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Abstract 
World demand for energy leads industry to harvest energy in complex environment with harsh 

conditions and sensitive areas, such as the Arctic region – one of the last remaining wild places 

in the world – with potentially harmful consequences. Moreover, over the past few decades, the 

increasing trend of melting sea ice in the Arctic has provided increased access and has created 

new opportunities for economic development within metals and minerals, fisheries, cargo 

shipping, cruising, subsea telecom cables and pipelines. However, development of the Arctic 

resources is assumed to be technologically and economically challenging and risky. Studies 

reveal that, due to low temperatures, sea ice, polar low pressures, poor visibility, seasonal 

darkness limitations to the logistics of supplies, etc., Arctic operational conditions have 

significant effects on the performance of components and industry activities in various ways, 

including increasing failure rate and repair time, and can cause different types of production 

losses. The optimal functioning of technical systems involved in design and operation in the 

Arctic faces numerous challenges, in order to succeed in a globally competitive market with 

limited resources. The concept of the Performance Measurement System (PMS) is frequently 

used by industries and has been shown to be an essential concept for improving efficiency and 

effectiveness and supporting the design, planning, and managing of a company; PMS refers to 

output results obtained from a system that permits evaluation and comparison, relative to past 

results or other companies. PMS needs up-to-date and accurate performance information on its 

business. This performance information needs to be integrated, dynamic and accessible, to 

assist fast decision-making. However, performance terminologies and standards for the Arctic 

reveal that the Performance Indicators (PIs) measured by industries though important, are not 

enough and could still be improved by identifying more important indicators, which contribute 

to a successful PMS in the Arctic. Hence, the development and continuous improvement of 

PMSs and the identification of more PIs for judging performance of equipment in the Arctic 

are critical for industry success. Moreover, the quantification of performance is complex, as it 

involves various indicators with different perspectives at various hierarchical levels. The lack 

of correct sources of information and data on PIs and suitable statistical models and standard 

approaches are a barrier to the successful quantification of PIs. Operation and maintenance data 

are often collected from multiple and distributed units in different operational conditions, which 

can introduce heterogeneity into the data. Part of such heterogeneity can be explained by the 

observable risk factors, whose values and the way that they can affect the item’s PIs are known. 

However, some factors which may affect PIs are typically unknown (unobserved risk factors), 

leading to unobserved heterogeneity. Nevertheless, many researchers have ignored the effect of 

observed and un-observed risk factors, and this may lead to erroneous model selection, as well 

as wrong conclusions and decisions. The statistics models must be able to quantify the effect of 

observed and unobserved risk factors on PIs and must be built based on correct assumptions 

that reflect the operational conditions. 

In this thesis, a methodology for the monitoring and analysis of operation and maintenance 

performance is developed. The aim is to facilitate improvements and the optimization of 

decision-making for operation and maintenance in the Arctic. Firstly, a brief survey of 

technological and operational challenges in the Arctic region, from a performance point of 

view, is presented. Further, appropriate performance indicators/criteria that need to be 

measured for judging the performance of equipment/systems in the Arctic that contribute to a 

successful PMS will be discussed. Thereafter, the study focuses on improvement and modifying 

the available statistical approach for the prediction of PIs, considering the effect of observed 

and unobserved risk factors. 
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The thesis consists of two parts. The first part gives an introductory summary of the study, 

followed by a discussion of the appended papers and conclusions.  

The second part consist of three appended papers. The first paper concerns the development of 

a model for improving safety performance measurement. The second paper is a study of the 

reliability performance indicator, while Paper C is concerned with the maintainability 

performance indicator. 

Keywords: operation and maintenance, performance measurement, performance indicators, observed 

and unobserved covariates, proportional hazard model, proportional repair model. 
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Abbreviations 
 

AFT Accelerated failure time model 

AIC Akaike information criterion 

AvGOF 
The average values from the Kolmogorov-Smirnov goodness-of-fit 

test 

AvPLOT The average values from the correlation coefficient (PLOT) test 

BIC Bayesian information criterion 

Conf. Confidence 

DMP Dynamic Multi-Dimensional Performance Framework 

DT. Dump truck 

EER Evacuation, Escape and Rescue (EER) 

EMPHM Extension mixed proportional hazards model 

FFL Free-fall lifeboats 

HLP Helicopter landing pad 

HR Likelihood ratios 

IEI Icing effect index 

IEID Icing effect index on dependability 

IEIP Icing effect index for performability 

IEIS Icing effect index on survivability 

IRIP Icing risk index for performability 

LCC Life Cycle Cost 

LKV The average values from the likelihood value test 

MFM Mixture frailty model 

MPHM Mixed proportional hazard model 

MTTR Mean time to repair 

NHPP Non-homogeneous Poisson process 

OAE Overall Asset Effectiveness 

OEE Overall Equipment Effectiveness 

OFE Overall Factory Effectiveness 

OPE Overall Plant Effectiveness 

P Observed covariates 

PEE Production Equipment Effectiveness 

PH Proportional hazards 

PHM Proportional hazard model 

PI Performance Indicator 

PMS Performance Measurement System 

POI Probability of ice accretion 

PRM Proportional repair model 

Q test Cochran's Q test 

RAM Reliability, availability, and maintainability 

RDF Results and Determinants Framework 
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ROI Return on Investment 

ROS Return on Sales 

S.E. Standard error 

Std Standard deviation 

t System/machine operation time or time to repair 

TEEP Total Equipment Effectiveness Performance 

TBF Time between failure 

TRP Trend renewal process 

TTR Time to repair 

WCED World Commission on Environment and Development 
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Notations 
 

𝜆0(𝑡) Baseline hazard rate 

𝜆0𝑖(𝑡) Baseline hazard rate of r'th stratum 

𝜇0(𝑡) Baseline repair rate 

g(A) Gamma distribution 

Г(𝜃) Gamma function 

Is Icing effect index for safety 

Im
αm Icing effect index on survivability for the maintainability 

Iq

αq
 Icing effect index on survivability for the quality 

Ir
αr Icing effect index on survivability for the reliability 

Isu Icing effect index on sustainability 

m(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) The probability density function of repair process  

𝑀0(𝑡) The baseline maintainability function 

𝑀0𝑚(t) The baseline maintainability function of the several repair processes 

𝜆𝑗(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)|𝐴) 
The conditional failure rate of time-dependent and time-independent 

observed covariates and unobserved covariates 

𝜆𝑟(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)|𝐴) 
The conditional failure rate time-dependent and time-independent 

observed covariates and unobserved covariates of r'th stratum 

M(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)|𝐴) 
The conditional maintainability function of time-dependent and time-

independent observed covariates and unobserved covariates 

𝑅𝑝(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)|𝐴) 
The conditional reliability of time-dependent and time-independent 

observed covariates and unobserved covariates 

𝜇(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)|𝐴) 
The conditional repair rate of time-dependent and time-independent 

observed covariates and unobserved covariates 

𝜓(𝑧, 𝑧(𝑡); 𝑃; 𝛿) 
The function of time-independent and time-dependent observed 

covariates 

γk The proportion of the repair tasks belonging to the kth repair process 

δ and η The regression coefficient observed covariates 

𝜂k The scale parameter 

𝛽k The shape parameter 

M(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) 
The unconditional maintainability function of time-dependent and 

time-independent observed covariates 

R(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) 
The unconditional reliability function of time-dependent and time-

independent observed covariates 

R𝑟(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) 
The unconditional reliability of time-dependent and time-independent 

observed covariates of r'th stratum 

𝑧𝑗(𝑡) Time-dependent observed covariates 

𝑧𝑖 Time-independent observed covariates 

𝜃 Variance 

γDep. ≥ 0 Weight vectors of dependability on performability 

αm ≥ 0 Weight vectors of maintainability 

αq ≥ 0 Weight vectors of quality 
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αr ≥ 0 Weight vectors of reliability 

βsur. ≥ 0 Weight vectors of safety 

βsur. ≥ 0 Weight vectors of survivability 

γsu. ≥ 0 Weight vectors of sustainability on performability 
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Some Basic Definitions 
 

Availability The ability of an item to be in a state to perform a required 

function under given conditions at a given instant of time or over 

a given time interval, assuming that the required external 

resources are provided (IEC, 2019). 

Capacity performance An item’s ability to deliver according to design capacity and/or 

current demands (requirements/needs) in a fixed period of time 

with given production resources (Standard, 1998b). 

Dependability Collective term which describes availability performance and its 

influencing factors, namely reliability performance, 

maintainability performance, and maintenance support 

performance (IEC, 2019). 

Failure A fault is the state of an item characterized by inability to 

perform a required function, excluding the inability during 

preventive maintenance or other planned actions, or due to lack 

of external resources. A fault is often the result of a failure of the 

item itself but may exist without prior failure (IEC, 2019). 

Failure rate The failure rate is the limit, if it exists, of the quotient of the 

conditional probability that the instant of a failure of a non-

repaired item falls within a given time interval (t, t+Δt) and the 

duration of this time interval, Δt, when Δt tends to zero, given 

that the item has not failed up to the beginning of the time 

interval (IEC, 2019). 

Maintainability The ability of an item, under given conditions of use, to be 

retained in, or restored to, a state in which it can perform a 

required function, when maintenance is performed under given 

conditions and using stated procedures and resources (IEC, 

2019). 

Maintenance The ability of a maintenance organization, under given 

conditions, to provide upon demand the resources required to 

maintain an item, under a given maintenance policy (IEC, 2019). 

Mean time between 

failures 

The expectation of time between failures (IEC, 2019). 

Mean time to repair The expectation of the time to restoration (IEC, 2019). 

Observed covariates All those factors which may have an influence on the reliability 

characteristics of a system are called observed covariates. 

Observed covariates are also called explanatory variables. 

Examples of observed covariates are the operating environment 

(dust, temperature and humidity, etc.), the skill of operators, etc. 

(Klein et al., 2016). 

Performance The characteristics defining the ability of a measuring instrument 

to achieve the intended functions (IEC, 2019). 

Reliability The ability of an item to perform a required function under given 

conditions for a given time interval (IEC, 2019). 



SOME BASIC DEFINITIONS 

 

xi 
 

Risk The combination of the probability of occurrence of harm and 

the severity of that harm (IEC, 2019). 

Strata The strata of a data set are obtained by grouping the data on the 

basis of discrete values of a single covariate or combinations of 

a set of covariates (Kalbfleisch and Ross, 1983)[1]. 

Sustainable development Development that meets the needs of the present without 

compromising the ability of future generations to meet their own 

needs (Brundtland et al., 1987). 

Supportability Ability to be supported to sustain the required availability with a 

defined operational profile and given logistic and maintenance 

resources (IEC, 2019). 
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1. INTRODUCTION 

This chapter gives a short description of the research area; it includes the background, problem definition, 

purpose, research question, scope and limitations and ends with the structure of the thesis. 

 

1.1. Background 
 

1.1.1. Industry in the Arctic area 

Energy is a key element for driving modern industries and people’s quality of life. World 

demand for energy leads industry to harvest energy in complex environment with harsh 

conditions and sensitive areas, such as the Arctic region – one of the last remaining wild places 

in the world – with potentially harmful consequences. The Arctic region can be defined 

geographically by the Arctic Circle, its climate, vegetation and marine boundaries (Figure 1, a) 

 

 

Figure 1. a) The Arctic region and its boundaries (Hansen and Van Oostdam, 2009), Figure 1.b) Major oil and 

gas provinces (OGP) and basins around the Arctic (AMAP, 2010b). 

However, it is often delimited by the Arctic Circle, located at 66º, 32'N latitude (Perry and 

Andersen, 2012, Murray et al., 1998). The population comprises about four million permanent 

residents, and eight “Arctic States” have control over the various lands that compose the Arctic 

region: Canada, Denmark (as the sovereign of self-governing Greenland), Finland, Norway, 

Sweden, Iceland, Russia, and the United States (Fow, 2011). The Arctic is characterized by its 

harsh climate, with high variation in temperature and light, polar lows, short summers, large 

areas of permafrost, and extensive snow and ice cover in winter (ACI, 2005). 

According to the United States Geological Survey assessment, the Arctic contains 

approximately 13 percent (90 billion barrels) of the world's undiscovered conventional oil 

resources and about 30 percent of its undiscovered conventional natural gas resources (Oil, 

2011). Consequently, since the 1960s, when more intensive oil and gas activity started in the 

Arctic, over 440 exploration wells have been drilled (Council, 2015); currently, the Arctic 

produces about a tenth of the world’s oil and a quarter of its gas (AMAP, 2010a). Given the 

large undiscovered petroleum resources and the reduced sea ice, increased future oil and gas 
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production in the Arctic can be expected (Peters et al., 2011). (Figure 1, b). Over the past few 

decades, the increasing trend of melting sea ice in the Arctic has provided increased access and 

has created new opportunities for economic development within renewable energy, metals and 

minerals, fisheries, cargo shipping, cruising, subsea telecom cables, ports, pipelines and power 

grids (Koivurova, 2013, Meier et al., 2014, Serreze and Barry, 2011, Quillérou et al., 2015). 

(See Figure 2). However, the development of Arctic resources is assumed to be technologically 

and economically challenging and risky. The Arctic represents a new frontier, where existing 

technologies are tested to their limits (Kristoffersen and Langhelle, 2017). Studies reveal that, 

due to low temperatures, sea ice, polar low pressures, poor visibility and seasonal darkness, 

etc., the Arctic operational conditions have significant effects on the performance of 

components and industry activities in various ways, including increasing failure rate and repair 

time, and can cause different types of production losses (Barabadi, 2014, Gao et al., 2010, 

Trump et al., 2018). Operators in the Arctic also face greater complexity, since the environment 

is vulnerable, and communication and rescue operations’ infrastructure has not been developed 

significantly.  

 

Figure 2. Model 2010–2019 (a) and 2030–2039 (b) sea ice concentration (%, shades of blue) and thickness (labeled 

contours) during the navigation period (June–October). The Arctic shipping routes are shown schematically: the 

Northern Sea Route (NSR) (dashed arrow), the North Pole Route (NPR) (DARK-GRAY ARROW), the Northwest 

passage (NWP) and the Arctic Bridge (AB) (LIGHT-GRAY ARROW) (Aksenov et al., 2017). 

1.1.2. The need for a Performance Measurement System (PMS) 

The optimal functioning of technical systems involved in the Arctic faces numerous challenges, 

in order to succeed in a globally competitive market with limited resources (Katic et al., 2011, 

García-Granero et al., 2018). It depends on the utilization of new knowledge, imagination, 

creativity and innovations (Zamecnik and Rajnoha, 2015). In this regard, operating more 

efficiently and effectively, in order to sustain competitiveness, reduce downtimes, costs, wastes, 

and enhance productivity, quality and safety, has been industries’ major concern. The concept 

of a Performance Measurement System (PMS) is frequently used by industries to achieve such 

goals which refer to output results obtained from a system that permits evaluation and 

comparison, relative to past results or other companies (Katic et al., 2011, Franco-Santos et al., 

2007). A PMS includes a hierarchical relationship of Performance Indicators (PIs), positioned 

in a strategic context for deviate detection, measures to describe the status potential, measures 

to track past achievements and measures to evaluate performance against strategic goals and 

initiatives (Lebas, 1995, Nanni et al., 1990). It enables decision-making processes to be 

supported by the gathering, elaborating and analysis of information (Vukšić et al., 2013). The 
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most important reason for implementing a PMS is to quantify the value created by an 

engineering process or an action. In performance measurement research, phrases like “If you 

cannot quantify it, you cannot manage it” or “You are what you measure” are commonly heard 

(Garvin, 1994, Hauser and Katz, 1998). Measures help to identify areas of strengths and 

weaknesses and to decide on future initiatives, with the goal of improving a company’s 

performance (O’Neill Jr, 2006). Since the 1880s, different perspectives and PIs have been used 

within the performance measuring concept, including effectiveness, efficiency, financial, 

learning, growth, renewal, employee competences, internal and external structure, customer 

satisfaction, stakeholder contribution, capacity, people, future, etc. The end of the 1980s was a 

turning point in the performance measurement literature. Markets became competitive, and 

customers became more demanding, due to the globalization of trade (Kaplan, 1991, Hayes and 

Abernathy, 1980). This situation led to companies attempting to find more balanced, multi-

criteria/indicators and integrated PMS frameworks, considering both financial and non-

financial performance perspectives and internal and external performance perspectives. All 

these frameworks were concerned with what to measure, and they tried to answer the question 

of how to design a PMS.  

 

1.2. Problem definition 
PMSs have been shown to be an essential concept, to improve the efficiency and effectiveness 

and to support the design, planning and management of a company. PMS needs up-to-date and 

accurate performance information on its company and business. This performance information 

needs to be integrated, dynamic and accessible, to assist fast decision-making (Nudurupati et 

al., 2011). Measure-validation and the reliability of monitoring and analysing the performance 

of a system in the Arctic depend on two important questions, namely: What needs to be 

measured and how will it be measured?  

An evaluation of the available PMSs shows that there is confusion over terms and criteria for 

the PIs of companies; various indicators are used for various industries, and the researchers 

have tried to define indicators in relationship to their area of specialty (Bourne et al., 2003, 

(Bititci et al., 1997) (Taticchi et al., 2010). These frameworks have been gradually modified 

and improved, and all have their relative benefits and limitations. Considering the unique and 

challenging Arctic operational conditions, with strict regulations and requirement for safety and 

the environment, the designed system or equipment must be available and safe, as well as 

economically viable. Such systems must be able to minimize environmental pollution and 

require the minimum quantity of raw material and energy. Without taking these challenges into 

account, design, maintenance and operation cannot be at an acceptable level of performance 

(Kumar et al., 2012, Markeset et al., 2015). Operational conditions in the Arctic can increase 

power losses, life cycle costs and safety hazards. Moreover, the less developed infrastructure in 

the Arctic creates several challenges, such as limitations to the logistics of supplies, material 

and personnel required for operation and maintenance activities (FURULY et al., 2013). 

However, performance terminologies and standards for the Arctic reveal that the PIs measured 

by industry, though important, are not enough and could still be improved by identifying 

important indicators, which contribute to a successful PMS in the Arctic. Hence, development 

and continuous improvement of PMSs and the identification of more PIs for judging 

performance in the Arctic are critical for industry success.  

Moreover, quantification of performance is complex, as it involves various indicators with 

different perspectives at various hierarchical levels. Finding a proper approach or models to 

justify the impact of the external environment or factors influencing PIs is being identified as 

an important challenge in measuring PIs (Kayrbekova et al., 2011, Naseri et al., 2016, Markeset, 

2008). The lack of effective information systems, with the correct sources of information and 
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data on performance indicators and suitable statistical models and standard approaches, is a 

barrier to the successful quantification of PIs (Kennerley and Neely, 2002, Eccles, 1991, Norton 

and Kaplan, 1999). Operation and maintenance data are often collected from multiple and 

distributed units in different operational conditions, which can introduce heterogeneity into the 

data. Part of such heterogeneity can be explained by the observable risk factors, whose values 

and the way that they can affect the item’s PIs are known. However, some factors which may 

affect PIs are typically unknown (unobserved risk factors), leading to unobserved 

heterogeneity. Nevertheless, many researchers have ignored the effect of observed and un-

observed risk factors, and this may lead to erroneous model selection, as well as wrong 

conclusions and decisions. The statistics models must be able to quantify risk effect on PIs and 

must be built based on correct assumptions that reflect the operational conditions. The first 

element of the Figure 3 (“Why a Performance Measurement System?”) includes contributions 

dealing with what is meant by PMS; these definitions have evolved over time, reflecting the 

evolution of the concept. 

 

Figure 3. “What should be measured?” and “How should it be measured?” Two separate questions and 

categories that should arise for designing PMS. 

The second element of the figure (“What should be measured?”) deals with the appropriate 

performance indicators/criteria that need to be measured for judging the performance of 

equipment/systems in the Arctic. The third element (“How should it be measured?”) deals with 

how to measure PIs. 

 

1.3. Purpose and objectives 
The purpose of this research is to study, analyse and suggest a methodology for the monitoring 

and analysis of operation and maintenance, taking into consideration the operational conditions 

in the Arctic. The main objective of the study is to suggest a PMS for the Arctic and modify the 

available statistical approach for the prediction of performability, considering the effect of 

observed and unobserved risk factors. More specifically, the following objectives are 

determined: 

▪ To review the generic body of literature on performance measurement, to understand 

key concepts, definitions, aspects of criteria for measuring the performance in a 

company. 

▪ To identify and discuss appropriate performance indicators/criteria that need to be 

measured for judging the performance of equipment/systems in the Arctic which 

contribute to a successful PMS.  

▪ To contribute towards a clarifying vision of PMS for the Arctic. 

“Why a Performance 

Measurement System?” 

“How should it be 

measured?” 

“What should be 

measured?” 
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▪ To discuss the effect of operational conditions on the performance indicators of 

systems/equipment in the Arctic. 

▪ To develop models to quantify PIs, considering the observed and un-observed risk 

factors. 

The models and framework developed in this work can be employed in facilities and technology 

activities to analyse the impact of operational conditions on the performance of 

systems/equipment and to assist calculations and predictions.  

 

1.4. Research questions 
To fulfil the above purpose, the following research questions (RQs) have been formulated: 

▪ RQ1: How the concept of PMS has evolved over time and how it can improve the 

performability of a system? 

▪ RO2: Which indicators/criteria should be considered to be measured for judging the 

performance of equipment/systems in the Arctic, and how can operational conditions 

affect the PIs of systems/equipment? 

▪ RQ3: How to estimate the effect of operation conditions (observed and unobserved risk 

factors) on safety, reliability and maintainability performance of an item? 

 

1.5. Scope and limitations  
The scope of this research includes the operation and maintenance performance of 

equipment/systems in complex environment with harsh conditions and sensitive areas, such as 

the Arctic region. The focus of most of the available studies was on designing a PMS, with few 

studies illustrating the issues involved in the quantifying of the PIs. Hence, this study limited 

its focus more to illustrating the issues involved in quantifying PIs, such as safety, reliability, 

and maintainability performance, and not to the general concept. 

 

1.6. Linkage of research questions and appended papers 
The linkage between the research questions and the appended papers is shown in Table 1. 

Table 1. Linkage between the research questions and the appended papers 

  Paper A Paper B Paper C 

RQ1 ×    

RQ2 × × × 
RQ3 × × × 

 

1.7. Structure of the thesis 
This thesis consists of the research summary and three appended journal papers, in two parts. 

The first part consists of six chapters that give an introductory summary of the study and 

describe the relevant theoretical background to this research work, the literature review, 

analysis, results, and discussions, as well as the conclusions of the work. 

The first chapter provides background information, the problem description and justification of 

the study, research purpose and questions.  
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The scientific and systematic approach followed in this study is described in Chapter 2, while 

Chapter 3 summarizes the appended papers. The fourth chapter presents the results of the 

research study. The areas of discussions focus on the stated research objectives. Finally, the 

contributions of the research work and suggestions for future work are presented in the fifth 

chapter. 

The second part consists of three appended papers. Paper A concerns the development of a 

model for improving safety performance measurement. Paper B is a study of the reliability 

performance indicator, and Paper C concerns the maintainability performance indicator.
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2. RESEARCH METHODOLOGY 

This chapter presents the research methodology. This includes the research approach, process, and strategy, 

followed by data collection activities and a discussion of the quality of the research. 

 

 

Research is a common name for the search for knowledge. A systematic approach to solving a 

research problem is termed the research methodology (Kothari, 2004, Rajasekar et al., 2006). 

The research methodology selected is the link between thinking and evidence (Sumser, 2001). 

There are two types of research, basic and applied research. Basic research is the search for 

knowledge and understanding of a topic, and applied research is the research to address a 

specific concern or problem or to offer solutions. Considering the essence of the present 

research, it can be classified in the applied research group. Based on what the research is trying 

to accomplish, the purpose can be classified into three groups: describing a phenomenon 

(descriptive research), exploring a new topic (exploratory research), or explaining why 

something occurs (explanatory research). In this study, exploratory research is intended to 

generate new knowledge and a model regarding the effect of operational conditions on safety, 

reliability, and maintainability performance. Correspondingly, based on the research questions 

in this study, it can be concluded that this research can be grouped in the exploratory and 

descriptive classes, because it explores a new topic and describes a phenomenon (Neuman, 

2007). 

