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Abstract

All points on the surface of the Earth are moving. To define the velocity of a given
point, we can place a GPS receiver there and measure the coordinates every day. After
collecting enough data, we can generate a time series of three coordinates, North, East
and Height directions. The most used technique to determine such displacements, is the
linear model.

The main objective of this thesis is to show how to estimate the velocity of a given
point, using statistical methods to improve the results.

The improvement of the site velocity achieved by exluding all signals that are not tec-
tonic origine (seasonal variations, spacially correlated noise reduction ).

Time series for all directions contain gaps(missing data), outliers, offsets and various
data length.

The data discontinuities are detected and corrected by a simple algorithm, based on
binary search to detect the time of abruption. The outliers are eliminated by using robust
estimation techniques. Simulation is used to fill the gaps.

The data obtained from permanent GPS-stations in Norway and some other European
countries are unevenly sampled. We therefore use the Lomb-Scargle method to perform
spectral analysis. This allows us to detect annual and interannual variations.

The methods of Principal Components (also known as Empirical Orthogonal Functions,
or EOF) and Factor Analysis are used to correct for common fluctuations. We use data
from 8 permanent GPS-stations (SATREF) in these investigations.
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Table 1: Frequently Used Acronyms

Name Description

AIC Akaike Information Creterion
AlCc Corrected AIC

ACVF Auto-Covariance Function

ACF Auto-Correlation Function

AR Auto-Regressive

ARMA Auto-Regressive Moving Average
ARIMA Auto-Regressive Intergared Moving Average
AS Anti Spoofing

CGPS Continuous GPS

GPS Global Positioning System

GNSS Global Navigation Satellite System
DOP Dilution Of Precision

DRSO Detection Removable Simulation Outliers
ECEF Earth Centered Earth Fixed

EF Exponential Smoother

FA Factor Analysis

1GS International GPS Service

IPP Tonospheric Piercing Point

1GP Ionospher Grid Point

JPL Jet Propulsion Laboratory, Pasadena, California, USA
MDRSO Modified DRSO

MF Median Smoother

MA Moving Average

PC Principal Component

PFA Principal Factor Analysis

WMAF Weighted Moving Average Filter
SMAF Symetric Moving Average Filter
SA Selective Availability

SATREF SATelitebasert REFerensesystem
SIS SATREF Ionospheric System

MLE Maximum Likelihood Estimation
TEC Total Electron Content

TS Time Series

UTM Universal Transverse Mercator
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Table 1 —Continued

Name Description

WAAS Wide Area Augmentation System
WGS84 World Geodetic System 1984
RMS Root Mean Square

VLBI Very Long Base Interfferometry




Frequently Used Definitions

Name Definition

Accuracy A measure of how close an estimate of a GPS position is to
the true location.

Clock Bias The difference between the indicated clock time in the GPS

Clock offset

DOP

GPS

Kalman Filter

Magnetic North

Multipath

Navigation Message

Position

Residual
Smoothing
True North

Troposphere

WGS-84

receiver and true universal time (or GPS satellite time).

A constant difference in the time reading between two clocks,
normally used to indicate a difference between two time
zones.

Dilution of precision, a measure of the satellite/receiver ge-
ometry, describing factors which affects the geometric satel-
lite distributions

A global system based on 24 satellite orbiting the earth at an
altitude of 12000 statue miles and providing precise world-
wide positioning and navigation information 24 hours a day.
Recursive data processing algorithm

Represents the direction of the magnetic north pole from the
observers position. The direction a compass points
Interference caused by reflected GPS signal arriving at the
receiver.

The message transmitted by each GPS satellite containing
system time, clock correction parameters, ionospheric delay
model parameters, and the satellite’s ephemeris data and
health. The information is used to process GPS signals to
give the user time, position, and velocity. Also known as the
data message.

An exact unique location based on geographic coordinate
System

Difference between observation and Prediction

Backward processing algorithm

The direction of the north pole from your current position.
Magnetic compasses indicate north differently due to the
variation between true north and magnetic north. A GPS
receiver can display headings referenced to true north or
magnetic north.

The lowest region of the atmosphere between the surface of
the earth and the tropopause, characterized by decreasing
temperature with increasing altitude. GPS signals travel
through the troposphere (and other atmospheric layers).
World Geodetic System, 1984 the primary map datum used
by GPS. Secondary datums are computed as differences from
the WGS 84 standard.

Table 2: List Of Definitions




Chapter

Introduction and motivation

During the past decade, GPS has grown rapidly and become the most important
observational technique used to the study the rotation of the Earth, tectonic plate mo-
tions, crustal deformations and seismic activities. The IGS (International GPS Service)
GPS network now has more than 330 permanent tracking stations around the world. The
network has played a key role in deploying and operating a common and comprehensive
global tracking system.

Data for CGPS used during numerical investigation is obtained from NMA, SATREF
(SATellittbasert REFeransesystem) and from some IGS stations in Europe. The data is
processed by GIPSY software modules from JPL.

The site velocity is determined by fitting a straight line through a series of N points x;
taken at time ¢;. The parameters that define the line are its x-intercept z¢ and the slope
r so that:

xy, = T + 1t + €(t)

r determines the rate of change at the site.

But it is not that simple. Our time series X; contains outliers (O:), gaps (Gi),
jumps(J;), linear trends (L¢), seasonal components (S;) and noise (N¢). The main ob-
jective is to improve the Ly.

X, =L+ S+ N+ O+ J, + Gy

This thesis is made up by three major parts:

1



INTRODUCTION AND MOTIVATION

. The first part (ch. 4 - ch. 8) will handle outliers, jumps, gaps, seasonal components

and estimation of the linear trend.

. The second part (ch. 9) will examine the common fluctuations (variations) in our

network.

. The last part (ch. 10) will implement a CGPS filter for our time series. This is

optional, and not an obligatory part of my thesis.

Let us conclude with an outline of the subsequent chapters:

Chapter 2: Exploring the dynamic Earth

This chapter introduces the internal structure of the Earth, and how the Earth is
affected by the gravitational forces of the Sun and the Moon. The conclusion is that
the Earth is constantly changing, both on the inside and on the outside.

Chapter 3: GPS Theories

This chapter gives an short introduction to the GPS and its error sources. It shows
how GPS is used to determine the position of a user, and should introduce the GPS
as an important tool for researchers.

Chapter 4: Smoothing CGPS time series

This chapter introduces the smoothing techniques (parametric and non-parametric)
used when smoothing CGPS time series. The methods of Weighted Moving Average,
Exponential Smoother, LOWESS and kernel smoothing will be explained.

Chapter 5: Outliers Detection in CGPS time series

This chapter introduces different algorithms that can be used to remove outliers (O;)
from our time series. As we know, outliers lead to biased site velocity estimation
and model misspecification.

Chapter 6: Handling apparent discontinuities in CGPS time series
This chapter introduces different algorithms to detect and correct offsets in CGPS
time series.

Chapter 7: Handling Gaps in CGPS time series
This chapter will introduce algorithms to fill the gaps (G) in our time series. The



gaps can be caused at a site for different reasons, e.g. hardware/software failure or
downtime.

Chapter 8: Frequency Analysis of CGPS time series

This chapter will handle the component (S;) in our model. It is used to detect sea-
sonal variations by analysing the Fourier frequencies. The Lomb periodogram will
be introduced and implemented to handle unevenly sampled data.

Chapter 9: Correction for common mode error in CGPS TS

This chapter investigates the common variation in our network. We know that the
signals from satellites are received by all sites and are common, but non-tectonic
signals are present (and common at some sites). Different algorithms will be intro-
duced and implemented to identify this common signal.

Chapter 10: CGPS Filter Implementation
This chapter will introduce the building blocks needed to implement a CGPS filter
and estimation of parameters. An introduction to Power-Law processes will be given.

Chapter 11: Summary and Conclusion
This chapter gives a summary of all the operations we have done to give a better
estimate of L;.






Chapter

Exploring the Dynamic Earth

2.1 Earth structure

Since intensive studies of seismic waves was carried out in early 20th century, we today
know that the interior of the Earth has a radially layered structure, like that of an onion
(see fig. 2.1). Each layer is characterized by a specific set of physical properties determined
by the composition, pressure and temperature in the layer. The four main layers are the
crust, mantle, and the outer and inner core.

According to the theory of plate tectonics, the crust of the Earth is made up by mov-
ing plates. The theory explains the reasons behind volcanoes, earthquakes and mountains.
The most widely accepted version of the theory is the one based on convection in the man-
tle. Near the core, magma is heated by radioactivity, making it less dense and thus lighter.
The magma will then rise towards the crust. Near the crust, the magma is cooled, making
it denser and heavier again. This causes the magma to sink deep into the mantle again.
This repeated heating and cooling of magma causes continuous currents in the mantle, like
illustrated below:Since the tectonic plates basically float on top of the mantle, currents in
the mantle move the overlying tectonic plates. These plates move in different directions
with differing velocity, forming different types of plate boundaries.

2.1.1 Tectonic Plates

The Earth’s surface is broken into several large and many small moving plates. A plate
may be as wide as 10,000 km (the Pacific Plate)- or as small as a few thousand km (the

5
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Upper Martle

Mantle

Figure 2.1: Farth Crust

Figure 2.2: Convection in the Mantle
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Figure 2.3: Tectonic Plates

Philippines Plate). The are twelve major plates(Antarctica, Africa, Eurasia, India, Aus-
tralia, Arabia, Philippines, North America, South America, Pacific, Nazca and Cocos)
and several minor plates (Scotia, Caribbean, Juan de Fuca). These plates move relative
to each other on an average of a few centimeters a year. The figure 2.8 shows the major
and minor lithospheric plates.
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Figure 2.4: Continental-Oceanic Convergence

2.1.2 Plate Boundaries

In some places, tectonic plates move apart, forming a “divergent boundary”. If this
process takes place on land, no crust is immediately created, the process is known as
“rifting”, and simply breaks a continent apart. If the process continues, it may eventually
form a Mid-Oceanic Ridge. The ridge (“crack”) between the moving plates is then filled
with magma from the mantle, forming new crust. This process is referred to as “seafloor
spreading”.

Two plates may also move in opposite directions beside each other. These are referred
to as “transform-fault plate boundaries”, and often causes earthquakes because of the
friction between the plates but crust is neither created nor consumed.

If two tectonic plates move toward each other, we find a “convergent plate boundary”.
These plate boundaries experience many earthquakes, but otherwise the scenario depends
on what kind of tectonic plates we are dealing with:

1. When a continental plate and an oceanic plate collide, the oceanic plate is subducted
under the continental one and melted. A trench is formed between the plates, while
a volcanic mountain range is created on the continental side of the boundary.
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i

Oceanic-oceanic convergence

Continental-continental convergence

2. When two oceanic plates collide, one of the plates is usually subducted under the
other. The process is basically the same as when a continental plate and an oceanic
plate collides, but since it takes place under water, the volcanic mountain range
becomes an island arc the islands being tall mountains rising from the seafloor .

3. If two continental plates collide, the plates will crush and buckle each other, thus
thickening the plates near the boundary and creating a mountain range. These kind
of plate boundaries are also called “collisional plate boundaries”. A good example
of one would be the Himalayas, where the Indian Plate collides with the Eurasian
plate.

The last type of boundary is simply called “plate-boundary zones”. These are large
areas where the involvement of so called microplates between the major plates complicate
the situation, thus making the simple terms mentioned above inappropriate.

2.1.3 Hotspot

But volcanism is not always connected to the plate boundaries. Narrow streams of hot
magma from as deep as the mantle-core boundary exist at fixed places in the mantle,
making those spots especially hot. The tectonic plates are melted when they move over
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Figure 2.5: Divergent Plate Boundaries

g 1055
ooheric 5T
Uﬂ";linsﬂ" ce from ridge
wi

Figure 2.6: Transform Plate Boundaries
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such “hot spots”, resulting in volcanic activity. A good example of this is the Hawaiian
islands. A hot spot resulted in the creation of a volcanic island, but each time this island
moved out of reach (because of the movements of the Pacific Plate), a new one would be
created.

2.2 Thetides

The gravitational forces of the Sun and the Moon deform the shape of the Earth,
causing tides in the oceans, atmosphere and solid body of the Earth. The most visible
tidal effects is the deplacement of the ocean surface.

The Earth and the Moon are coupled together by gravitational attraction. Their com-
mon motion is like that of a pair of ballroom dancers. Each partner moves around the
center of the mass of the pair. Determination of the center of the mass is easily defined
by the principle of “ revolution without rotation”.

The gravitation of the Sun keeps the Earth in it’s orbit, while the Moon stabilizes
the rotation of the Earth. But these are not their only tasks. While their gravitation
is too weak to for example pull rocks and houses out in space, they do affect matter on
Earth. Most known is the phenomenon known as tides. The Moon and the Sun attract
the water on Earth, making it move towards the places on Earth that faces them — but
the gravitation of the Earth itself is strong enough to keep the water from leaving the
planet. During a solar eclipse, the Sun and the Moon stand in a line, causing a double
effect. This does not only mean bigger tidal waves, but the gravitational pull can in these
cases be strong enough to cause destructive earthquakes and volcanic eruptions.

The last theory is regarded as controversial, but scientists supporting this theory have
been able to successfully predict several disasters just by comparing the placement of the
Sun and the Moon with the state of the tectonic plates.

2.3 Earth Rotation and Euler Poles

The rotation of the Earth is a vector. This means that it is a quantity characterized
by both magnitude and direction. The Earth behaves as an elastic body and deforms in
response to the forces generated by its rotation, becoming slightly flattened at the poles
with a compensating bulge at the equator.
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North Pole

South Pole

Figure 2.7: Farth Rotation

When something moves on a sphere, constantly moving in a fixed direction also means
rotating around a fixed point. To illustrate this, let’s take a look at the rotation of the
Earth (fig. 2.7).

As you can see, everything on the Earth moves in the same direction eastwards along
the Equator. But this also means that everything is rotating around the North Pole (or
the South Pole). The Equator is way broader than the Arctic Circle, yet a point on the
Arctic Circle uses the same time to rotate once as a point on the Equator (24 hours).
Because of this, we must also conclude that the area around the Equator moves faster
than the area near the poles.

This concept is also applied for tectonic plates. The tectonic plates are assigned “FEuler
Poles” that they rotate around, and these poles tend to remain fixed for long periods of
time (indicating that the tectonic plates hold a relatively steady course). Euler poles have
different “rotation rates” that can be used to calculate the velocity of a given point on a
tectonic plate if we know the distance from the Euler pole. As with the rotation of the
Earth, the tectonic plates move fastest about 90 degrees from the Euler pole.



Chapter

GPS Theories

3.1 GPS Overview

NAVigation Satellite Timing And Ranging(NAVSTAR) GPS is a satellite navigation sys-
tem capable of providing accurate, continuous global positioning and navigation services.

The system consists of 24 operational satellites in space, approximately uniformly
dispersed around six circular orbits with four or more satellites each. The orbits are
inclined at an angle of 55° relative to the equator and separated from each other by
multiple of 60°.Theoretically, three or more GPS satellites will always be visible anywhere
on the surface of the Earth.

