frequency
ωc with which the particle gyrates along the magnetic field lines (Chen, 2015).
Likewise, µ is not invariant if the Larmor radius rL approaches the magnetic
field line curvature Rc in the equatorial current sheet. The radii are given
by

rL =
mv⊥
|q |B

(2.9)

Rc =
Bz

∂Bx/∂z
(2.10)

wherem is the particle mass and v⊥ is the particle velocity, B is the magnetic
field strength and q is the particle charge. The magnetic field line curvature
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Rc in Equation 2.10 is given by the Bx and Bz components of the magnetic
field.

The principal mechanism causing pitch angle scattering, and consequently
particle precipitation, is thought to be wave-particle interactions (Ganushkina
et al., 2005). Several mechanisms have been discussed as potential causes,
including scattering related to field line curvature (FLC) and scattering due
to electromagnetic ion cyclotron waves (EMIC) (Dubyagin, Ganushkina, &
Sergeev, 2018).

2.4 POES and MetOp Satellites
The Polar-orbiting Operational Environmental Satellites (POES) are a large
fleet of meteorological satellites, operated by NOAA. The first POES satellite
(TIROS 1) was launched on April 1, 1960. In the following 50 years, the TIROS-
series satellites were replaced by the ITOS-series and NOAA-series satellites.
On February 6, 2009, the final NOAA-series satellite (NOAA-19) was launched.
The successor to the NOAA satellites is the European Space Agency’s and
EUMETSAT’s fleet of three MetOp satellites, launched in 2006, 2012 and 2018,
respectively. The objective of the POES satellites is to provide extensive meteo-
rological and environmental measurements, encompassing both surface (e.g.
ice coverage, vegetation) and atmospheric conditions (e.g. temperature, ozone
distribution). In addition to scientific instruments, the NOAA satellites carry
Search and Rescue (SAR) technology (NASA, 2019). The satellite data used in
this thesis was obtained by five different satellites from the NOAA-series (NOAA-
15 through NOAA-19), as well as MetOp-A (also known as MetOp-02). Table 2.1
lists the launch and operational dates of these six satellites, in addition to their
current status. All six satellites are located in low-Earth Sun-synchronous near
polar orbits. Their altitudes vary between 800 and 900 km, with inclinations
close to 90°. Sun-synchronous orbits are characterized by the satellite passing
over the same location on Earth at approximately the same local solar time each
day. This occurs when the orbital plane of the satellite rotates at the same rate
as the Earth revolves around the Sun, i.e. one revolution per year (Fortescue,
Swinerd, & Stark, 2011). Table 2.2 lists a selection of orbital parameters for the
six satellites. Due to their 100-minute orbital periods, the satellites complete
approximately 14 orbits per day, providing daily global coverage (NOAA, 2020).
Figure 2.4 illustrates the orbital footprints in the polar regions of five of the six
satellites as of March 2013 in a MLT-ILAT coordinate system.
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Table 2.1: Operational status of NOAA-15 through NOAA-19 and EUMETSAT
MetOp-A. Data from NOAA (2015), NOAA (2016) and NOAA (2019).

Satellite Launch Date Operational Date Status (2019)
NOAA-15 1998-05-13 1998-12-15 Active
NOAA-16 2000-09-21 2001-03-20 Decommissioned
NOAA-17 2002-06-24 2002-10-15 Decommissioned
NOAA-18 2005-05-20 2005-08-30 Active
NOAA-19 2009-02-06 2009-06-02 Active
MetOp-A 2006-10-19 2007-05-21 Active (2016)

Table 2.2: Orbital parameters of POES NOAA-15 through NOAA-19 and EUMET-
SAT MetOp-A. LTAN is the local time of the ascending node. The data was
obtained from NOAA (2015), NOAA (2016) and NOAA (2019).

Satellite Alt. [km] Period [min] Inclination [°] LTAN [hh:mm:ss]
NOAA-15 807 101.1 98.50 17:41:25
NOAA-16 849 102.1 99.00 21:01:39
NOAA-17 810 101.2 98.70 19:02:32
NOAA-18 854 102.1 98.74 17:40:01
NOAA-19 870 102.1 98.70 14:29:07
MetOp-A 817 101.4 98.70 21:29:05

Figure 2.4: The footprints of the orbits of four different POES satellites, as well
as MetOp-02 in the Northern and Southern Hemispheres. The footprints are
given in an MLT-ILAT coordinate system and correspond the the satellite orbits
as of March 2013. From Søraas et al. (2018).
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2.5 Instruments
POES and MetOp satellites carry various instruments for environmental and
atmospheric research (NASA, 2019). For auroral research the satellites carry
the Space Environment Monitor (SEM) instrument suite. The purpose of these
instruments is to monitor the flux of energetic electrons and protons into the
atmosphere and measure the particle radiation environment at the spacecraft
altitude. The magnitude and spatial distribution of these quantities are good
measures of the atmospheric response to the energy input provided by the
energetic particles, as well as the level of auroral activity. (Evans & Greer,
2004). Beginning with NOAA-15 (launched May 13, 1998), all POES satellites,
as well as the fleet of MetOp satellites (EUMETSAT, 2020), carry an upgraded
SEM. Named SEM-2, the upgraded instrument suite consists of two different
sensors: the Total Energy Detector (TED) and the Medium Energy Proton and
Electron Detector (MEPED). The two sensors are combined with a common
Data Processing Unit (DPU), serving as the interface between the two sensors
and the spacecraft bus (NASA, 2019). Figure 2.5 displays a schematic overview
some components of a POES spacecraft. The coordinate axes given in the
figure provide a means of describing the orientation of the spacecraft. Figure
2.6 shows a photograph of the three main components of the SEM-2 instrument
suite.

Figure 2.5: Schematic of the main components of a POES satellite, including
the location of the TED and MEPED instruments, as well as the spacecraft’s
orientation with respect to the Earth. From Evans and Greer (2004).
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Figure 2.6: Image of the the TED and MEPED instruments, as well as the DPU,
comprising SEM-2. From EUMETSAT (2020).

2.5.1 TED
The Total Energy Detector measures the energy flux of electrons and protons
precipitating down into the polar atmosphere. The TED sensor in SEM-2
consists of eight separate charged-particle detectors, of the cylindrical curved-
plate electrostatic analyzer Channeltron type. These eight detector systems
are divided into two sets of four, where each set of detector systems is oriented
differently relative to the geomagnetic field, such that directional energy fluxes
relative to the geomagnetic field are measured at two different angles. One set
of four detectors is mounted on the spacecraft (which is three-axis stabilized),
such that the centre of the field of view of each of the four detectors is facing
outward along the local zenith, and parallel to the radial vector connecting the
centre of the Earth and the satellite. The other set of four detectors is oriented
such that the field of view of each of the detector is centred at a 30° angle
relative to the Earth-centre-to-satellite radial vector. The former set of four
detectors is referred to as the 0° detectors, whereas the latter is referred to as
the 30° detectors (Evans & Greer, 2004).

Within each set of four detectors. Two of the detectors measure electrons, one
over the energy range from 50 eV to 1.000 eV, and the other from 1.000 eV
to 20 keV. The remaining two detectors measure protons over the same two
energy ranges. The field of view of the low-energy electron detector system is
6.7° × 3.3°, half angles. For the proton detector system with the same energy,
the field of view is 6.6°×8.7°, half angles. The field of view for the high-energy
detector systems is 1.5° × 9°, half angles, for both the electron and protons
detectors. Within each of the eight detectors, the voltage of the electrostatic
analyzer is swept in order to measure the particles within the energy ranges
specified in Table 2.3. The first eight energy bands (1 though 8) were for the
low-energy (50 eV to 1.000 eV) proton and electron detectors, while the last
eight energy bands (9 thought 16) were applied to the high-energy (1.000 eV
to 20 keV) proton and electron detectors (Evans & Greer, 2004).
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Table 2.3: Energy band limits for the TED electrostatic analyzers. Data from
Evans and Greer (2004).

Channel Lower Energy [eV] Centre Energy [eV] Upper Energy [eV]
1 50 61 73
2 73 89 106
3 106 139 154
4 154 189 224
5 224 274 325
6 325 399 472
7 473 580 688
8 688 844 1, 000
9 1, 000 1, 227 1, 454
10 1, 454 1, 784 2, 115
11 2, 115 2, 595 3, 075
12 3, 075 3, 774 4, 472
13 4, 472 5, 488 6, 503
14 6, 503 7, 980 9, 457
15 9, 457 11, 605 13, 753
16 13, 753 16, 877 20, 000

2.5.2 MEPED
The Medium Energy Proton and Electron Detector consists of a set of eight
solid-state energetic particle detectors systems, measuring the particle flux of
electrons and protons with energies ranging from 30 keV to 200MeV. Particles
within this energy range originate from the Van Allen radiation belt, solar
proton event and low-energy galactic cosmic rays. MEPED consists of eight
separate detector systems, allowing the instrument to detect particle fluxes
over such a wide range of energies. Two of the eight detectors are proton
solid-state detector telescopes, monitoring the proton flux in six energy bands
over a range of 30 keV to 6.900 keV. The next two detectors are electron solid-
state detector telescopes monitoring the electron flux in three energy bands
over a range of 30 keV to 2.500 keV. The remaining four detectors systems are
omni-directional solid-state detector systems, which measure highly energetic
protons over many different angles of incidence (Evans & Greer, 2004).

The field of view for the two electron and and the two proton solid state detector
telescopes is 30°. For both electrons and protons, one detector is positioned
such that is the central axis of the field of view is oriented 9° from the −X
direction towards the −Z direction, in theXZ -plane. This detector is called the
0° detector. The other detector is oriented such that the central axis of the field
of view is rotated by 9° from the+Y direction towards the −Z direction, in the
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YZ -plane. This detector is called 90° detector, Figure 2.5 illustrates how these
detector telescopes are oriented relative to the satellite. The configuration
of the 0° and 90° MEPED detectors relative to Earth’s magnetic field and the
atmospheric loss cone is illustrated in Figure 2.7. Table 2.4 provides an overview
of the energy channels measured by both the electron and protons solid state
detectors. The omni-directional detectors are not descried in any further detail
since measurements made by these detectors are not used in this thesis.

Figure 2.7: Schematic of the opening angle of the 0° and 90° MEPED detectors,
relative to the Earth’s magnetic field line and the atmospheric loss cone. The
size of the loss cone and the opening angles are not fixed throughout the
satellite orbit. From Søraas et al. (2018).

Table 2.4: Particle energy ranges measured by the MEPED electron and proton
detector channels. Data from Evans and Greer (2004).

Electrons
Channel Lower Energy [keV] Upper Energy [keV]
E1 (0°/90°) 30 2, 500
E2 (0°/90°) 100 2, 500
E3 (0°/90°) 300 2, 500

Protons
Channel Lower Energy [keV] Upper Energy [keV]
P1 (0°/90°) 30 80
P2 (0°/90°) 80 240
P3 (0°/90°) 240 800
P4 (0°/90°) 800 2, 500
P5 (0°/90°) 2, 500 6, 900
P6 (0°/90°) 6, 900 -
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2.6 Magnetic Activity Indices
The size and location of the auroral oval is highly dependent on the level of
disturbance of the Earth’s magnetic field. It is useful to provide a measure of
the level of magnetospheric activity in the form of a magnetic activity index.
These indices are functions of a parameter that is related to the disturbance
of the geomagnetic field. Usually, the geomagnetic disturbance is measured
using magnetometers located on the surface of the Earth. Throughout the past
decades, a large number of indices have be defined; the simplest indices being
based on subjective observations of the disturbance level. In this section, some
of the most common indices which appear in the literature are presented: the
range indices (K , Kp , A and Ap), the Q index, the substorm indices (AU , AL,
AE and AO) and the storm index Dst (Kivelson & Russell, 1995). According to
Starkov (1994b), the Kp , AL and AE indices are the most popular for charac-
terizing disturbances in the Earth’s magnetic field. In more recent years, other
indices have been derived, using space-based instrumentation. One such index,
based on solar wind parameters rather than magnetometer data is the merging
electric field (Em), based on a solar wind-magnetosphere coupling function
(Newell, Sotirelis, Liou, Meng, & Rich, 2007).

Many of the aforementioned indices have been used as the basis for various
aruroal oval models. According to Xiong, Lühr, Wang, and Johnsen (2014), Em
correlates best with the auroral oval boundaries, for boundaries determined by
means of field-aligned currents. However, Thomsen (2004) argues that, despite
its shortcomings, many magnetospheric properties correlate with Kp and that
the index is a good measure for magnetospheric convection. Because Kp has
been recorded as far back as the 1930s and is still widely used for current
auroral oval models (see e.g. Wagner and Neuhäuser (2019)), it was decided
to base the model developed in this thesis on the Kp index. Furthermore, the
Feldstein auroral oval boundaries may be expressed in terms of Kp , simplifying
the comparison to the new model. In the following, the Kp index is described
in detail. Other central magnetic activity indices are mentioned briefly.