Research methodology has many dimensions, and the research methodology of the thesis can 

be explained in five main dimensions that are used to achieve the research aim and objectives 

of the thesis: 

 

• The research approach 

• The research process  

• The technique for data collection  

• The data analysis techniques 

• The reliability and validity of the research 

 

2.1. Research approach 
The research approach can be classified into three main topics: deductive, inductive and 

abductive (Neuman, 2007). The deductive approach starts with an abstract and a logical 

relationship among concepts and then ends with empirical evidence. The aim of the deductive 

approach is to test theories. In an inductive approach, the research begins with observations and 

moves toward more abstract generalizations and ideas. The purpose of the inductive approach 

is to gain descriptions of characteristics and patterns, and the approach begins with collecting 

data on characteristics or patterns and ends with relating these to the research questions. Finally, 

2. RESEARCH METHODOLOGY 

CHAPTER 2 
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abduction is a combination of deduction and induction (Ghodrati, 2005, Neuman, 2007, 

Alvarsson and Sköldberg, 1994).  

In this study, the research started as a deductive approach, with a literature study, to gain a 

deeper understanding of how the concept PMS can improve the performability of a system, 

available statistical models, and the operational and technological challenges of the Arctic. 

The result of the literature study shows that the existing frameworks and methods should be 

improved, to be more suitable for the prediction of safety, reliability, and maintainability 

performance in the Arctic region. Thereafter, a framework suggested for the performability of 

a system in the Arctic and models were improved, in order to analyse the historical data. The 

improved models were then applied in an inductive approach by studying the empirical data. 

Thereafter, the validity of the models was carried out, and conclusions were drawn, based on 

the experience gained from empirical case studies. As the research study started with a 

deductive approach, followed up by an inductive approach, it can be characterized as having an 

abductive research approach. 

The research approach can also be classified as quantitative, qualitative and/or mixed (see e.g. 

(Ghodrati, 2005, Neuman, 2007, Sullivan, 2001). This research can be classified as using 

quantitative methods, because the data used were mostly statistical data collected from field 

data, databases, reports and interviews. Moreover, the outcomes were used to mention a final 

course of action. 

 

2.2. Research process 
A research process gives a series of action steps, along with the interconnections and 

sequencing of the steps, to effectively achieve the aims of a research study (Kothari, 2009). The 

research process mostly depends on which type of data and information the researcher is 

looking for Yin (2003). In the case of collecting and analysing empirical evidence, Yin (2003) 

describes five different research processes to apply; these include experiment, survey, archival 

analysis, history and case study. Where it is a case study, experiment and survey processes 

usually refer to the present situation, and archival analysis and history processes refer to the 

past conditions of the case under study (Yin, 2003). 

The experimental research process implements principles existing in natural science that can be 

conducted in real life or laboratories. In survey research, during a short time period, the 

researcher asks numerous questions to people and then summarizes the answers in graphs or 

tables (Neuman, 2007, Harrison et al., 2017). Based on different types of research processes 

and considering the research questions and the approach of this study, it can be classified into 

the case study research process group. In case study research, the researcher examines, in detail, 

the features of a case or multiple cases over time (Neuman, 2007, Harrison et al., 2017). The 

study implemented scientific principles in the real life of a system/component, to understand 

further features and behaviours. 

 

2.3. Data collection and analysis 
The process of transforming data into useful information for decision-making support is an 

essential aspect of a piece of research. There are six main sources of information: 

documentation, archival data, interviews, direct observations, participant-observations and 

physical artefacts that are applicable for a case study (Yin, 2017, Marshall and Rossman, 2014). 

Moreover, data collection techniques can be classified into (Neuman, 2007): 

• Qualitative (i.e., expressed as words, visual images, sounds, or objects); these include 

field research and historical-comparative research 
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• Quantitative (i.e., expressed as numbers); these include experiments, surveys, content

analyses, and existing statistics

Based on the objectives of the study, historical data from offshore oil and gas and mining 

industries have been used, in order to study the effect of operational conditions on the 

performance of equipment (Table 2). The required data of this study were collected from expert 

opinions, design information, meteorological data, and reports of the maintenance, repair and 

inventory crew and the operators of machines. The main sources for collecting data and 

summaries of the case studies in the papers are listed in Table 2. The documentation consisted 

of different descriptions, policies, and procedures pertaining to maintenance programs and 

failure consequence categories. In addition, a survey was performed, in order to elicit expert 

judgments and to estimate an Icing Risk Index for performability. 

Table 2. Data used in the study. 

Paper 

No. 
Industry Period Data type Covariates 

Source of 

evidence 

RQs 

addressed 

1 
Oil and 

gas 
- 

Item geometry, 

design information, 

expert opinions, 

available experience 

related to the site, and 

meteorological data 

- 
Experiments, 

survey 
RQ 1, 2 

2 Mining 18 months 
Time to repairs 

(TTRs) 

Working shift, 

Weather 

condition, 

Precipitation, 

Temperature, 

Involved 

maintenance 

crew 

Existing 

statistics: 

documentation

, archival 

records, direct 

observation, 

and interview 

RQ 2, 3 

3 Mining 18 months 

Time between 

failures 

(TBFs) 

Company, 

Working shift, 

Weather 

condition, Road 

condition, Rock 

fragmentation 

Existing 

statistics: 

documentation

, archival 

records, direct 

observation, 

and interview 

RQ 2, 3 

To study the influence of the operating environment on the performance of equipment (paper 

B and paper C), the covariates were classified into observed and unobserved groups. The 

observed covariates whose effects on the failure and repair processes are known and their 

associated levels are recorded with the failure and repair data, such as "working shift", "weather 

condition", "precipitation", etc., extracted from different sources of evidence (Table 2 and Table 

3). They can be time-dependent or time-independent. The Cox regression model family, such 

as the proportional hazards model (PHM), proportional repair model (PRM) and its extension, 

is the most dominant statistical approach for capturing the effect of observed covariates on the 

reliability and maintainability performance of an item. 

Table 3. Sample data of reliability and maintainability

Failure and repair No. TBFs and TTRs Status 
Observed covariates 

Working shift Weather condition Precipitation 

1 24 1 A 1 12 

2 13 1 B 2 32 
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Unobserved covariates that cause to unobserved heterogeneity can be calculated by a mixture 

frailty model (Paper B). This model consists of three multiplicative factors: i) the baseline 

failure (𝜆0(𝑡))  dependent on time alone (TBFs), which is modelled by using appropriate

distributions, ii) a positive multiplicative factor to describe the function of time-independent 

and time-dependent observed covariates, (𝜓(𝑧, 𝑧(𝑡); 𝜂; 𝛿)) and iii) a positive multiplicative 

factor 𝛼𝑗 that represents the effect of unobserved covariates.

𝜆𝑗(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = 𝛼𝑗 . 𝜆0(𝑡)𝜓(𝑧, 𝑧(𝑡); 𝜂; 𝛿) (1) 

The suggested framework and models present in paper B is based on the mixed proportional 

hazards model that provide appropriate tools for modeling observed and unobserved

heterogeneity among failure data. The first step in analyzing the collected failure data of

a repairable system in this study is to check the trend of the failure data. In the next step, the 

time dependency of observed covariates should be checked. Later, the failure data need 

to be investigated for unobserved covariates. Data sets without unobserved 

heterogeneity are analyzed using the classical proportional hazards model, including the

proportional hazards model (when all observed covariates are time-independent) and 

the extension of the proportional hazards model (in the presence of time-dependent 

covariates). Moreover, data sets with unobserved heterogeneity are analyzed using the

mixed proportional hazards model family. 

In Paper C a mixture frailty model for maintainability is developed that are able to model the 

effect of observed and unobserved covariates, as well as identifying different repair processes 

in the repair dataset. When each repair process is regarded as an independent repair mode with 

a repair distribution in the presence of some specific observed or un-observed risk factors, then 

a mixture frailty model (MFM) can be used to predict maintainability more precisely. When A 

(effect of unobserved covariates) is distributed as gamma with mean one and variance θ, then 

maintainability becomes: 

M𝜃(𝑡) = 1 − [1 − 𝜃𝑙𝑛{1 − M(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡))}]
−

1
𝜃 (2) 

If the observed covariate follows the exponential function in the presence of W time-

independent observed covariates and M time-dependent observed covariates M(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) can

be written as: 

M(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) = 1 − [1 − M0(t)]exp[∑ pizi+∑ δjzj(t)M
j=1

W
i=1 ]

(3) 

where M0(t)is the baseline maintainability function dependent only on the time, as follows:

M0(𝑡) = 1 − 𝑒𝑥𝑝 [− ∫ 𝜇0(𝑡′)𝑑𝑡′
𝑡

0

] (4) 

Moreover, in order to quantify the effect of different types of ice on performability, the concept 

of an icing effect index (IEI) on performability is developed (Paper A). An IEI on performability 

can represent the consequences of icing on equipment. Thereafter, considering the probability 

of ice accretion and IEI on performability, the icing risk index for performability (IRIP) can 

be quantified as: 

IRILP = IEIP × POI (5)
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In this paper, we assumed that Performability has five principal indicators (reliability, 

maintainability, quality, safety, and sustainability) and two dependent indicators (dependability 

and survivability) (Figure 4). Quantifying the IEIP is a bottom-to top process that starts by 

quantifying the IEI on survivability (IEIS). 

Performability

Dependability Sustainability

Safety Survivability

Quality Reliability Maintainability
 

Figure 4. Performability concept (Misra, 2008b) 

IEI on survivability (𝐼𝐸𝐼𝑆) = 𝐼𝑞

𝛼𝑞 × 𝐼𝑟
𝛼𝑟 × 𝐼𝑚

𝛼𝑚 (6) 

IEI on dependability IEID= IEISβsur × IS
βs  (7) 

IEI on performability IEIP = IEIDγDep × Isu
γsu  (8) 

where Iq, Ir, Im, IEIS, 𝐼𝐸𝐼𝐷, 𝐼𝑠 and 𝐼𝑠𝑢  are the IEIs for the quality, reliability, maintainability, 

survivability, dependability, safety and sustainability and the parameters 

αq, αr, αm, 𝛽𝑠𝑢𝑟 , 𝛽𝑠, 𝛾𝐷𝑒𝑝 and 𝛾𝑠 are the weight vectors of quality, reliability, maintainability, 

survivability, dependability, safety and sustainability, respectively. 

In the cases of free-fall lifeboats and helicopter landing pads in paper A a group of 13 experts 

has been asked to identify IEIs. Table 4 shows the IEIs of different types of ice on the 

performability indicators. IEIs will range from1to10; where1shows no icing effect on the 

indicators of the selected item and10 shows a very high effect.  

Table 4. Final IEs on performability attributes for FFL and HLP 

Selected item Ice type Quality Reliability Maintainability Safety Sustainability 

Free-Fall 

lifeboat (FFL) 

Sea spray icing 7 8 9 8 7 

Snow 7 7 5 7 3 

Glaze 4 7 5 6 2 

Rime 3 4 4 4 2 

Frost 2 2 3 2 1 

Sleet 1 1 2 2 1 

Helicopter 

landing pad 

(HLP) 

Sea spray icing 7 9 9 9 7 

Snow 6 7 8 7 6 

Glaze 4 6 8 6 5 

Rime 2 4 5 5 4 

Frost 1 3 5 4 3 

Sleet 1 2 2 2 1 
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Firstly, a group of 13 experts is selected based on a set of criteria (e.g., knowledge on cold-

climate technology, icing phenomenon, and the equipment unit or the case of interest); once 

experts are selected, expert data are elicited through individual interview. In this regard, experts 

are asked to provide their opinions in the form of single-point estimates, probability 

distribution, parameters of a distribution, intervals, etc. After collecting the data, Cronbach's 

alpha coefficient is applied to measure the reliability of responses to the questionnaire. The 

value is α≥0.86 and α≥0.82 for FFL and HLP, respectively; this means that the reliability of 

responses is excellent. Once expert opinions are elicited, the geometrical mean is used as 

aggregation method to combine expert data and thus to obtain a single solution to extract 

the final IEI-based questionnaires. 

Moreover Table 5 shows weight ranking for different performability indicators that were 

available in the design information of free-fall lifeboats and helicopter landing pad and we 

calculated the rank values based on a method that was developed by (Jiang and Ji, 2002). 

Table 5. Attributes’ weight ranking of FFL and HLP 

Item Survivability Dependability Performability 

Free-Fall lifeboat (FFL) αr ≥ αq ≥  αm 𝛽𝑠 ≥ 𝛽𝑠𝑢𝑟 𝛾𝐷𝑒𝑝  ≥  𝛾𝑠

Helicopter landing pad (HLP) αr ≥ αm ≥ αq 𝛽𝑠 ≥ 𝛽𝑠𝑢𝑟 𝛾𝐷𝑒𝑝  ≥  𝛾𝑠

2.4. Reliability and validity of the research 
According to Hannula (2002), measures produced by quantitative research should try to fulfil 

these criteria: validity, reliability, and relevance. Validity is the ability of a measure to measure 

what it is intended to measure. Reliability refers to the consistency of measurement results, 

including characteristics such as accuracy and precision. Relevance is the value and usefulness 

of the measure to its users (Hannula, 2002). In this study, the empirical data are used as case 

studies for safety, reliability, and maintainability performance analysis.  

In order to assure the reliability of the study, the source of data (reports) is available for 

recollection and reanalysis. The data gathering processes are carried out as per established 

standards and methodology described in the literature. Furthermore, the theoretical concepts 

are explained, and the analysis approach is described in each paper with details, in order to 

guide other researchers. The application of the developed models for improving the 

performance of the systems in this study is clearly discussed especially through the conducting 

of illustrative case studies and are published in peer-reviewed journals. 
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3. SUMMARY OF THE PAPERS 

In this chapter, the appended papers and their logical relations and contributions are discussed.  

 

 

Paper A 
Title: Designing for performability: An icing risk index for Arctic offshore. 

Purpose: To review and discuss the effects of different types of ice accretion on the 

performability of Arctic offshore facilities and to develop an Icing Risk Index.  

Findings: The paper finds that designing for performability is an effective way to meet the 

design goal for a complex operational condition such as the Arctic region. Designing for 

performability in the harsh, sensitive, and remote Arctic area is a challenging task. It requires a 

range of tools to be employed and is dependent on a large amount of data and information. 

However, taking into consideration the unique Arctic operational conditions, most of the 

available tools need to be modified, and, in some cases, new tools should be developed. Ice 

accretion is one of the most hazardous operational conditions in cold regions. Hence, this study 

has reviewed the effect of different types of ice accretion on performability indicators and then 

developed an Icing Risk Index, which can be used to quantify the effect of different types of 

ice on performability. Further, its application is shown by means of a case study. The case study 

demonstrates how the Icing Risk Index can be applied to Arctic offshore facilities. 

 

 

Paper B 
Title: Observed and unobserved heterogeneity in failure data analysis: A case study. 

Purpose: To develop a framework for reliability analysis in the presence of unobserved and 

observed covariates. 

Findings: In many reliability studies, data sets are assumed to be homogeneous, with the failure 

data being independent and identically distributed. However, in reality, failure data are often 

collected from multiple and distributed units in different operational conditions, which can 

introduce heterogeneity into the data. Part of such heterogeneity can be explained and isolated 

by the observable covariates, whose values and the way that they can affect the item’s reliability 

are known. However, some factors, which may affect the reliability of the item, are typically 

unknown, leading to unobserved heterogeneity. These factors are categorized as unobserved 

covariates. In most reliability studies, the effect of unobserved covariates is neglected. This may 

lead to erroneous model selection for the time to failure of the item, as well as wrong 

conclusions and decisions.  

In this paper, the required statistical tests and available models for observed or unobserved 

heterogeneity in the reliability analysis of failure data are reviewed, and then a systematic 

3. SUMMARY OF THE PAPERS 
CHAPTER 3 
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framework is developed to facilitate the application of these models. The framework is based 

on the mixed proportional hazards model and its extension, which provides an appropriate tool 

for modelling observed and unobserved heterogeneity under the different types of maintenance 

strategies. Further, its application is then shown by a case study. 

The result of the case study shows that, ignoring the effect of unobserved covariates, and using 

a Proportional Hazards Model (PHM) instead of a Mixed Proportional Hazards Model 

(MPHM), will underestimate or overestimate the effect of covariates. Hence, for any decisions 

on the operation and maintenance strategy, the effect of unobserved covariates should be 

considered. 

 

Paper C 
Title: A mixture frailty model for maintainability analysis of mechanical components: A case 

study. 

Purpose: To evaluate the effect of observed and unobserved covariates on the maintainability 

of a component or a system, as well as identifying different repair processes in the repair dataset. 

Findings: Existing studies regarding the maintainability analysis of historical repair data have 

simplified their analysis by considering a complex system as a single item. In these studies, the 

assumption is that all repair data represent an identical repair process for the item. However, 

these failure modes may have completely different repair processes and resources. In practice, 

mechanical systems are composed of multiple parts, with various failure mechanisms, which 

need different repair processes (repair modes) to return to the operational phase. These studies 

have viewed the historical data as a black box, with no information regarding the repair process 

and its operational conditions. Moreover, the relationship between the elements of 

maintainability is complex and mediated by many influence factors, such as ambient 

temperature, human factors, and dissimilarity in personality or skill level between maintenance 

crews, etc. As a main part of maintainability, logistics and spare parts constitute a complex 

activity that is time- and location-dependent. In this paper, the application of a Mixture Frailty 

Model (MFM) for maintainability analysis is discussed. MFM has the ability to model the effect 

of observed and unobserved covariates on maintainability. Moreover, it can capture different 

repair processes in a single database, by the use of a convex combination of their associated 

distributions. In the second part of the paper, the application of the developed model is 

illustrated by investigating the effect of observed and unobserved covariates on the 

maintainability of trucks at a copper mine. The results of analysis show that most identified 

observed covariates and unobserved covariate(s) have a significant effect on the maintainability 

of trucks. 
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4. RESULTS AND DISCUSSION  

This chapter discusses and presents the results of the research study. The areas of discussions focus on the 

stated research questions. 

 

4.1. First research question 
RQ1. How the concept of PMS has evolved over time and how it can improve the 

performability of a system? 

The word “performance” comes from the French word Parfournir, meaning “to bring through, 

to carry out”. Performance is an act of performing, implementing, achieving and fulfilling the 

given tasks that need to be measured (Naz et al., 2016). The field of performance measurement 

has evolved over a long period and has been defined and redefined from different perspectives 

in different industries. For example, from an operations perspective, Bourne et al. (2003) 

defined it as the set of multi-dimensional performance measures (financial/non-financial and 

internal/external) that quantify the performance that has been achieved. Bititci et al. describe it 

as the reporting process that gives feedback to employees on the outcome of actions (Bititci et 

al., 1997). Neely et al. defined PMS as a balanced and dynamic system that enables the support 

of decision-making processes by gathering, elaborating and analysing information (Neely et al., 

2002). As pointed out by Taticchi et al. the concept of ‘dynamicity’ can be referred to the need 

to develop a system that continuously monitors the internal and external context and reviews 

goals and priorities (Taticchi et al., 2010). Meanwhile, ‘balance’ refers to the need to use 

different indicators and perspectives that are tied together, giving a holistic view of the 

organization (Kaplan and Norton, 1996). Hence, computerization is a technique to deliver the 

dynamism of performance measurement, to continually capture, store, measure, interpret and 

visualize data and information (Srimai et al., 2011). Moreover from a management accounting 

perspective, measuring performance provides the company with the ability to check its position 

(to compare positions or monitor progress), communicate its position (to communicate 

performance internally and with the regulator), to confirm its priorities (to manage cost and 

actions), and to compel progress (as a means of motivation) (Neely, 1998).  

A PMS framework includes the hierarchical relationship of performance indicators (PIs), 

positioned in a strategic context for the detection of deviations, measures to track past 

achievements, and measures to describe the status potential and evaluate performance against 

strategic goals and initiatives (Lebas, 1995). According to Table 6, Since the 1880s, different 

perspectives and performance indicators have been used within the performance measuring 

concept, including effectiveness, efficiency, financial, learning perspective, growth, renewal, 

employee competences, internal and external structures, stakeholder satisfaction, stakeholder 

contribution, capacity, people, future, etc. 

Ghalayini and Noble (1996) believed that the literature concerning performance measurement 

evolved through two phases. The first phase, cost accounting orientation, started in the late 

1880s and is known as the traditional phase. The second phase started after 1980 and attempted 

4. RESULTS AND DISCUSSION 
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to present a balanced and integrated view of PMS. The cost accounting orientation approach 

tries to quantify performance and other improvement efforts in financial terms (Ghalayini and 

Noble, 1996). Financial measures, such as Return On Investment (ROI), Return On Sales 

(ROS), revenue per employee, revenue per unit production, cost variance analysis, standard 

costing and flexible budgets are some of the techniques that were used to measure performance 

in that era (Bourne et al., 2003, Khan and Shah, 2011). The traditional phase is criticized for 

ignoring clients and their needs (Ghalayini and Noble, 1996); it was internally rather than 

externally focused, backward-looking and historically focused. Therefore, these were not 

predictive measures, and the era is also criticized for not providing adequate information for a 

productivity measurement (Hayes and Abernathy, 1980, Kaplan, 2005). Due to these 

shortcomings in traditional measures, Nakajima (1988) introduced Overall Equipment 

Effectiveness (OEE). OEE is defined as a measure of total equipment performance, and it 

categorizes major losses or reasons for poor performance (Muchiri and Pintelon, 2008). OEE 

is a three-part analysis tool for equipment performance, based on its availability and 

performance and the quality rate of the output. The goal was to achieve zero breakdown and 

zero defects related to equipment. OEE has evolved to include other production losses that were 

not originally included (Nakajima, 1988). This has led to the development of new terminologies 

like Total Equipment Effectiveness Performance (TEEP), Production Equipment Effectiveness 

(PEE), Overall Plant Effectiveness (OPE), Overall Asset Effectiveness (OAE), and Overall 

Factory Effectiveness (OFE). The difference between these terminologies is based on the type 

of production losses, losses due to external and internal reasons and levels of effectiveness 

measurement, namely, equipment-level effectiveness, operational-level effectiveness and 

business-level effectiveness (Muchiri and Pintelon, 2008, Ljungberg, 1998). However, OEE 

and its measures – availability, performance speed, and quality rate – only reflect the internal 

effectiveness of a system and financial performance, while external effectiveness, which is 

characterized by customer satisfaction and measures that have a long-term effect on a 

company’s profitability, is missing. The end of the1980s was a turning point in the performance 

measurement literature, as it marked the beginning of the second phase. Markets became 

competitive, and customers were more demanding, due to the globalization of trade and the 

emergence of a world economy (Hayes and Abernathy, 1980, Kaplan, 1984). This situation led 

to companies attempting to find more balanced, multi-criteria and integrated PM frameworks, 

considering both financial and non-financial performance perspectives and internal and external 

performance perspectives. This trend has blended with established social and environment 

accounting. Consequently, it had led to the development of a number of performance 

measurement systems, since the 1990s, to focus on the customer’s and the stakeholder’s 

requirements, rather than only reflecting the shareholder’s economic profits (Garengo et al., 

2005). Some of the most well-known and widely cited performance measurement systems are: 

Performance Measurement Matrix (Bourne et al., 2000), Balanced Scorecard (Kaplan and 

Norton, 1992), SMART (Lynch and Cross, 1991), AMBITE Performance Measurement Cube 

(Bradley, 1996), Quality Management Excellence Model (EFQM) (Lin and Shen, 2007), 

Performance Prism (Neely et al., 2002), Dynamic Multi-Dimensional Performance Framework 

(DMP) (Maltz et al., 2003), the Results and Determinants Framework (RDF) (Fitzgerald et al., 

1991), Integrated Dynamic PMS (Ghalayini et al., 1997), and QUEST (Abran and Buglione, 

2003). Table 6 indicate these measures and their criteria are of the business environment 

existing at that time.  

There are standards and performance measurements that have been developed for operation and 

maintenance in the Arctic. DNV-OS-A201 (Gudmestad, 2010) provides general principles for 

the preparation of mobile units and offshore installations for intended operations in cold-climate 

conditions. This is provided for by setting functional requirements for functions, systems, and 
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equipment, considered important to safety, which are intended to be in operation in cold-climate 

conditions. 

Table 6. Balance PMS frameworks with indicators in during the second phase and their development over the 

years. 