The heart of the GPS satellite is the precise atomic clocks (2 rubidium and 2 ce-
sium) that are used to generate two coherent carriers L1 and L2 in the L-band. The
GPS satellites transmit on two L-band frequencies with one at 1575.42 MHz(L1) and the

13



14 CHAPTER 3. GPS THEORIES

other on 1227.60 MHz(L2).These two frequencies are integral multiples f; = 1540fy and
fo =1200f, where the fundamental frequency fo = 10.23MHz

The GPS system is composed of four segments:

e The Space Segment:
Includes the satellite constellation of GPS satellites and is run by the US Air Force
(responsible for operation and maintenance). The main Control Centre is at Falcon
Air Force Base, Colorado Springs, USA.

e The Control Segment:
Responsible for monitoring the space segment by using signals from channels L1 and
L2 to estimate and predict the satellite orbits and clock errors. This information is
uploaded to the satellite, which broadcasts the navigation message part by part in
frames or subframes to the Earth (users).

e The User Segment:
Different types of GPS receivers and users of various applications are considered the
user segment of the GPS. The receiver uses the signals and navigation messages to
compute the position, velocity and presice time.

e The Ground Segment:
Includes civilian tracking networks that provide the user segment with reference
control, precise ephemeris, and real-time services(DGPS), which mitigate the effect
of Selective Availability=

There are three types of codes in the carrier signals:

e Coarse/Acquisition(C/A) code:
Modulated on the carrier L1. Each satellite has a different C/A code, so that they
can be uniquely identified.

e Precision(P) code:
Modulated on the carrier L1 and L2 and is better for more precise positioning.

e Navigation Message:
Can be found on L1 and L2 and includes information on the broadcast Ephemeris,
used to determine the satellite orbital parameters, satellite clock corrections, almanac
data, ionosphere information, and satellite health information status.
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3.2 GPS Observable

The observation types provided by the GPS receivers depend heavily on the technique
used. A single frequency receiver can only provide the user with observation on L1 fre-
quency, while dual frequency receivers can provide observations on both frequencies. There
are three basic types of observations, namely pseudorange, carrier phase and Doppler mea-
surements.

Suppose that the C/A, P, or Y-code(Encrypted P code) are transmitted by satellite k&
at time tF and registered by receiver i at time ¢;. The fundamental observation equation
is defined by:

PF =c(t; —tF) = crF (3.1)
where
Pik : Pseudo — range , expressed in unit of length.
c Speed of light
¢k Transmission time of the signal
t; Observation time of the signal.
Tl-k : The signal travelling time.

3.21 Pseudorange

The pseudo-range measurement Pz-k is the time difference between the receiver signal and
the receiver-generated signal, and is related to the geometric range p, distance between
the receiver i at time ¢; — At; and the satellite k at time t* — At*, and to the delays due
to the Earths atmosphere. The observation equation of pseudo-range can be expressed as:

Pik =p+ C'(Ati - Atk) + Ap?,trop + Apﬁion + Ap?,mult tep

Where :
p The geometric range
AtF The satellite clock error including S A with respect to GPS system time
At; The receiver clock error with respect to GPS system time
DNiion The signal delay due to ionosphere
Nitrop The signal delay due to troposphere
Aj ottt - The pseudorange multipath ef fect.

€Ep The pseudorange measurement noise
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3.2.2 Carrier Phase

The carrier phase observation is the measured phase difference between the receiver signal
and the receiver-generated signal. It can be expressed as:

Where:
A The wavelength of The GPS signal
BF . Denotes constant bias, expressed in cycles, containing the initial carrier

(3

phase ambiguity Nz-k.
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3.3 GPS error sources

From the equations mentioned above, Eq , the GPS measurements are subject to many
error sources, which degrades the obtainable accuracy of the GPS positions. These are:

3.3.1 lonosphere error

The ionosphere delay in GPS pseudorange observations is the second largest error source
after SA. The ionosphere (an atmospheric layer with the presence of free electrons) can
retard radio waves from their velocity in free space by more than 300 ns, in a worst case
scenario, corresponding to range error of 100 m.

The ionosphere layer extends from approximately 50 to 1000 km above the surface of
the Earth and consists of gases that have been ionized by solar radiation. The ionization
process produces clouds of free electrons that act as a dispersive medium for GPS signals
(the velocity is a function of frequency).

The important parameter for ionosphere time delay is the total number of electrons
(TEC) encountered by the radio waves on its path from satellite to the GPS receiver. All
users have to correct this error, and the technique used differ among the GPS receivers.

e Dual frequency receivers: For dual frequency receivers(L1 and L2), this error
can be eliminated by forming a linear combinations on P or C/A codes.

e Single frequency receivers: The ionosphere broadcast algorithms developed by
J. A. Klobuchar can be used to reduce the effect of the ionosphere. It can correct up
to 50%. The algorithm assumes that all electrons are consentrated in a single layer
at 350 km above the Earth surface fig:3.1. The algorithm is simple and take into
consideration the number of coefficients used and the computation time. All angles
are in units of semi-circle, and the time is in seconds.

1. Compute Earth-centered angle ¥

0.0137

UV=s—
E+0.11

—0.022 (semicircles)

2. Compute the subionosphere latitude

O; = ¢y + Vcos(A) (semicircles)
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Q Satallite

lonosphere Fierce Point

350 km

Single Layer Model!

Figure 3.1: Single Layer Model
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3. Compute the subionosphere longitude

U sin(A)

Ar=dut cos(®Pr)

(semicircles)

4. Find the geomagnetic latitude
®,, = Oy + 0.0 4+ 64 cos(A; — 1.617) (semicircles)
5. Find the local time:

t =4.32.10*.\; + GPS time (sec)

if t>86400 = t=1t— 86400
it 1<0 = t =1+ 86400

6. Compute the slant factor:
F=10+16.(053 - E)3

7. Compute the ionospheric time delay :

_ 22 2t
Tiono = F.[5.107 —l—nz_;)an <1_?+ﬂ>
2n(t — 50400)

wherex =

Zi:o Bn®7,

The alpha and beta coefficients are uploaded by the master station to the satellite
and broadcasted from the satellite to the user in the navigation message. In addition,
the algorithm uses the elevation angle E of satellite and azimuth angle A. These parame-
ters must be calculated before calling the algorithm to estimate the ionospheric time-delay.

The Klobuchar broadcast algorithm is very popular and is used in more sophisti-
cated ionospheric monitoring algorithms like Ionospheric Delay Inverse Distance Weight-
ing (IDW) implemented in EGNOS and GAGAN systems. IDW uses Klobuchar as prior
information about IPP and IGP points.

The ionosphere time delay algorithm is implemented and tested with alpha and beta
values at 20 degree satellite elevation and 210 deg azimuth. The algorithm name is
klobuchar.R and is placed under the directory libs.
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3.3.2 Troposphere error

The lower part of the atmosphere, called the troposphere, is electrically neutral and nondis-
persive for frequencies as high as about 15 GHz.The raw tropospheric delay in pseudo range
units depends on the vertical delay related to the dry and wet components.

About 90 % of the tropospheric refraction arise from the dry component and about 10
% from the wet component(due to temperature, pressure and humidity variations) of the
atmosphere.

Several algorithms exist for correction. The most popular is the Empirical Saasta-
moinen Model and the Hopfield model. If the reader is interested, these algorithms are
well described in most GPS textbooks.

3.3.3 Satellite clock error

The satellite clock offset can be eliminated by forming a single difference of two phase (
or code) observations .

The GPS time of transmission of the GPS message is t = t4, — Ats,, where the the
tsy is the SV PRN(Space Vehicle PseudoRandom Noise) code phase time at the time of
transmission. The satellite clock correction term Atyg, is approximated by a second order
polynomial:

Atgy = aso+ agpo(t — toe) + apa(t — toe)? + Alg

Here afg, ayi,ary are the polynomial correction coefficients corresponding to phase
error, frequency error and rate of change of frequency error(in second, second per second
and second per square second), and t,.

3.4 User Position Determination

In this section, we will present an algorithm how to calculate the range with no errors,
including clock bias. As we know that the receiver record data at regular, specified in-
terval. It is the reading of the receiver clock time 7', which used to say exactly when
the measurement is sampled. Therefore the value of T is known. If we let the reading of
satellite clock be T when the signal was transmitted, and c¢ the speed of light in vacuum,
then the actual observation to satellite s can be written:

distance = (speed) x (time)
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po= (T-T)c

We are interesting of defining the pseudorange as a function of the true time ¢, when
the signal was received. This is done by setting:

T = t+71
T° = t°+7°
=p = (t—t)+cr—cr®
pr = Pseudorange( Known)
T,Y,z = Satellite position(calculated from ephemeris)
XY, Z = U ser position coordinates(Unknown)

x,y,y and XY, Z are in the earth-centred, earth-fixed(ECEF) coordinates system. From
Pythagoras theorem, the position calculation with no errors is:

1
pro= [@=XP+@y-Y)+(z-2)?
= = X) +y-Y) +(z-2)
=p2 = @@+ +) (XY 2% - 22X - 29Y — 227
:>p%—(m2+y2+z2)—R2 = 7—2xX —2yY — 227

Where: 7 is Clock Bias Correction and R is Radius of the earth.

The problem we still facing, is that the satellite position must be calculated at trans-
mission time, t°, because the satellite range can change as much as 60 meters from the
signal was transmitted to the time the signal was received.An efficient iterative algorithm
known as Light Time Equation allows us to do the job, by starting with the receive
time ¢

#5(0) = t=(T—r)
p°(t,t°(0))
p*(t,t°(1))

#(1) = t—

£2) = t-
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p°(t,t°) is calculated at each step from navigation message, and the algorithm stops when
the convergence is reached.

The navigation message allows us to compute the satellite position(z,y,z) and the
satellite clock bias 7°. Therefore we are left with 4 unknowns, the receiver position
(X,Y, Z) and the receiver clock bias 7.

For 4 satellites in view of the receiver, we can write the pseudorange to each satellite
as:

— (=} + y1 +22)—R? = 7-2Xz —2Vy —2Z%
—( N—R? = 7—2Xx9—2Yys— 272
Pr3 (1‘2“‘1134‘23) R? = 7—-2Xx3—2Yy3 —2Z23
— (af N—R? = 7-2Xx,—2Yy,— 272

pTl - (‘T% + y% + Z%) - R2 _2«'171 — 2y1 — 221 1 X
pry — (3 +y5 + 23) — R? _ | 22— 2y2 — 220 1 Y
p23_(‘r§+y§+zg)_R2 —2x3 —2ys — 223 1 A
p72”4 - ($421 + yi + Zi) — R2 —2x4 — 2y4 —2z4 1 T
or
R = MYV,
=M 'R = MMV,
= W

X

B Y

- A

.

Pseudorange observation equations are not linear, therefore we apply Taylor methods
to linearize our observations. Before doing that , write our observations as the observed
model, plus error ( noise).

Povs = Prodet + Noise
= P(X,Y,Z,7)+W
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Applying Taylor series eexpansionmethod about (X, Yy, Zg, 70) and ignoring the higher
order.

oP oP
P(X,Y.Z,7) = P(Xo,Yo,Zo,70)+ (X _XO)(‘)—X + (Y—Yo)a—y
oP oP
Z — Zy)— —T0)—
+( o)aZ + (T 7’0) 87’
oP oP oP oP
= Poomputed + =—=AX + —AY + —AZ + —A
puted T o SX T oy A T ez T o T
= AP = Pobserved - Pcomputed
oP oP oP oP
= —AX+ =AY+ —AZ+—A w
X~ Tay ™ Tazt e aT T
AX
AY
oP oP 9P 0P
[ox & 52 o )| ag |tV
AT
For each satellite in view, say n, we have:
[ ort opl 9Pl 9P! i
i i oX oY  9Z ot | [ AX T
AP!
AP? op?  9p? 9P 9p? W2
0X Y Y or
= 3
AZ W
| AP" | A .
opm  gpt gpr ppn | L 2T wn
L 0X oY 0Z or - -

We show that the user position can be determined by the Least Square method. The
GPS is a very complicated area, but we will in this chapter only try to give a short
introduction. This method is described in most GPS textbooks.
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3.5 Satellite position calculations

In this section, we are going to present the algorithm to calculate the satellite position

(Xs,Ys, Zs) from navigation message.

3.5.1

The parameters needed to determine the satellite position are given in the table below.

Components of ephemeris

Name | Description Unit
My Mean Anomaly at reference time semicircle
An Mean motion difference from computed value semicircle/s
e Eccentricity dimensionless
Va Square Root of semi-major axis m2
wQ Longitude of ascending node of orbital plane at weekly | semicircle
epoch
10 Inclination angle at reference time semicircle
w Argument of perigee semicircle
Q Rate of right ascention semicircle/s
IDOT | Rate of inclination angle semicircle/s
Cue Amplitude of cosine harmonic correction term to the | rad
argument of latitude
Clus Amplitude of sine harmonic correction term to the ar- | rad
gument of latitude
Cre Amplitude of cosine harmonic correction term to the | m
orbit radius
Chrs Amplitude of sine harmonic correction term to the or- | m
bit radius
Cic Amplitude of cosine harmonic correction term to the | rad
angle of inclination
Cis Amplitude of sine harmonic correction term to the an- | rad
gle of inclination
toe Ephemeris reference time S
IODE | Issue of data, ephemeris S

Table 3.1: Components Of Ephemeris
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3.5.2 Satellite position Algorithm

In the next table, we present all steps and formulas needed to calculate the satellite posi-
tion (Xg,Ys, Zs) from navigation message.

t is in GPS system time at time of transmission, i.e, GPS time corrected for tran-
sit time(range/speed of light). Furthermore, ¢; shall be the actual total time difference
between the time ¢ and the time epoch t,e ( time of ephemeris), and we must account
for beginning or end of week crossover. That is, if ¢ is greater than 302400 s, subtract
604.800 s from tj. If ¢, is less than -302400 s add 604.800 s to tj.

Eccentric Anomaly Ej shall be estimated iteratively by Performing Newton-Raphson
algorithm.

Algorithm can be checked against the result obtained from IGS in sp3 format, that
can be downloaded from any IGS site by ftp.
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Name

Description

/1 = 3.986005.10 [m3 /7]

Q. = 7.292115167.10~5[rad/s|
a=(y/(a))’

no = /(%)
tr =1 —1oe
n=mng+ An
M. = My + nty,

My, = Ey, — esin(FEy)

_ — cos(Ey)—e
fre = cos ! 1—e COI;()Ek)
- (1—e?) sin(Ey)—e
Jk = sin ! \/_ l—ecos()E;:
— coa—1 [ eteos(fr)
B}, = cos <1+e Cos()kfk)
b = Ju tw

dpg = Che * cos(2¢) + Cys sin(2¢y)

Or = Cre * cos(2¢y) + Crssin(2¢y)
dir, = Cic * cos(2¢y) + Cis sin(2¢y,)
Pk = @k + O

ry =a(l—ecos(Ey)) + org

i = 1o + dix + (IDOT)ty,

2y =11, + cos(p)

Yi = Ty +sin(p)

Qk = (Q - Qe) ty — Qetoe

xp = 25 cos(Qk) — Yk cos(ix) sin(2x)
Yk = 2 sin() + i cos(ix) cos(Q)
2k = Y sin(ig)

WGS84 value of the Earth’s universal
gravitational parameter

WGS84 value of the Earth’s rotation rate.
Semimajor axis

Computed mean motion [rad/s]

Time from ephemeris reference epoch
Corrected mean motion

Mean anomaly

Kepler’s equation for eccentric anomaly

True anomaly from cosine
True anomaly from cosine

Eccentric Anomaly from cosine

Argument of latitude

Second harmonic correction to argument
of latitude

Second harmonic correction to radius
Second harmonic correction to inclination
Corrected argument of latitude
Corrected Radius

Corrected inclination

X coordinate in orbit plan

Y coordinate in orbit plan

Corrected longitude of ascending node.