2.6.1 The K and and Kp Indices
The K index is a three-hour range index, first defined by Julius Bartels in
1939. The day is divided into eight intervals, each three hours in duration.
Each interval is assigned an integer value between 0 and 9 (starting at UT
00), representing the level of geomagnetic disturbance. The index derived by
considering the difference between themaximum andminimum deviation from
a smooth curve representing the daily background variation in the magnetic
field, within a three-hour period. The daily background variation for a given
element of the magnetic field represents the expected level of magnetic activity
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on amagnetically quiet day,given the season, the current solar activity and lunar
phase. For each of the three magnetic elements (or components) comprising the
local magnetic field vector, the range between the highest and lowest deviation
from the background curve is calculated. The three magnetic elements are
usually expressed in terms of declination D and the horizontal component H
and the downwards vertical component Z , or by means of a local rectangular
coordinate system with northward X , eastward Y and vertically downward Z
components (Bartels, Heck, & Johnston, 1939). The element with the largest
deviation, measured by the amplitude a in units of γ is used as a basis for the
value of the K index Bartels (1957a).

The measuredK value is unique to a given magnetic observatory. Depending on
their location, different observatories will record differentK values for the same
geomagnetic disturbance. The range of the disturbance variation a for a given
magnetic observatory is related toK on a quasi-logarithmic scale. The values of
a that correspond to a given K value are determined by the latitude of a given
observatory. Consequently, each observatory has chosen its own range limits to
determine the K value. For instance, for an observatory at approximately 50°
geomagnetic latitude, K = 5 if a exceeds 500 γ . However, each observatory
does not derive its own scale for K values. Instead, the observatory chooses
a predetermined set of range limits, based on the observatory’s geomagnetic
latitude (Bartels, 1957a).

Because most observatories will measure different K values, it is useful to
define a common global K index, known as the Kp index (Kivelson & Russell,
1995). Currently, the Kp index is published by GFZ The German Research
Centre for Geosciences in Postdam (Matzka, 2020). For a given observatory,
there will be significant diurnal variations in the recorded K value throughout
the eight-intervals. Particularly at auroral latitudes, certain K values will be
recorded more frequently for a given three-hour interval than others. These
variations may be mitigated by introducing a standardized K index, Ks . The
standardized Ks index is essentially a conversion of the K index, that may be
treated as a continuous variable. Finally, the Kp index is defined as the average
of the standardized Ks indices from a fixed number of magnetic observatories.
It is currently measured using a network of 13 magnetometer stations. As
illustrated in Figure 2.8, the observatories are located at mid-latitudes (35° to
60°) in both the Northern and Southern Hemispheres (ISGI, 2013).

The Kp index may take on values between 0 and 9, where 0 represents quiet
geomagnetic conditions and and value above 5 indicates a geomagnetic storm
(Sigernes et al., 2011). However, as opposed to the K index, theKp is defined on
a scale of thirds: 0o, 0+, 1−, 1o, 1+, 2−, 2o, 2+, ..., 8+, 9−, 9o, such that the in-
terval between two integer values is divided into three parts. Simplified,Kp may
also be expressed on an integer scale, where 0o, 1o, 2o, 3o, 4o, 5o, 6o, 7o, 8o, 9o
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correspond to the integers 1, 2, 3, 4, 5, 6, 7, 8, 9. (Bartels, 1957a). The A and
Ap indices are daily average equivalents to the K and Kp indices, respectively.
These indices are useful for long-term studies (Kivelson & Russell, 1995). As
opposed, to the K and Kp indices, the A and Ap indices are linear in nature
Bartels (1957a).

Figure 2.8: The geographic locations of the magnetometer stations used to
derive the AE (magenta), Dst (blue) and Kp (green) indices. Seven of the
thirteen observatories used to determine the Kp index are located in Europe.
The geographic coordinates of the magnetometer stations were obtained from
ISGI (2013).

2.6.2 The Q Index
The Q index forms the basis for some of the early work on the morphology of
the auroral oval. The index represents the maximum deviation of the horizontal
component of the local magnetic field, relative to a quiet reverence level within
a 15-minute interval (Starkov, 1994b). TheQ index is defined on a scale from 0
to 11 (Bartels, 1957b), where 0 indicates quiet geomagnetic conditions and 6 or
more represents a high level of activity. In certain aspects, theQ index is similar
to the K indices. However, the Q index has the advantage of being defined on
a time scale of 15 minutes, significantly shorter than the three-hour time scale
of the K index. Moreover, the Q scale is not latitude-dependent, meaning a
uniform scale may be adapted for all observatories (Bartels, 1957b).
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2.6.3 The Auroral Electrojet Indices
The substorm indices (AU ,AL,AE andAO), also known as the auroral-electrojet
indices, provide a measure of the strength of the auroral electrojet currents in
the Earth’s ionosphere. The indices are currently calculated based on measure-
ments of the horizontal component of the geomagnetic field, using a network
of 12 high-latitude observatories, between 56°N and 78°N (see Figure 2.8) (ISGI,
2013). The auroral upper (AU ) index is the maximum positive magnetic distur-
bance measured by any observatory within the network at a given instant in
time. Correspondingly, the auroral lower (AL) index is the minimum magnetic
disturbance measured by any observatory. The AE index is defined as the
difference between AU and AL: AE = AU −AL, whereas the AO index is the
average of the auroral upper and lower indices: AO = (AU +AL)/2 (Kivelson
& Russell, 1995).

2.6.4 The Dst Index
The disturbance storm time (Dst) index is a measure of the strength of the ring
current (Newell et al., 2007). Since the ring current lies in the equatorial plane,
magnetic measurements are conducted by four low-latitude observatories,
between 36°N and 34°S (See Figure 2.8) (ISGI, 2013). The derivation of the
Dst index is based on the same principles as the derivation of substorm indices.
However, as opposed to the substorm indices, Dst is corrected for long-term
and diurnal variations in the Earth’s magnetic field. This requires the definition
of a quiet baseline value, which is done by considering days with no activity
that are not close to a magnetic storm recovery, and taking a sequence of
values with minimum diurnal variation (occurring a midnight). A polynomial
may be fitted to these values, which subsequently may be subtracted from
all data collected at a given observatory throughout an entire year. Intervals
with low magnetic activity within the data sequence are defined by means
of another magnetic activity index. The data within the quiet intervals are
corrected for any bias due to geomagnetic storms. By applying Fourier analysis
to this data, the resulting coefficients and harmonics may be used to predict the
horizontal component of the magnetic field at any given time. Having found
the baseline value of the magnetic field, the amplitude of the residual magnetic
field is scaled by dividing it by the cosine of the observatory’s magnetic latitude.
Taking the average of the scaled residuals as measured by a global network
of observatories at a given instant in time yields the Dst index (Kivelson &
Russell, 1995).
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2.6.5 Solar Wind-Magnetosphere Coupling Function
Newell et al. (2007) defines a coupling function for the interaction between the
solar wind and the magnetosphere. By correlating several coupling functions
to 10 different magnetic activity indices (including theKp ,AL,AU ,AE andDst
indices), the electric field merging rate dΦMP/dt was found to provide the best
correlation with the largest number of indices (all indices, except Dst):

dΦMP

dt
= vsw

4
3Bt

2
3 sin

8
3

(
θc
2

)
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where vsw is the solar wind velocity, Bt =
√
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2 is the magnitude of

the interplanetary magnetic field (IMF), the factor sin8/3(θc/2) represents the
percentage of IMF lines that merge and θc is the IMF clock angle (tanθc =
By/Bz). In order to take into account the "memory-effect" of themagnetosphere-
ionosphere system, dΦMP/dt may be integrated to find the integrated merging
rate Em:
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where t1 and the e-folding time τ (the time interval for which a quantity
increases or decreases by a factor of e) are determined experimentally (Xiong
& Lühr, 2014). As a coupling function for the solar wind-magnetosphere inter-
action, Em represents another index for the level of disturbance in the Earth’s
magnetic field. Due to the fact that Em is derived from solar wind parame-
ters, it is not a magnetic activity index in the same sense as the other indices
mentioned here.

2.7 The Feldstein Auroral Oval Model
Feldstein and Starkov (1967) defined an auroral oval model using a large net-
work of all-sky cameras during the IGY, from 1957 to 1958. The location of
the auroral ovals were defined as a function of the Q index. As the model
was derived purely from ground-based optical observations, it provides a good
indication for where aurora may be seen for an observer on the ground. As a re-
sult, it remains in use today. However, the model does not distinguish between
the auroral ovals in the Northern and Southern Hemispheres. Holzworth and
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Meng (1975) applied a curve fitting to the statistical ovals defined by Feldstein,
deriving a mathematical model for the location of the auroral oval, and com-
paring the model to satellite images from the Defense Meteorological Satellite
Program (DMSP). Subsequently, Starkov (1994a) used a similar method to
express the equatorward, poleward and diffuse auroral oval boundaries, based
on Feldstein’s observations. However, instead of correlating the ovals to the
Q index, Starkov (1994a) expressed the oval boundaries in terms of the AL
index.

The Feldstein auroral oval model, as defined by Starkov (1994a), expresses the
corrected geomagnetic latitude θ of the poleward, equatorward and diffuse
boundaries of the auroral oval as a sum of sinusoids. Although originally ex-
pressed as a function of the AL index, Starkov (1994b) defined a conversion
equation, allowing the oval boundaries to expressed in terms of a selection
of magnetic activity indices, by means of the following third-order polyno-
mial:

AL = c0 + c1M + c2M
2 + c3M

3 (2.13)

where M may be any of the Q , Kp or AE indices. The values of the coeffi-
cients {c0, c1, c2, c3} depend on which of the indices are related to each other
(Starkov, 1994b). For instance, ifAL is expressed in terms ofKp , the coefficients
{c0, c1, c2, c3} = {18 nT, -12.3 nT, 27.2 nT, -2.0 nT} (Starkov, 1994b).

Sigernes et al. (2011) presents the auroral oval boundaries given by Starkov
(1994a) using the following notation:

θm = A0m +A1m cos[15(t + α1m)] +A2m cos[15(2t + α2m)]
+A3m cos[15(3t + α3m)] (2.14)

where the index m ∈ {0, 1, 2} indicates whether Equation 2.14 refers to the
poleward (m = 0), equatorward (m = 1) or equatorward diffuse aurora
(m = 2) boundaries. The amplitudes {A0m,A1m,A2m,A3m} are in units of
degrees of latitude, while the phases {α0m,α1m,α2m,α3m} are in units of
decimal hours. The local time t is expressed in hours. Starkov (1994a) estimates
the values of the amplitudes and phases directly from the AL index:
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Aim or αim = b0m + b1m log10 | AL | +b2m log10
2 | AL |

+ b3m log10
3 | AL | (2.15)

where the index i ∈ {0, 1, 2, 3} indicates which amplitude or phase is to be
calculated for a given boundarym. Based on the calculatedAim indices, Starkov
(1994a) provides a means of determining the total area S of the oval for a given
boundary typem:

S = π
3∑

i=0
Ai

2 (2.16)

In general, the coefficientA1m tends to be significantly larger thanA2m andA3m .
In this case, Starkov (1994a) states that the auroral ovals may be represented
as circles, the centre of which is translated relative to the geomagnetic pole.
This approximation is valid if the accuracy of the boundaries is between 1° and
1.5° or higher.

Figure 2.9 illustrates an implementation of the Feldstein auroral oval model
for selected Kp values between 0 and 9 in corrected geomagnetic coordinates
(CGM), where the longitude is converted to MLT. Figure 2.10 display the same
oval boundaries in a Cartesian coordinate system, providing a simple compari-
son between the oval boundaries for different levels of magnetic disturbance.
An overview of the coefficients necessary to implement the Feldstein model are
given by Starkov (1994a).
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Figure 2.9: The Feldstein auroral ovals implemented for selected Kp values
between 0 and 9 in a MLT-CGM coordinate system. The auroral oval is the area
between the poleward boundary (red line) and the equatorward boundary
(blue line). The green dashed line represents the equatorward boundary of the
diffuse auroral oval.

Figure 2.10: The Feldstein auroral ovals implemented for selected Kp values
between 0 and 9 in a MLT-CGM coordinate system, as Cartesian coordinates.
The auroral oval is the area between the poleward boundary (red line) and
the equatorward boundary (blue line). The green dashed line represents the
equatorward boundary of the diffuse auroral oval.
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2.8 Aurora Forecast 3D
Aurora Forecast 3D is an aurora forecasting software application developed
by Professor Fred Sigernes at the University Centre in Svalbard (UNIS). The
application is free to download both for smartphones and for personal comput-
ers 1 (Sigernes, 2016). Figure 2.11 shows a screenshot from the interface. The
application provides an interactive three-dimensional map of the Earth, which
may be scaled and rotated in any direction. The auroral ovals are derived from
the Feldstein model, and are projected onto the globe in both the Northern
and Southern Hemispheres. The size and location of the ovals are updated in
real-time. In addition to the projection of the auroral ovals, the application
incorporates an Auroral Compass. This feature indicates in which cardinal
direction auroras may be observed when looking up to the sky from a given
ground track point. Furthermore, the Auroral Compass indicates what percent-
age of the sky is expected to be covered by auroras, as well as the location
of the Sun and the Moon if they are within the field of view. The user can
displace the ground track point and find the likelihood of observing auroras at
any location on the globe.

