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ABSTRACT 

The synthesis of the benzoid-based lipoxine A4 (LXA4) is the focus of this study specifically, the 

para substituted benzoid system. LXA4 is an endogenous agonist binding with high affinity to 

(ALXR) receptor that initiate it to display anti-inflammatory and antioxidant activities. 

Arachidonic acid is the cascade of LXA4 and its derivatives. These compounds belong to the 

biological active eicosanoids, which are characterized by its consistent of 20 C-atoms.   

Based on structure activity relationship (SAR) of LXA4, several studies postulated wide range of 

modification and functionalization. Benzoid based LXA4 analogues have studied by several 

research groups where the focus was on the O- and M-substituted benzoids. Herein, a total 

synthesis approach towards some structural mimics of LXA4 was conducted. Where, the target 

was the benzoid based LXA4. Specifically, the p-substituted benzoid suggesting that these 

analogues could cover the same conformational space as the native LXA4.  

 

Figure 1. Lipoxin A4 and schematic presentation of the targeted analogues 
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The project approach is based on using commercially available starting materials such as 2-

deoxy-D-ribose, toluene and p-cresol to assemble the desired molecules. 

Important reactions in the course of the synthesis includes: 

C1-C8 building block: Wittig reaction, Parikh-Doering oxidation, hydrogenation of the alkene, 

protecting group operations. 

C15-C21 building block: Friedel-Craft acylation, O-alkylation, reduction by sodium borohydride. 

Key reaction of the synthesis is the Wittig reaction between the two coupling partners. This 

reaction leads to the selective formation of the trans-olefin. The formation of the lactone ring 

intermediates 17 and 16 during the de-protection of 1, 2-diol moiety has been studied in details 

with the help of computational chemistry (Figure 1). The last part of the thesis reveals an initial 

trial of another suggested approach based on “Ullmann type” reaction. The total synthetic 

strategy was successfully applied within 14 steps out of 17 were successfully performed 

obtaining intermediates 16 and 17 in a good yield. The compliment of the steps includes short 

reactions of lactone ring hydrolysis in basic medium in addition to reduction of the ketone 

moiety in intermediate 16.  
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1 INTRODUCTION 

LXA4 is an endogenous agonist binding with high affinity to (ALXR) receptor. It is known as 

formyl peptide receptor 2 (FPR2), which displays anti-inflammatory and antioxidant activities 

[1-3]. LXA4 also shows partial agonist activity on binding with cysteinyl leukotriene receptors 1 

and 2 [3, 4]. LXA4 can suppress cytokine signaling2 when binding to nuclear receptor aryl 

hydrocarbon [5]. Furthermore, LipoxinA4 interacts with CB1 receptor and exhibits positive 

allosteric modulation [6, 7]. LXA4 involved in modulation of several inflammatory disorders 

such arthritis, asthma and ischemia [8-10, 132]. According to Pamplona et al. LXA4 is positive 

allosteric modulator (PAM) of CB1 cannabinoid receptor weather it is administered 

exogenously or it is produced endogenously [6, 7].  

As a natural product LXA4 can only be isolated in minimal quantities as many other natural 

products. It is produced in the body on demand and rapidly metabolized, which means that its 

accumulation at the site of the inflammation is short lived. These obstacles were realized upon 

the investigation and the study of these compounds. Thus, it reduces the possibility of applying 

further studies and investigations on these important pharmacological agents. Subsequently, a 

novel range of LXA4 analogues were designed and synthesized to get the structure activity 

relationship (SAR). In addition to, the evaluation of these novel analogues for pharmacological 

activity and resistance to the degradation for enhanced biological properties. Several research 

groups have conducted extensive studies indicating some functionalities and stereocenters 

that are essential to retain the biological activity according to SAR [9, 11-14]. 

This thesis describes our contribution in the continuous efforts towards mimicking the 

structure of the native LXA4. Our approach targeted a class of LXA4 analogues that are based 

on replacing the triene unit with a stable aromatic moiety in a substituted benzoid system. 

Benzoid based LXA4 analogues have been under the spot of study for many research groups 

where the focus was on the O-and M-substituted benzoids (Fig 2).  

Herein, we present in our research a total synthesis approach where the focus is on the p-

substituted benzoid suggesting that these analogues could cover the same conformational 

space as the native LXA4. 
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Figure 2. LXA4 and some benzoid based analogues. 
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1.1 THE GOALS AND DESIGN OF THE PROJECT 

Herein is proposed the construction of LXA4 analouges based on benzoid system (Fig 2, 3). The 

benzoid scaffold allows for a more effective and modular construction of the basic framework 

and the formation of a variety of analogues in a relatively straightforward manner. It is assumed 

that the various analouges cover the same conformational space as LXA4.  However, each 

analogue is restricted to a particular configuration of the triene-portion of LXA4.  This could 

impose entropically very favorable binding characteristics, which means that the analogue 

would not need to lose too many degrees of freedom in the binding process compared to the 

LXA4 itself. The construction of the proposed analogues will be first attempted. Our project 

goal is to introduce an appropriate organic synthesis strategy to produce the proposed 

analogues see (Fig 3) from easy and commercially available starting materials. The aims of the 

thesis are: 

 

1. Plan and design a synthetic route to benzene analogues of lipoxin A4 

 

2. Develop the synthetic route towards lipoxin A4 analogues 

 

3. Prepare some structurally similar analogues. 

 

4. Investigate alternative synthetic routes to generate simpler analogues 

 

5. Submit pure samples for pharmacological profiling. 
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Figure 3. Proposed p- benzoid analogues
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1.2 RETROSYNTHESIS  

The targeted molecules 17 and 18 consist of two main partners that show from the central 

disconnection A. The first disconnection A removes the aldehyde moiety 5 revealing the Wittig 

salts 9 and 13. In the forward direction, this is envisioned using Wittig coupling reaction. 

Further disconnection of both Wittig salts 9 and 13 removes the phosphate group retaining the 

benzylic brominated compounds 8 and 12. While in forward synthesis, they could be performed 

by SN2 reaction with the triphenylphosphine  

Disconnection of the benzylic brominated para benzoids 8 and 12 reveals the para alkyl 

benzoids 7 and 11. While the forward synthesis in case of compound 7 is based on the use of 

NBS within a thermal reaction where the heat is the radical initiator. On the other hand, the 

forward synthesis of compound 11 is based on the use of NBS with benzoyl peroxide as the 

radical initiation in a benzylic bromonation induced by visible light reaction  

Latest disconnection D of the benzylic ether 11 gives the alkyl bromide and the para cresol, 

which is forward synthesized by O-alkylation in an SN2 reaction mechanism. While in case of 

the acylated toluene 7 the disconnection gives the toluene and its acyl chloride partner. The 

forward synthesis can be performed using Friedel-Craft acylation on the toluene to give the 

para acylated toluene. 

 On the other pathway, further disconnection of the aldehyde 5 gives the alcohol 3. While, the 

forward synthesis of this aldehyde can be performed by the oxidation of the corresponding 

saturated alcohol of the alcohol 3 using Parikh-Doering oxidation. 

 Disconnection F removes the ethyl acetate moiety revealing the original protected sugar 2 and 

the phosphate salt. Compound 3 can be forward synthesized by Wittig reaction between the 

Wittig salt and the protected sugar 2. 

As 1, 2-diol containing sugar 1 it could be protected in a form of acetonide 2 when it couples 

with 2-methoxypropene as it shows in disconnection G. 
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Scheme 1. Retrosynthetic analysis of LXA4 
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1.3 BIOLOGICAL BACKGROUND 

1.3.1 Cannabis and cannabinoids 

The plant Cannabis sativa L., family (Cannabaceae), is an Indian hemp represents one of the 

oldest cultivated plants. Its origin is the plains of Central Asia and from there has been 

distributed widely around the world [15, 16]. Cannabis was cultivated for its herbal contents, 

natural fiber and oil. Cannabis derivatives have been used as therapeutic agents across the 

ancient world for more than 4000 years. Several therapeutic uses have been reported such as 

digestive, appetite stimulant, analgesic, anticonvulsant, tranquilizer, anesthetic, anti-

inflammatory, antibiotic, antiparasite, antispasmodic, and others [17]. The two most 

referenced cannabinoids preparations, are marijuana (dried leaves and female flower heads) 

and hashish (cannabis resin) [18]. In 19th century Europeans used cannabis extracts in the 

treatment of epilepsy, rheumatism, menstrual cramps, convulsions, chorea, hysteria, 

depression, tetanus, gout, and neuralgia [19]. 

Cannabis extracts contains more than 460 compounds around 70 out of them are considered 

as phytocannabinoids [20]. The prototype psychoactive phyto cannabinoid of cannabis is 

Δ
9
tetrahydrocannabinol, commonly known as Δ

9
-THC,  The identification of the  Δ

9 
–THC was 

the first step to develop novel  synthetic  cannabinoids, The chemical synthesis of the 

cannabinoids was followed by accumulating research into basic structure activity relationships 

{SAR} and their metabolic routs [21, 22]. The need for more potent and less lipophilic analogues 

that avoid the unwanted psychoactive effects led to the first synthetic drug mimics the action 

of Δ
9
THC “nantradol” synthesized by Pfizer Inc. in 1980. Soon after, replaced by levonantradol 

(Nantrodolum
®
) [23].  The term “Cannabinoid” refers to a set of oxygen-containing C21 

aromatic hydrocarbon compounds that occur naturally in the plant Cannabis sativa. Now, the 

term is expanded to involve all naturally occurring or synthetic compounds that can mimic the 

actions of plant-derived cannabinoids or that have structures similar to those of plant Cannabis 

sativa [24-26].  

A separate term” phytocannabinoid” (pCB)   refers to lipophilic molecules naturally occurring 

in the cannabis sativa L. with similar chemical structures as Δ
9
–THC [27]. 
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1.3.2 The endocannabinoid system 

The endogenous cannabinoid system is comprised of cannabinoid receptors (CBrs), their 

endogenous ligands, i.e. endocannabinoids, and enzymes for their biosynthesis and 

degradation [28]. Endocannabinoids comprise a family of eicosanoid CBrs [29, 30] present in 

the brain and in peripheral tissues. Wilson and Nicoll [31] described that endogenous 

cannabinoids mediate retrograde signaling that may be involved in the inhibition of 

neurotransmitter release.  Endocannabinoids differ from neurotransmitters as they are 

synthesized rapidly on demand, not in advance, from membrane phospholipids precursors 

upon stimulation and they are not stored in vesicles rather their precursors [32]. 

N-arachidonoyl ethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG) are the 

major endocannabinoid ligands act basically at cannabinoid receptors CB1 and CB2. Other 

endocannabinoids have also identified such as noladin ether, virodhamine, and N-arachidonoyl 

dopamine (NADA) but their biological activity and metabolism has not yet been fully identified 

[20]. Most of endocannabinoids have greater affinity for CB1 Than CB2 except 2-AG that has 

relatively equal affinity for both CB1 and CB2,while  virodhamine, unlike the others, acts as CB1 

antagonist /invers agonist and  has greater affinity for CB2 receptors [33, 34]. 

Endocannabinoids mediate several signals that regulate numerous aspects of mammalian 

neurophysiology, including suppress pain sensitivity, feeding, emotional state, learning and 

memory, and reward behaviors [35-37].Anandamide and 2-AG are widely distributed 

throughout the body. They are the main ligands among other endocannabinoids, though 2-AG 

expressed at much higher concentrations than anandamide. These endocannabinoids have 

been found in the brain, retina, and several peripheral tissues that involve the heart, spleen, 

liver, kidney, thymus, reproductive system and skin [38].The biosynthesis of endocannabinoids 

has not yet fully understood.  It is known that anandamide is synthesized by calcium dependent 

transacylase enzyme (CDTA) that led to migration of arachidonic acid (AA) from the sn-1 

position of membrane phospholipids to the primary amine of phosphatidylethanolamine (PE) 

to form N-arachidonoylphosphatidyl-ethanolamine (NArPE).Hydrolysis of (NArPE ) to produce 

anandamide seems to go through Multiple enzymatic routes [39, 40].                                               
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 2-AG is synthesized from arachidonoyl acid and preceded by formation of diacylglycerol (DAG) 

species by sn-1-specific diacylglycerol lipase- α and -β (DAGL α and DAGL β [41]).  

DAGL α is required for 2-AG formation in the brain while DAGL β in peripheral tissues such as 

the liver and spleen [42, 43]. DAG precursors are synthesized from membrane phospholipids 

to form sn-2 arachidonoyl phosphatidylinositol 4, 5-bisphosphate (PIP2) then hydrolyzed by 

phospholipase C (PLC β) to form 2-AG [44]. 

Anandamide transfers to its target cells by passive diffusion where exert its biological effects 

and rabidly degraded. Anandamide degradation seems to be happened by the serine hydrolase 

enzyme fatty acid amide hydrolase (FAAH) to form arachidonic acid and ethanolamine [33]. 

Soon after 2-AG migrates into cells by simple and passive diffusion, it is degraded by enzymatic 

hydrolysis of the ester bond. Presynaptic monoacylglycerol lipase (MAGL) is the major enzyme 

that hydrolyze 2-AG, serine hydrolases (SH) and FAAH enzymes may regulate 2-AG hydrolysis 

[45, 46]. 

1.3.3 Cannabinoid receptors type 1 

The existence of unknown (GPCRs) receptors bind to cannabinoids and couple to inhibition of 

adynylil cyclase to decrease the (cAMP) accumulation was first demonstrated by Howlett [47, 

48]. In 1988 the same group characterized CB1,  receptor needed for canabinoids  to mediate 

their action [49].The cannabinoid receptor, CB1, was first  cloned from rat in 1990   [50] 

followed by the second cannabinoid receptor CB2 ,which was cloned in 1993 [51] 

The two different cannabinoid receptors  CB1 and CB2 belong to G Protein Coupled Receptors 

(GPCRs), The largest family of cell surface receptors responsible for transducing signals from 

the outside to the inside of the cell. GPCRs are divided into 6 classes (A-F) based mainly on 

sequence homology and functional similarity. The largest and most studied class is the 

rhodopsin-like class A. This class, which includes rhodopsins, adrenergic, and cannabinoid 

receptors [52], is characterized by a heptahelical arrangement of membrane spanning α –

helical transmembrane domains (TMDs). They are connected by intervening three extracellular 

loops (EC1-EC3) preceded by Extracellular amino terminal (N terminus) and three intracellular 

loops (IC1-IC3). TM7 followed directly by intracellular cytoplasmic H8 and a carboxyl terminus 

(C- terminus).  
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The 7TM bundle also known by highly conserved motifs that are characteristic of GPCRs. These 

include the S(N)LAxAD in TM2,the E/DRY motif in TM3, theWX(9)P in TM4,the CWXP in TM6 

and the NPXXY motif in TM7 [53,54]. It was found that human CB1 receptors are composed of 

472 amino acids and those in rats are 473 amino acids long  [50] (Fig. 4). The CB2 receptor was 

determined to be 360 amino acids long and shares 44% of its overall sequence with the CB1 

receptor, with 68% similarity through the transmembrane domains [51]. 