ECEF X coordinate
ECEF Y coordinate
ECEF Z coordinate

Table 3.2: Satellite Position Algorithm




Chapter

Smoothing Time Series

The main goal of this chapter is to introduce the principles of smoothing techniques,
and to provide a background of later chapters. Our signal is composed of a long-term
trend, seasomal components and a moise signal. It’s very important for data analysts to
master different techniques of smoothing, as we know application differs and techniques
used shall match the nature of problem under examination. We will discuss the moving
Average filter, exponential smoother, Locally Weighted Scatter Plot Smoothing(LOWESS)
and kernel smoothing

4.1 Moving Average Filter

Smoothing is just a transformation we use to create a new data set from the observed one
with reduced noise. If let our observations be presented by x; by applying the Symmetrical
Moving Average Filter, the new observations is given by

Where A; = A_; > 0 and Ef:_ i A; = 1. This filter regards each data point in the win-
dow to be equally important when calculating the average (filtered) value.The smoothing
parameter h, the size of the span window used under smoothing plays an important role
in smoothing, the small value of h allows us to discover the periodic components in our
signal and largest value allows us to discover the trend if is present. Choosing window size
is an important step in smoothing.

27
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We will focus now on improvement in computational efficiency. If we perform the
calculation of the mean in a recursive fashion, we can reduce the computation tasks.
Suppose that at any instant j, the average of the latest n samples of the data sequence,
X, is given by

Similarly, at the previous time instant, j — 1, the average of the latest n samples is

j—1
_ 1
Tj—1 = = E T

3

i=j—n
) 1 j j
— T, —Tj1 = — E T — E Zi
n
i=j—n+1 i=j—n
- 2 [j = xj-n]
n
_ _ 1
=T = Tj-i+t 2 - 2]

It can be seen that we need only to perform 1 division, 1 addition and 1 subtraction
operation, regardless of the number of data point n.

4.2 Exponentially Weighted Moving Average Filter

This type of filter places more emphasis on the most recent data points and it’s useful
in prediction (forecasting). Such filter can be designed by the following procedures. As
before, the starting points is the mean value expressed as:

Similarly, consider the mean with additional point

j+1

_ 1
T — § €T
J+1 A
n+1
* i=j—n+1

1 J
= — = |%T+ Tt Z T
n+l i=j—n+1
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= oI [Tj11 +n* 7]
n
B RS AR i
Shifting the time index back one time-step, we obtain the corresponding expression for x ;
as:

A S R
To simplify the notation, let & = n/(n + 1), which implies that (1 — «) = 1/(n + 1).
We can write the equation of the filter as:

Zj=aZj1+ (1 —a)z;

Calculation of Z; requires only 1 addition, 1 subtraction and 2 multiplication opera-
tions. The value of «, dictates the degree of filtering, i.e how strong the filtering action
will be. Since n > 0, this means that 0 < o < 1. When n is larger, « — 1, and 7; — Z;_;.
This means that the degree of filtering is so great, the measurement does not play a part
in the calculation of the average. If n — 0, then Z; — x;, this means that no filtering is
being performed.

The Exponentially Weighted Moving Average filter places more importance to more
recent data by discounting older data in an exponential manner. This characteristic can
be illustrated simply by describing the current average value in terms of past data.

T = aZj_1+(1—a)z,
alazjo+ (1 —a)rj_1]+ (1 —a)z;
= a’Zj_a+a(l —a)zj_1+ (1 — )z,

= akfj_k +a* 11— Q)Tj_p—1+ ..+ (1 — a)z;

If we continue expanding Z; backwards, we se that the older values of x; are weighted
by increasing power of a. Since « is less than 1, the contribution of old values get smaller.

4.3 Kernel Density Estimation

Before getting into more details of kernel density estimation, it’s worth to distinguish
between models:
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e Parametric Models:
These models assume that our observations came from known distribution function,
with unknown parameters. The main statistical challenge is to estimate the unknown
parameters and test if the model chosen estimates better our observations. They lead
to an easy interpretation of the resulting fit.

e Nonparametric Models:
These models let data speak for themselves. Therefore they are said to be non-
parametric. They open the way for a new models by their flexibility.

e Semiparametric Models:
These models combine parametric and nonparametric parts.

Suppose now that our observations X = (X7, Xs, X3, ..., X;,) are from an unknown
density function f(x) and that our aim is to estimate f(x) and display it graphically. The
density estimation function is defined as follow :

f<x>=$§f<($i,j“’>

Where h is smoothing parameter and K(.) is the kernel function. Required properties
of the kernels are:

e K(.) :isdensity .

/K(u)du =1 and K(u) >0

e K(.) : Symmetric
/uK(u)du =0

The different kernel functions used are given in next table. Choosing K(u) is less
important than choosing the smoothing parameter h.

4.3.1 MSE and MISE

To investigate the performance of the kernel density estimation at a single point or over
the whole real line, and find out how close our estimator 6 is to its target 6. The Mean
Square Error and Mean Integrated Square Error can be used to measure such performance
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Kernel

Uniform Kernel
Triangle Kernel
Epanechnikov Kernel
Quartic Kernel
Triweight Kernel

Gaussian Kernel

Cosinus Kernel

T (cos(%u)) I(lul <1)

or efficiency of non-parametric.

The Mean Square Error in estimating f(x) by f (x) at the point z is given by:

MSE { f(m)}

Table 4.1: Kernel Functions

var{f(z)} + {bias{f(m)}}2

31

We se that MSE is composed of two parts, namely the variance and the bias part. On
the contrary of the parametric model, the bias is ignored.

Mean Integrated Square Error(global measurement) is defined as:

MISE {f(x)} - /MSE {f(x)} dx
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4.3.2 Asymptotic Statistical Properties of KDE

We define
M2 (K )

and || K3

Derivation of Bias approximation

_ / 2K (u)du

—00

= /_Z{K(u)}zdu

We start by calculating the expression of expectation of the kernel density fh(aj)

A 1 _ T Xz
plhe] = H2r K]
1 r—X
= -F|K
i [R50
*1 r—=z o ,
= K( . )f(2)dz # Definition of expectation
= K(s)f(x+ sh)ds # Variable changes(s = z ; Z)
5; 82h2
= K(s { )+ shf®(z) + Tf(2)(x) + 0(h2)} ds # Taylor

_ /°°K
o[

h2
— fa)+ 5P |

%

= Bias{fn(x)} =

2
= B @y (K)

h2
f(x)+ gf(z)(if)ﬂz
E | fu@)] - f@)

x)ds + /OO shK (s)fW (x)ds

Tf@) (z)K (s)ds + o(h?)

- 2K (s)ds + o(h?)
(K) h—0

Noting that the kernel K (u) is a density and symmetric. Here we presents some remarks

1. Bias ~

o(h?). Bigger value of h = Oversmoothing
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2. Sign and direction are decided by f®(z)

3. We can reduce the error term to order of (h*) by including more terms in Taylor
series expansion.

Derivation of variance approximation

The variance of stochastic variable X is defined as var(X) = E(X?) — {E(X)}? and using
the Taylor expansion of f(x+ sh and ffooo K (s)?sds = 0(from the symmetry of the kernel.

var [fh(x)} - —var [ ]
)
_ %E [ : K(”’“_TXZ')?] -E HK(‘T _hXi)r

_ / K (s)2f(x + sh)ds — %E [fh(x)r

= IKIBLF () +o(m)} — - {f(@) + olh))?

= IKIBS (@) + o)

Q

K3 (2) for (nh) — o0

Some remarks about the variance of f(z)

1. var ~ o(h™1). Small value of h => Undersmoothing
2. (nh) gives the number of the observations inside the window
3. Variance is bigger when f(z) is bigger.

The mean square error (MSE) of the kernel density estimator fy(x) is given by:

MSE [fu@)] = B [{fa@) - ()}

4
PO @) oK) + - IKI3F () for b — 0 and (nh) — oo

&Q
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The mean integrated square error(MISE) of the kernel density estimator f(z) is given
by:

MiSE ()] = B| [ te) - fla)de
= [ sB{f )
4
= L O@P (R + KB + o) + ol

For h — 0 and (nh) — oo, the asymptotic mean integrated square error (AMISE)
is given by

~ h4 (2) 2 2 1 2
AMISE | fu(2)| = T O ua(K) + KB

4.3.3 Bandwidth selection for KDE

To choose the smoothing parameter h, we must find the bandwidth A,y that minimizes
the MISE, that is

a{MISE [fh(a:)] } /Oh = % {%4(f@)(w)%(lff)2 + n—thKllé}

1
= K P @) (K = 0

1
& —sIKI3 = KO @) (k)

K12 5
hopt =
 Hopt (f(2)(:v)2uz(K)2n
1

~ ']’Lg
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4.4 LOWESS: Locally Weighted Scatter Plot Smoothing
Locally Weighted Scatter Plot Smoothing(LOWESS, see Cleveland 1977) is an iterative

procedure combining the ideas of Law Pass smoothing with robust to outliers. The first
iteration of LOWESS fits a polynomial to the data in a time window centred at t.

The LOWESS algorithm requires several parameters:
e d : Polynomial degree. The same degree used in each window.

e h : 7 half window”, the number of records in the window to the side of the center
data point, so that the total number of data points is 2h + 1.

e r : The number of iterations for the robust smoothing.

For a given choice of these parameters and a given data set, X/ ;:
1. For each 1 <t < n define a neighborhood of size h as follow:

Np(t) ={s:|s—t| <h}

2. For each 1 <t < n define weights w;(s) for all 1 < s < n:

3 3
Ny(t) = { (1 —|(t = s)/h| ) , s € Np(t)
0, s & Np(t)

3. For each t, fit a dth degree polynomial using weighted least squares with the weights
defined in step (2). The value at each ¢ is denoted by X;.

4. Define the residuals to be p; = X,— X, and let m be the median of |ps| for s € Np(t).
Assign another set of weights, §, as follow:

2
5 — (1 - |,us/6m|2) . |us| < 6m, s € Ni(t)
07 |lu’3| > 6m

5. Iterate steps 3 and 4 r times but with w(s) = dsw(s) or until convergence.
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4.5 Median Smoother

The steps of the median filter is defined as follow

e Choosing a span window of size k, k but be an odd number, say 3, 5, ....
e Sorting the data in increasing order.
e The central value of the sort is selected as the median.

e The smoothed value is replaced by the median of the selected window.

We can ameliorate the algorithm by adding a threshold value T}, . The replacement is
done if the absolute value of the difference between the median and the observation under
examination is greater that T}, otherwise the observation left unchanged.

4.6 Conclusion

We have presented different algorithms of smoothing and there exists other methods that
are not presented her like

e Kernel Regression: Consider a set of observations of two variables {y;,z;}Y,
which are connected via unknown regression function m as follow:

yi = m(x;) + €

Where the ¢; are independent random variables with 0 mean and constant variance.
Kernel estimate can be used to estimate the unknown function m.

The most popular nonparametric regression smoothers are the Nadaraya-Waston
(NW) estimator myw and Gasser-Muller estimator mgas. The first one consists in
choosing weights by direct kernel evaluation while the second by convolution of the
kernel with a histogram representing the data. The kernels are presented bellow:

myw = Z%K((ﬂ? - :vi)/h)/ZK((a: —z;)/h)
i=1 i=1

and
n

(@) +T(5))/2
e = S K (- 2)/h)
i=1 (o tTE-1)/2
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o K-nearest neighbors: This method is based on linear regression. To predict the
value of z, uses the K/2 values bigger than z; and K/2 values smaller than xy

e Local Polynomial Regression: This method uses weighted least squares(WLS)
regression to fit a d*® degree polynomial(d # 0) to data locally. For more informa-
tion, se Wand and Jones.

e Periodic Regression: We try to fit a trigonometric polynom to our data, Ag +
Zjil (Ajcos(wj t) + Bjsin(wj t))

e Eliminating high frequencies: Applying Fourier transform to data, many coef-
ficients are usually very small and can be ignored to some threshold value T}, then

performing the inverse transform to get our data back.

These methods presented here will be used in next chapters.






Chapter

Outliers Detection in Time series

The outlier detection is an important step in time series analysis, because the outliers can
easily bias parameter estimations and introduce unwanted signals in time series that can
lead to model misinterpretation and poor forecasts. Several detections methods have been
proposed for univariate time series, but here we will introduce some very simple algorithms
to detect and simulate outliers for CGPS time series. The outliers can be caused at the
station for many different reasons, e.g. by high ionosphere activity, earthquake or other
unknown natural phenomenon, but for many outliers it is impossible to say why they lay
far from neighbouring data points.

5.1 DRSO Algorithm

After examination of the data from all the sites, we concluded that the time series of
the East, North and the Vertical component contain outliers, and shall be removed. We
prefer to analyse each component independently even if the underlying physic suggests
dependency between all components(if an observation is outlier shall be observed in all 3
components !).

The DRSO stands for Detection,Removable, Simulation, OQutliers. This algorithm is
capable of detecting the outliers, remove them, simulate a new candidate without changing
the structure on data.

The algorithm is controlled by two parameters:

e o : Length of sub-intervals JUsuallyly between 40 and 140 data points.
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e 3 : the slope of the sub-interval J.

For detection of outliers, I used the median value rather than the mean value(the median
is more robust estimator than the mean) and the slope(coefficient director) for the whole
data.

If the data point under investigation is greater than (k + () times the median of the
sub-interval J. We simulate a new candidate from normal distribution with the mean is
the median of sub-interval J and variance of +0.5.

The algorithm is tested with different values of o and § and gives a very good promis-
ing results for East and North components.

The DRSO procedure is defined as follow:

1. Divide the whole interval of East, North and Vertical components into J sub-intervals
of length L. Data points are between [40, 140] elements.

2. Calculate the slope 3 for whole data points, by fitting a straight line to the data.

3. The robust estimator chosen is the median. Calculate the median of each sub-interval

J

4. The scaling factor k is computed by the formula k& = tan(y) x L, where + is the angle
between the slope of sub-interval J and the horizontal line of length L

5. Go through the raw data and examine each observation in turn, if the value of
observation is greater than (k+ ) times the median of J, then an outlier is detected.

6. Remove the detected outlier and replace it with a new candidate. The new candidate
is simulated from normal distribution with the mean equals to the median of sub-
interval J and variance equals to £0.5.

To solve the problem of the vertical component , I used a low pass filter to smooth the
data and then apply the algorithm to remove the outliers. This filter is an Symmetric
Moving Average Filter(SMAF).

The drawbacks of this algorithm are:
e Operating directly on the data is not a good idea, it’s better to analyse residuals.

e Fitting a straight line is a very poor representation of data.
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e The algorithm handle vertical direction poorly, due to the presence of strong periodic
components in the signal.

e A good algorithm is the algorithm that can handle all components(East, North and
Vertical directions).

Some corrections are made to make the DRSO algorithm more robust, and the proce-
dure of modified DRSO are:

1. Get a god approximation of the data by applying Kernel smoothing, LOESS or
simply fit a higher polynomial to the data.

2. Get the residuals X; .

3. Compute a new vector say Y; = abs(X;)

4. Divide the whole interval of each components into J sub-intervals of length L. Data
points are between [40, 140] elements as before, and calculate the variance for each
sub-interval J.

5. If the value of ¥; > K x var(Y;) of sub-interval J, then the observation under
examination is an outlier. The scaling factor k € [2, 3], control the outlier detection
level.

6. To generate a new candidate, we simulate from a normal distribution where the
mean is the median of sub-interval J and the variance is the variance of sub-interval

J.

7. We are done, and we need to get our data back as Z; = Y; x (sign of X;j)+(fitted data)

The next figure shows an output generated by the algorithm. The advantage of this
algorithm is that we conserve the location of the data and that we move only suspected
observations.
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5.2 Outlier Detection Algorithm 2

The algorithm is similar to the previous one, the difference is that it requires two additional

parameters:

o (&

: The gain factor, controls how far an observation is from its neighbours not

considered to be an outlier. The value of 1 to 20 can be used).

e S

o J

: The scaling factor, just a value from 1 to 5.