The software application provides short-term forecasts for the auroral oval
morphology, three and six hours ahead in time. These forecasts are based on
theKp values predicted by the NOAA Space Weather Prediction Center (SWPC)
2 , by means of Sun-monitoring satellites. Additionally, a three-day long-term
forecast in Kp is provided. The application incorporates the option to manually
change the Kp using the "dial" at the bottom of the screen, as displayed in
Figure 2.11, allowing the user to see how the auroral ovals change in shape and
size depending on the level of magnetic disturbance (Sigernes, 2016).

1. http://kho.unis.no/
2. https://www.swpc.noaa.gov/
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Figure 2.11: Screenshot from Aurora Forecast 3D. The image shows the auroral
oval in the auroral oval in the Northern Hemisphere on March 2, 2020 at 13:21
UT. The green part of the auroral oval is the nightside aurora, while the red
region represents the dayside aurora.
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3
Methodology
3.1 The Satellite Data
The empirical satellite data from which the auroral oval models were derived,
was collected throughout 2012. This was chosen to be a suitable year since six
POES/MetOp satellites with identical instrumentation operated simultaneously
for large parts of the year, providing good coverage. The satellite data was
obtained from NOAA 1 through the University of Bergen (UiB). Table 3.1
provides an overview of the days (numbered 1 through 366, since 2012 was
a leap year) during which the respective satellites collected data. The only
period no data was recorded was a 10-day period from February 28 (day 59)
to March 8 (day 68).

Table 3.1: Days during 2012 for which the six different POES satellites collected
data.

Satellite Data Coverage [2012 day no.]
MetOp-A 1-59, 69-366
NOAA-15 1-30, 68-366
NOAA-16 1-30, 68-366
NOAA-17 1-59, 68-366
NOAA-18 1-58, 68-366
NOAA-19 181-365

1. https://www.swpc.noaa.gov/

33
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The satellite data was provided in the form ofMATLAB files (.mat). All data files
contained the particle measurements from both the TED and MEPED particle
detectors for a given number of days during 2012. Each satellite provided
measurements for both the Northern and Southern Hemispheres. For each
data file, the measurements from each detector were labelled depending on
which hemisphere the measurements originated from, as well as whether the
measurements originated from the morning side or evening side of the Earth
(in MLT). The two MLT regions were 12 hours wide, centred at midnight (MLT
00) and noon (MLT 12), respectively. Separate data arrays contained the MLT
and ILAT of each measurement. In most cases, each detector channel on all
six satellites recorded 180 measurements between 45° and 90° geographic
latitude during each orbit on both the morning side and the evening side in
each hemisphere. Consequently, the data provided a resolution of 0.25° in
ILAT. With each satellite completing approximately 14 orbits per day, assuming
the auroral oval boundaries were detected in both hemispheres on every orbit,
up to 20,000 equatorward and poleward boundary detection events were
recorded per detector channel (depending on the operational period of the
satellites).

The auroral ovals were based on four different particle species/energy range
combinations: electrons with energies 0.2 − 20 eV (referred to as < 20 keV),
protons with energies 0.2 − 20 eV (referred to as < 20 keV), electrons with
energies 30 − 2, 500 keV (referred to as > 30 keV) and protons with energies
30 − 80 keV. These four particle types were chosen, since they represented
different aspects of the auroral particle precipitation, although the higher
energy electrons are not strictly associated with auroral emissions (Kivelson
& Russell, 1995). The electrons and protons with energies < 20 keV were
measured by TED, using the combined high-energy (50 − 1, 000 eV) and low-
energy (1 − 20 keV) detector systems. Electrons with energies > 30 keV were
measured using the MEPED E1 solid state detector channel, while the protons
with energies were measured by the MEPED P1 channel (see Table 2.4). In order
to determine the equatorward and poleward boundaries for each of these four
particle types, only the particle measurements from the 0° detectors were used.
For the isotropic boundary, both the 0° and 90° MEPED electron and proton
measurements were used. Table 3.2 provides an overview of the detectors,
particle species ans energies used in this thesis.

The recorded magnetic activity indices for 2012, such as the Kp , Dst and AE,
could be downloaded from the NASA’s OMNIWeb Data Explorer, maintained by
the Space Physics Data Facility at Goddard Space Flight Center (NASA, 2020).
The data was downloaded with an hourly resolution. Due to the nature of the
Kp index (see Section 2.6), this effectively meant a three-hour resolution. The
OMNIWebData Explorermaintains a decimal version of theKp indexmultiplied
by a factor of 10, providing an accuracy to the first decimal place.
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Table 3.2: The detectors, particle species and energy ranges of the particle
precipitation measurements used to define auroral ovals.

Detector Instrument Particle Orientation Energy Range [keV]
1 TED Electrons 0° < 20
2 TED Protons 0° < 20
3 MEPED Electrons 0°/90° > 30
4 MEPED Protons 0°/90° 30 − 80

3.2 Data Processing
The first step was to combine the variables of interest into one common file
for every satellite. This was done in order to simplify further processing. The
second step was to determine which particle measurements corresponded to
the poleward and equatorward boundaries of the auroral oval. For this purpose,
the data was categorized by hemisphere and morning/evening side. Within
each of these four categories, the data for the four detectors for each of the six
satellites was evaluated. Equatorward and poleward boundary detections were
distinguished by comparing all particle measurements to certain boundary
values. These values were different for each of the four detectors, but did not
vary between the 0° and 90° MEPED detectors. The boundary values are given
in Table 3.3.

Table 3.3: The boundary values defining equatorward and poleward boundaries
for each of the four detectors.

Det. No. Instrument Particle Energy [keV] Boundary Value
1 TED Electrons < 20 0.05
2 TED Protons < 20 0.05
3 MEPED Electrons > 30 5,000
4 MEPED Protons 30 − 80 100

By tracing measurements made during each orbit from both the north and
the south, the equatorward and poleward boundaries were detected when the
particle measurements exceed the given boundary values. Which boundary
was being detected depended on the hemisphere, morning/evening side, as
well as the direction in which the orbit was traced. Having found the location of
every equatorward and poleward boundary detection in MLT-ILAT coordinates,
it was possible to find the width of the auroral oval at at given time and MLT.
Figures 3.1 and 3.2 show the location (in ILAT) of the auroral oval boundary
detections around MLT 18 in the Northen and Southern Hemispheres from the
TED electron detector on board the NOAA-17 spacecraft throughout 2012. The
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boundary detection plots are stacked on top of the corresponding oval width as
well as the measured flux throughout the year. The bottom two plots provide
the Kp and Dst index for comparison.

Figure 3.1: The auroral oval boundary location andwidth, as well as particle flux
throughout 2012, as measured by the TED electron detector on board NOAA-17
at approximately 18 MLT in the Northern Hemisphere. The two lowest plots
display the Kp and Dst index for the same period, respectively.

Figure 3.2: The auroral oval boundary location andwidth, as well as particle flux
throughout 2012, as measured by the TED electron detector on board NOAA-17
at approximately 18 MLT in the Southern Hemisphere. The two lowest plots
display the Kp and Dst index for the same period, respectively.
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In order to correlate the location of the auroral oval boundaries to Kp , the
boundary detectionmeasurements had to be interpolated to fit the one-hour res-
olution magnetic activity indices. Once the the arrays specifying the poleward
and equatorward boundary detections were of the same length as the array
containing the Kp values, it was possible to combine the measurements made
by each satellite and sort them according to detector and hemisphere.

Having defined the locations where the different detectors on all satellites
measured the equatorward and poleward boundaries of the auroral oval, the
boundaries had to be correlated with Kp . For this purpose, Kp was considered
a continuous variable allowing fractional values. First, the boundary detection
events were divided into 15 different Kp bins. The bins varied significantly in
size, in order to ensure that there were at least 1000 detection events within
each Kp bin. Due to the fact that Kp was recorded only to one decimal place,
certain bins contained an order of magnitude more detections that others.
Table 3.4 provides an overview of the Kp bin boundaries. The same Kp bins
boundaries were used in for all detectors in both the Northern and Southern
Hemispheres.

Table 3.4: Kp ranges of the 15 bins into which the boundary detection data was
sorted. The same Kp ranges were used in both hemispheres.

Bin No. Lower Kp Upper Kp
1 0.0 0.1
2 0.2 0.3
3 0.4 0.7
4 0.8 1.1
5 1.2 1.5
6 1.6 1.9
7 2.0 2.1
8 2.2 2.3
9 2.4 2.7
10 2.8 3.1
11 3.2 3.5
12 3.6 3.9
13 4.0 4.3
14 4.4 4.9
15 5.0 8.9

Figures 3.3 through 3.6 show the distribution of the total number of boundary
detections in MLT and ILAT, obtained by theMEPED electron detectors on all six
satellites over the course of 2012. The four histograms show the distributions
in the Northern and Southern Hemispheres for Kp bin number 4 and 10,
respectively. In the Northern Hemisphere a four-hour wide region around



38 CHAPTER 3. METHODOLOGY

midnight local time is missing data coverage by the six satellites. This was a
consequence of the satellite orbits. In the Southern Hemisphere, the boundaries
were detected for all MLT values, although there were few detections around
noon local time. This is illustrated by Figures 3.7 and 3.8, showing all the
equatorward and poleward boundary detections in MLT-ILAT polar plots, in
the Northern and Southern Hemispheres respectively. The figures show the
detection events recorded by each of the four detectors for Kp bin number
10.

The next step was to sort the data within each Kp bin further by dividing every
Kp bin into 48 contiguous MLT bins of equal size. Each MLT bin was 0.5 hours
(7.5°) wide. The average equatorward and poleward boundary location of each
MLT bin was calculated. In addition to the mean, the standard deviation in
ILAT and MLT was calculated for the boundary detection events within each
MLT bin. This provided a measure for the spread and uncertainty in the average
boundary detection locations. The data processing procedure up to this point
formed the basis for the three auroral oval models to be developed, and was
preformed separately for the data originating from the Northern and Southern
Hemispheres.

All three models (polynomial fit, ellipse fit and Fourier series fit) were based on
the same principles: (1) Using a known fitting method to fit a particular type
of function to the data (polynomial, ellipse, Fourier series), expressing ILAT in
terms of MLT, obtaining the function coefficients. (2) Repeating the procedure
for all 15 Kp bins in each hemisphere and correlate the individual function
parameters to Kp by means of a second order polynomial fit. (3) Using the
polynomial fit coefficients expressing each function parameter as a function of
Kp , the function parameters may be calculated for an arbitraryKp value. These
parameters may in turn may be used to define the function determining the
auroral oval boundary. These three steps were repeated for the equatorward
and poleward boundary detection events recorded by all four detectors, in both
hemispheres.
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Figure 3.3: The total number of boundary detections distributed over ILAT and
MLT in the Northern Hemisphere for Kp values between 0.8 and 1.2, obtained
by the MEPED electron detector.

Figure 3.4: The total number of boundary detections distributed over ILAT and
MLT in the Northern Hemisphere for Kp values between 2.8 and 3.2, obtained
by the MEPED electron detector.
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Figure 3.5: The total number of boundary detections distributed over ILAT and
MLT in the Southern Hemisphere for Kp values between 0.8 and 1.2, obtained
by the MEPED electron detector.

Figure 3.6: The total number of boundary detections distributed over ILAT and
MLT in the Southern Hemisphere for Kp values between 2.8 and 3.2, obtained
by the MEPED electron detector.
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Figure 3.7: The boundary detection events in the Northern Hemisphere, mea-
sured by each of the four detectors, forKp values between 2.8 and 3.2. The blue
circles represent equatorward boundary detections, while the red x’s mark the
poleward detections.

Figure 3.8: The boundary detection events in the Southern Hemisphere, mea-
sured by each of the four detectors, forKp values between 2.8 and 3.2. The blue
circles represent equatorward boundary detections, while the red x’s mark the
poleward detections
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3.2.1 Polynomial Fit
Polynomials were fitted to the average boundary detections by means of MAT-
LAB’s integrated "polyfit" function 2. This function provides the polynomial
coefficients for a given polynomial order by means of a least-squares fitting
method. This technique provides the best-fitting curve to a set of data points
by minimizing sum of the squares of the residuals, i.e. the offsets between
the fitted curve and the data points (Weisstein, 2020b). In order to prevent
discontinuities at MLT 00 and MLT 24, the first and last 24 data points were
added to the beginning (MLT 0 to 12) and end (MLT 12 to 24) of the chosen data
range. Initially, an attempt was made to fit a polynomial to three consecutive
identical data sets, in order to diminish discontinuities at the end of the central
data set. However, this resulted in the variations within a 24-hour MLT period
being averaged out, and required polynomials of very high orders to obtain
any considerable ILAT variations within one data set. Consequently, only 24
data points were added to the beginning and the end of the data set. Fitting
polynomials of various orders to the data showed that the lowest order poly-
nomial that would fit the average boundary detections was 4. Consequently,
each auroral oval boundary was described by a function similar to Equation
3.1, where x would be an MLT value and y the corresponding ILAT of a given
boundary.

y(x) = p1x
4 + p2x

3 + p3x
2 + p4x + p5 (3.1)

The "polyfit" function calculated the polynomial coefficients {p1,p2,p3,p4,p5}.
Having found the coefficients for the equatorward and poleward boundaries
within each Kp bin, for each of the four detectors, the five coefficients could be
correlated to Kp , again by means of the "polyfit" function in MATLAB. A second
order polynomial was deemed sufficient to accurately correlate the coefficients
to Kp .

y(x) = q1x
2 + q2x + q3 (3.2)

Here,x was aKp value andy one of the polynomial coefficients {p1,p2,p3,p4,p5}.
Having obtained the coefficients {q1,q2,q3} for both the equatorward and pole-
ward boundary for each of the detectors in both hemispheres, it was possible
to obtain the boundary of interest for an arbitrary Kp value between 0 and
9.