Year Framework. Indicator/Criteria 

1989 Performance measurement matrix
Cost factors, Non-cost factors, External factors, Internal 

factors 

1991 
SMART Pyramid (performance 

pyramid) 

Quality, Delivery, Process time, Cost, Customer satisfaction, 

Flexibility, Productivity, Marketing measures, Financial 

measures 

1991 Results and determinants matrix
Financial performance, Competitiveness, Quality, Flexibility, 

Resource utilization, Innovation 

2002 Performance prism
Stakeholder satisfaction, Strategies, Processes, Capabilities, 

Stakeholder contribution 

1992 
AMBITE performance 

measurement cube 
Time, Cost, Quality, Flexibility, Environment 

2002 
Quality Management Excellence 

Model (EFQM) 

Leadership, People, Policy strategy, Partnership & resources, 

Processes, People results, Customer results, Impact on society 

results and Business results 

1992 Balanced Score Card (BSC) Financial, Customer, Internal process, Learning and growth 

1997 Integrated Dynamics PM System
Timeliness, Finance, Customer satisfaction, Human factors, 

Quality, Flexibility 

1998 NORSOK Z-016 Reliability, Maintainability, Supportability 

2001 Performance prism
Stakeholder satisfaction, Strategies, Processes, Capabilities, 

Stakeholder contribution 

2003 
Dynamic Multi-dimensional 

Performance framework (DMP)
Financial, Market, Process, People, Future 

2003 
BCS of Advanced Information. 

Services Inc. (AISBSC) 

Financial perspective, Customer perspective, People, 

Infrastructures, and innovation 

2008 System performability Survivability, Dependability, Sustainability 

2008 ISO 20815 Item availability, Production availability, Deliverability 

2010 
Production assurance 

performance 
Capacity, Dependability, Customer demand 

2010 Production performance Economical, Functional, HSE 

ISO20815 (IOS, 2008) introduced performance measures for production availability, which 

include availability of the item/system, production availability, and deliverability. ISO/TC 

67/SC 8 (Blanchet et al., 2007) includes aspects of offshore petroleum activity, i.e. exploration, 

drilling, production, transportation, and support activities, to ensure that all oil and gas 

operations are carried out to an acceptable safety level. Production assurance concept NORSOK 

Z-016 (Standard, 1998a) is another widely used operational measurement. It was developed in

1998 for the oil and gas industry and is built on reliability, maintainability, and supportability.

Later (Barabady et al., 2010) formulated the production assurance performance concept, which

is a combination of the capacity performance, customer demand and dependability concepts.

Markeset (2008) combined availability performance with functional performance, which is

based on the capability, capacity and HSE (Markeset, 2008).
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4.2. Second research question 
RO2: Which indicators/criteria should be considered to be measured for judging the 

performance of equipment/systems in the Arctic, and how can operational conditions affect the 

performance indicators of a systems/equipment? 

Translating the company’s strategy into concrete performance indicators is one of the most 

frequent recommendations in the designing of PMSs (Globerson, 1985, Lingle and Schiemann, 

1996, Neely and Bourne, 2000). Meanwhile, identifying the different PIs for each critical 

strategic area, structuring the indicators hierarchically and the ability to quantify the effect of 

the indicators on the company’s performance are the main steps in designing a PMS.  

The PMS suggested for the Arctic in this study classifies measures into four interrelated criteria, 

by which the author means that they reflect the performance of a system in the Arctic, each 

containing indicators and measures from a distinct perspective (see Figure 5). This includes 

strategic areas, such as financial or cost-related issues, health safety and environment related 

issues, processes-related issues, and maintenance task related issues, while at the same time 

comprising the internal and external aspects. These perspectives are termed as: 

• Financial performance

• Safety performance

• Overall equipment effectiveness

• Sustainability performance

The PMS should facilitate the quantification of the relationships between indicators with respect 

to overall performance. Hence, cause and effect diagrams are created as a discussion tool to 

structure the indicators and formalize the hierarchical nature of the performance measurement 

system in the Arctic. Figure 5 illustrates the concept of the performance measuring system in 

the Arctic and its related indicators.  

Performability Measurement System (PMS)

Financial performance Safety performance Overall equipment effectiveness Sustainability performance 

Quality performance Functional performance

Availability performance Capacity performance

Reliability performance Maintainability performance Supportability performance

Figure 5. Performance Measuring System for the Arctic 

Sustainability performance 

The word “sustain” comes from the Latin Sustenare, meaning “to hold up” or to support, which 

has evolved to mean keeping something going or extending its duration (Sutton, 2004). The 

release of the report, Our Common Future by the World Commission on Environment and 

Development (WCED) , marked the starting point for the spread of the sustainable development 

concept (Mikkelsen and Langhelle, 2008). Our Common Future (1987) defined sustainable 
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development as development that meets the needs of the present without compromising the 

ability of future generations to meet their own needs. It involves an attempt to combine a 

growing concern for the environment with socio-economic issues and to find a balance between 

social, environmental, and financial responsibilities (Ferrer-Balas et al., 2008, Brundtland et 

al., 1987, Butlin, 1989). Some central objectives have been identified, including: conserving 

and enhancing the resource base, social and economic risks’ reduction, merging economics and 

the environment in decision-making, reorienting technology, reviving growth, education, 

human health and well-being. Designing for sustainability ensures that the demands of both the 

customer and society are met, while protecting the ecosystem (Mayyas et al., 2012). It requires 

integrating environmental issues into a system development process that also meets other 

demands, such as high quality at least cost (Keoleian and Menerey, 1994). Sustainable 

development and its principle require that products and systems use minimum material and 

energy and use non-hazardous materials throughout their entire life cycle. They should be 

designed for disassembly, designed for remanufacturing and designed for recycling and should 

be highly recyclable at the end of their life (Mayyas et al., 2012). Therefore, a sustainable 

company can improve its company’s reputation and brand value and increase shareholder value 

or cost savings, by minimizing the use of material and energy. Moreover, sales may increase or 

customer loyalty may be strengthened, as there is a growing number of people who prioritize 

environmentally friendly products and services (Jan and Petra, 2016, Hopkins, 2002).  

Implemented products and systems, especially in the Arctic, should comply with the principles 

of sustainability, to increase energy and material efficiencies, preserve ecosystem integrity, and 

promote human health, which in turn result in minimum life-cycle costs (Hallstedt et al., 2010). 

Without sustainability analysis, an overall performance evaluation cannot be comprehensive, 

particularly in the Arctic with its strict regulations and requirements for safety and the 

environment. A company needs environmental and social capital – alongside economic capital 

– to create value in the future (Jan and Petra, 2016). The social impact assessment should

include the impact the company has on the local community and how the company contributes

to the better health, education and safety of its employees and the local community. Industry

activities in the Arctic create different hazards to the well-being and social cohesion of local

communities, by exposure to noxious pollutants, as well as economic issues (Trump et al.,

2018). As an example, the effect of icing and low temperatures in the Arctic on sustainability

can be due to an increase in energy consumption, in the use of materials and in the use of

processes and products that are used for ice protection and heating. De-icing technologies with

a high consumption of energy have a negative impact on the sensitive environment and

wilderness in the Arctic. The large power demand of offshore installations in the Arctic area is,

in most cases, covered by their gas, and greenhouse gas emissions from power production are

high. Moreover, the use of hazardous chemical ice protection causes degradation of

environmental quality, increases produced waste and has serious environmental consequences

(Shi et al., 2013).

Safety performance 

The definition of “safety” can be the condition of being protected against financial, physical, 

political, social, educational, emotional, occupational, psychological, or any other types of 

consequences arising from accidents, harm, failure, damage, error, or any other event that could 

be undesirable (Misra, 2008c, Misra, 2008a). It is recognized in the literature that engineering 

products and systems can cause hazards during operation or maintenance, if they fail. They also 

generate financial losses, due to the disruptions in industrial processes, damage the production 

machinery, and harm the firm’s reputation (Bottani et al., 2009). The prevention of an accident 

requires excellence in performance, which leads to reducing the chances of failure and the 

associated risk. Improving equipment and operational safety performance leads to eliminating 
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or reducing the possibility of hazards (Vinnem, 2010). Hence, the design, development, 

manufacture, and maintenance of engineering products must strive for high safety performance 

and to reduce the probability of harmful consequences from flammable, toxic, and explosive 

hazards (Sultana et al., 2019). However, there is a balance to be struck between safety and the 

cost of achieving it (Misra, 2008c, O’Connor, 2008).  

Working in a cold climate such as the Arctic can be dangerous for personnel. Yun and Marsden 

(2010) showed that, depending on Escape, Evacuation, and Rescue (EER) strategies for Arctic 

offshore facilities, the probability of success could fall from 90% in June to 50% in January 

(Yun and Marsden, 2010). At very low temperatures, electrical insulation starts to crack and 

exposes the conductors to the environment, and this creates a serious hazard for personnel. Low 

temperatures generate static electricity that destroys computers, making data unreliable. 

Moreover, wet snow or glaze causes slippery surfaces on handrails, ladders, decks, etc., 

constituting an important personnel safety hazard. Snow accumulation on valves inhibits 

manual operation and the ability to see position indications (Ryerson, 2011). Saltwater ice on 

antennas bridges insulators, causing arcing and loss of communication. Most researchers agree 

that the greatest hazard to infrastructure safety is sea spray-created superstructure icing. Large 

ice accretions can threaten the stability and integrity of offshore production facilities. The high 

weight caused by sea spray accumulation is an issue for buoyancy and stability, and can cause 

platform sinking; in addition, icing increases the wind resistance of the superstructure. 

Moreover, sea spray icing can cover boats, lifesaving apparatus, deck firefighting equipment, 

all of which are critical (Jones and Andreas, 2012, Orimolade et al., 2017).  

Financial performance 

Financial performance or cost-effectiveness is an essential element of the performance 

characteristics by which an item or product is evaluated, particularly in the competitive and 

uncertain environment with the requirement of environmental protection and social 

responsibility for present and future generations (Lassala et al., 2017, Taouab and Issor, 2019). 

This leads to many companies seeking methods to achieve competitive advantages, with respect 

to cost related to the dynamic environment, while showing concern for the environment and 

safety (Alsyouf, 2004). Financial performance requires equipment and services to be produced 

at the lowest possible cost. This refers to the extent to which it is technically feasible to reduce 

any input without decreasing the output, and without increasing any other input (Commission, 

2013). Several Life Cycle Cost LCC tools have been developed, to evaluate the cost-benefit or 

financial performance of an item, describing the costs of the item from the early planning stages 

to the end of use and, gives decision-makers information to find the correct balance or best 

solution in respect of cost and benefit (Misra, 2008c).  

Designing for harsh climate condition areas such as the Arctic increases the LCC of a system 

or equipment and, consequently, increases business risk. This is due to the lack of infrastructure 

in the Arctic, limitations regarding the logistics of supplies, material, and personnel required 

for operation and maintenance activities, etc. Moreover, low temperature, sea ice, icebergs and 

icing, darkness, and polar lows, together with long distances, place demands on the technical 

solutions used.  

Overall equipment effectiveness is classified into two perspectives, including functional and 

quality performance, by which the author means that they reflect the overall equipment 

effectiveness (OEE) of a system in the Arctic. 

Quality performance 

The quality of a product is a measure of its degree of conformity with applicable design 

specifications and workmanship standards (O’Connor, 2008). If quality can be thought of as 



CHAPTER 4 RESULTS AND DISCUSSION 

22 

the excellence of a product at the time it is delivered to the customer, reliability is used in the 

engineering context to describe the ability of a product to work without failure during its 

expected time in use (Misra, 2008b). A product’s reliability, therefore, depends upon how well 

it is designed to withstand the conditions under which it will be used, the quality of manufacture, 

and how well it is used and maintained. 

Quality can be classified into two types (Phadke, 1995): design qualities and manufacturing 

qualities. In design quality, understanding the environments involved and the stresses that can 

be applied can prevent wear-out failures and overstress failures. Materials that are common in 

more benign weather conditions require early assessment for material selection and 

performance aspects, such as accuracies, efficiency, and operational energy requirements in the 

design process, to confirm integrity under Arctic conditions over the full life cycle of the 

facility. Due to the lack of experience and data in the Arctic area, there are significant 

uncertainties with designing for quality performance, and it is a challenging process. On the 

other hand, manufacturing qualities pertain to the manufacturing processes used when 

producing products that incorporate desired design qualities. In the case of machine tools, such 

qualities would correspond to dimensional variances, surface roughness, and processing 

accuracy. Production facilities consist of complex subsystems and components and they employ 

materials, men, and machines. These elements may have inherent variability and attributable 

variability. Variation in parameters and dimensions leads to weakening, component mismatch, 

incorrect fits, vibration, etc. 

Arctic conditions may provide a situation in which the process is incapable of acceptable 

operation within the design limits. For example, welds will cool faster in cold weather, which 

results in increased susceptibility to cracking, both during and after welding. Ice can reduce the 

quality of communication tools and sensors. For instance, wind vanes and temperature sensors 

can be affected by ice; studies show that, in icing conditions, wind speed errors can be as high 

as 30% (Laakso et al., 2003). Moreover, the most important contributor to variability is man 

himself (Misra, 2008b). Studies show that, in outdoor work in the winter, cold stress frequently 

reduces working ability by 70% for short periods (Anttonen and Virokannas, 1994). Long 

periods of exposure to the cold result in decreased cognitive performance, injury, hypothermia, 

loss of sensitivity, and reduced manual dexterity and grip (Holmér, 1994). These conditions can 

directly influence the variability of man's decisions or actions. 

Capacity performance 

Capacity performance can be defined as an item’s ability to deliver according to design capacity 

and/or current demands (requirements/needs) in a fixed period of time with given production 

resources (Shahidul et al., 2013, Barabady et al., 2010). Full industrial capacity is an attainable 

level of output that can be achieved under normal input conditions (Klein et al., 1973). Cohen 

(Cohen, 1993) defines capacity as the ability or aptitude to perform a functional task, with its 

measure being described by capabilities such as ability, competence, and efficiency. Capacity 

can affect the efficiency and effectiveness of the operation (Isaza et al., 2015). In the OEE 

concept, the performance of capacity is a critical factor, neglecting which, particularly in the 

design phase, may lead to large losses over the operational phase. Capacity performance can be 

briefly defined as how well the available capacity is used (used capacity/available capacity) 

(Pomorski, 1997, Cesarotti et al., 2013).The necessity of a capacity performance indicator in 

the Arctic, particularly in the design period, is revealed. 

In the Arctic, used and available capacity are influenced both positively and negatively. On the 

one hand, consider the same wind speed in two wind farms, one in a cold climate region and 

the other in a tropical region; since cold winds are denser, the available energy capacity in the 

Arctic wind farm is higher than in the tropical one. On the other hand, despite the higher 
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capacity in the Arctic, installing, running, and maintaining a wind farm in such an area to use 

this capacity is much more difficult than in a tropical region. Although nearly a quarter of the 

global wind energy capacity is operating in cold climate regions, to benefit from the great 

resource of dense winds, wind turbines in Arctic wind farms are threatened by ice accretion, 

leading to safety concerns as well as power output reduction, influencing the available capacity, 

while it negatively affects the used capacity. Consequently, low capacity performance is 

expected in Arctic wind farms (Stoyanov and Nixon, 2020).  

Reliability performance 

According to (IEC, 2019), reliability is “the ability of an item to perform a required function 

over a specified time and under the specified conditions.” The main aim of system or equipment 

reliability is to prevent the failures that cause stoppages and downtime or reduce the adequate 

functional performance of the system (IEC, 2019). Failures occur when the effect of the applied 

load (L) is greater than the resistance (R) of the component or material (L > R). The reasons 

why (L > R) occurs can range from poor design specification and material defects, through to, 

e.g., fabrication errors, degradation in operation, and poor maintenance. While the resistance R

is related to the materials, the design and the in-service condition of the system, the load L can

be any type of load: functional, environmental or accidental (Veritas, 2002, Freitag and

McFadden, 1997). Environmental conditions can include operational environments as well as

preoperational environments, when stresses imposed on parts during manufacturing assembly,

inspection, testing, shipping, and installation may have a significant impact on equipment

reliability.

In the Arctic, low temperature, icing, and humidity are main concerns that can change the 

properties of some materials and fluids, increase the failure rate and reduce equipment 

performance by decreasing its reliability. For example, the icing on structures and equipment 

will increase wind drag by changing dimensions and weight, shapes, and drag coefficients. 

Moreover, it can change their natural frequencies, which is a significant factor influencing the 

dynamic behaviour and control of the systems, leading to increased oscillatory stresses 

(Ryerson, 2011). For some materials such as plastic, low-temperature stress can change the 

material's properties and increase its failure rate. The serviceability of rubber components, e.g. 

tyres, inner tubes, cables, hoses, bushings and seals, is seriously affected by low temperatures 

(Freitag and McFadden, 1997). Snow infiltration and extreme temperatures lead to 

condensation in the electronics and, consequently, can lead to electrical failure (Laakso et al., 

2003). 

Tension forces from ice accretion in some materials, such as steel and cables, increase 

considerably (Freitag and McFadden, 1997, Misra, 2008d). Low temperature generates static 

electricity that destroys computers, making data unreliable. Engines and equipment operating 

during cold weather are subject to higher wear and increased breakage (Dutta, 1988). Very often 

more than one environmental factor may be acting on systems or equipment. These combined 

environmental factors may have more adverse effects on reliability than the effects of these 

individual environments (Misra, 2008d, Fikke et al., 2006). 

Maintainability performance 

Maintainability, as a characteristic of design and installation, can be defined as the probability 

that equipment will be retained in or restored to a specified condition within a given period of 

time (IEC, 2019). Maintainability performance is a design factor that decides the degree to 

which a product allows safe, accurate, quick and easy replacement of its component parts 

(Garmabaki et al., 2016, Kumar et al., 2015). Design for maintainability needs to consider 

human ergonomics, logistic management, design layout, the level of experience and training of 
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the maintenance personnel and so on (Naseri and Barabady, 2016, Knezevic, 1993). The main 

attributes of maintainability are standardization, interchangeability, troubleshooting, 

removal/installation, ease of handling, accessibility, safety precautions and skill level 

(Barabady et al., 2010, Kumar et al., 2012, FURULY et al., 2013). In general, Arctic climate 

conditions can contribute to changing the maintainability performance of an item, by affecting 

i) the maintenance and operational crew, ii) components and maintenance tools, and iii) 

maintenance support. For example, in icing and low-temperature conditions, the maintenance 

and operational crew should wear warm clothes and gloves, which can increase their body 

dimensions and reduce mobility and hand dexterity. Longer periods of darkness during winter 

may cause human depression and reduce the efficiency of workers; the period of brightness 

during the summer may cause sleep problems (Brunvoll et al., 2010). Icing may change the 

accessibility of the failed item, by changing its appearance and shape, leading to improper 

accessibility (Ryerson, 2011). Improper accessibility can increase the access, replacement, and 

removal time of failed components. Lack of satisfactory access to the equipment requiring 

maintenance is the most common problem mentioned by maintenance personnel. Moreover, 

icing may adversely affect helicopter activities, which are important for the logistics of 

transporting people and materials. Crane, lifting or hoisting provision devices, which are the 

key elements for carrying out inspections, and maintenance of equipment can be affected. 

Sensors on test equipment (e.g. temperature sensors, accelerometers, etc.) can be affected by 

different types of ice, leading to measurement errors in inspections and repair processes 

(Ryerson, 2011). Lower temperatures may affect the performance of several materials, such as 

iron and steel, polymers and plastics used in maintenance tools, and they experience 

embitterment at cold temperatures {Markeset, 2008 #2128. 

Supportability performance 

An important aspect of customer satisfaction and performability is reducing the downtime and 

repair costs of the system/equipment. Supportability plays an important role in maintaining a 

system at a desired level of availability and can be defined as the inherent quality of a system – 

including design, technical support data, and maintenance procedures – to facilitate the 

detection, isolation, and timely repair/replacement of system anomalies (Kratz, 2003). There 

are numerous factors that contribute to the supportability level achieved by each system. These 

include logistics considerations, such as spare parts, personnel, procedures, test equipment, and 

integrated tools (Smith and Knezevic, 1996). It is generally accepted that the availability and 

location of spare parts has a great impact on the supportability of a product/system (Markeset 

and Kumar, 2005). Thus, supportability concerns are essential for producing efficient and cost-

effective systems. In the Arctic area, the remote geographical location from customers and 

suppliers, the cold and harsh climate and insufficient and inconvenient infrastructure can affect 

the efficiency and effectiveness of the logistics of required maintenance support services and 

the delivery of supplies (Barabadi, 2012, Gao and Markeset, 2007). 
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4.3. Third research question 
RQ3: How to estimates the effect of operation conditions (observed and unobserved risk 

factors) on safety, reliability, and maintainability performance of an item? 

 

Paper A 

Ice accretion is one of the most hazardous operational conditions in cold regions. It can increase 

repair time and failure rate, power losses, life cycle costs, and safety hazards. In order to 

quantify the effect of different types of ice on performability, the concept of an icing effect 

index (IEI) on performability is developed. An IEI on performability can represent the 

consequences of icing on equipment. Thereafter, considering the probability of ice accretion 

and IEI on performability, the icing risk index for performability (IRIP) can be quantified. 

In this study, we assumed that Performability has five principal attributes (reliability, 

maintainability, quality, safety, and sustainability) and two dependent attributes (dependability 

and survivability), (see Figure 1 of Paper A). To quantify the IEIP, in the first stage, the icing 

effect index (IEI) on the principal attributes of performability should be quantified. The IEI will 

range from 1 to 10, where 1 shows no icing effect on performability attributes and 10 shows a 

very high effect. In the next stage, considering that performability attributes may place a 

different importance or weight on the overall performability of the item, the weight of the 

performability attributes needs to be quantified. The functionality and criticality of the item will 

decide the weight of the performability attributes. As can be concluded from Figure 1 of paper 

A, quantifying the IEIP is a bottom-to top process that starts by quantifying the IEI on 

survivability (IEIS). For this aim, considering the effect of the selected types of ice on 

survivability attributes (quality, reliability, and maintainability), and the weight vectors of these 

attributes, the IEIS can be developed as: 

IEIS = Iq

αq × Ir
αr × Im

αm  (9) 

where  Iq, Ir, Im are the IEIs for the quality, reliability, and maintainability, respectively. The 

parameters αq ≥ 0,  αr ≥ 0 and αm ≥ 0  are the weight vectors of survivability attributes, 

where αq + αr + αm = 1  

After quantification of the IEIS, the IEI for safety needs to be developed. Safety is one of the 

most sensitive elements of performability, which can easily be affected by icing. Considering 

the IEI for safety𝐼𝑠, and IEIS, the IEI on the dependability index, IEID, of the item can be 

calculated as: 

𝐼𝐸𝐼𝐷= 𝐼𝐸𝐼𝑆𝛽𝑠𝑢𝑟 × 𝐼𝑆
𝛽𝑠  (10) 

Where 𝛽𝑠𝑢𝑟 +  𝛽𝑠 = 1  and  𝛽𝑠𝑢𝑟 ≥ 0 and 𝛽𝑠 ≥ 0 show the weight vector of survivability and 

safety on dependability. Finally, the IEIP can be calculated by: 

𝐼𝐸𝐼𝑃 = 𝐼𝐸𝐼𝐷𝛾𝐷𝑒𝑝 × 𝐼𝑠𝑢
𝛾𝑠𝑢 (11) 

Where  𝛾𝐷𝑒𝑝 +  𝛾𝑠 = 1 and 𝐼𝑠𝑢 is the IEI on sustainability and 𝛾𝐷𝑒𝑝 ≥ 0 and 𝛾𝑠 ≥ 0 show the 

weight vector of sustainability and dependability on performability. 
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After estimation of the IEIP, the probability of ice accretion (POI) should be estimated. POI is 

quantified by physical models, using statistical data or based on expert opinions. Finally, having 

IEIP and POI, the icing risk index for performability (IRIP) can be calculated by: 

𝐼𝑅𝐼𝑃 = 𝐼𝐸𝐼𝑃 × 𝑃𝑂𝐼 (12) 

A detailed discussion on different steps taken to calculate the IRIP is presented in Paper A 

(Figure 3, Paper A). 

