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Abstract 

Drug discovery and refinement for use in the industry is an important and lucrative field within 

chemistry. In this regard, computational chemistry has shown to be a valuable tool in assisting 

drug discovery. A set of intriguing proteins used in drug discovery are cold-adapted enzymes. 

These enzymes have a lower activation point which makes them of interest in industrial use. 

In this study, the cold-adapted shrimp alkaline phosphatase’s (SAP) affinity towards the 

immunoassay substrates PNPP and AMPPD has been studied. With free energy calculations 

using the linear interaction energy (LIE) and free energy perturbation (FEP) methods, SAP’s 

affinity towards the substrates has been determined. In addition, putative mutations of SAP 

have been carried out by modelling SAP upon the already catalytic effective calf intestinal 

alkaline phosphatase (CIP) to increase its affinity towards PNPP and AMPPD. It was found that 

both substrates bound favourably to SAP and all its different mutations. Specificity towards 

PNPP and AMPPD changed depending on the mutations, where G102R would bind PNPP over 

AMPPD, while H149D would bind AMPPD over PNPP. The most successful mutation was a 

metal exchange of Zn2+ in the M3 metal site to Mg2+ according to the LIE method. The FEP 

method on the other hand revealed a decrease in binding free energies when transforming 

Zn2+ to Mg2+. One possible solution given is that a key water molecule coordinated poorly in 

the FEP simulations compared to LIE simulations. However, even though literature shows that 

Mg2+ increases the catalytic effect, this does not necessarily imply that the proteins affinity 

towards the substrates need to increase. 
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1 Introduction 

1.1 Proteins Importance 

Of the four macromolecules that is present in our bodies, that being lipids, carbohydrates, 

nucleotides and proteins, none has probably been as widely investigated as proteins. Proteins 

are made up of the monomer amino acids. The tasks proteins perform in any living organism 

are plentiful, from signalling to transport, from structural integrity of the cell to storage [1]. 

Perhaps the most intriguing of all the proteins are enzymes. Enzymes are biological catalysers, 

which means they accelerates chemical reactions without itself being used up. Enzymes are 

essential for any living organism. The reason for this is the fact that most life sustaining 

chemical reactions that take place in any living organism, do not happen under normal 

circumstances. However, with the presence of enzymes, these chemical reactions can occur 

on a biological relevant timescale, and hence essential for survival [1].  

Enzymes work by binding a target substrate, and through a chemical reaction converts the 

substrate to a product. The exact mechanism behind enzymatic reactions are not fully 

understood, but several models have been devised to describe them. The most used model to 

understand enzymatic reactions is the “induced fit” model, devised by Daniel Koshland in 1958 

[2], which is an evolution of the old “lock and key” model. The “lock and key” model was 

proposed by Emil Fischer in 1894, stating that substrates and enzymes pose specific 

complementary geometric shapes which fits exactly to each other [3]. What this model fails 

to take into account, which the “induced fit” does, is the enzymes ability to change 

conformation. The “induced fit” model says that the substrate does not simply bind to the 

enzymes, but that the amino acids side chains will be moulded by the substrate, allowing it to 

fit perfectly in the active site of the enzyme. Enzymes catalyse a wide range of different 

reactions, and because of this, enzymes are divided into seven subgroups [4]. These are 

oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases and translocases. 

The study of how enzymes binds substrates, and their activity are essential for researchers 

wanting to understand the mechanism behind enzymes. As well as how to manipulate them. 

Exploration of enzymes interaction with different substrates, is also important in drug design.   
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1.1.1 Shrimp Alkaline Phosphatase, SAP 

Alkaline phosphatases are a subcategory of hydrolases that dephosphorylates compounds, i.e. 

removes a PO4
3− group. They are found in all kinds of organisms, from prokaryotic to 

eukaryotic cells. Phosphatases carry out an important function in the cells, as large amounts 

of cellular proteins are phosphorylated. It is estimated that between 30 – 65 % of proteins in 

the human genome are phosphorylated[5]. Alkaline phosphatases carry out the same function 

regardless of species, with structural differences depending on what kind of environment it is 

working in. Because alkaline phosphatases are present in human cells, especially in the liver, 

bile duct, kidney, bone and placenta, it is used as a biomarker in blood tests to help diagnose 

conditions such as hepatitis and osteomalacia[6]. The product, PO4
3− is a natural inhibitor for 

phosphatases [7]. 

Alkaline phosphatases are homodimeric, where each monomer contains five cysteines, and 

has a metallic triad located in the active site. The metallic triad usually consists of two Zn2+ 

ions, and one Mg2+ ion, placed in the metal sites M1 through M3 respectively (Figure 2). It has 

been proposed that the metal ion in position M3 serves as a catalytic regulator, where the 

presence of Mg2+ increases activity [7]. A suggested mechanism for alkaline phosphatases was 

published in 1992[8], with a revised mechanism published in 2000[9] (Figure 1).  

As mention above there exists countless different kinds of alkaline phosphates. One such 

alkaline phosphate is shrimp alkaline phosphate, abbreviated SAP. As the name suggest, it is 

an alkaline phosphatase found in the Arctic shrimp Pandalus borealis. SAP is a cold-adapted 

enzyme, which are enzymes often found in organisms living in cold environments.  
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Figure 1. Reaction mechanism of an alkaline phosphatase. All hydrogens have been removed, except ones 
relevant for the catalytic reaction. Substrate is stabilized within the active site by Arg166 and the Zn2+ ions in 
position M1 and M2. A nucleophilic attack by Ser102 upon the central phosphate then takes place, resulting in 
the loss of the RO- leaving group and the formation of a covalent enzymes-phosphate intermediate. After which 
a nucleophilic attack upon the covalent enzymes-phosphate complex is carried out by a hydroxide ion 
coordinated to Zn2+ in M1, resulting in a non-covalent enzymes phosphate complex. Then a water molecule 
coordinated to Mg donates a proton to Ser102, whereas the phosphate leaves the enzyme. Figure is based on A 
revised mechanism for the alkaline phosphatase reaction involving three metal ions [9]. 
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These enzymes are of interests among other things for their high activity at lower 

temperature, where warm adapted enzymes would otherwise cease to function. The main 

characteristic of cold-adapted enzymes is a reduced activation enthalpy and a more negative 

activation entropy when compared to their warm-active counterparts [10]. SAP was first 

crystallized in 2002[11], where an interesting discovery was made, namely that the metallic 

triad in SAP consisted entirely of Zn2+ ions. A metal exchange study was carried out in 2004[7] 

where the Zn2+ ion in the M3 site was successfully replaced with a Mg2+ ion. When it comes to 

substrate binding, SAP binds the phosphate group by coordinating the oxygens with ARG 162 

and the Zn2+ ion in the M1 site (Figure 2). A recombinant version of SAP is being produced and 

sold by several prominent pharmaceutical companies for use in immunoassays [12]. 

 

 

Figure 2. Snapshot of SAP's monomers active site. Zn2+ is present in all three metal sites. 
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1.1.2 The Substrates PNPP and AMPPD 

A commonly used analytical biochemistry assay is the enzyme-linked immunosorbent assay 

(ELISA), which was described in 1971 by Engvall and Perlmann [13]. ELISA uses a solid-phase 

enzyme immunoassay to detect the presence of a given ligand. These ligands range from 

different structures, but they are often proteins. Because of this, antibodies specific to that 

protein can be used in the assay. It has seen wide use in medicine, plant pathology, 

biotechnology and quality control in various industries. Two well documented substrates used 

in ELISA are para-Nitrophenylphosphate (PNPP) [14, 15] and 3-(2'-spiroadamantyl)-4-

methoxy-4-(3″-phosphoryloxy)-phenyl-1,2-dioxetane (AMPPD) [16] (Figure 3). 

 

 

Figure 3. PNPP and AMPPD's chemical structures. 

 

PNPP is a chromogenic substrate, meaning it is initially colourless, but through a chemical 

reaction can change its colour. PNPP is hydrolysed by alkaline phosphatases, removing the 

inorganic phosphate group, resulting in a yellow phenolate. Because of this is PNPP suited for 

colorimetric analysis. AMPPD on the other hand is a chemiluminescent substrate that reacts 

with alkaline phosphatases, and with the help of a trigger solution produces an ester moiety 

in a high excited state. When the ester moiety goes to ground state, light is emitted that can 

be detected. PNPP and AMPPD are both sold by well-known chemical providers. 
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1.2 Computational Chemistry 

With the advent of computers, and the rise of their raw calculative power, it was inevitable 

that chemists would want to harness this resource to help assist solving chemical problems. 