2. https://se.mathworks.com/help/matlab/ref/polyfit.html



43

3.2.2 Ellipse Fit
Since the shape of an oval can be approximated well by an ellipse, it was
reasonable to attempt to express the equatorward and poleward boundaries
of the auroral ovals in terms of ellipse parameters. The chosen ellipse fitting
method was a direct least squares fitting, proposed by Fitzgibbon, Pilu, and
Fisher (1999). This method was chosen due to its simplicity to implement, as
well as being a non-iterative, robust and efficient ellipse fit. A characteristic
of the method is that it returns an ellipse even if the data could be better
approximated by a hyperbola.

The general second order polynomial describing any conic section is given by
Equation 3.3. The term conic section refers to any curve than can be obtained
by letting a plane intersect with the surface of a cone. There are three types of
conic sections: parabolas, hyperbolas and ellipses.

F (a,x) = a · x = c1x
2 + c2xy + c3y

2 + c4x + c5y + c6 = 0 (3.3)

In Equation 3.3 the polynomial coefficients are given by the vector a =[
c1 c2 c3 c4 c5 c6

]
, while x =

[
x2 xy y2 x y 1

]
. A conic sec-

tion may be fitted to a set of N data points by minimizing the sum of squared
algebraic distances DA. The term "algebraic distance" F (a,xi) refers to the
distance from a given point (x,y) to the conic section F (a,x) (Fitzgibbon et
al., 1999).

DA(a) =
N∑
i=1

F (xi)2 (3.4)

The method proposed by Fitzgibbon et al. (1999) introduced the equality
constraint 4c1c3 − c22 = 1 in order to specifically ensure that ellipses were
fitted, while maintaining efficiency. Furthermore, the polynomial coefficients
were normalized, such that ‖a‖= 1.

For the purposes of ellipse fitting, it was useful to express the ellipses in terms
of five parameters: the semi-major axis a, the semi-minor axis b, the position
(x0,y0) in Cartesian coordinates of the ellipse centre relative to the origin of the
coordinate system and the orientation angle ϕ0 of the ellipse. The orientation
angle is a measure of how the ellipse is oriented relative to the axes of the
coordinate system. Equations 3.5 through 3.9 can be used to calculate these
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five parameters using the coefficients in Equation 3.3 (Weisstein, 2020a).

a =

√
2(c1c52 + c3c42 + c6c22 − c2c4c5 − 4c1c3c6)

(c22 − 4c1c3)[
√
(c1 − c3)2 + c22 − (c1 + c3)]

(3.5)

b =

√
2(c1c52 + c3c42 + c6c22 − c2c4c5 − 4c1c3c6)

(c22 − 4c1c3)[−
√
(c1 − c3)2 + c22 − (c1 + c3)]

(3.6)

x0 =
2c3c4 − c2c5
c22 − 4c1c3

(3.7)

y0 =
2c1c5 − c2c4
c22 − 4c1c3

(3.8)

ϕ0 =


0 if c2 = 0 and c1 < c3
π
2 if c2 = 0 and c1 > c3
1
2 cot

−1
(
c1−c3
c2

)
if c2 6= 0 and c1 < c3

π
2 + 1

2 cot
−1

(
c1−c3
c2

)
if c2 6= 0 and c1 > c3

(3.9)

In the context of fitting ellipses to auroral oval boundary detections, (x0,y0)
corresponds to the displacement of the ellipse centre from the magnetic pole,
with the positive x-axis pointing towardsMLT 00 and the positive y-axis towards
MLT 6, in a MLT-ILAT coordinate system. The orientation angle ϕ0 represents
the angle between the semi-major axis of the ellipse and themidnight-noon axis,
where a positive angle is measured counterclockwise. Figure 3.9 illustrates
the five ellipse parameters graphically. The subsequent steps of the ellipse
fitting method were closely related to the auroral oval ellipse fitting procedure
published by Xiong and Lühr (2014), for the derivation of their CH-Aurora-2014
auroral oval model. However, whereas this the models described here are based
on Kp , Xiong and Lühr (2014) used the solar wind-magnetosphere coupling
function Em as the underlying correlation variable.
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Figure 3.9: Visualization of the five ellipse parameters. The semi-major axis
semix and semi-minor axis semiy , in solid and dashed blue, respectively, are
equivalent to a and b. The red triangle represents the centre of the ellipse,
with coordinates (x0,y0). The ellipse orientation angle ϕ0 is measured coun-
terclockwise. From Xiong and Lühr (2014).

The first step in deriving the ellipse fitting model was to convert each boundary
detection from polar coordinates to Cartesian coordinates (x,y). This was
done by means of Equation 3.10, where rdet and θdet represented the location
of a given detection in ILAT and MLT, respectively.

x = rdet cosθdet
y = rdet sinθdet

(3.10)

Subsequently, the direct least squares fitting method could be applied, using a
numerically stable version of the fitting procedure in MATLAB code, provided
by Chernov (2020). The coefficients in 3.3 were converted into the five ellipse
parameters by means of Equations 3.5 through 3.9. Next, equations had to
be obtained to express the location r of the oval boundary for an arbitrary
rotation angle θ (measured counterclockwise from the midnight-noon axis,
with respect to the ellipse centre) in terms of the five ellipse parameters. The
general ellipse equation in its most simple form in Cartesian coordinates is
given by Equation 3.11. Again, a and b are the semi-major and semi-minor axes
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of the ellipse, respectively (Weisstein, 2020a).

x2

a2
+
y2

b2
= 1 (3.11)

Combining Equation 3.11 with Equation 3.10, and exchanging rdet and θdet for
r0 and θ , provides the general Ellipse equation in polar coordinates.

r0
2 cos2 θ
a2

+
r0

2 sin2 θ
b2

= 1 (3.12)

Solving Equation 3.12 with respect to the distance r0 from the ellipse centre
for a given angle θ yields (Weisstein, 2020a):

r0(θ) =
ab√

(a sinθ)2 + (b cosθ)2
(3.13)

By incorporating the rotation angle ϕ0, Equation 3.13 becomes:

r0 =
ab√

[a sin(θ + ϕ0)]2 + [b cos(θ + ϕ0)]2
(3.14)

However, since the ellipse might be centred at (x0,y0), rather than at the
magnetic pole, the difference between the location of the ellipse centre and
the magnetic pole must be taken into account. The distance r between the
magnetic pole and the boundary defined by the ellipse is given by Equation 3.15.
This corresponds to the co-latitude of the boundary for a given MLT (Xiong &
Lühr, 2014).

r =
√
[r0 cos(θ + ϕ0) + x0]2 + [r0 sin+(θ + ϕ0)x0]2 (3.15)

The last step in fitting an ellipse to the data is to express r in terms of the MLT
angle λ = 2π × (MLT)/(24 h), which may be expressed in terms of the ellipse
parameters as:

λ = tan−1
[
r sin(θ + ϕ0) + y0
r cos(θ + ϕ0) + x0

]
(3.16)
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The offset of the ellipse centre relative to the magnetic pole causes the rotation
angle θ to be different from the MLT angle λ. The rotation angle is measured
relative to the ellipse centre, whereas λ is measured from the origin of the
coordinate system, which in this case is the magnetic pole. Xiong and Lühr
(2014) utilized a two-step approximation to minimize the error caused by the
difference between these two angles. The approximation involves the following
steps: firstly, θ was replaced with λ in Equations 3.14 and 3.15 for a given MLT
value. Subsequently, another MLT angle λ′ was calculated using Equation 3.16.
Equation 3.17 was used to calculate the difference between λ′ and λ.

∆λ = λ′ − λ (3.17)

In the second step, the corrected angle θ can be calculated for a given local
time as:

θ = λ + ∆λ (3.18)

The new angle θ incorporating the correction value ∆λ can finally be used in
Equations 3.14 and 3.15 to obtain the location of the oval boundaries.

The last step of the ellipse fit model is to correlate the five ellipse parame-
ters to the level of magnetic activity, represented by Kp . This procedure was
analogous to determining the relationship between the polynomial coefficients
and Kp . Again, the least squares "polyfit" function in MATLAB was used to
find the second order polynomial u1,u2,u3, describing each of the five ellipse
parameters {a,b, x0,y0,ϕ0} as a function of Kp .

y(x) = u1x
2 + u2x + u3 (3.19)

3.2.3 Fourier Series Fit
The Fourier series method is in may ways very similar to the polynomial
fit method. The model is based on the same binned data as the two other
models. Instead of fitting a polynomial or an ellipse to the average location
of the poleward and equatorward boundary in each MLT bin, a second order
Fourier series was fitted to the detections. This was done by means of the "fit"
function available in MATLAB 3, providing a trigonometric Fourier series of the

3. https://se.mathworks.com/help/curvefit/fourier.html?requestedDomain=
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form:

f (x) = a0 +
n∑
i=1
[ai cos(iωx) + bi sin(iωx)] (3.20)

where n is the number of harmonics andω represents the fundamental angular
frequency. For a second order Fourier series (n = 2), Equation 3.20 is truncated
to:

f (x) = a0 + a1 cos(ωx) + b1 sin(ωx) + a2 cos(2ωx) + b2 sin(2ωx) (3.21)

where x represents MLT and f (x) is ILAT. In order to ensure that the periodicity
of the data was taken into consideration, i.e. that the ILAT of any given
boundary at MLT 00 was the same at MLT 24, the Fourier series were fitted
to three consecutive data sets. Once the Fourier Series had been fitted to the
boundary detections, provided by the four detectors in both hemispheres, each
of the six parameters {a0,a1,b1,a2,b2,ω} could be correlated to Kp . This was
entirely analogous to the previous two methods, by fitting a polynomial of the
form

y(x) = v1x
2 +v2x +v3 (3.22)

to each of the coefficients, expressing them as a function of Kp .

3.3 Isotropic Boundary Detection
The IB can be detected by comparing the measured particle fluxes from the 0°
and 90° detectors on the MEPED instrument. For any of the six satellites, the
IB was detected if the following condition was satisfied:

Φ0

Φ90
≥ 1 (3.23)

whereΦ0 is the particle flux measured by the MEPED 0° detector andΦ90 is the
particle flux measured by the MEPED 90°. IB detections were derived for both
electrons with energies < 30 keV and protons with energies 30 − 80 keV, in
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both the Northern and Southern Hemisphere. The IB boundary detection data
was sorted into the 15 Kp bins, which were again subdivided into 48 0.5-hour
wide adjacent MLT bins. Similar to the equatorward and poleward boundary
data, the mean and standard deviation of the data within each MLT bin were
calculated in order to obtain an estimate for the spread in IB data. However, a
complete model expressing the location of the IB as a function of Kp was not
developed. Still, it was possible to evaluate the location of the IB with respect
to the location of equatorward and poleward boundaries for different levels of
magnetic activity.
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4
Results
4.1 Boundary Detection
The boundary detection events obtained by each of the four detectors, for
selected Kp bins in the Northern and Southern Hemispheres, are displayed
in Figures 4.1 through 4.4. Each marker represents the mean location of the
boundary detections within a 0.5-hour wide MLT bin. The error bars represent
one standard deviation in ILAT (vertical) and MLT (horizontal) from the mean
value. The green dashed vertical lines indicate the region between MLT 00 and
MLT 24. The horizontal axes in both figures are slightly longer at both ends
of the MLT region in order to accommodate error bars extending beyond the
region. For instance, an error bar extending to MLT -2, in reality extends to
MLT 22. In all subsequent data plots, the error bars are omitted in order to
make the figures easier to interpret and less congested.

51
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Figure 4.1: The TED electron average equatorward (blue) and poleward (red)
boundary detection events with errors bars. The Error bars represent one
standard deviation in ILAT (vertical) and MLT (horizontal). The vertical green
bars indicate the region between MLT 00 and MLT 24.

Figure 4.2: The TED proton average equatorward (blue) and poleward (red)
boundary detection events with errors bars. The Error bars represent one
standard deviation in ILAT (vertical) and MLT (horizontal). The vertical green
bars indicate the region between MLT 00 and MLT 24.
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Figure 4.3: The MEPED electron average equatorward (blue) and poleward
(red) boundary detection events with errors bars. The Error bars represent one
standard deviation in ILAT (vertical) and MLT (horizontal). The vertical green
bars indicate the region between MLT 00 and MLT 24.

