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Abstract

Python is a dynamic language well suited to build a run-
time providing adaptive support to distributed applica-
tions. Python has dynamic typing where variables are
given a type when they are assigned a value. To intro-
duce type safety, interfaces, and a component model in
Python NOOP introduces a type language and a way to
apply typing to functions (and methods). This type sys-
tem is described in the first part of this paper. The sec-
ond part use this type system to create interfaces and a
software component model. And finally it is discussed
how NooOP can provide adaptive support to distributed
applications.

1 Introduction

Python is a dynamic interpreted language with implicit
typing. A variable is defined and gets a type when a
value is assigned to it. This is also true for function ar-
guments and return values. When a new function is de-
fined no explicit type information is provided. Argument
values are assigned values at call time based on their po-
sition or name. It is possible for arguments to have a
default value. (also called an optional argument since
no new value has to be assigned to it at call time). It
is also possible to combine positional and named argu-
ments when a function call is performed. A typical usage
of this is to have one or two obligatory positional argu-
ments followed by a set of named optional arguments.
The withdraw function in Figure 1 has two obligatory
positional arguments account and amount and two op-
tional named arguments on_behalf_of and message.
At call time in this example three of these arguments
are provided values, and therefore implicit given a type.
The account argument is assigned the an int value,
the amount argument is assigned a float value, and the
named message argument is assigned a str value. The
two optional arguments were at define time given a de-
fault value and therefore an implicit type. However, in
Python any argument (and any variable) can be assigned

a value of different type everytime it is used (sometimes
this is intentional).

In large software projects well-defined function be-
havior is important. Part of this is well-defined argu-
ments and return values. Introduction of types and a
type system is a common approach to support this. If
this is introduced for Python functions the actual imple-
mentation of these functions can be made less complex
and less error prone. The reason is that the programmer
can expect that the arguments are of the correct type.
In Python it is common to create robust code by test-
ing that the applied arguments to a function have the
correct type. With type specification and type checking
this is not necessary. In a distributed setting this can be
extended to avoid that a remote method invocation is
performed if the correct type of arguments are not pro-
vided. Raising such an error locally at the callee is more
efficient than doing it remotely. At least two messages
sent over the network connection are avoided in case of
type error.

The type of arguments and return values of a func-
tion is the signature of the function. If functions are
class methods we can call the set of signatures provide
by the class instances for the interface. If all interaction
of a class instance (or an object) is through well-defined
interfaces this is close to what commonly is called a soft-
ware component [1]. Software components were origi-
nally proposed by Douglas Mcllroy in 1968 [2], but the
modern concept of software components is close to Soft-
ware ICs [3].

Python does not have type safe functions, but Python
provides the necessary mechanisms to implement it. In
the NOOP project a type system for Python functions that
makes it possible to define the signature of such func-
tions has been implemented. We have chosen a hybrid
approach to the NOOP type system [4] where it is possi-
ble to combine statical typing of NOOP with the dynamic
typing of Python. Signatures can be used to create inter-
faces. Interfaces applied to well-defined Python classes
are the core of NOOP software components. Such com-
ponents can be deployed in a NOOP run-time both as sin-
gle component or as a composition of components. At



def withdraw(account, amount, on_behalf_of="", message=""): 1
# The actual +implementation is dignored in this example 2

return amount
new_balance =

withdraw(13219254, 125.25, message="School trip") =«

Figure 1: Python function combining positional and named arguments.

deploy time a contract between the component and the
run-time is provided. This contract includes the require-
ments of the component that has to be fulfilled by the
run-time. How the contract is fulfilled also depends on
the given context of the deployed component.

In this paper will present the type system of NOOP,
how this is used to define the signature of Python func-
tions, and how such signatures are used to define inter-
faces. NooP components and the deployment of such
components will be introduced. Finally, its is discussed
how NOOP can provide adaptive support to distributed
applications.

2 Types and signatures

Python provides a set of built-in types. The prin-
cipal built-in types are numerics (int, float), se-
quences (list, tuple, str), mappings (dict), files,
classes, instances and exceptions. Every Python ob-
ject is the instance of a class, and the built-in isin-
stance(obj,cls) function can be used to check if a
Python object obj is an instance of the class cls (or of
a direct or indirect subclass of cls). For any object or
value the type(obj) function returns the type or class.
For example, type(1) is int.

In NOOP, the type system has been extended with com-
posite types. A few examples are given in Figure 2.
The first example gives us the possibility to define a tu-
ple with a well-defined number of elements with well-
defined types (a tuple with three elements of the type
int, str, and float). The second example gives us the
possibility to define a list of integers (lists in Python can
have any combination of value types). The third exam-
ple gives us the possibility to define a dictionary of any
length where the keys are of type str and the values are
of type int. And the last example provides a dictionary
with two elements where the first key is "id" and the
second key is "sh", and the value of "id" is of type int
and the value of ""sh" is of type str.