As early as 1927, the first theoretical calculations in chemistry was done by Walter Heitler and 

Fritz London[17]. However, it was not until the 1950s that the real potential of computational 

chemistry was discovered, notably with the first simulation of a liquid (1953, [18]) , and the 

first ab initio Hartree-Fock method calculation on a diatomic system performed at MIT (1956, 

[19]). In the 1960s, the dream of an in silico chemical lab came to fruition by the first 

generations of “black box” computer programs such as POLYATOM[20] and Gaussian70, 

Gaussian16[21] is still being used today by computational chemists worldwide. During the 

same period, molecular graphics gained traction as both a research field within chemistry, but 

also as an invaluable tool for analysing data from both experimental research as well as 

computational research. By the start of the 1980s, the first publication of the Journal of 

Computational Chemistry was published[22]. In 1998 the field of computational chemistry was 

celebrated by the Nobel Prizes. Walter Kohn for his development of the density-function 

theory and John Pople for his development of computational methods in quantum chemistry. 

By the turn of the millennial, computational chemistry had segmented itself as a young but 

promising research field, which has only been growing the past decades. 

 

1.2.1 Molecular Mechanics 

The methods used in computational chemistry can broadly be divided into two groups, 

quantum mechanics (QM) [23] and molecular mechanics (MM) [24]. QM simulations considers 

the nuclei and electrons as individual quantities that can be treated separately. This 

approximation is called the Born-Oppenheimer approximation [25], and allows the electronic 

Schrodinger equation to be solved. QM is a computationally heavy simulation, while on the 

other hand MM simulations have a more classical approach. In MM, atoms are simulated as 

particles, each with a van der Waals radius, a constant atomic charge and if the force field (FF) 

allows it, polarizability [26]. The atomic charge is usually obtained either experimentally or 

from QM calculations. The bonds are characterised as springs, with an equilibrium distance 

equal to the experimental or calculated bond lengths. The potential energy of an MM system 

is the sum of the bonded and non-bonded interactions (Equation 1). 
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𝐸 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑  Equation 1 

 

Where the bonded interactions consist of four components, bond stretching, bond angle 

bending, bond torsion and improper bond torsion (Equation 2). 

 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 + 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟  Equation 2 

 

The non-bonded interactions consist of two components, electrostatic interactions and van 

der Waals interactions (Equation 3). 

 

𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠  Equation 3 

 

A common functional form to describe a forcefield can be written (Equation 4) [27]. 

 

𝑈(𝑟𝑁) = ∑
𝑘𝑖

2
(𝑙𝑖 − 𝑙𝑖,0)

2

𝑏𝑜𝑛𝑑

+ ∑
𝑘𝑖

2
(𝜃𝑖 − 𝜃𝑖,0)

2

𝑎𝑛𝑔𝑙𝑒

+ ∑
𝑉𝑛

2
𝑡𝑜𝑟𝑠

(1 + cos(𝑛𝜔 − 𝛾)) 

+ ∑
𝑘𝑖

2
(𝜁𝑖 − 𝜁𝑖,0)

2

𝑖𝑚.𝑡𝑜𝑟𝑠

+ ∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

 

Equation 4 

 

As described earlier, the bonded interactions can be divided into bond stretching, angle 

bending and torsional rotation. The energy that arises from bond stretching can be defined 

using a simple harmonic potential (Equation 5) 

 

𝐸𝑏𝑜𝑛𝑑(𝑙) =
𝑘

2
(𝑙 − 𝑙0)2 

 Equation 5 

 

where 𝑘 is the force constant, 𝑙 is the bond length and 𝑙0 is the reference bond length. The 

force constant 𝑘 is a constant that determines the stiffness of the harmonic oscillator. This is 

a simple model, whenever 𝑙 is different from 𝑙0, a quadratic increase in energy can be seen, 

resulting in energies moving towards infinity when the bond length increase or decrease. In 

reality the energies should not increase towards infinity as the bond length increase, rather it 
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should move towards the dissociation energy. A simple yet effective solution to this problem 

is the Morse potential [28], where the dissociation energy D is accounted for in the equation 

(Equation 6). 

 

𝐸𝑀𝑜𝑟𝑠𝑒(𝑙) = 𝐷(1 − 𝑒−𝛼(𝑙−𝑙0))
2

, 𝛼 = √
𝑘

2𝐷
 

 
Equation 6 

 

The energy arising from angle bending can be modelled with a harmonic potential approach, 

similar to the bond stretching energy (Equation 7) 

 

𝐸𝑎𝑛𝑔𝑙𝑒(𝜃) =
𝑘

2
(𝜃 − 𝜃0)2 

 Equation 7 

 

where 𝜃 is the angle, and 𝜃0 is the reference angle. The angle bending energy can also be 

described using a Taylor expansion terminated at the second order.  

Torsional energy, energy related to the rotation of the central bond formed by four atoms, 

can be calculated using a Fourier series (Equation 8) 

 

𝐸𝑡𝑜𝑟𝑠(𝜔) = ∑ 𝑉𝑛𝑐𝑜𝑠(𝑛𝜔)

𝑛=1

  
Equation 8 

 

where 𝑉𝑛 is a constant that effects the energy barrier of rotation. As the angle increases from 

0° to 360°, 𝑛 gives the number of energy minima by describing the multiplicity of the function. 
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To ensure the forcefield handles planar arrangements correctly, such as aromatic rings, 

improper torsions are introduced. An improper torsion term is introduced between four 

atoms that are not connected in a standard way. Instead of having an atom sequence of 1-2-

3-4, an improper torsion term would be introduced in a sequence of 1-2-4-3. A functional form 

of this would be a torsional potential that maintains angles at either 0° or 180° (Equation 9).  

 

𝐸𝑖𝑚.𝑡𝑜𝑟𝑠(𝜔) = 𝑘(1 − cos 2𝜔)  Equation 9 

 

The non-bonded interactions are, as described earlier, divided into electrostatic and van der 

Waals interactions. For the electrostatic interactions, the Coulomb’s law is used to describe 

point charge electrostatics between pairs of non-bonded particles (Equation 10). 

 

𝐸𝑒𝑙𝑒𝑐(𝑟𝑖𝑗) = ∑
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
  Equation 10 

 

𝑞𝑖 and 𝑞𝑗 are the partial charges assigned to particle 𝑖 and 𝑗, 𝜖𝑜 is the electric constant of a 

vacuum and 𝑟𝑖𝑗 is the distance between the respected particles. 

The van der Waals interactions are described using the Lennard-Jones potential [29] which 

describes the interaction between two neutral particles, using a relatively simple 

mathematical model (Equation 11). 

 

𝐸𝑣𝑑𝑊(𝑟) = 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] 
 Equation 11 

 

ε is the potential well depth, σ is the distance at which the intermolecular potential equals 

zero and r is the distance of separation between both particles. The equation consists of two 

elements, Pauli-Repulsion and London dispersion, respectively the first and second part of the 

equation. This results in both repulsive and attractive forces being considered. When plotting 

the potential energy against distance between two atoms (Figure 4), one can clearly see the 

equilibrium distance for a system, in addition to the repulsive force acted upon the system. 
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Figure 4. Lennard-Jones plot, σ is the distance at which the intermolecular potential equals zero, and ε is the 
potential well depth. 

 

A set of parameters are used to characterise a chemical system, called a force field. A force 

field is a potential energy surface (PES) that contains parameters such as bond lengths, angles 

torsion etc. which has been obtained empirically through experimental work. There exist 

several different kinds of force fields, each tailored for different tasks. One such force field is 

OPLS (Optimized Potentials for Liquid Simulations) developed in the group of Prof. William L. 

Jorgensen, which is a popular forcefield for simulating biomolecules [30]. 

Because of MM`s use of classical mechanics, the size of the system simulated can range from 

small molecules, to large complex biological systems such as proteins and membranes. MM 

has however some drawbacks such as the fact that most FFs does not allow for bond breakage 

or formation. This can be solved by using a Morse potential [28] which is a more accurate 

model for bond breakage than the harmonic potential that most FF uses. Another drawback 

of MM is that the FFs are derived from ground states systems, meaning that excited states are 

not accounted for. 

Molecular mechanics are most often applied either in molecular dynamics (MD) simulations 

or in Monte Carlo simulations. Running an MD simulation of a system lets the atoms and 

molecules interact with each other for a fixed period of time, resulting in a dynamic view of 

the system. By solving Newton`s equation of motion, trajectories of atoms and molecules can 

be calculated. Combining the potential energies calculated from the forcefield, and the 

trajectories, it is possible to simulate any given chemical system with time scales compatible 

with biological processes [31](Figure 5).  
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Figure 5. Simple schematic of the MD algorithm. 