Figure 4.4: The MEPED proton average equatorward (blue) and poleward
(red) boundary detection events with errors bars. The Error bars represent one
standard deviation in ILAT (vertical) and MLT (horizontal). The vertical green
bars indicate the region between MLT 00 and MLT 24.
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4.2 Polynomial Model
Given the method presented in Chapter 3, the polynomial fit model can be
implemented for any arbitrary Kp value between 0 and 9, by means of the
following three steps: (1) Selecting the desired level of magnetic disturbance
by means of the Kp value and choosing the hemisphere and the type of auroral
oval boundary (equatorward/poleward, electron/proton and energy range)
of interest. (2) Using the corresponding quadratic fit coefficients {q1,q2,q3}
presented in the correlation figures in Appendix A.2, in combination with
Equation 3.2 to calculate the fourth order polynomial coefficients {p1,p2,p3,p4},
describing the chosen oval boundary. (3) Calculate the ILAT of the boundary
for a given MLT using Equation 3.1.

Figure 4.5 provides an example of the initial polynomial fit to the boundary
detections measured by the TED electron detector. The figure shows the fits
for three different Kp bins in both the Northern and Southern Hemisphere.
The correlation between polynomial coefficients and Kp for the same detector
are illustrated by Figures 4.6 and 4.7, for the equatorward boundary and
poleward boundary respectively. A complete overview of similar figures for all
fours detectors is given in Appendices A.1 and A.2. Figures 4.8 through 4.11
display the polynomial fit model implemented in a polar MLT-ILAT coordinate
system for each of the four TED/MEPED electron/proton detectors. The figures
show how the locations of the equatorward and poleward boundaries in both
hemispheres change with increasing Kp , relative to the Feldstein ovals. It
should be noted that that while the polynomial fit boundaries are expressed in
a MLT-ILAT coordinate system, the Feldstein oval boundaries are expressed in
terms of MLT and corrected geomagnetic (CGM) latitude.
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Figure 4.5: Fourth order polynomials fitted to the averaged boundary detections
from the TED electron detector, for three KP ranges in the Northern (NH) and
Southern (SH) Hemispheres. The vertical dashed line in green represents the
region between MLT 00 and MLT 24 within which the polynomial fit is valid.

Figure 4.6: Second order polynomials correlating the five polynomial coeffi-
cients of the TED electron equatorward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.
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Figure 4.7: Second order polynomials correlating the five polynomial coeffi-
cients of the TED electron poleward boundary to Kp , in both the Northern (NH
in blue) and Southern (SH in red) Hemisphere.

Figure 4.8: The TED electron auroral ovals estimated using the polynomial fit
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein ovals for the same Kp
values.
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Figure 4.9: The TED proton auroral ovals estimated using the polynomial fit
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein ovals for the same Kp
values.

Figure 4.10: The MEPED electron auroral ovals estimated using the polynomial
fit model for three differentKp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein ovals for the same Kp
values.
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Figure 4.11: The MEPED proton auroral ovals estimated using the polynomial
fit model for three differentKp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein oval boundaries for the
same Kp values.

4.3 Ellipse Model
Similar to the polynomial fit model, the implementation of the ellipse fit model
can be broken down into the following steps: (1) Selecting the hemisphere,
the particle type of interest and the Kp value for which the oval boundaries
are to be found. (2) Choosing the quadratic fit coefficients {u1,u2,u3} from
the correlation figures in B.2, matching the oval boundaries of interest and
calculating the five ellipse parameters {a,b, x0,y0,ϕ0} using Equation 3.19. (3)
Inserting the five parameters into Equations 3.14 and 3.15 to calculate r0 and r ,
using the MLT angle λ instead of θ in the equations. (4) Using Equation 3.16 to
calculate a new angle λ′ and calculating a new angle θ by means of Equations
3.17 and 3.18. (5) Combining the new angle θ with Equations 3.14 and 3.15
yields the location of the auroral oval boundary in ILAT for a given MLT.

Figures 4.12, 4.13 and 4.13 provided an example of the initial ellipse fits to
the boundary detections and the correlation coefficients with Kp for the TED
electron detector in both hemispheres. A complete overview for the remaining
detectors is provided in Appendices B.1 and B.2. Figures 4.15 through 4.18 show
the resulting implementation of the ellipse fit models for Kp = 1, Kp = 3 and
Kp = 5 in both hemispheres, with the corresponding Feldstein oval boundaries
superimposed onto the same set of axes. While the ellipse fit boundaries are
expressed in MLT-ILAT coordinates, the latitude of the Feldstein boundaries is
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given in CGM coordinates.

Figure 4.12: Ellipses fitted to TED electron boundary detection events, for three
Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.

Figure 4.13: Second order polynomials correlating the five ellipse parameters
of the TED electron equatorward boundary to Kp , in both the Northern (NH
in blue) and Southern (SH in red) Hemisphere.



60 CHAPTER 4. RESULTS

Figure 4.14: Second order polynomials correlating the five ellipse parameters
of the TED electron poleward boundary to Kp , in both the Northern (NH in
blue) and Southern (SH in red) Hemisphere.

Figure 4.15: The TED electron auroral ovals estimated from the ellipse fit
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein oval boundaries for the
same Kp values.
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Figure 4.16: The TED proton auroral ovals estimated from the ellipse fit model
for three different Kp values in the Northern (NH) and Southern (SH) Hemi-
spheres. The dashed lines represent the Feldstein oval boundaries for the same
Kp values.

Figure 4.17: The MEPED electron auroral ovals estimated from the ellipse fit
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein oval boundaries for the
same Kp values.
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Figure 4.18: The MEPED proton auroral ovals estimated from the ellipse fit
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein oval boundaries for the
same Kp values.

4.4 Fourier Series Model
The implementation of the Fourier series model is analogous to the polynomial
fit model, but the specific steps are repeated to provide clarity: (1) Selecting
the hemisphere, the particle type of interest and the Kp value for which the
oval boundaries are to be found. (2) Choosing the quadratic fit coefficients
{v1,v2,v3} from the correlation figures in Appendix C.2 for the a given oval
boundary, and calculating the six Fourier coefficients {a0,a1,b1,a2,b2,ω} by
means of Equation 3.22. (3) Using Equation 3.21 to calculate the ILAT of the
boundary for a given MLT.

Figures 4.19, 4.20 and 4.21 show the Fourier series fit to the boundary detections
and the correlation coefficients with Kp for the TED electron detector in
the Northern and Southern Hemispheres. The green dashed vertical bars in
Figure 4.19 indicate the region between MLT 00 and MLT 24, within which
the model is valid. Appendices C.1 and C.2 provide similar figures for all
four detectors. Figures 4.22 through 4.25 illustrate the implementation of the
Fourier series model fit for all four detectors, together with the corresponding
Feldstein oval boundaries. Again, the Fourier series boundaries are in MLT-ILAT
coordinates, while the latitude of the Feldstein boundaries is given in CGM
coordinates.
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Figure 4.19: A second order Fourier series fitted to TED electron boundary
detection events, for three Kp ranges in the Northern (NH) and Southern (SH)
Hemispheres.

Figure 4.20: Second order polynomials correlating the six Fourier series coeffi-
cients of the TED electron equatorward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.
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Figure 4.21: Second order polynomials correlating the six Fourier series coef-
ficients of the TED electron poleward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.

Figure 4.22: The TED electron auroral ovals determined by the Fourier series
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein oval boundaries for the
same Kp values.
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Figure 4.23: The TED proton auroral ovals determined by the Fourier series
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein oval boundaries for the
same Kp values.

Figure 4.24: The MEPED electron auroral ovals determined by the Fourier series
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein oval boundaries for the
same Kp values.
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Figure 4.25: The MEPED proton auroral ovals determined by the Fourier series
model for three different Kp values in the Northern (NH) and Southern (SH)
Hemispheres. The dashed lines represent the Feldstein oval boundaries for the
same Kp values.

4.5 Isotropic Boundary
Figures 4.26 and 4.27 display the location of the IB detection events in polar
MLT-ILAT plots, relative to the poleward and equatorward boundary detections
measured by the MEPED electron and proton detectors. The IBs are plotted
for three different Kp values, illustrating the evolution of the IB relative to
the other boundaries for different levels of magnetic disturbance. Since each
boundary detection represents the average detection location within a 0.5-hour
wide MLT bin, Figures 4.28 and 4.29 show the same IB detection data with
error bars representing the spread in the data within each MLT bin. The length
of the error bars is equivalent to one standard deviation.
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Figure 4.26: The isotropic boundary for electrons detected by MEPED (in
turquoise) for three different Kp bins in the Northern and Southern Hemi-
spheres. The boundaries are plotted in an MLT-ILAT polar coordinate system.

Figure 4.27: The isotropic boundary for protons detected by MEPED (in
turquoise) for three different Kp bins in the Northern and Southern Hemi-
spheres. The boundaries are plotted in an MLT-ILAT polar coordinate system.
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Figure 4.28: The isotropic boundary for electrons detected by MEPED (in
turquoise) for three different Kp bins in the Northern and Southern Hemi-
spheres. The error bars represent one standard deviation (in ILAT and MLT,
respectively) from the mean.

Figure 4.29: The isotropic boundary for protons detected by MEPED (in
turquoise) for three different Kp bins in the Northern and Southern Hemi-
spheres. The error bars represent one standard deviation (in ILAT and MLT,
respectively) from the mean.
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Discussion
5.1 Features of the Auroral Oval Boundaries
The mean locations of the equatorward and poleward boundary detections and
their respective standard deviations, exhibit a general trend in the observed
location of the auroral oval boundary with varying Kp , as illustrated by Figures
4.1 through 4.4. Across all detectors, the equatorward boundaries move equa-
torwards for increasing Kp , as expected (see e.g. Feldstein and Starkov (1967)).
The poleward boundaries show clear variability with the level of magnetic
activity. However, the poleward boundary motion differs slightly from detector
to detector. The isotropic boundary also shows a clear equatorwards motion
with increasing Kp values, as can be seen in Figures 4.28 and 4.29. Across all
detectors, the equatorward, poleward and isotropic boundaries show signifi-
cant standard deviations. for certain detections the standard deviation may be
almost 10° in ILAT. A general characteristic is that the standard deviation in
ILAT is significantly larger than in MLT. This is due to the choice of narrow
MLT bins (only 0.5-hour wide), limiting the spread in the MLT-dimension. The
disadvantage of such narrow bins is that it limits the number of data points
within each bin, which may further increase the standard deviation in ILAT. As
expected, the standard deviations, particularly in ILAT, are significantly larger
for the last Kp bin (5 ≤ Kp < 9). Since this is a large bin, spanning five
different Kp values, the spread in the location of the respective boundaries is
significantly larger compared to the narrower Kp bins.

In the following subsections, the characteristics that are specific to the equa-
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torward and poleward boundary detections of each detector, as well as the
isotropic boundary, are discussed in more detail.

5.1.1 TED Electron Boundaries
The TED electron oval boundaries represent the low and medium-energy elec-
tron precipitation (energy < 20 keV), and consequently provide an indication
of the location of the visible aurora in both hemispheres (Kivelson & Russell,
1995). In the Northern Hemisphere, Figure 4.1 shows the equatorward bound-
ary to be located at approximately 65° ILAT aroundmidnight MLT, approaching
75° ILAT around noon, for low levels of magnetic disturbance. Under the same
conditions, the poleward boundary is located approximately between 70° ILAT
and 80° ILAT. This is in line with one of the early descriptions of the auroral
ovals by Akasofu (1968) for low and moderate levels of magnetic activity (see
Chapter 2). As the Kp increases, the equatorward boundary expands equator-
wards (by almost 10° ILAT on the nigthside), while the poleward boundary
moves only a few degrees towards the equator. This increases the width of
the auroral oval significantly on the nightside, while the width remains rela-
tively constant on the dayside. This behaviour is in agreement with the general
description of the auroral oval provided by Kivelson and Russell (1995).

In the Northern Hemisphere, Figure 4.1 clearly indicates an unexpected dip in
the ILAT of the poleward boundary detections around noon MLT, from almost
80° to 70° during low levels of magnetic activity (and extending even further
during active conditions). This is not a common feature of the auroral oval.
However, the error bars for the unexpectedly low detections are significantly
larger than those belonging to other detections. Evaluating Figure 3.7, it is
possible to see that the TED electron detector, measures poleward boundary
detections over a very wide ILAT range, overlapping almost all equatorward
boundary detections between MLT 10 and 12. Given the results presented in
Figure 4.1, it is fair to assume that the same problem arises for several Kp bins.
This could suggest that the TED detector on the satellite covering this particular
MLT region is faulty, for instance because it has degraded over time. However,
if this was the case, a similar problem would likely have been observed in the
Southern Hemisphere as well.