A few new type constructors have been added to
NOOP. The reason is that such constructors can be used
to give a more precise definition of the programmer’s in-
tention. With this richer language a more detailed signa-
ture including the relation between different arguments
and return values can be provided. Table 1 lists the new
type constructors. The extended type system is available
in the signature ! module.

All the type constructors are used to create new types.
The whatever type is true for any values. The opt type

UIn the following examples the first code line is not shown. Its
only purpose is to load the signature module, and it is equivalent to
“from noop.core.signature import x”in all the examples.

whatever Value of any type

opt(t) Value of type t or no value
one(ty,ty,...) Value of either type tq, to, ...
pred(t,p) Value of the type t and p is true
arg(i) The type of argument 1

isarg(i,{...}) Mapping from type of 1

Table 1: New type constructors in NOOP.

says that the value should either be of this type or not
present at all. The one type says that the value should
be of one of the listed types. The type constructor pred
has an argument p that is a predicate. This predicate is
a function that accepts one argument and returns either
True or False. The argument is the value of the applied
argument to the type. The tgtz type below specifies all
integers larger than zero:

def gtz(): return v > 0
tgtz = pred(int, gtz)

The predicate type constructor is used to limit the ac-
cepted values of a given type. It should not be confused
with the concept of dependent types [5, 6] that can cre-
ate more expressive type constructors. Currently NOOP
does not provide such type constructors. The type con-
structors arg and isarg will be discussed later.

The type system in NOOP is extensible. It is easy to
create new types using the type constructors discussed
above. It is also possible to create completely new types
constructors using the typespec class. Create a new
class that inherits the typespec class and implement
the actual type check for the new type in the __call__
method. If the new type constructor is parameterized
the __init__ method has to be implemented too. The
whatever type is not parameterized, but the other type
constructors listed in Table 1 are. A new parameterized
type constructor for positive integers up to a given value
is implemented in Figure 3. The __dinit__ method
is called when a new type is created using the type
constructor (line 10). The __call__ method should
have exactly one argument. This is the value that is
type checked against the type when NOOP performs type
checking. The __call__ method should raise a Signa-
tureError if the value does not match the type.

In NOOP, two approaches are used to add signatures
to functions. The first approach use Python decorators
(available for functions since Python 2.4). Decorators
can be applied to Python functions by a line starting
with @ before the function definition. Following the @ is
the name of the decorator and optionally a set of argu-
ments. A Python decorator is implemented as a function.
In NOOP a signature decorator can be used to add sig-



type((1, "foo",2.3))
type([1,4,7,8])

type ({"ID": 212, "GID": 100})

is (int, str, float)
is [int]
is {str:int}

type({"id": 42, "sh": "bash"}) is {"id":1int, "sh": str}

Figure 2: Composite types in NOOP.

class maxint(typespec):

def __init__(self, max): 3
self.max = max 4

def __call__(self, value=missing): 5
if ((not type(value) 1is 1int) or 6
(value < 0) or 7

(value > self.max)): 8

raise SignatureError("No match") 9

Figure 3: A new type constructor maxint.

natures to functions. The @signature decorator takes
three arguments.

The first argument is the type specification of the dec-
orated function’s arguments. It is either a tuple or a dic-
tionary. Each element of the tuple or the dictionary rep-
resents an argument to the function. If it is a dictionary
the type specification is given using the names of the
arguments. The arguments of the withdraw function
above could be specified like this (the first line as a tuple
and the following lines as a dictionary):

(int, float, opt(str), opt(str)) 1

{"account": 1int, "amount": float, 2
"on_behalf_of": opt(str), 3
"message": opt(str)} 4

The second argument of the @signature decorator is
the type specification of the decorated function’s return
value. This is just the return value type. The return value
type of the withdraw function above is float. The third
argument is a list of exceptions the decorated function
might raise during its execution. If the withdraw func-
tion above raised an IndexError when an unknown ac-
count number was applied the exception list could be
specified with [IndexError]. The complete signature
of the withdraw function using the @signature deco-
rator is shown in Figure 4.

It is also possible to specify the @signature decorator
with named arguments. The arguments type specifica-
tion in named args, the return value type specification
is named ret, and the list of exceptions is named exc.
This is a signature with named arguments for the gtz
function:

@signature(args=(int,), ret=bool, :

exc=[TypeError]) 3
def gtz(v): 4
return v > 0 5

The second approach to add signatures to Python
functions in NOOP is to use annotations. Annotations
has been available since Python 3.0. In NOOP we use
annotations to annotate arguments and return values of

functions with types. When a function is defined each
argument can be annotated using a colon. If a function
has an argument s of type str, the argument can be
annotated like this: s: str. To specify the type of the
return value of a function the function is annotated us-
ing —>. To apply the possible list of exceptions a function
can raise we still have to use the @signature decorator.