 

Figure 4. Schematic representation of rat CB1 with three extracellular loops E1 – E3 and three intracellular loops C1 - C3, 

extracellular N-terminus, transmembrane α helix TM1 – TM7 and intracellular C-terminus ended with helical segment H8 and 

palmitoylation site on Cys residue denoted to by two sided arrows. Shaded circles marked the highly conserved residues while 

the arrows denote the most highly conserved residues of each helix. A conserved disulfide bridge Cys – Cys residues on E2 loop 

marked also by two sided arrows. (From Shim et al., [54]). 

1.3.4 GPCR receptors life cycle 

 It seems that GPCRs are synthesized, folded, and assembled through the endoplasmic 

reticulum (ER). Then migrate to Golgi complex where they subject to final modifications. After 

this modifications (e.g. palmitoylation methylation and glycosylation) GPCR receptors transfer 

to embedding themselves through the plasma membrane in inactive state. GBCR undergoing 

conformational changes when binding to a distinct agonist and associate G-protein to 
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commence downstream signaling pathways [55].The level and duration of CB1 signaling activity 

is controlled by desensitization process. It first begins with phosphorylation of activated 

receptors by GPCR protein kinases (GRKs) blocking the receptor from binding to G proteins. 

Phosphorylation of CB1 sets the stage for the second step, which is binding to protein β-

arrestin1 and β-arrestin2 immediately [56].  

The agonized CB1-arrestin complex associates with clathrin–coated pits to initiate GPCR 

internalization. Β-arrestins also acts as scaffolds in CB1- endosome - based signaling pathways. 

The arrestin bound CB1 may be dephosphorylated leaving CB1 free to migrate to plasma 

membrane. Internalized CB1 may also traffic from endosomes to lysosomes where they are 

degraded [56, 57]. 

 

 

 

 

 

 

 

 

 

Figure 5. Model of the GPCRs life cycle. GPCRs are synthesized at the endoplasmic reticulum (ER) and sent to the Golgi complex 

where they are modified then transfer to the plasma membrane. Upon agonist stimulation, GPCRs bind and activate a G protein 

commencing downstream signaling pathways. Duration of CB1 signaling activity controlled by desensitization a process begins 

with phosphorylation and removal of the receptors from the cell surface (internalization) by GRK and β-arrestins proteins. 

Internalized receptors may targeted to lysosomes for degradation, or resensitized by recycling back to the cell surface. (Stadel 

et al., [55]). 

1.3.5 Receptor activation states 

A two-state model of GPCR activation suggested by Leff [58], a receptor can be exist in two 

states, the fully active state R* and the inactive state R. Both states, R* and R, are in dynamic 

equilibrium. The different states of the receptor can be stabilized according to the 
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pharmacophoric features of the ligand binding to the receptor. Agonists can alter the 

equilibrium to the active state R*, while the antagonists alter the equilibrium to the inactive 

state R [59]. Most GPCRs possess some degrees of constitutive activity R' (a basal level of 

activation in the absence of any endogenous or exogenous agonist) so, we can look at the 

Inverse agonists as ligands that decrease the level of receptor activation below basal levels and 

suppress signal transduction [60]. Neutral antagonists bind to the receptor keeping the basal 

levels without stimulating or inhibiting the receptor, they occupy the binding sites and 

canprevent other ligands from binding to the receptor. Full agonists induce the maximal 

possible level of activation, while partial and weak partial agonists activate the receptor above 

basal levels but not maximally, they cannot elicit full activity even at saturating concentrations 

[61]. This observation led to adaptation of the model of GPCR two state activation to suite    

multiple activation states [62] with distinguishing biochemical characteristics, including extent 

and selectivity of promiscuous G protein coupling and arrestins for signaling.  

 

 

 

 

 

 

 

 

Figure 6. GPCR activation states. Full agonists promote the maximum active R* state of the receptor and enhance the biological 

activity and signal transduction of the receptor while inverse agonists decrease the level of receptor activation below R' levels 

and suppress signal transduction. Antagonists bind the orthosteric site competitively but do not alter the equilibrium of R and 

R* and do not directly affect signal transduction levels. (Tat, [60]). 
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1.3.6 CB1 receptors tissues distribution  

CB1 receptors are found in rat and human brain tissues predominantly in the central and 

peripheral nervous system[50], where they mediate  presynaptic inhibition of transmitter 

release that include acetylcholine, noradrenaline, dopamine, 5-hydroxytryptamine, g-

aminobutyric acid, glutamate, D-aspartateand cholecystokinin [52,63]. 

 CB1 has been expressed with a high level in cerebral cortex, hippocampus, basal ganglia, and 

cerebellum, less abundant in hypothalamus and spinal cord, and very low level in the brainstem 

[52, 64]. However, it has also been identified in a number of peripheral organs and tissues with 

a lower level than in the central and peripheral nervous system .It is found in heart, kidney, 

colon, pancreas, spleen, placenta and liver [65]. It can also expressed in gastrointestinal tract, 

adipose tissue, thyroid, adrenals, skeletal muscle, hepatocytes, and reproductive organs 

andendocrine cells of the pancreas [66, 67]. 

The CB1 receptor along with its agonist and antagonist cannabinoids are a valuable therapeutic 

target for a number of disorders.  including neurodegenerative diseases , cancer, neuropathic 

and inflammatory pain, obesity [68] treatment of anorexia in patients who suffer from AIDS 

wasting syndrome, reducing nausea and vomiting associated with chemotherapy treatment 

[69], and relief of neuropathic pain in multiple sclerosis [70].  Their activation can affect 

processes such as cognition and memory, alter the control of motor coordination, and induce 

signs of analgesia, autonomic function and sensation [71].  

Cannabinoid drugs produce a “tetrad” of characteristic pharmacological effects: 

antinociception, hypothermia, a decrease in general mobility (sedation), and catalepsy, these 

combinations of pharmacological side effects have been accepted as a screening procedure 

[72]. The CB1-selective antagonist SR141716 was able to block the unwanted effects of most 

cannabinoid drugs in the mouse tetrad model [73, 74]. 
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                     Figure 7. Tissue distribution of the human CB1 and CB2 receptors in the body [75]. 

1.3.7 CB1 Signal transduction 

CB1 receptor when activated, couples to the   inhibitory Gi/o proteins. The activation of these 

inhibitory G-proteins by CB1 linked to the inhibition of adenylatecyclase .The enzyme 

responsible for synthesizing cAMP production from ATP. That leads to decrease of cAMP 

accumulation.  The cAMP acts as a cellular secondary messenger andmediates processes 

including the metabolism of glycogen, sugar and lipids [47, 48]. However, in certain 

circumstances, CB1R can couple to Gs proteins. , It has been reported that in pertussis-

pretreated cells, CB1R stimulation leads to adenylyl cyclase activation [76, 77]. The ability of 

cannabinoids to modulate cellular levels of cAMP has been demonstrated to regulate many 

aspects of cellular function, such as the contractile activity of smooth muscle, the gating 

properties of ion channels on neuronal cell [78]. CB1receptor couples predominantly through 

Gi/oproteins to certain subtypes of voltage-gatedcalcium (Ca2+) channels associated with the 

inhibition of N, P/Q and L-types voltage-dependent (Ca2+)  channels [79] and activation of A-

subtype and inward-rectifying K+ channels [80,81].  Cannabinoids suppress neuronal 

excitability and play a role in regulating neurotransmitter release [82]. 
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CB1 activation may also stimulate mitogen-activated protein kinase (MAPK). The (MAPK) 

pathways can regulate cell proliferation, cell differentiation, cell movement and cell death [83]. 

MAPK cascades include pathways leading to activate ERK1/2 [84], c-Jun N-terminal kinase (JNK), 

p38 MAPK [85, 86], and (PI3K) phosphatidylinositol 3-kinase [87]. 

CB1 receptor-mediate production and release of NO from endothelial and neuronal cells.CB1 

stimulation of NO-sensitive guanylylcyclase leads to increasing of cyclic GMP production [88, 

89]. NO is synthesized in most biological tissues and it involves in several biological functions 

including neurotransmission, vasodilatation and macrophage function [90]. 

 

Figure 8. Model of CB1 signal transduction. On stimuli CB1 associates to heterotrimeric G-protein results in a release of (α-β Ύ ) 

subunits of  G- protein, which have a negative impact on cellular production of cAMP, activates K+A and K+IR channels, and 

inhibits Ca2+ channels. It can also recruit β-arrestin to the plasma membrane. When stimulated, CB1 can activate MAPK, 

phosphatidylinositol 3-kinase, and FAK, among other pathways. (Modified from [65]). 

1.3.8 CB1 receptor agonists 

CB1 receptor agonists can be divided into five different groups: Classical cannabinoids, Non-

classical cannabinoids, aminoalkylindole cannabinoid, and eicosanoid cannabinoids that 

related to endocannabinoids and miscellaneous compounds “Hybrid ligands” [52, 91]. 
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Classical cannabinoids are ABC - tricyclic terpenoid derivatives bearing a benzopyran moiety. 

They are insoluble in water but soluble in lipids, alcohols, and other nonpolar organic solvents.  

(Δ 9- THC)  Δ 9-tetrahydrocannabinol the prototype of the classical  cannabinoid agonists is the 

main constituents of the plant cannabis sativa, this phytocannabinoid agonist which was known 

by its psychoactive effects long before discovery of CB1/CB2 receptors.  Δ 9 –THC  exhibit low 

affinity for both receptors and acts as partial agonist. Other pharmacologically active 

constituents of the plant cannabis sativa is (-)-Δ 8 -THC (cannabinol. [92]).  

HU-210 is a synthetic analogue produced by replacing the pentyl side chain of Δ8 –THC with a 

dimethylheptyl side chain. It is developed by Mechoulam to work as a radioligand labeled probe 

binding to cannabinoid receptors [93]. It has a high affinity for both CB1 and CB2 receptors. It 

also displays high potency and acts as a cannabinoid receptor agonist and exhibits a long term 

of action in vivo [24].  

Non classical agonists consist of bicyclic and tricyclic analogues that are biological mimetic of 

Δ9-THC, identified by lack of the pyran ring of Δ9-THC. They are represented by CP55, 940 

developed by Pfizer [94]. The [3H]CP55, 940 exhibits high affinity and efficacy for both CB1 and 

CB2 recptors and acts as a standard research tool for probing the cannabinoid receptors, used 

as a key radioligand to identify CB1 receptor [49]. CP55244 and HU-308 are examples for this 

class. They are closely related to the classical cannabinoids. 

Aminoalkylindoles structure, from the pharmacophoric point of view may have a three-point 

attachments  i) the morpholinoethyl group ii) the carbonyl group  iii) the naphthalene ring at 

the C7 position[95]. The morpholinoethyl group or another cyclic structure was required for 

binding and exert activity of aminoalkylindoles [96]. Aminoalkylindoles represented by WIN55, 

212-2, it is important research tool for investigation of the endocannabinoid system. Its 

potential as non-steroidal anti-inflammatory agent showing a 7-fold difference in potency for 

hypomobility versus potency for antinociception and hypothermia [97] with a higher affinity for 

(CB2) receptors than for CB1 receptors in the brain (Ki = 1.89 nM (CB1) and 0.28 nM (CB2), 

[98]).   

Eicosanoids, since the discovery of endogenous cannabinoids especially anandamide and 2AG, 

discussed earlier. Several eicosanoid analogs have been developed. Anandamide has 



 

 

17 

 

considered a template for the modification of CB1 agonists for eicosanoid compounds [99,100]. 

The modification of a polar ethanolamido head group of anandamide produce several CB1 

agonists. The (R)-Methanandamide is similar to anandamide except for a methyl group added 

to the 1’ carbon [101].  

The importance of this compound came from its ability to resist the anandamide hydrolysis by 

amidohydrolase. Its enzymatic resistance and relatively high potency, 4 folds higher than 

anandamide, make it effective biological tool with selectivity for the CB1 receptor [102]. The 

modification of anandamide head group by substitution of chloro or fluoro group instead of 2-

hydroxyl group resulted ACEA (AM881) and (O-585) ligands respectively. Both ligands are CB1 

selective and exhibit high affinity and efficacy [88, 99].   

Hybrid cannabinoids resulted from the combination of classical and non-classical cannabinoids 

structural features. The modification of The Southern aliphatic hydroxyl (SAH) pharmacophore 

have been developed to produce novel analogs [103-105]. The β-hydroxypropyl analogue is a 

good representative for this class. It has a higher affinity than the α-axial epimer.   

1.3.9 Cannabinoid antagonists – inverseagonists 

Most Endocannabinoid antagonists or inverseagonists are diarylpyrazole compounds. The 

selective CB1 receptor antagonist SR141716A (Rimonabant) was developed by Sanofi [74,107]. 

It is used in medicinal treatment for a number of disorders such as Alzheimer’s disease, 

schizophrenia/and obesity [106]. It binds selectively to CB1 receptor with a very high potency. 

SR141716A has the ability to block or reverse the effects induced by cannabinoid agonists at 

CB1 receptors, both in vitro and in vivo [52,108]. Structural analogues of SR141716A have been 

developed, AM251andAM281 are both selective to CB1 receptor with lower affinity than 

SR141716A [109].  They are able to displacing [3H] SR141716A and [3H] CP-55,940 in CB1 

receptor membrane preparations and they can block or reverse the effects induced by 

cannabinoid agonists at CB1 receptors [110,111]. 

 Another CB1 receptor selective antagonist LY320135 developed by Eli Lilly, it is less potent than 

SR141716A and exhibit inverse agonist for CB1 receptor [112]. 
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Figure 9. The structures of several CB1- cannabinoid ligands [22]. 
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1.3.10  Allosteric modulation 

In 1963, “Monod, Changeux and François Jacob on ‘allosteric proteins and cellular control 

systems’”  noticed, In the field of enzymology, that the chemical structure of inhibitors was 

often very different from the substrate of the enzyme suggesting  another binding site referred 

to as ”allosteric site” accommodated these inhibitors through which they transmitted their 

effect to the substrate site [113]. According to this concept, the activity of a receptor can be 

modulated by ligands that bind to allosteric sites – sites which are located away from the 

orthosteric sites and does not exhibit any overlap with the orthosteric site. The binding of a 

ligand to allosteric site can alter the receptor conformation, thereby either enhancing (positive 

allosteric modulator, PAM) or slowing (negative allosteric modulator, NAM) the interactions 

carried out at the orthosteric site [114,115]. Allosteric ligands have several advantages over 

orthosteric ligands. Probe dependant which mean that allosteric modulators exert their effects 

only in the presence of orthosteric ligands and thereby we can look at them as fine tuners. 

