

Faculty of Science and Technology

Department of Physics and Technology

Leveraging Kernels for Unsupervised Learning

Sigurd Løkse

A dissertation for the degree of Philosophiae Doctor - September 2020

i

Abstract

Kernel methods have been a central part of the machine learning arsenal

for several decades. Within this framework, unsupervised learning has been

a particularly challenging area. This is due to the inherent nature of un-

supervised learning tasks, where important information about the structure

of the data is unknown to the user, and as such it is difficult to design a

kernel or system to solve the problem at hand. This thesis aims to bridge

this knowledge gap on a multitude of challenges within the field.

Firstly, we address an important challenge within kernel methods for unsu-

pervised learning, namely that of kernel parameter sensitivity. The process

of finding the best parameter for the problem at hand usually depends on

information which is unavailable for unsupervised tasks. Inspired by ideas

from ensemble learning, we design a kernel for vectorial data with missing

elements that automatically adapts to the inherent structures of the data,

in order to decouple the parameter choice from the problem at hand. We

perform experiments on spectral clustering and unsupervised ranking tasks

with promising results.

Next, we develop a kernelized approximation method for unsupervised rank-

ing using the Personalized PageRank (PPR). This method is based on novel

insights on the PPR, which through a PPR–specific low–rank representa-

tion akin to Kernel PCA naturally leads to an out–of–sample approxima-

tion. The method is based on the spectrum of a specific matrix. We provide

error bounds for the approximation which is used to order the eigenvec-

tors/eigenvalues to minimize the approximation error. We perform a range

of experiments to support our novel insights and show that our method may

even outperform the PPR.

The final part of this thesis synergetically combines kernel methods and

neural networks in various unsupervised tasks. Firstly, we design a kernel-

ized autoencoder that incorporates similarities between datapoints through

a kernel function in order to learn meaningful representations in code space.

Secondly, we propose a novel deep learning approach to clustering, utilizing

kernel–based information theoretic losses, with promising experimental re-

sults when compared to state–of–the art methods on challenging problems.

Finally, we incorporate an unsupervised dimensionality reduction method

ii

(e.g. Kernel PCA) in–between the reservoir and readout layer of an Echo

State Network in order to capture the dynamics of the time series while

reducing the dimensionality of the trainable parameters and improving ac-

curacy.

iii

Acknowledgments

Finishing this thesis marks the end of one journey and the beginning of

another. In light of that, I have several people I would like to thank.

First and foremost, I would like to express my sincere gratitude to Professor

Robert Jenssen for being a great supervisor, with unrelenting positivity

and patience. I have no doubt that if it had not been for your excellent

lectures, I would have done something completely different right now. When

I was studying engineering, my plan was to finish my bachelor and to start

working in the industry. I promptly changed my mind when I took the

Signal Processing course, which you were teaching at the time. When I got

back to reality after my health issues, you managed to secure extra funding

for me, which was instrumental for giving me some time to recover. I would

never have been able to finish this without your support. Thank you!

To Filippo, thank you for all the discussions, guidance, pizzas and game

nights. You’re a person one can always rely on, and I am really glad you

decided to join us here in Tromsø when the opportunity arose.

To my old office mates, Jonas, Michael, Karl Øyvind and Luigi, thank you

for many laughs and fruitful discussions. A special thanks to Michael and

Karl Øyvind for proofreading this thesis.

To everyone at the UiT Machine Learning group. When I started my Ph.D.,

the group consisted of four Ph.D. students crammed into a small office and

Robert. Since then, we have outgrown every office space we have been given,

and are now too many to mention by name. So instead I would like to thank

you collectively for all the discussions, support and laughs along the way.

To my committee members, thank you for taking the time to read my thesis.

Due to COVID-19 restrictions, it is unlikely that you will attend the defense

in person. If not, I hope I will be able to meet you in person some day.

Last but not least, to my family and friends. Thank you for all the support

and patience. Especially in the last months when I haven’t been available.