The auroral oval in the Southern Hemisphere shows similar characteristics as
its northern counterpart. During quiet conditions, the equatorward boundary is
located between 65° and 70° ILAT,while the poleward boundary varies between
approximately 70° ILAT at midnight and 80° ILAT at noon. For more disturbed
conditions, the equatorward boundary expands to almost 55° ILAT at midnight
MLT, while the location of the poleward boundary remains predominantly
constant (however, the uncertainties in ILAT increase significantly). In contrast
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to the boundary detections in the Northern Hemisphere, the equatorward
boundary reaches its maximum ILAT around MLT 15. This feature is present for
all three Kp bin examples in Figure 4.1. Consequently, this indicates a general
asymmetry between the shape of the auroral ovals in Northern and Southern
Hemispheres.

5.1.2 TED Proton Boundaries
The proton ovals with particle energies < 20 keV, are shown to be very narrow,
as Figure 4.2 indicates. The equatorward and poleward boundaries are located
very closely together. For low levels of magnetic activity in the Northern Hemi-
sphere, the oval is located just above 65° ILAT at midnight MLT and just below
80° ILAT at noon. The boundary detections in the Southern Hemisphere show
a similar pattern. However, the oval as a whole seems to be located slightly
further polewards in Southern Hemisphere. During disturbed magnetic condi-
tions, the oval widens around midnight MLT, while remaining narrow around
noon. Furthermore, for high Kp values, the auroral oval as a whole expands
towards the equator, the poleward boundary being located close to 70° ILAT
and the equatorward boundary shifting to 60° ILAT at MLT 00.

Based on these observations, the TED proton measurements may be described
as a narrow band of proton precipitation within the medium-energy (< 20 keV)
electron oval. This corresponds well to the simplified high-latitude particle
precipitation regions described by Kivelson and Russell (1995). The aurora
producing ions (protons) coincide with the electron auroral oval, although the
proton precipitation region is shifted slightly towards the dusk side (MLT 18)
with respect to the electron oval (see Figure 2.3).

5.1.3 MEPED Electron Boundaries
Although Kivelson and Russell (1995) argue that electrons with energies
> 30 keV are not directly associated with auroral emissions, it is still worth-
while to discuss the precipitation pattern of the these electrons. For low levels
of magnetospheric disturbance, Figure 4.3 shows the precipitation zone to be
a narrow almost circular region, located at approximately 70°. For increasing
Kp the region widens, as the equatorward boundary expands to just below 60°
ILAT and the poleward boundary moves a few degrees polewards. This char-
acterization applies to both hemispheres. At higher Kp values in the Northern
Hemisphere, a few equatorward boundary detections around local midnight
are 5° to 10° further north than the boundary detections for adjacent MLT
bins. However, these detections have sufficiently large uncertainties to assign
the cause of this unexpected observation to poor statistics. Overall, the loca-
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tion of the energetic electrons correlates well with the idealized precipitation
regions for high-energy auroral particles (energies > 20 keV), presented by
Hartz (1971). Figure 2.3 indicates this region to be located on a circular band
at constant latitude.

5.1.4 MEPED Proton Boundaries
For low levels of magnetic activity, Figure 4.4 indicates the protons with en-
ergies < 30 − 80 keV to be located between 65° ILAT and 75° ILAT. At local
midnight, the equatorward boundary is located at approximately 65° ILAT
and the poleward boundary is just above 70° ILAT. Around MLT 10, the two
boundaries approach each other around 75° ILAT. As Kp increases, the pole-
ward boundary shifts towards a circle of constant latitude just polewards of 70°
ILAT. The equatorward boundary remains shifted towards the night side, while
expanding equatorwards to about 65° ILAT at local noon and to well below
60° ILAT on the nightside. These features of the energetic proton precipitation
apply to both hemispheres. In the highest Kp bin in the Northern Hemisphere,
the poleward boundary seems to decrease unexpectedly in ILAT at local noon.
However, this may likely be attributed to the high uncertainties around noon
in this particular Kp bin.

Although more energetic and with a wider precipitation zone than the TED
protons, the MEPED protons are still part of the proton population associated
with auroral emissions (in general, proton energies < 1MeV) (Kivelson &
Russell, 1995). Consequently, the precipitating protons detected by MEPED
may be associated with the same precipitation region as the TED protons, as
presented in 2.3.

5.1.5 Isotropic Boundary
The location of the isotropic boundary for electrons > 30 keV seems to move
from just inside the poleward boundary to being located just equatorwards
of the poleward boundary, as Kp increases from quiet geomagnetic conditions
to disturbed conditions. However, as Figure 4.26 illustrates, for the energetic
protons, the IB seems to coincide with or be located just northwards of the
equatorward boundary. For the electron and proton IBs these observations
seem to be applicable for both hemispheres. This means that the IB expands
and contracts along with the equatorward boundary, as a result of varying
levels of magnetic disturbance. Although data is missing around midnight MLT,
in the Northern Hemisphere the IB is located further polewards, particularly
on the morning side around noon. For lower levels of magnetic disturbance,
the electron IB in the Northern Hemisphere is located at approximately 70°
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ILAT at MLT 00 and at 75° ILAT at MLT 12. The proton IB is located sightly
further equatorwards for lower Kp values, varying between 65° at MLT 00 and
75° around noon local time. Similar characteristics may be observed for the
electron and proton IBs in the Southern Hemisphere. These observations are
in line with the IB characteristics presented by Ganushkina et al. (2005).

There is a significant spread in the IB detection data, comparable to the
equatorward and poleward boundary detections. The largest uncertainties are
observed in ILAT for the last and widest Kp bin. This is most likely due to
IB detections over a large Kp ranges being binned together into the same Kp
bin. The standard deviation is relatively consistent among the hemispheres
and particle species, with maximum deviations varying from 2.5° to 2.8°. For
protons the maximum standard deviation in ILAT is limited to 4.7° in the North-
ern Hemisphere and 5.6° in its southern counterpart. For electrons, however,
the maximum standard deviations are significantly larger, measuring 6.4° and
7.8° in the Northern and Southern Hemispheres, respectively. Nevertheless, by
considering the error bars in Figures 4.28 and 4.29, the proton IB shows partic-
ularly large spreads in ILAT around MLT 12 for lower Kp bins in the Southern
Hemisphere. Although the standard deviations are significant for higher Kp
values, the IB is relatively well defined in both hemispheres for lower levels of
magnetic disturbance.

5.2 Hemispherical Differences
The data coverage provided by the POES/MetOP satellites is important to take
into account when comparing the auroral ovals in the Northern and Southern
Hemispheres. As Figures 3.7 and 3.8 illustrate, the six satellites cover all MLTs
in the Southern Hemisphere, but do not pass over a four-hour wide MLT region
centred at local midnight in the Northern Hemisphere. Despite providing good
data coverage for all other MLTs in the Northern Hemisphere, this particular
feature of the satellites’ orbits is likely to have an effect on the functions that
were fitted to the data. In particular, the data gap must be taken into account
when comparing the auroral ovals in the two hemispheres.

Among the four detectors, the TED electron detector showed the most promi-
nent difference in the shape of the auroral ovals between the Northern and
Southern Hemispheres. The other three detectors did also show minor vari-
ations in the poleward and equatorward boundary detections between the
hemispheres, for instance the oval being located at slightly lower latitudes in
one of the hemispheres. However, these differences were in most cases not
larger than the uncertainties involved. Nevertheless, the visible auroral ovals
associated with electron energies below 20 keV, did show a clear asymmetry
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in terms of where the equatrward boundary was located furthers towards the
pole.

5.3 Limitations of the Models
5.3.1 Polynomial Model
The polynomialmodel has a number of apparent advantages and caveats. Firstly,
amajor advantage of themodel is that it is relatively simple both in development
and implementation. However, a high order polynomial is necessary to describe
the shape of the oval accurately. Any polynomial lower than fourth order was
found to insufficiently incorporate latitudinal variations of the oval boundaries
over MLT. This led to another problem with the model, which arguably is its
largest weakness: the discontinuity at MLT 00. For all detectors and particularly
for the equatorward boundary, the oval is disconnected at midnight local time.
Since the polynomial fit is not periodic, it does not take into account that
MLT 00 and MLT 24 represent the same location and that the corresponding
ILAT of a given boundary should also be the same. As mentioned in Chapter
3, the initial polynomial fits were carried out on two successive boundary
detection data sets (centred on one of the data sets), in order to eliminate
major discontinuities at MLT 00. However, it was found that if more of the
same data sets were plotted in succession, more of the variation in ILAT was
averaged out over a 24-hour MLT period. This would require even higher order
polynomials to accurately describe the shape of the oval boundaries, increasing
the computational complexity of the model. Consequently, there was a trade-off
between taking into account longitudinal variations of the oval location and
diminishing the nightside discontinuity.

Despite these limitations, in a broad sense, the oval boundaries behave as
expected with changing magnetic activity levels. As illustrated by Figures 4.8
through 4.11, the ovals show a significant expansion of the equatorward bound-
ary towards the equator with increasing Kp , for both electrons and proton
detectors. The poleward boundary is significantly less fluid than its equator-
ward counterpart, but for higher Kp values this boundary moves equatorward
as well. The lower energy electrons (TED electrons < 20 keV) show the widest
auroral ovals, while the TED protons yield the narrowest boundary. None of
the ovals display a widening of the oval around local midnight for higher Kp
values. In general, all ovals are visually close to circular (disregarding the dis-
continuity at midnight MLT). This might be caused by the fact that the fourth
order polynomial fitted to the data is not able to take into account the highest
variations in the boundary location over MLT (see figures in Appendix A.1).
The fitted ovals are not accurate enough to take into account the asymmetric
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property observed in the boundary detections.

5.3.2 Ellipse Model
Overall, the ellipse model does not provide a good fit to the data. Consider
for instance the initial ellipse fit to the boundary detection data illustrated
by Figure 4.12 for the TED electron boundaries. The ellipses only partly fit
the data, and create some unexpected shapes, such as a widening of the oval
towards MLT 6. More severely, Figure B.2 in Appendix B.1 shows an overlap
between the equatorward and poleward boundary fits. Once implemented,
these characteristics are carried over to the model itself, as Figures 4.15 through
4.18 illustrate. These effects are observed in both hemispheres.

Although the ellipse fit method has the advantage of not incorporating any
discontinuities around MLT 00, the orientation of the ellipses seems to be
off. This could be caused by an erroneous calculation of either the shift of
the ellipse centre relative to the centre of the MLT-ILAT coordinate system
(x0,y0), or the rotation angle of the ellipse. This suggests that the poor fit was
due to the ellipse fitting algorithm that was applied, or an error made when
implementing the algorithm. This could potentially act in combination with
the significant spread in the boundary detection data. A characteristic feature
of the particular ellipse fitting method used was that it would always fit an
ellipse, even if the data in question is not accurately described by an ellipse
(Fitzgibbon et al., 1999). If the measured oval boundaries are not well described
by an ellipse, unexpected boundary estimations could occur. Nevertheless, in
general, the auroral ovals are fairly elliptical in nature. Moreover, Xiong and
Lühr (2014) did successfully implement an ellipse-based auroral oval model.
However, it is not clear which ellipse fitting algorithm was used in this situation.
Furthermore, Xiong and Lühr (2014), correlated the ellipse coefficients with
the Em parameter rather than the Kp index.

Despite its apparent shortcomings, in a broad sense, the ellipse model does
display the expected response to the increasing Kp values. For both parti-
cle species measured by the TED and MEPED instruments, the equatorward
boundary expands significantly further towards lower latitudes with increasing
Kp values. Similar to the polynomial model, the poleward boundary is more
fixed in latitude across various levels of magnetic disturbance. Compared to
the polynomial fit approach, the ovals produced by the ellipse fit method are
significantly less circular, and display significant differences between the hemi-
spheres. Nevertheless, due to their unexpected orientation, it is hard to tell if
this is simply a result of an erroneous calculation, or whether the model in fact
incorporates any hemispheric asymmetries.
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5.3.3 Fourier Series Model
The initial second order Fourier series fits to the boundary detection data show
promising results. Compared to the two other models, the Fourier series fit
the data well, as illustrated by Figure 4.19. Particularly for the equatorward
boundary, the second order Fourier series fits to all data points except for
the boundary detections with the highest ILAT. For the poleward boundary,
the boundary detections are significantly more scattered, particularly for the
highest Kp bins. The periodic trend in the poleward detection data was less
apparent, causing the Fourier series fits to be less ideal. Consider for instance
the poleward boundary fit in the Northern Hemisphere for5 ≤ Kp < 9 in Figure
C.3 in Appendix C.1. Here, the periodic variation of the poleward boundary
fit is too short. The result of these fits is visible in Figures 4.22 through 4.25.
While the equatorward boundary is continuous, the poleward boundary has
major discontinuities. This feature is observed in both the Northern and the
Southern Hemisphere.