Paper B 

The suggested framework in Paper B, (Figure 6) is based on the MPHM and its extensions, 

which provide an appropriate tool for modelling observed and unobserved heterogeneity under 

the different types of maintenance strategies.  

As this figure shows, in the first step, the context should be established. In this step, all external 

and internal parameters to be taken into account when analysing failure data and setting the 

scope and assumptions for the reliability analysis should be defined. In the next step, failure 

data and all possible observed covariates associated with each failure should be collected. In 

general, the first step in analysing the collected failure data of a repairable system is to check 

the trend of the failure data. In the case that the data shown trend Nonhomogeneous Poisson 

Processes (NHPP) or Trend Renewal Process (TRP) can be used to model the baseline hazard 

rate. However, when there is no trend in the data, classical distribution, such as Weibull 

distribution, can be used to model the baseline hazard rate. However, some goodness-of-fit test, 

such as residual test, should be used to find the best fit distribution for failure data. In the next 

step, the time dependency of observed covariates should be checked. Later, the failure data need 

to be investigated for unobserved covariates (For detail see Paper B). Data sets without 

unobserved heterogeneity will be analysed using the classical PHM, including PHM (when all 

observed covariates are time-independent) and extension of the PHM (in the presence of time-

dependent covariates). Moreover, data sets with unobserved heterogeneity will be analysed 

using the MPHM family. The application of the proposed methodology is demonstrated by a 

case study in Paper B. 

Paper C 

In this study, the application of a mixture frailty model (MFM) for maintainability analysis is 

discussed. An MFM is an extension of the proportional repair model, where unobserved and 

observed covariates have a multiplicative effect on the repair rate. If the observed and 

unobserved covariate follows the exponential function and gamma distribution, then 

maintainability becomes:  

M𝜃(𝑡) = 1 − ∫ {1 − M (𝑡, 𝑧𝑖, 𝑧𝑗(𝑡))}
𝐴∞
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If the observed covariate follows the exponential function in the presence of W time-

independent observed covariates and M time-dependent observed covariates, M(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) can 

be written as: 

M(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) = 1 − [1 − M0(t)]exp[∑ pizi
+∑ δjzj(t)M

j=1
W
i=1 ] (14)

https://www.ncbi.nlm.nih.gov/pubmed/9385105
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Figure 6. A framework for reliability model selection in the presence of observed and unobserved covariates 
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where 𝑀0(𝑡) is the baseline maintainability function, dependent only on the time, as follows: 

M0(𝑡) = 1 − 𝑒𝑥𝑝 [− ∫ 𝜇0 (𝑡′) 𝑑𝑡′
𝑡

0
] (15) 

Moreover, if each repair process is regarded as an independent process with an individual, then 

mixture repair distribution can be used to model the maintainability baseline. Suppose a repair 

dataset of specific items consists of N repair processes, which require different maintenance 

tasks and repair actions comprised of several subsidiary tasks of unequal frequency and time 

duration. Under these conditions, the mixture baseline maintainability function, (𝑀0𝑚(t)), can 

be defined by mixing the 𝑀0(𝑡) of the several repair processes as: 

𝑀0𝑚(t) =  ∑ γk

N

k=1

. 𝑀0𝑘 =  ∑ γk

N

k=1

. (1 − 𝑒𝑥𝑝 [− ∫ 𝜇𝑘0(𝑡′)𝑑𝑡′
𝑡

0

]) (16) 

where 𝑀0𝑘is the baseline maintainability of the kth repair process, and ϒk is the proportion of 

the repair tasks belonging to the kth repair process. The baseline maintainability function, if the 

repair rate for all repair processes follows 2-parameter Weibull distribution, is given by: 

𝑀0𝑚(t) =  ∑ γk

N

k=1

. (1 − 𝑒
−(

𝑡
𝜂k

)
𝛽k

)  (17) 

where 𝛽k and 𝜂k are the shape parameter and scale parameter of Weibull distribution for the 𝑘th 

repair process. The application of the proposed model is demonstrated by a case study in Paper 

C.
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5. CONCLUSION, CONTRIBUTIONS AND FURTHER RESEARCH 

In this chapter the conclusions, the author’s contributions and possible future work are discussed. 

 

Following the problem statement, objectives and research questions, the research continued 

with a review of the literature on performance measurement systems, to understand the key 

concepts, definitions, and aspects of criteria for measuring the performance in a company. Then 

a PMS for Arctic operational conditions was suggested. Thereafter, the research continued by 

developing models to quantify performance indicators, considering harsh climate conditions 

and risk factors. 

 

5.1. Conclusions 

The following conclusions have been reached: 

 

▪ Due to low temperatures, sea ice, polar low pressures, poor visibility and seasonal 

darkness, etc., the Arctic operating condition has significant effects on the performance 

of component and industry activities in various ways, including increasing failure rate 

and repair, life cycle costs and safety hazards. Moreover, the less developed 

infrastructure in the Arctic creates several challenges, such as limitations to the logistics 

of supplies, material and personnel required for the operation and maintenance 

activities. 

▪ Considering the unique and challenging Arctic operational conditions, with strict 

regulations and requirements for safety and the environment, the designed system or 

equipment must be available and safe, as well as economically viable. Such systems 

must be able to minimize environmental pollution and require the minimum quantity of 

raw materials and energy. 

▪ PMS needs up-to-date and accurate performance information on its business. This 

performance information needs to be integrated, dynamic and accessible, to assist fast 

decision-making. Hence, the development and continuous improvement of PMSs and 

the identification of more PIs for judging performance in the Arctic are critical for 

industry success. 

▪ Obtaining the correct sources of information and data on PIs and using the right tools 

or methods to measure the impact of the external environment or factors influencing 

PIs, is critical.  

▪ The statistics models must be able to quantify the effect of covariates on PIs and must 

be built based on correct assumptions that reflect the operational conditions. 

▪ Failure and repair data are often collected from multiple and distributed units in different 

operational conditions (e.g. operator skill, maintenance strategies, etc.), which can 
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introduce heterogeneity into the data. Part of such heterogeneity can be explained and 

isolated by the observable covariates, whose values and the way that they can affect the 

item’s reliability or maintainability are known. However, some factors are typically 

unknown, leading to unobserved heterogeneity.  

▪ In most reliability and maintainability studies, the effect of unobserved covariates is 

neglected for reasons of practicality and simplicity. This may lead to erroneous model 

selection for the time to failure or repair of the item, as well as wrong conclusions and 

decisions. 

▪ In most maintainability analysis, researchers have simplified their analysis, by 

considering a complex system as a single item. In these studies, the assumption is that 

all repair data represent an identical repair process for the item. In practice, mechanical 

systems are composed of multiple parts, with various failure mechanisms, which need 

different repair processes (repair modes) to return to the operational phase; classical 

distribution, such as lognormal, which is only a function of time, may not be able to 

model such complexity. 

 

5.2. Research contributions 

Models and frameworks developed in this work can be employed in facilities and technology 

activities to analyse the impact of operational conditions on the performance of 

systems/equipment and to assist calculations and predictions. The research contributions are 

considered to be: 

▪ Suggestion of a PMS for the Arctic. 

▪ Development of an Icing Risk Index to quantify the effect of different types of ice on 

the performability of an item/system. 

▪ Development of a methodology for reliability analysis in the presence of unobserved 

and observed covariates. 

▪ Development of a Mixture Frailty Model (MFM) to estimate the effect of observed 

and unobserved covariates on the maintainability of a component or a system, as well 

as identifying different repair processes in the repair dataset. 

 

5.3. Suggested future work 

Based on the research presented in this thesis, the following points are suggested for future 

research:  

• Development of applicable model for predicting the effect of operational conditions on 

sustainability performance. 

 • Development of applicable model for predicting the effect of operational conditions on 

financial performance. 

• Improvement of the data collection system, in order to map and collect covariates that can 

affect performability. 
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1. Introduction

Over 25% of theworld's undiscovered oil and gas petroleum reserves
are expected to lie in the Arctic region, where approximately 84% of
these reserves will be offshore (Gudmestad et al., 2007). The Arctic is
known to be a harsh, sensitive, and remote area. Taking into consider-
ation the unique and challenging Arctic operational conditions, the de-
signed systems and selected technologies must be dependable and
safe as well as economically viable (Gudmestad et al., 2007; Barabadi
et al., 2015). Considering the high sensitivity of the area and its remote-
ness, which make any simple logistics a challenging task, the selected
technology must be able to minimize environmental pollution and the
need for spare parts and to require theminimum quantity of rawmate-
rials and energy.

Designing for production performance comprises appropriate ap-
proaches that can enable designers to meet these important goals. Pro-
duction performance is described as the capacity of a system tomeet the
demand for delivery or performance. During recent years, production
performance management programs have experienced faster develop-
ment, and they increasingly play an important role in supporting the
decision-making process (Gao et al., 2010). Moreover, some standards
such as ISO20815 (2008) and NORSOK Z-016 (N. Z-016, 1998) have
been developed to provide processes and activities, requirements and
guidelines for systematic production performance management. The
epartment of Engineering and
47 77644900.
focus of these standards is on the reliability, availability, and maintain-
ability of equipment. Inmost studies related to production performance,
the main objective is to optimize reliability, availability, and maintain-
ability to achieve the production assurance goals (Barabadi, 2011;
Barabadi, 2012). Fig. 1 shows the performability concept of a system.
As illustrated, an effective design should consist of all the attributes of
performability simultaneously. A product or a systemhaving these attri-
butes is usually expected to perform well over its lifetime, incurring
minimum life cycle costs.

Designing for performability in the harsh, sensitive, and remote Arc-
tic area is a challenging task. It requires a range of tools to be employed
and is dependent on a large amount of data and information. However,
taking into consideration the unique Arctic operational conditions,most
of the available tools need to be modified, and in some cases, new tools
should be developed. At this point of development, there is not enough
of the data and information (such as reliability or maintainability data
and information) which is required for an accurate performability
analysis.

One of themost challenging parts of performability analysis is quan-
tifying the effect of operational conditions on performability (Barabadi,
2012; Kayrbekova et al., 2011). More specifically, ice accretion is one of
themost hazardous operational conditions in cold regions; it can signif-
icantly affect the performability of equipment (Gudmestad et al., 2007;
Ryerson, 2011). In a place like theNorth Sea, icing is consideredmore as
a nuisance, but in the harsh Arctic climate condition, it can present
many more operation, maintenance and safety problems (Gao et al.,
2010; Ryerson, 2011). Furthermore, in the Arctic, icing can be very fre-
quent, and, hence, according to the accident pyramid concept, it can
lead to fewer but more serious accidents, such as those involving

http://crossmark.crossref.org/dialog/?doi=10.1016/j.coldregions.2015.12.013&domain=pdf
mailto:abbas.b.abadi@uit.no
http://dx.doi.org/10.1016/j.coldregions.2015.12.013
www.elsevier.com/locate/coldregions
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fatalities (Ryerson, 2011; Heinrich, 1941). Ice may build up in different
forms (such as sea spray icing, frost, sleet, and glaze) based on the
equipment shape, meteorological parameters (such as air temperature,
wind speed, cloud liquid water content, cloud droplet spectra), and the
elevation of equipment from sea level. Offshore platforms are complex
systems with many items of equipment in various shapes, which
makes them susceptible to different types of icing and icing problems
(Ryerson, 2011).

Different types of icing may have different effects on performability
attributes (sustainability, safety, quality, reliability, maintainability).
Hence, to develop an effective practical solution and increase the
performability of production facilities, one must have comprehensive
knowledge of the different types of ice, how they form, and where
they appear on offshore production facilities (Barabadi, 2012;
Kayrbekova et al., 2011). In addition, it is very important to know how
and how much they can affect the different concepts of performability.
Considering the complexity of the icing effect on performability and
its attributes, it is necessary to develop a standard factor for the identi-
fication, assessment, and prioritization of their risks. However, there are
few studies and limited systematically collected information about the
impact of ice on the performability of offshore production facilities. Re-
cently, some researchers have focused on quantifying the effect of icing
on offshore production facilities' performance in the Arctic (Ryerson,
2011). However, reliability and safety is their main focus, and these
studies are not well detailed regarding the other concepts of perform-
ability. In this paper, the different types of ice accretion and their effect
on the performability of offshore production facilities will be discussed.
Then, in order to quantify the effect of different types of ice on perform-
ability, the concept of an icing effect index (IEI) on performability is de-
veloped. An IEI on performability can represent the consequences of
icing on equipment. Thereafter, considering the probability of ice accre-
tion and IEI on performability, the icing risk index for performability can
be quantified. The rest of this paper is organized as follows: in Section 2,
different types of ice accretion on offshore production facilities will be
discussed; Section 3 will review the effect of icing on the different con-
cepts of performability. Section 4 introduces the concept of an icing risk
index for performability. The application of the method is illustrated by
a case study in Section 5. Finally, Section 6 provides conclusions.
Fig. 2. Potential ice accretion areas on a rig (Ryerson, 2011).
2. Physics of icing on Arctic offshore production facilities

Ice accretion is defined as the process of ice build-up on the surface
of an object. Ice accretion on offshore production facilities can be catego-
rized in twomain groups: i) atmospheric icing and ii) sea spray icing or
superstructure icing. Atmospheric icing is defined as the processes
where falling or drifting raindrops, refrozen wet snow, or drizzle form
accretions on an object that is exposed to the atmosphere (Ryerson,
2011; Farzaneh et al., 2008). Based on the procedure, feature and
physical appearance, atmospheric icing can be categorized as
(Ryerson, 2011; SAE, 2002):

• Glaze: This results from precipitating cold-water droplets that hit
a surface and freeze upon impact. Up to 270 Metric Tons of glaze
ice has been reported on a Canadian platform (Ryerson, 2011;
Liljestrom and Lindgren, 1983), with thicknesses of up to 3 cm
(Ryerson, 2011; Brown and Mitten, 1988).

• Snow: Snow accumulation up to 136metric tons has been reported at
a depth of 0.3 m on decks (Ryerson, 2011; Liljestrom and Lindgren,
1983).

• Rime: This results from droplets in fog, sea smoke, or cloud drops that
hit a surface below 0 °C and freeze (Ryerson, 2011). Fett et al. (Fett
et al., 1993) reported an accumulation of up to 10 cm on decks and
30 cm on railings in 12 h.

• Frost: This is the result of direct transformation of water vapor to ice
and wet snow. Frost forms on windless clear nights on surfaces facing
the sky (Ryerson, 2011).

• Sleet or ice pellets: Formed from raindrops that have been frozen be-
fore hitting surfaces, sleet accumulates loosely on horizontal surfaces
such as decks, stairs, hatches, and helicopter landing pads (Ryerson,
2011).

In the case of sea spray icing, the sea spray droplets are carried by the
wind and hit objects in their way. When the air temperature is colder
than the freezing temperature of seawater, approximately around
−2 °C, freezing spray occurs (Jones and Andreas, 2012).Waves, volume
of spray flux, and salinity of seawater are important factors that affect
rate of sea spray. Sea spray accumulation occurrence is very rapid
when there are high winds, low air temperature, and low sea
temperature.

Sea spray icing on stationary offshore structures differs significantly
from sea spray icing on ships. Spray is generated on ships by heaving
and pitching as the ship interacts with the waves it is moving through.
Platform legs, bracing, blowout-preventer guidelines, mooring chains,
marine risers, and flexible kill and choke lines in the splash zone
5–7 m above the sea are some potential areas for sea spray icing accu-
mulation (Ryerson, 2011; Baller, 1983). Jones and Andreas (2009,
2012) developed a model to calculate the icing rate on cylinders with
axes perpendicular to the wind direction. For more information, see
also Horjen (2015). Fig. 2 shows the potential ice accretion areas on a
drilling rig. For detailed information about different types of icing on a
rig, see Ryerson (2009).

3. Icing effect on performability concepts

Different types of ice may have different effects on the performabil-
ity attributes. For example, glaze is not an effective factor for the reliabil-
ity or sustainability of a staircase in an offshore production facility, but it
is a major hazard for safety and maintainability. Here, the effect of icing
on performability attributes will be discussed briefly.
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3.1. A. Effects of icing on sustainability

A sustainable development is defined as a development that meets
the needs of the present without compromising the ability of future
generations to meet their own needs (Misra, 2008; Brundtland, 1987).
The sustainability principle requires that products and systemsusemin-
imum material and energy throughout their entire life cycle. They
should use non-hazardous materials and should be highly recyclable
at the end of their life. The objective of sustainability is to increase
energy andmaterial efficiencies, preserve ecosystem integrity, and pro-
mote human health and happiness by merging design, economics,
manufacturing, and policy. In general, to have a sustainable design, en-
ergy and material consumption should be minimized. In the Arctic off-
shore, in order to eliminate the problems of ice accretion, mechanical
or electrical anti-icing and de-icing methods need to be taken into con-
sideration (Farzaneh et al., 2008; Petrenko et al., 2011). Such methods
negatively affect the sustainability by increasing energy and material
consumption. For instance, the equipment and areas that require anti-
icing measures should, as far as possible, be situated in protected loca-
tions, so that sea spray andweather cannot reach them. This may be ac-
complished by using fully enclosed spaces, semi-enclosures, recesses
with removable “curtains” in front or similar, which can increase the
material and energy usage significantly, and consequently, these pro-
tection methods will negatively affect the sustainability (DNV-OS-
A201, 2013). In addition, such practice can be very expensive. For exam-
ple, an investment of 5% of the cost of a 600 kWwind turbine has been
estimated for the purchase and installation of anti-icing and de-icing
systems (Laakso and Peltola, 2005). Or, for a windmill farm with medi-
um icing severity, with an average of 30 icing days per year, the anti-
icing and de-icing system payback time can be 5 years (Tammelin,
2005; Lamraoui et al., 2014). In addition, the large power demand of off-
shore installations in the Arctic area is, in most cases, covered by their
own gas, and greenhouse gas emissions from power production are
high. Ice-protection techniques with a high consumption of energy
have negative impacts on the sensitive environment and wilderness in
the Arctic. The use of hazardous chemical ice protection causes degrada-
tion of the environmental quality; it also increases the produced waste
and serious environmental consequences (Shi et al., 2013).

3.2. B. Effects of icing on reliability

According to IEV191 (2015), reliability is “the ability of an item to
perform a required function over specified time and under the specified
conditions.” Most reliability studies in the Arctic offshore have focused
on structural reliability (Ronalds et al., 2003; Der Kiureghian and Liu,
1986). However, there are still significant uncertainties with respect to
the calculation of the loads of different types of ice (e.g. sea spray
icing, atmospheric icing or floating sea ice) and their ice load effects
on structures (Eik, 2011). The effects of icing on the reliability of equip-
ment can be categorized as i) static ice loads, ii) wind action on iced
structures and equipment, iii) dynamic effects, iv) damage caused by
falling ice, and v) low-temperature stress on material.

Ice accretion will increase the stress (e.g. tension forces, oscillatory
stresses) on structural components and mass imbalance. For example,
when water sources are wind-driven and cables are oriented almost at
right angles to the wind direction, ice accumulates on only one side.
The torsional weak cable then rotates down, or twists, because of the
weight of the ice accumulating on the side, and more ice accumulates
on the new exposed face. This process, if occurring for a long-enough
time, can cause cables to rotate multiple times with a spiral of ice
enveloping them. Antennas and antenna structures can easily be
overloaded by accreted ice. In particular, small fastening details are
weakened when increased load is added on top of other actions, be-
cause the ice may easily double the normal load (Liljestrom and
Lindgren, 1983). Ice from overheadmay sag or fall causing unexpected-
ly high ice loads on lower structures.
Icing on structures and equipmentwill increasewinddrag by chang-
ing dimensions and weight, shapes, and drag coefficients. For more in-
formation about wind action on iced structures see ISO12494 (2001).
Moreover, it can change their natural frequencies, which is a significant
factor influencing the dynamic behavior and control of the systems,
leading to increasing oscillatory stresses. These stresses could cause fa-
tigue in supports under the main deck and, potentially, loss of a rig
(Ryerson, 2011). It should be mentioned that shedding and breaking
of ice might cause important dynamic vibrations and stresses. For
some materials such as plastic, low-temperature stress due to the
icing can change the material's properties and increase their failure
rate. Snow infiltration and extreme temperature lead to condensation
in the electronics and, consequently, can lead to electrical failure
(Laakso et al., 2003).

3.3. C. Effects of icing on quality

The quality of a product is a measure of its degree of conformance to
applicable design specifications and workmanship standards (Misra,
2008). Offshore production facilities are made up of complex subsys-
tems and components and they employ materials, men, and machines.
These elements may have inherent variability and attributable variabil-
ity. Variation of parameters and dimensions leads to weakening,
component mismatch, incorrect fits, vibration, etc. These issues can in-
crease the failure. Hence, it is necessary to establish an effective quality
control plan to control the quality of these elements to an irreducible
economic minimum. Quality can be classified into two types: design
quality and manufacturing quality. In design quality, materials that are
going to be used require early assessment for material selection and
performance aspects to confirm their integrity over the life cycle of
the facility. Hence, a set of the tests need to be established to check
the quality of design. Understanding the physical environments in-
volved and the stresses that can be applied at the site can prevent
wear-out failures and overstress failures. As mentioned, due to the
lack of experience and appropriate ice accretion models in the Arctic
area, there are significant uncertainties with respect to calculation of
ice effects such as ice load on different components. Such uncertainties
can make a design quality a challenging process.

With regard to machine tools, the source of variation is the natural
limits of capability that every process has. Ice accretion may provide a
situation inwhich the process is incapable of acceptable operationwith-
in design limits. For example, welds will cool faster in cold weather,
which results in increased susceptibility to cracking both during and
after welding. Ice can reduce the quality of communication tools and
sensors. For instance, wind vanes and temperature sensors can be af-
fected by ice; studies show that, in icing conditions, wind speed errors
can be as high as 30% (Laakso et al., 2003).

Themost important contributor to variability is man himself (Misra,
2008). Studies show that in outdoor work in the winter, cold stress fre-
quently reduces working ability by 70% for short periods (Anttonen and
Virokannas, 1994). Long periods of exposure to the cold results in de-
creased cognitive performance, injury, hypothermia, loss of sensitivity,
and reduced manual dexterity and grip (Holmér, 1994). These condi-
tions can directly influence the variability of man's decisions or actions
to a very large extent.

3.4. D. Effects of icing on maintainability

The formal definition of “maintainability,” according to IEV191
(2015), is “the ability of an item under given conditions of use, to be
retained in, or restored to, a state in which it can perform a required
function, when maintenance is performed under given conditions and
using stated procedures and resources.” Maintainability measures the
ease with which and the time in which a system can be restored to an
operational level after failure. In general, the icing can contribute to
changing the maintainability performance of an item by affecting
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i) themaintenance and operator crew, ii) components andmaintenance
tools, and iii) maintenance support. In icing conditions, the mainte-
nance and operator crew should wear warm clothes and gloves, which
can increase thebody dimensions and reducemobility andhanddexter-
ity. Slippery pathways due to icing can also reduce the maintenance
crew's mobility. Poor visibility in a workspace due to the snow or iced
windows makes it difficult to read technical data and manuals and in-
creases the propensity to miss something or to repair something incor-
rectly and consequently it can reducemaintainability. Icingmay change
the accessibility of the failed item by changing its appearance and shape
leading to improper accessibility. Improper accessibility can increase ac-
cess, replacement, and removal timeof failed components.Maintenance
supervisors estimate that a 30% saving in overall maintenance time
could be achieved if access to equipment were ideal or unrestricted. Ef-
fective communication is very important in maintainability. Ice on an-
tennas can cause insufficient communication coverage, impeding
conversations, between the operator and maintenance crew.

Ice accretion may cause problems for the safe and quick passage of
both personnel and materials and increase the delivery time of spare
parts. Icing may cause stoppages in helicopter activities, which are im-
portant for the logistics of transporting people and materials. Every
maintenance activity needs tools such as cranes or lifting and hoisting
devices to carry out tests, inspections, and repairs. The reliability and
availability of maintenance tools can be adversely affected by ice. Iced
crane components could jam the windlass, causing cables to jump pul-
leys or to jam in guides (Ryerson, 2011). Sensors on test equipment
(e.g. temperature sensors, accelerometers, etc.) can be affected by dif-
ferent types of ice, leading tomeasurement errors in inspections and re-
pairs process.