Sigurd Løkse

Tromsø, September 2020

iv

Contents

Abstract i

Acknowledgments iii

List of Figures ix

Abbreviations xi

1 Introduction 1

1.1 Challenges and opportunities 3

1.2 Objectives . 4

1.3 Proposed approaches . 5

1.4 Potential synergies . 6

1.5 Brief summary of included papers 7

1.6 Other papers . 8

1.7 Reading guide . 10

I Methodology and context 11

2 Kernel methods 13

2.1 Kernel theory . 14

2.1.1 Kernels . 14

2.1.2 Examples of kernel methods 18

2.2 Examples of kernel functions 20

3 Unsupervised Learning 23

3.1 Dimensionality reduction/feature extraction 24

3.1.1 Principal Component Analysis (PCA) 24

v

vi CONTENTS

3.1.2 Kernel PCA . 26

3.2 Clustering . 30

3.2.1 Gaussian Mixture Models 30

3.2.2 k–means . 34

3.2.3 Spectral Clustering . 36

3.2.4 Ensemble Clustering 43

3.2.5 Information Theoretic Clustering 46

3.3 Ranking with the Personalized PageRank 48

4 Neural Networks 53

4.1 Multi–Layer Perceptron . 54

4.2 Training the network . 55

4.3 Convolutional Neural Networks 57

4.4 Recurrent Neural Networks 59

4.4.1 RNN architectures . 60

4.4.2 Echo State Networks 60

4.5 Unsupervised Learning . 63

4.5.1 Autoencoders . 63

4.5.2 Clustering . 65

II Summary of research and concluding remarks 67

5 Summary of Research 69

6 Concluding Remarks 75

6.1 Limitations and future work 76

III Included papers 79

Paper I: Unsupervised Learning Using PCKID – A probabilistic

Cluster Kernel for Incomplete Data 81

Paper II: Kernel Personalized PageRank 93

Paper III: The deep kernelized autoencoder 109

Paper IV: Deep divergence–based approach to clustering 121

Paper V: Training Echo State Networks with Regularization Through

Dimensionality Reduction . 133

CONTENTS vii

IV Appendix 149

A Missing data 151

A.1 Missing data mechanisms . 151

A.2 Examples of methods dealing with missing data 152

Bibliography 155

viii CONTENTS

List of Figures

1.1 Thesis overview. 5

2.1 Illustration of a non–linar transformation. 15

2.2 Illustration of a Support Vector Machine. 19

4.1 Illustration of a Multi–Layer Perceptron. 54

4.2 Illustration of a Convolutional Neural Network. 58

4.3 Basic Recurrent Neural Network model. 59

4.4 Unrolled Recurrent Neural Network model. 60

4.5 Schematic depiction of the Echo State Network architecture. . 61

4.6 Typical autoencoder architecture. 64

ix

x LIST OF FIGURES

LIST OF FIGURES xi

Abbreviations

CNN Convolutional Neural Network

EM Expectation Maximiztaion

ESN Echo State Network

GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

ITL Information Theoretic Learning

KPCA Kernel Principal Component Analysis

LSTM Long Short Term Memory

MAR Missing At Random

MCAR Missing Completely At Random

MKL Multiple Kernel Learning

MLP Multi–Layer Perceptron

NCut Normalized Cut

NMAR Not Missing At Random

PCA Principal Component Analysis

PCK Probabilistic Cluster Kernel

PDF Probability Density Function

PMF Probability Mass Function

PPR Personalized PageRank

RBF Radial Basis Function

RKHS Reproducing Kernel Hilbert Space

RNN Recurrent Neural Network

SC Spectral Clustering

xii LIST OF FIGURES

Chapter 1

Introduction

Kernel methods were introduced in machine learning in the 90’s as tools

used to transform an inherently linear method to a powerful method ca-

pable of dealing with non–linear data [18]. In the nearly three decades

since that time, kernel methods have served as one of the fundamental pil-

lars of machine learning research [89], alongside for instance neural net-

works. Supported by a solid theoretical framework, kernel machines have

been leaping forward to a multitude of learning tasks, including classification

[18], clustering [36, 47, 71], dimensionality reduction [76, 128] and regression

[3, 24, 38], and to different data domains through the choice of kernel func-

tion. The ability to deal with both non–vectorial data (e.g. documents/text

[56, 97, 151], proteins [13, 49, 93], images [46] and graphs [148]) and vecto-

rial data by selecting an appropriate kernel function, without altering the

algorithm itself, is one of the reasons why kernel machines are so powerful

and flexible.

Unsupervised learning is one of the main branches in the hierarchy of ma-

chine learning methods. In unsupervised learning, the goal is to extract

information from data without access to ground truth, with cluster analysis

[75, 149, 113, 153] and feature learning [67, 68, 76, 128] being the most promi-

nent applications. In all these applications, the common theme is to learn

something about the inherent structure of the data, either by learning re-

lationships between individual datapoints or learning relationships between

features. This is important for exploratory data analysis, where unknown

1

2 CHAPTER 1. INTRODUCTION

insights can be discovered. Unsupervised learning is quickly becoming more

important than it has ever been, due to an ever increasing amount of data

being available, and manually labeling large amounts of data is a resource

intensive task.