The decision to base this model on a second order Fourier series as opposed to
any other order series, was primarily based on the assumption that it should
not be too complex and not prone to be significantly affected by any noise or
outliers that may be present in the data. A first order Fourier series was ruled
out on the basis that it would provide too rough of an estimate of the oval
boundaries. Figure 5.1 displays the implementation of the Fourier series model
for the TED electron data, using a first order Fourier series (n = 1 in Equation
3.20) instead of a second order series. As the figure illustrates, the poleward
boundaries look significantly better in terms of discontinuities. However, this
was not the case for all detectors, as the first order fit introduced discontinuities
in other poleward boundaries where there were previously none, as Figure 5.2
illustrates. Consequently, it was decided to stick with the second order Fourier
fit, since it provided the best fits for the equatorward boundary.
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Figure 5.1: First order Fourier series model based on TED electron boundary
detections.

Figure 5.2: First order Fourier series model based on TED proton boundary
detections.

The model could be improved by deciding to adjust order of the fitted Fourier
series on a case-by-case basis. For instance, the order of the Fourier series
could be adjusted to produce the best possible fit, depending on the particle
species and energy range. However, this would be significantly more complex
to implement than the chosen method.

Whereas hemispherical differences may be hard to distinguish for the poleward
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boundary due to the scattered boundary detections, the equatorward boundary
does reveal a consistent difference between the auroral ovals between the two
hemispheres. Considering the TED electron ovals in Figure 4.22, in the Northern
Hemisphere the oval is significantly narrower around noon MLT compared to
the corresponding oval in the Southern Hemisphere. For disturbed conditions
(Kp = 5), the equatorward boundary at MLT 12 in the Northern Hemisphere
is located at approximately 70°. In the Southern Hemisphere, however, the
equatorward boundary is located at roughly 65° ILAT at MLT 12.

5.3.4 Comparison of the Three Models
It is evident that all three models presented have significant limitations. While
the polynomial fit is quick and simple to implement, the resulting boundaries
are fairly rough, providing only a general indication of the location of the
equatorward and poleward boundaries. It may be argued that higher order
polynomials would provide a better fit and minimize the discontinuities on the
nightside. However, it turned out that many additional orders of magnitude
would be necessary to provide major improvement over the fourth order poly-
nomial used, making implementation impractical. The ellipse model, while
having no issues with discontinuities, had the major drawback of not fitting
properly to the data and causing equatorward and poleward boundaries to
overlap. Finally, while the Fourier model has major discontinuities and is pos-
sibly the heaviest to process computationally, it is the only model capable of
taking into account the hemispherical difference observed in the TED electron
boundary detections. Consequently, while still producing only a rough estimate
for the location of the auroral oval, the Fourier series model provides the most
advantages compared to its caveats.

5.4 Comparison to the Feldstein Model
Among the oval boundaries observed by each of the four detectors, it is expected
that the TED electron boundaries will be most closely related to the oval
boundaries predicted by the Feldstein model. As mentioned, electrons with
energies < 20 keV represent the majority of the visual aurora, and since the
Feldstein ovals are based on optical observations, these two are assumed to
correlate. In the following comparison between the new models and the
Feldstein oval, the focus will be on the models derived from the TED electron
boundary detections. However, comparison plots are provided for the other
boundaries as well in Appendices A.3, B.3 and C.3. Figures 5.3, 5.4 and 5.5
display the difference in latitude between the boundaries of the Feldstein
model and the polynomial, ellipse and Fourier series models, as a function
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of MLT for Kp values of 1, 3 and 5. Boundary comparisons are given for
both the Northern (solid lines) and Southern (dashed lines) Hemispheres. For
any given boundary comparison in these three figures, a positive deviation
indicates that the new model value is equatorwards of the corresponding
Feldstein boundary, while a negative value means that the boundary is located
polewards of the Feldstein model boundary. The figures consider the following
boundary comparisons: poleward-Feldstein poleward, equatorward- Feldstein
equatorward and equatorward- Feldstein diffuse. It is important to note that
while the difference in latitude is given as ILAT in the figures, the latitude of
the Feldstein boundaries is in fact given in CGM coordinates. Consequently,
the comparison provided in the figures can only be considered a first order
estimate of the difference in location between the boundaries.

Figure 5.3: The difference in ILAT between the TED electron polynomial
fit boundaries and the Feldstein boundaries, for: polynomial poleward and
Feldstein poleward (red), polynomial equatorward and Feldstein equatorward
(blue) and polynomial equatorward and Feldstein diffuse (green). Solid lines
represent boundary comparisons in the Northern Hemisphere (NH) and dashed
lines indicate comparisons in the Southern Hemisphere (SH).
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Figure 5.4: The difference in ILAT between the TED electron ellipse fit bound-
aries and the Feldstein boundaries, for: ellipse poleward and Feldstein pole-
ward (red), ellipse equatorward and Feldstein equatorward (blue) and ellipse
equatorward and Feldstein diffuse (green). Solid lines represent boundary
comparisons in the Northern Hemisphere (NH) and dashed lines indicate
comparisons in the Southern Hemisphere (SH).

Figure 5.5: The difference in ILAT between the TED electron Fourier series fit
boundaries and the Feldstein boundaries, for: Fourier series poleward and Feld-
stein poleward (red), Fourier series equatorward and Feldstein equatorward
(blue) and Fourier series equatorward and Feldstein diffuse (green). Solid
lines represent boundary comparisons in the Northern Hemisphere (NH) and
dashed lines indicate comparisons in the Southern Hemisphere (SH).
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Figure 5.3 shows similar boundary discrepancies in the Northern and Southern
Hemispheres. The largest discrepancy may be observed for the equatorward-
equatorward boundary comparison in the Southern Hemisphere, where the
discrepancy at MLT 12 is almost 12° ILAT. The poleward-poleward and equator-
ward diffuse boundary comparisons mostly hover within the range of ±5° ILAT,
although for Kp = 5, the poleward boundaries are very close to each other.
Figures 5.4 and 5.5 show similar tendencies. The largest deviation is found
in the equatorward-equatorward boundary comparison, while the other two
boundaries remain within 5° ILAT of each other. However, for the comparison
with the Fourier series model, the poleward-poleward deviation is marginally
smaller compared to the other models.

A common characteristic of all the three models is that their respective equa-
torward boundaries are located significantly further equatorwards compared
to the Feldstein equatorward boundary, as illustrated by the large deviations in
Figures 5.3 5.4 and 5.5. Since the poleward boundaries correlate much better,
the result is that the three models applied in this study estimate the auroral
ovals to be significantly larger than does the Feldstein model. The equatorward
boundaries seem to coincide with the Feldstein diffuse boundary on several
occasions. Since diffuse aurora is associated with particles energies of the order
1 keV to 10 keV (Kivelson & Russell, 1995), which is well within the energy
ranges measured by TED, the diffuse aurora is likely to be incorporated into
the equatorward boundary detected by the satellites.

The reason why the new models estimate much larger boundaries has likely
to do with the chosen flux values designating the edges of the auroral oval.
The reason the four applied flux limits were chosen, was because these values
were thought to give a realistic description of the expansion of the auroral
ovals, given the specifications of the TED and MEPED instruments (Evans &
Greer, 2004). Choosing higher boundary values may have yielded smaller ovals
that corresponded more strongly with the Feldstein ovals. However, in such a
case, the measured oval boundaries might not correspond to the actual auroral
particle precipitation region.

Given that the data and techniques used to develop the models applied here and
the Feldstein model are vastly different, it is to be expected that discrepancies
are observed. Onemodel is based on low-Earth orbit satellite particle detections,
and the other on ground-based optical observations. In both cases, the data on
which the models are based was collected over a period of roughly one year,
and more than 50 years apart. Consequently, Feldstein’s optical observations
from 1957-58 and the POES/MetOp data set from 2012 are likely to be affected
by the general level of magnetosphere activity during those years.

Figure 5.6 shows the average sunspot number and the point in the 11-year solar
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cycle at which the respective data sets were collected. The sunspot number
is a common measure of solar activity, and through the interaction between
the solar wind and the magnetosphere, provides an indication of how much
magnetic disturbance may be expected (Fortescue et al., 2011). Both data sets
were collected close to solar maximum. However, between 1957 and 1958, the
sunspot number was between 250 and 300, while the sunspot number was
closer to 100 in 2012. This suggests that more geomagnetic disturbances might
have occurred at the time Feldstein made his observations. Nevertheless, it
is likely that the method by which the respective data was collected had the
greatest effect on the predicted locations of the auroral oval boundaries, as this
is the area where the models differ the most.

(a)

(b)

Figure 5.6: The sunspot numbers in (a) the 1950s and 1960s, and (b) in the
2000s and 2010s, illustrating the point in the solar cycle at which the data for
the Feldstein model (1957-58) and the POES/MetOp data (2012) was collected.
From NOAA (2020).

Which model is most suitable is ultimately a question of what the user is in-
terested in. Although the Feldstein model has been around for a long time, it
still provides a good indication of where auroras may be observed from the
ground, which is manifested by its continued use. The models developed in this
master’s thesis provide ovals for four different types of auroral particles, sepa-
rately in the Northern and Southern Hemispheres. Consequently, it provides
a more detailed description of auroral particle precipitation zones, as well as
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asymmetries between the auroral ovals in the two hemispheres. On the other
hand, the new models provide no direct information on where the auroral
ovals will be visible from the ground. The POES/MetOp satellites measure the
particle precipitation between 800 km and 900 km in altitude. Consequently,
these measurements provide no indication regarding the size or location of
the auroral oval at altitudes of around 110 km where the peak auroral emis-
sions occur (Brekke, 2013). Any process acting on the precipitating particles
between these altitudes may affect the size and shape of the auroral oval. With
respect to Aurora Forecast 3D, a translation of the particle precipitation mea-
surements at low-Earth orbit altitudes to auroral altitudes would be beneficial,
since the application aims to show where auroras may be observed from the
ground.

5.5 Future Work
The 2012 POES/MetOp data set still has unused potential, which may be used
to improve the auroral oval models presented in this thesis. For instance an
alternative auroral oval model could be based on the distribution of particle
and energy flux across the polar regions, rather than defining a fixed bound-
ary for flux. Newell et al. (2009) established a model base on this method,
using energy and particle flux measurements from the Defense Meteorological
satellite Program (DMSP). While such a model would not directly yield the
equatorward and poleward auroral oval boundaries, it would give a insight
into the distribution and intensity of the energetic particle precipitation. This
could be of interest for further auroral studies. However, in terms of Aurora
Forecast 3D, it would be of less interest, since the application is based around
discrete poleward and equatorward boundaries.

Rather than defining new models, future attempts may be made to improve
and refine the three models introduced here. A first step may be to investigate
how well the boundary detections correlate with optically observable aurora,
for instance by conducting simultaneous particle and optical measurements
using satellites and all-sky cameras. This would provide information on how
well the auroral oval boundaries measured by POES and MetOp satellites
corresponded to the aurora visible from the ground. Moreover, the issue of
the altitude discrepancy between the orbit of the satellites and the aurora
may be addressed by converting the boundary detections from the given MLT-
ILAT coordinate system into a Magnetic Apex Coordinate system, such as
Modified Apex coordinates. This coordinate system is based on the tracing
of magnetic field lines (Richmond, 1995), allowing the precipitating particle
regions to be mapped to auroral altitudes. Evaluating the auroral ovals as
a characteristic auroral altitude (for instance 110 km) could provide a more
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accurate comparison to the Feldstein ovals. This would be particularly useful
when considering whether the models are applicable for implementation into
the Aurora Forecast 3D application software.



6
Conclusion
Three new empirical models for the equatorward and poleward boundaries of
the auroral ovals have been developed, utilizing three different fitting functions:
a fourth-order polynomial fit, a direct least-squares ellipse fit and a second-
order Fourier series fit. All models were based on particle precipitation data
collected throughout 2012 by five NOAA-series POES satellites, in addition to
EUMETSAT’s MetOp-A satellite. All six satellites carried identical TED and
MEPED instruments, which were used to measure the flux of four different
types of auroral particles: electrons with energies < 20 keV (TED), protons
with energies < 20 keV (TED), electrons with energies > 30 keV (MEPED)
and protons with energies 30 − 80 keV. For each of these four detectors, the
locations of the equatorward and poleward boundaries of the auroral ovals in
both the Northern and Southern Hemisphere were defined. In addition, the 0°
and 90° MEPED detectors were used to determine the location of the isotropic
boundary for electrons and protons. The auroral oval boundaries based on each
of the four detectors, as well as the isotropic boundary were found to correlate
well with heir respective locations described in the literature. Moreover, the
electrons with energies < 20 keV, representing the majority of the particle
population causing the visible aurora, displayed an asymmetry between the
two hemispheres on the dayside.

For each of the four detectors, the equatorward and poleward boundary de-
tection data was sorted into 15 Kp bins. Each Kp bin was in turn divided into
48 adjacent 0.5-hour wide MLT bins. The mean and standard deviation of
the location of the boundary detection within each MLT bin was calculated.
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The standard deviation was used as a measure of the spread in the boundary
detection data. For each of the four detectors, the boundary detections were
processed separately for the equatorward and poleward boundaries in the
Northern and Southern Hemispheres. Using the average boundary detections
as a basis, each of the three fitting methods used a common procedure: (1) Fit-
ting a function to the data describing a given auroral oval boundary, expressing
the ILAT in terms of MLT. (2) Correlating the function coefficients with Kp . (3)
Calculating the function coefficients for an arbitrary Kp value and implement
the coefficients in a function describing the ILAT in terms of MLT.