3.5. E. Effect of icing on safety

Stability and integrity of offshore production facilities can be threat-
ened by large ice accretions. Icing can cause slippery surfaces on hand-
rails, ladders, decks, etc., constituting an important personnel safety
hazard. Ice accretions can cover boats' lifesaving apparatus, and deck
firefighting equipment, which are vital and critical pieces of equipment.
Ice on burner booms can lead to explosion, fire, or accumulation of toxic
gases if the ice is over the burner boom's load rating (Ryerson, 2011).
Icing on valves inhibits manual operation and the ability to see position
indications. Ice falling from on high can hit the operator ormaintenance
crew. The overall probability of the success of an escape, evacuation, and
rescue (EER) strategywill reduce significantly in the presence of ice on a
production facility (Timco and Dickins, 2005). Yun andMarsden (2010)
showed that, depending on the rescue (EER) strategy, the probability of
success can fall from 90% in June to 50% in January. Mechanical de-icing
methods in use generally require access to the iced equipment, which
can provide safety hazards. For more information about the effect of
icing on safety, see Ryerson (2011).

4. Icing risk index for performability

Very generally speaking, risk is the potential of losing something of
value. Here, we are going to quantify the risk of ice accretion on the per-
formability of offshore production facilities. Risk has two elements: the
consequence of an accident and the probability of an accident occurring,
and it can be defined as

Risk ¼ probability of accident occurring � consequences in the case of occurrence

ð1Þ

Here, to quantify the consequences of icing on performability, the
concept of an icing effect index for performability (IEIP) has been devel-
oped. The IEIP will range from 1 to 10, where 1 shows no icing effect on
the performability of the selected item (component, subsystem or
system) and 10 shows a very high effect. Considering that different
types of ice may change the performability of a selected item and its at-
tributes in different ways, the IEIP should be quantified for each type of
ice separately. Having an IEIP for each type of ice will enable designers
and managers to identify appropriate mitigation methods for each one.

Performability has five principal attributes (reliability, maintainabil-
ity, quality, safety, and sustainability) and two dependent attributes
(dependability and survivability). To quantify the IEIP, in the first
stage, the icing effect index (IEI) on the principal attributes of perform-
ability should be quantified. The IEI will range from 1 to 10, where 1
shows no icing effect on performability attributes and 10 shows a very
high effect. In the next stage, considering that performability attributes
may place a different importance or weight on the overall performabil-
ity of the item, the weight of the performability attributes needs to be
quantified. The functionality and criticality of the item will decide the
weight of the performability attributes. For a critical item, which
needs to be repaired as soon as it fails, maintainability is an important
factor that has a great effect on its survivability and consequently on
its performability. Hence, its maintainability has a high weight com-
pared to an itemwhich has several redundancies and it can be repaired
later in suitable opportunity. The weight factors of performability attri-
butes should be quantified, disregarding the icing effect.

As can be concluded from Fig. 1, quantifying the IEIP is a bottom-to-
top process that starts by quantifying the IEI on survivability (IEIS). For
this aim, considering the effect of the selected types of ice on survivabil-
ity attributes (quality, reliability, and maintainability), and the weight
vectors of these attributes, the IEIS can be developed as:

IEIS ¼ Iαq
q � Iαr

r � Iαm
m ð2Þ

where Iq, Ir, Im are the IEIs for the quality, reliability, andmaintainability,
respectively. The parameters, αq≥0, αr≥0 and αm≥0, are the weight
vectors of survivability attributes, where αq + αr + αm = 1. As men-
tioned, the criticality and required survivability of an item will decide
the weight vectors of reliability, maintainability, or quality.

After quantification of the IEIS, the IEI for safety needs to be devel-
oped. Safety is one of the most sensitive elements of performability,
which can easily be affected by icing. For instance, even a tiny amount
of glaze or sleet can affect the safety significantly. Considering the IEI
for safety, Is, and IEIS, the IEI on the dependability index, IEID, of the
item can be calculated as

IEID ¼ IEISβsur: � IβS
S ð3Þ

where βSur.+ βs= 1 and the βSur. ≥0 and βs ≥0 show theweight vector of
survivability and safety on dependability. Finally, the IEIP can be calcu-
lated by

IEIP ¼ IEIDγDep: � Iγsu:
su: ð4Þ

where γDep. + γs = 1 and Isu is the IEI on sustainability and γDep.≥0 and
γsu.≥0 show the weight vector of sustainability and dependability on
performability.

After estimation of the IEIP, the probability of ice accretion (POI)
should be estimated. POI is quantified by physical models, using statis-
tical data or based on expert opinions. Finally, having IEIP and POI, the
icing risk index for performability (IRIP) can be calculated by

IRIP ¼ IEIP � POI ð5Þ

Fig. 3 shows the different steps taken to calculate the IRIP. As this fig-
ure shows, after identification of the items, all relevant data should be
collected including item geometry, design information, expert opinions,
available experience related to the site, and meteorological data. Using
collected data, the IEIP, POI, and IRIP for the selected type of ice will be
calculated. Finally, the IRIP should be checked against acceptable criteria
to see whether it is acceptable or not. In the case where risk is not
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Fig. 3. Icing risk index for performability.
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acceptable, some mitigation techniques should be applied. The mitiga-
tion techniques can be carried out i) to reduce the POI, for instance by
using ice-phobic coating techniques; ii) to reduce IEIP, for example, by
training operators and maintenance crew; or iii) to reduce both POI
and IEIP. Moreover, having the POI and IEIP, the result can be shown
on the risk matrix. A risk matrix is a matrix that is used during risk as-
sessment to define the various levels of risk as the product of the prob-
ability categories and consequences categories. It should be mentioned
that the number of categories should reflect the needs of the analysis.
Hence, based on the goals and regulations, each company needs to cre-
ate their own risk matrix.

One of themain challenges for calculating the IRIP is the collection of
correct and sufficient information and data regarding ice effect and
weight factors of performability attributes. As previously mentioned,
at this stage of the work, due to limited engineering experience in the
Arctic, this type of data is difficult to collect. Here, based on expert opin-
ions and design information, a methodology is developed.

4.1. IEIS estimation using expert opinion

Here, the assumption is that the experts can provide the value for the
IEI of principal performability attributes. To this aim, a formal expert
judgment process can be followed, which consists of threemain phases,
namely, expert selection, elicitation of expert opinions, and aggregation
of expert opinions (Meyer and Booker, 2001). Firstly, a number of ex-
perts should be selected based on a set of criteria (e.g., knowledge on
cold-climate technology, icing phenomenon, and the equipment unit
or the case of interest); once experts are selected, expert data are elicit-
ed through a formally defined procedure such as individual interview or
Delphi approach (Meyer and Booker, 2001). In this regard, experts may
be asked to provide their opinions in the form of single-point estimates,
probability distribution, parameters of a distribution, intervals, etc.
(Bedford and Cooke, 2001). Once expert opinions are elicited, an aggre-
gation method is chosen to combine expert data and thus to obtain a
single solution (e.g., single distribution function) that will be used by
the decision-maker. Among different mathematical methods to com-
bine expert data, weighted-arithmetic andweighted-geometric averag-
ing techniques are the less complex ones, which are widely used in
different applications of expert opinions (Clemen and Winkler, 2007).
However, such methods require some weighting factors to be defined
for experts, which is a challenging task. Several techniques such as
equal-weighting, performance-based weighting, and computation of
experts' weighting factors based on a set of predefined criteria are sug-
gested in several studies (Clemen and Winkler, 2007; Cooke, 1991).

After estimation of IEI for principal attribute of performability, the IEI
for dependent attribute should be estimated. Hence, weight factors for



Fig. 4. Map of the locations of Johan Castberg (Statoil, 2012).
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principal attribute should be estimated. Here, it is assumed that the
values of weighted factors or their ranking for different performability
attributes are available based on the design information. In the case
where only the ranks of theweight vectors are available, the rank values
should be quantified. Jiang and Ji (2002) developed a method that
can be used for this aim. Here, the approach is discussed by means of
an example; let us assume that for survivability of an item, the weight
vector α2 (reliability) is greater than α3(maintainability) followed by
α1 (quality), i.e. α2≥α3≥α1 ;αiN0. Let us define the following weight
ratio as

w3;1 ¼ α3=α1
w2;3 ¼ α2=α3

�
ð6Þ

Based on Eq. (6), it is clear thatw3,1 ,w2,3∈[1,∞). By simultaneously
solving Eq. (6) along with weight constraint, α1+α2+α3=1, we have
the following weight function:

α1 ¼ 1
w3;1 þw2;3 þ 1

α2 ¼ 1
1= w2;3w3;1

� �þ 1=w2;3
� �þ 1

α3 ¼ 1
w2;3 þ 1=w3;1

� �þ 1

8>>>>>>><
>>>>>>>:

ð7Þ
Escape

• Escape is the process whereby pe
event to a temporary place of safe
escape routes, Temporary Refuge

Evacuation

• Evacuation is the movement of pe
location outside the hazard zone i
no longer safe. 

Rescue

• Rescue is the process by which th
of the ice directly or in evacuation 
place of safety where medical ass

Fig. 5. The compo
By considering Eq. (7) and w3,1 ,w2,3∈ [1,∞), we are able to define
the feasible area of the attributes' weights. In the next step, by analyzing
Eq. (7), the extreme points of the feasible area can be found. The ex-
treme points occur at the maximum or minimum point of the weight
parameter as follows:

1. Weight factorα1 achieves itsminimumvalue, 0, whenw3,1=w2,3=
∞, i.e., lim

w31→∞
w23→∞

α1 ¼ 0. Hence, the corresponding weight vector will be

(α1,α2,α3)=(0,1,0). In addition, it reaches its maximum when
w3,1=w2,3=1. The corresponding weight vector in this case is
equal to ðα1;α2;α3Þ ¼

�
1
3 ;

1
3 ;

1
3

�
.

2. Weight factor α2 attains its minimum value, 1
3, when w3 ,1=

w2 ,3=1, lim
w31→1
w23→1

α2 ¼ 1
3
, and the corresponding weight vector will

be ðα1;α2;α3Þ ¼
�
1
3 ;

1
3 ;

1
3

�
. Also α2 reaches its maximum when

w3,1=w2,3=∞, i.e., lim
w31→∞
w23→∞

α2 ¼ 1and the corresponding weight

vector will be (α1,α2,α3)=(0,1,0).
3. Weight factor α3 reaches its minimum value, 0, when w3,1=1,

w2,3=∞, lim
w31→1
w23→∞

α3 ¼ 0 , and the corresponding weight vector

(α1,α2,α3)=(0,1,0). Also this parameter touches its maximum at

w3,1=∞, w2,3=1, lim
w31→∞
w23→1

α1 ¼ 1
2
, and the weight vector in this case

is ðα1;α2;α3Þ ¼
�
0; 12 ;

1
2

�
.

As a result, the above analysis yields the following three ex-
treme points (weight vectors): W1=(α1,α2,α3)=(0,1,0), W2 ¼ ðα1;

α2;α3Þ ¼ ð13 ; 13 ; 13Þ, W3 ¼ ðα1;α2;α3Þ ¼ ð0; 12 ; 12Þ.

5. Case study

The Johan Castberg field is newly discovered; drilling began in 2012
in the Norwegian Barents Sea (Fig. 4). Johan Castberg lies at a water
depth of 360–390 m; it is located at a distance of about 200 km from
the nearest land, which is Ingøya in Måsøy in Finnmark (Statoil, 2012).

On petroleum installations, such as drilling rigs, drill ships, semi-
submersible platforms, etc., the presence of explosive and combustible
substances increases the potential risk of fires and explosions. Hence,
an effective escape, evacuation, and rescue (EER) plan is a key issue in
such activities. EER addresses the entire process by which personnel
are removed from a major accident event to an ultimate place of safety
rsonnel move away from a hazardous 
ty.  Components of this system include 
 (TR), etc. 

rsonnel from an offshore platform to a 
n an emergency when the installation is 

ose who have entered the sea or surface 
craft are subsequently retrieved to a 
istance is available.

nents of EER.



Free-fall lifeboats

Fig. 6.West Hercules drilling rig used by Statoil in the Johan Castberg area, equippedwith
free-fall lifeboats (Seadrill, 2015).

Table 2
Attributes' weight ranking of FFL and HLP.

Item Survivability Dependability Performability

Free-fall lifeboat (FFL) αr≥αq≥αm βs≥βsur. γdep.≥γsu.

Helicopter landing pad (HLP) αr≥αm≥αq βs≥βsur. γdep.≥γsu.
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(Yun and Marsden, 2010). The components of EER are described in
Fig. 5.

In the Johan Castberg area, escape is not expected to be impacted by
ice accretion. However, evacuation and rescue can be significantly af-
fected by icing. In this paper, we focus on evacuation. Evacuation is fur-
ther categorized as primary, secondary, and tertiary (Yun andMarsden,
2010; Thomson, 2015).

• Primary evacuation is the method of evacuation that can be carried
out in a fully controlled manner under the direction of the person in
charge. Primary evacuation in the Arctic can be carried out by craft
such as helicopters, ice breaking platform supply vessels, and air cush-
ioned vehicles. It is the preferredmethod of leaving the installation in
an emergency.

• Secondary evacuation is a controlled means of removing personnel
from the installationwhich can be carried out independent of external
support.

• Tertiary escape constitutes “direct escape to sea”; i.e., if people cannot
find their way to a lifeboat, they climb down to sea level, or even jump
from a high level. Tertiary escape is clearly not advisable in the Arctic
with its harsh climate conditions.

For further analysis, this paper considers helicopters for primary
evacuation and lifeboats for secondary evacuation. They have been cho-
sen due to their potential for successful evacuation in the Johan Castberg
field, as is evidenced in similar environments, and to form a basis for
demonstration of the tool and method (Marsden et al., 2011).
Table 1
Final IEI on performability attributes for FFL and HLP.

Selected item Ice type Quality
(Iq)

Free-fall lifeboat (FFL) Sea spray icing 7
Snow 7
Glaze 4
Rime 3
Frost 2
Sleet 1

Helicopter landing pad (HLP) Sea spray icing 7
Snow 6
Glaze 4
Rime 2
Frost 1
Sleet 1
Evacuation options involving helicopters play a major role in most
evacuation plans when the evacuation can be performed in a fully con-
trolledmanner. However, in Johan Castberg, their operation is restricted
by adverse weather conditions such as strong winds, low air tempera-
tures, or atmospheric icing. Helicopters cannot be flown into known
or forecast severe icing conditions (Peck et al., 2002). Besides, in the
case of moderate icing conditions, the helicopter landing pad (HLP)
installed on the cramped topsides of offshore installations will suffer
to some degree from icing effects (Aviation, 2013). For example, frost
on a helicopter landing pad creates slippery conditions. Slippery condi-
tions on landing pads, which have no safety railings, could cause per-
sonnel to fall, sliding of the helicopter on the pad, and difficulty tying
down the helicopter (Ryerson, 2009).

Regarding the lifeboats' application, different lifeboat types have
been developed for offshore industry (Marsden et al., 2011). According
to the available experience and studies, free-fall lifeboats (FFL) seem to
be the preferred design (Fig. 6). Some of the ice accretion hazards relat-
ed to FFL in the Johan Castberg area includes that

• the lifeboat is covered in snow or atmospheric icing during storage;
• the launching equipment is covered in snow or atmospheric icing;
• sea spray icing occurs shortly after launch;
• sea spray icing causes a significant amount of layer over time.

5.1. Qualifying IEI for principal attributes of FFL and HLP

Here, the aim is to identify the IEIs of different types of ice on the
principal performability attributes of HLP and FFL based on expert opin-
ions. In this case, a group of 13 experts has been asked to identify IEIs.
After collecting the data, Cronbach's alpha coefficient is applied to mea-
sure the reliability of responses to the questionnaire. The value is
α ≥ 0.86 and α ≥ 0.82 for FFL and HLP, respectively; this means that
the reliability of responses is excellent. Thereafter, the geometrical
mean is used to extract the final IEI-based questionnaires. Table 1
shows thefinal IEI for the principal attributes of performability in select-
ed cases.

5.2. Qualifying weight vector of performability attributes for FFL and HLP

In this case, for FFL and HLP, only the ranking of the weight factor
of each attribute is available (Table 2). As shown in Table 2, the ranking
of the weight factors of the dependability and performability attributes
Reliability
(Ir)

Maintainability
(Im)

Safety
(Is)

Sustainability
(Isu.)

8 9 8 7
5 5 6 3
5 5 5 2
4 4 4 2
2 3 2 1
1 2 2 1
9 9 9 7
7 8 7 6
6 8 6 5
4 5 5 4
3 5 4 3
2 2 2 1



A) Free-fall lifeboat B) Helicopter landing pad

Fig. 7. The possible area for weighted vector of survivability of FFL and HLP.

Fig. 8. The possible area for weighted vectors of dependability and performability.

Table 4
The IEI on survivability, dependability, and performability for different types of ice.

Selected
item

Performability
element

Sea spray
icing

Atmospheric icing

Snow Glaze Rime Frost Sleet

Free-fall
lifeboat

IEIS
(αq,αr,αm)=(0,1,0)

8.0 5.0 5.0 4.0 2.0 1.0
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are the same for FFL and HLP. However, in FFL survivability, quality has
more weight than maintainability, in contrast with HLP, where main-
tainability has more weight than quality. Using the method discussed
in Section 4.1 and the ranking of performability attributes in Table 2,
the feasible values for the weighted factors can be calculated.

The feasible areas for theweight factors of survivability, dependabil-
ity, and performability are shown in Figs. 7 and 8. As the weight
rankings of the attributes are the same for dependability and perform-
ability in both cases, the feasible area will also be the same. The optimal
values for survivability will be on the vertex of Fig. 7, and for depend-
ability and performability, they will be on a line marked as “optimal
weight” in Fig. 8. It should be mentioned that the final selected value
for weight vectors needs to be approved by a group of experts or
designers.
Table 3
Final selected weight values for performability attributes of FFL and HLP.

Item Survivability Dependability Performability

Free-fall lifeboat
(FFL)

(αq,αr,αm)=(0,1,0) ðβs;βsur:Þ ¼
�
3
4 ;

1
4

�
(γdep.,γsu.)=(1,0)

Helicopter landing
pad (HLP)

ðαq ;αr ;αmÞ ¼
�
0; 12 ;

1
2

� ðβs;βsur:Þ ¼
�
1
2 ;

1
2

�
(γdep.,γsu.)=(1,0)
Different scenarios have been defined based on the feasible weight
area to find the worst scenarios, where selected weight provides the
highest icing impact on performability-dependent attributes. Table 3
shows the final selected weight vectors.
(FFL) IEID
ðβs;βsur:Þ ¼

�
3
4 ;

1
4

� 8.0 5.7 5.0 4.0 2.0 1.7

IEIP
(γdep.,γsu.)=(1,0)

8.0 5.7 5.0 4.0 2.0 1.7

Helicopter
landing
pad
(HLP)

IEIS
ðαq ;αr ;αmÞ ¼

�
0; 12 ;

1
2

� 9.0 7.5 6.9 4.5 3.9 2.0

IEID
ðβs;βsur:Þ ¼

�
1
2 ;

1
2

� 9.0 7.2 6.4 4.7 3.9 2.0

IEIP
(γdep.,γsu.)=(1,0)

9.0 7.2 6.4 4.7 3.9 2.0
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Fig. 9. Risk matrix for FFL. Red: extreme risk; dark yellow: very high risk; yellow: high risk; dark green: moderate risk; green: low risk; gray: very low risk.
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5.3. Icing risk index for performability

As illustrated in Fig. 3, having the IEI of the principal attributes and re-
lated weight vectors, the IEIS, IEID, and IEIP should be calculated using
Eqs. (2), (3), and (4), respectively. The results are shown in Table 4.

In the next stage, in order to quantify the IRIP, the probability of ac-
cretion of different types of ice on FFL andHLP should be estimated. Rigs
generally are not moving, and spray is generated only by wave motion
against rig supports; this suggests that in the Arctic area, atmospheric
ice could potentially contribute more to ice-related rig safety than sea
spray (Ryerson, 2009). Previous studies have demonstrated a variety
of views regarding atmospheric ice accretion versus sea spray.
Makkonen (1984) suggests that, in the Arctic, sea spray is about 50%
of the source for ice, the remaining being atmospheric sources. Most
sea spray occurs 15–20 m above the sea surface, but it can be lifted as
high as 60 m (Jorgensen, 1982). However, in such heights, the liquid
water content due to the sea spray is low and thus presents less proba-
bility of sea spray icing on HLP and FFL, which are usually located well
above the ocean surface. Here, five different categories are defined for
the probability of ice accretion on HLP and FFL; thereafter, the group
of experts is asked to identify the class for each type ice.

• A: Almost certain—Is expected to occur in most circumstances.
• B: Likely—Will probably occur in most circumstances.
• C: Possible—Might occur at some time.
• D: Unlikely—Could occur at some time.
• E: Rare—May occur only in exceptional circumstances

Considering the IEIP in Table 4 and the POI, the IRIP can be plotted on
a risk matrix (Figs. 9 and 10). As shown in Figs. 9 and 10, here five cat-
egories are defined for IEIP.
Likelihood
0-2

A: Almost certain – Is expected to occur in 
most circumstances

B: Likely – Will probably occur in most 
circumstances

Sleet

C: Possible – Might occur at some time

D: Unlikely – Could occur at some time

E: Rare – May occur only in exceptional 
circumstances

Fig. 10. Risk matrix for HLP. Red: extreme risk; dark yellow: very high risk; yellow
Thismatrix can beused by designers ormanagers to seewhether the
current design is acceptable orwhether somemitigationmethod should
be implemented to reduce the IRIP. For example, for HLP, although the
probability of sea spray icing is very low, it still provides a high risk for
evacuation, which is unacceptable.

6. Conclusion

Designing for performability is an effective way to meet the design
goal for a complex operational condition such as the Arctic region.
Designing for performability implies less environmental pollution, re-
duced material and energy requirements, waste minimization, and fi-
nally, conservation and efficient utilization of available resources,
which in turn results in minimum life cycle costs. Ice has significant ef-
fects on theperformability of equipment. Tomanage andminimize icing
effects on performability, it is necessary to study how,when, howmuch,
andwhich type of icewill be accumulated ondifferent items. Thereafter,
their effects should be quantified by an appropriate approach. This
paper has reviewed the effect of ice on performability elements and
then developed a concept for an Icing Risk Index for performability,
which can be used to quantify the effect of different types of ice on per-
formability.Moreover, it can be used to compare the different design so-
lutions regarding the effect of the icing. The result of the case study
shows that the performability of free-fall lifeboats is significantly affect-
ed by sea spray ice (IEIP=8), while sleet (IEIP=1.7) has theminimum
effect on its performability among the different types of ice. The same
results are obtained for helicopter landing pads, where sea spray ice
(IEIP = 9) has the maximum effect and sleet the minimum effect
(IEIP = 2). Furthermore, the IRIP of FFL shows that the risk of icing for
most types of icing (except frost and sleet for FFL and sleet for HLP) is
in an unacceptable zone at a high or very high risk level. Hence, an
IEIP
2-4 4-6 6-8 8-10

Frost Rime Snow 
Glaze

Sea spray 
icing

: high risk; dark green: moderate risk; green: low risk; gray: very low risk.
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effective de-icing or anti-icing solution should be considered; this can
vary for different types of icing.
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Abstract: The results of reliability analysis for heterogeneous data can differ substantially 

from those in a homogeneous case. Covariates can introduce observed and unobserved 

heterogeneity among data failures collected from specific equipment working at different 

locations under various operational and environmental conditions (e.g. operator skill, 

maintenance strategies, low temperature, etc.). In most reliability studies, observed 

heterogeneity due to observed covariates is discussed. However, unobserved heterogeneity 

for unobserved reasons, which may have a significant impact on reliability, is neglected. 

This can lead to erroneous model selection for the time to failure of the item, as well as 

wrong conclusions and decisions. A systematic approach, to model the unobserved covariate 

in the area of reliability analysis, is lacking. In this study, the required statistical tests and 

available models for observed and unobserved heterogeneity in the reliability analysis of 

failure data are reviewed; a methodology is then developed to facilitate the application of 

these models. The methodology is based on the mixed proportional hazards model and its 

extension, which provides an appropriate tool for modeling observed and unobserved 

heterogeneity under the different types of maintenance strategies. In the second part of the 

study, the application of the proposed methodology is shown by the investigation of 

observed and unobserved heterogeneity in the failure data of the chain part from three 

excavators in service at the Golgohar Sirjan Iron Mine in Iran. 