Neural networks and deep learning [51, 127] have in recent years revolu-

tionized supervised learning tasks, and achieve great results in a multi-

tude of tasks, including image classification [57, 87], image segmentation

[8, 28, 58, 98], speech recognition [9, 60] and time–series analysis [16, 25].

Neural networks are often able to outperform the classical approaches due

to their inherent ability to learn optimized feature representations for the

task at hand while simultaneously learning to perform the task, instead of

relying on hand–crafted features. In supervised learning, there are always

ways to measure how well the network is doing, and ground truth labels that

tell you if your prediction is right or wrong. Due to unsupervised learning

being inherently ambiguous and the sheer amount of trainable parameters

in a neural network, the loss surface of an unsupervised task can be highly

complex and difficult to optimize. In spite of this, there is an emerging trend

within deep learning research to develop methods for unsupervised learning

tasks, with for instance clustering [52, 132, 156, 158] and learning meaning-

ful features using autoencoders [86, 122, 126, 147]. These rely on cleverly

constructed network architectures, optimization schemes and loss functions

in order to train the network for unsupervised tasks.

In the intersection between kernel methods, unsupervised learning and neu-

ral networks, there are a multitude of challenges and opportunities which

will be addressed by the work presented in this thesis. The next few sections

outline these challenges and opportunities and the proposed approaches to

address them. These challenges and opportunities all relate in some way

or another to kernels and unsupervised learning, and some use kernels in

conjunction with neural networks in order to solve unsupervised learning

tasks. These methods all rely on – or produce – a representation useful for

the task at hand e.g. using dimensionality reduction techniques or through

transformations using a neural network.

1.1. CHALLENGES AND OPPORTUNITIES 3

1.1 Challenges and opportunities

The parameter sensitivity problem. When using kernel functions, like

with most machine learning methods, there are hyper–parameters that need

to be specified by the user. The choice of these hyper–parameters are usu-

ally sensitive, such that changing the parameter slightly could potentially

degrade the performance of the algorithm by a large margin. The optimal

value of these hyper–parameters are hugely dependent of the data and their

inherent structures. For supervised learning, this is not a huge problem

since the user has ground truth information at their disposal. This is not

the case for unsupervised learning, such that finding an optimal parameter

for the task at hand could potentially be borderline impossible. Due to this,

a common approach/solution is to use certain rules–of–thumb in order to

select the value of parameters. There are several rules–of–thumb available

[76, 134, 135, 136], which might all produce different results. The value

of the hyper–parameters as calculated by these rules–of–thumb are likely

to be either sub–optimal or plain bad. While there are examples of meth-

ods dealing with this situation for fully observed data and temporal data

[70, 71, 106, 142], the particular situation with vectorial data with missing

elements, the literature is sparse.

New insights lead to new methodology There are numerous examples

of machine learning methods, where framing the problem from a kernel

perspective has been beneficial. For instance, the kernel SVM/SVR [18, 38],

Kernel Principal Component Analysis (KPCA) [128] and kernel k-means [47]

all enabled previously strictly linear methods to also be able to handle non–

linear structures in the data. The latter has been shown to even be capable of

minimizing cost functions of several spectral clustering algorithms without

needing expensive eigenvector/eigenvalue computations [36], and enabled

so–called constrained clustering [88]. These examples show that framing a

problem from a different perspective can potentially lead to new and useful

methodologies. Parts of the work presented in this thesis is based on this

idea of looking at an existing problem from a kernel perspective in order to

gain new insights and potentially new methodology.

4 CHAPTER 1. INTRODUCTION

Combining kernel methods with networks As stated earlier, two of

the fundamental pillars in machine learning methodology are kernel methods

and neural networks. Neural networks are incredibly powerful as they are

so–called universal function approximators [34, 65]. In recent years, deep

learning has emerged as the defacto standard solution for many machine

learning problems, as deep neural networks are now viable to be trained

successfully. This is mostly due to 1. being able to train networks efficiently

on GPUs, 2. clever training methods being developed [85, 139] and 3. the

vast amount of data available these days is enough to train networks with a

huge number of parameters via transfer learning.