 

MD simulations use numerical methods to determine properties of complex systems since an 

analytical approach is impossible because of the complexity of the system. Because of this, 

long MD simulations were back in the day ill advised, seeing as they generated cumulative 

errors in numerical integration [31]. Nowadays progress has been made, making it possible to 

run simulations that last for several nano seconds without accumulating significant errors [32]. 

Simulations lasting over a milli second has also been achieved by the supercomputer Anton, 

which is purpose built for MD simulations [33]. 
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1.2.2 Molecular Docking 

In the field of structural based drug design (SBDD), molecular docking is extensively used. 

SBDD is a core approach to designing drugs, using structural data of molecular targets to 

improve different aspects related to ligand binding. Molecular docking aims to predict the 

most viable three-dimensional structure of a given ligand within a target binding site. In 

addition to giving a 3D structure, quantitative projections of binding energies are also 

calculated[34]. These calculated binding energies are often called docking score. Molecular 

docking can be divided into two separate processes, first predicting conformations of the 

ligand in the binding site, while the second is calculation of docking score for each predicted 

conformation of the ligand[35, 36].  

By altering the ligands structural parameters such as dihedral angles, and translational and 

rotational degrees of freedom, the conformational space of the ligand can be explored. 

Prediction of the ligand’s conformation are broadly achieved by using two different methods, 

systematic and stochastic search[37]. Systematic search explores the energy landscape of the 

conformational space, locating the energy minimum by altering the structural parameters 

gradually[36]. This is an effective method, but the search often yields a local minimum instead 

of the global minimum. This can be combatted by running several searches with different 

starting conformations. On the other hand, stochastic search alters the ligand structure 

parameters randomly to explore the energy landscape. Because stochastic search generates 

a wide range of solutions and explores a wider range of conformations, it avoids the local 

minimum and generates, more often than not, the global minimum.  

In addition to predicting optimal ligand binding conformation, molecular docking also 

calculates binding energy, the so-called docking score. There are mainly three methods used 

to calculate the binding energy, force-field-based, empirical and knowledge-based 

functions[38]. The binding energy consists of two parameters, the binding constant and Gibbs 

free energy. Force-field-based methods uses ab initio calculations and classical mechanics to 

calculate these parameters, while empirical method uses sets of protein ligands complexes 

with known binding affinities. Knowledge-based method generates a general equation to 

calculate the energies, from known ligand-receptor complexes[39].  
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In summary, molecular docking methods predicts conformations of ligands at a reasonable 

accuracy rapidly, but estimation of desolvation contributions, entropic effects and protein 

flexibility are poorly handled [40, 41].  

 

1.2.3 Linear Interaction Energy (LIE) 

The Linear Interaction Energy method (LIE) is a computational method for calculating ligand-

binding affinities[42]. It is an attractive method because of its good compromise between 

speed and accuracy. When it comes to accuracy, LIE calculations often have a root-mean-

squared (RMS) error less than 1 kcal/mol when calculating binding free energies[43]. In 

contrast, the most common scoring functions, have an RMS error value around 2-2.5 

kcal/mol[44].  

Ligand binding can be considered as a process where a ligand (l ) goes from being solvated in 

water (f), to bound in a solvated macromolecular target (b). This leads to the fact that for 

calculating free binding energies, the initial state of solvated ligand must be considered as a 

reference state. This is the foundation that LIE is built upon (Equation 12). 

 

𝛥𝐺𝑏𝑖𝑛𝑑(𝑙) = 𝛥𝐺𝑠𝑜𝑙
𝑏 (𝑙) − 𝛥𝐺𝑠𝑜𝑙

𝑓
(𝑙)  Equation 12 

 

To be able to calculate the free binding energy using the two states as mentioned earlier, a 

thermodynamic cycle must be made (Figure 6). 
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Figure 6. The thermodynamic cycle used to estimate binding free energies with the linear interaction energy 
method. 

 

The top left and right corners are the unbound and bound states, while the bottom left and 

right are unphysical states where there are no intermolecular electrostatic interactions. By 

solving the thermodynamic cycle, the free binding energy can be calculated (Equation 13). 

 

𝛥𝐺𝑏𝑖𝑛𝑑 = (𝛥𝐺𝑏𝑜𝑢𝑛𝑑
𝑝𝑜𝑙𝑎𝑟 − 𝛥𝐺𝑓𝑟𝑒𝑒

𝑝𝑜𝑙𝑎𝑟) + 𝛥𝛥𝐺𝑏𝑖𝑛𝑑
𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 

= 𝛥𝛥𝐺𝑏𝑖𝑛𝑑
𝑝𝑜𝑙𝑎𝑟 + 𝛥𝛥𝐺𝑏𝑖𝑛𝑑

𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟            

 
Equation 13 

 

Because the entropic term is implicitly incorporated into the nonpolar term, the binding free 

energy can be expressed as a sum of the polar and nonpolar interactions. This is very 

convenient, since molecular forcefields already split the nonbonded potential energy term 

into electrostatic and nonelectrostatic components. By using linear response theory for 

electrostatic forces[45], an empirical relationship for the polar contribution can be made 

(Equation 14). 

 

𝛥𝐺𝑏𝑖𝑛𝑑
𝑝𝑜𝑙𝑎𝑟 = 𝛽(〈𝑈𝑙−𝑠

𝑒𝑙 〉𝑏 − 〈𝑈𝑙−𝑠
𝑒𝑙 〉𝑓) = 𝛽𝛥〈𝑈𝑙−𝑠

𝑒𝑙 〉  Equation 14 
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where  are thermodynamic averages of ligand-surrounding, l-s are interaction energies 

calculated using standard force-field molecular dynamics and β is the polar scaling factor.  

Using Equation 14, the nonpolar component of the free energy can be analogously estimated 

(Equation 15). 

 

𝛥𝐺𝑏𝑖𝑛𝑑
𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 = 𝛼(〈𝑈𝑙−𝑠

𝑣𝑑𝑊〉𝑏 − 〈𝑈𝑙−𝑠
𝑣𝑑𝑊〉𝑓) = 𝛼𝛥〈𝑈𝑙−𝑠

𝑣𝑑𝑊〉 + 𝛾  Equation 15 

 

α is the empirically derived nonpolar scaling factor, and γ is a constant. Combining Equation 14 

and Equation 15, the full LIE equation can be written (Equation 16). 

 

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝛼𝛥〈𝑈𝑙−𝑠
𝑣𝑑𝑊〉 + 𝛽𝛥〈𝑈𝑙−𝑠

𝑒𝑙 〉 + 𝛾  Equation 16 

 

The polar scaling factor β was determined by Åqvist and Hansson, on the basis of several FEP 

calculations done using varying chemical systems[46]. They determined that the most optimal 

value for the polar scaling factor, β, was 0.5 for any charged compounds. While the nonpolar 

scaling factor, α, was obtained using an empirical approach by using a set of 18 protein-ligand 

complexes, which resulted in a scaling factor of 0.18[46]. The γ constant is used as an offset 

parameter and is not required when calculating relative binding affinities. γ has been proposed 

to be connected with the hydrophobicity of the binding site[47].  

In summary, the LIE method is a computationally light simulation with empirically sound 

results, making it an attractive method for calculating free binding energies. 

 

3.2.4 Free Energy Perturbation (FEP) 

Free energy perturbation, also known as FEP, is one of the most well-known methods for 

calculating free energy differences from simulations. Another name used for FEP is the 

Zwanzig relationship [48]. Zwanzig introduced the method in 1954 and theorized by doing an 

alchemical transformation with two analogous systems, one can find the difference in free 

energies. An example of such an alchemical transformation would be changing the ligand in a 
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ligand-binding reaction. The Zwanzig equation is used to calculate the free energy difference 

going from state A to state B (Equation 17). 

 

∆𝐺(𝐴 → 𝐵) = 𝐺𝐵 − 𝐺𝐴 = −𝑘𝐵𝑇𝑙𝑛 ⟨𝑒𝑥𝑝 [
−(𝐸𝐵 − 𝐸𝐴)

𝑘𝐵𝑇
]⟩

𝐴

 
 

Equation 17 

 

T is temperature, kB is the Boltzmann’s constant, and  denotes an average calculated over a 

simulation run for state A. By running a simulation for state A, the energy for state B is 

calculated using structures from state A. For this to be true, the two compounds must have a 

reasonable phase space overlap. By making a thermodynamic cycle (Figure 7) involving two 

different states, as well as a reaction in pure solvent, it is possible to calculate the difference 

in free energy using Gibs free energy (Equation 18). 

 

 

Figure 7. The thermodynamic cycle between two analogue compounds A and B. They both bind to the same 
protein. 