Additional advantage of allosteric modulator is their saturable effects which known as “ceiling- 

effect” and no more amount of allosteric ligand can affect orthosteric / allosteric ligands 

cooperativity [116].  

This advantage enabled the allosteric modulators to avoid the harmful and unwanted 

physiological side effects of the orthosteric agonists [117]. Toxicity, desensitization, long-term 

changes in receptor up/down regulation and psychoactivety can be adjusted by allosteric 

modulators that have the potential to overcome these negative effects [114]. 

Functional assays along with kinetic association and dissociation assays of the (radio) ligand-

receptor interaction are often used to determine an allosteric ligand potentiality [115]. The 

binding of an allosteric ligand induces a conformational changes in the receptor, thereby 

altering the rates at which the orthosteric ligand associates or dissociates from its binding site 

[118].The need to describe different  interactions of receptor – ligand have been met by Several 

mathematical models. One of the first and most simple models is the allosteric two-state model 

ATSM   also known as cubic ternary complex.    
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1.3.11  Allosteric Modulators of the CB1 Receptors 

Allosteric ligands that modulate CB1 Receptor have been developed soon after identifying CB1 

allosteric sites.  Org 27569 the prototype of allosteric ligands exhibits interesting effects on 

CB1, it increases the affinity and decreases the efficacy of CB1 agonists, [117,119], by blocking 

the agonist-induced conformational change at TM6. Org 27569 traps the receptor in a distinct 

agonist-bound, but inhibiting conformational changes required for receptor signaling [120].1-

(4-Chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl) phenyl] urea (PSNCBAM-1) [121] is 

another allosteric modulator type for CB1. These compounds modulate electrically evoked 

contractions in the mouse vas deferens [117], affects CB1 ligand modulation of synaptic 

transmission [122] and have hypophagic effects in vivo [121]. They display a contradictory 

pharmacological profile increasing the specific binding of the CB1 receptor agonist [3H] 

CP55940 but producing a concentration-related decrease in CB1 receptor agonist efficacy. The   

3b-(4-methylphenyl)-2b-[3-(4-chlorophenyl)isoxazol-5-yl]tropane (RTI-371) is  the positive CB1 

allosteric modulator has been discovered by the way, when Navarro and his colleagues  were 

searching for treatment of cocaine addiction investigating indirect dopamine agonists ,they 

noticed that  RTI-371 blocks cocaine-induced locomotor stimulation. They subject this 

compound for screening through functional assays for activity at other CNS receptors. They 

demonstrated that RTI-371 is a positive allosteric modulator of the human CB1 receptor. Other 

DAT-selective inhibitors on CP55940-stimulated calcium mobilization was characterized in a 

calcium mobilization-based functional assay for the hCB1 receptor [123]. Recently, a new 

allosteric modulator (Lipoxin A4) has been identified [6, 7] which will be discussed in more 

details. 

 



 

 

21 

 

 

Figure 10. Chemical structure of representatives for CB1 allosteric modulators. 

1.3.12  Lipoxin A4 is an endogenous allosteric ligand for CB1  

Lipoxins are trihydroxy-eicosatetraenoic acids, derived from arachidonic acid with the four 

double bonds in conjugation, which were the first lipid mediators to be discovered that were 

involved in the resolution phase of inflammation. There are at least three routes to the 

biosynthesis of lipoxins through cell-cell interactions when distinct types of cells are in close 

proximity during inflammatory responses. The two enzymes lipoxy-genase (LO) and 

cylcooxygenase (COX)-2 have a crucial role in lipoxins biosynthesis [124,125]. One of the 

recognized mechanisms of lipoxins biosynthesis is catalyzing  arachidonic acid into 15S-

hydroxyeicosatetraenoic acid (15S-HETE) by  lipoxygenase  (15-LO) via Monocytes, eosinophils, 

and airway-epithelial cells .15S-HETE is rapidly taken up by neutrophils and converted to lipoxin 

A4 by a 5-LO- catalyzed reaction [124]. 

The second pathway go through the vasculature that activate 5-LO, present in myeloid cells, 

[126] to produce leukotriene A4 (LTA4) and then converted to lipoxins by 12-LO, which is 

present in platelets. This process is determined by cell-cell interaction [127].The third 

important route is known by the aspirin triggered 15-epi-LX (ATLs) pathway. The reaction is 

initiated by aspirin to acetylate the cyclooxygenase COX-2, in the stimulated endothelial and 

epithelial cells, altering the catalytic activity of the enzyme to produce 15RHETE in lieu of 

prostanoid biosynthesis. The 15R-HETE is released from endothelial and epithelial cells and 

converted to 15-epimer lipoxins (aspirin-triggered lipoxins or ATL) via leukocyte 5-LO enzyme 
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[128]. The 15-epimer lipoxins possess most of the parent lipoxins biological features added to 

its higher potency and efficacy [129].  Lipoxins can serve for pro – resolution of inflammation 

and acts as endogenous mediator that is anti-inflammatory agent. Lipoxins exhibit vasodilatory 

and counter regulatory roles in vivo and in vitro models. Lipoxins promote vasorelaxation and 

relax the aorta and pulmonary arteries [130,131]. 

Lipoxin A4 is an endogenous agonist binding with high affinity to (ALXR) receptors, also known 

as formyl peptide receptor2 (FPR2), where display anti-inflammatory and antioxidant activities 

[1-3]. LXA4 also shows partial agonist activity on binding with cysteinyl leukotriene receptors 1 

and 2 [3, 4]. LXA4 can suppress cytokine signaling2 when binding to nuclear receptor aryl 

hydrocarbon [5]. Furthermore, LipoxinA4 interacts with CB1 receptor and exhibits positive 

allosteric modulation [6, 7]. LXA4 involved in modulation of several inflammatory disorders 

such as pain, arthritis, asthma and ischemia [8-10,132]. 
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1.4 CHEMICAL BACKGROUND TOWARD THE SYNTHESIS OF LXA4 ANALOGUES 

Based on the retro synthesis study (Scheme 1) we were able to design the forward synthesis. 

This part of the introduction includes an overview on the methodology applied in order to 

obtain the desired analogues. Furthermore, it discuss the theory behind the reactions by 

discussing the proposed mechanism of each reaction.  

 

Scheme 2. Forward synthesis of the designed reaction sequence 
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1.4.1 Preparing the aldehyde from the sugar  

This part of the synthesis was based on the strategy postulated earlier by Philips ED et al. as 

shown (scheme 3). Minor modifications were applied on the same strategy in order to obtain 

the intermediate 3. Different strategy was applied in this thesis starting from intermediate 3 

until the key intermediate 5 (section 1.4.1.4). 

 

Scheme 3. Earlier synthetic research on the key intermediate 

1.4.1.1 1, 2-diol prorection of the 2-deoxy-D-ribose. 

 

Scheme 4.Protection of 2-deoxy-D-ribose 

There are many protecting groups that show great efficiency in protecting alcohols as 

trialkylsilyl (R3Si), tetrahdropyranyl (THP), benzyl ether (OBn) and they are used in different 

conditions. In this case we are dealing with the protection of a 1, 2-diol system (two adjacent 

hydroxyl groups). This kind of protection could be performed by making an acetals from these 

two adjacent hydroxyl groups. The acetal formation reactions are a reversible process and 

includes several proton transfer (Scheme 5).  
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Scheme 5. General mechanism of acetal formation 

In this reaction 2-methoxypropene was the protecting agent for the 1, 2-diol system in a 

reaction of acetonide formation. 2-methoxypropene is an electron rich used in the 

monoprotection of  several groups, such as alcohols of different types like aliphatic and allylic 

alcohols, peroxides, cyanohydrins, alpha hydroxyl ketones , 1,2 diols and 1,3 diols. In addition, 

it is used in other applications such as formation of 2-methoxyallyl halides and substituted 

furans its participation in pericyclic reactions [133]. Acetonide formation proceed when the 

lone pair of the hydroxyl group act as a nucleophile and attack the electrophile, which 

expressed in the protecting group. This leads to the formation of a new O-C bond between both 

of them, in a process of proton transfer leads to some resonance movement. As a result a new 

electron rich position which is the formed carbonyl group with a positive charge on the oxygen  

after the removal of methanol fraction from the compound. The lone pair on the other alcohol 

partner will have the tendency to attack on this carbonyl group completing the protection 

reaction after another deprotonation step [134]. 
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Mechanism  

 

Scheme 6. Mechanism of acetonide formation 

1.4.1.2 Wittig reaction of the protected sugar. 

 

Scheme 7. Synthesis of the unsaturated alcohol 

Wittig reaction is one of the common reactions known for replacing the carbonyl group (C=O) 

with an alkene group (C=C). In general, the reaction is based on the nucleophilic attack on the 

carbonyl group (electrophile) by the carbanion part of the phosphonium ylid.  

Consequently, negative charge on the aldehydic oxygen is formed. The negative charge will 

attack the phosphorus positive charge, giving rise to four membered ring transition state called 

oxaphosphetane, which cleaves forming the desired alkene with triphenylphosphine oxide as 

by product (scheme 8). The phosphonium ylid is originally formed from the deprotonation of 

the phosphonium salt, which can be readily synthesized in a reaction between triphenyl 

phosphine and an alkyl halide. Opening the acetal is required to reveal the carbonyl group. This 

is done by a simple process of proton transfer. Where the lone pair of the ether receives a 
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proton from the benzoic acid, forming a positive charge on the oxygen. This will push the lone 

pair of the alcoholic oxygen to make a resonance movement in order to open the pyran ring. 

The alcohol will be in one side and the aldehyde group on the other after removal of the proton. 

At this stage the Wittig reaction could proceed. The stereo chemistry of the resulted alkene 

depends on whether the ylid is stabilized or not. In case of a stabilized ylid by the presence of 

adjacent carbonyl group, gives the E alkene selectively. On the other hand, the unstabilized ylid 

forms the Z alkene selectively [135,136]. Wittig reaction is widely applied for many synthetical 

uses [137,138].  

Mechanism  

 

Scheme 8. Mechanism of the Wittig reaction 
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1.4.1.3 Reduction of the alkene. 

 

Scheme 9. Reduction of the alcohol`s bi bond 

A Pd/C-catalyzed hydrogenation is one of the most common C-C double and triple bond 

reduction reactions. This method of hydrogenation based on the absorption of the H2 on the 

surface of the metal catalyst. The H-H bond cleaves, each hydrogen attaches to the metal 

catalyst surface, forming metal-hydrogen bonds. In addition, the alkene itself will be absorbed 

on the surface of the metal catalyst. At this stage, one of the hydrogen atoms will transfers to 

the alkene forming a new C-H bond. The other hydrogen atom will transfer to the alkene 

forming another C-H as well, with the other carbon of the c-c double bond.  According to the 

physical arrangement of the alkene and the hydrogen on the flat surface of the metal catalyst, 

the two hydrogen atoms pictured to be added as syn addition. It means that they both come 

on the same phase or the same side of the alkene [139, 140]. This metal catalyzed 

hydrogenation have been widely applied in many industrial and research work [141]. It is also 

used in the food industry to make a large variety of manufactured goods [142].  

Mechanism 

 
Figure 11. Catalytic hydrogenation mechanism [143]. 
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1.4.1.4 Parikh-doering oxidation  

 

Scheme 10. Parikh-Doering oxidation of the 1° alcohol 

Parikh- Doering reaction provides a mild oxidation method for primary and secondary alcohols 

to aldehyde and ketones respectively. This method is based on using DMSO as an oxidizing 

agent after being activated by sulphur trioxide pyridine complex in the presence of a base, 

which commonly is triethyl ether. This reaction is performed under mild conditions. The 

temperature of the reaction varies from 0°C to room temperature. DMSO exists in two-

resonance structure it reacts with the Sulfur trioxide in its counter ion structure forming an 

intermediate. The lone pair of the hydroxyl group will attack this intermediate. The pyridine will 

then deprotonate the alcohol forming an alkoxysulfonium ion associated with the anionic 

pyridinium sulfate complex. The base deprotonates the alkoxysulfonium ion providing the 

sulfur ylid and the pyridiniuim sulphate counterion. This sulfur ylid goes through a five 

membered ring transition state before it breaks and provide the desired aldehyde or ketone 

according to the used alcohol type and dimethyl sulfide as a byproduct. This reaction has been 

used widely in many applications [144]. 

Mechanism  

 

Scheme 11. Mechanism of Parikh- Doering oxidation. 

https://en.wikipedia.org/wiki/Pyridinium
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1.4.2  Preparing of the Wittig salts  

1.4.2.1 Friedel-Crafts acylation  

 

Scheme 12 . Synthesis of the acylated toluene 

The reaction is a regular Friedel-Crafts acylation between toluene and heptanoyl chloride.  The 

acylation term refers to the direct formation of compounds containing carbonyl group and 

attached to the aromatic system. Moreover, the formation of ketones, aldehydes, carboxylic 

acids, and amides [145]. The aluminum chloride removes chloride from the heptanoyl chloride 

forming a cation, this cation is a linear acylium ion. This linear ion is stabilized by the adjacent 

oxygen lone pairs. The acylium ion attacks the benzene ring at ortho and para position because 

of the CH3 which acting as e.donating group and activate o, p positions of the benzene ring 

giving the desired aromatic ketone. Both fridel kraft acylation and alkylation reactions have 

been widely used in many applications for long time. For example, the acylation of polycyclic 

aromatic hydrocarbons such as naphthalene and anthracene [146]. 

Mechanism 

 

Scheme 13.Friedel-craft acylation mechanism 
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1.4.2.2 Benzylic bromination “visible light approach” 

 

Scheme 14. Benzylic bromination of the acylated toluene 

The reaction is a benzylic bromonation induced by visible light. It is a high regioselective 

halogenation of the alkyl benzene by using N-bromosuccinimide (NBS) in presence of light. It is 

considered as the greener version of the Wohl- Ziegler bromination. In addition to the simple 

isolation protocol as the only byproduct is the succinimide, which is soluble in water.The 

benzylic bromination reaction could be performed using thermal energy instead of light and in 

presence of radical initiator as benzoyl peroxide. This reaction allows the bromination to be 

specifically on the allylic position of an alkene. In this case, the bromination occur on the 

benzylic position of the alkyl benzene due to the stability afforded to the radical by means of 

resonance [147]. Free radical formation by the homogenous cleavage of the N-Br bond was 

triggered because of the visible light Br free radical. The generated radical abstracts a hydrogen 

from the other molecule leaving a free radical in its place which will bind with another Br free 

radical forming the desired product. This reaction has been widely used in many regiospecific- 

bromination applications [148].  