Unsupervised learning using neural networks has until recently been a largely

unexplored area with huge potential [63, 122, 137, 146, 147]. Due to great

flexibility in network architectures, the network can be designed for the data

at hand with e.g. convolutional layers for image data or recurrent units

for temporal data. The huge number of trainable parameters in modern

neural networks can make unsupervised learning a challenge, due to the fact

that an unrestricted network could potentially run wild and learn useless

patterns in the data. In traditional kernel methods, dealing with image and

time–series data has been a challenge, requiring kernels specifically designed

for the data domain which might be computationally expensive with varying

results. These challenges can be addressed by combining the power of neural

networks with kernel methods, either by directly including kernel based loss

functions for unsupervised learning in the neural network training procedure,

or as a regularization for the network.

1.2 Objectives

The main interrelated objectives of this thesis are summarized as follows:

1. Provide a solution for key challenges in kernel methods for unsu-

pervised learning, in particular getting rid of sensitive user–specified

hyper–parameters when dealing with missing data.

2. Leverage kernels in order to (i) provide new insights to existing method-

ology, (ii) develop new methodology based on these insights and (iii)

1.3. PROPOSED APPROACHES 5

Leveraging Kernels for
Unsupervised Learning

Data
representation RankingClustering

Kernel Parameter
Robustness

Kernel
Deep learning

Figure 1.1: Thesis overview.

improve previously non–kernelized methodologies.

3. Leverage kernels in unsupervised learning for neural networks in order

to exploit the best from both worlds.

1.3 Proposed approaches

An overview of the topics discussed in this thesis is shown in Fig. 1.1.

In order to address the first challenge, we design a novel kernel function

based on an ensemble approach, in which missing elements and parameter

sensitivity are handled simultaneously. The kernel function is adaptive, in

the sense that it is constructed by an ensemble of statistical models that

we fit to the data. Each of these statistical models is inherently capable of

6 CHAPTER 1. INTRODUCTION

dealing with missing elements in the data.

In order to address challenge 2, we propose the Kernel Personalized PageR-

ank in Paper II. Here, we interpret the Personalized PageRank in terms of

mathematical operations in a specific kernel space and leverage this in order

to propose new methodology. The method is based on computing an em-

bedding in the empirical kernel space using a special kernel and computing

scores by projecting the elements in this space on a weighted mean vector

defined by the query. The method naturally extends to out–of–sample data.

We address challenge 3 in Paper III, Paper IV and Paper V. In Paper III,

we regularize the loss function of an autoencoder, in order to ensure that

the feature representation in the code layer is meaningful. In particular,

we guide the inner products in the code layer to approximate values from a

precomputed kernel. In Paper IV, we propose a novel clustering network,

in which information theoretic/kernel based losses are incorporated in order

to train the network. This network can be trained end–to–end and does not

require pretraining procedures. In Paper V, we incorporate an unsupervised

dimensionality reduction layer in an echo state network [74] as a regular-

ization before the readout layer. This dimensionality reduction procedure

tends to capture the underlying dynamics of the input time series.

1.4 Potential synergies

Robust kernels are important for all kernel methods, and have potential util-

ity for the other works. For instance, the kernel could be used in conjunction

with the work in Paper II in order to rank data with missing values. It could

also potentially be combined with the work in Paper III in order to enable

the autoencoder to handle missing data. There is also a potential synergy

between Paper II and Paper III. For instance, one could leverage the new

insights in Paper II in order to train an autoencoder in such a way that the

code layer possesses properties beneficial for ranking.

1.5. BRIEF SUMMARY OF INCLUDED PAPERS 7

1.5 Brief summary of included papers

This section briefly summarizes the papers included in this thesis. The

following papers are included in this thesis:

I. Sigurd Løkse, Filippo M. Bianchi, Arnt-Børre Salberg and Robert

Jenssen. ”Unsupervised learning using PCKID – A Proba-

bilistic Cluster Kernel for Incomplete Data”, In submission.

II. Sigurd Løkse and Robert Jenssen. ”Kernel Personalized PageR-

ank”, In submission.

III. Michael Kampffmeyer, Sigurd Løkse, Filippo M. Bianchi, Robert Jenssen

and Lorenzo Livi. ”The deep kernelized autoencoder”, Applied

Soft Computing, 2018.