 

𝛥𝛥𝐺 = 𝛥𝐺3 − 𝛥𝐺2 = 𝛥𝐺4 − 𝛥𝐺1  Equation 18 

 

ΔG4 and ΔG1 are calculated using the Zwanzig formula (Equation 17). When doing a FEP 

simulation, it is common to define a morph parameter, lambda (λ), that introduces an artificial 
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intermediate state. λ=0 is the initial state A, and λ=1 is the final state B. Utilizing this, the 

internal energy of a system can be calculated (Equation 19). 

 

𝑈𝑚 = (1 − 𝜆𝑚)𝑈𝐴 + 𝜆𝑚𝑈𝐵 = 𝑈𝐴 + 𝜆𝑚∆𝑈 , ∆𝑈 = 𝑈𝐵 − 𝑈𝐴  Equation 19 

 

By summing the energies over the intermediate states, the binding free energy between the 

two states can be obtained (Equation 20). 

 

∆𝐺 = 𝐺𝐵 − 𝐺𝐴 = −𝛽−1 ∑ 𝑙𝑛

𝑛−1

𝑚=1

⟨𝑒𝑥𝑝[−𝛽(𝑈𝑚+1 − 𝑈𝑚)]⟩𝑚 
 

Equation 20 

 

1.2.5 Modelling of Ions in Classical Simulations 

In biological systems, the presence of metal ions is ubiquitous. Especially for catalytic metal 

centres, which are found in all different classes of enzymes. They account for 36% of 

isomerases, 36% of lyases, 39% of hydrolases, 40% of transferases, 44% of oxidoreductases 

and 59% of ligases [49]. It is therefore important to be able to simulate metal ions in a 

satisfactory way. Some advice that such simulations are to be carried out using QM [50], while 

others want to use models that mimic real life more closely (i.e. larger systems). The problem 

with using a QM or QM/MM approach is the fact that QM is and will be for the foreseeable 

future too computationally demanding for large biosystems. In addition to computational 

cost, QM is not a perfect representation of real life either due to its size limitations [51]. There 

exist mainly three approaches to treat metal ions in a classical forcefield system, these are 

nonbonded soft-sphere model, the covalent bond approach, and the dummy-model.  

Probably the most common of these three is the nonbonded soft-sphere model, which also is 

the simplest model, where metal-ligand interactions are simply described through 

electrostatic and van der Waals potentials. This model works fine for simple simulations and 

alkali and alkaline-earth metal ions, but struggles with more complex systems that involve 

multinuclear metal centres with metal ions in close proximity to each other. This is because of 

the model’s inability to accurately calculate the solvation energy and coordinate water 

correctly. 
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The covalent bond approach suffers from a different kind of problem. That is the fact that 

because the model include predefined covalent bonds between the ligands and the metal, no 

ligand exchange can occur as well as no interconversion between different geometries [52]. 

The third approach, the dummy model, tries to solve the problems inherent in the previous 

two approaches. By describing the metal centre as a set of cationic dummy atoms, connected 

around a central atom, a more accurate representation of the metal ions can be achieved 

(Figure 8). The fact that the dummy atoms can adapt to its surrounding other than that which 

was originally intended increases its accuracy. There exists several different dummy models, 

though arguably the most accurate one is the octahedral dummy model that was originally 

presented by Åqvist and Warshel [53, 54]. Parameters for each dummy model for certain 

metal ions can vary, though the parameters presented by Duarte in 2014 have shown to be of 

good quality [55]. 

 

 

Figure 8. A. Schematic depiction of the dummy model. M is the central metal atom, while D are the dummy 
atoms, with charge divided between each other. B. Dummy model in use in the Zn2+ metllic triad in SAP. 

 

Duarte et al. [55] refined parameters for a set of different metal ions by fitting simulation 

properties to known experimental values. By changing the van der Waals parameters, mainly 

the attractive and repulsive factor, and then validating the parameters through simulations 

done in Q with experimental values, parameters where refined. Since the dummy model uses 

a limited parameter set, there exists more than one combination of parameters that can 

reproduce the experimental observations. This is counteracted by iteratively refining the 

parameters over a range of relevant observables. Their results are among the most accurate 

parameters for metal ions used in MD simulations as of today.  
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1.3 Q – Software Package for MD simulations 

Several different computer software packages exist for running MD simulations. One such 

package is Q, developed by Åqvist and his research group [56]. Q has been in constant 

development since 1998, and the latest release is Q6 [57]. In comparison to other MD 

simulation software, Q stands out by the fact that from its inception, the focus was on three 

main methods, those being empirical valence bond (EVB), free energy perturbation (EVB) and 

linear interaction energy (LIE). Q does not provide any force field, but instead allows users to 

choose force fields such as CHARMM, AMBER, OPLS and GROMOS. The software consists of 

one program for dynamic simulations, called qdyn, and several sub programs that handles 

different tasks. The workflow for Q starts with creation of a topology for a given structure, 

followed by creation of an input file, ending with the results needed to be processed by 

external means (Figure 9). Topology generation creates a PDB structural file where the given 

structure is surrounded by water, in addition to a topology file that contains information that 

defines which atoms are connected to each other, such as angles, torsions, dihedrals and 

impropers. The input file describes what kind of MD simulation is going to be run, that being 

EVB, FEP or LIE. 

 

Figure 9. General workflow for the software Q. The orange boxes represent files, while the blue boxes are each 
of Q's modules. Based on Manual for the Molecular Dynamics Package Q v 5.06 [58]. 
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Because of the abstract nature of working with Q from a terminal, and the inherent problems 

of having to produce input files manually, as well as postprocessing the results, a GUI 

(graphical user interface) has been developed for Q in the group of Prof. Brandsdal, called 

Qgui [59]. Through Qgui it is possible to set up a workflow that handles creation of forcefield 

parameters, topology, input files for either MD, LIE, FEP or EVB, in addition to analysing the 

results from these simulations. Qgui’s features can be seen in Figure 10. 

 

Figure 10. Main window of Qgui, illustrating the content of the drop-down menus. Based on Qgui: A high-
throughput interface for automated setup and analysis of free energy calculations and empirical valence bond 
simulations in biological systems [59]. 
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1.4 Bioinformatics 

The field of bioinformatics is an interdisciplinary field that combines biology, computer 

science, information engineering, mathematics and statistics to analyse and understand 

biological data. The term “bioinformatics” was coined by Paulien Hogeweg and Ben Hesper in 

the 70s, elevating the field to that of biochemistry [60]. By using computers, bioinformatics 

aims to solve biological problems in silico, from predicting potential proteins in DNA strands, 

to predicting the functionality of unknown proteins. Also included in bioinformatics is the 

creation of homology models for proteins. There exist several tools that bioinformatics uses, 

two such tools that are of great importance is BLAST, for doing sequence queries, and SWISS-

MODEL for making homology models. 

 

1.4.1 Basic Local Alignment Search Tool (BLAST) 

Basic Local Alignment Search Tool, also known as BLAST, is a bioinformatic tool that compares 

a subject protein or nucleotide sequence, called a query, with a library or database of 

sequences [61]. By comparing nucleotide and amino acid sequences, BLAST can identify library 

sequences that resembles the query sequence above a certain threshold. BLAST has a wide 

range of uses, ranging from identifying species, locating certain domains in proteins, 

establishing phylogeny, DNA mapping and comparing gene composition of different species.  

 

1.4.2 Homology Model 

In the last decades a huge number of sequences has been determined, thanks to massive 

developments in high throughput genome sequencing. For a large part of these, the 3D-

structure is not yet available. By using a homology model, it is possible to obtain a three-

dimensional structure of the protein, by modelling the polypeptide on an already existing 

solved structure. Studies have shown that the three-dimensional protein structure has a 

higher level of conservation than one would expect on the basis of sequence conservation 

alone [62]. The quality of a homology model is dependent on the sequence alignment and 

quality of the structure’s templates. A popular and well documented tool for making 

homology models is SWISS-MODEL [63].   



22 
 

1.5 Goal 

The goal of this thesis is to learn computational methods such as molecular docking, molecular 

dynamics simulation, LIE and FEP. In addition, to use these tools to study shrimp alkaline 

phosphatase (SAP), and potentially increase its affinity towards two common targets within 

immunoassays, para-Nitrophenylphosphate (PNPP) and 3-(2'-spiroadamantyl)-4-methoxy-4-

(3″-phosphoryloxy)-phenyl-1,2-dioxetane (AMPPD). Affinity increasing mutations will be 

explored, using calf intestine alkaline phosphatase (CIP) as a base. CIP is chosen because of its 

already proven use in the industry. A homology model of CIP will be made since no crystalized 

structure of CIP is published 
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2 Method 

This chapter is divided into three sections: Molecular systems, pre-processing and 

simulations. Computational programs used in this thesis were Maestro [64], PyMol [65], Q5 

[58] and Qgui [59]. All figures were made using PyMol [65], ChemDraw [66] and InkScape 

[67]. 