Mechanism:  
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Scheme 15. Mechanism of the benzylic bromination using NBS in visible light. 

1.4.2.3 Wittig salts from alkyl halides and triphenylphosphine 

 

Scheme 16. Synthesis of the Wittig salts. 
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This reaction is a simple nucleophilic substitution reaction. The high-energy lone pair of the 

phosphorus in the triphenylphosphine reagent attacks on the electrophilic alkyl halide resulting 

a new C-P bond in the desired tetrahedral phosphonium salt.  

 

Scheme 17. Nucleophilic attack by the triphenyl phosphine on the electrophilic carbon. 

Normally this salt undergoes deprotonation by some kind of base to produce the phosphonium 

ylid which is the nucleophilic partner in the Wittig reaction. Phosphonium salts are widely used 

in Solid Phase applications [149] and as co-catalysts in different cases [150]. 

Mechanism: 

 

Scheme 18. SN2 reaction mechanism 

1.4.2.4 The O-alkylation of the para cresol 

 

Scheme 19. O-alkylation of para cresol. 

This reaction is based on the formation of the phenolate anion. When the proton of the 

phenolic hydroxyl group is abstracted with a base. The anion reacts with the alkyl halide to 

alkylate the oxygen or carbons of the aromatic ring due to the possible resonance structures 

(scheme 20). Although it is usual to get the O-alkylated product, but under certain conditions 
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it is possible to get the C-alkylated product. In this case the hydroxyl of the phenol is 

deprotonated by the potassium carbonate base producing the phenolate anion.  

The character of aromaticity will be disturbed during the resonance to get the C-alkylated 

product. Therefore, the O-alkylation happens via a normal SN2 reaction between the anion and 

the alkyl halide. 

Mechanism 

 

Scheme 20. Benzylic o-alkylation mechanism “SN2” 

1.4.2.5  Benzylic bromination “Thermal Approach” 

 

 

                                                                   Scheme 21. Benzylic bromination. 

This reaction is another approach for the benzylic bromination by NBS under heating instead 

of the visible light in presence of benzoyl peroxide as radical initiator. The reaction is considered 

to have the same degree of regioselectivity as it was mentioned earlier in the visible light case 

(section 1.4.2.2). Free radical formation by the homogenous cleavage of the N-Br bond was 

triggered in this case because of the heat and benzoyl peroxide, which is the radical initiator. 

The Br free radical will abstract a hydrogen from the other molecule leaving a free radical in its 

place. This free radical will bind with another Br free radical forming the desired benzyl bromide 

[151]. 
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Mechanism: 

 

Scheme 22. Mechanism of the benzylic bromination by NBS. 
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1.4.3 Wittig reaction  

Scheme 23. Wittig reaction of the ylid and the aldehyde. 

Wittig reaction is one of the premier methods for the alkene synthesis. It proceed through 

nucleophilic attack from the phosphorus ylid on the carbonyl group in the other compound. 

Elimination reactions (E1, E2) are common routes to alkene synthesis from alcohols or alkyl 

halides. In comparison to Wittig reaction, the carbon skeleton is pre-assembled in case of E1 or 

E2 within the molecule. Whereas Wittig allows a coupling of two fragments. Moreover, the 

elimination reactions give mixture of two isomers. In case of Wittig reaction there is no 

ambiguity about the position of the double bond. On the other hand, Wittig reaction can be 

compared to the aldol condensation where the carbonyl group attacked by an enolate instead 

of the phosphorus ylid. The phosphonium ylid produced when the phosphonium salt is 

deprotonated by the base KtBuO. The resulted carbanion is stabilized by the positive 

phosphorus in addition to the conjugation with the benzene ring. This anion is a strong 

nucleophile when it is formed, it attacks on the carbonyl group of the aldehyde forming an 

alkoxide. This group rapidly connects to the phosphorus forming a 4-membered ring that 

cleaves to the desired alkene and triphenylphosphine oxide as a byproduct [152].  Wittig 

reaction has been widely used in many applications [153, 154].  
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Mechanism 

 

Scheme 24. Mechanism of the Wittig reaction. 

1.4.4 De-protection of the acetonide                                                               

This reaction is the reverse of the acetonide formation reaction. The 1, 2- diol system can be 

recovered by hydrolysis of the acetonide in aqueous acidic medium. There are many acids that 

could be used in this reaction such as acidic resins, acetic acid or acidic workup with 1N HCl. 

One of the acetonide oxygens will be protonated by the acidic medium, forming an oxonium 

ion making itself a good leaving group. The other oxygen of the acetonide will attack the 

electron deficient carbon through its lone pair, which will liberate one hydroxyl group. An 

unstable oxonium ion will be formed on the other side. The oxonium ion is a powerful 

electrophile which will be attacked by solvent (H2O or, methanol) to form a hemiacetal 

(Scheme25). 
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 Proton exchange between the solvent and the etheric oxygen will lead to another oxonium ion 

formation. The alcoholic lone pair will attack on the electron deficient carbon leading to a C-O 

cleavage recovering the 1, 2 diol system and producing acetone as by product [155, 156].    

Mechanism     

 

Scheme 25. Deprotection of the diol in acidic medium. 

1.4.5 Reduction of benzylic ketone  

This reaction is a nucleophilic attack by a hydride on a carbonyl group. Sodium borohydride is 

the source of the hydride. The nucleophile is the hydrogen atom carrying the pair of electrons 

from the B-H bond. This hydrogen atom will be transferred to the carbonyl in a nucleohilic 

attack. The reaction runs in protic solvents such as water and alcohols. These solvents are 

necessary for the protonation of the alkoxide to give the desired alcohol as a result of the 

reduction process [157]. 

 

Scheme 26. NaBH4 reduction “general mechanism “ 
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The mechanism proceeds in two steps. In the first step, the hydrogen with the lone pair 

detaches from the BH4 and adds to the carbonyl carbon in a 1, 2 addition forming C-H bond, 

and breaks the C-O bond forming an alkoxide.  In the second step, a proton from water or the 

protic solvent is added to the alkoxide to form the alcohol [158].  

 

Scheme 27. Carbonyl group reduction mechanism. 

1.4.6 Lactone formation 

Lactones are internal hydroxycarboxylic acids and esters. They are formed by intramolecular 

esterification from their corresponding linear forms. The ease of formation depends on the size 

of the formed ring, it is more likely in case of 5 or 6 membered rings. Those of small ring size or 

bigger than 6 membered ring are hard to isolate due to their high reactivity [159,160]. In this 

case the lactone ring is rapidly formed after the deprotection of the diol (Scheme25). The 

reaction starts in acidic medium when protonation of the carbonyl oxygen take place, which 

will make the carbonyl group more electron deficient. This will lead the hydroxyl lone pair to 

attack on the electronegative carbonyl group forming the six membered ring. A proton transfer 

process followed by loss of the ethanol fraction furnishing the six membered ring lactone 

(Scheme 28).  
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Mechanism  

 

Scheme 28. Lactone formation mechanism. 

1.4.7 Ullmann approach 

There are two classes of Ullmann reactions. The “classic Ullmann reaction” catalyzed by Cu 

refers to the synthesis of symmetric biaryls through the copper-catalyzed coupling (Scheme 

29). The biaryl is accessible through coupling of the aryl halide in excess of the Cu at high 

temperature (150-200C). The mechanism includes oxidative addition with a second equivalent 

of the aryl halide followed by reductive elimination to furnish the desired biaryl. This class of 

Ullmann reaction has been applied in some studies. The Immobilization of Copper (II) in 

Organic-Inorganic Hybrid Materials as a Highly Efficient and Reusable Catalyst for the Classic 

Ullmann Reaction was reported [161].  

 

Scheme 29. Classic Ullman reaction 

The other class “Ullmann type” reaction refers to copper – catalyzed nucleophilic aromatic 

substitution between nucleophile and aryl halides as shown below (scheme 30).  
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Scheme 30. “Ullmann Type” reaction 

This class of Ullmann reaction proceed through a catalytic mechanism (Scheme 31). This type 

is mostly used in Ullmann ether synthesis as it is conducted in our case. Altman et al. reported, 

the use of this approach to provide an Improved “Cu-Based Catalyst System” for the Reactions 

of Alcohols with Aryl Halides. In addition, they claimed the improvement of the reaction in 

presence of a ligands. As a result it reduces the excess of the alcohol needed for the original 

reaction to proceed and support milder condition for the reaction [175]. Moreover, Ajay B. 

Naidu et al. postulated a general, mild, and intermolecular ” Ullmann-Type” synthesis of diaryl 

and alkyl aryl ethers catalyzed by diol−copper(I) Complex [162]. Cristau et al. suggested a 

general and mild Ullmann-type synthesis of diaryl ethers as applications on the Ullmann type 

reaction [163].  

Mechanism  

 

Scheme 31. Catalytic mechanism of Ullmann reaction. 

 

 

 

 

http://pubs.acs.org/action/doSearch?ContribStored=Naidu%2C+A+B
http://pubs.acs.org/action/doSearch?ContribStored=Naidu%2C+A+B
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2 RESULT AND DISCUSSION 

2.1 THE SCOPE OF THE CHAPTER 

This chapter describes my contribution towards the synthesis of LXA4 analogues (Scheme 32). 

It introduces earlier studies in the same field of interest. In addition, discussing results within 

the performed reaction sequence. Lactone formation (section 2.13, 2.14) is considered to be 

an interesting intermediate that resulted from the deprotection of the diol 14, 15 (section 2.12, 

2.14). In a later stage of this chapter, we reported a computational study that explain the 

formation of these intermediates. Moreover, it support the actual mechanism based on the 

change in free enrgy values (∆G) of each step (section 2.17). 

 

 

Scheme 32. Proposed analogues. 
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2.2 PROTECTION OF 2-DEOXY-D RIBOSE 

 

Scheme 33. Synthesis of the protected sugar 

Klimko et al. reported, the use of 2-methoxypropene as the reactant in the transformation from 

2-deoxy-D-ribose to the acetal 2 with PPTS in ethyl acetate [164]. In addition, Colm Duffy and 

Philips ED reported the same treatment of the sugar at room temperature resulting the product 

2 in 43% yield [165,166]. K. C. Nicolaou reported the use of Me2C(OMe)2,p-TsOH (cat) in 

acetone for the protection of same moiety with 87% yield [167]. The conducted treatment in 

this research is based on the earlier studies [165]. Where the observation showed insolubility 

of the sugar in ethyl acetate and its selectivity towards some organic solvents. Using DMF 

solvent showed good solubility of the sugar at room temperature and even at lower 

temperature. The reaction was performed in very dry conditions and with the use of molecular 

sieves to capture the water. The crude consisted of the desired product and the methylated 

alcohol as by product, which could be separated using column chromatography affording 41% 

pure product 2 which is invisible under UV light. The success of the reaction was confirmed by 

mass spectrometry. The new two singlets peaks in the 1H-NMR spectra 1.35(s, 3H), 1.22(s, 3H) 

clearly identify the formation of the acetal (Section 5.2.1.1).   
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2.3 SYNTHESIS OF THE ALKENE FROM THE SUGAR 

 

Scheme 34. Synthesis of the alkene via Wittig reaction. 

 Colm Duffy, Klimko, and Philips ED. reported the same treatment of the aldehyde with refluxing 

in THF resulting 81% of alcohol 3 [164-166]. The reaction conducted in this project based on 

the earlier studies with minor modifications. The protected sugar 2 treated with the 

commercially available Wittig salt (1:1.5) mol equivalency respectively in toluene furnished 

alcohol 3 in 87% yield. The crude contained a big excess of the salt which appeared with the 

same Rf value as it contain same kind of groups. In this case the crude had to be washed with 

diethyl ether that showed a good solubility of the product unlick the excess reactant which 

precipitate in such solvent. The resulted oil submitted for further purification by means of 

column chromatography furnished a pure colorless oil of compound 2 in 87% yield. The 

reaction was tested with (1:1) equivalent that gave 80% yield of the alcohol.  The success of the 

reaction confirmed by mass spectrometry and NMR. The visibility of the product under UV light 

due to the new formed double bond also gives indication on the formation of the alkene. The 

new two characteristic signals of the double bond and the ester group in the 1H-NMR spectra 

clearly indicate the formation of the alkene, 6.97-6.90 (m,1H), 5.89 (d, J=16 Hz, 1H),  4.20-

4.13(m,3H), 1.25(t,3H), (section 5.2.1.2) 
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2.4 REDUCTION OF THE ALKENE. 

 

Scheme 35 synthesis of the reduced alcohol. 

Adile Duymaz reported the same reduction method for the alkene 3 in MeOH furnished 83% 

the reduced alcohol 4 [168]. Moreover, Klimko reported the same treatment in iso-propanol 

[164]. Colm Duffy, and Philips ED et al. reported the catalytic hydrogenation using 10% Pd/C in 

ethanol furnished 87% yield of the reduced alcohol 4 [165,166]. The same treatment was 

conducted here in ethanol and gave 93% yield. The success of the reaction was confirmed by 

mass spectrometry beside the disappearance of the characteristic beaks of the double bond in 

addition to the invisibility of the product under UV light ( section 5.2.1.3).  

2.5 OXIDATION OF THE 1O ALCOHOL TO ALDEHYDE 

 

Scheme 36. Synthesis of the aldehyde. 

Swern oxidation was the first choice for many research approaches to achieve aldehydes from 

1o alcohols. Adile Duymaz, colm Duffy and Philips ED have reported the use of Swern type of 

oxidation to obtain the aldehyde 5 from the primary alcohol 4 with a yield ranges from 77% to 

86% [165,166, 168]. Parikh-Doering oxidation is another type of oxidation which was conducted 

in this project furnished 87% yield of the aldehyde 5. This reaction ran at milder temperature 
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conditions from 0oC to r.t without formation of very odorous volatile by-products such 

as dimethyl sulfide and carbon monoxide as in Swern oxidation.  

Purification trials by means of automated flash chromatography and column chromatography 

failed as the product gets lost on the silica. The crude was forward used without further 

purification. The success of the reaction was confirmed by mass spectrometry and NMR. The 

new 1H-NMR signal of the aldehydic hydrogen appears at 9.56 (s, 1H). In addition to, the 

visibility of the aldehyde under UV light (section 5.2.1.4).  