IV. Michael Kampffmeyer, Sigurd Løkse, Filippo M. Bianchi, Lorenzo Livi,

Anrt-Børre Salberg and Robert Jenssen. ”Deep divergence-based

approach to clustering”, Neural Networks, 2019.

V. Sigurd Løkse, Filippo M. Bianchi and Robert Jenssen. ”Training

Echo State Networks with Regularization Through Dimen-

sionality Reduction”, Cognitive Computation, 2017.

Paper I In this paper, we develop a novel kernel function designed for

vectorial data with missing elements. The kernel function is founded on

ensemble methods, leading to an adaptive kernel function which is not sen-

sitive to hyper–parameter choices, and thus is especially suited for unsu-

pervised learning where no ground truth data is available for parameter

cross–validation. We perform experiments on spectral clustering and unsu-

pervised ranking tasks. These are compared to various methods and kernels,

with promising results.

Paper II In this paper, we provide new insights on the Personalized

PageRank and develop new methodology based on these insights. In par-

ticular, we show that the score vector of the Personalized PageRank can

8 CHAPTER 1. INTRODUCTION

be computed using simple projections in a particular kernel space. These

insights naturally lead to a low–rank embedding space in which the scores

can easily be approximated both for in–sample data and previously unseen

out–of–sample data. We provide error approximation bounds and use these

to order eigenvectors and eigenvalues such that these error bounds are min-

imized. These insights are supported by experimental results, which also

show that our method may even outperform the PPR.

Paper III and IV In these papers, we introduce kernels in deep learn-

ing methodology in order to leverage key properties of kernels and exist-

ing kernel–based methods for unsupervised learning. In particular, Pa-

per III introduces the Deep Kernelized Autoencoder in which an auto–

encoder architecture is developed that learns data representations using a

kernel–alignment based regularization term. This combination of kernels

and deep learning allows for learning meaningful features in the code layer,

with promising results. In Paper IV, we develop a deep architecture for

clustering, in which we adapt and incorporate kernel based/information the-

oretic clustering losses in the training procedure, which enforces compact-

ness within clusters and separation between clusters. Equivalently, the loss

can be interpreted as maximizing the angle between cluster mean vectors in

kernel space. This method achieved state–of–the–art results on challenging

problems at the time.

Paper V In this paper, we introduce unsupervised dimensionality reduc-

tion (including Kernel PCA) as a regularization to Echo State Networks.

The dimensionality reduction layer creates a low–rank representation which

extracs the important information from the large and sparse reservoir. This

improves both accuracy and efficiency of the network.

1.6 Other papers

6. Jonas N. Myhre, Karl Øyvind Mikalsen, Sigurd Løkse and Robert

Jenssen. ”Consensus clustering using kNN mode seeking” In

2015 Scandinavian Conference on Image Analysis (SCIA), Springer,

1.6. OTHER PAPERS 9

2015.

7. Michael Kampffmeyer, Sigurd Løkse, Filippo M. Bianchi, Robert Jenssen

and Lorenzo Livi. ”Deep kernelized autoencoders” In 2017 Scan-

dinavian Conference on Image Analysis (SCIA), Springer, 2017.

8. Sigurd Løkse, Filippo M. Bianchi, Arnt–Børre Salberg and Robert

Jenssen. ”Spectral Clustering Using PCKID – A Probabilis-

tic Cluster Kernel for Incomplete Data” In 2017 Scandinavian

Conference on Image Analysis (SCIA). Springer, 2017.

9. Filippo M. Bianchi, Simone Scardapane, Sigurd Løkse and Robert

Jenssen. ”Bidirectional deep-readout echo state networks”,

26th European Symposium on Artificial Neural Networks, Computa-

tional, 2018.

10. Jonas N. Myhre, Karl Øyvind Mikalsen, Sigurd Løkse and Robert

Jenssen. ”Robust clustering using a kNN mode seeking en-

semble”, Pattern Recognition 76, 491-505, 2018.

11. Sigurd Løkse and Robert Jenssen. ”Ranking Using Transition

Probabilities Learned From Multi–Attribute Data” In 2018

IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pp. 2851-2855. IEEE, 2018.

12. Kristoffer Wickstrøm, Sigurd Løkse, Michael Kampffmeyer, Shujian

Yu, Jose Pŕıncipe and Robert Jenssen. ”Analysis of Deep Neural

Networks using Tensor Kernels and Matrix–Based Rényi’s

Entropy.” In Workshop on Information Theory and Machine Learn-

ing, 33rd Conference on Neural Information Processing Systems (Neur-

IPS 2019), volume 60, pages 8-11, 2019.