The polynomial fit method was found to be quick and simple to implement,
but only provided a rough estimate of auroral oval boundaries, due to disconti-
nuities in the boundaries around MLT 00. The ellipse fit model did not provide
a good fit to the boundary detection data, and estimated overlapping pole-
ward and equatorward boundaries for certain Kp values. The Fourier series
fit proved to be the most promising model, despite also having issues with
discontinuities around midnight local time. Among the three model, only the
Fourier series models Incorporated the hemispherical differences observed in
the TED electron boundary detections.

The poleward boundaries of the three models corresponded well with the
poleward boundaries predicted by the Feldstein model, the boundaries being
located within ±5° of each other. The equatorward boundaries estimated by
the new models deviated by as much as ±10° from the equatorward boundary
predicted by the Feldstein model. In fact, the equatorward boundaries of the
new models showed stronger correlation with the Feldstein diffuse boundary.
Consequently, the auroral ovals predicted by the new model were significantly
larger than ovals predicted by the Feldstein model.

Compared to the Feldstein model, the new models had the advantage of in-
corporating hemispherical differences. Furthermore, the new models provided
a more detailed overview of the precipitation zones of the different auroral
particles. However, the models provided no information regarding the parts of
the auroral oval that are visible from the ground. This problem is partly due to
the fact that the new models define the auroral oval at the orbital altitudes of
the satellites (800 − 900 km), whereas the Feldstein model is purely derived
from ground-based optical observations. For auroral forecasting software such
as Aurora Forecast 3D, it is of interest to provide a prediction for where the au-
rora may be visible from the ground. This issue may be addressed by mapping
the particle precipitation-based ovals down to auroral altitudes. This may be a
topic for future research.
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Polynomial Fit Figures
A.1 Initial Fits to Data

Figure A.1: Fourth order polynomials fitted to the averaged boundary detections
from the TED electron detector, for three KP ranges in the Northern (NH) and
Southern (SH) Hemispheres. The vertical dashed line in green represents the
region between MLT 00 and MLT 24 within which the polynomial fit is valid.
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Figure A.2: Fourth order polynomials fitted to the averaged boundary detections
from the TED proton detector, for three KP ranges in the Northern (NH) and
Southern (SH) Hemispheres. The vertical dashed line in green represents the
region between MLT 00 and MLT 24 within which the polynomial fit is valid.

Figure A.3: Fourth order polynomials fitted to the averaged boundary detections
from the MEPED electron detector, for three KP ranges in the Northern (NH)
and Southern (SH) Hemispheres. The vertical dashed line in green represents
the region between MLT 00 and MLT 24 within which the polynomial fit is
valid.



89

Figure A.4: Fourth order polynomials fitted to the averaged boundary detections
from the MEPED proton detector, for three KP ranges in the Northern (NH)
and Southern (SH) Hemispheres. The vertical dashed line in green represents
the region between MLT 00 and MLT 24 within which the polynomial fit is
valid.

A.2 Correlation Figures

Figure A.5: Second order polynomials correlating the five polynomial coeffi-
cients of the TED electron equatorward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.
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Figure A.6: Second order polynomials correlating the five polynomial coeffi-
cients of the TED proton equatorward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.

Figure A.7: Second order polynomials correlating the five polynomial coeffi-
cients of theMEPED electron equatorward boundary toKp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.
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Figure A.8: Second order polynomials correlating the five polynomial coeffi-
cients of the MEPED proton equatorward boundary toKp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.

Figure A.9: Second order polynomials correlating the five polynomial coeffi-
cients of the TED electron poleward boundary to Kp , in both the Northern (NH
in blue) and Southern (SH in red) Hemisphere.
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Figure A.10: Second order polynomials correlating the five polynomial coeffi-
cients of the TED proton poleward boundary to Kp , in both the Northern (NH
in blue) and Southern (SH in red) Hemisphere.

Figure A.11: Second order polynomials correlating the five polynomial coeffi-
cients of the MEPED electron poleward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.
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Figure A.12: Second order polynomials correlating the five polynomial coeffi-
cients of the MEPED proton poleward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.

A.3 Deviation from the Feldstein Model

Figure A.13: The difference in ILAT between the TED electron polynomial
fit boundaries and the Feldstein boundaries, for: polynomial poleward and
Feldstein poleward (red), polynomial equatorward and Feldstein equatorward
(blue) and polynomial equatorward and Feldstein diffuse (green). Solid lines
represent boundary comparisons in the Northern Hemisphere (NH) and dashed
lines indicate comparisons in the Southern Hemisphere (SH).
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Figure A.14: The difference in ILAT between the TED proton polynomial
fit boundaries and the Feldstein boundaries, for: polynomial poleward and
Feldstein poleward (red), polynomial equatorward and Feldstein equatorward
(blue) and polynomial equatorward and Feldstein diffuse (green). Solid lines
represent boundary comparisons in the Northern Hemisphere (NH) and dashed
lines indicate comparisons in the Southern Hemisphere (SH).

Figure A.15: The difference in ILAT between the MEPED electron polynomial
fit boundaries and the Feldstein boundaries, for: polynomial poleward and
Feldstein poleward (red), polynomial equatorward and Feldstein equatorward
(blue) and polynomial equatorward and Feldstein diffuse (green). Solid lines
represent boundary comparisons in the Northern Hemisphere (NH) and dashed
lines indicate comparisons in the Southern Hemisphere (SH).
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Figure A.16: The difference in ILAT between the MEPED proton polynomial
fit boundaries and the Feldstein boundaries, for: polynomial poleward and
Feldstein poleward (red), polynomial equatorward and Feldstein equatorward
(blue) and polynomial equatorward and Feldstein diffuse (green). Solid lines
represent boundary comparisons in the Northern Hemisphere (NH) and dashed
lines indicate comparisons in the Southern Hemisphere (SH).
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B
Ellipse Fit Figures
B.1 Initial Fits to Data

Figure B.1: Ellipses fitted to TED electron boundary detection events, for three
Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.
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Figure B.2: Ellipses fitted to TED proton boundary detection events, for three
Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.

Figure B.3: Ellipses fitted to MEPED electron boundary detection events, for
three Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.
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Figure B.4: Ellipses fitted to MEPED proton boundary detection events, for
three Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.

B.2 Correlation Figures

Figure B.5: Second order polynomials correlating the five ellipse parameters
of the TED electron equatorward boundary to Kp , in both the Northern (NH
in blue) and Southern (SH in red) Hemisphere.
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Figure B.6: Second order polynomials correlating the five ellipse parameters
of the TED proton equatorward boundary to Kp , in both the Northern (NH in
blue) and Southern (SH in red) Hemisphere.

Figure B.7: Second order polynomials correlating the five ellipse parameters of
the MEPED electron equatorward boundary to Kp , in both the Northern (NH
in blue) and Southern (SH in red) Hemisphere.
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Figure B.8: Second order polynomials correlating the five ellipse parameters
of the MEPED proton equatorward boundary to Kp , in both the Northern (NH
in blue) and Southern (SH in red) Hemisphere.

Figure B.9: Second order polynomials correlating the five ellipse parameters
of the TED electron poleward boundary to Kp , in both the Northern (NH in
blue) and Southern (SH in red) Hemisphere.
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Figure B.10: Second order polynomials correlating the five ellipse parameters
of the TED proton poleward boundary to Kp , in both the Northern (NH in blue)
and Southern (SH in red) Hemisphere.

Figure B.11: Second order polynomials correlating the five ellipse parameters
of the MEPED electron poleward boundary to Kp , in both the Northern (NH in
blue) and Southern (SH in red) Hemisphere.
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Figure B.12: Second order polynomials correlating the five ellipse parameters
of the MEPED proton poleward boundary to Kp , in both the Northern (NH in
blue) and Southern (SH in red) Hemisphere.

B.3 Deviation from the Feldstein Model

Figure B.13: The difference in ILAT between the TED electron polynomial fit
boundaries and the Feldstein boundaries, for: ellipse poleward and Feldstein
poleward (red), ellipse equatorward and Feldstein equatorward (blue) and
ellipse equatorward and Feldstein diffuse (green). Solid lines represent bound-
ary comparisons in the Northern Hemisphere (NH) and dashed lines indicate
comparisons in the Southern Hemisphere (SH).
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Figure B.14: The difference in ILAT between the TED proton ellipse fit bound-
aries and the Feldstein boundaries, for: ellipse poleward and Feldstein pole-
ward (red), ellipse equatorward and Feldstein equatorward (blue) and ellipse
equatorward and Feldstein diffuse (green). Solid lines represent boundary
comparisons in the Northern Hemisphere (NH) and dashed lines indicate
comparisons in the Southern Hemisphere (SH).

Figure B.15: The difference in ILAT between the MEPED electron ellipse fit
boundaries and the Feldstein boundaries, for: ellipse poleward and Feldstein
poleward (red), ellipse equatorward and Feldstein equatorward (blue) and
ellipse equatorward and Feldstein diffuse (green). Solid lines represent bound-
ary comparisons in the Northern Hemisphere (NH) and dashed lines indicate
comparisons in the Southern Hemisphere (SH).
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Figure B.16: The difference in ILAT between the MEPED proton ellipse fit
boundaries and the Feldstein boundaries, for: ellipse poleward and Feldstein
poleward (red), ellipse equatorward and Feldstein equatorward (blue) and
ellipse equatorward and Feldstein diffuse (green). Solid lines represent bound-
ary comparisons in the Northern Hemisphere (NH) and dashed lines indicate
comparisons in the Southern Hemisphere (SH).
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C
Fourier Series Fit Figures
C.1 Initial Fits to Data

Figure C.1: Fourier series fitted to TED electron boundary detection events, for
three Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.
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Figure C.2: Fourier series fitted to TED proton boundary detection events, for
three Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.

Figure C.3: Fourier series fitted to MEPED electron boundary detection events,
for three Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.
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Figure C.4: Fourier series fitted to MEPED proton boundary detection events,
for three Kp ranges in the Northern (NH) and Southern (SH) Hemispheres.

C.2 Correlation Figures

Figure C.5: Second order polynomials correlating the six Fourier series coeffi-
cients of the TED electron equatorward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.
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Figure C.6: Second order polynomials correlating the six Fourier series coeffi-
cients of the TED proton equatorward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.

Figure C.7: Second order polynomials correlating the six Fourier series co-
efficients of the MEPED electron equatorward boundary to Kp , in both the
Northern (NH in blue) and Southern (SH in red) Hemisphere.
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Figure C.8: Second order polynomials correlating the six Fourier series coeffi-
cients of the MEPED proton equatorward boundary toKp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.

Figure C.9: Second order polynomials correlating the six Fourier series coef-
ficients of the TED electron poleward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.
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Figure C.10: Second order polynomials correlating the six Fourier series coeffi-
cients of the TED proton poleward boundary to Kp , in both the Northern (NH
in blue) and Southern (SH in red) Hemisphere.

Figure C.11: Second order polynomials correlating the six Fourier series coeffi-
cients of the MEPED electron poleward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.
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Figure C.12: Second order polynomials correlating the six Fourier series coeffi-
cients of the MEPED proton poleward boundary to Kp , in both the Northern
(NH in blue) and Southern (SH in red) Hemisphere.

C.3 Deviation from the Feldstein Model

Figure C.13: The difference in ILAT between the TED electron polynomial fit
boundaries and the Feldstein boundaries, for: Fourier series poleward and Feld-
stein poleward (red), Fourier series equatorward and Feldstein equatorward
(blue) and Fourier series equatorward and Feldstein diffuse (green). Solid
lines represent boundary comparisons in the Northern Hemisphere (NH) and
dashed lines indicate comparisons in the Southern Hemisphere (SH).
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Figure C.14: The difference in ILAT between the TED proton Fourier series fit
boundaries and the Feldstein boundaries, for: Fourier series poleward and Feld-
stein poleward (red), Fourier series equatorward and Feldstein equatorward
(blue) and Fourier series equatorward and Feldstein diffuse (green). Solid
lines represent boundary comparisons in the Northern Hemisphere (NH) and
dashed lines indicate comparisons in the Southern Hemisphere (SH).

Figure C.15: The difference in ILAT between the MEPED electron Fourier series
fit boundaries and the Feldstein boundaries, for: Fourier series poleward and
Feldstein poleward (red), Fourier series equatorward and Feldstein equator-
ward (blue) and Fourier series equatorward and Feldstein diffuse (green). Solid
lines represent boundary comparisons in the Northern Hemisphere (NH) and
dashed lines indicate comparisons in the Southern Hemisphere (SH).
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Figure C.16: The difference in ILAT between the MEPED proton Fourier series
fit boundaries and the Feldstein boundaries, for: Fourier series poleward and
Feldstein poleward (red), Fourier series equatorward and Feldstein equator-
ward (blue) and Fourier series equatorward and Feldstein diffuse (green). Solid
lines represent boundary comparisons in the Northern Hemisphere (NH) and
dashed lines indicate comparisons in the Southern Hemisphere (SH).
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