Keywords: Reliability, Observed Covariate, Unobserved Covariate, Gamma Frailty Models, Mixed 

Proportional Hazard 
 

1- Introduction  

In many reliability studies, data sets are assumed to be homogeneous, where the failure data are 

independent and identically distributed (1–3). However, in reality, they are often working at 

different locations under various operational and environmental conditions (e.g. operator skill, 

maintenance strategies, low temperature, etc.) (4). This may introduce heterogeneity into the 

data (5,6). In general, differences in failure intensity are called heterogeneities and can be due 

to either observed or unobserved influence risk factors, which are called covariates (7–9). 

Covariates describe the item’s characteristics or the environment in which the item operates 

(10), and they may have different levels. For example, as a covariate on the reliability of a 

pump, vibration may be of high, low or medium levels (11). Observed covariates may have 

different levels and effects, and they are recorded with the failure data. They can be time-

dependent or time-independent. Time-dependent observed covariates vary continuously with 

time. Unobserved covariates are independent variables that may have a significant impact on 

the failure time of equipment; however, they are not available in the failure database (12). 
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Unobserved covariates may lead to unobserved heterogeneity (11,13,14). For example, in a 

production process, some pumps may have a soft foot problem, due to a defect in the installation 

process. The soft foot problem will put the bearing in an over-stressed situation; this should be 

considered a covariate for reliability analysis. In the case that there is no information regarding 

soft foot in the failure database of the bearing, an unobserved covariate should be defined, to 

capture the effect of soft foot on the reliability of the bearing. In general, due to the quality of 

manufacturing, installation, operation and maintenance procedures, some items may become 

frailer, while others are more robust. In the presence of unobserved covariates, different items 

may have different levels of frailty. Unobserved covariates are typically unknown or not 

available for each item; hence, they cannot be explicitly included in the analysis. The result of 

our literature review revealed that, in many cases, unobserved covariates are eliminated during 

the failure data analysis (7,9,11,12,15). However, if unobserved covariates are neglected, the 

result of the reliability analysis only represents the reliability of items with an average level of 

frailty and not that of the individual items. High-risk items (high frailty) tend to fail earlier than 

low-risk items (low frailty) for unobserved reasons, and, thus, the population composition 

changes over time. Hence, in time, the analysis represents the item with low frailty, and the 

estimated reliability increases more with time than the reliability of a randomly selected item 

of the population (16,17). 

The Cox regression model family, such as the proportional hazards model (PHM) and its 

extension, is the dominant statistical approach for capturing the effect of covariates on the 

reliability performance of an item (4,11,15,18–22). In PHM, the hazard rate of an item is the 

product of a baseline hazard rate and a positive functional term that describes how the hazard 

rate changes as a function of covariates. However, the PHM is very sensitive to the omission of 

the covariates and is unable to isolate the effect of unobserved covariates (11). The frailty model 

introduced by Clayton (23) and Vaupel et al. (14) is used to describe the influence of unobserved 

covariates in a proportional hazards model. A frailty model is a random effects model for time 

variables, where the random effect (the frailty) has a multiplicative effect on the hazard (13,21). 

Gamma distribution, inverse Gaussian or exponential distribution can be used to model the 

frailty (4,12,13,24). 

Recently, some studies in the reliability field have used the frailty model to model the effect of 

missing covariates on the reliability of an item (4,7,22,25). However, a few of these are related 

to the application of a frailty model in reliability engineering with a focus on maintenance 

purposes. Asha et al. (26) incorporated the frailty model into load share systems and described 

the effect of observed and unobserved covariates on the reliability analysis. Xu and Li (27) 

obtained the stochastic properties of univariate frailty models, which are a special case of 

multivariate frailty models, and Misra et al.(28) used stochastic orders to compare frailty 

models arising from different choices of frailty distribution. Giorgio et al. (9) applied the model 

to a real set of failure time data of powertrain systems mounted on 33 buses, employed on urban 

and suburban routes in Italy. Slimacek and Lindqvist (29) implemented a frailty model and 

Poisson process to show unobserved covariates’ effect on the reliability of wind turbines. 

Finkelstein (30) studied the ability to survive a single shock and the intensity of these shocks 

in time on system reliability. He noted that heterogeneity is a natural feature in many 

populations, and the frailty model gives an appropriate tool and flexible way to describe 

lifetimes. 

However, these studies have not discussed how time-dependent covariates should be handled 

in the frailty model. Moreover, the required statistical tests for the investigation of observed 

and unobserved heterogeneity among the failure data are not discussed. The lack of both strong 

statistical knowledge among the analysts and systematic methodology are the main challenges 
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for the effective application of a frailty model. To overcome these challenges, the main 

contribution of this paper is to present a systematic methodology for failure data analysis in the 

presence of unobserved and observed covariates. Moreover, the paper has reviewed the 

different models and statistical tests which are needed for an effective analysis of observed and 

unobserved heterogeneity. This paper is organized as follows. In Section 2, the basic concept 

is presented. Section 3 describes the proposed methodology. Thereafter, the application of the 

methodology is illustrated in the reliability analysis of a mining excavator in Section 4. Finally, 

Section 5 provides the conclusions. 

2- Basic concept 

The Cox regression models for reliability analysis considering the effect of covariates can be 

categorized into two main families: i) the mixed proportional hazard model family and ii) the 

proportional hazard model family. In these models, the hazard rate of an item is the product of 

a baseline hazard rate and a positive functional term that describes how the hazard rate changes 

as a function of unobserved and observed covariates. The baseline hazard rate is assumed to be 

identical and equal to the total hazard rate, when the observed and unobserved covariates have 

no influence on the failure pattern (11). The family of mixed proportional hazard models is able 

to handle the effect of unobserved covariates. 

2-1- Mixed proportional hazard model (MPHM) family  

 In the mixed proportional hazards model, the baseline hazard acts multiplicatively on the i) 

observed covariate function 𝜓(𝑧; 𝜂) and ii) a time-independent frailty function 𝛼𝑗. Suppose we 

have a fleet of j items, the hazard function for an item at time t > 0 is: 

𝜆𝑗(𝑡; 𝑧; 𝛼) = 𝛼𝑗𝜆0(𝑡)𝜓(𝑧; 𝜂) 
(1) 

where 𝜆0(𝑡) is an arbitrary baseline hazard rate, dependent on time alone, z is a row vector 

consisting of the observed covariates associated with the item, 𝜂 is a column vector consisting 

of the regression parameters for identified observed covariates, and 𝛼𝑗 is a time-independent 

frailty function for item j and represents the cumulative effect of one or more unobserved 

covariates. The baseline hazard rate (𝜆0(𝑡)) may be either left unspecified or modeled using a 

specific parametric form such as Weibull distribution or Non-Homogeneous Poisson Process 

(NHPP). 

According to the mixed proportional hazards model, the fleet of items (the population) is 

represented as a mixture, in which the 𝜆0(𝑡) and 𝜓(𝑧; 𝜂) are common to all items, although each 

item has its own frailty. The observed and unobserved covariates can affect the hazard rate, so 

that the actual hazard rate (𝜆𝑗(𝑡; 𝑧; 𝛼)) is either greater (e.g. in the case of higher vibration level 

or poor maintenance) or less (e.g. better training for operators, installation of a new ventilation 

system) than the baseline hazard rate. Moreover, equipment with 𝛼𝑗 > 1 is frailer and may have 

decreased time to failure. The items for which 𝛼𝑗 < 1 are less frail and tend to be more reliable.  

Different functional forms of 𝜓(𝑧; 𝜂) and 𝛼𝑗 may be used to model the observed and unobserved 

covariate functions. For example, the exponential form 𝑒𝑥 𝑝(𝑧𝜂), the logistic form 𝑙𝑜𝑔(1 +

exp(𝑧𝜂)), the inverse linear form 1
(1 + 𝑧𝜂)⁄ , and the linear form (1 + 𝑧𝜂) are some of the 

functions used for observed covariate functions (11,31,32). Moreover, gamma, inverse 

Gaussian and exponential distributions are used to model the frailty function (21,33,34). 
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Generally, the exponential distribution for 𝜓(𝑧; 𝜂) and gamma distribution, with the mean equal 

to one and variance of θ, are the most used functions for observed and unobserved distributions, 

respectively. 

In Eq. (1), the assumption is that all covariates are time-independent. However, in reality, there 

are many cases where the covariates are time-dependent. It is of great practical importance to 

decide whether covariate effects are constant over time or their effects change (35). For 

example, a covariate that is used to represent crack growth may change over the operational 

time of the item. Such a covariate is time-dependent (11); hence, it should be modeled as a 

time-dependent covariate by using the crack propagation geometry. The hazard rate of an item 

in the presence of time-dependent covariates (𝑧(𝑡)) takes the following form (12):  

𝜆𝑗(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = 𝛼𝑗 . 𝜆0(𝑡)𝜓(𝑧, 𝑧(𝑡); 𝜂; 𝛿) 
 (2) 

where 𝑧(𝑡) is a row vector consisting of the observed time-dependent covariates associated with 

the item (e.g. ambient temperature, pressure on the failure time, etc.), 𝜂 and 𝛿 are the 

corresponding regression coefficients (i.e. the effect size) of time-dependent and time-

independent observed covariates. As Eq. (2) is an extension of Eq. (1) in this paper, Eq. (2) is 

named an extension mixed proportional hazards model (EMPHM).  

 Considering gamma distribution (with the mean to one and variance 𝜃) for unobserved 

covariates and exponential function for observed covariates, the reliability function can be 

written as (12):  

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡)) = [1 − 𝜃ln (𝑅𝑖(𝑡; 𝑧; 𝑧(𝑡))]−1/𝜃 
(3) 

where 𝑅𝑖(𝑡; 𝑧; 𝑧(𝑡)) is the item’s reliability function and considering the existence of p1 time-

independent observed covariates and p2 time-dependent observed covariates. It can be 

estimated by:  

𝑅𝑖(𝑡; 𝑧; 𝑧(𝑡)) = [𝑒𝑥𝑝 (− ∫ 𝜆0(𝑥)𝑒𝑥𝑝 [∑ 𝛿𝑠𝑗𝑧𝑠𝑗(𝑡)

𝑝2

𝑗=1

] 𝑑𝑥

𝑡

0

)]

exp[∑ 𝜂𝑠𝑖𝑧𝑠𝑖
𝑝1
𝑖=1 ]

 (4) 

If all the covariates are time-independent, Eq. (4) reduces to: 

𝑅𝑖(𝑡; 𝑧; 𝑧(𝑡)) = 𝑅0(𝑡)exp[∑ 𝜂𝑠𝑖𝑧𝑠𝑖
𝑝1
𝑖=1 ] (5) 

where 𝑅0(𝑡) is the baseline reliability function, and 𝜂𝑖 represents regression parameters for i 

time-independent covariates (𝑧𝑖). Thus, Eq. (3) can be written as: 

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = [1 − 𝜃ln (𝑅0(𝑡)exp[∑ 𝜂𝑠𝑖𝑧𝑠𝑖
𝑝1
𝑖=1 ]]

−1/𝜃

 (6) 

which is named the mixed proportional hazard model (MPHM). 

2-1-1- Shared frailty model  

In some cases, a group of items share the same frailty value (36). For example, consider a 

company where identified excavators are utilized in two different shifts: night and day. Here, 

the shift can be considered a shared frailty. A shared frailty is a group-specific latent random 

effect that multiplies into the hazard function and will generate dependence between those items 



 

60 

 

which share frailties (12). The distribution of the shared frailty is gamma, with mean 1 and 

variance to be estimated from the data. For data consisting of n groups, with the sth group 

comprised of ns items (s = 1,...,n), the shared frailty model can be written as: 

𝜆(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = 𝛼𝜆0𝑠(𝑡)exp [∑ 𝜂𝑠𝑖𝑧𝑠𝑖 + ∑ 𝛿𝑠𝑗𝑧𝑠𝑗(𝑡)

𝑝2

𝑗=1

𝑝1

𝑖=1

] 
(7) 

That is, for any member of the ith group, the standard hazard function is now multiplied by the 

shared frailty, αs. In the case that there are no time-dependent covariates, Eq. (7) will reduce to: 

𝜆(𝑡; 𝑧; 𝑧(𝑡); 𝛼) = 𝛼𝜆0𝑠(𝑡)exp [∑ 𝜂𝑠𝑖𝑧𝑠𝑖

𝑝1

𝑖=1

] 
(8) 

2-1-2- Stratification approach model 

In the case of the existence of time-dependent covariates (𝑧𝑗(𝑡)), the stratification approach can 

be used (15). In this approach, it is possible to classify a categorical or time-dependent covariate 

with several categories into different strata with different baseline hazards for each category. 

For example, in the case of modeling the effect of ambient temperature on the reliability of a 

pump which is installed outside, then the collected failure data can be categorized into four 

groups, based on the seasons (spring, summer, fall and winter). Figure 1 shows a graphical 

representation of this example, where i is the number of failures occurring within each stratum. 

tj,0 tj,1 tj,2 tj,i tj+1,0 tj+1,1 tj+1,2
tj+1,i

Stratum j Stratum j+1

 

Figure 1: A graphical representation of the strata for a data set 

In the stratification approach, the baseline hazard function differs for defined strata, but the 

regression coefficients are the same for all covariates. Hence, the hazard rate for the system in 

stratum r in the presence of unobserved covariates will be: 

𝜆𝑟(𝑡; 𝑧; 𝛼) = 𝛼𝑟 . 𝜆0𝑟(𝑡)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(9) 

where 𝜆0𝑟 is the baseline hazard for stratum r, and, if there is no unobserved covariate, then Eq. 

(9) will be reduced to:  

𝜆𝑟(𝑡; 𝑧) = 𝜆0𝑟(𝑡)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(10) 

2-2- Proportional hazard model family  

The main assumption in the proportional hazard model family is that all influence covariates 

are identified and there is no omission of covariates (no unobserved covariates). In the case of 



 

61 

 

there being no unobserved covariates’ effect on the hazard rate of the item, then, in Eq. (3), 

gamma distribution will be equal to 1, and the successive equation is: 

 
𝛼

1

𝜃
−1

𝑒
−

𝛼

𝜃

Г (
1

𝜃
) 𝜃

1

𝜃

= 1 
(11) 

and the hazard rate can be written as: 

𝜆(𝑡; 𝑧; 𝑧(𝑡)) = 𝜆0(𝑡)exp [∑ 𝜂𝑖𝑧𝑖 + ∑ 𝛿𝑗𝑧𝑗(𝑡)

𝑝2

𝑗=1

𝑝1

𝑖=1

] 
(12) 

In the literature, this model is mainly referred to as an extension of the proportional hazard 

model (EPHM) (15,37). Proportionality assumption implies that the effect of a covariate is 

independent of time and the ratio of any two hazard rates is constant with respect to time, i.e.: 

𝜆1(𝑡; 𝑧1; 𝛼)

𝜆2(𝑡; 𝑧2; 𝛼)
=

𝜆0(𝑡)exp (𝜂1𝑧1)

𝜆0(𝑡)exp (𝜂2𝑧2)
= exp(𝜂1𝑧1 − 𝜂2𝑧2) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(13) 

where 𝑧1and 𝑧2 are any two different sets of time-independent observed covariates assumed to 

be associated with the item. If there is no time-dependent covariate, then Eq.(14) will reduce to 

the PHM, as follows: 

𝜆(𝑡; 𝑧) = 𝜆0(𝑡)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(14) 

2-3- Parameter estimation 

For EMPHM, given the relationship between the hazard rate and the reliability functions, it can 

be shown that the conditional (item) reliability function, 𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼), conditional on the 

frailty 𝛼, is (12): 

𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼) = {𝑅(𝑡; 𝑧; 𝑧(𝑡))}𝛼 
 (15) 

The unconditional (population) reliability function can then be estimated by integrating out the 

unobserved 𝛼. If 𝛼 has probability density function g(α), then the population or unconditional 

reliability function is given by: 

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡)) = ∫ {𝑅(𝑡; 𝑧; 𝑧(𝑡))}𝛼𝑔(𝛼)𝑑𝛼
∞

0

 
(16) 

where we use the subscript θ to emphasize the dependence on the frailty variance θ. The 

relationship between the reliability function and the hazard function still holds unconditional 

on α, and, thus, we can obtain the population hazard function using (12): 

𝜆𝜃(𝑡; 𝑧; 𝑧(𝑡)) = −
𝑑

𝑑𝑡
𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡))[𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡))]−1 

(17) 

Having the gamma distribution with unobserved covariates (12): 
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𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡)) = [1 − 𝜃𝑙𝑛{𝑅(𝑡; 𝑧; 𝑧(𝑡))}]
−1

𝜃⁄  (18) 

Having the event times (𝑡0𝑖, 𝑡𝑖 , 𝑑𝑖) for 𝑖 = 1, , 𝑛 with the ith observation corresponding to the time 

span (𝑡
0𝑖

,  𝑡𝑖] , with either the failure occurring at time 𝑡𝑖 (𝑑𝑖 = 1) or the failure time being right-

censored at time 𝑡𝑖 (𝑑𝑖 = 0), the likelihood function for reliability data is given by:  

𝐿𝑛𝐿 = 𝑙𝑛 ∏
{𝑅𝜃𝑖(𝑡0𝑖 , 𝑧𝑖 , 𝑧𝑖(𝑡)}1−𝑑𝑖{𝑓𝜃𝑖(𝑡𝑖 , 𝑧𝑖 , 𝑧𝑖(𝑡)}𝑑𝑖

𝑅𝜃𝑖(𝑡𝑖 , 𝑧𝑖 , 𝑧𝑖(𝑡))

𝑛

𝑖=1

 
(19) 

where, fθi is the probability density function.  

In a shared frailty model for failure data of unrepairable units, suppose we have data for i = 

1,...,n groups, with j = 1,...,ni observations per group, consisting of the trivariate response (t0ij , 

tij , dij), which indicates the start time, end time, and failure/censoring for the jth item from the 

ith group, while the shared frailties follow a gamma distribution, Li can be expressed compactly 

as (12): 

𝐿𝑖 = [∏{𝜆𝑖𝑗(𝑡𝑖𝑗)}
𝑑𝑖𝑗

𝑛𝑖

𝑗=1

]
Γ(1

𝜃⁄ + 𝐷𝑖)

Γ(1
𝜃⁄ )

𝜃𝐷𝑖 {1 − 𝜃 ∑ 𝐿𝑛
𝑅𝑖𝑗(𝑡𝑖𝑗)

𝑅𝑖𝑗(𝑡0𝑖𝑗)

𝑛𝑖

𝑗=1

}

−1
𝜃⁄ +𝐷𝑖

 
(20) 

where 𝐷𝑖 = ∑ 𝑑𝑖𝑗
𝑛𝑖
𝑗=1 . Given the unconditional group likelihoods, we can estimate the regression 

parameters and frailty variance θ, by maximizing the overall log-likelihood 𝐿𝑛𝐿 = ∑ ln 𝐿𝑖
𝑛
𝑖=1 . In 

shared-frailty Cox models, the estimation consists of two steps. In the first step, the optimization 

is in terms of θ alone. For fixed θ, the second step consists of fitting a standard Cox model via 

penalized log-likelihood, with the νi introduced as estimable coefficients of dummy variables 

identifying the groups. The same approach can be used to estimate the likelihood functions for 

EPHM, MPHM and PHM. For more information, see (7,11,12). 

In a minimally repaired system (NHPP), the times between failures (TBF) are not independent 

and identically distributed random variables (except for the special case of constant failure 

intensity, that is, of homogeneous Poisson process), and the log-likelihood function relative to 

"m" minimally repaired systems, whose failure intensity is given by Eq. (2), results in (12): 

𝑙𝑛𝐿 = 𝑙𝑛 [∏ ∫ 𝑔(𝛼) (∏ 𝑓(𝑡𝑖,𝑗|𝑡𝑖−1,𝑗; 𝑧, 𝑧(𝑡), 𝛼)

𝑛𝑗

𝑖=1

)
𝑅(𝑇𝑗; 𝑧, 𝑧(𝑡), 𝛼)

𝑅 (𝑡𝑛𝑗,𝑗; 𝑧, 𝑧(𝑡), 𝛼)
𝑑𝛼 

𝑚

𝑗=1

] 
(21) 

where 𝑔(𝛼) denotes the probability density function (PDF) of the frailty parameter 𝛼, 𝑛𝑗 is the 

number of observed failures of the j-th system, 𝑡𝑖,𝑗(𝑖 = 1, … , 𝑛𝑗; 𝑗 = 1, … , 𝑚) is the i-th failure time 

of the j-th system observed up to 𝑇𝑗, 𝑡𝑜,𝑗 = 0. Conditional PDF of the failure time 𝑡𝑖,𝑗, present 

the previous failure time 𝑡𝑖−1,𝑗, as (12): 

𝑓𝑇(𝑡𝑖,𝑗|𝑡𝑖−1,𝑗; 𝑧, 𝑧(𝑡), 𝛼) = 𝛼𝜆0(𝑡𝑖,𝑗)𝜓(𝑧, 𝑧(𝑡); 𝜂; 𝛿)
𝑅(𝑡𝑖,𝑗; 𝑧, 𝑧(𝑡), 𝛼)

𝑅(𝑡𝑖−1,,𝑗; 𝑧, 𝑧(𝑡), 𝛼)
 

(22) 

The reliability function, 𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼), conditional on the frailty, 𝛼, is (12): 
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𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼) = [𝑒𝑥𝑝 (− ∫ 𝜆0(𝑡𝑖,𝑗)𝜓(𝑧, 𝑧(𝑡); 𝜂; 𝛿)𝑑𝑥

𝑡

0

)]

𝛼

 
 (23) 

The log-likelihood function, relative to "m" repairable systems subject to perfect repairs 

(renewal process), whose hazard function is given by Eq. (2), results in:  

𝑙𝑛𝐿 = 𝑙𝑛 [∏ ∫ 𝑔(𝛼) (∏ 𝑓(𝑡𝑖,𝑗|𝑡𝑖−1,𝑗; 𝑧, 𝑧(𝑡), 𝛼)

𝑛𝑗

𝑖=1

) 𝑅(𝑋𝑗; 𝑧, 𝑧(𝑋𝑗), 𝛼)𝑑𝛼

𝑚

𝑗=1

] 
(24) 

where, here, 𝑥𝑖,𝑗 = 𝑡𝑖,𝑗 − 𝑡𝑖−1,𝑗  (𝑖 = 1, … , 𝑛𝑗; 𝑗 = 1, … , 𝑚) is the i-th time between failures 

(TBF) of the j-th system, 𝑋𝑗 = 𝑇𝑗 − 𝑡𝑛𝑗,𝑗 , and the (unconditional) pdf of the TBF 𝑥𝑖,𝑗 is: 

𝑓𝑋(𝑥𝑖,𝑗; 𝑧, 𝑧(𝑡), 𝛼) = 𝛼𝜆0(𝑥𝑖𝑗)𝜓(𝑧, 𝑧(𝑥𝑖𝑗); 𝜂; 𝛿)𝑅(𝑥𝑖𝑗; 𝑧, 𝑧(𝑡), 𝛼) 
(25) 

Only in the absence of unobservable heterogeneity does the log-likelihood function in Eq. (24) 

reduce to the log-likelihood in Eq. (19). Indeed, in the presence of unobserved heterogeneity, 

the same value of the frailty variable 𝛼 characterizes the whole path of each repairable system, 

so that the whole conditional likelihood function 𝐿𝑗|𝛼 of each system "j", given 𝛼, must be 

multiplied by 𝑔(𝛼) and hence integrated on 𝛼. In addition, it must be mentioned that the log-

likelihood function in Eq. (24) becomes much more complex when the j-th system is observed 

to start from a generic time which is not a failure time. 

3- Proposed framework 

The systematic framework for reliability analysis in the presence of observed and unobserved 

covariates (or heterogeneity) is described in Figure 2. This methodology is based on four 

important steps: 

• Establishing the context and data collection 

• Identifying the baseline hazard rate, based on maintenance nature  

• Modeling the effect of the covariates  

• Parameter estimation 

As Figure 2 shows, in the first step, the context should be established. All external and internal 

parameters to be considered when analyzing failure data and setting the scope and assumptions 

for the reliability analysis should also be defined. External context is the external environment 

in which the item will be working, such as ambient temperature, pressure, humidity, etc. 