13. Filippo M. Bianchi, Simone Scardapane, Sigurd Løkse and Robert

Jenssen. ”Reservoir computing approaches for representation

and classification of multivariate time series”, In IEEE Trans-

actions on Neural Networks and Learning Systems, 2020.

14. Van Nhan Nguyen, Sigurd Løkse, Kristoffer Wickstrøm, Michael Kampff-

meyer, Davide Roverso and Robert Jenssen. ”SEN: A Novel Dis-

similarity Measure for Prototypical Few–Shot Learning Net-

10 CHAPTER 1. INTRODUCTION

works”, In Workshop on Visual Learning with Limited Labels, IEEE/-

CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2020.

15. Van Nhan Nguyen, Sigurd Løkse, Kristoffer Wickstrøm, Michael Kampff-

meyer, Davide Roverso and Robert Jenssen. ”SEN: A Novel Dis-

similarity Measure for Prototypical Few–Shot Learning Net-

works”, In 16th European Conference on Computer Vision (ECCV),

2020.

1.7 Reading guide

The remainder of this thesis is organized into four parts, methodology, sum-

mary of research, included papers and an appendix.

The methodology part is organized into three chapters. Chapter 2 provides

a brief overview of the necessary theory behind kernel methods and kernels,

with examples of both. Chapter 3 introduces unsupervised learning, and

presents unsupervised learning methods, which are relevant for the works

presented in this thesis. The chapter is split into three sections; dimension-

ality reduction/feature extraction (relevant for Paper I, Paper II and Paper

V), clustering (relevant for Paper I and Paper IV) and ranking with the

Personalized PageRank (relevant for Paper II). Chapter 4 provides a brief

introduction to neural networks, various network architectures and unsuper-

vised learning with neural networks. This is relevant for Paper III, Paper

IV and Paper V.

The summary of research part provides a brief summary of the included

papers and the author’s contributions to the works as well as concluding

remarks and limitations of the works. The research papers are included

in the included papers part. The final part of this thesis is an appendix

containing a brief overview of missing data, which is relevant for Paper I.

Part I

Methodology and context

11

Chapter 2

Kernel methods

This chapter presents kernel theory, which is mostly relevant for Paper I and

Paper II, but also relevant for Paper III, Paper IV and Paper V.

Up until the non–linear Support Vector Machine (SVM) was invented in the

early 90’s [18], most machine learning methods were either not capable of

dealing with non–linear data, or difficult to train with the computational

power available at the time. By incorporating the mathematical framework

associated with kernels, the SVM was transformed into a non–linear method

leading to a convex optimization problem, which could be solved using ex-

isting optimization methods.

The Kernel SVM is an important example of a so–called kernel method,

where kernels are utilized in order to implicitly map the data via a non–

linear transformation to a high dimensional space, in which a linear SVM is

applied. That is, instead of learning a classical linear classifier on the form

f(x) = 〈w,x〉, (2.1)

where 〈·, ·〉 denotes an inner product, the Kernel SVM utilizes the so–called

kernel trick [2] both during training and evaluation in order to implicitly

map the data to a high dimensional space and learn a function on the form

f(x) =
∑

i

αiκ(xi,x). (2.2)

13

14 CHAPTER 2. KERNEL METHODS

In this case, κ(·, ·) is a so–called kernel function which often can be inter-

preted as some kind of similarity between the data points in its arguments.

The kernel is a function with special properties which will be explained in

detail shortly.

2.1 Kernel theory

Although the application of kernels in machine learning is fairly recent in

historical context, the mathematical foundation of these methods were in-

vented in the early 1900’s [103]. In this section, we will briefly introduce the

theory behind kernel methods.

2.1.1 Kernels

The term kernel has numerous definitions in mathematics. In the context

of kernel methods in machine learning, a kernel is simply a function com-

puting an inner product in a Reproducing Kernel Hilbert Space (RKHS). In

particular, the function κ : X ×X → R is a kernel if there exists a RKHS H
and a function φ : X → H such that κ(xi,xj) = 〈φ(xi), φ(xj)〉H. That is,

given xi, xj ∈ X , the kernel function implicitly maps the data via φ to the

possibly infinitely dimensional RKHS H and computes the inner product of

the mapped data in H. Computing inner products in this manner allows for

transforming inner product based linear methods (e.g. SVM) to powerful

non–linear methods via the so–called kernel trick. This is illustrated in Fig.