At define time the function is analyzed to see if it
matches the type specification. At call time type check-
ing ensures that no arguments not matching the type
specification is forwarded to the function. Type checking
also ensures that the return value matches the type spec-
ification and that no exception not defined in the signa-
ture is raised. If either of these fails a SignatureError
exception is raised.

It is possible to completely ignore exceptions in type
checking at call time. The consequence is that any ex-
ceptions raised by the function will be thrown back to
the caller. To achieve this effect the exception paramater
(exc) of the @signature decorator is set to None This
can also be achieved by providing no value for this argu-
ment.

3 Interfaces and receptacles

The NoOP approach to interfaces differs a lot from the
now rejected proposal for Python found in PEP 245 [7].
PEP 245 proposes interfaces similar to what is found in
Java where a class implements a defined interface. This
is also true for Zope interfaces [8]. While the NOOP ap-
proach also can be used like this, its main purpose is to
support the interaction between objects. In that sense it
is closer to interfaces related to software components or
remote invocation.

In NooP interfaces of objects lists methods with sig-
natures. One object can implement several interfaces.
Receptacles represent interfaces used by objects. Object
implementations refer to external interfaces through re-
ceptacles and receptacles are explicit bound to interfaces
(late binding). The binding operation (e.g. bind) can be



@signature((int,float,opt(str),opt(str)), float,
def withdraw(account, amount, on_behalf_of="",

[IndexError]) 2
message=""): 3

# The actual -+implementation 1is 1dignored in this example 4

return amount

Figure 4: Signature decorator for the withdraw function.

mSig = ((int, 1int), int, []) 1
iMath = {"add": mSig, "sub": mSig} 2
@interfaces(math=1iMath) 4
class Math: 5
def add(self, x:int, y:int) -> dint: =
return x +y 7

def sub(self, x:int, y:int) -> dint: s
return x -y 9

Figure 5: A Math class with an interface math.

@receptacles(m=1iMath) 4
class Wallet: 5
def __init__(self): 6
self.v = 0 7

def doSave(self, x: 1int): 8
self.v = m.add(self.v, x) 9

def doSpend(self, x: -int): 10
self.v = m.sub(self.v, x) 1

Figure 6: A Wallet class with a receptacle m.

(and often is) performed outside the object implementa-
tion.

The @interface decorator is used to create inter-
faces on a Python object in NOOP. To the interface dec-
orator named arguments are applied. The names rep-
resents the name of the interface. The value list the
methods and their signatures. A Math class that can
be used to create objects with an interface math of type
iMath with two metods add and sub are defined in Fig-
ure 5 (mSig is the signature of both method add and
sub). The signature of each method specified in the
math interface are applied to the matching methods of
the class. It is possible apply these signatures explicit to
each method in the class. Type checking will then ensure
that the signatures of the methods match the signatures
of the interface. In the example in Figure 5 the methods
are annotated with the type information.

If an object should access an interface of another ob-
ject receptacles are used. A receptacle refers to an exter-
nal interface implementation that is unknown at defini-
tion time. Later, this receptacle can be bound to such an
interface. The @receptacles decorator is used to add
receptacles to an object. In Figure 6 the receptacle m is
added to all objects of the Wallet class. The recepta-
cle m can then be used to call to methods of an interface
of the type iMath (like the math interface of Math ob-
jects). Before m can be used it has to be bound to an
interface of type iMath. The following code makes an
instance of both the Math and Wallet class, connects
the receptacle m of the wallet to the math object, and

mSig = ((int, dint), 1int, []) 1
iMath = {"add": mSig, "sub": mSig} 2
@component (provides={"math": iMath}) 4
class Math: 5
def add(self, x:int, y:int) -> dint: s
return x + y 7

def sub(self, x:int, y:int) -> dint: =
return x -y 9

Figure 7: A Math component providing interface math.

perform the doSave operation of the wallet object. The
doSave operation accesses the add method of the math
object though the receptacle m and the interface math.

myWallet = Wallet() 3
myMath = Math() 4
localBind(myMath["math"] ,myWallet["m"] )
myWallet.doSave(145) 6

4 Software components

A NOOP component is a Python object with well defined
external behavior defined by a set of interfaces (pro-
vides), a set of receptacles (uses), and a run-time con-
tract. To implement a NOOP component a @component
decorator is added to the class of the object. It is easy
to rebrand the Math and Wallet class to NOOP compo-
nents. The @interfaces and @receptacles decora-
tors are replaced with @component decorators that in-
clude the named arguments provides and uses. The
provides argument lists the interfaces provided by this
component, and the uses argument lists the interfaces
used by this component (the receptacles). Figure 7 and
8 show the implementation of the Math component and
the Wallet component, respectively. In the Wallet
component we have added a provided interface wallet.