 

2.1 Molecular Systems 

The structure of SAP was obtained from the PDB bank with the code 1SHN. This structure 

was solved in 2004 [7] by De Backer’s team. There exist several solved structures of SAP, the 

reason for choosing 1SHN is the fact it was crystalized with a PO4
3− molecule residing in the 

active site.  

When it comes to the two ligands of interest, para-Nitrophenylphosphate (PNPP) and 3-(2'-

spiroadamantyl)-4-methoxy-4-(3″-phosphoryloxy)-phenyl-1,2-dioxetane (AMPPD), both 

structures were provided by ArcticZymes [68] and built using Maestro’s molecule builder. 

To increase SAP’s affinity towards PNPP and AMPPD, calf intestinal alkaline phosphatase 

(CIP) was chosen to model after. CIP has seen wide use in the industry and is known for its 

reliability. However, there exists no crystalized solved structure of CIP. To obtain a structure, 

a homology model needed to be created. The CIP sequence was obtained using BLAST, by 

querying SAP’s amino acid sequence against Bos taurus taxonomy group. After which, a 

homology model was created in SWISSmodel. Using human phosphatase (1EW2) as a 

template to model CIP upon, a satisfactory homology model was created.  

 

2.2 Pre-process 

2.2.1 Protein Preparation and Docking 

Since SAP is a homodimeric alkaline phosphatase with an active site in each monomer, one of 

the monomers was removed and its accompanying water molecules. The residues N-acetyl-D-

glucosamine (NAG) was removed from the sequence, as it was used for crystallization[11]. 

Using the protein preparation tool in Maestro [69], hydrogens were added, H-bonds were 
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optimized using PROPKA [70] with a predicted pH of 7.0. Water molecules further than 3Å 

from heavy atoms were removed, as well as a restrained minimization using OPLS3e. 

The ligands PNPP and AMPPD was created using Maestro’s molecule builder. Structure 

optimization of the ligand was done using MacroModel [71] utilizing the OPLS3e force field 

with water as solvent. 

Since SAP was already crystalized with PO4
3− in the active site, there was no need to dock 

PO4
3−. However, both PNPP and AMPPD needed to be docked to SAP. This was done using 

GLIDE [72], a docking module present in Maestro. GLIDE uses a grid-based docking method, 

meaning that a grid mesh needs to be generated for the protein. The GLIDE grid is a search 

space which contains force-field information surrounding the receptor protein. Using PO4
3− as 

a focal point, GLIDE made a grid mesh of SAP with a van der Waals radius scaling factor of 1 

with a partial charge cut-off of 0.25 as well as metal coordinate constraints, ensuring the ligand 

would interact with Zn2+ in position M1. Both PNPP and AMPPD was then flexibly docked using 

XP (extra precision) with a van der Waals radii scaling factor of 0.8 and a partial charge cut-off 

of 0.15. The reason for using XP rather than SP (standard precision) is that XP does more 

extensive sampling, weeding out false positives. 

 

2.2.2 Mutation Study 

As mentioned earlier, a homology model of CIP was created for the purpose of investigating 

potential mutations. Using PyMol, CIP was superimposed upon SAP. Visually investigating the 

differences between CIP`s and SAP`s active sites, revealed three promising mutations of SAP. 

Based on these three possible mutations, three modified structures of SAP were created, each 

docked with the three ligands, PO4
3−, PNPP and AMPPD. The amino acid mutations of SAP 

were done using PyMol’s mutagenesis wizard. All mutated SAP structures were optimized in 

Maestro using the protein preparation tool. 
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2.2.3 Parameterisation of Ligands and Ions 

Running MD simulations require the use of a forcefield. For the natural amino acids in the 

protein, as well as water, OPLS2015 was used. Forcefield parameters for the ligands was 

generated through Qgui, using the Maestro ffld-server to create OPLS based forcefields. In 

addition, all ligands had charge groups made manually by hand. Because of the presents of 

metal ions in SAP, forcefield parameters and library files for Zn2+ and Mg2+ was created 

manually using Duarte’s parameters [55].  

 

2.2.4 Topology Creation 

Topologies were created using Q for each variants of SAP, that is the mutants with the three 

different ligands, PO4
3−, PNPP and AMPPD. In addition to this, topology of just the ligands 

alone was also created. Simulation sphere was set to 22Å for both protein complex (SAP + 

ligand) as well as the ligands. For the complex, SER86 was chosen as centre. Charges was 

turned on, but because LIE were being used, the charges between complex and ligand needed 

to be identical. This was solved by turning off the charges on amino acids that were not directly 

affecting the active site, ASP433, ASP436, ASP182 and ASP173. This resulted in a net charge 

of minus three for the complexes bound to PO4
3−, and minus two for the complexes bound to 

PNPP and AMPPD. Water molecules were added using the TIP3P model [73]. The same 

topologies were used for LIE and FEP simulations. 

 

2.3 Simulation 

The LIE and FEP method were used to calculate the free binding energies between SAP and 

the three different ligands. LIE was utilized for calculating the free binding energies between 

all different versions of SAP and the three different ligands, as well as calculating free binding 

energies for SAP where Zn2+ in M3 was changed to Mg2+. FEP was used to calculate the 

difference in free binding energies between SAP and the three ligands, where Zn2+ in M3 

changed to Mg2+. All simulations were carried out using Q5. 
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2.3.1 Linear Interaction Energy (LIE) Parameters 

The LIE simulations were carried out on four different versions of SAP bound to three different 

ligands. The four versions of SAP were native SAP, G102R, H149D and Zn2+3Mg2+, and as 

mentioned earlier, the three ligands were PO4
3−, PNPP and AMPPD. For both complexes and 

ligands, a set of MD simulations were prepared and executed using Q5. For each complex and 

ligand, an initial heating of the system from 1K to 300K using short simulations of 51ps, 

followed by 1ns equilibration at 300K was done. Total simulation time of 10ns divided over 

four simulations with 2 500 000 steps and 1fs stepsize for each of the parallels was prepared. 

Simulations ran at 300K coupled to a temperature bath with a relaxation time of 10fs. The 

solvents angles and bonds were constrained using SHAKE [74]. Cut-offs for non-bonded 

interactions between solute-solute, solvent-solvent and solute-solvent were all set at 10Å. No 

cut-off was applied for Q-atoms (i.e. ligands). A shell of 18.7Å was used, with a shell force of 

10 kcal/(mol∙Å2). The ligand in both complex and ligand simulation was chosen as Q-atoms. In 

the pure ligand simulation, a restraint was put on the ligand to prevent it from leaving the 

simulation sphere. When analysing the LIE results, α was set to 0.18, β was set to 0.5 and γ 

was set to 0. Experimental data is needed to do fitting of LIE’s results, therefor α, β and γ 

remained unaltered. 

 

2.3.2 Free Energy Perturbation (FEP) Parameters 

The FEP simulations were carried out on SAP bound to PO4
3−, PNPP and AMPPD, where Zn2+ 

in the M3 metal site was transformed to a Mg2+. A thermodynamic cycle was created, where 

Zn2+ is transformed to Mg2+ in solvent, and Zn2+ in the M3 metal site in SAP bound to ligand is 

transmuted to Mg2+. A FEP file was created, denoting the atomic change of Zn2+ to Mg2+, 

reflecting state A and state B. MD simulations were done at 300K coupled to a temperature 

bath with a relaxation time of 100fs. For each ligand, four parallels were simulated, each 

containing 51 000 steps, resulting in 0.51ns simulation time for each parallel. The solvents 

angles and bonds were constrained using SHAKE [74]. Cut-offs for non-bonded interactions 

between solute-solute, solvent-solvent and solute-solvent were all set at 10Å. No cut-off was 

used for the Q-atoms. A shell of 18.7Å was used, with a shell force of 10 kcal/(mol∙Å2). 
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3 Results and discussion 

Before any kind of simulations can be conducted, the system in question must be configured. 

Therefor the first task was to obtain a 3D structure to work with. In this case, the structure of 

SAP (1SHN) has previously been obtained through X-ray crystallography, which is a common 

way of determining protein structures. A homology model of CIP was created to search for 

potential mutations. In addition, these mutations were studied using the LIE and FEP method.  

This chapter will start with an investigation of CIP’s homology model acquired using BLAST and 

SWISSmodel. Followed by determination of possible mutations in the active site. Next, results 

from docking the ligands PO4
3−, PNPP and AMPPD to different mutants of SAP will be 

discussed. After which binding free energies calculated for each mutant of SAP with the three 

ligands using the LIE method will be presented and discussed. Finally, free binding energies 

calculated using the FEP method for the transformation of Zn2+ to Mg2+ will be investigated. 