Internal context is the internal conditions related to the item itself and the company’s running 

and maintenance of the item, including the repair and physics of failure, operator condition, 

maintenance crew, etc. Understanding the external and internal contexts is important, in order 

to identify the observed covariates. For example, based on the physics of failure, road condition 

can contribute to the failure of an excavator in a mine; hence, it should be considered a covariate 

in the reliability analysis of the excavator. In this step, the possible relationships between 

different covariates should be investigated, as well as the stratum for each of them. 

In the next step, failure data and all possible observed covariates associated with each failure 

should be collected. 
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Parameter estimation 

Establishing the context 

• Setting the scope 
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• Establishing external parameters 
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• etc. 

Identifying the baeline hazard rate based on the repair assumption 

• Renewable process, classical distribution (e.g. Weibull , lognormal, 

etc.)

• NHPP, HPP

• Etc.

Modeling the effect of the covariates 

Heterogeneity test for 

unobserved covariates 

 

Figure 2: A framework for reliability model selection in the presence of observed and unobserved 

covariates 

Thereafter, based on the nature of the failure data (e.g. trend behavior of the data) and the type 

of repair strategy, the appropriate baseline hazard should be selected for the data. For example, 

the common assumption for a repairable system can be i) perfect repair or good-as-new 

condition, ii) minimal repair or bad-as-old condition, or iii) jumps in the hazard rate after repair 

or different baseline hazard rate. Under the perfect repair strategy, the item is restored to as 
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‘good-as-new’ condition, and the main assumption is that the hazard rate is reset to that of a 

new system after maintenance. If the times between failures are independent and identically 

distributed (iid), it can be concluded that the item underwent perfect repair (21). In such cases, 

classical distribution, such as Weibull distribution, can be used to model the baseline hazard 

rate. 

In the case of minimal repair (bad-as-old), an item has the same intensity function after repair 

as before the failure. The failure times when minimal repair is carried out can be thought of as 

a non-homogeneous Poisson process (NHPP). In other words, the baseline hazard rate will be 

modeled using a non-homogeneous Poisson model. However, it should be mentioned that, on 

some occasions, such as overhaul, the system may return to as ‘good-as-new’ condition. Under 

this condition, it is assumed that the NHPP is cyclic, with each cycle starting as a renewal 

process and, within the cycle, failure times follow the NHPP. In this case, the failure data will 

then be categorized by these occasions (for example, overhaul), and then a stratification 

approach is used to estimate the effect of each covariate, while the baseline hazard rate is 

modeled by an NHPP model. However, when a fleet of items is analyzed, after some time and 

undergoing several repairs, the baseline hazard rate will change. For example, in some cases, 

as the number of failures increases, the average failure time decreases; hence, the baseline 

hazard rate will not be identical for a particular failure number. Here, the failure data can be 

categorized based on the failure number; it can be used to define strata, and then the 

stratification approach can be used to model the fleet failure data. 

In general, the first step in analyzing the collected failure data of a repairable system is to check 

the trend of the failure data. In the case of the data showing a trend, the NHPP or trend renewal 

process (TRP) can be used to model the baseline hazard rate. However, when there is no trend 

in the data, classical distribution, such as Weibull distribution, can be used to model the baseline 

hazard rate. However, some goodness-of-fit test, such as residual testing, should be used to find 

the best fit distribution for failure data. For more information regarding the trend test, see (7).  

In the next step, the time dependency of observed covariates should be checked. Later, the 

failure data need to be investigated for unobserved covariates. Data sets without unobserved 

heterogeneity will be analyzed using the classical proportional hazards model, including the 

proportional hazards model (when all observed covariates are time-independent) and the 

extension of the proportional hazards model (in the presence of time-dependent covariates). 

Moreover, data sets with unobserved heterogeneity will be analyzed using the mixed 

proportional hazards model family. Also, the parameters of models could be estimated by 

different likelihoods for repairable and unrepairable systems (Eqs. (21) and (23)). 

3-1- Time-dependency test of observed covariates 

There are two general approaches for checking the time dependency of covariates: i) the 

graphical procedure and ii) the goodness-of-fit testing procedure (15). The developed graphical 

procedure can generally be categorized into three main groups: i) cumulative hazards plots, ii) 

average hazards plots and iii) residual plots (11). For example, in cumulative hazards plots, the 

data will be categorized according to the different level of the covariate that is to be checked 

for time dependency. Consider that a covariate can be categorized into r levels, in which the 

covariate is equal to zr. Thereafter, the hazard rate can be written as: 



 

66 

 

𝜆𝑟(𝑡; 𝑧; 𝛼) = 𝛼𝑠. 𝜆0𝑟(𝑡)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(26) 

where 𝜂𝑖𝑧𝑖 is the same as before, with 𝜂𝑟𝑧𝑟 omitted, with i=1,2,…p1 and j≠r. If the PH assumption 

is justified, then we will end up with: 

𝜆0𝑟(𝑡) = 𝐶𝑟𝜆0(𝑡), 𝑎𝑛𝑑 𝐶𝑟 = 𝛼𝑠exp (𝜂𝑟𝑧𝑟) 
(27) 

A similar relation can be concluded for the cumulative baseline hazard rate. Hence, if the 

assumption of PH is justified, then the plots of the logarithm of the estimated cumulative 

baseline hazard rates against time for defined categories should simply be shifted by an additive 

constant, 𝜂
𝑟
. In other words, they should be approximately parallel and separated, corresponding 

to the different values of the covariates. Departure from parallelism of the above plots for 

different categories may suggest that 𝑧𝑟  is a time-dependent covariate. For a review of other 

graphical approaches, see (11,15,38–40).  

In the same way as the cumulative baseline hazard rate, a log–log Kaplan-Meier curve over 

different (combinations of) categories of variables can be used to check the assumption of PH. 

A log–log reliability curve is simply a transformation of an estimated reliability curve that 

results from taking the natural log of an estimated reliability probability twice. If we use a PHM 

or MPHM and plot the estimated log–log reliability curves for defined categories on the same 

graph, the two plots would be approximately parallel (11). In the residuals plot in the first step, 

the residual should be estimated by using the estimated values of the cumulative hazard rate, 

𝐻0(𝑡𝑖), and the regression vector 𝜂 as: 

𝑒𝑖 = −𝐻0(𝑡𝑖)exp (𝜂𝑟𝑧𝑟) 
(28) 

If the PH assumption is justified, then the logarithm of the estimated reliability function of 𝑒𝑖 

against the residuals should lie approximately on a straight line with slope -1 (11,41). A 

transformed plot of the partial residual suggested by Schoenfeld can also be used as an 

exploratory tool to detect the time-varying effects of a covariate, even when the a priori form 

of time dependence is unknown (42–44). The Schoenfeld Residuals Test is analogous with 

testing whether the slope of the scaled residuals on time is zero or not. If the slope is not zero 

then the proportional hazard assumption has been violated (44). When the covariates are 

quantitative, using graphical approaches is challenging, as it is difficult both to define different 

levels for quantitative covariates and to decide whether the plots are parallel or not. In such 

cases, it is better to use a goodness-of-fit testing procedure, such as the chi-squared goodness-

of-fit test (3,45,46), the log rank test (3,45), the likelihood ratio test (3,45), score tests (45,47), 

the doubly cumulative hazard function (48), the Wilcoxon test (49) and generalized moments 

specification tests (50). For example, if the PH assumption is justified, the different two-sample 

tests, e.g. generalized Wilcoxon and log rank tests, should have the same results (11).  

3-2- Heterogeneity test for unobserved covariates 

Several statistical tests are available in the literature for identifying and quantifying the effects 

of unobserved heterogeneity. For example, Kimber (51) developed a Weibull-based score test 

for heterogeneity and then demonstrated its application in two case studies on infant nutrition. 

Under the assumption that the data follow a stratified proportional hazards model, where the 

hazard rate can differ within different strata, Gray (52) used the martingale residuals to test for 

variation over groups in reliability data. Commenges and Andersen (53) used marginal partial 

likelihood to develop a score test of homogeneity for reliability data, when the frailty model is 



 

67 

 

used to model the covariates. The score test is valid for general distributions of the frailty 

variable, not only for the frequently used gamma distribution. In the meta-analysis, Cochran’s 

Q test (Q test) is normally used to check the homogeneity among data sets. However, the Q test 

only checks the presence versus the absence of heterogeneity; it does not report on the extent 

of such heterogeneity. However, these statistical tests and their applications are limited, mainly 

due to their requirements, in terms of data and assumptions. Each test is the optimum one for 

detecting the heterogeneity of a specific form (54,55). For example, a shortcoming of the Q 

statistic is that it has poor power to detect true heterogeneity, among studies when the meta-

analysis includes a small number of studies, and excessive power to detect negligible variability 

with a high number of studies. Recently, the I2 index has been proposed to quantify the degree 

of heterogeneity in a meta-analysis (56). The likelihood ratio test, the Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC) are common tests for checking the 

hypothesis of the presence of heterogeneity against the null hypothesis of non-heterogeneity 

(𝜃̂ = 0). In general, the AIC performs well when heterogeneity is small, but, if heterogeneity is 

large, the BIC will often perform better (7,10,57). For example, in the case of Weibull 

distribution for the baseline hazard rate, likelihood ratio can be written as:  

𝑅𝐻 = 2 (ln 𝐿(𝜆̂, 𝛽̂, 𝜂̂, 𝜃̂) − 𝑙𝑛𝐿(𝜆̂0, 𝛽̂0, 𝜂̂0, 0 )) 
(29) 

Here, 𝜆̂ and 𝛽̂ are estimated parameters for Weibull distribution, 𝜂̂ is the regression coefficient 

for observed covariates, and 𝜃̂ can be interpreted as the degree of heterogeneity (7). These 

parameters can be estimated by maximizing the full likelihood function. On a 5% significance 

level, the null hypothesis (no heterogeneity) will be rejected if 𝑅 ≥ 2.706. Moreover, under the 

minimal repair strategy, a power law can be used to represent the intensity function. Under the 

assumption of the power law intensity function, in order to check whether a significant amount 

of heterogeneity among units exists, a three-step likelihood ratio test procedure can be 

performed (7). As the first step, the null hypothesis, say 𝐻0: 𝜆1 = 𝜆2, 𝜆𝑚  = 𝜆0 , 𝛽1 = 𝛽2, 

𝛽𝑚  = 𝛽0 , should be tested against the alternative hypothesis,  𝐻1: 𝜆1 ≠ 𝜆2, 𝜆𝑚  ≠ 𝜆0 , 𝛽1 ≠ 

𝛽2, 𝛽𝑚  ≠ 𝛽0. In the second step, common λ  and uncommon β and third steps, uncommon λ, 

common β should be carried out (9).  

4- Mixed proportional hazards modeling of unrepairable systems: Case study 

As one of the most important machines in the mine, the excavator needs to have a strong 

undercarriage and chain to provide excellent reliability and durability while working on rocky 

ground or blasted rock. Thus, the case study refers to chain failure data of three Caterpillar 

390DL excavators in service in the Golgohar Sirjan Iron Mine in Iran over two years. This mine 

is located in the southwest of Kerman Province, Iran, and it contains six ore bodies, named 1, 

2, 3, 4, 5 and 6, spread over an area of 40 km2. The main design characteristics (weight, size, 

maximum capacity, etc.) of the excavators are identical. The number of observed failures of the 

excavators, 𝑛𝑖, ranges from 24 to 51 to a total of  𝑛𝑇= ∑ 𝑛𝑖 = 1034
𝑖 .  

We used trend tests and serial correlation tests to check the independent assumption and 

identically distributed (iid) assumption in the collected data. The serial correlation tests were 

performed by T-test (TSTA) and Ljung-Box-Q (LBQ) statistics (58). Trends were assessed by 

three analytical tests: MIL-Hdbk-189 (MIL), Laplace and Anderson-Darling (A-D) (59). The 

results of the trend and correlation tests for each Excavator machine are presented in Table 1. 

Thus, the result for all excavators show that the data were independent and identically 

distributed. Hence, the classical distribution can be used to model the baseline hazard rate. 



 

68 

 

Table 1- Trend and serial correlation tests of each system 

System 
Trend Tests Serial correlation tests 

Subject MIL Laplace A-D TSTA LBQ 

Excavator 1 

Test Statistic 13.74 4.64 13.29 

0.86 0.82 P-Value 0 0 0 

DF 50 

 

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) can be used 

to find the best-fit distribution for the baseline hazard rate (60). The distribution candidate with 

the smallest AIC and BIC values is the best-fit distribution to model the baseline hazard rate. 

According to the framework in Figure 2, in addition to failure data (TBF), all associated 

observed covariates should be collected. To this aim, the observed covariates should be 

identified. Table 2 shows the selected observed covariates. As the table shows, five observed 

covariates are identified which may affect the reliability of the excavators. The numbers in the 

brackets in Table 2 are used to nominate (formulate) the covariates. 

Table 2: The identified observed covariates for the excavators 

Covariate Covariate level Covariate Covariate level 

Working shift (zs) 

Morning shift [3] 

Excavator code (ze)  

Machine No. 1 [1] 

Afternoon shift [2] Machine No. 2 [2] 

Night shift [1] Machine No. 3 [3] 

Machine movement (zm)  

Small [<=3 m] 
Rock type (zr)  

West [1] 

Medium [3-13 m] Ore [2] 

Large [13 m <] 
Precipitation (zp) Continuous covariate 

Temperature (zt) Continuous covariate 

 

According to the framework in Figure 2, after collecting the data on failures and observed 

covariates, the time dependency of the covariate should be checked. Here, the graphical 

approach (a ln–ln reliability curve) is used to check the time dependency of all the covariates. 

Figure 3 shows the –ln (-ln reliability) against the ln (analysis time) for an observed covariate: 

namely, Machine movement (zm). As this graph shows, the curves are approximately parallel; 

hence, the assumption of proportionality is correct for the data sets, and it can be concluded that 

the covariates are time-independent. The –ln (-ln reliability) for other covariates confirms the 

same result.  
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Figure 3: The log minus log graph for time between failures of the excavators, based on movement 

covariate 

An analytical test was used to check the PH assumption in this study. Harrell and Lee’s (1986) 

test is a variation of a test originally proposed by Shenfield (1982) and is based on the residuals 

(61). The PH testing approach is attractive because it provides a test statistic and p-value 

(P(PH)) for checking the PH assumption for a given predictor of interest. Thus, a more objective 

decision is provided by a statistical test rather than a graphical approach. The P(PH) is used for 

evaluating the PH assumption for that variable. Table 3 shows the statistics of the PH test for 

all covariates. The P(PH) values for α=0.05 are quite high for all variables satisfying the PH 

assumption. 

Table 3: Analytical test approach results for PH assumption 

Covariates  ρ χ2 Df. P(PH) 

𝐳𝐬 -0.05595 0.3 1 0.5842 

𝐳𝐭 -0.05343 0.25 1 0.6182 

𝐳𝐩 0.00836 0 1 0.95 

𝐳𝐫 -0.10143 1.14 1 0.286 

𝐳𝐦 0.01796 0.03 1 0.8742 

𝐳𝐞 -0.00187 0 1 0.9852 

 

In the next step of the framework, the presence of unobserved covariates (heterogeneity test) 

should be checked. For this, the best-fit distribution for the baseline hazard rate needs to be 

identified. The AIC and BIC procedures are applied to select the best-fit distribution for the 

baseline hazard rate, as well as to check the heterogeneity of data. Table 4 shows the values of 

the AIC and BIC for the different nominated distributions for the baseline hazard rate with the 

same covariates under two assumptions: i) with frailty and ii) without frailty. As the result in 

Table 4 shows, the Weibull MPHM is the most suitable model for the data, as it has the smallest 

AIC or BIC among all the models. Therefore, the model with unobserved heterogeneity can 

give a better estimation of the reliability of the excavators. 

Moreover, we used the ratio test to also check the unobserved heterogeneity in unrepairable 

parts. Under the assumption of Weibull MPHM, while i) the gamma distribution represents the 

frailty model (with mean equal to one and variance equal to 𝜃) and ii) there are no time-

dependent covariates, the hazard rate can be written as: 
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𝜆(𝑡; 𝑧; 𝑧(𝑡); 𝛼) =
𝛼

1
𝜃

−1𝑒−
𝛼
𝜃

Г(
1
𝜃

)𝜃
1
𝜃

. (𝑚𝑡𝑚−1)exp [∑ 𝜂𝑖𝑧𝑖

𝑝1

𝑖=1

] 
(30) 

Table 4: Goodness of fit of different reliability models 

Model Observations d.f. AIC BIC Log likelihood 

With frailty 

Exponential MPHM 103 8 315.1397 336.2175 -149.570 

Weibull MPHM 103 9 306.9757 330.6882 -144.488 

Gompertz MPHM 103 9 311.9349 335.6475 -146.968 

Without frailty 

Exponential PHM 103 7 313.3724 331.8155 -149.686 

Weibull PHM 103 8 314.8206 335.8984 -149.410 

Gompertz PHM 103 8 309.9349 331.0128 -146.968 

 

For this, likelihood ratio tests were performed, as below: 

𝑅𝐻 = 2 ((ln 𝐿(𝜆̂, 𝛽̂, 𝜂̂, 𝜃̂) − 𝑙𝑛𝐿(𝜆̂0, 𝛽̂0, 𝜂̂0, 0 ))) = 9.84  
(31) 

The p-value for RH=9.84 will be equal to 0.001, which hints at the existence of an unobserved 

covariate’s (unobserved heterogeneity) effect on the reliability of the excavators. Hence, the 

Weibull MPHM should be used to analyze the data. Software is available, which can estimate 

the parameters in MPHM, such as Stata, R and SAS. Table 5 and Table 6 show the results of 

the analysis in Stata.  

Table 5: The result of covariates’ effect analysis under the assumption of MPHM 

Covariate Coef. Std. Error Z P>|Z| [95% Conf. Interval] 

zs 0.094 0.287 0.330 0.744 -0.469 0.656 

zt 0.018 0.028 0.630 0.528 -0.037 0.072 

zp -2.615 9.615 -0.270 0.786 -21.460 16.230 

zr 0.547 0.456 1.200 0.230 -0.347 1.441 

zm -3.274 0.744 -4.400 0.000 -4.732 -1.816 

ze 0.927 0.339 2.730 0.006 0.262 1.592 

 

Table 6: The constant value, baseline and unobserved parameters estimation of MPHM 

Parameters Coef. Std. Error [95% Conf. Interval] 

Constant value -5.709 1.896 -9.425 -1.994 

Baseline Weibull ancillary parameter (m) 1.940 0.403 1.291 2.913 

Variance of gamma distribution (θ) 1.576 0.714 0.649 3.829 

 

The result of the analysis in Table 7 shows that the constant value is -5.709, and Machine 

movement (𝑧𝑚) and Excavator code (𝑧𝑒) have a significant effect on the excavators’ reliability. 

Based on Eq. (18), the unconditional reliability of Weibull MPHM can be written as:  
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𝑅𝜃(𝑡; 𝑧) = [1 − 𝜃𝑙𝑛 (e(−(𝑡𝑚)(exp[Constant value+∑ 𝜂𝑖𝑧𝑖
𝑝1
𝑖=1 ] )) )]

−1
𝜃⁄

 (32) 

Having the regression coefficient for covariates, the unconditional reliability of the excavators 

will be equal to: 

𝑅𝜃(𝑡; 𝑧) = [1 − 1.576𝑙𝑛 (e
(−(𝑡1.94)(exp(−5.709−3.274zm+0.937ze) ))

 )]

−1
1.576⁄

 (33) 

 
 

Figure 4 shows the unconditional and conditional hazard functions of the excavators. Figure 

5(a) is the population hazard function, where the curve is unconditional on the frailty and is 

"averaged" over the frailty distribution, while Figure 5(b) is the individual hazard function, 

which is conditional on a frailty value of one (𝛼𝑗 = 1 in Eq. (1)). As Figure 5 shows, there is 

a big difference between the hazard rate of the excavators’ population and that of an individual 

excavator.  

 

  (a) (b) 
Figure 4: a) The unconditional (population) hazard function of the excavators on the mean of 

covariate, b) the excavator conditional (individual) hazard function on the mean of covariate 

 

In the next step, in order to compare how much bias will be associated with analysis if the effect 

of unobserved covariates is ignored, analysis is performed on the assumption that there are no 

effects of unobserved covariates. The result of analysis, using Gompertz-PHM as the selected 

model, is shown in Table 7 and Table 8. 

Table 7: The result of covariates’ effect analysis under the assumption of Gompertz-PHM 

Covariates Coef. Std. Error z P>|z| [95% Conf. Interval] 

𝐳𝐬 -0.125 0.136 -0.920 0.359 -0.392 0.142 

𝐳𝐭 0.009 0.014 0.620 0.536 -0.019 0.037 

𝐳𝐩 0.884 4.008 0.220 0.825 -6.971 8.739 

𝐳𝐫 0.269 0.252 1.070 0.285 -0.224 0.762 

𝐳𝐦 -1.606 0.172 -9.320 0.000 -1.943 -1.268 
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𝐳𝐞 0.365 0.149 2.450 0.014 0.073 0.657 

 

Table 8: The constant value, baseline and unobserved parameters’ estimation of Gompertz-PHM 

Parameters Coef. Std. Error [95% Conf. Interval] 

Constant value -2.844 0.728 -4.271 -1.416 

Baseline Gompertz ancillary parameter (γ) -0.001 0.000 -0.001 0.000 

 

The results of the analysis under the assumption of Gompertz-PHM showed that Machine 

movement (𝑧𝑚) and Excavator code (𝑧𝑒) have a significant effect on the excavators’ reliability. 
Having the regression coefficient for covariates, the reliability of the excavators will be equal 

to: 

𝑅(𝑡; 𝑧) = e
((

𝑒−0.001𝑡−1
0.001

)(exp (−2.884−1.606zm+0.365ze)))

 (34) 

As can be seen in Table 10, the regression coefficients of the observed covariates that have a 

significant effect on the hazard rate have different estimations in PHM than in MPHM. 

 

Table 9: The difference between the effect of each covariate in PHM and MPHM 

Covariates 
Exp (coef.) 

Differences 
MPHM PHM 

zm 0.038 0.201 81% Overestimate 

ze 2.527 1.440 -43% Underestimate 

 

Figure 5 compares the excavators’ hazard and cumulative hazard rates in both models. As 

shown, after approximately 300 hours, different hazard rates are obtained, which hints that the 

unobserved covariates have a significant effect on the hazard rates of excavators; ignoring this 

factor may mislead a further decision on the operation and maintenance strategy.  

  

(a) (b) 
Figure 5: Comparison of the a) hazard function and b) cumulative hazard function under the Weibull- 

MPHM and Gompertz-PHM 
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5- Conclusion 

The results of reliability analysis for heterogeneous data can differ substantially from those in 

a homogeneous case. In most cases, failing to account for heterogeneity would lead to 

significant differences in the estimation of the effects of covariates. Our recommendation is that 

all data sets should be checked for unobserved heterogeneity, using an appropriate statistical 

test. In the first step of the analysis of data sets with observed and unobserved heterogeneity, a 

time-dependency test of the observed covariates needs to be performed. Thereafter, the presence 

of unobserved covariates should be checked, using an appropriate statistical test. Finally, 

considering the type of repair strategy carried out on the item, the most appropriate model 

among the mixed proportional hazards model family should be selected. In our case study, the 

large variability in failure data and the differences in failure intensity of the excavators indicate 

heterogeneity among the collected data, which can be explained by observed and unobserved 

covariates. An analytical approach was used to check the trend and correlation of failure data. 