: The data length under examination from 30 to 200 elements.
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For detection of outliers, the median value of sub-interval J will be used and the criteria
for detection is defined as follow:

lz(t;) — 7| > GS6;

The procedure is defined as follow:

1. Run the offsetDetection. R algorithm in next chapter to detect and correct for jumps(offsets).
2. Fit a straight line or higher order polynomial and get the residuals.

3. Divide the whole interval of the East, North and the Vertical components into J
sub-intervals of length k. The data points are between [30, 200] elements each

4. The robust estimator chosen is the median. Calculate the median of each sub-interval

J.

5. Go through the residuals and examine each observation in turn. If the criteria is
fullfilled, the observation is detected as outlier. The simulation of a new candidate
is generated from Gaussian where the mean is the median of sub-interval J and the
variance is the variance of sub-interval J not including the outlier.

6. When we are done, add the residuals to the fitted data.

The drawback of this algorithm is that for each time series, a convenable scaling factor
S, sub-interval J and gain factor G must be identified. This means that, for each site a
different value of parameters must be tested.

The advantage is that once these parameters are known and stored in the database for
each site, the processing is carried out easily.

5.3 Grubbs Test for Outliers

Most outlier tests look at some measure of the relative distance of a suspect point
from the mean value. This measure is then assessed to discover if the extreme value could
reasonably be expected to have arisen by chance.
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Grubbs test for outliers is based on the assumption of normality, that is, Kolmogorov-
Smirnov test for normality can be carried out. For simplicity, we assume that our residuals
are Gaussian distributed with mean p and variance 4.

If more that 20% of our observations are outliers, then our algorithm is wrong. Grubbs
test values can detect one outlier in data set (left or right side), 2 outliers(one in the left
and one to the right side) and 4 outliers(2 in the left and 2 to the right side) and are
defined by G , G2 and Gj:

Gi=|z—zl]/S Ga=(zn—21)/S Gi=1-{(n—3)S2_y/(n—1)5?}

S is the sample variance.

5.4 Dixon’s Test for Outliers

Dixon investigated the performance of several statistical tests in terms of their ability
to reject bad values in data sets taken from a Gaussian distribution. As a conclusion, we
assume that our residuals are ordered in increasing order, such that (e; < €2 < .... < €p)

1. For a single outlier x

Tro — I Iy — Tp—-1
10 = <OR LU >

Tp — 1 Tp — 1

2. For outlier x1 avoiding z.,

T2 — I Tp — Tn—1
ry = 22T <OR 7}

Tp — T2

3. For outlier z; avoiding x,, and x,_1

o 2T (OR Tp — Tp—1 }
12 - -
Tpn—2 — T1 Tp — T2

4. For outlier x; avoiding x4

5. For outlier x1 avoiding z9 and x,,

r3 — I1 Iy — Tp—-1
7“10:7(0];{ u}

Tp—1 — L1 Tp — 21
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6.

9.5

For outlier x; avoiding x5 and x,, x,—1

B Tk (OR Ty — Tp—2 }
10— —— -
Tp—2 — X1 Tp — I3

Robust Outlier Detection Simulation Algorithm

For CGPS time series, the most common technique used to reduce the effect of high
frequency components is to apply a Low Pass Filter ( Moving Average Filter), this filter
is too weak for outliers. I implemented and tested with different Filters(MS, WMAF,
EWF,..), and we concluded with the kernel smoothing and Robust LOWESS algorithms
instead.

We will introduce both algorithms, and finally introduce the Robut Outlier Detection
Simulation algorithm that handle outliers in CGPS almost perfectly.

The main reason of doing thing this way, is that we would like to detect outliers,
remove them and replace them without smoothing the data and destruction of modes.
Therefore we choose to process the data this way.

1.

Use Kernel Smoothing with optimal bandwidth or robust LOWESS to get a good
estimation of data.

Get the residuals by extracting the fitted values from the original data.

Test residuals for normality by applying Kolmogorov-Smirnov test or qgplot. For
simplicity we assume that the residuals are normal distributed.

Apply Grubbs and Dixon’s tests for outliers, this test detects one outlier at a time.
For each outlier detected , it will be replaced by simulating a new candidate from
normal distribution, with a the mean is the median and the variance of the sub-
interval under processing. The length chosen is N = 25 points

. Now we like to get our data without outliers, this is done by adding the new residuals

with fitted values found in the first step.

This algorithm is similar to the Modified Detection Removable Simulation algorithm,
the only difference is that the detection criteria of MDRSO uses Y; > K x var(Y;) and
RODS uses Grubbs and Dixon’s test for detection.

Se the appendix B for output generated from this algorithm.
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5.6 Conclusion

My philosophy is that the data analyst is like a mayor of a city. He wants to keep
the city nice. Bad buildings are like outliers or extreme values. The mayor can apply
the Shanghai model and demolish all bad areas and build everything from scratch. This
model has several drawbacks; you have to move people from their homes and historical
buildings will vanish.

The data analyst can apply a smoother. If the smoothing parameter is not right, the
destruction of modes and data moving will take place.

If the mayor try to fix only bad houses and keep the rest in the same location, the
city will conserve the historical thing and avoid moving people around. That is what we
have done in this chapter. We have tried to develop algorithms that keep data in their
locations and replace by simulation only the suspected observations.

For the Grubb and Dixon p — value used are given in table.
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Significance Level

Grubb Dixon
n 5% 2.5% 1% 10% 5% 1%
3 115 1.15 115 0.886 0.941 0.988
4 1.46 148 149 0.679 0.765 0.889
5 167 171 175 0557 0.542 0.780
] 182 1.89 184 0.482 0.560 0.698
7 1.84 2.02 2.10 0.434 0.507 0.736
B 2.03 2.13 2.22 0.479 0.554 0.683
g 211 2.21 232 0.441 0.512 0.635
10 2.18 2.29 241 0.409 0.477 0.587
11 2.23 2.38 2.48 0517 0,578 0.679
12 2.29 241 255 0.480 0.546 0.642
13 233 248 261 0.487 0.521 0.615
14 2.37 251 2.66 0,492 0,546 0.641
15 241 235 271 0.472 0.525 0.616
16 244 2.58 275 0.454 0.507 0,585
17 247 2.62 279 0.438 0.480 0.577
18 2.50 2.65 2.82 0.424 0.475 0.561
19 253 2.68 285 0.412 0.462 0.547
20 2.56 271 2.88 0.401 0.450 0.535
21 2.58 2.3 241 0.381 0.440 0.524
22 2.60 2,76 2.94 0.382 0.430 0,514
23 262 2.18 2.96 0.374 0.421 0.505
24 2.64 2.80 2499 0.367 0413 0.487
25 2.66 2.82 3.01 0.360 0.408 0.489

Figure 5.1: Grubb and Dizon p-values
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Chapter

Handling apparent discontinuities in TS

Discontinuities in time series due to Farthquake or to the antenna movements can
easily bias parameters estimations and introduce unwanted signals in time series that can
lead to model misinterpretation as outliers. Therefore, it might be important to analyze the
time series by breaking them into homogeneous segments, or by removing discontinuities.
Therefore, it is important to find the time instants when the abrupt changes occur and
to estimate the different models for different segments during which the system does not
change. The second approach is to connect the two segments to obtain a single time series.

We can divide offsets into three categories or groups, the first one is due to changes
made at the CGPS site ( e.g antenna changes, firmware, ..). This type of offset is easily
detected and corrected if we establish good management procedures and careful logging all
events. The second type, larger and unexpected offsets, will be visible in the time series
and can be resolved. The last one, is the difficult one to handle, because is smaller and
unknown. Any algorithm used to detect and correct this type, must define some limit or
threshold.

In this chapter we will present two different algorithms to correct CGPS time series
offsets.
6.1 Connecting two time series algorithm

The main reason to connect segments of time series and to obtain one homogenous is
to improve the precision. Te main objective of this thesis is to estimate the CGPS site
velocities from their time series. I am to present two simple algorithms capable to detect
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and correct for offsets. The first algorithm is based on a standard binary search algorithm
for detection and a simple formula for connection. The second one is based on off-line
estimation of the change time.

6.2

The Offset Detection Correction Algorithm 1

This algorithm works in two steps, the first step is to detect the time of offset occurrence
and the second step is to calculate the value of jump in time series.

1.

Perform the standard binary search using two comparisons per level. This means,
divide the data interval in two equal intervals, and calculate the slope of each interval

Fit a straight line to each segment and choose the slope with highest absolute value.

. If data length of the remaining segment is greater that 3 elements, repeat step 1 and

2. Otherwise, perform the next step.

Find the largest absolute value of the remaining elements. The index of the largest
element represent the time of offset occurrence..

. To connect the two segments, I used this procedure:

(a) Fit a straight line to data segment with largest data length and get the slope b

(b) Get two small segments with 40 to 100 elements from the detected offset,one
from left and other from right

(c) For each segment, calculate the median or the mean

(d) calculate the offset value that separate the two segment by this Formula.
AY = E—Yl—b*(ta—ta)

Where b is the slope, calculated by linear regression or by weighted linear regression
over the largest possible time span. The indexes 1 and 2 indicate the time windows
before and after the offset.Y is the coordinate average and t the mean time of the
indicated window.

Below you will find the output from the program summarized in the table 6.1. The
results shows very good approximation.

e First column: This column contains the test numbers, we have performed 20 tests.
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Test Number | Position | Offset Added | Position Detected | Offset Corrected
1 100.00 5.00 99.00 5.23
2 104.00 9.00 104.00 9.59
3 108.00 13.00 108.00 13.03
4 112.00 17.00 112.00 17.04
5 116.00 21.00 116.00 21.16
6 120.00 25.00 120.00 24.95
7 124.00 29.00 126.00 27.86
8 128.00 33.00 128.00 32.96
9 132.00 37.00 132.00 36.96
10 136.00 41.00 136.00 40.94
11 140.00 45.00 140.00 45.09
12 144.00 49.00 145.00 48.01
13 148.00 53.00 148.00 53.05
14 152.00 57.00 154.00 54.43
15 156.00 61.00 156.00 60.83
16 160.00 65.00 160.00 64.88
17 164.00 69.00 164.00 68.73
18 168.00 73.00 168.00 72.98
19 172.00 77.00 174.00 73.15
20 176.00 81.00 176.00 81.52

Table 6.1: Offset Detection Output

e Second column: Gives the position in our time series to introduce an offset(a
jump).

e Third column: Gives the size the offset
e Fourth column:The position in our time series detected by the algorithm

e Last column: The offset corrected by algorithm

One snapshot from above test is presented by the graph below. The first graph shows
the original time seres, the second graph two segments of the original time series and the
last one the connection of the time series.
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6.3 A change Detection Correction Algorithm 2

Before describing in more details the second algorithm for detecting offset in time series,
let us introduce some notation and definitions. Let (€2, R, J) be a probability space, where
) is an abstract space (the sample space), N is a sigma algebra of subsets of 2 and S is a
probability measure defined over all members of N.

Let our observations be presented by xﬁ\il, parameters be presented by 6 = (61, ..., 0;)
and let S;? = S 5. Where s; = log {Py,(x;)/ Py, (z;)} is log likelihood ratio and is a

7,:] (3
sufficient statistic.

Definition 6.3.1. (Unbiased Estimator): An estimator H = h(xz1,x9,...,xN) is said to
be unbiased estimator for 6 if E(H) = 6.

Definition 6.3.2. (Efficient Estimator): Let Hy and Hsy be two unbiased estimator of 0
with variances var(Hy) and var(Hs). We will call Hy more efficient than Hs if:

var(H;) < var(Hs) (6.1)
Also, the relative efficiency of Hi with respect to Hy will be defined as ratio
var(H;)/var(Hs) (6.2)

Definition 6.3.3. (Consistent Estimator): We say that H = h(x1,...,xN) is a consistent
estimator for 0, if it converges in probability to - That is, if for all e > 0 and § > 0, there
exists an N(€,0) such that:

P{|HnN —0| <e}>1-9¢ for N > N(e,0) (6.3)

To prove the asymptotic property (consistency) of an estimator, usually we use the
Chebyshev’s inequality.

Theorem 6.3.1. (Chebyshev’s inequality): Let x = (1,22, ..., xy) be any random variable
with mean p and variance o®. For any € > 0

P{llz — |l > & < 0%/ (6.4)

Definition 6.3.4. (Sufficient Estimator): We say that S is a sufficient statistic for pa-
rameter 0, if there exists a determination of the conditional distribution P(xY € B)|S)
that is independent of 6
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In other words, the information about 6 contained in the sample x{v is consentrated
in the statistic S.

Let us introduce the ideas behind the algorithm, it’s based on continuously inspection
on data samples and a decision rule is computed to test the parameter 6 between the two
following hypotheses

H030:00 H1:07é60

The sampling and test continue as long it is in favor of Hy, it stop when the first
observation for which the decision is taken in favor of Hj.

Let N be the sample size, the optimal decision rules D is defined by

D 0 SV <h Hpis chosen
L1 SN>h Hischosen

Where the S} is the decision function and h is the threshold chosen for detection.
The stopping rule that help us to make a decision is defined by:
te = Nmin{K : d; =1}
Where the dj, is the the sample number k of size N and ¢, is the alarm time.
Let us focus on implementation,the algorithm procedure is defined as follow :

e STEP 1: Run the kernel smoothing or LOWESS algorithm and get residuals.

e STEP 2: We assume that the residuals are white noise presented by {xz}f\; 1, with
mean p, and standard deviation o.

Now two situations are possible, either all residuals have the same mean or there
exists an unknown change time 1 < t,¢s < tx such that, before ¢,;, the mean is
equal to ug and after t,¢; the mean is equal to p1 # po.

In this case the changing parameter 6 is u.The probability density is given by:

pole) = (2m0%) ™ exp {-1/(20%) (2 — )}
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Define the sufficient statistic test S;

S = ln{p91(x)/p90(x)}
_ Nla—zuo {%—NO;M}

= 2o B/2)

Where B = u — o is the change in magnitude(offset size) and A = (u1 — po) /o is
the signal to noise ratio.

The decision function is defined by:

N
S = A/ {wi— po — B/2} (6.5)
i=1

The stopping rule for the change in mean is defined as before:

D 0 SN(K)<h Hpis chosen
11 SM(K)>h His chosen

The alarm is set for the first time when pq > po at which

NK

Z(K) > po+ ko/\/(N) where Z(K)=1/N >
i=N(N—-k)+1

The problem is that we like to detect deviation in both direction (increasing and
decreasing). Therefore the alarm is set if Z(K) > |uo + ro//(N)|

e STEP 3: Detect the time of abrupt if exists by maximizing the function
fk) = k(N —k)(uo — m)?
The estimated time change f,;; = max 1<g<n [K(N — k)(to — p1)?]. The mean
Ho = %Efﬂ z; and p1 = 'Nl—k ZiN:kH Li-

e STEP 4: The time of abrupt fof ¢ and the offset size are estimated. For correction,
we add the offset from the beginning to the time of abrupt,finally we have one
homogene time series.






Chapter

Handling gaps in CGPS time series

Evenly spaced data in CGPS time series is hard to obtain, due to hardware failure (GPS
receiver, antenna, router, etc) or software failure or other reasons.

The site can be down for a while and we are facing missing data problems.  In this
chapter we are going to present two algorithms to handle the gap in our CGPS time
series, by transforming Unevenly sampled data to uniform sampled data. Filling the gaps
with well known methods like Simulation or Prediction. Both methods will be presented
and implemented. the interpolation method can be used to fill gaps but is too weak if a lot
of consecutive points are missing, and we have to interpolate missing data points.