 

3.1 Mutations 

The sequence identity between SAP and CIP when doing BLAST was 44% (Figure 11 A). This 

would be enough to create a homology model, since sequence identity as low as 30% yields 

structures that are comparable to a low-resolution X-ray structures [75]. The amount of 

identity required for a successful homology model is linked to the alignment length. If the 

alignment length is over a 100, less than 30% sequence identity is required. However, if the 

alignment length is as low as 20, a sequence identity over 55% is needed to yield a successful 

homology model [76]. 

The homology model of CIP was created using SWISS-MODEL (Figure 11 B) and used human 

phosphatase (1EW2) as a template instead of SAP. The sequence identity between CIP and 

1EW2 were 77.85%, which was why this structure was chosen as a template. Besides, The 

active site of alkaline phosphates are highly conserved, meaning the largest differences 

between them would be in the peripheral regions of the protein [77]. 
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Figure 11. A: CIP's amino acid sequence found using BLAST, by querying SAP`s amino acid sequence against Bos 
taurus. B: Homology model of CIP created using SWISS-MODEL. 
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Upon further investigation of CIP, superimposing CIP on SAP (Figure 12) yielded an RMSD value 

of 0.698Å. By visually inspecting the active site of the superimposed proteins, potential 

mutations were discovered. That being GLY 102 substituted with ARG (SAP G102R), HIS 149 

substituted with ASP (SAP H149D) and Zn2+ in M3 substituted with Mg2+ (SAP Zn2+3Mg2+). The 

arginine in position 102 and asparagine in position 149 could potentially coordinate with the 

ligand and provide favourable interactions. In addition, the M3 metal site has been proposed 

to be a regulatory site, where Mg2+ is said to increase activity of the protein compared to Zn2+ 

[7]. 

 

 

Figure 12. CIP superimposed upon SAP, possible mutations shown to be GLY 102 ARG, HIS 149 ASP and Zn2+ M3 
Mg2+. 

 

3.2 Docking 

Both ligands, PNPP and AMPPD, were docked successfully to SAP and its mutants using XP in 

GLIDE. Docking scores of SAP and its mutant with PNPP and AMPPD are shown in Table 1. 
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Table 1. Docking scores (kcal/mol) for SAP, SAP G102R, SAP H149D and SAP Zn2+3Mg2+ with ligand PNPP and 
AMPPD using XP in GLIDE. 

Protein Ligand Docking Score 

SAP 
PNPP -7.5 

AMPPD -8.9 

SAP G102R 
PNPP -8.6 

AMPPD -8.6 

SAP H149D 
PNPP -7.8 

AMPPD -8.0 

SAP 

Zn2+3Mg2+ 

PNPP -8.4 

AMPPD -9.5 

 

The docking conformations (Figure 13) showed that the phosphate group of each ligand docked 

in a similar fashion as PO4
3−. This was expected as the initial GLIDE grid was modelled upon 

the already existing PO4
3− bound to the active site. In general, molecular docking suffers from 

the lack of conformational sampling of the protein, and one alternative strategy is to use MD 

simulations to incorporate conformational sampling. 

 

Figure 13. A: AMPPD docked with native SAP.  B: AMPPD docked with SAP G102R. C: AMPPD docked with SAP 
H149D. D: AMPPD docked with SAP Zn2+3Mg2+. 
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3.3 Linear Interaction Energy (LIE) 

3.3.1 SAP 

The results from the LIE calculations are presented in Table 2. Investigating the binding free 

energy results from the LIE simulations of native SAP one can clearly see that PO4
3− binds the 

strongest. This is as expected, as PO4
3− is a natural inhibitor for all alkaline phosphatases. 

 

Table 2. Free binding energies calculated using LIE for SAP binding 𝑃𝑂4
3−, PNPP and AMPPD. Change in energy, 

as well as electrostatic and van der Walls energies are shown. 

SAP 

Ligand ∆𝑮𝒌𝒄𝒂𝒍/𝒎𝒐𝒍 Std.err. ∆𝑬𝒌𝒄𝒂𝒍/𝒎𝒐𝒍
𝒆𝒍  ∆𝑬𝒌𝒄𝒂𝒍/𝒎𝒐𝒍

𝒗𝒅𝒘  

𝑃𝑂4
3− -87.7 ±10.6 -173.1 -6.5 

PNPP -75.2 ±5.5 -145.1 -14.5 

AMPPD -76.2 ±2.8 -144.3 -22.3 

 

PNPP and AMPPD binds favourably to native SAP, which was expected considering their use 

in immunoassays. On closer inspection, one can see that the largest contribution towards the 

binding free energies for all three ligands is the electrostatic interactions. This makes sense as 

the ligands have a negative charge, and the active site is filled with positively charged zinc ions 

resulting in strong electrostatic interactions. In addition, ARG162 coordinates with the 

phosphate group, adding to the electrostatic interactions.  

The ligand with the most favourable electrostatic contribution, (PO4
3−), is also the ligand with 

the smallest van der Waals contribution. This is explained by the fact that PO4
3− has a larger 

negative charge than PNPP and AMPPD. In addition, PO4
3− has no hydrocarbon chain that can 

contribute towards van der Waals interactions. While AMPPD, which has the largest 

hydrocarbon chain, also has the largest van der Waals contribution. This is as expected since 

the non-polar contribution in LIE is size-dependent. It is important to mention that the binding 

free energies calculated are too high. In reality they would likely lie between 5kcal/mol and 

10kcal/mol. However, when comparing the difference between each ΔG value, it is clear these 

are comparable values. The difference in ΔG and the difference in docking scores (Table 1) are 

similar, supporting this claim. 
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Investigating the electrostatic and van der Waals interactions between PNPP and AMPPD, 

shows that the binding free energies are almost identical, despite their van der Waals 

interactions varying highly. A possible reason is that within the LIE equation, the electrostatic 

interaction is more weighted than the van der Waals interaction. This can be seen by 

comparing the non-polar and polar scaling factor, α and β respectively. α is 0.18 while β is 0.5 

which are the default values [46]. Adding to this, the electrostatic interactions for PNPP and 

AMPPD are overly large, overshadowing the van der Waals interactions. 

Since no experimental data has been published, a good assessment of the accuracy of the 

simulations is not entirely possible. However, since the structure that is being used originates 

from a crystal structure, one can calculate the RMSD value of the MD simulations and use it 

to gauge the structural stability. The RMSD values for native SAP simulations were between 

0.40 and 0.75 (Figure 18 A), which means the simulations does not diverge greatly from the 

crystal structure, implying that they are stable. 

 

Figure 14 Energy fluctuation over time in MD simulations for SAP bound to 𝑃𝑂4
3−, PNPP and AMPPD.  
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When inspecting the stability of the simulations (Figure 14), despite energy fluctuations are all 

simulations stable. Each simulation is divided into four segments of 2.5ns, meaning the jumps 

in energy that are visible are between each parallel, not within a single parallel. This indicates 

that there is more than one stable conformation for the ligands within SAP. These different 

conformations are clearly visible in Figure 15. The most stable conformation for the phosphate 

group is when all four oxygens are coordinated, two with ARG162 and two with zinc’s dummy 

atoms. This is the case for all three of the ligands across all different mutations of SAP. 

 

 

Figure 15 A. PNPP's high energetic conformation in SAP. B. PNPP's low energetic conformation in SAP. Made 
using PyMol. 
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3.3.2 SAP G102R 

The binding free energy results from LIE simulations for SAP G102R, shows that just as with 

native SAP, SAP G102R binds PO4
3− most favourably (Table 3).  

 

Table 3. Free binding energies calculated using LIE for SAP G102R binding 𝑃𝑂4
3−, PNPP and AMPPD. Change in 

energy, electrostatic and van der Walls energies, as well as difference between native SAP are shown. 

SAP G102R 

Ligand ∆𝑮𝒌𝒄𝒂𝒍/𝒎𝒐𝒍 Std.err. ∆𝑬𝒌𝒄𝒂𝒍/𝒎𝒐𝒍
𝒆𝒍  ∆𝑬𝒌𝒄𝒂𝒍/𝒎𝒐𝒍

𝒗𝒅𝒘  ∆∆𝑮𝑺𝑨𝑷 

𝑃𝑂4
3− -65.5 ±8.9 -130.0 -2.8 22.2 

PNPP -58.9 ±8.2 -112.8 -14.0 16.2 

AMPPD -49.2 ±9.0 -92.7 -16.2 26.9 

 

SAP G102R does bind PNPP and AMPPD favourably as well. Interestingly enough, PNPP is 

bound better than AMPPD, which indicates that the G102R mutation changes SAP`s specificity. 