A NOoOP component is not instantiated like ordinary
Python objects. A NOOP component is deployed, and the
run-time contract is applied to the component at deploy
time. The run-time contract includes external interfaces
used by the component and life-cycle management in-
formation.

The deployment operation returns a unique reference
for the component. This reference is a global unique
reference that can be used to refer to this component
globally in any NOOP run-time. Every NOOP run-time
(in NooOP called a capsule) has to implement a deploy
method. The actual implementation might vary depend-
ing of the features and services provided by the run-time.
The deploy-time contract can be used to specify features



wSig = ((int,), None, []) 1
cS'ig = ((), int, [1) 2
iWallet = {"doSave":wSig, "doSpend":wSig, 3

"content": cSig} 4

@component(provides={"wallet": iWallet}, s

uses={"m": -iMath}) 6

class Wallet: 7
def __init__(self): 8
self.v = 0 9

def doSave(self, x: 1int): 10
self.v = m.add(self.v, x) 1

def doSpend(self, x: 1int): 12
self.v = m.sub(self.v, x) 13

def content(self): 14
return self.v 15

Figure 8: A Wallet component providing interface
wallet and using interface m.

and services needed by a given component (or composi-
tion of components).

The simplest contract possible is an empty contract. In
NOOP it is created as an empty dictionary:

contract = {}

A more common contract of a component maps its recep-
tacles to external interfaces using the bind argument.
For the Wallet component the deploy contract could be
specified like this (mathRef is the unique reference to a
Math component):

contract={"bind":{"m" :mathRef["math"]}}

The contract specifies that a binding between the m re-
ceptacle of the vallet and the math interface of the
Math component has to be created. To complete the ex-
ample of the Math and Wallet component, this is how
we deploy and use a Math component and a Wallet
component using an empty contract for the Math com-
ponent and a simple bind contract for the Wallet com-
ponent:

mathRef=deploy(Math,{}) 5
contract={"bind":{"m" :mathRef["math"]}¥
walletRef=deploy(Wallet,contract) 7~
walletRef["wallet"].doSave(145) 8

In a NOOP run-time the component references can be
used as proxies. The interfaces (and receptacles) can
be accessed using their names as keys (like a Python dic-
tionary). The methods of the interfaces can be accessed
using ordinary dot-notation.

In NOOP a composite component is a composition of
components. Every single component in the composi-
tion have an individual contract, and the composition of
components have a common contract. All components
of a composition is deployed in a single operation. The
actual steps performed when a composition is deployed
are these: (i) All components are instantiated. (ii) The
contracts are applied to the components. (iii) The com-
position contract is applied to the composition.

Software components in NOOP are an unit for deploy-
ment. It is possible to see a component (and a composite
component) as a unit that can be distributed indepen-
dently and deployed in different applications and sys-
tems. The details of how this is achieved is out of the
scope of this paper.

5 Dynamic support

Late binding and re-binding is an important part of
the dynamic application support provided by NOOP.
Components access other components, including system
level components, through receptacles. Receptacles are
bound to actual implementations at deploy time, and
can be re-bound to other implementations later if this
matches the given context better. Contracts specify the
requirements of a component, including the services a
component needs. Such contracts can include quality of
service (QoS) specifications, and how a service is imple-
mented might depend on the given context. Some ser-
vices might be optional (a typical example is logging),
and some contracts might specify a preferred service
quality level and a minimum acceptable service quality
level. The given context might also influence how the
run-time fulfills the component requirements specified
in the contract.

A typical NoOP application is a distributed application
with a set of components deployed in a set of run-times
called capsules. Each NOOP capsule an be tailored to
the specific requirements of its deployed components. In
NOOP the goal is not a single capsule type supporting a
wide range of component requirements, but specialized
capsules configured to support its deployed components
(similar to the extensible application server discussed in
[9]). A composite component might be distributed over
several capsules. A typical example of such a distributed
composite component is a remote binding that contains
a stub and a skeleton deployed in different capsules.

When a component is deployed in a capsule the con-
tract might specify complex requirements that includes
adaption rules triggered by observed context changes.
The details of such adaption is out of the scope of this
paper. However, the NOOP component model, inter-
faces, receptacles and contracts are important mech-
anisms necessary to provide the adaptive run-time of
NOOP.

6 Conclusion

The component model and the NOOP run-time is the base
of several research projects investigating adaptive sup-
port for distributed applications. Different versions of
the run-time exists, and the run-time itself can be con-
figured to provide specialized support for a given type
of application. The NOOP core functionality presented in
this paper is used to investigate such adaptive and con-
text sensitive behaviour further.
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