2.6 FRIEDEL-CRAFT ACYLATION OF THE TOLUENE      

 

Scheme 37. Synthesis of the acylated toluene 

Friedel craft acylation reaction was assembled by using the commercially available toluene, acyl 

chloride and aluminum chloride in DCM furnished 73% yield of pure product 7. The success of 

the reaction was confirmed by 13C-NMR and the new characteristic beaks in 1H-NMR 2.92 (t, 

2H), 2.40 (s, 3H), 0.88 (t, 3H) (section 5.2.2.1.1). 

2.7 BENZYLIC BROMINATION OF THE ACYLATED TOLUENE. 

 

Scheme 38. Synthesis of the brominated acyl. 

Ajda Podgorsek et al. reported, the benzylic bromination of various 4-substituted toluenes 

assembled by NBS in pure water. They have used a 40 W incandescent light-bulb as the radical 

https://en.wikipedia.org/wiki/Dimethyl_sulfide
https://en.wikipedia.org/wiki/Carbon_monoxide
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initiator of the radical chain process gave 86% yield of bromo-benzylic toluene derivatives 

[169]. The bromination of the previously synthesized para acylated toluene 7 was conducted 

following the same princible using NBS, (TFT/ water) as the solvent mixture and illuminated 

with a 60 W incandescent light bulb at room temperature resulted 83% yield of the mono-

brominated product 8. The success of the reaction was confirmed by 13C NMR and the new 

characteristic signal of the brominated benzylic –CH2 1H-NMR 4.51 (s, 2H), (section 5.2.2.1.2). 

2.8 WITTIG SALT FROM THE BENZYL BROMINATED TOLUENE DERIVATIVE 

 

Scheme 39. Synthesis of the Wittig salt. 

The Wittig salt 9 was conducted with refluxing triphenylphosphine and the previously 

synthesized compound 8 in acetone for 3-5hr at 65oC resulted 82 % yield. The success of the 

reaction was confirmed by Mass Spectrometry, IR, and NMR.  The new characteristic doublet 

appeared in the 1H-MNR with the significant J coupling to the phosphorus at 5.64 (d, J= 16 Hz, 

2H) clearly indicate the formation of the Wittig salt 9, (section 5.2.2.1.3). 

2.9 PREPARATION OF THE O-ALKYLATED P-CRESOL 

     
              Scheme 40. Synthesis of the benzylic ether 

Milhanic  et al. reported the success of the O-alkylation of the p-cresol refluxing for 48h in 

acetonitrile with potassium carbonate gave 88% yield of the ether 11 [170]. In addition, Hong-

Cheu Lin et al. reported the same treatment with refluxing for 24 h in a mixture of 

water/ethanol (1:9) respectively, and potassium hydroxide furnished  gave 88% yield of the 
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ether 11 [171]. Both methods were applied in this project. The reaction was successful in both 

treatments with a yield ranges from 72%-76% (Table 2). The product was pure and used in the 

next reaction without further purification. The success of the reaction was confirmed by the 

mass spectrometry and NMR.The characteristic beaks in 1H-NMR of the O-CH2 and the para 

benzylic methyl group 3.95 (t, 2H), 2.32 (s, 3H), respectively clearly indicated the formation of 

the desired product (section 5.2.2.2.1).                                                          

2.10  BENZYLIC BROMINATION OF THE ETHER  

 
Scheme 41.Synthesis of the brominated benzylic ether. 

Bromination of the benzylic ether 11 was reported in earlier studies. The reaction took place 

by refluxing benzylic ether 11 in carbon tetrachloride with NBS and a catalytic amount of 

dibenzoyl peroxide resulted 36% yield of the desired product [170]. The reaction was 

performed based on this study, gave 48% yield of the mono-brominated benzylic alkyl 12. The 

observation showed the high possibility of producing mixture of the mono and the di-benzylic 

brominated products. This problem was indicated by the integration difference of the 

representing signal of the brominated alkyl in 1H-NMR. The degree of bromination found to be 

dependent on the mol equivalency of the starting material 11 to the NBS, and the reaction time 

(Table 1). The success of the reaction was confirmed by NMR. The new beak appeared in the 

1H-NMR at 5.30 (s, 2H) clearly identify the formation of the mono-brominated product (section 

5.2.2.2.2). 
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Table 1. Reaction optimization towards the bromination of the benzylic ether 

Trial Solvent Reaction 

time 

Equivalency 

( cpd 11: NBS) 

Yield% product 

1 CHCL3 9h (3*3) 1:3 19 % Dibromo 

2 CHCL3 9h (3*3) 3:1 83 % mixture 

3 DCM 6h (2*3) 3:1 48% monobromo 

                          

2.11  WITTIG SALT FROM THE BROMO-BENZYLIC ETHER  

 

Scheme 42. Synthesis of the Wittig salt of the benzylic ether 

Earlier studies suggested the preparation of the Wittig salt by refluxing the bromide compound 

12 in xylene and toluene with triphenyl phosphine for 18h furnished yield ranges from 88% to 

69% respectively [170,171]. Based on these studies the reaction was tested in the same solvent 

systems unsuccessfully. This could be related to instability of the compound in high 

temperatures or unsuitable reaction conditions.  Another mild temperature conditions was 

conducted in this project. Refluxing the reaction mixture in acetone for shorter time gave 72% 

yield of the Wittig salt 13. The success of the reaction was confirmed by mass spectrometry, IR, 

and NMR. The new characteristic doublet appeared in the 1H-MNR with the significant J 

coupling to the phosphorus at 5.23 (d, J=16 Hz, 2H) clearly indicate the formation of the Wittig 

salt 13, (section 5.2.2.2.3).  
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2.12  WITTIG REACTION OF THE ALDEHYDE AND THE KETONIC WITTIG SALT 

 

Scheme 43. Synthesis of the coupled alkene 

Wittig reaction was a successful approach to obtain the desired product 15 from the Wittig salt 

9 and its aldehyde partner 5 in 47%. The reaction should be preceded under very dry conditions 

and in dry solvents. The success of the reaction was confirmed by mass spectrometry, IR, and 

NMR. The new characteristic beaks appeared in the 1H-NMR such as the beak at 6.74 (d, J= 8 

Hz, 1H) and 5.83 (t, 1H) for the new trans double bond resulted from the Wittig coupling. Similar 

target compounds were assembled by other approaches in different researches [172], (section 

5.2.3) .  

2.13  HYDROLYSIS OF THE ACETAL IN THE KETONIC MOIETY CONTAINING PRODUCT 

     
                                           Scheme 44. Hydrolysis of the acetal in the ketone containing compound 

The reaction targeted the deprotection of the diol moiety in compound 15.  The lactone 

formation is commonly reported in many researches that had to deal with such cases. The main 

theme of these compounds is groups as alcohols or diols and ester or carboxylic acid group in 

the same side of the compound. The reason behind this could be due to the reactivity of the 

hydroxyl group in addition to the stability of the six membered ring of the formed lactone. The 

fact that this lactone formation is an intramolecular reaction, further facilitate the formation. 

Computational study on the deprotection mechanism followed by the formation of the lactone 

ring has been conducted in this research in order to fully explain this case. Singh S et al. 

reported a one-pot esterification and deprotection of another 1, 2- diol system using ZrCl4 that 

gave 13% lactone formation as by product [173]. In addition, Colm Duffy stated lactone 
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formation in similar case after deprotection of the same diol system using TBAF/THF gave 1:1 

yield percent mixture of the deprotected product and the lactone [165]. Pierre van de Weghe 

postulated similar case during the synthesis of Lipitor where the lactone group was assembled 

by the deprotection of the acetonid group with HCl in methanol and then treated with calcium 

acetate to furnish the desired product in a form of calcium salt [174]. Deprotection of the diol 

15 was conducted here using TFA in a solvent mixture MeCN/H2O (1:1) and furnished 70% of 

the lactone 16 .The lactone formation was confirmed by mass spectrometry, IR and NMR. The 

new characteristic beaks appeared in the 1H-NMR 4.40-4.36 (m, 1H), 2.87(t, 2H) indicate the 

formation of the lactone 16, (section 5.2.5).  

2.14  WITTIG REACTION OF THE ALDEHYDE AND THE ALDEHYDIC WITTIG SALT 

     
                                            Scheme 45. Synthesis of the coupled alkene of the benzylic ether 

The cross coupled product 14 was conducted in the same principle as in case of compound 15 

(section 2.12). Wittig reaction was assembled between the Wittig salt 13 and its aldehyde 

partner 5 and gave 30% of product 14. The success of the reaction was confirmed by Mass 

Spectroscopy, IR, and NMR. The new beaks that appeared in the 1H-NMR at 6.57 (d, J=12, 1H), 

5.54 (t, 1H) which represent the new trans double bond resulted from the Wittig coupling 

(section 5.2.4). 

2.15  HYDROLYSIS OF THE ACETAL IN THE ALDEHYDIC MOIETY CONTAINING PRODUCT 

 

Scheme 46. Hydrolysis of the acetal in the ether containing compound 

According to the same principles discussed in case of compound 16 it was expected to follow 

the same observation. The hydrolysis reaction was assembled in the first trial by using TFA in a 
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solvent mixture of MeCN/H2O (1:1) at room temperature for 1h. The mass spectroscopy 

showed the absence of the molecular mass of the expected product. 

 While the desired compound 17 was assembled using 1N HCl in THF overnight furnished 70% 

yield. The success of the reaction was confirmed by Mass Spectroscopy, IR (section 5.2.6). 

2.16  ULLMANN APPROACH 

2.16.1  Preparing the O-alkylated phenol derivative. 

 

 

Scheme 47. Synthesis of the O-alkylated phenol 

Compound 20 was conducted according to the same principle used to achieve the benzylic 

ether 11 (section 2.9). The compound was assembled by the treatment of 4-bromophenol with 

1-bromo hexane and potassium carbonate under refluxing for 24h. It furnished the desired 

product 20 in 85% yield. The success of the reaction was confirmed by the Mass Spectrometry 

and NMR. The new characteristic signals appeared in the 1H-NMR at 3.96 (t, 2H), and 0.96 (t, 

3H) clearly indicate the formation of the desired product 20, (section 5.2.7.1).  

2.16.2  Preparing the Ullmann ether 

 

Scheme 48. Synthesis of the Ullmann ether 

Ryan A. Altman postulated, the use of 3, 4, 7, and 8-tetramethyl-1, 10-phenanthroline as a 

ligand to improve the Cu-catalyzed cross coupling of alcohols with aryl halides (iodides and 

bromides) [175]. Similar targeted compounds were assembled by using 5% CuI , 10% Me4Phen, 
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and cesium carbonate in toluene at 80-110 oC for 9-24h to give the cross coupled product in 75 

% yield. The same treatment has been applied on the aryl halide 20 and the alcohol 4, but 

resulted no reaction (Table 2). The reaction was tested by using 1:2 equivalent of the aryl halide 

and the alcohol respectively, 5% of the catalyst (bis-bipyridyl ligand modified complex), and 

K3PO4 under argon at 110 oC for 24-48 h furnished 61-91% yield.  

The reaction could be further optimized for successful reaction conditions. Another reaction 

system was suggested by Jiajia Niu et al. that could be useful to test, as an efficient O-arylation 

of aliphatic alcohols with aryl halides using an air-stable copper (I) complex as the catalyst 

[176],(section 5.2.7.2).   

Table 2. Initial optimizations of Ullmann reaction conditions. 

Trial ligand % Catalyst 

% 

method Aryl halide: Alcohol Time Yield % 

1 10 5 Normal 

heating 

1:1.5 2h - 

2 10 5 mw 1:1.5 2h - 

3 15 10 mw 1:1.5 5h - 
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2.17  A TOTAL COMPUTATIONAL STUDY ON THE LACTONE CASE 

2.17.1  Density functional theory (DFT) calculations  

 Computational Details 

 The quantum chemical calculations have been performed using the Gaussian Quantum 

chemistry program [176]. All the geometries of the molecules studied were optimized using 

the B3LYP functional [177-179]. The 6-311G (d, p) basis set was used for the optimizations and 

frequency calculations [180]. All the thermodynamic property calculations were performed at 

298.15K and 1.00 atm. Solvent effects were corrected by using the polarizable continuum 

model (PCM) in its integral equation formalism (IEF) and acetonitrile as a solvent to mimic the 

experimental conditions [181].  

2.17.2  Discussion of the calculated results 

The proposed reaction mechanism for the lactone formation based on the DFT calculations is 

shown in (Figure 12). The change in the standard Gibbs free energy (in kcal/mol) and change in 

entropy (in cal/mol.K), through each step of the mechanism, gives indication on the spontaneity 

of the reaction. In addition, it shows to how much extent the reaction is favorable to proceed 

in the specific direction towards the product, see (Figure 12). 

The study on the free energy and the entropy of the reaction showed that the reaction most 

likely proceed towards the formation of the most stable product that shows the lowest ∆G 

value, which is the 6-memberd ring lactone. The first step which presents the protonation of 

the acetonide moiety showed spontaneous activity towards the formation of the protonated 

product 2 with ∆G = -4.2 kcal/mol and ∆S = -1.6 cal/mol.K. While the reaction progresses 

towards the formation of the oxonium ion intermediate 3 from the intermediate 2 showed also 

favorable step with ∆G = -1.4 kcal/mol and ∆S = +1.72 cal/mol.K. Then, with the nucleophilic 

attack on the oxonium ion intermediate 3 by the water molecule the reaction proceed towards 

the formation of intermediate 4 with ∆G = -1.5 kcal/mol and ∆S = -24.3 cal/mol.K. On the other 

hand, the proton exchange between the water molecule and the oxygen of the protected 

hydroxyl towards the formation of intermediate 5 showed ∆G = +0.5 kcal/mol and ∆S = -2.9 

cal/mol.K, which means that it is slightly less favorable towards the next intermediate 5.  
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Overall, the free energies through intermediates 3-5 supports that the flow of the mechanism 

through these intermediates is favorable towards intermediate 5 with ∆G = -1.0 kcal/mol and 

∆S = -27.2 cal/mol.K. 

 

 

Figure 12. Courtesy of Dr. Taye B. Demissie .B3LYP/6-311G (d, p) calculated change in standard Gibbs free energy (kcal/mol) 

and change in entropy (cal/mol. K) of the reaction mechanisms leading to the formation of compound 8 (16). 
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Losing the water molecule in a resonance movement towards the formation of product 6 

showed ∆G = +14.9 kcal/mol and ∆S = +33.4 cal/mol.K, which may look unfavorable reaction. 

However, the parallel reaction mechanism for retaining the TFA acid from the anionic TFA and 

the protonated acetone shows ∆G = -54.8 kcal/mol and ∆S = +8.5 cal/mol.K, which controls the 

overall reaction at this step and the result would be in favor of proceeding the mechanism 

towards the formation of product 6 with a net ∆G = -39.9 kcal/mol and ∆S= +41.9 cal/mol.K. 