Compared to native SAP the binding energies are poor, meaning the mutation G102R is 

potentially a weak one regarding binding affinity. One reason for this could be that arginine is 

a bulky amino acid compared to glycine, resulting in a cramped active site (Figure 16). Upon 

closer inspection of the active site with AMPPD, one can see that AMPPD is forced further out 

of the active site. The amino acids GLN101 and ARG112 are also forced away to make room 

for ARG102. Since AMPPD is forced further out of the active site, it does not coordinate as well 

with Zn2+ in M1 as it would have otherwise. The guanidine group of ARG102 is bent away from 

the active site and the phosphate group of the ligand. Because of this, any electrostatic 

interactions with the ligand that could have arisen from ARG102 positive charge is thereby 

lost.  
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AMPPD’s van der Waals interactions are also weakened by the fact that many of the non-polar 

amino acids around AMPPD are forced away by the mutation. 

 

 

Figure 16. SAP G102R and native SAP superimposed on each other, both bound to AMPPD. 

 

When it comes to PNPP, the van der Waals interactions are almost identical as in native SAP, 

although the electrostatic interactions are weaker. This might mean that the electrostatic 

interactions around the phosphate group has been weakened as a result of the mutation. As 

with AMPPD, PNPP is not as firmly placed in the active site because ARG102 is taking up a 

large amount of space. This results in PNPP coordinating poorly with Zn2+ in M1 and ARG162. 

However, PNPP is not as bulky as AMPPD, which might be why SAP G102R binds PNPP better 

than AMPPD. 

With PO4
3−, as with AMPPD and PNPP, ARG102 takes up space, forcing amino acids around it 

to bend away. That said, no direct loss of electrostatic interactions towards PO4
3− can be easily 

observed. This might lead to the conclusion that the G102R mutation indirectly destabilizes 

the active site, weakening the electrostatic interactions, resulting in poorer binding affinities 

for all ligands. 
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The RMSD values for the simulation lay between 0.50Å and 0.75Å (Figure 18 B), indicating that, 

as with native SAP, these are somewhat stable simulations. A similar pattern as seen for native 

SAP can be observed (Figure 17), that being the presence of two stable conformations that 

each parallel simulation adapt. The more oxygens that are coordinated, the more energetically 

favourable the conformation is. 

 

 

Figure 17. Energy fluctuation over time in MD simulations for SAP G102R bound to 𝑃𝑂4
3−, PNPP and AMPPD.  
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Figure 18. A: RMSD values calculated for the first parallel of each LIE simulations of native SAP bound to 𝑃𝑂4
3−, 

PNPP and AMPPD. B: RMSD values calculated for the first parallel of each LIE simulations of SAP G102R bound to 
𝑃𝑂4

3−, PNPP and AMPPD. 
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Figure 19. A: RMSD values calculated for the first parallel of each LIE simulations of SAP H149D bound to 𝑃𝑂4
3−, 

PNPP and AMPPD. B: RMSD values calculated for the first parallel of each LIE simulations of SAP Zn2+3Mg2+ bound 
to 𝑃𝑂4

3−, PNPP and AMPPD. 
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3.3.3 SAP H149D 

The results from simulations of SAP H149D show that the mutant bound AMPPD better than 

native SAP (Table 4). The other two ligands, PO4
3− and PNPP both bound worse than in native 

SAP, with electrostatic interactions being the main difference. For AMPPD, the electrostatic 

interactions were stronger than in native SAP. This mutation changes SAP’s specificity towards 

PNPP and AMMPD, seemingly favouring AMPPD over PNPP. When inspecting the active site 

around the H149D mutation for all three ligands, no radical changes to the conformation could 

be observed, leaving the question, why does AMPPD bind more favourably. It is possible that 

since HIS149 coordinates with Zn2+ in M3, changing it to an ASP results in a more favourable 

coordination and stabilization of the active site. The question then becomes, why did not the 

affinity for PO4
3− and PNPP increase as well. A possible solution to this question might lie in 

the multiple stable conformations of the ligands that are observed in the active site (Figure 

20). 

 

Table 4. Free binding energies calculated using LIE for SAP H149DR binding 𝑃𝑂4
3−, PNPP and AMPPD. Change in 

energy, electrostatic and van der Walls energies, as well as difference between native SAP are shown. 

SAP H149D 

Ligand ∆𝑮𝒌𝒄𝒂𝒍/𝒎𝒐𝒍 Std.err. ∆𝑬𝒌𝒄𝒂𝒍/𝒎𝒐𝒍
𝒆𝒍  ∆𝑬𝒌𝒄𝒂𝒍/𝒎𝒐𝒍

𝒗𝒅𝒘  ∆∆𝑮𝑺𝑨𝑷 

𝑃𝑂4
3− -64.7 ±10.3 -106.3 -2.0 23.0 

PNPP -69.9 ±3.8 -135.9 -11.0 5.2 

AMPPD -84.7 ±3.0 -161.4 -22.3 -8.5 
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Figure 20. Energy fluctuation over time in MD simulations for SAP H149D bound to 𝑃𝑂4
3−, PNPP and AMPPD. 

 

Since all ligands has at least two well stabilized structures when bound to the active site, with 

highly varying energies, it is possible that the energies that are calculated is not a true average. 

Because only four parallels of each simulation are run, a true distribution of conformations 

might not be reached. For instance, when looking at PO4
3−‘s electrostatic interactions in all 

simulations, one can see that when bound to native SAP, three of the four parallels reaches a 

more favourable energy level. While in SAP G102R and SAP H149D, only one of the parallels 

reaches the most energetically favourable electrostatic level. This is also true for the van der 

Waals contribution, especially with PNPP across all the different systems. The parallels end up 

being distributed among different energetic yet stable conformations. This results in 

contributions to the free binding energies that are skewed one way or another because of its 

uneven distribution. 

The RMSD values for the simulation lay between 0.50Å and 0.75Å (Figure 19 A). As with the 

previous two sets of LIE simulations, this indicates that the simulations are structurally stable.  
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3.3.4 SAP Zn2+3Mg2+ 

Inspecting the last set of LIE simulations, SAP Zn2+3Mg2+, reveals an interesting yet plausible 

result. SAP Zn2+3Mg2+ binds all three ligands better than native SAP (Table 5). 

 

Table 5. Free binding energies calculated using LIE for SAP Zn2+3Mg2+ binding 𝑃𝑂4
3−, PNPP and AMPPD. Change 

in energy, electrostatic and van der Walls energies, as well as difference between native SAP are shown. 

SAP Zn2+3Mg2+ 

Ligand ∆𝑮𝒌𝒄𝒂𝒍/𝒎𝒐𝒍 Std.err. ∆𝑬𝒌𝒄𝒂𝒍/𝒎𝒐𝒍
𝒆𝒍  ∆𝑬𝒌𝒄𝒂𝒍/𝒎𝒐𝒍

𝒗𝒅𝒘  ∆∆𝑮𝑺𝑨𝑷 

𝑃𝑂4
3− -105.0 ±5.33 -206.9 -8.6 -17.3 

PNPP -89.3 ±1.8 -172.6 -16.6 -14.1 

AMPPD -80.9 ±8.2 -155.7 -17.1 -4.8 

 

It is postulated that the M3 metal site in alkaline phosphatases is a regulatory site [7]. By 

exchanging Zn2+ with Mg2+ the overall catalytic affinity of the protein will increase. The LIE 

results support this theory as SAP Zn2+3Mg2+ binds all three ligands better than native SAP. 

Changing the metal ion from Zn2+ to Mg2+ increases the electrostatic interactions among the 

tested ligands, while maintaining the same van der Waals interactions. A possible reason for 

the increase in binding affinity may lie in the fact that the simulations that contained Mg2+ 

almost always ended up coordinating the four oxygens in the phosphate group better, 

resulting in a more stable conformation. 
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When it comes to the stability of the simulations (Figure 21), it is clear that all three ligands 

reach a more stable conformation. For the three previous LIE simulations, native SAP, SAP 

G102R and H149D, the ligands alternate between two stable, yet energetically different 

conformations. While for this particular mutant, it seems the most favourable conformation 

is reached the majority of the time. 

The RMSD values for the simulation lay between 0.50Å and 0.80Å (Figure 19 B). As with the 

previous three sets of LIE simulations, this indicates that the simulations are structurally 

stable. 