7.1 Filling gaps by Simulation:

We are going to fill the gaps with values that are acceptable without destruct the
data structure. As we know that our signal is composed from several components,namely
linear trend’s component, periodic component and white noise components. If we like to
simulate to fill gaps, we must take into account all components. The algorithm is very
simple and is defined as follows:

1. Step 1: Run the drsoAlgorithm.R to remove and simulate outliers.
2. Step 2: Run the offsetDetection.R to remove offsets in our time series.

3. Step 3: Fit a polynomial of degree 1 to data, and extract the linear trend from
original data.

4. Step 4: Now we must estimate or make a good guess to define the periodic com-
ponents, we like to fit a periodic component of the form C(cos) = p+ cos <M)

o7
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The question is now, how we define the parameters pu, « and G 7.

We start by choosing the data for a period(1 year) without gaps and plotting the
monthly mean against the month index and define visually if the cos or sin will be
well fit.

(a) Overall mean pu:
A good initial guess for the overall mean p can be obtained by taking the
average of the lowest and highest monthly mean.

(b) Signal amplitude 5:
A good initial guess for the amplitude 8 can be obtained by dividing the dif-
ference between the lowest and highest monthly mean variations by two.

(c) The shift a:
A good initial guess for the shift « is equal to the month of the highest mean
variations.

(d) Period 7
We expect that 7 = 12 months, this value is fixed.

5. Step 4: For a missing value, simulate from normal distribution where the mean is
the value from the fitted line and the variance of 0.5. or equivalently using the fitted
value, plus white noise plus estimated periodic component.

6. Step 5: Control visually that the simulated values follows the same direction as
other observations. Make sure that we are not generating the outliers.

The implemented algorithm is located under the libs directory and the name is xtbfgap WithSim.

7.2 Filling gaps by Prediction:

This method lets the data speech for it self. The drawback is that if the consecutive
observations are missing from the beginning of the file, it can give unwanted results.

With forecasting, we mean predicting the future values of time series z; from previous
observations .We restrict attention to predictors that are linear functions of the data, that
is, prediction of the form

n
n
Tptm = 00 T E Tt
i=1
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Figure 7.1: Gap By Simulation
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Definition 7.2.1. (Best Linear Predictor): The best linear predictor for x,im, is the
linear predictor that minimizes the mean square error

Tnem = E(Tpim|T1, T2, .0 Ty)

The best linear predictor of x, 4., for m = 1,2,... k if it minimizes the predictor
error

S(a) = E(@ntm — $Z+m)2

Where the « is the vector of the coefficients a;. Since S(«) is quadratic function of «
there is at least one value of o that minimizes («). Its satisfy the equations

9S(e)
8ai

The evaluation of the derivatives gives us so called Prediction Equations

=0, i=0,1,23,....,n

0S(« -

(‘k(yo) =FE |Tnim —ao — ;:1 aﬂnﬂ—i] =0
0S(« &
&ij) =FE | (#p4m — g — ;:1 ai$n+1—i)wn+1—j] =0

Assuming that F(z;) = p the first equation can be written as:

n n
u—ao—Zai.uzo :>040=M(1—20éi)
i=1 1=1

Solving the second equation, we get :

n

0 = E@nym-Tnyi—j) — Qo-pb — Z ;. B(Tpy1—i-Tpy1—j)
i—1
n
0 = E@ntm -Tnyi—j) 1 — Z ;) Z ;. E(ni1—i-Tnyi—j)

0 = 7y(m—(1-7) Zowz—J
That is, we obtain the following form of the prediction equations:

n
fy(m—l—l—j):Zam(i—j), =12 ... ,n
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We obtain the same set of equation if E(x;) = 0. Let us focus on One -Step ahead
Prediction.

7.2.1 One -Step ahead Prediction

Given x1,T9,3, ....., Tn, our aim is to forecast the value of x,1 the best linear predictor
. n
s oy ) = D im) Gilnt1—i

The coeflicients «; are satisfying the prediction equations:
n

Y aiy(i—j5) =4(), j=12 n
i=1

We write the following equations in Matrix form:

Fnan:')/n
Where
I = {v(i—J)}ji=1,2..n
t
an = (a1, .y i)
Yo = (Y1), v(n))’

if I';, is nonsigular, a unique solution exist and is equal to:
Qp = F; 1’Yn
The the forecast of z,, 11 based on X = (z1,21,...,7,)! can be written as:

%(;21 =al X

The mean square one-step-ahead prediction error denoted by P!, is

Pl = BE{Xpn - X))
= FE{Xp1—afX})?
= B{Xpu1 -l X}
= E{X(2n+1) - QVZFngXn-i-l + ’YZFngXtFZ’Yn}
= 7(0) = 29,0,y + T Tl M }
= (0) =%y
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For large values of n, it’s difficult to calculate the inverse of matrix I';, of large dimen-
sion. A recursive algorithm known as Durbin-Levinson Algorithm can be used to calculate
the predictor and mean square error. The Algorithm is defined as follow:

e STEP 1: Put ¢g and P = (0)

e STEP 2: For n > 1 calculate

p(n) — 01 o1 pp(n — k)
1= 3021 b1 ip(k)

¢nn =
Where, for n > 2
(bnk = ¢n—1,k - ¢nn¢n—1,n—k

e STEP 3:For n > 1 calculate:

P = P01 - g2,
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Frequency Analysis of Time Series

Time series often contains unknown periodicities, some of which may be of interest.
I will start by presenting some historical progress done by identifying the periodogram as
important instrument to detect the periodicity in time series.

In 1898 Schuster defined the periodogram as a method to discover the frequencies of
the hidden harmonics in the signal. Yule and Kendal (1937) motivate the idea of the pe-
riodogram in the following way. If we go to a city that has one single radio station and
we don’t know the frequency used by the station. We move the dial through all frequen-
cies and when the frequency in the receptor coincide, the intensity of the sound would go up.

1 1 2 3 1

The periodogram considers all frequencies +, %, 7> 7> -+-5 and correlate each fre-

quency with the data of the series in order to measure the Intensity.

A common technique used to study such periodicities is the Fast Fourier Trans-
form(FFT). Periodicities are found by searching the standard periodogram from Fourier
analysis and looking for sharp peaks. Usually these peaks correspond to pertodicity in the
time series.

The spectral density estimation is a very useful technique for examining certain cyclic
patterns of a stationary time series.

If we are dealing with uniform sampled data, we can use the standard procedures to
extract the periodic components from time series. Qur model can be expressed by the
following formula:

Xy, = a+bt; + Acos(2m ft;) + Bsin(2n ft;) + wy,
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The first step is estimate the constants a and b and extract the linear trend from our
original time series X;, we have:

= Acos(2nft;) + Bsin(2nw ft;) + wy,

8.1 Spectral Density and estimation of Spectrum

Definition 8.1.1. (Spectral Density ): If the {a:t}ivzl has autocovariance ~y satisfying

Y hh)| <o

h=—o0

Then we define the spectral density as

fo)= 3 et

h=—00
We give some facts about Spectral Density Function
o Fact 1: The series 52 |y(h)e 2" is absolutely summable. This is because
€| = |cos(f) + isin(9)] = [cos(@)2+sin(9)2]1/2 = 1. . Because v is absolute
summable.

e Fact 2: f is periodic, with period 1.

e Fact 3: f is even, this means that f(v) = f(—v) To demonstrate that, we write

flv) = Z ’y(h)e_%i”h
h=—oc0
-1 0o
= Y W) 4 (0) + 3 A(h)e 2
h=—o00 h=1

-1

f(_v) — Z 'y(—h)e_Q’Ti”(_h)+7(0)+Z’y(—h)6_2””(_h)
h=1

h=—o0
00 —1

— Z’y(—h)e_Qﬂi”(h)—F’y(O)—i- Z ,Y(_h)e—27riv(h)
h=1 h=—0o0

= f(v)

We know that y(h) = v(—h).
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e Fact 4: f(v) >0

e Fact 5: y(h) = f_152 ™) f(v)dv. To show that, write

12
Ay = [ )
—1/2

2 e .
_ / e2mv(h) Z ,y(h)e—vahd,U
—1/2 h=—00
0 1/2 o
— Z ,Y(j) +/ e27rw(j—h)d,u
h=—o0 —1/2
-~ 7(J) (emil=h) _ g=ili=h)
N )+ Z 27TZ(] —7J) c )
_ )+ Z 70 )Sln J —h))
J#h
= (h)

We see that the spectral density is an alternative view of stationary time series. The
question now how can we estimate the spectral density ?

Two possibilities, we can replace y(h) in the definition of spectral density f(v) with
the sample autocovariance

n—|h|
y(h) = (@t — &)@ —T)  for—mn<h<n
1

t=

S|

The second alternative used to construct a spectral density estimate is the periodogram:
1 n
(n _ = —ivt 2 o
I =5 E e Xy |5, wve[-mm]

The periodogram as an asymptotically unbiased estimate of the spectral density

e}

f) = 5= 3 AW e ve [ma]

U=00

where 7(u) is the autocovariance function.
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8.2 Evenly Sampled data

If data is sampled uniformly, we will use the standard procedure to extract the periodic
components, but we are dealing with situations where the evenly spaced data cannot be
obtained. A common case where the electronic components fails and we have gaps on ob-
servations(missing data problems). We can transform Unevenly sampled data to uniform
sampled data by filling the gaps with well known methods like Simulation or Prediction.
Both methods will be presented and implemented. the interpolation method can be used
to fill gaps but is to weak if a lot of consecutive points are missing, and we have to inter-
polate on missing data points.

8.3 Unevenly Sampled data

Missing values causes gap, and standard method used for Evenly sampled data is not
effective, Lomb and Scargle proposed a modified periodogram and is preferable to the
classical periodogram , its weights the data on a “per point “ basis instead of on a “per
time interval basis”.

Now, we present the work done by Lomb, given a set of n observations x;,t =
1,2,3,....,n, we can set up the model

x, = acos(2m ft;) + bsin(2nt;) + WN(t;), WN(t;) ~ N(0,0°)

a and b are unknown and the frequency f is given. Define the least Square for deter-
mining a and b by LS(a,b) and we have:

LS(a,b) = Zn: [x; — (acos(2m ft;) + bsin(?ﬁfti))]Q
i=1
= Zn: [@2 — 2z (acos(2m ft;) + bsin(2m ft;))] +
i=1
Z [a cos(2 ft;) + bsin(2m ft;)]°
i=1
= _8Lb(;(;’ 2 - ZZ:; [—2a; cos(27 ft;) — 2a cos® (27 ft;) — 2bcos(2m ft;) sin(2m f1;)] = 0

= Zn:xl cos(2mft;) = a Zn: cos®(2m ft;) + bzn: [cos (27 ft;) sin(27 ft;)]

i=1 =1 i=1
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n

_, 9LS(a,b)
b

i=1
= Z xisin(2nft;)) = b Z sin?(27 ft;) + a Z [cos(27 ft;) sin(27 ft;)]
i=1 i=1 i=1
Adopting the notation
cC = Zcos (27 ft;), SS= Zsm (27 ft;),

=1

cS = Z cos(2m ft;) sin(27 ft;)

=1

XC = le cos(2mft;), XS = le sin(2m ft;),
i=1 =1
We are led to normal equations:
cc cs a| | XC
cs SS b| | XS
Focusing now on reduction in the sum of square of

ele csr[xc]

AR(f) = [xc XS][OS Ss X8

- [xcC XS][_§ C%H))ig]

Where D = CC.SS — (CS)?. If we can express AR(f) in the form of A% + B2, this
will ease the statistical description of Least square (LS) and is done by introducing the
time delay 7 and fitting data to the new model:

x; = cos [cos(2m f(t; — 7)] + sin [cos(2m f (t; — T)]

The 7 is chosen such that C'S = 0 and the equation (1) becomes

AR(f) = [XC XS][% —%QH%]

= ) [—2a;sin(2r ft;) — 2bsin® (2w ft;) — 2b cos(2m ft;) sin(2m f1;)] = 0
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Now we can make some important remarks:

1. Remark 1: Expressing AR(f) in this compact form, gives us the similarity with
usual periodogram Formula. In fact the periodogram is just approximation to this
exact formula AR(f)

2. Remark 2: If let the C'S = 0 for all 7 and SS = CC = %, the equation (2)can be

written as
AR(f) = <\/%XC>2 + <\/gxs>2

3. Remark 3: If let R = > 27 a normalized spectral function can be defined as
follow and the range is between 0 and 1.

2 2
p(g) = FUEBAD

We still have some questions we didn’t answer.

e Q 1: How many test frequencies we need to scan 7

Unlike Fourier Analysis, in which the Fourier frequencies are used. We assume that
there are M test frequencies, f1, fo,....., fas and their corresponding angular frequen-
cies wj = 2rf;, for j=1,2,..,M. The choice of M depends on the number of
independent frequencies, Ny, the number of data points and data spacing. Horne
and Baliunas(1986) performed extensive Monte-Carlo simulations to investigate the
relationship between M and Ny. They gave a simple least squares formula to esti-
mate the number of independent frequencies Ny from the number of observations,
N, in time series:

No ~ —6.362 + 1.193N + 0.00098 N2

e Q 2: Hypothesis testing for Periodicity ?
The null hypothesis states that the noise realizations at distinct times are uncorre-
lated Gaussian distributed, which in Lomb method leads to Py(w) with an expo-
nential probability distribution with unit mean.

HO: ¢ ~exp(l)
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e QQ 3: False alarms ?
If we scan M frequencies, the probability that none has a spectral peak larger that
zis (1 — e*)M. The false alarm probability of the null hypothesis is then

P(peak > z)=1— (1 —e*)M
e  4: Significance of the peak ?
A small value of the false alarm level indicates a highly significant periodic signal.

We have presented material backgrown of Lomb- Scargle Periodogram for Unevenly
sampled data, now is time to focus on implementation. The Algorithm is defined as
follows:

1. STEP 1: Calculate the data’s mean and variance of z; by :

n

1 @& 1
E(l’t)zﬁzﬂ% ,02=n_12(xi—£)2
i=1

i=1

2. STEP 2: Foe each angular frequency w = 27 f > 0 of interest, compute a time
offset 7 by:

_ > sin(2wt;)
> cos(2wt;)

3. STEP 3: Calculate Lomb-Scargle normalized periodogram (spectral power as a func-
tion of w is defined by:

_ (95211 [ [2ilwi — ) cos(w(ti — | i — @) sin(w(t — 7))
Po(w) = (207) < > (cos?(w(t; — 7)) * S (sin?(w(t; — 7)) )

The implemented algorithm is located under [ibs directory and the name is lombPeri-
odogram.R

tan(2wT)

A test program testLombPeriodogram.R was developed to test the algorithm of
Lomb periodogram and the test was performed on one site. The test algorithm steps are
defined as follows:

e STEP 1: Run the robustGrubbOutlier.R to remove and simulate outliers.
e STEP 2: Fit a straight line to data and extract the linear trend from data.
e STEP 3: Run the the Lomb periodogram algorithm lombPeriodogram.R

e STEP 4: Two graphs are shown in the next figure, the first graph shows the
spectrum. and the second shows the significance of the the peak.



70

Normalised Power Spectral Periodogram

Probability

15

10

08

04

0.0

CHAPTER 8. FREQUENCY ANALYSIS OF TIME SERIES

Lomb Periodogram
Period at peak = 368.6 Day’s
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Figure 8.1: Lomb Periodogram
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Part Il: Correction for Common Mode Error
inTS

The first part of this thesis was focused on removing outliers, offsets and irregularities,
which are not of tectonic origin. We have used different algorithms to accomplish these
goals:

1. Outliers : Several algorithms were presented and all of them have the same goal;
Detection, Removal and Simulation of outliers without destruction of the structure
of the data.

2. Data Gaps: Filling gaps by simulation without destruction of the structure of the
data, performed by the algorithm gapWithSim.R.