The result showed no trend and correlation among the data which could justify the iid 

assumption. Hence, the renewal process can represent the baseline hazard of excavators. The 

result of time-dependency and heterogeitysho tests (ratio test) indicated that all identified 

observed covariates are time-independent, and that there is an unobserved heterogeneity among 

the failure data. This means that some other factors, which were not included in this study, 

might have an effect on the excavators’ reliability. Therefore, we need to further explore and 

model the effect of the unobserved factors, to enhance the accuracy of the estimation. Having 

these results and the developed framework (Figure 2), the mixed proportional hazards model 

(MPHM) was used to analyze the data. The result of analysis showed that two of the identified 

observed covariates have a significant effect on the hazard rate of the excavators. Ignoring the 

effect of unobserved covariates, and using PHM instead of MPHM, will underestimate the 

effect of Excavator type by 43 percent and overestimate the effect of Machine movement by 81 

percent. Moreover, under the assumption of PHM, the baseline differs when MPHM is used to 

model the failure data. Thus, the failure rates of these models are completely different. Hence, 

for any decisions on the operation and maintenance strategy, the effect of unobserved covariates 

should be considered. 
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Abstract Knowing the maintainability of a component or

a system means that repair resource allocations, such as

spare part procurement and maintenance training, can be

planned and optimized more effectively. Repair data are

often collected from multiple and distributed units in dif-

ferent operational conditions, which can introduce hetero-

geneity into the data. Part of such heterogeneity can be

explained and isolated by the observable covariates, whose

values and the way that they can affect the item’s main-

tainability are known. However, some factors which may

affect maintainability are typically unknown (unobserved

covariates), leading to unobserved heterogeneity. Never-

theless, many researchers have ignored the effect of

observed and un-observed covariates, and this may lead to

erroneous model selection, as well as wrong conclusions

and decisions. Moreover, many authors have simplified

their analysis by considering a complex system as a single

item. In these studies, the assumption is that all repair data

represent an identical repair process for the item. In prac-

tice, mechanical systems are composed of multiple parts,

with various failure mechanisms, which need different

repair processes (repair modes) to return to the operational

phase; classical distribution, such as lognormal, which is

only a function of time, may not be able to model such

complexity. The paper utilizes the mixture frailty model

(MFM) in the presence of some specific observed or

unobserved covariates to predict maintainability more

precisely. MFMs can model the effect of observed and

unobserved covariates, as well as identifying different

repair processes in the repair dataset. The application of the

proposed model is demonstrated by a case study.

Keywords Mixture Weibull � Failure model � Repair

process � Covariates � Repair time � Maintainability � Frailty

model

1 Introduction

In today’s society, we are strongly dependent on the opti-

mal functioning of complex technical systems, such as

communication networks, railways, power plant control

systems, aircraft, mining, the oil and gas industry, etc. As

these systems fail, they should be repaired as soon as

possible in a safe manner, to reduce the consequences of

the failure, including production loss, safety and health

effects. To achieve such a goal, the system should be

designed for maintainability.

Maintainability is a design factor that decides the degree

to which a product allows safe, quick and easy replacement

of its component parts. Design for maintainability refers to

designing the system to find the optimum balance between

capital cost and ongoing maintenance cost (Barabadi et al.

2010; Tortorella 2015; Tsarouhas 2015; Garmabaki et al.

2016a; Gharahasanlou et al. 2017; Kumar et al. 2017;

Aggarwal et al. 2017). Design for maintainability needs to

consider human ergonomics, logistics management, design

layout, the level of experience and training of maintenance
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personnel and so on (Knezevic 1993; Naseri and Barabady

2016). Ease of access, standardization of equipment—both

internally and between companies—skill levels to maintain

equipment, organization culture, service delivery infras-

tructure, etc. are some of the main elements of maintain-

ability. Maintainability performance is defined as ‘‘the

ability of an item under given conditions of use, to be

retained in, or restored to, a state in which it can perform a

required function, when maintenance is performed under

given conditions and using stated procedures and resour-

ces’’ (Rausand and Høyland 2004). ‘Item’ here refers to a

system, component, or subsystem (Barabadi and Markeset

2011; Furuly et al. 2013). Existing studies regarding the

maintainability analysis of historical data have ignored the

effect of observed and unobserved covariates (risk factors).

Moreover, many authors have simplified their analysis by

considering a complex system as a single item, then

modeling the repair data using a classical distribution,

mostly lognormal (Tsarouhas et al. 2009; Hoseinie et al.

2011; Tsarouhas and Arvanitoyannis 2012; Wang 2014;

Sellitto and Brusius Jr. 2017; Tsarouhas 2018). However,

the relationship between the elements of maintainability is

complex and mediated by many influence factors such as

ambient temperature, human factors, and dissimilarity in

personality or skill level between maintenance crews, etc.

As a main part of maintainability, logistics and spare parts

constitute a complex activity that is time- and location-

dependent (Wijaya and Lundberg 2012; Ahmadzadeh and

Lundberg 2014; Barabadi et al. 2015, 2016; Gudmestad

and Markeset 2015; Ayele et al. 2016). Hence, a single

distribution, such as lognormal, which is only a function of

time, is not able to capture such complexities.

Recently, some attempts have been made to relate

maintainability to both historical repair data and opera-

tional conditions as observed covariates. Gao et al. (2010)

developed the proportional repair model (PRM), based on

the proportional hazard model (PHM), which is the most

widely used in reliability analysis, when considering the

effect of operational conditions (Kumar and Klefsjö 1994;

Rosen and Tanner 1999; Gao et al. 2010; Van Horenbeek

et al. 2010; Barabadi et al. 2011). An important alternative

to the PHM is the accelerated failure time model (AFT).

The AFT model accounts for the effects of the covariates

directly on survival times, instead of the hazard rate as in

the PHM (Patel et al. 2006; Barabadi et al. 2011; Garma-

baki et al. 2016c; Ayele et al. 2018).

The PRM is a product of the baseline repair rate and a

functional term incorporating the effects of time-indepen-

dent observed covariates. PRMs are only able to model the

effect of time-independent observed covariates. In the case

of time-dependent covariates, the assumption of propor-

tionality is violated, and the PRM cannot be built. To deal

with non-proportionality, Barabadi and Markeset (2011)

used a stratification approach to model the effect of time-

independent covariates. In the stratification approach, the

data are categorized based on different levels of time-de-

pendent observed covariates. However, their studies did not

consider the effect of unobserved covariates. Unobserved

covariates are covariates whose effects on the repair pro-

cess are typically unknown or whose associated levels

during repair time are not available in the repair database

(Gimenez et al. 2018). Ignoring the effect of observed and

unobserved covariates would lead to significant differences

in the estimation of the effects of covariates (Vaupel et al.

1979; Kumar and Klefsjö 1994; Hougaard 1995; Ayele

et al. 2016). Observed and unobserved covariates result in

observed or unobserved heterogeneity among repair data

(Asfaw and Lindqvist 2015). A systematic literature review

revealed no articles dealing with the modeling of unob-

served covariate effect on the maintainability of items.

Moreover, in these studies, the assumption is that all

repair data represent an identical repair process for the

item. In reality, mechanical systems are composed of

multiple parts, with various failure mechanisms, which

need different repair processes (repair modes) to return

them to the operational phase. For instance, a gearbox

failure may result from individual failures in the gears,

bearings, or shafts and include fatigue cracks, teeth

breakage, wear, etc. These failure modes may have com-

pletely different repair processes and resources. In most of

the available databases, the repair data are mixed together

under the title, ‘‘Repair data for gearbox’’ (Barabadi et al.

2015; Gharahasanlou et al. 2017). In dealing with such

datasets, as mentioned, analysts simplify their analysis by

considering such complex datasets as homogeneous, with

repair data being represented by an identical repair process.

These studies have viewed the historical data as a black

box, with no information regarding the repair process and

its operational conditions.

According to the discussion, two issues should be con-

sidered when modeling the maintainability of an item:

(1) The selected model should be able to capture the

effect of observed and unobserved covariates on the

time of the maintenance, and

(2) As in many cases the repair data are a mix of

different repair processes (repair modes), the applied

model should be able to isolate different repair

modes.

When each repair process is regarded as an independent

repair mode with a repair distribution in the presence of

some specific observed or un-observed risk factors, then a

mixture frailty model (MFM) can be separately constructed

to effectively predict maintainability.

An MFM is an extension of the PRM, where unobserved

and observed covariates have a multiplicative effect on the
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repair rate. In MFM, the repair rate of an item is the pro-

duct of a baseline hazard rate multiplied by two positive

functions: an observed and an unobserved covariate func-

tion (frailty function). In addition, the MFM has the ability

to model different repair modes. The frailty term was

introduced by Clayton et al. (1978) and Vaupel et al.

(1979) in survival analysis in medical science, based on the

PHM. Several researchers later used the frailty concept to

model the effect of unobserved covariates on the reliability

of an item, to describe the influence of unobserved

covariates. For example, Slimacek and Lindqvist (2016)

used frailty to model the effect of unobservable differences

between turbines, as unobserved covariates, on the relia-

bility of wind turbines, using a Poisson process. Giorgio

et al. (2014) modeled the failure pattern of a powertrain

system in the presence of observed and unobserved

heterogeneity, via a joint probability distribution on power

law process parameters. Finkelstein (2007) used the frailty

model to study the reliability of a system subject to shocks,

which occur in accordance with a non-homogeneous

Poisson process. He showed that that reliability analysis for

a heterogeneous case could differ dramatically from that

for a homogeneous setting.

The rest of the paper is organized as follows. In Sect. 2,

the MFM is explained; thereafter, in Sect. 3, the applica-

tion of the proposed model is illustrated by a case study.

Finally, Sect. 4 provides the conclusions.

2 Mixture frailty model (MFM)
for maintainability analysis

The repair rate of an item is the rate at which a repair action

is performed. It is expressed in terms of the number of

repair actions performed and successfully completed per

unit of time, by considering time-dependent and time-in-

dependent observed and unobserved covariates. It can be

expressed as follows:

l t; zi; zj tð ÞjA
� �

¼ Al0 tð Þw z; z tð Þ;P; dð Þ ð1Þ

where zi and zj tð Þ are time-independent and time-dependent

observed covariates P; d are column vectors, consisting of

the regression parameters for identified time-independent

and time-dependent observed covariates; and A is a random

positive quantity, representing the cumulative effect of one

or more unobserved covariates.

Here, the repair rate, l t; zi; zj tð Þ;A
� �

, consists of three

multiplicative factors: (1) the baseline repair rate l0 tð Þ,
dependent on time alone, which is modeled using appro-

priate distributions; (2) a positive multiplicative factor,

w z; z tð Þ;P; dð Þ, to describe the function of time-indepen-

dent and time-dependent observed covariates; and (3) a

positive multiplicative factor, A, representing the effect of

unobserved covariates. The observed and unobserved

covariates can affect the repair rate, so that the actual repair

rate, l t; zi; zj tð Þ;A
� �

, is either greater (e.g. in the case of

poor maintenance) or less (e.g. with better training for

operators and maintenance crew) than the baseline repair

rate. Here, those items with A[1 are said to be less frail, for

reasons left unexplained by the observed covariates, and

will have an increased repair rate. Those items for which

A\ 1 are frailer; hence, given a certain observed covariate

pattern, they tend to reduce the repair time. In general, the

exponential functional form and gamma distribution (with

the mean equal to one and variance of h) are the most

commonly used functions for modeling observed and

unobserved covariates, respectively (Cha and Finkelstein

2014; Asfaw and Lindqvist 2015; Garmabaki et al. 2016b;

Slimacek and Lindqvist 2017). Under these assumptions,

the maintainability function can be written as:

M t; zi; zj tð ÞjA
� �

¼ 1 � exp � r
t

0

l ujAð Þdu
� �

¼ 1 � exp �A r
t

0

m uð Þ
1 �M uð Þ du

� �

¼ 1 � 1 � M t; zi; zj tð Þ
� �� �A ð2Þ

Because A is unobservable, it must be integrated out of

M t; zi; zj tð ÞjA
� �

to obtain the unconditional maintainability

function. When A is distributed as gamma with mean one

and variance h:

g Að Þ ¼ A
1
h�1e�

A
h

C 1
h

� �
h

1
h

ð3Þ

Then maintainability becomes:

Mh tð Þ ¼ 1 � r
1

0

1 � M t; zi; zj tð Þ
� �� �A

:
A

1
h�1e�

A
h

C 1
h

� �
h

1
h

dA

¼ 1 � 1 � h ln 1 � M t; zi; zj tð Þ
� �� �� 	�1

h ð4Þ

If the observed covariate follows the exponential func-

tion in the presence of W time-independent observed

covariates and M time-dependent observed covariates,

M t; zi; zj tð Þ
� �

can be written as:

M t; zi; zj tð Þ
� �

¼ 1 � 1 � M0ðtÞ½ �
exp

PW

i¼1

piziþ
PM

j¼1

djzj tð Þ

� �

ð5Þ

where M0 tð Þ is the baseline maintainability function

dependent only on the time, as follows:

M0 tð Þ ¼ 1 � exp � r
t

0

l0 t0ð Þdt0
� �

ð6Þ

As mentioned, in reality, the historical repair data are a

mix of different repair processes (repair modes); hence, the
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applied model should be able to isolate different repair

modes. If each repair process is regarded as an independent

process with an individual, repair distribution that the

presence of some specific covariates, then mixture distri-

bution can be used to model the maintainability baseline.

Suppose a repair dataset of specific items consists of N

repair processes, which require different maintenance tasks

and repair actions comprised of several subsidiary tasks of

unequal frequency and time duration. Under these condi-

tions, the mixture baseline maintainability function,

(M0m tð Þ), can be defined by mixing the M0 tð Þ of the several

repair processes as:

M0m tð Þ ¼
XN

k¼1

ck �M0k

¼
XN

k¼1

ck � 1 � exp � r
t

0

lk0 t0ð Þdt0
� �
 �

ð7Þ

where M0k is the baseline maintainability of the kth repair

process and !k is the proportion of the repair tasks

belonging to the kth repair process. If the basic principle of

the probability dominance, which states that the summation

of all of the proportion of !k has to be one therefore
PN

k¼1 ck ¼ 1 should hold.

The baseline maintainability function, if the repair rate

for all repair processes follows 2-parameter Weibull dis-

tribution, is given by:

M0m tð Þ ¼
XN

k¼1

ck: 1 � e
� t

gk

� 
bk
0

@

1

A ð8Þ

where bk and gk are the shape parameter and scale

parameter of Weibull distribution for the kth repair process.

Likelihood function can be used to estimate the parameters

in Eq. (8). The estimation of the maximum likelihood for

the given log-likelihood function is demanding. Therefore,

some type of iterative algorithms can be employed to

approximately estimate the parameters for the mixed

distribution.

3 Case study

Figure 1 shows a black diagram for a production line in the

Sungun Copper Mine in Iran. In this production line, seven

Komatsu HD 325-6 dump trucks work, defined as DT.1–

DT.7. Here, the repair data for all dump trucks are col-

lected through daily repair and operation reports. As these

reports are not designed for maintainability analysis, the

repair processes are mostly neither well recorded nor

detailed. However, based on a discussion with experts, the

collected repair dataset is a mixture of different repair

processes. In addition, for each repair time, associated

observed covariates have been collected through discussion

with experts at the mine. Table 1 shows the identified

observed covariates and their associated levels. The levels

for each covariate are identified, based on the different

operational conditions that trucks will experience during

their mission time. The maintainability covariates include

working shift, weather condition, precipitation, tempera-

ture, and number of involved maintenance crews. The shift

generally represents a diverse maintenance crew, whose

different skills and expertise may affect the maintainability

performance of the trucks. In addition, some maintenance

tasks can take a long time to complete. In such scenarios,

several maintenance crews will work to repair the trucks

over a number of shifts. Under these conditions, repair

crews need effective communication. Ineffective commu-

nication will significantly reduce maintainability, as some

jobs need to be repeated or must be double-checked.

Hence, the number of maintenance crews working on a

truck is considered a maintainability covariate. Moreover,

as most of the maintenance is performed outdoors, pre-

cipitation is considered a covariate.

Using the MFM and this assumption that all covariates

are time-independent, the maintainability for each

Mine

Wagon drill 1

Wagon drill 2

Loader 1

Loader 2

Dump-truck 1

Dump-truck 2

Dump-truck 3

Dump-truck 4

Dump-truck 5

Dump-truck 6

Dump-truck 7

Factory
Bulldozer

Blasting

Fig. 1 Block diagram for a production line at the Sungun Copper

Mine

Table 1 Identified maintainability covariates and their associated

levels

Maintainability covariates Covariate level Assigned code

Working shift z1ð Þ Morning 1

Afternoon 2

Night 3

Weather condition z2ð Þ Sunny & clear 1

Semi cloudy 2

Overcast 3

Dense fog 4

Precipitation z3ð Þ Continuous covariate

Temperature z4ð Þ Continuous covariate

Involved maintenance crew z5ð Þ One 1

More than one 2
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component can be estimated. The results of the analysis are

shown in Table 2. Here, the p value of 5% is considered the

upper limit to check the significance of observed and

unobserved covariates. This table shows the likelihood

ratio (LR), which is used to check whether the unobserved

covariate(s) has (have) a significant effect on maintain-

ability. In this case, LR can be written as follows (Gar-

mabaki et al. 2016b):

LR ¼ 2 lnLðbk; gk; pk; ck; hð Þ � ln b0k; g0k; p0k; c0k; 0ð ÞÞ
ð9Þ

Here b0k; g0k; p0k and c0k are estimated parameters under

the null hypothesis, where h ¼ 0, which means the unob-

served covariate(s) has (have) no significant effect on the

maintainability of the trucks. As Table 2 shows, for

example for truck DT.7, the baseline maintainability is

Mixture 2 Weibull distribution, the first population is 43%,

with b1 = 4.189 and g1 = 6.249, while the second

population is around 57%, with b2 = 0.982 and

g2 = 21.166. Using these parameters, the baseline mean

time to repairs (MTTR) will be equal to 5.7 and 21.3 for

Population No. 1 and No. 2, respectively. Moreover,

involved maintenance crew z5ð Þ and precipitation z3ð Þ have

a significant effect on the maintainability of DT.7, with

their regression coefficients being equal to - 1.872 and

- 1.187, respectively. Moreover, the p value associated

with the LR of DT.7 is equal to 0.000, which hints that

unobserved covariates have a significant effect on the

maintainability of DT.7, with h ¼ 9:22.

In the next step, to compare the results of analysis with

the traditional model, the data were analyzed by classical

distributions. Here, we nominated five distributions,

including 3P-Weibull, 2P-Exponential, 1P-Exponential,

2P-Weibull, and Normal distributions. Thereafter, using

goodness of fit test, the best fit distribution for each truck

was identified.

Table 2 Estimated parameters of the maintainability performance of selected items

Truck Observed covariates Unobserved

covariates

Baseline model Baseline

MTTR

c
(%)

Covariates pi p value LR p value h

DT.1 Working shift z1ð Þ - 1.370 0.001 16.3 0 3.24 Mixture 3

Weibull

b1 = 2.234; g1 = 2.289 2.03 19

Involved maintenance

crew z5ð Þ
- 1.179 0.001 b2 = 2.845; g2 = 6.7054 5.97 47

b3 = 0.718; g3 = 26.7674 33.1 35

DT.2 Working shift z1ð Þ - 0.751 0.005 39.7 0 3.82 Weibull-3P b1 = 1.054; g1 = 6.810;

c1 = 0.815

6.95 100

Involved maintenance

crew z5ð Þ
- 1.351 0.000

Precipitation z3ð Þ - 0.090 0.035

DT.3 Working shift z1ð Þ - 3.267 0.000 57.1 0 7.59 Weibull-3P b1 = 0.946; g1 = 7.886;

c1 = 0.925

9.01 100

Involved maintenance

crew z5ð Þ
0.356 0.033

Precipitation z3ð Þ - 0.237 0.001

DT.4 Working shift z1ð Þ - 1.214 0.000 64.2 3.08 Mixture 3

Weibull

b1 = 3.750; g1 = 3.980 3.6 32

Involved maintenance

crew z5ð Þ
- 1.059 0.001 b2 = 18.160; g2 = 6.624 6.43 21

b2 = 1.122; g2 = 10.435 10.0 47

DT.5 Involved maintenance

crew z5ð Þ
- 5.077 0.000 64.0 0 11.94 Mixture 4

Weibull

b1 = 6.399; g1 = 1.752 1.63 11

b2 = 3.023; g2 = 3.402 3.03 38

Weather condition z2ð Þ 0.408 0.004 b3 = 20.828; g3 = 6.548 6.38 33

b4 = 0.683; g4 = 72.208 93.6 18

DT.6 Working shift z1ð Þ - 0.485 0.094 26.5 0 2.33 Mixture 4

Weibull

b1 = 3.465;g1 = 1.793 1.65 21

Involved maintenance

crew z5ð Þ
- 2.505 0.000

Weather condition z2ð Þ 0.387 0.022 b2 = 4.965; g2 = 3.809 3.5 40

Precipitation z3ð Þ - 0.248 0.028 b3 = 22.331; g3 = 6.622 6.5 23

b4 = 0.901; g4 = 28.634 30.1 16

DT.7 Precipitation z3ð Þ - 1.827 0.000 41.2 0 9.22 Mixture 2

Weibull

b1 = 4.189; g1 = 6.249 5.7 43

Involved maintenance

crew z5ð Þ
- 1.187 0.000 b2 = 0.982; g2 = 21.166 21.3 57
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For example, Table 3 shows the results of analysis for

DT.7 and the goodness of fit test, using three different

models. The AvGOF column contains the average values

from the Kolmogorov–Smirnov (GOF) test, the AvPLOT

column contains the average values from the correlation

coefficient (PLOT) test, and the LKV column contains the

average values from the Likelihood Value (LKV) test. As

the goodness of fit tests in Table 3 (AvGOF, AvPLOT and

LKV) show the 3P-Weibull with b = 1.046; g = 12.836 and

c = 0.877 is the best fit distribution for DT.7. Hence, the

maintainability of truck DT.7 can be written as:

M tð Þ ¼ 1 � exp
t � 0:877

12:836


 �1:046

ð10Þ

Using Eq. (10), the MTTR of DT.7 will be equal to

13.5 h.

The repair rates for DT.7 in both models (MFM and

classical distribution) are compared in Fig. 2. There is a

significant difference between the repair rates of DT.7

using these two models. In other words, observed and

unobserved covariates have a significant effect on the

repair rates of trucks; ignoring this factor may mislead a

further decision on the operation and maintenance strategy.

For example, according to the MFM, the repair rate of

DT.7 after 10 h will be equal to 0.12, while using the

classical approaches, and equal to 0.2 using MFM. More-

over, using MFM for maintainability analysis, we will

obtain more information regarding the influencing factors.

This information will help managers and decision-makers

establish a more effective maintenance plan. For example,

we know that the involved maintenance crew will decrease

DT.7’s repair rate by 90%. Hence, in critical situations,

increasing the number of involved maintenance crews can

significantly increase the availability of DT.7.

4 Conclusion

The existing studies regarding the analysis of historical

repair data have mostly ignored the effect of observed and

unobserved covariates. As observed and unobserved

covariates result in heterogeneity in repair data, the

selected model should be able to capture the effects of both

types of covariates.

In this paper, the application of MFM for maintain-

ability analysis has been discussed. MFM has the ability to

model the effect of observed and unobserved covariates on

maintainability. Moreover, it can capture different repair

processes in a single database, by the use of a convex

combination of their associated distributions.

In the second part of the paper, the application of the

developed model is illustrated by investigating the effect of

observed and unobserved covariates on the maintainability

of trucks at a copper mine. The results of analysis show

that most identified observed covariates and unobserved

covariate(s) have a significant effect on the maintainability

of trucks. The results suggest that, in most cases, the

baseline maintainability of trucks contains a mixture of

different distributions. Finally, comparing the results of

analysis using the MFM approach and classical distribution

shows that ignoring the effects of observed and unobserved

covariates can lead to significant deviation in the main-

tainability estimation. Such deviations may significantly

affect any future operation and maintenance planning of

the production process.

Table 3 The result of GOF

analysis for DT.7
Distribution Goodness of fit test Parameters

AvGOF AvPLOT LKV

3P-Weibull 99.9827 6.1446 - 318.8260 Beta = 1.046; Eta = 12.836; Gamma = 0.877

2P-Exponential 99.9974 10.1770 - 343.8620 Lambda = 5.7E - 02; Gamma = -4.097

1P-Exponential 99.9986 9.1357 - 323.1657 Lambda = 0.058

2P-Weibull 99.9994 79.7068 - 349.1245 Beta = 1.418; Eta = 13.232

Normal 99.9999 12.9616 - 384.6652 Mean = 14.898; Std = 15.220

Fig. 2 Repair rate of DT.7, using MFM approach and 3P Weibull

distribution
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