 

 

Figure 21. Energy fluctuation over time in MD simulations for SAP Zn2+3Mg2+ bound to 𝑃𝑂4
3−, PNPP and AMPPD. 
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3.4 Free Energy Perturbation (FEP) 

Investigating the difference in binding free energies for SAP Zn2+3Mg2+ with the three ligands 

PO4
3−, PNPP and AMPPD, calculated using FEP is presented in Table 6. Both the literature [7] 

and the previous LIE simulations indicate for the Zn2+3Mg2+ mutation of SAP an increased 

affinity. In contrast, the FEP results show the opposite trend. The FEP results indicate that 

the mutation will substantially decrease the free binding energies. 

 

Table 6. Difference in free binding energies for SAP Zn2+3Mg2+ binding 𝑃𝑂4
3−, PNPP and AMPPD, calculated using 

FEP. 

SAP Zn2+3Mg2+ 

Ligand Δ𝑮𝒌𝒄𝒂𝒍/𝒎𝒐𝒍 Std.err. ∆Δ𝑮𝒌𝒄𝒂𝒍/𝒎𝒐𝒍 

H2O 48.9 ±0.01 X 

𝑃𝑂4
3− 59.7 ±1.3 10.7 

PNPP 61.8 ±0.1 12.9 

AMPPD 61.0 ±0.5 12.0 

 

The solvation energy of Zn2+ transformed into Mg2+ calculated using the parameters from 

Duarte [55] are in the same range as published values. The experimental difference should be 

around 57.3 kcal/mol [78], meaning the solvation free energy difference calculated is within 

an acceptable range. Since there are indications that the binding free energy difference should 

be negative, it is plausible that the protein simulations contains structural errors. No obvious 

explanation was found in the MD simulations. Though when compared to the successful LIE 

simulations, an interesting discovery was made. A water molecule that was present in the LIE 

simulation, was not present in the FEP simulations (Figure 22). This water molecule coordinates 

the metal ion in the M3 site, with two oxygen atoms on the phosphate group of the ligand. 
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Figure 22. A: LIE simulation of SAP Zn2+3Mg2+ bound to 𝑃𝑂4
3− with focus on a coordinating water molecule. B: 

FEP simulation of SAP Zn2+3Mg2+ bound 𝑃𝑂4
3− with focus on a coordinating water molecule. Made using PyMol. 

 

This water molecule is not present in the FEP simulation, reason for this can be a simple fact 

that each step in the FEP simulations are too short for this molecule to get into position. And 

by not getting into position, helping with coordinating the ligand, the stability of the active 

site is slightly reduced, enough to give a positive ΔΔG.  

Although the literature postulates an increased catalytic effect by changing the metal ion in 

M3 from Zn2+ to a Mg2+, does not mean a decrease in affinity is not possible. It is possible to 

have a situation where the affinity towards certain substrates are decreased, while the 

catalytic effect overall for the protein is increased. The free binding energies that has been 

calculated is difficult to comment on the catalytic effect, apart from the fact that the ligands 

do still bind favourably. 
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4 Concluding remarks 

In this project, the value of bioinformatic tools and computational tools such as MD, LIE and 

FEP has been assessed. This was achieved by increasing SAP’s affinity towards the ligands 

PNPP and AMPPD. Using BLAST and SWISSmodel, a homology model of CIP was created, that 

formed the basis for potential mutations in SAP. By superimposing CIP on SAP, several possible 

mutations were discovered, where a set of three mutations where chosen to investigate 

further. These were SAP G102R, H149D and SAP Zn2+3Mg2+. Binding free energies were 

calculated for all four versions of SAP, binding three different ligands, PO4
3−, PNPP and AMPPD. 

For all four versions of SAP, the free binding energy were negative for all ligands, meaning all 

ligands bound favourably. A general trend in binding free energies were discovered, PO4
3− 

bound the strongest while AMPPD the weakest, with PNPP right in the middle. This is not 

surprising as PO4
3− is a natural inhibitor for SAP and alkaline phosphatases in general. SAP 

H149D bound AMPPD the strongest, and PO4
3− the weakest. Specificity towards PNPP and 

AMMPD also changed depending on the mutation, where G102R would bind PNPP over 

AMPPD, while H149D would bind AMPPD over PNPP. Out of the three mutations that were 

investigated, the most successful one was the SAP Zn2+3Mg2+. The differences in binding free 

energies from native SAP were -17.3kcal/mol for PO4
3−, -14.1kcal/mol for PNPP and -4.8 

kcal/mol for AMPPD. This strengthens the theory that the M3 metal site in alkaline phosphates 

is a regulatory site, where Mg2+ increases the catalytic effect compared to Zn2+. Although, LIE 

only calculates the binding free energies, which is not a direct compression to catalytic effect, 

one can suggest that doing a metal exchange on SAP will increase affinity towards PNPP and 

AMPPD.  

The two other mutants, SAP G102R and SAP H149D, showed to decrease the affinity for all 

ligands, except SAP H149D which bound AMPPD better than native SAP. Several possible 

solutions to this have been discussed, one being the overall decrease of electrostatic 

interactions in the active site. The other is related to the two distinct stable conformations 

that the ligands ends up in. For each ligand, two stable, yet energetically different 

conformations are seen in all the parallel LIE simulations. This is a result from the number of 

oxygen atoms in the phosphate group that are coordinated in the active site. SAP H149D had 

three parallels of AMPPD where the ligands had the most stable conformation, while native 

SAP only had one parallel with the most stable conformation. It is possible that this changes 



46 
 

the average so that it seems that H149D binds stronger, when in fact the difference might be 

negligible. Regarding the G102R mutant, an overall loss inn affinity towards the ligands can be 

observed. Again, different solutions have been discussed, and perhaps the most reasonable 

one being the fact that the large arginine displaces the ligands in the active site, as well as the 

surrounding ligands, decreasing the interactions substantially. Despite an overall decrease in 

binding affinity towards the ligand PNPP and AMPPD, these mutations could be useful in 

relation to ligand specificity. 

On closer inspection of the LIE results, it is clear that the largest contribution to the free 

binding energy is the electrostatic interactions. This makes sense since the active site is highly 

positively charged from all the metal ions, and the ligands are highly negatively charged. 

However, it is possible that the polar scaling factor β should have been calibrated lower for 

the metal ions, yielding lower contribution. As the calculations are done now, the van der 

Waals interaction has almost no impact on the binding free energies. 

FEP simulation of SAP was also done, where Zn2+ in the M3 site was transmuted to Mg2+. The 

solvation energy calculated for Zn2+ to Mg2+was 48.9kcal/mol which coincided with values 

from the literature. However, when calculating the difference in free binding energies with 

this transformation, all ligands were positive, meaning this transformation lowered the 

affinity. A possible solution to this were the fact that a water molecule that coordinated the 

metal ion in M3 and two oxygens in the phosphate group had not the same position in the FEP 

simulations as in the LIE simulations. Another solution might be that this metal exchange 

actually decreases the affinity of SAP towards PO4
3−, PNPP and AMPPD. Since free binding 

energy calculation does not tell us directly anything regarding the catalytic effect, it is possible 

to have a situation where the affinity is decreased, while the catalytic effect is increased. 

Regardless, through this project, possible changes to SAP has been explored that can see use 

in the industry, from increased binding affinity, to increased specificity.  
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4.1 Future work 

The overall goal of this project was to increase SAPs affinity towards PNPP and AMPPD. While 

interesting discoveries were made, primely that the metal ion in the M3 site plays a vital role 

in determining the proteins function, additional avenues can and should be explored. A larger 

set of LIE simulations could be run to clarify that the results are indeed valid. Incorporate a 

possible distance restraint on the phosphate group, preventing it from organizing in two 

different conformations should also be considered. Dampening the electrostatic interactions 

within the LIE equation by changing the polar scaling factor β might also be advisable. Several 

more mutations can be explored, especially mutations that does not directly affect the active 

site. Doing multiple mutations at the same time might yield interesting results as well. When 

it comes to FEP, it would go without saying that doing resFEP [79] on all the possible amino 

acid mutations would be advisable to validate the LIE results. Since there exists a proposed 

reaction mechanism for alkaline phosphatases, DFT (density field theory) calculations could 

be carried out, which then could be used in an EVB (empirical valence bond) study. Doing a 

proper EVB study on the system would tell us if the mutations can indeed increase the 

catalytical effect. Lastly, VR is a new and exciting tool that is slowly being refined, and in 

regards to chemistry there already exists promising software[80]. Preliminary work utilizing 

VR has been carried out, but not part of this project. Initial findings are positive to the degree 

that looking at proteins in VR can yield a greater understanding of the proteins. For SAPs case, 

more work is needed to incorporate the protein into the VR simulations. The reason for this is 

the problems that arise from the metal ions in the active site.  
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