3. Offset Detection : Estimation and correction of antenna offset, performed by the
algorithm offsetDetection.R

4. Spectral Analysis : Spectral analysis to extract periodic signals, by keeping data
as it is lombPeriodogram.R or filling gaps by simulation and performing the usual
FFT.

The main objective of part II of the thesis will be to focus on more improvements by
excluding base stations with poor data and correction for common mode error. This is
done by analyzing the residuals of time series of permanent GPS stations, generated by
Part I of this thesis, after removing linear trend and periodic components.
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The problem is that the time series are of different lengths and epochs with gaps. It
is very important to choose data that is common for all sites before starting heavy com-

putation.

The following algorithm will be introduced and implemented to achieve such improve-

ments.

1. Principal Components : Principal components, also known as Empirical Orthog-
onal Functions (EOF), will be introduced and implemented.

2. Factor Analysis : If principal components can be used, why can’t Factor Analysis
be used to achieve the same goal as PCA?

3. Wdowinski Algorithm : This algorithm will be introduced, but not implemented.
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9.1 Data preparation

The main reason behind most of the major irregularities in the time series is the
contribution by stations with data of poor quality. This can significantly influence the
whole network or a part of it. We assume that data we have is good and approved by
quality check processes by the GIPSY-OASIS-II software.

The only job needed is to choose data with the same start epoch, the same data lengths
and possibly without gaps. A preparation job will therefore be carried out before we an-
alyze the data. A program has been written and produces the table presented below.
From that table, the first station will be excluded from our analysis. The start period is
2001-05-20, and the end epoch is 2006-01-31.

Site Name Gaps Start Epoch End Epoch Total Length
aber.res 234 2004-02-02 2006-02-15 511
ales.res 314 2001-05-08 2006-01-31 1416
berg.res 310 2001-05-09 2006-01-31 1419

bodo.res 302 2001-05-08 2006-01-31 1428
hers.res 224 2001-09-04 2006-02-28 1415
hofn.res 236 2001-09-20 2006-02-28 1387
kris.res 513 2001-05-08 2006-01-31 1217
nyal.res 299 2001-05-08 2006-02-28 1459
oslo.res 309 2001-05-08 2006-01-31 1421
pots.res 248 2001-05-08 2006-02-28 1510
stav.res 290 2001-05-08 2006-01-31 1440
trol.res 236 2001-05-08 2006-02-28 1522
tron.res 297 2001-05-08 2006-01-31 1433
vard.res 342 2001-05-08 2006-01-31 1388
wsrt.res 282 2001-05-08 2006-02-28 1476

Table 9.1: Data Preparation Table
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9.2 Weighted common-mode error filtering

The final step when improving the data is a common-mode filtering (Wdowinski, 1997).
It is assumed that signals common to all sites, which are located on different lithosphere
blocks, are most likely not of tectonic origin. Such signals can be filtered out of the
time series without loosing tectonic signals. The algorithm presented by Wdowinski is as
follows:

1. Detrending:
Obtaining the daily residuals for each site by removing the main trend by applying
linear regression or weighted linear regression.

2. Stacking : Calculation of the daily common-mode residuals using a weighted

average.
S
_ NORAC
R(t) —_ Zs:ls[ ( )’l" ( )]
Es:l pS (t)
Where
R(t) : The weighted average residual(common mode) for day t.
S The number of sites included in analysis stacking procedure.
rs(t The residual for the site s on t.

The weight of r4(t) computed as rs(t) = 5 with

v
(as.0s(t))

os(t) equal to the coordinate RMS of day t and as as
additional quality factor.

3. Filtering :
Removal of the corresponding common-mode residuals from daily coordinates of each
site.
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9.3 Principal Component Analysis

A principal component analysis is used to explain the variance-covariance structure of a
set of variables through a few linear combinations of these variables. The objectives of the
Principal Component Analysis are:

e Data Reduction: Data reduction or dimension reduction without significant loss of
information We try to describe p dimensional data in as small a number of dimensions
(less that p) as possible, while preserving as much as possible of the structure involved

e Interpretation: Working in small dimension, say ¢ < p is more attractive that
working in p dimensional data.

Algebraically, principal components are particular linear combinations of the p random
variables X1, Xy, ...., X},. Geometrically, these linear combination represent the selection
of a new coordinate system obtained by rotating the original system with X1, X»,...., X,
as the coordinate axes. The new axes represent the direction with maximum variability
and provide a simple description of the covariance structure.

9.3.1 Theories of principal Components

Let us focus on how to calculate the mean and variance of a linear function. Let X be
a any p— dimension random variable and # any constant p—dimension vector and let
Yy=pTX

The mean value of Y
E(Y) = E@" X)
= E{) BX;
J
= Z@E{X}
J

The variance of Y

If we write

oij = cov(xg,xj) = E{(x; — E(xy))(x; — E(xj))}
oi = var(z;)=FE {(ar;Z — E(:UZ))2}
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— var(Y) = E{(#'X - E(#" X))}’

2
= FE {Z Bi(X; — E(Xi)}

= E{Y D BiBi(Xi — B(Xi)(X; — B(X))
v J
= 2.2 BBE{(X - B(X)(X; - B(X))}?
(]
= Z Z BiBjoij
g
If we let ¥ = (0yj), then the variance-covariance of Y can be written as: var(Y') =
BT X =pTyp.
Matrix Theory of Principal Component

We note that if Y; are uncorrelated and have the variance \;, then the variance-covariance
matrix of the vector Y take the form:

M O - 0
I
000 - A
Sometimes it is useful to write:
aip aiz - Glp
A= (a1 aseay)— ag1 Gz - agy
Gp1 Qp2 -+ Qpp

With this in mind, we can write Y = AT X and the equations:

oz;fpozi = 1
ol aj = 1 (i#))

can be written AT A = I, that is A is an orthogonal matrix. Now let examine the equations:

EO&Z' = )\Z'Oéi
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can be written

Yl ag--ap) = (1Al agde---apAp)
— YA = AA

The principal components in terms of matrix theory, is to find an orthogonal matrix
satisfying the above theory, that is,

Given X, find A such thatATA =1 and A = A\

where A is diagonal with decreasing elements down the main diagonal

Because of the orthogonality, the pre-multiplication and post-multiplication of XA = AA
by AT gives respectively ATYA = A and ¥ = AAAT. We have

I = AAT

and

AAAT = (041/\1 042>\2 tee Oé;,)\p)

=¥ = AAAT:(/\oqole AagozzT---)\apag)

which is called the Spectral Decomposition of X

9.3.2 Computation of Principal Component

Suppose we have a set of p—dimensional random variable X = [X;, X5, ...., X,] with
covariance ¥ with associated eigenvalues \;1 > Ay > ... > )\, > 0. Note that we often
subtract the mean value from our data.

e (a) The first step is to look for a linear function, say Z; = af X of the ele-
ment of X which has the maximum variance, where a4 is a vector of p components
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11, 21, Q315 ..., Ap1. Then

T
o3 X = o1 X1+ a9 Xg....,Oépl Xp
p
= > an X
J=1

(b) We look for a linear function Zs = ad X uncorrelated with with Z; = of X
which has maximum variance subject to this condition, and so on, so the k’th stage
to being uncorrelated with af X, ad X, ..., a;‘g_l X. We refer to k’th derived variable
an as the k’th principal component and we stop the m’th stage when the majority
of the variance has been accounted for.

(c) a1 cannot be taken just to maximize the variance of Z;. We have to set some
requirements, and the easiest one is to choose a1 to be an eigenvector of unit length.

ofa; = 1
The process needed to determine the first principal component is reduced to:
Maximize of Ya; subject to ofa; = 1

This is a standard constrained maximization problem, often solved by using Lagrange
Multiplier, so we can consider

F(a;,\) = ofYa; —Mafa; —1)
Differentiate with respect to scalar a1, we get
6F/8a1 = 220&1 — 2)\0&1
= 2(X-AX)a; =0
= X-XN)ag = 0

Now this is an equation which frequently turns up in matrix theory, it says that
«aq 18 an eigenvector of X corresponding to the eigenvalue A.

Now let us find the variance of a{ X.

var(ol X) = of Ba; o is an eigenvector
= )\of{oq aq is of full length
= A
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As conclusion, we can find «ay as an eigenvector of unit length corresponding to the
largest eigenvalue A; of the variance-covariance matrix Y.

To find the next principal component, we look for the vector unit «s so that

Zy = ol X and Z; = oy X are uncorrelated an(subject to this)

4y = a2T has mazimum variance.

We see that the variance of Zo = Ay. This process continues in the same way, if
the eigenvalues of ¥ are \; > Ay > ... > )\, and they have corresponding eigenvec-
tors (normalized to be of unit length) o, oo, s, ...., o, the the linear combination
Z1 = alT X, ,Zy = ag X, ... Ly = ag X from the principal components and have
variances Aq, A2, ....., A, respectively.

The value of Z; is frequently referred to as scores or Principal Components Scores.
The 7’th principal component Z; account for a proportion of total variance

L
?:1 >‘j

And the m’th components account for a proportion of total variance

m
Zj:l J
P
j=1 >‘j
e (d) In practice, we don’t know X. It must be estimated by S, the sample variance-
covariance matrix, in which case we get the estimates A\; of\ and &; ofca;. The
sample mean, sample variance and the sample covariance estimates for u;, oy and
0;j are given by:

1 n
T, = — me- the sample mean
n
r=1
1 < ) :
Sii = — Z;(a:m — xi)z the sample variance
r=
1 n
85 = — Z(a:m —Z;)(zr; — ;) the sample covariance
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(e) So far we have been talking of computation of principal components from
variance-covariance matrix Y. It is quite common to find the principal compo-
nents from the correlation matrix P, which effectively amounts to normalizing all
the variates to have a unit variance before finding principal components. Choosing
to do this, we make all variables equally important.

The principal components obtain from correlation matrix are not the same as those
obtained from variance-covariance matrix.

9.3.3 Number of Components to retain

Another question which arises is how many components that are necessary to give an
adequate representation of the data. This question is difficult to answer.

e When analysing a correlation matrix, where the sum of the eigenvalues is p, we can
disregard all eigenvalues less than 1. This arbitrary rule is a useful rule of thumb
but has no theoretical justification (drawback).

e The most used informal ad hoc rules of thumb are these:

1. Percent of total variance:

Include enough components to explain some relatively large percentage of the
total variance, between 70 and 90 per cent are usually suggested. This number
decreases as n and p increases.

. Plot examination:

Cattel(1965) suggests examination of a plot of \; against ¢ (the magnitude of
an eigenvalue versus its number). To determine the appropriate number of
components, we look for an elbow in the curve, this point being considered to
be where large eigenvalues cease and small eigenvalues begin. Such a plot is
generally known as a scree diagram.

. Correlation matrix examination:

Exclude those principal components whose eigenvalues are less than average
(less than 1). This rule was originally put forward by Kaiser (1958), but Jolliffe
(1972) has suggested to exclude components whose associated eigenvalues are
less than 0.7.
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9.3.4 Numerical Investigations

East Direc. North Direc Height Direc
site Name || Score Accum. var | Score Accum var | score accum. var
ALES || 13434 0.3398 13588  0.3169 47533 0.21435
BODO || 8649  0.5586 7796 0.4987 37797 0.3848
KRIS || 5186  0.6898 5272 0.6216 30396 0.5219
NYAL1 || 3535  0.7792 5034 0.739 26956 0.6434
OSLO || 2891  0.8523 3631 0.8237 24532 0.7541
STAV || 2419  0.9135 3344 0.9016 21160 0.8495
TRON || 1936  0.9625 2278 0.9548 17937 0.9304

VARD || 1483 1 1940 1 15442 1

Table 9.2: Total Variance Explanation

This table shows the estimated eigenvalues for each direction (east, north and height),
and the proportion of the total population variance explained by the principal components.

Almost 77.92% of the variance is explained by the four principal components for east
direction. With five principal components 85.23% is explaned by east, 82.37% for north
and 75.41% for height direction.
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Scores of 2 PC — East Direc. barplot — East Direc. Scree PleastiPast Direc.
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Figure 9.1: Output from PCA

This figure shows some graphs. The first row is for the East direction, the second one
for North direction and the last one for Height. The first plot shows the scores of PC1
against PC2, the second one the contribution of each PC as barplot and the last one shows
the contribution of each PC as Scree plot.

These plots show the information in the previous table graphically.
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East Direction

pC1 PC2 PC3 PC4 PC5 PC6 PCT PC8
ALES || —0.30 —0.50 0.07 0.40 —0.59 0.34 0.04 -0.20
BODO || —-0.33 —0.11 0.03 0.50 0.60 —0.10 0.50 —0.07
KRIS || —0.15 —0.29 0.09 -037 -0.22 -0.73 0.26 —0.31
NYA1 || —0.63 029 -0.69 -0.17 -0.09 0.06 —-0.03 -0.01
OSLO || -0.16 —0.33 0.16 —-0.63 0.34 0.53 0.12 -0.19
STAV | —0.18 —-0.41 -0.00 -0.11 -0.00 -—-0.12 0.01 0.88
TRON || —0.27 —-0.24 0.10 0.12 032 -021 -0.82 —0.17
VARD | —0.50 0.49 0.69 —-0.06 —0.16 0.02 0.00 0.12

Table 9.3: Loading Fast Direction

This table shows the eigenvectors calculated from the variance-covariance matrix. After
analysing this table, we see that we end up with 2 groups. Group 1, contains NYA1 and
VARD with highest score in the first PC. The second group contains the rest of the sites
from our network.
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North Direction

pC1 pPC2 PC3 PC4 PC5 PC6 PCr PC8

ALES || —0.28 0.27 0.56 0.67 —0.27 0.12 0.00 0.05
BODO || —0.14 0.33 0.09 -0.12 0.19 -0.50 0.69 0.31
KRIS || —0.32 0.28 —0.22 0.01 0.52 0.61 -0.03 0.36
NYA1 0.70 0.62 —-0.23 0.23 —-0.00 0.04 -0.02 -0.08
OSLO || -0.38 0.33 —-0.48 -0.19 -0.68 —0.00 —0.07 0.10
STAV || —0.34 0.21 -0.14 0.06 0.23 0.00 0.18 —0.86
TRON || —0.20 0.31 0.12 —-0.09 029 -0.52 —-0.70 0.05
VARD 0.09 0.32 0.57 -0.66 —0.13 031 -0.00 -0.13

This table shows the eigenvectors calculated from the variance-covariance matrix for

Table 9.4: FEigenvalues- North Direction

the North direction. The same conclusion as for the East Component.
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Height Direction

pC1 PC2 PC3 PC4 PC5 PC6 PC7T PCS8
ALES | —0.42 0.24 0.68 0.24 0.22 0.43 0.03 —0.12
BODO || —0.16 0.03 —0.02 0.11 0.08 -0.27 0.92 0.15
KRIS -0.14 0.24 0.16 —-0.10 0.08 -0.68 —-0.12 —-0.64
NYA1 0.72 0.64 0.11 —-0.03 0.18 0.09 0.12 0.02
OSLO | —0.29 037 —-0.05 -0.72 —-0.45 0.21 0.13 —-0.00
STAV | —0.16 0.24 026 -0.01 -0.01 -047 -0.28 0.74
TRON || —0.34 029 -0.55 —0.09 0.68 0.10 -0.11 0.06
VARD 0.19 -0.44 0.36 —0.63 0.49 —0.02 0.07 0.06

Table 9.5: FEigenvalues Vertical Direction
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This table shows the eigenvectors calculated from the variance-covariance matrix. We
end up with the same conclusion as for the North and East directions.
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9.3.5 Factor Loadings Of PC

Until now, the principal components have been estimated either from the Varia?ce—covariance
matrix or from the correlation matrix. If we define the scaled vectors 3; = A\2«; where «;

is the eigenvector, clearly:

8L B;

B B;
We define a new matrix L by:

L =

:}2:

= ()\%ai)T)\%ozi
= a;fp)\%)\%ai

o My
= A

= 0 (@#7)

(B Bo Bp)
AA: (A% is sym.)
ANAT

AA2(AAZ)T

Lr”

The elements of L are computed so that the coefficients of the more important com-
ponents are scaled in a manner that makes them larger than those of the less important
components. We call the elements of L components loading. Some values in the com-
ponents loading table are blank. This indicates that they are very small. The table is
displayed at the end of the chapter, so it can be compared to Factor Analysis.
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9.4 Factor Analysis

In factor analysis, we try to explain the covariances or correlations between a set of
observed variables X = (X1, Xo, ..., Xp)T in terms of a smaller set of unobservable latent
variables F' = (f1, fa,..., fr)*, and we try to make k small as possible. We assume the
mean is extracted from our observations, and can write:

X1 = Mfitd et FAnfita=Y1+¢
Xo = Mfit+tdnfot+. +lpfit+te=Y+e
X3 = Mifit+tdefot . +Anfe+e3=Y3+e€3

Xp = >\p1f1+)\p2f2+--+)\pkfk+€p:Y;7+Ep
Or in vector notation: X = AF+V¥V =Y + ¥

fi, fo, 0 fe - Common Factors
€1,€2,...,€p Specific Factors
Aij Factor Loading

Since we are interested in covariances or correlations, some assumptions about unob-
served random variables f; and ¢; are:

e Al: The error terms (specific factors) ¢; are independent, and have a constant
variance. This means that E(e;) = 0 and var(e;) = o2

e A2: The unobserved factors f; are independent, and have unity variance. This
means that E(f;) =0 and var(f;) =1

e A3: The error terms( specific factors) €; and f; are independent.