Due to the presence of acid in the reaction medium “acidic medium”, the carbonyl group in 

product 6 is easily protonated to form intermediate 7 in a favorable reaction with ∆G = -4.3 

kcal/mol and ∆S = -4.7 cal/mol.K. The overall energetics for the last step, the mechanism 

proceeds in a favorable manner towards the formation of the six member ring lactone in 

addition to the loos of ethanol molecule plus retaining of the acid catalyst with ∆G = -39.3 

kcal/mol and ∆S = +41.9 cal/mol.K. 

The last mechanism for the formation of the six member ring lactone is further analyzed based 

on the potential energy surface (PES) shown in (Figure 13).  The PES for the internal cyclization 

of compound 6 leading to the formation of compound 8 is another explanation element on the 

preference of lactone formation rather than the corresponding linear ester. In addition, the 

possible cyclization reaction with and without the protonation of the carbonyl group are also 

compared in (Figure 13). The (a) model shows that the cyclization reaction do not proceed for 

the unprotonated carbonyl group, where it shows increase in the energy as the hydroxyl oxygen 

and the carbonyl carbon  distance decreases referring to the instability of the compound with 

the decrease in the distance. The (b) model shows that the cyclization of compound 7 which 

has a protonated carbonyl group. The PES clearly shows the favored formation of the six 

member lactone if the carbonyl group is protonated. This also refers to the essentiality of the 

protonation of the carbonyl group in order to proceed with the suggested mechanism.  
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Figure 13. Courtesy of Dr. Taye B. Demissie .Potential energy surface (PES) for the cyclization of compound 6 leading to the 

formation of compound 8: a) shows the cyclization without protonation of the C=O of the ester group, whereas b) shows the 

cyclization process after protonation of the C=O group. 
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3 FUTURE DIRECTIONS 

According to previous studies based on the structure activity relationship of LXA4, wide range 

of modification and functionalization interest was brought on the way of the research delivered 

in this thesis. There are two pathways of structure modification of LXA4 .These pathways aims 

at the replacement of some functionalities in the native LXA4 with other chemical stable 

functionalities in order to retain the potent biological activity. The first pathway is based on the 

triene moiety to be involved in a stable aromatic, heteroaromatic and the substituted fused 

benzo systems, see pathway 1 (Scheme 49). Which play an important role of prevention of the 

reduction at C13-C14 [166]. While the other pathway is based on the structure modification of 

the side chains at C15-20 and C1-8 , see pathway 2  (scheme 49). Which shows resistance to the 

oxidation at C20 and prevention of the β oxidation respectively [166, 183, 184]. Through 

different and wide range of organic synthesis reactions including photochemistry could provide 

methods for the possible late stage functionalization and modification of the already prepared 

analogues. Moreover, it could participate in expanding the library of LXA4 analogues that might 

be interesting for further pharmacological evaluation. 
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Scheme 49. Strategies for structural diversity of LXA4 analogues library 

The late stage functionalization is based on the wide range of the function groups that could 

be inserted or replaced in the already synthesized analogues. These new structural features 

would provide a library of the LXA4 analogues to be scanned for biological activity. Some of 

these novel function groups could participate on enhancing the biological properties of the 

analogues. Some of these groups have already shown some biological potentialities. For 

examples the para- fluorophenoxy analogues showed extreme potency for inhibiting the tumor 

necrosis factor (TNF)-α-induced leukocyte recruitment into the dorsal air pouch. Moreover, it 

has shown some potentials as anti–cancer agents [185]. All of these ideas could be executed 

by means of organic chemistry and photochemistry methodologies. 
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Scheme 50. Late stage functionalization strategy 

A diversity of synthetic tactics could be developed and applied in order to assemble new stable 

LXA4 analogues that could be interesting from chemical and biological point of view.  

 

Scheme 51. New proposed analogues with suggested approaches 
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4 SUMMARY AND CONCLUSIONS 

This section describes the synthesis of compounds 16 and 17 through multiple steps. Starting 

from the commercially available 2-deoxy-D-ribose, toluene, and p-cresol, the desired products 

were assembled within 14 steps. An overview of the performed reactions with the obtained 

yields for every intermediate is reported (Scheme 52). 

 

Scheme 52. Summary of  Reagents and conditions.(1) 2-methoxy propene, PPTS, acetone at 0C; (II)Ph3PCHCO2Me, Toluene at 

90C ; (III)H2 /Pd, EtOAc; (IV)SO3-Pyr NEt3 , DCM at 0C to rt; (V)Acyl chloride, ALCl3, under N2 gas at 0C with stirring; 

(VI)NBS,H2O/ trifluoromethyl benzene, h for 27 h at rt; (VII)PPh3 ,acetone, reflux for 3h at 65C; (VIII)Wittig reaction under very 

dry conditions ,THF, Potassium tert-butoxide at 0C to rt, stirring for 2h under N2 gas; (IX) TFA, MeCN/H2O, 1:1 ;(X) NaBH4, 

MeOH, 1h at r.t; (XI,XII) 4M NaOH, MeOH, 1h at r.t; (XIII)1-Bromohexane, K2CO3, acetonitrile , protected under N2 gas, refluxed 

at 85C for 24 h; (XIV)NBS,Bz2O2, CHCl3 reflux at 68C ; (XV) PPh3, acetone, reflux for 3h at 65C; (XVI) Wittig reaction under 

very dry conditions ,THF, Potassium tert-butoxide at 0C to rt, stirring for 2h under N2 gas;(XVII) 1N HCl, THF, overnight at r.t. 
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Our results concerning the total synthesis towards LXA4 analogues reflect the diversity of 

compounds and synthetic tactics which could participate in expanding the synthetic library of 

LXA4 analogues. 

Chapter “1” included the goals and strategy of the thesis in addition to the retro-synthesis study 

Moreover, the biological background of the targeted pharmacological agent. Followed by the 

forward synthesis and theoretical chemical background of the performed reactions. 

The first practical part in this thesis (chapter 2) describes my efforts towards the total synthesis 

of substituted ρ- benzoid LXA4 analogues. The synthesis of the late stage intermediates 16 and 

17 was successfully assembled within 14 steps from the commercially available starting 

materials 2-deoxy-D-ribose, toluene and p-cresol in 70% yield. The total suggested strategy was 

successfully executed except the final lactone hydrolysis and the reduction of the benzylic 

ketone 16. 

Chapter 3 gives some novel ideas about late stage functionalization of the already prepared 

analogues.  In addition, suggesting new structure that could be interesting stable analogues of 

LXA4 as future directions. 

According to the computational study performed on the lactone formation mechanism, we can 

conclude that the lactone product should be the expected product from the acetonid hydrolysis 

step. In addition, Potential energy surface (PES) confirmed that protonation on the carbonyl 

group could be the driving force for the mechanism to proceed towards the favorable direction 

of the lactone cyclization. 

 

Figure 14.Optimized structure of compound 16, see Figure 12. 
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Figure 15. Optimized structure of compound 17, see Figure 12. 

Further work on this project could be ongoing. Priority is to complete the total synthesis by the 

hydrolysis of the lactone moiety in compound 16 and 17. In addition, optimizing the new 

Ullmann coupling towards successful conditions. Moreover, submitting the synthesized 

compound to the biological scanning in order to evaluate these novel analogues towards the 

pharmacological activity. 
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5 EXPERIMENTAL SECTION 

5.1  GENERAL EXPERIMINTAL CONSIDERATIONS 

All reactions were carried out under an inert atmosphere of nitrogen using oven dried 

glassware. All solvents and reagents were purchased commercially from sigma-Aldrich and 

were utilized without further purification unless specifically noted. Dry solvents were obtained 

from a sodium/benzophenone still, from water free bottles or dried over molecular sieves 

before use. Flash chromatography was carried out using silica gel 35-70 micron from DAVISIL. 

Evaporation in vacuo refers to the removal of volatiles on a Büchi rotary evaporator with an 

integrated vacuum pump. Thin-layer chromatography (TLC) was performed on Merc KGaA, 60 

F254 silica gel plates and visualized with UV ans stains. Microwave reactions were carried out 

using microwave synthesis reactor, monowave 300 from Anton Paar.  

NMR spectra were recorded on Varian Mercury-400 Oxford NMR Spectrometers and Oxford 

NMR 400 MHz and 400 MHz Bruker Avance III HD equipped with a 5 mm SmartProbe BB/1H, 

using CDCl3 as the solvent. The reference values used for deuterated chloroform (CDCl3) were 

7.26 and 77.02 ppm for 1H and 13C-NMR spectra, respectively. Deuterated DMSO (DMSO-d6) 

reference values were 2.5 and 39.51 ppm for 1H and 13C-NMR spectra, respectively. Chemical 

shift values (δ) are reported in parts per million (ppm) commensurate to tetramethylsilane 

(TMS) as standard. Multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quartet), 

p (pentet), m (multiplet), bs (broad singlet) and coupling constant J were reported in Hz. 

 All NMR spectra were processed with MestReNova v7.1.1.1. Some 13C-NMR spectra from the 

early model studies have artifacts in a repeating pattern originated from unknown transmitter. 

Some 1H-NMR spectra may contain some of remaining solvents, mainly EtOAc. Infrared spectra 

were recorded on a Varian 700e FT-IR spectrometer and bands are reported in wavenumber 

(cm-1).High resolution MS was recorded on a thermos electron LTQ Orbitrap XL +Electrospray 

ion source (ION/MAX) using methanol as solvent. The melting points was measured with Buchi 

535 instrument.  
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5.2 DETAILED EXPERIMENTAL PROCEDURES AND CHARACTERIZATIONS  

5.2.1 Synthesis of the aldehyde  

 

5.2.1.1 Synthesis of the protected 2-deoxy-D-ribose 

 

 

The commercially available 2-deoxy-D-ribose 1 (3 g, 22.36 mmol) was dissolved in 10ml DMF in 

a dry and clean round bottomed flask equipped with molecular sieves and stir bar. The mixture 

stirred under N2 gas at 0C before 2-Methoxypropene (3.225 g, 44.72 mmol) was slowly added 

to it. In another flask, a solution of pyridinium p-toluenesulfonate (0.50 g, 20.12 mmol) in 

minimum amount of DMF was stirring for 5 min before addition to the reaction mixture at 0C. 

The reaction continued stirring at 0C for 3h, then it was left overnight at room temperature. 

The product was filtered by suction and washed several times with DMF then dried in a high 

pressure pump.  The crude was purified by means of column chromatography (pentane/ethyl 

acetate, 1:1) affording a colorless oily liquid (1.751 g, 41 %) of the protected sugar 2. TLC; Rf=0.2 

(heptane/ethyl acetate, 1:1); HRMS (ESI) m/z: [M+Na]+ Calcd. for  C8H14O4Na 197.08, found 

197.0800 and [M+MeOH]+ 299.1000; 1H-NMR (DMSO-d6, 400 MHz) δ =6.24 (d, J=8 Hz, 1H), 

4.95-4.91 (m,1H), 4.33 (dd, J= 4, 16 Hz, 1H), 4.04 (dd, J= 4, 16 Hz, 1H), 3.77 (dd, J=  4, 16Hz, 1H), 

3.45 (dd, J=  4, 16Hz, 1H), 1.95-1.89 (m, J= 4, 1H), 1.66-1.59 (m, 1H), 1.35 (s, 3H), 1.22(s, 3H) 
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;13C-NMR (DMSO-d6, 100 MHz) δ=108.0, 90.4, 71.3, 70.7, 61.6, 33.2, 27.8, 25.9. The data is 

consistent with literature [166, 185]. Appenix 1. 

5.2.1.2 Synthesis of the unsaturated alcohol from the protected sugar  

 

The protected sugar 2 (0.787, 4.51mmmol) was dissolved in 10 ml toluene and left under reflux 

with stirring until it reaches 90 C. Benzoic acid ( 0.0276, 0.226 mmol) was added to the reaction 

mixture followed by the slow addition of the Wittig salt solution in toluene to the reaction 

mixture at 90 C  . Reaction was refluxing for 2h and monitored by TLC.  Upon completion, the 

solvent was evaporated in a rotavap and the crude was washed with diethyl ether to remove 

the excess of the Wittig salt. The resulted oil was purified by means of column chromatography 

(pentane/ ethyl acetate , 1:1) affording UV active  colorless oily liquid (0.96 g, 87%) of the alkene 

3 .TLC; Rf = 0.3 ; HRMS (ESI) m/z: [M+Na]+ Calcd. for C12H20O5Na 267.12 found 267.1200; 1H-

NMR (CDCl3, 400 MHz) δ =6.97-6.90 (m, 1H), 5.89 (d, J=16 Hz, 1H), 4.29-4.24 (m, 1H), 4.20-4.13 

(m, 3H), 3.63 (d, J=8 Hz, 2H), 2.54-2.39 (m, 2H), 2.23(d, J=8, 1H), 1.45 (s, 3H), 1.34 (s, 3H), 1.25 

(t, J=8 Hz, 3H) ;13C-NMR (CDCl3, 100 MHz) δ=166.2, 144.5, 123.5, 108.4, 77.5, 75.3, 61.3, 60.3, 

32.3, 27.9, 25.2, 14.2. The data is consistent with literature [166].Appenix 2. 
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5.2.1.3 Reduction of the alkene 

 

The previously prepared alkene 3 (0.568, 2.32 mmol) was dissolved in 10 ml ethyl acetate with 

10% pd/C. The reaction mixture was stirring at room temperature under H2 gas (1mp) for 5h. 

The rection progress was monitored by TLC. Upon completion the reaction mixture was filtered 

by suction on a Büchner funnel loaded with a celite cake to capture the catalyst. The filtrate 

was collected and the solvent was evaporated in a rotavap affording (0.55 g, 93%) UV inactive 

coloulress liquid of 4. TLC; Rf=0.3 (heptane/ethylacetate, 1:1); HRMS (ESI) m/z: [M+Na]+ Calcd. 

For C12H22O5Na 269.14 , found 269.1350; 1H-NMR (CDCl3, 400 MHz) δ = 4.09-4.04 (m, 5H), 3.54 

( d, J = 8 Hz, 2H), 2.29 (q, J= 4Hz, 2H), 2.09 (d, J= 8 Hz, 1H), 1.97 (s, 1H), 1.79-1.75 (m, 1H), 1.66-

1.61 (m, 1H), 1.55-1.51 (m, 2H), 1.39 (s, 3H), 1.29 (s, 1H), 1.18 (t, J= 8Hz, 4H);13C-NMR (CDCl3, 

100 MHz) δ=173.3, 108.1, 77.8, 61.6, 60.3, 33.9, 28.1, 25.4, 22.0, 14.2. The data is consistent 

with literature [166]. Appenix 3. 

5.2.1.4 Synthesis of the aldehyde  

 

The alcohol 4 (0.2 g, 0.8126) was dissolved in 10 ml DCM with stirring under N2 gas. (0.45g, 2.82 

mmol) of SO3-Pyr was added to the mixture and cooled down to 0C in an ice bath with stirring. 

Meanwhile, a solution of (0.40 g, 0.55 ml) triethylamine in 2.07 DMSO was stirring for 5 min 

before adding to the reaction mixture at 0C , 5 min after addition the ice bath was removed 

and the reaction mixture continued to stir at room temperature for 1h .  
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Reaction progress was monitored by TLC, product is UV active. After completion the reaction 

was quenched by 10 ml distilled water and stirred for 5 min before transferring into a 

separation funnel. After separation of the two phases. The aqueous phase extracted with DCM 

the organic phase concentrated in a rotavap. The crude was washed with water, sodium 

bicarbonate and brine, dried over Na2SO4, filtered and concentrated in a rotavap affording 

brownish orange liquid (1.73, 87%) ethyl 4-(5-formyl-2,2-dimethyl-1,3-dioxolan-4-yl)butanoate 

5. TLC; Rf=0.12 (heptane/ethylacetate, 4:1); HRMS (ESI) m/z: [M+Na]+ Calcd. For 

C12H20O5Na 267.12, found C12H20O5Na 267.1200 , and [M+MeOH]+  299.1460; 1H-NMR (CDCl3, 

400 MHz) δ =9.56 (s, 1H), 4.29-4.25 (m, 1H), 4.195 (dd, J= 4, 16 Hz, 1H), 4.05 (q, J= 8, 2H), 2.26 

( t, J= 8Hz, 2H), 1.77-1.73( m, 1H), 1.67-1.62 (m, 1H), 1.59-1.54 (m, 1H), 1.51 (s, 3H), 1.34 (s, 

3H),1.18 (t, J= 8 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ= 201.9, 172.9, 110.4, 81.8, 78.1, 60.2, 

33.6, 29.0, 27.5, 25.2, 21.8, 14.1. Appenix 4. 

5.2.2 Synthesis of the Wittig salts     

5.2.2.1 Wittig salt of the ketone moiety containing compound  

 

5.2.2.1.1 Synthesis of the acylated toluene 
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Aluminum chloride (4.42 g, 33.18 mmol) was dissolved in 20 ml of dichloromethane while 

stirring in an ice path at 0C. Heptanoyl chloride (4.896 g, 32.94 mmol) was added dropwise to 

the reaction mixture followed by dropwise addition of toluene (2.73 g, 29.634 mmol).  

After addition, ice path was removed and the mixture continued stirring for 30 min at room 

temperature, the reaction was monitored by TLC. The reaction mixture was poured slowly with 

stirring into a baker contained 30 g of ice and 10 ml conc HCl, transferred into a separation 

funnel and extracted with ethyl acetate (2*30 ml) . The organic phase was collected and 

washed with saturated sodium bicarbonate (20 ml), brine (20 ml), dried over Na2SO4 then 

concentrated in rotavap. Crystals collected and purified by recrystallization in ethanol/water 

(5:1), filtered and dried in vacuuo affording white crystals of 7 (4.387 g, 73 %). m.p. : 35.5-36.8 

C. TLC; Rf = 0.8 (hexan/ethyl acetate, 9:1); 1H-NMR (CDCl3, 400 MHz) δ =7.85 (d, J = 8Hz, 2H), 

7.24 (d, J= 8 Hz, 2H), 2.92 (t, J = 8 Hz, 2H), 2.40 (s, 3H), 1.74-1.68 (m, 3H),  1.37-1.32 (m, 7H) , 

0.88 (t, J = 4 Hz, 3H) ;13C  NMR (CDCl3, 100 MHz) δ= 200.2, 143.5, 134.6 , 129.1 ,128.1, 38.5, 

31.6, 29.0, 24.4, 22.5 ,21.5, 14.0. The data is consistent with literature [187]. Appenix 5. 

5.2.2.1.2  Synthesis of benzylic brominated p- acylated toluene 

 

The previous synthesized acyl toluene 7 (3 g, 14.68 mmol) was dissolved in 12 ml of 

trifluorotoluene benzene. NBS (2.62 g , 14.72 mmol) was dissolved in 30 ml of H2O then the 

mixture was added dropwise to the reaction flask, Stirred and illuminated with a 60 W 

incandescent light bulb for 27 h, Reaction was monitored by TLC. Crude was collected from the 

reaction flask, extracted with 15 ml ethyl acetate and the organic phase washed with 15 ml 

brine, dried over Na2SO4, filtered, and concentrated on rotavap. Crude underwent purification 

by means of recrystallization in ethanol/water (5:1). Crystals was filtered, washed with water, 

and dried on vacuuo affording white crystals of 8 (3.46 g, 83 %). m.p.: 49-50 C.  TLC ; Rf = 0.2 
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(hexane/ethyl acetate, 9:1); 1H-NMR (CDCl3, 400 MHz) δ =7.93 (d, J= 8, 2H), 7.48 (d, J= 8, 2H), 

4.51 (s, 2H), 2.94 (t, J = 8 Hz,  2H), 1.73 (m, 2H), 1.38-1.31 (m, 6H), 0.89 (t, J = 4 Hz, 3H); 13C-

NMR (CDCl3, 100 MHz) δ = 195.8 ,167.1, 138.5, 132.9, 127.7, 125.2, 124.6, 122.8, 121.1, 56.4, 

34.7, 28.2, 27.6, 25.0, 20.3, 18.5, 17.0, 10.0. The data is consistent with literature [169]. Appenix 

6. 

5.2.2.1.3 Synthesis of the Wittig salt  

 

1-(4-(bromomethyl) phenyl) heptan-1-one 8 (1.73 g, 6.1 mmol) was dissolved in 50 ml of 

acetone followed by addition of triphenylphosphine (1.86 g, 6.58 mmol). The reaction mixture 

stirred under reflux for 3h at 65C, the reaction was monitored by TLC .Crude was cooled down 

forming crystals, filtrated under vacuum filtration, rinsed with diethyl ether, and dried in a 

desiccator. White clear crystals was obtained (1.58 g, 82 %) of the salt 9. m.p.: 237-236 C.  TLC; 

Rf = 0.7 (hexane/ethyl acetate, 9:1); IR (cm-1) 3044, 2925, 2852, 2771, 1679, 1436, 689; HRMS 

(ESI) m/z: [M+H]+ Calcd. For C32H34OP 453.23, found 453.2300 ; 1H-NMR (CDCl3, 400 MHz) δ 

=7.80-7.75 (m, 10H), 7.68 (d, J=8 Hz, 2H), 7.63 (dd, J= 4, 16 Hz, 5H), 7.60 (d, J=4 Hz,2H), 7.28 (d, 

J= 4 Hz, 1H) , 7.26 (d, J=4 Hz,1H), 5.64 (d, J= 16 Hz, 2H), 2.85 (t, J = 8 Hz, 2H), 1.66 -1.63 (m, 5H), 

1.36-1.30 (m, 7H), 0.88 (t, J=4 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ = 199.8, 142.4, 136.8, 129.1, 

128.5, 38.7, 32.1, 31.6,29.00, 24.2, 22.5, 14.0. The data is consistent with literature [170, 171]. 

Appenix 7. 
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5.2.2.2 Wittig salt of the ether moiety containing compound 

 

 

5.2.2.2.1  Synthesis of O-alkylated p-cresol. 

 

Table 3. The trials towards the O-alkylated product. 

Trial Base Solvent Yield % 

A 13.6g  K2CO3 50 ml , CH3CN (3.837g, 72%) 

b 4.5g KOH 5:45 ml  (H2O , EtOH) (4.071g, 76%) 

                                                            

The commercially available p-cresol (3 g, 2.901 ml, and 27.77 mmol) was dissolved in a certain 

amount of the solvent with the base under stirring, followed by the addition of 1-bromohexane 

(4.94 g, 4.25 ml, and 30.547mmol). The reaction mixture refluxed with stirring at 85C under 

N2 gas for 24 h, Reaction was monitored by TLC. The reaction mixture removed from heat 

source and gravity filtered off from the access of the base, rinsed with with DCM and the crude 

was concentrated in a rotavap. Work up on the crude was done by washing with 100 ml NaOH 

(2x), H2O (2x), brine (1x), the organic phase was extracted with DCM and dried over Na2SO4, 

filtered and finally concentrated on rotavap. The crude was pure no further purification was 

done to the crude product. TLC; Rf =0.5 (hexane/ ethyl acetate, 9.5: 0.5); 1H-NMR (CDCl3, 400 

MHz) δ =7.11 (d, J= 8 Hz, 2H), 6.84 (d, J= 8 Hz, 2H), 3.95 (t, J= 8 Hz,  2H) , 2.32 (s, 3H), 1.82-1.77 

(m, 2H), 1.53-1.48 (m, 2H), 1.39-1.38 (m,4H),  0.95 (t, J= 8Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 
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=157.0, 129.8, 129.6, 114.3, 68.0 , 31.6 , 29.3, 25.7, 22.6 , 20.4 , 14.0. The data is consistent 

with literature [170, 171]. Appenix 8. 

5.2.2.2.2  Synthesis of benzylic brominated p-cresol derivative. 

 

Table 1. Reaction optimization towards the bromination of the benzylic ether 

Trial Solvent Reaction 

time 

Equivalency 

( cpd 11: 

NBS) 

Yield% product 

1 CHCL3 9h (3*3) 1:3 19 % Dibromo 

2 CHCL3 9h (3*3) 3:1 83 % mix 

3 DCM 6h (2*3) 3:1 48% monobromo 

                                 

1-(hexyloxy)-4-methylbenzene 11 (3.5 g,18.21mmol,3eq) was dissolved in 121.4 ml chloroform 

,NBS (3*0.35, 5.95mmol,1eq) was added to the reaction flask in three equal portions in each 

addition few mg of benzoyl peroxide was also added , refluxed at 68C for. Upon completion of 

reaction, the mixture was cooled and filtered. Crude product washed with saturated NaHCO3 

solution (100ml), brine (100 ml), dried over Na2SO4, filtered and concentrated on rotavap. 

Purification by vacuum distillation ≈4 torr and remaining amount separated using short path 

distillation (kugler-distill) affording pure colorless liquid of 1-(bromomethyl)-4-(hexyloxy) 

benzene 12. 1H-NMR (CDCl3, 400 MHz,) δ =7.10 (d, J= 12 Hz, 2H), 6.83 (d, J= 8 Hz, 2H), 5.30 (s, 

2H), 3.95 (t, J= 4 Hz, 2H), 2.32 (s, 3H), 1.83-1.76 (m, 2H), 1.53-1.46 (m, 2H), 1.39-1.35 (m, 4H), 
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0.94 (t, J= 8 Hz,  3H);13C-NMR (CDCl3, 100 MHz) δ =157.0, 129.8, 114.3, 76.6 ,68.0, 31.6, 29.3, 

25.7, 22.6, 20.4, 14.0. The data is consistent with literature [170]. Appenix 9. 

5.2.2.2.3  Synthesis of the Wittig salt  

 
The previously prepared compound 12 (0.565g, 2.07mmol) was dissolved in 20ml acetone , 

triphenylphosphine (0.58g, 2.25mmol) was added to the reaction mixture and stirred for 3h 

under reflux at 65C the reaction was monitored by TLC. After complete reaction, the crude 

concentrated in a rotavap. The crude washed with ethyl acetate and filtered affording white 

powder (0.676g, 72%) of(4-(hexyloxy) benzyl)triphenylphosphonium bromide 13. m.p.: 360-

361C .TLC : Rf = 0.2 (hexane/ethyl acetate, 5:1) ; IR (cm-1) 3053, 2926, 2856, 1606, 1508, 1436, 

843; HRMS (ESI) m/z: [M+H]+ Calcd. For C31H34OP 465.23, found 465.2300 ; 1H NMR (CDCl3, 400 

MHz) δ =7.72-7.63 (m, 8 H), 7.58 (d, J= 4 Hz,2H), 7.56 (d, J= 4, 2H), 7.54 (d, J=4,1H), 6.92 (dd, J= 

4, 16 Hz, 2H), 6.57 (d, J=8 Hz, 2H), 5.23 (d, J= 16 Hz, 2H), 3.78 (t, J= 8Hz,  2H), 1.69-1.62 (m, 2H), 

1.38-1.31 (m, 2H), 1.26-1.23 (m, 4H), 0.82 (t, J= 8 Hz, 3H);13C NMR (CDCl3, 100MHz) δ =159.2, 

134.9, 134.4, 130.0, 118.4, 117.5, 114.8, 68.0, 31.5, 29.1, 25.6, 22.5, 14.0. The data is consistent 

with literature [170, 171]. Appenix 10. 

5.2.3  Synthesis of the alkene via Wittig coupling of the ketone partner. 

 

The Wittig salt 9 (0.79g, 1.44 mmol) was dissolved in minimum amount of THF at 0C in a dry 

and clean round bottomed flask under N2 gas.  Meanwhile Potassium t-butoxide (0.3 g, 2.67 

mmol) was dissolved in minimum amount of THF at in another flask, the base solution was 
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added slowly during 15 min to the reaction flask while stirring at 0C. After complete addition, 

cooling source was removed and the reaction mixture was continued stirring for 20 min at room 

temperature. A solution of the aldehyde 5 (0. 27g, 1.105 mmol) in THF was added slowly to the 

reaction mixture at room temperature. After complete addition the reaction mixture continued 

stirring for 1-2 hr, reaction progress was monitored by TLC. After complete reaction the solvent 

was removed in a rotavap, the crude was washed with water and extracted with ethyl acetate, 

and organic phases was collected, dried over Na2SO4, and concentrated on rotavap. The crude 

was further purified by means of column chromatography (hexane, ethyl acetate, 10:1) 

affording yellow liquid (0.22 g, 47%). TLC; Rf =0.35 (hexane/ethyl acetate, 5:1); HRMS (ESI) m/z: 

[M+Na]+ Calcd. For C26H38O5Na 453.26, found 453.2610; IR (cm-1) 2955, 2865, 1732, 1682, 

1218, 1030, 856; 1H-NMR (CDCl3, 400 MHz) δ =7.94 (d , J= 8 Hz,  2H),7.43 (d, J= 8 Hz, 1H) 7.33 

(d , J= 8 Hz, 1H), 6.74 (d, J= 8 Hz, 1H), 5.83 (t, J= 12 Hz, 1H), 4.92-4.88 (m, 1H), 4.21-4.18 (m, 

1H), 4.14-4.11 (m, 3H), 2.95 (t, J= 8 Hz, 2H), 2.34 (t, J= 8 Hz, 2H), 2.04 (s, 2H),  1.72-1.66 (m, 

2H), 1.63-1.65 (m, 2H), 1.58-1.22 (m, 18H), 1.25-1.22 (m, 5H), 0.89 (t,  J= 8 Hz,  3H); 13C-NMR 

(CDCl3, 100MHz) δ=199.9, 173.2, 140.6, 135.9, 132.4, 129.5, 128.7, 128.1, 108.46, 78.1,74.0, 

60.2, 38.6, 34.0, 31.6, 29.8, 29.0, 28.3, 25.6, 24.3, 22.5, 21.8, 14.2. Appenix 11. 