Let us compute the variance of X;. Remember that each observed variable X is linear
combination of independent factors f; and error terms ¢;. We have:

var(X;) = var{\ifi +Xiafo+ ..+ N fr + €1}
= Mvar(fi) + ... + A2 var(f) + var(e)
= AL+ A3+ AL 07

k
= Zx\ij + Ui2
Jj=1
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We see that the variance of the observed variable X; is composed of two parts:
e Communality: This part is explained by the common factors f;

e Specific variance or unique variance: This part is the variance of X; that is not
accounted by common factors

In our analysis of CGPS time series, we are interested in correcting for common vari-
ation at all sites under investigation. In this case, the first part is more interesting. If we
are interested in identifying the dominant noise type at the site, the second part would be
more interesting.

9.4.1 Covariance Structure of Orthogonal Factor model

In this section, we try to determine the covariance of our model, the Orthogonal Factor
Model with & common factors. Our starting point is X = AF + ¥

XXT = (AF +e)(AF +¢)7
= (AF+e)(AF)T +¢")
= AF(AF)T—l—e(AF) + AFT 4 e

&Y = cov(X)

E(XXxT)

= E{AF(AF)" + e(AF)T + AFe" + e’}

= AE(FFT)AT + E(eFT)AT + AE(FeT) + ee®
= AT+ U

where the VU is a diagonal matrix with 1, = o2,. ., ¥p = 0,2 down the main diagonal.
If let h? = ijl {\i;}?, then the variance ai =) =
9.4.2 Parameter estimations
This subsection focuses on how to estimate parameters in our model.
Y o= AT+ U

The sample covariance S can replace X. S is a p x p matrix and can be determined
by %p(p — 1) quantities. We can estimate A by A; this requires pk quantities. We can

estimate W for W: this requires p quantities.
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Now, the total of p + pk quantities on the right side are constrained by requiring
$k(k — 1). Quantities therefore need to be estimated from S is p(1 + k) — $k(k — 1).

If we let d be the difference between the number of available quantities (to construct
the estimates from) and the number of quantities to be estimated, then we end up with:

§P(p 1) — [p(1+8) — Sk~ 1)
= -1 - +5)]

\)

Depending on the value of d, there are three alternatives:

e Alternative 1: If d < 0, fewer equations than parameters to be estimated. Infinite
number of solutions.

e Alternative 2: If d = 0, there is one unique solution.
e Alternative 3: If d > 0, this is the most important alternative.

Our sample model becomes:
S = AT+ U

9.4.3 Numerical Investigation

Let us first define the value of d, which must be positive. We have p = 8 for k €
{1,2,3,4,5}, and found the value of d € {18,13,7,2,—2}. For our analysis, we chose
k=3.

The most widely used methods used to determine a first set of loading are the Prin-
cipal Factor Analysis (PFA) and Maximum Likelihood (MLE). A computer program was
implemented for estimating parameters, using both methods.

The PFA seeks values of loadings that bring the estimate of the total communality
closer to the total of the observed variances, the covariances are ignored. This coincide
loadings obtained in previous section (PC).

Y = AAT

= )\1616{ + e + )xpepeT
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The MLE make assumptions about normality of f; and e. The observation X; = Af;+¢;
is normal distributed.

If the factor solution does not reveal the structure of the loading, we can apply rotation
to find another set of loadings that fit our observations equally and interpretable. The
two most widely used methods are:

1. varimax: Try to find the rotated loadings that maximize the variance of squared
loadings for each factor. The objective is to make some of these loadings as large as
possible, and the rest as small as possible.

2. quartimax: Try to maximize the variance of squared loadings for each variable.
This tends to produce factors with high loadings for each variable.

We applied the varimax rotation to MLE when handling the height direction.



Principale Factor Analysis Maximum Likel. Estimator
Site Name fl f2 ¢, =1- hz2 h? fl f2 1/% =1- hz2 h?
ALES -0.5371 0.1018  0.29887 0.8687 | 0.5311 -0.0467 0.284 0.7156
BODO -0.4097 -0.2965 0.25585 0.7444 | 0.3653 0.29587 0.2210 0.77897
KRIS -0.4688 0.1663  0.24746 0.7599 | 0.4402 -0.0920 0.2022 0.79771
NYA1 -0.2317 -0.4700 0.27465 0.7899 | 0.1860 0.41938 0.2105 0.7894
OSLO -0.4478 0.1606  0.22638 0.7688 | 0.411 -0.0798  0.17550 0.824
STAV -0.5778 0.2154  0.3802 0.6671 | 0.6491 -0.2071  0.46427 0.53572
TRON -0.5443 -0.0748 0.3018 0.7431 | 0.5195 0.13471  0.2880 0.7119
VARD -0.1114 -0.5201  0.2829 0.7999 | 0.0604 0.499 0.25362 0.7463

Table 9.6: Factor Analysis- Fast Direction

SISATVNY HOLOVA 76
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Principale Factor Analysis Maximum Likel. Estimator
Site Name f1 fg 1/JZ =1- hZQ hZQ f1 fg 1/JZ =1- hZQ h22
ALES -0.3585 -0.05213 0.1312 0.90504 | 0.30479 0.04526  0.09495 0.9050
BODO -0.3739 -0.34024  0.25559 0.72594 | 0.36879 0.37154  0.274053 0.7259
KRIS -0.4804 0.09626  0.2401 0.7729 | 0.46315 -0.11186  0.2270 0.77296
NYA1 0.35537 -0.2894  0.2101 0.85064 | -0.31863 0.21869  0.149357 0.850
OSLO -0.4745 0.07669  0.2311 0.79323 | 0.449 -0.0676  0.2067 0.7932
STAV -0.5649 0.11713  0.33289 0.5872 | 0.6232 -0.15578  0.4127 0.587
TRON -0.4297 -0.26859  0.25682 0.7501 | 0.410837 0.28467  0.2498 0.7501
VARD 0.02160 -0.44676  0.20006 0.9226 | -0.02422 0.27704  0.07734 0.9226

Table 9.7: Factor Analysis- North Direction




Principale Factor Analysis Maximum Likel. Estimator
Site Name fl f2 ¢, =1- hz2 h? fl fg 1/% =1- h? h?
ALES -0.3249 0.00353 0.10559 0.89440 | 0.24434 0.1585  0.08483 0.9151
BODO -0.1942 0.20506  0.079773 0.9202 0.06088 0.1750  0.0343 0.9656
KRIS -0.3160 -0.1905 0.13618 0.86381 | 0.29335 0.102 0.09643 0.90356
NYA1 0.1731 -0.2982  0.11892 0.881077 | -0.0213 -0.2025 0.0414 0.95852
OSLO -0.2835 -0.0358 0.0816 0.91832 | 0.1597 0.1951  0.063 0.936
STAV -0.3301 -0.2132  0.15451 0.8454 0.53626 -0.0061 0.2876 0.7123
TRON -0.2612 0.17891 0.1002 0.8997 0.0383 0.3838  0.14877 0.8512
VARD 0.2130 -0.0068  0.0454 0.9545 -0.093 -0.1753 0.03938 0.96061

Table 9.8: Factor Analysis- Vertical Direction

SISATVNY HOLOVA 76
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East Direction North Direction Height Direction

L1 L2 L3 L1 L2 L3 L1 L2 L3
ALES |-0.300 -0.493 -0.092 | -0.283  -0.202 0.875 | -0.344 -0.295 0.649
BODO | -0.343 -0.090 -0.071 | 0.124 -0.344 0.178
KRIS |-0.160 -0.296 -0.076 | -0.328  -0.259 -0.124 | -0.344 -0.295 0.649
NYA1l | -0.635 0.267 0.699 | 0.699 -0.601 0.135 | 0.794 -0.561 0.040
OSLO | -0.151 -0.344 -0.160 | -0.392  -0.365 -0.372 | -0.245 -0.420 -0.049
STAV | -0.188 -0.405 -0.326  -0.215 -0.143 | -0.280 0.264
TRON | -0.269 -0.224 -0.102 | -0.191  -0.330 -0.309 | -0.294 -0.555
VARD | -0.482  0.508 -0.676 | 0.115 -0.354 -0.248 | 0.181 0.430 0.383

Table 9.9: Factor Loadings from Principale Comp.
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PART 3: CGPS Filter Inplementation and
parameter estimations

10.1 Introduction

The main objective of this chapter is to implement a filter to our CGPS time series
and parameters estimation. Modeling proceeds by a series of well-defined steps, variance
stabilization, fitting an ARMA model by following Box-Jenkins approach (model identi-
fication, estimation, diagnostic checking and iteration by modifying the selected model)
and extraction of periodic signal.

The Last step is to evaluate the randomness of the model, and to predict the future
value of chosen model.

Prediction will be used as quality control, if the observed observations reach upper or
lower bound of prediction, an alarm shall be generated.

We start by giving some definitions related to time series and then starting our frame-
work to identify our model

Definition 10.1.1. (Strict Stationarity):

We say that the time series x(t) : t € Z is strictly stationary if for any k > 0 and any
{t1,ta, ...ty € Z} , the distribution of {x4,,....,xy, } is the same as that for x4, ..., Ty,
for every value of h

Definition 10.1.2. (Weak Stationarity):

95
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We say that the time series x(t) : t € Z is strictly stationary if for any k > 0 and any
{t1,ta, ...ty € Z} , the distribution of {x¢,,...., 2y, } is the same as that for x4, ..., %t ,
for every value of h

Definition 10.1.3. (Autocorrelation):
We say that the process w(t) is weakly stationary, if the following requirements are satisfied:

1. The expectation E(xy) = k is constant and independent of time t
2. The variance is constant and independent of time t

3. The autocovarince function cov(zs, xpyp) = E(xt, Terp) independent of time t and
depend only on separation lag h

Definition 10.1.4. (Cross correlation):
We say that the process x(t) is weakly stationary ,if the following requirements are satisfied:

1. The expectation E(xy) = k is constant and independent of time t
2. The variance is constant and independent of time t

3. The autocovarince function cov(xs, xpyp) = E(xt, T4p) independent of time t and
depend only on separation lag h

Definition 10.1.5. (White Noise Process):
We say that w(t) is a white noise, if the following requirements are satisfied:

1. The expectation E(w:) =0
2. The variance is constant and independent of time t

3. The autocovarince function is independent of time t

Definition 10.1.6. (Random Walk Process):
The Random Walk is defined by xy = x¢_1 + wy. The process is not stationary:

1. The expectation E(w:) =0

2. The variance is dependent of time t, var(xy)0yt

Definition 10.1.7. Autoregressive process - AR(p):
A process {z}I¥, is said to be an AR(p) if X; satisfy

Xt = ;1 X1+ X o+ + Xy, + Wi
p
= > 0.X;, + W,
i=1

Where Wy ~ N(0,02)), white noise and ¢; are constants.
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Definition 10.1.8. Mowving Average Process- MA(q):
A process { X}, satisfying

Xy = OWiqa +0Wi o+ +0,Wi g + Wy

q
= > 6w,
=1

Where 0y = 1 and Wy ~ N(0,02).

Definition 10.1.9. Autoregressive moving average process ARMA (p,q):
A process {z}I¥, is said to be an ARM A(p,q) if

q p
Xi = Y Wi+ 6iX,
=1 =1

Where Wy is a white noise and the {¢;} and {0;} are real constants.

Definition 10.1.10. Invertibility of an ARMA (p,q) process
An ARM A(p, q) process is invertible only when the root of 6(2) lies outside the unit circle.
The coefficients m; of m(B) = >0, miB" can be determined by solving

m(z) = Zmzi
i=1
= ¢(2)/0(z) [z <1

Definition 10.1.11. Causality of an ARMA (p,Q) Process:

An ARM A(p, q) process is causal only when the root of ¢(z) lies outside the unit cir-
cle. That is, ¢(z) = 0 only when |z| > 0 . The coefficients of the linear process
Xt = sum$2 piWy, >= (B)W; can be determined by solving

P(z) = > g
=1
= 0(2)/6(z) |2 <1

10.2 Power Low Processes

Definition 10.2.1. (Power Law Process):

We say that the process x¢ is a power law process, if it’s power-law spectrum can be written
as P(f) = Po(f/fo)", where Py and fo are normalisation constants and v is the spectral
indezx, that’s often falls in the range —3 < v < 0 and f is spatial or temporal frequency.
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1. v =0 : White Noise
2. v=—1 : Flicker Noise

3. v=—2 : Random Walk Noise ( Brownian Motion)

10.3 Model Identification

10.3.1 Variance stabilization

The first step in any data analyses is to view data, this job is done in the previous chap-
ters and we know that our time series is not stationary(containing trends and periodic
components), we can perform some transformation to achieve stationarity. If we let our
time series be presented by {:z:t}ivzl, then y; = 2y — z;_1. Note that the differenced data
y; contains one less data points than the original x;.

We can repeat the difference operator more than once until the stationarity achieved.
Usually one difference is sufficient in our case.

Other methods exists, like taking logarithm or square root to our time series may sta-
bilise the the variance. For negative data, we can add an offset to make all data positive
before applying the transformation.

The Box-Cox transformation can be applied to achieve stationarity.

10.3.2 Model Selection

The next step is to identify the model order p and ¢, and are estimated by applying the
Akaike Information Creterion.

AIC = In(6?) + %

The coefficients of an AR(p) are estimated by solving the Yule-Walker equations (see
chapter 7), and M A(q) by innovation algorithm. In general case of an ARM A(p, q) pro-
cess, the coefficients ¢1, .., ¢p, 01, ....,0, can be estimated by maximum likelihood.

The model chosen must have the smallest AIC. From graphs of row 2 and 3, we see
that the PACF decays and the ACF cutoff after one lag, this is the signature of ACF.As
conclusion we must fit MA(1) model.
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10.3.3 Extraction Of Periodic components

After fitting an M A(1) to our differenced data, the next step is identify the periodic
components. This step is carried out by computing the periodogram of all directions(East,
North, and Height). We apply the least square method to extract periodic component(as
we did in partl). The signal representing the annual and inter annual variation can be
modeled as

2
Si(t) = ZA]- cos(wjt; — ¢;)
j=1

2
= Z {A; sin(¢;) sin(wjt;) + A;j cos(¢;) cos(w;t;) }

j=1

where w; = 27 f; is the angular frequency, A; is the amplitude, ¢; is the phase. J is the
number of frequencies( in our case is 2).

If let SS; = Ajsin(¢;) and CC; = Ajcos(¢;), the amplitude is given by A; =
{SS% + cc2J}1/ 2. This means we must extract both frequencies from our signal.

Smoothing is very important operation in data analysis, especially when analysing
the spectrum (periodogram). Periodogram fluctuates estimate of the spectrum with high
variance, for a stable estimate, the periodogram must be smoothed.

In many text books, they recommend the Daniell window as smoothing filter for gen-
erating an stable estimate from the periodogram. The modified Daniell window of size K,
is defined as:

Wi = — i=lori=k

= otherwise

The fourth row in our graph shows that exists annual and interannual variations, and
must be extracted from our time series.
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10.4 Noise Identification

10.4.1 Diagnostic Checking

Typically, we judge the goodness of fit of a statistical model to a set of data by comparing
the observed values with corresponding predicted values obtained from the fitted model.
The sample ACF of the residuals

The sample autocorrelations of an iid sequence with finite variance are approximately iid
with distribution N(1,1/n. In our case all noises are white noise.

Randomness of the residuals

The portmanteau test statistic can be used to check for compability of the residuals with
white noise.

Other tests with accompanying good explanations exists (see Brockweel and Davis).

10.4.2 Integer Spectral Indices

The site coordinate component can be modelled by an initial value of the abscissa intercept
xo and the velocity r such that

x(t;) = wo + rt; + €,(t)

or in matrix form

I 1 tl
X9 1 t2 T

= : |: TO :| +€:p(t)
N 1 tN

Now, we assume that the error term is a linear combination of a sequence of inde-
pendent unit variance uncorrelated random variables a; and a sequence of temporally
correlated random variables [3;

ex(t) = aa;(t) + bef(t)

The scaling coefficients a and b are the magnitude of white noise and colored noise.
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If we assume that the colored noise is Random walk process, we can express the
covariance of the measurements x; as

Co(t) = a1 + b2 Jo(t)

Where [ is the identity matrix of dimension N and J5 is the random walk covariance
matrix

1 11 1

122 ... 2
B(t) = fp 128 s

|1 23 -+ N |

Where the sampling period in yr—!, fs = (N — 1) /T, the T is the total observation
span, and N is the number of observations .

Fitting a straight line to the time series, i.e.
:ﬁ(tz) =Zo+7T 1t

by weighted linear regression(least squares) yields estimates for xy and r

j=[ATC;'A]  ATC e

Where
Tr = (:Ul, ....,l’N)T
1
1 19
A= .
1 ty
Yy = (IE()?’F)T

Now is time to give all covariance matrices of underlying integer spectral models, white
noise(WN), random walk noise(RWN), and flicker noise(FN)
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e White Noise (k=0 : In this case, by = 0, and
Cp=a’1
That is, the covariance is diagonal and independent of time.

e Random Walk Noise (k=2 : In this case, a = 0, and

111 -+ 1
12 2

Co)=R()=f"| 1 23 31 fi=(N-1/T
123 - N |

e Flicker Noise (k=1 : In this case, a = 0, and

3\224 1 — J
C,=J = [(Z) T()]
NxN

Where the elements (i, k) of the symmetric matrix Jy is given by

Lo i=k
T e 4o i<k

10.5 Prediction from CGPS Filter

We are satisfy with our model, we like to predict the future values for our time se-
ries(east, north and height direction). The last figures shows the prediction values from
our models with upper and lower bounds.

The design blocks for our filter are presented in the next figure. It’s composed of 4
mains blocks, namely variance stabilizer, extraction of periodic components, the AR block,
and the M A block.
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PREDICTION FROM CGPS FILTER

10.5.

@
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Figure 10.1: CGPS Filter
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Summary and Conclusion

111 Part1

Part 1 of this thesis explained how we prepare the data by removing outliers and off-
sets and filling gaps. The seasonal signals are extracted, so that we finally can get a better
estimate of the linear trend. We are satisfied with the results generated by the different
algorithms.

Our time series are modelled by an additive model X; = T; + S; + N;, where the T;
represents the trend component, S; represents the seasonal component and N; represents
the noise component. We are primarily interested in the trend component, which estimates
the velocity of the site under investigation. We give a summary of our actions here.

e STEP1:
We implemented different algorithms to fix gaps, detect and correct offsets and
handle outliers. We then extracted the linear trend from our data Y; = X; — T; =
S; + N;.

e STEP2:
We analyzed the spectral of Y; by Lomb periodogram. We were interested in the
frequency of the peak in the Lomb periodogram. The next step is to estimate the
coefficients Ay and By in S; by the least square method.

We use the normal equation from the Lomb method (Least Square, see ch. 8):
cc 0 Ay | XC
0 SS By N XS
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e STEP3:

To get a better estimate of the site velocity, we need to extract the component S; from
the original time series Z; = X; —S; = T} 4+ N/. We then estimate the linear trend 77
again, but this time we have to be more accurate than when we calculated from T;.
The main reason is that we have removed the seasonal component (improvement).

e STEP4:
After the extraction of the linear trend 7T/, the last step is to remove the noise
component. This is done by first identifying the type of noise at the site; this will
be introduced in chapter 10.

The next table shows the slope for each direction without extracting the seasonal com-

ponent, and the second one with extraction of the seasonal components.

We see that the abscissa and the slope are changed in the second table. This shows
the improvement by extracting S; component.
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To show the impact of outliers, gaps and offsets on site velocity estima-
tions, I created an artificial offset of size 20mm at the middle of a time serie . The site is
randomly chosen. I calculated the abscissa and the slope in both cases. When looking at
fig.11.1, we see that the presence of offsets in our time series influences the site velocity
heavily.

11.2 Part2

Part 2 of this thesis explained how we determine common fluctuations in our network.
The removal of this common variance is not included in this thesis. Two methods are im-
plemented: Factor Analysis and Principal Component. We conclude that Factor Analysis
is the preferred method.

e East Direction:
In the table for the East Direction on the next pages, the values of the first loading
component obtained from PFA are uniform. This means that the common global
variation over the whole network is almost constant. The same information is ob-
tained from MLE, with opposite sign.

The second loading component bring us interesting results: we have two groups;
the first group contains the sites ALES,KRIS,OSLO,STAV, and the second group
BODO,NYA1,TRON,VAR. This component tries to explain the regional common
variation, and is different for the southern and the northern Norway. The observation
shows that Trondheim separates the two regions.

e North Direction:
In the table for the North Direction on the next pages, the values of the first
loading component obtained from PFA, shows that we end up with two groups. The
first group is the site of NYA1 and VARD, while the second group contains the rest
of network. Each group has a common global variation. The same information is
obtained from MLE, but with opposite sign of loading.

The second loading component bring the same results as for East Direction

e Height Direction:
In the table for the Height Direction on the next pages, the values of the first
loading component obtained from PFA is explained as in East Direction. The
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same information is obtained from MLE, with opposite sign.

The second loading component bring the same results as for East Direction and
North Direction:.

e Choose between PFA or MLE:
We examined the residuals of R = § — AAT — \Tl, and found that the MLE estimate
does a better job of producing S than principal components (PFA). The entries of
R are almost zero compared to PFA.

e Principal Component or Factor Analysis :
Since our purpose is to identify the latent variables that are contributing to the
common fluctuations in our network, the Factor Analysis meets our needs better
than Principal Component, which does not distinguish between the common variance
and specific variance.

e Including more Loading Components:
Including more sites into our network and including more factor loadings, allows us
to discover more regarding the variations due to the location of the site.

¢ Loading generated by PC:
The next table represents the factor loading generated by principal components from
the previous section, and provide us with almost the same information.

e Peaks from Lomb Periodogram - Part1 :
The number of peaks generated by frequency analysis (Lomb periodogram) from
Part 1 (see Appendix A), must comply with the number of factor loading explain-
ing the fluctuations.

I believe it is amazing that we can determine how many factor loading components
we need by counting the number of peeks from the spectral analysis.

11.3 Part3

Part 3 focused on the implementation of a CGPS Filter. The reason why I chose to
proceed with this part, was that all the building blocks needed to comstruct the filter were
already implemented in Part 1.

This chapter is NOT an obligatory part of my thesis. I included it because this
information is useful when working with CGPS time series and because I find this theory
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very interesting. I did not, however, have the time to implement the algorithms needed to
identify the dominant type of noise in our network.
appendiz A, the graphs generated from each steps are presented.



SUMMARY AND CONCLUSION

CHAPTER 11.

110

Site Name East Direction North Direction Height Direction

Intercept Corrected Slope Corrected | Intercept Corrected Slope Corrected | Intercept Corrected Slope Corrected
ales.res -50.08 -51.53 0.0092 0.0112 -56.64 -58.77 0.0108 0.0133 -16.237 -16.805 0.0032 0.00381
berg.res -77.64 -80.96 0.0147 0.0181 -52.75 -43.08 0.01001 0.0078 -22.426 -21.205 0.00456 0.0046
bodo.res -53.56 -55.18 0.0094 0.0114 -53.21 -55.13 0.01014 0.0124 -23.953 -24.976 0.0045 0.0056
hers.res -52.34 -57.08 0.0116 0.0134 -49.7 -51.97 0.01055 0.0125 -8.973 -8.617 0.0021 0.0022
hofn.res -40.38 -42.6 0.0088 0.0107 -51.8 -53.85 0.01039 0.0123 -51.5 -53.19 0.01083 0.01263
kris.res -56.35 -54.19 0.012 0.0182 -51.72 -15.91 0.0117 0.0013 -13.584 -5.154 0.00320 0.00096
nyal.res -42.78 -43.66 0.007 0.0085 -53.26 -54.81 0.00961 0.0116 -49.19 -51.23 0.0087 0.010827
oslo.res -56.87 -57.92 0.01063 0.0129 -51.39 -51.18 0.00999 0.0115 -25.984 -26.705 0.00512 0.00614
pots.res -68.69 -72.78 0.01221 0.0144 -50.03 -59.97 0.00974 0.013096 -4.566 -6.026 0.0012252 0.0017
stav.res -53.84 -54.96 0.01005 0.0120 -54.81 -46.03 0.01036 0.00857 -11.451 -11.705 0.0022 0.0026132
trol.res -14.07 -22.794 0.0082 0.0118 -48.95 -51.31 0.00850 0.01015 -19.778 -20.629 0.00402 0.0046
tron.res -52.2 -53.6 0.009411 0.0113 -55.08 -57.14 0.01045 0.0128 -23.071 -23.733 0.00444 0.00535
vard.res -69.69 -71.7 0.012425 0.0155 -38.23 -39.85 0.00809 0.0101 -18.918 -19.699 0.00368 0.00466
wsrt.res -60.6 -62.14 0.01168 0.01276 -55.07 -57.67 0.01039 0.012112 -0.6819 0.14106 0.0004642 0.00014

Table 11.1: Site Velocity Improvement




Appendix

Graphs from Part |

This appendix presents graphs generated from time series for all sites examinated under
Part 1.

1. The first row presents the raw data of each component (namely east, north and
height directions) of the site without gaps. The gaps are eliminated by runing the
algorithm gapWithSim.R.

2. The second row presents the raw data of each component (namely east, north and
height directions)) of the site without outliers. Outlierss are eliminated bu runing
the algorithm robustGrubbOutlier.R

3. The third row presents our time series of each component (namely east, north and
height) of the site by eliminating the trend. The trend is elliminated by fitting a
polynome of degre 1.

4. The forth row presents the Smoothed Lomb periodogram for each components (namely
east, north and height directions). To reduce the variance, we choose to overage over
adjacent frequencies(smoothing the periodogram).

5. The last row presents the significance of the peak in Lomb periodogram.
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Appendix

Matrix Theories

This appendix introduces matrix theories .

B.1 Matrix theories

Definition B.1.1. Matrixz Addition:
If A and B are both n x m matrices, then the sum of A and B, denoted by A+ B, is the
n X m matriz whose entries are a;; + b;j for each i =1,2,--- ,n and j =1,2,---,m.

Definition B.1.2. Matriz Multiplication:
Let A be n x m and B be m x p matriz, The matrixz product of A and B, denoted by A.B,
is the n x p matriz C' whose entries C;; are given by

n
Cij = Z ;b (B.1)
k=1
= anbiy + aigbyj + -+ + aimb;
foreach i1 =1,2,...,n and j =1,2,3,......;p

Definition B.1.3. Matrix Transpose:
The transpose of an n x m matriz A = (a;;) is the m x n matriz AT = (aj;). A square
matriz A is said to be symetric if A= AT

Definition B.1.4. Square Matrix :
The square matriz has the same numbers of row and columns. A diagonal matriz is a
square matriz D = (d;;y The identty matriz is a square matriz.
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Definition B.1.5. Upper triangular :

An upper-triangular n x m matriz U = (uij) has for each j =1,2,---,p, the entries
u; = 0 foreachi=j+1,7+2,---,n
and for lower-triangular matriz L = (lij) has for each j =1,2,---,n the entries
lij = 0 foreach i =1,2,---,5—1

Definition B.1.6. nonsingular :
An n xn matyriz A is said to be nonsingular if an n x n matriz A~ exists with AA~! =
A=A = 1. The A Vis called the inverse of A. The matriz without inverse ia called

singular.

Definition B.1.7. Square Matrix :
The square matriz has the same numbers of row and columns. A diagonal matriz is a
square matriz D = (d;; The identty matriz is a square matriz.

Definition B.1.8. Positiv defined:
Suppose that ¥ is a symetric pxp matriz. We say that Sigma is non-negative definite if

ISz >0 for all p — vectors x

and its positive definite if

ISz >0 for all p— vectors x # 0



Appendix

Computer Programs

This appendixz gives all implemented programs.

Table C.1: R-Programs

Name

Description

maSmoother. R
medianSmoother
sartmaForcast. R

gap WithSim.R
gainFactorOutAlg. R
drsoAlgorithm. R
robustGrubbsAlg.R
estPeriodComp. R
estLombMagnitude. R
offsetDetection.R
lombPeriodogram. R
mainPartl. R
principalComp. R
factorAnalysis. R
mainPart3. R
klobucharAlg.R
testDRSOAlgorithm.R

Weigted Moving Average Filter

Median Smoother

Prediction from SARIMA model

Fill gaps by simulation

Gain Factor Outlier Algorithm

Remove outliers by simulation

Remove outliers by robust Grubb outlier detection
Estimation of Periodic components in a TS

Least Square Method for estim. coeff. in Lomb Perio
Detect and correct for jumps in TS

Perform Least Square of frequence analysis

Main program of PART I of this thesis

Principal Component analysis(PART 1I)

Factor Analysis (PART 11)

Filter Implementation SARIMA (PART III)
Estimation of ionospher delay -Klobuchar Algorithm
Test Klobuchar algorithm

Continued on next Page. . .
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Table C.1 —Continued

Name Description

testLombPeriodogram. R Test Lomb Periodogram
testOffsetDetection. R Test Offset Detection Algorithm
testGainFactorOutlAlg. R Test Gain Factor Outlier Algorithm
testPeriodogrmoothing. R Test the periodogram smoothing algorithm
testGap WithSim.R Test Gaps by simulation

testRobust GrubbOQutlier. R Test Robust Brubb Outlier algorithm
testRobustOutlier. R Test Robust Outlier Algorithm
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