5.2.4  Synthesis of the alkene via Wittig coupling of the ether partner 

 The Wittig salt 13 (0.2g, 0.44 mmol) was dissolved in minimum amount of THF at 0C in a dry 

and clean round bottomed flask under N2 gas.  Meanwhile, Potassium t-butoxide (0.11 g, 0.90 

mmol) was dissolved in minimum amount of THF at in another flask, the base solution was 

added slowly during 15 min to the reaction flask while stirring at 0C. After complete addition, 

cooling source was removed and the reaction mixture was continued stirring for 20 min at room 

temperature. A solution of the aldehyde 5 (0. 1g, 0.40 mmol) in THF was added slowly to the 

reaction mixture at room temperature. After complete addition the reaction mixture continued 

stirring for 1-2 hr, reaction progress was monitored by TLC. After complete reaction the solvent 
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was removed in a rotavap, the crude was washed with water and extracted with ethyl acetate, 

and organic phases was collected, dried over Na2SO4, and concentrated on rotavap. The crude 

was further purified by means of column chromatography (pentane, ethyl acetate, 9:1) 

affording yellow liquid (0.055 g, 30%) of the alkene 14.  TLC; Rf =0.36 (hexane/ethyl acetate, 

5:1); IR (cm-1) 2933, 1733, 1510, 1174, 1025, 839; HRMS (ESI) m/z: [M+Na]+ Calcd. 

for C25H38O5Na 441.26 , found 441.2600; 1H-NMR (CDCl3,400 MHz) δ=7.08 (d, J= 8 Hz, 2H), 6.79 

(d, J= 8 Hz, 2H), 6.57 (d, J= 12 Hz,1H), 5.54 (t, J= 12 Hz, 1H), 4.89 (t, J= 4 Hz, 1H), 4.13-4.09 (m, 

2H), 4.06-4.03 (m, 5H), 3.87 (t, J= 8 Hz 2H), 2.26 (t, J= 12 Hz, 2H), 1.96 (s, 5H), 1.72-1.68 (m, 

3H), 1.62-1.52 (m, 2H), 1.42 (s, 5H), 1.38-1.35 (m, 2H), 1.26 (s, 6H), 1.19-1.16 (m, 8H), 0.88 (t, 

J= 8 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ=173.3, 171.0, 158.5, 133.1, 129.8, 128.5, 125.7, 

114.2, 108.1, 78.2, 74.3, 67.9, 60.3, 34.1, 31.5, 30.0, 29.1, 28.3, 25.6, 22.5, 21.8, 20.9,14.1. 

Appenix 12. 

5.2.5 Hydrolysis of the acetonid in the ketone containing analogue 

 

The previously synthesized alkene 15 (0.022g, 0.05mmol) was dissolved in a mixture of 

acetonitrile and water (1:1) with stirring at 0C.  TFA (0.8 ml) was added dropwise to the stirring 

mixture at 0C after complete addition the ice bath was removed and the reaction kept stirring 

at room temperature for 1h. The reaction progress was monitored by TLC. After complete 

reaction it was slowly quenched with 2ml sodium bicarbonate and extracted several times with 

ethyl acetate the combined organic phase was washed with water and brine, dried over 

sod.sulfate and concentrated in a rotavap affording oily green oily liquid (0.012,70 %) of lactone 

16. TLC; Rf =0.45(CHCl3/MeOH, 9.8:0.2); IR (cm-1) 2928, 2857, 2248, 2159, 1729, 1679, 1603, 

1239, 1049; HRMS (ESI) m/z: [M+Na]+ Calcd. for C21H28O4Na 367.19, found 367.1883; 1H-NMR 

(400 MHz, CDCl3) δ=7.88-7.82 (m, 2H), 7.33 (dd, J=8, 32 Hz,2H), 6.68 (t, J=8 Hz,  1H), 5.83-5.73 

(m, 1H), 4.40-4.36 (m, 1H), 4.24-4.21 (m, 1H), 3.49 (bs, 1H), 2.87 ( t, J=8 Hz, 2H), 2.58-2.49 (m, 

1H), 2.43-2.31 (m, 1H), 1.81-1.72 (m, 2H), 1.69-1.50 (m, 3H), 1.32-1.18 (m, 7H), 0.82 (t, J=8 Hz, 
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3H); 13C-NMR (CDCl3, 100 MHz) δ=200.1, 171.4, 140.5, 136.1, 133.8, 129.7, 128.9, 128.3, 83.1, 

69.7, 68.9, 38.7, 31.6, 29.8, 29.0, 24.4, 22.5, 18.3, 14.0. Appenix 13. 

5.2.6  Hydrolysis of acetonid of the ether containing analogue 

 

The previously synthesized alkene 14 (0.022g, 0.05mmol) was dissolved in 2ml THF , 2ml of 1N 

HCl was added dropwise to the stirring mixture at 0C after complete addition the ice bath was 

removed and the reaction kept stirring at room temperature overnight. The reaction progress 

was monitored by TLC. After complete reaction it was slowly quenched with 2ml NaOH and 

extracted several times with ethyl acetate the combined organic phase was washed with water 

and brine, dried over sodium sulfate and concentrated in a rotavap affording colorless liquid. 

TLC; Rf =0.45(CHCl3/MeOH, 9.8:0.2); IR (cm-1) 2927, 2857, 1711, 1606, 1510, 1174, 1049, 839; 

HRMS (ESI) m/z: [M+Na]+ Calcd. for C21H28O4Na 355.19 found 355.1884 ; 1H-NMR (CDCl3, 400 

MHz) δ= 7.19 (s, 1H), 7.09 (d, J= 8 Hz, 1H), 6.79 (d, J= 12 Hz, 2H), 6.58 (d, J= 12 Hz, 1H), 5.55 (t, 

J= 8 Hz, 1H), 4.92-4.88 (m, 1H), 4.14-4.09 (m, 1H), 4.04 (q, J= 8 Hz, 2H), 3.89 (t, J= 8 Hz, 2H), 

2.27 (t, J= 4 Hz, 2H), 1.73-1.69 (m, 3H), 1.61-1.53 (m, 2H), 1.43 (s, 3H), 1.41-1.36 (m, 2H), 1.28-

1.27 (m, 6H), 1.19-1.15 (m, 3H), 0.84 ( t, J= 8 Hz, 3H) ; 13C-NMR (CDCl3, 100 MHz,) δ= 172.3, 

157.5, 132.1, 128.8, 127.4, 124.7, 113.2, 107.1, 77.2, 73.3, 67.0, 59.2, 33.1, 30.5, 29.0, 28.1, 

27.4, 24.7, 21.5, 20.8, 13.0. Appenix 14. 

5.2.7 Ullmann approach 

5.2.7.1 Synthesis of the O-alkylated phenol derivative. 
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The commercialy available 4-bromophenol 19 (1g, 5.78 mmol) was dissolved in 20 ml 

acetonitrile. (1.59g, 11.56mmol) potassium carbonate was added to the reaction mixture under 

stirring for 5 min before (1.048 g, 6.35 mmol)1-bromohexane slowly added to the reaction flask 

and the mixture left refluxing with stirring under N2 gas for 24h.  

The reaction was monitored by TLC. After reaction completion the crude left to cool down and 

the excess of the base was filtered off and rinsed with acetonitrile. The crude concentrated in 

rotvap before washing with 1M NaOH to remove the unreacted phenol derivatives, H2O, and 

brine and the crude was extracted with ethyl acetate and dried over Na2SO4, filtered and 

concentrated in a vacuo affording colorless oil (1.27g, 85%). The product was quit pure after 

the workup, no further purification was done on it. TLC; Rf =0.36 (heptane/ethyl acetate, 

9.8:0.2); 1H-NMR (CDCl3, 400 MHz) δ=7.41 (d, J= 8 Hz  ,2H), 6.82 (d, J= 8, 2H), 3.96 (t, J= 4Hz, 

2H), 1.85-1.78 (m, 2H), 1.50-1.39 (m, 6H), 0.96 (t, J= 8Hz, 3H); 13C-NMR (CDCl3, 100 MHz) 

δ=158.2, 132.2, 116.3, 112.5, 68.2, 31.6, 29.1, 25.7, 22.6, 14.0. Appenix 15. 

5.2.7.2 Synthesis of Ullmann ether. 

 

(10%) CuI, (10%) 2,4,7,8 Me2Ph4, and Cs2CO3 were added in reaction tube with the (0.0898 g, 

0.349 mmol) of the previously synthesized 1-bromo-4-(hexyloxy) benzene 20. The reaction 

tube was evacuated from air and backfilled with argon. (0.129 g, 0.523 mmol) of the aldehyde 

was added with 5ml of toluene through a syringe to the reaction mixture. The reaction tube 

was submitted to the Microwave apparatus under 160C for 5h. The reaction was monitored 

every hour during the reaction time. After 5h the crude was filtered and washed with ethyl 

acetate. The product couldn’t be indicated, the TLC showed the presence of the two starting 

material and indicated no reaction.  
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7 APPENDICES 
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JHAI-2-5_4 #1 RT: 0.02 AV: 1 NL: 1.65E7
T: FTMS + p ESI Full ms [100.00-300.00]
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UNALK_151002103248 #1 RT: 0.01 AV: 1 NL: 6.36E7
T: FTMS + p ESI Full ms [200.00-500.00]
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red #1 RT: 0.01 AV: 1 NL: 8.14E7
T: FTMS + p ESI Full ms [150.00-500.00]

150 200 250 300 350 400 450 500

m/z

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e

 A
b

u
n

d
a

n
c
e

269.14
C 12 H 22 O 5 Na

301.08

429.24
C 27 H 34 O 3 Na

317.05

337.10
C 18 H 18 O 5 Na

203.06181.08

247.15
C 12 H 23 O 5

497.32



 

 

104 

 

Appendix 4 

 

 

 

 

 

 

 

 

 

 



 

 

105 

 

 

 



 

 

106 

 

 

 

JHAI-2-10-2 #1 RT: 0.01 AV: 1 NL: 2.57E7
T: FTMS + p ESI Full ms [150.00-700.00]
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JHAI-2-7-2_pos #1 RT: 0.00 AV: 1 NL: 2.45E7
T: FTMS + p ESI Full ms [150.00-450.00]
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Appendix 7 
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JHAI-1-20wit_MeOH #1 RT: 0.01 AV: 1 NL: 3.22E8
T: FTMS + p ESI Full ms [200.00-1000.00]

200 300 400 500 600 700 800 900 1000

m/z

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

465.23
C 32 H 34 O P

395.16
C 27 H 24 O P 545.14

C 26 H 36 O 4 Br Na P
659.29 778.15 855.21 929.22

3
9

7
0

.8
7

5

3
0

7
7

.5
4

6
3

0
4

4
.3

8
7

2
9

8
7

.9
6

4
2

9
6

3
.2

3
5

2
9

2
5

.6
3

6

2
8

6
0

.3
2

4
2

8
4

4
.6

8
0

2
7

7
1

.0
5

5

2
3

1
5

.9
7

0

1
6

7
9

.6
5

9

1
6

0
3

.3
8

5
1

5
8

6
.4

4
6

1
5

6
9

.6
1

8 1
5

0
2

.0
7

2
1

4
8

5
.5

4
3

1
4

6
2

.3
0

7
1

4
4

0
.9

3
6

1
4

3
6

.6
3

6
1

4
2

2
.7

0
8

1
4

0
7

.3
9

1
1

3
7

4
.0

9
7 1
3

4
4

.5
3

7
1

3
3

3
.5

4
1

1
3

2
3

.8
4

4
1

3
1

3
.9

9
5

1
2

8
0

.1
4

5

1
2

4
1

.1
9

7
1

2
0

5
.9

0
0

1
1

9
6

.5
2

2
1

1
7

8
.1

4
9

1
1

6
9

.2
6

5
1

1
6

0
.4

9
4

1
1

1
4

.2
2

1
1

1
0

8
.7

6
4

1
0

6
2

.9
5

3
1

0
3

8
.8

8
6

1
0

2
9

.9
8

9
1

0
2

6
.8

4
7

1
0

1
4

.6
1

4
9

9
6

.4
6

5
9

8
6

.2
6

3
9

6
7

.6
6

0
9

4
1

.4
9

0
9

2
8

.2
5

2
9

1
4

.8
4

6
8

9
3

.9
7

0
8

6
8

.5
2

0
8

5
0

.5
8

5
8

3
4

.0
7

2
8

1
9

.4
2

8
7

9
6

.4
5

6
7

9
2

.0
0

0

7
4

7
.4

5
1

7
4

2
.1

0
2

7
1

9
.9

9
4

6
8

9
.1

4
8

6
8

1
.0

9
7

6
3

4
.8

6
2

6
2

3
.2

1
6

6
1

5
.1

8
8

6
0

1
.2

0
7

wittig ketone.bsp(2)

 3000  2800  2600  2400  2200  2000  1800  1600  1400  1200  1000   800

   102

   100

    98

    96

    94

    92

    90

    88

    86

    84

    82

    80

    78

    76

    74

Wavenumber

%
T

ra
n
s
m

it
ta

n
c
e



 

 

114 

 

Appendix 8 

 

 

 

 

 

 

 

 

 

 

 



 

 

115 

 

 

 



 

 

116 

 

Appendix 9 
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JHAI-1-30-2 #1 RT: 0.01 AV: 1 NL: 6.88E8
T: FTMS + p ESI Full ms [400.00-550.00]
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bi_150930155903 #1 RT: 0.01 AV: 1 NL: 1.47E7
T: FTMS + p ESI Full ms [150.00-500.00]
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h_151007161342 #1 RT: 0.01 AV: 1 NL: 3.74E7
T: FTMS + p ESI Full ms [400.00-600.00]
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h_a #1 RT: 0.02 AV: 1 NL: 4.55E6
T: FTMS + p ESI Full ms [400.00-600.00]
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AB-180_151009115758 #1-4 RT: 0.02-0.11 AV: 4 NL: 1.81E6
T: FTMS + p ESI Full ms [200.00-500.00]
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