2.1, where a non–linear problem in input space can be solved as a linear

problem in kernel space. The benefit of using a kernel is best illustrated

through an example.

Example 2.1 (Polynomial kernel.). The polynomial kernel [163] is defined

as

κ(x,y) = (1 + xTy)d. (2.3)

Considering a low dimensional feature space with x,y ∈ R2 and a quadratic

2.1. KERNEL THEORY 15

Figure 2.1: Illustration showing a non–linear problem in input space that
can be solved as a linear problem in kernel space.

kernel with d = 2, the kernel function can be expressed as

κ(x,y) = (1 + xTy)2

= 12 + 2xTy +
(
xTy

)2

= 1 + 2

2∑

i=1

xiyi +

2∑

i=1

xiyi

2∑

j=1

xjyj

= 1 +
√

2x1
√

2y1 +
√

2x2
√

2y2 + x21y
2
1 + x22y

2
2 +
√

2x1x2
√

2y1y2

= 〈φ(x), φ(y)〉H,

where

φ(x) =
(

1
√

2x1
√

2x2
√

2x1x2 x21 x22

)T
.

In this example, it was possible to find an explicit mapping φ such that

κ(x,y) = 〈φ(x), φ(y)〉. Although it is indeed possible in this example to

first compute this mapping and then compute the inner product in kernel

space, this is ill–advised as both the computational complexity and the mem-

ory complexity are increased in comparison to simply evaluating the kernel

function. Furthermore, if d or the dimensionality of the data is increased,

the dimensionality of the mapped data increases drastically. If only the in-

ner product in kernel space is needed, it is therefore unnecessary to map the

data first and then compute the inner product when the inner product itself

is easy to compute via the kernel function.

In addition to the simplicity of computing inner products implicitly using the

kernel function, the explicit mapping φ is in general unknown. For instance

16 CHAPTER 2. KERNEL METHODS

with the Gaussian kernel, the kernel feature space is infinitely dimensional

(a function space) [133], such that an explicit vector mapping is not possible.

In some situations, it is not necessarily the nonlinear property of the kernel

methods which is the most appealing. As seen in for instance [133], it is

possible to construct kernel matrices for non–vectorial data like documents

and DNA. This allows for kernel methods to be used on types of data for

which vector based methods are not compatible.

Properties of Kernels

Definition 2.1. Reproducing kernel. Let H be a Hilbert space of functions

f : X → R and let κ : X × X → R be a kernel with κ ∈ H. Then κ is a

reproducing kernel if

〈f, κ(x, ·)〉H = f(x).

Def. 2.1 is the so–called reproducing property of a kernel. The term repro-

ducing kernel stems from the fact that the kernel is the evaluation func-

tional of the Hilbert space. In particular, since the kernel κ(x, ·) ∈ H, we

have κ(x,y) = 〈κ(y, ·), κ(x, ·)〉H, hence the term reproducing kernel. If we

define the transformation function φ(x) = κ(x, ·), this yields κ(xi,xj) =

〈κ(xi, ·), κ(xj , ·)〉H = 〈φ(xi), φ(xj)〉H. That is, κ(·, ·) computes an inner

product in H. The term Reproducing Kernel Hilbert Space (RKHS) simply

refers to a Hilbert space endowed with a reproducing kernel.

At first glance, the idea of a function computing inner products in some

RKHS seems somewhat abstract and arbitrary. However, it turns out that

these kernel functions inhibit some particular properties that makes it pos-

sible to evaluate if a candidate function is in fact a kernel.

Definition 2.2. Positive Semi–definiteness. Let x1,x2, . . . ,xN ∈ X and

let κ : X × X → R. The function κ(·, ·) is a kernel iff κ(xi,xj) = κ(xj ,xi)

and ∀ z ∈ RN\{0}

zTKz =

N∑

i,j=1

zizjκ(xi,xj) ≥ 0.

2.1. KERNEL THEORY 17

Here K ∈ RN×N is the kernel matrix 1, which contains all pairwise evalua-

tions of the kernel function, i.e. (K)ij = κ(xi,xj). Note that K is symmetric

since κ(xi,xj) = κ(xj ,xi).

Def. 2.2 states that any symmetric positive semi–definite function is a valid

kernel, and can thus be used in kernel based machine learning methods.

Showing that any kernel is positive semi–definite is trivial, since we have

N∑

i,j=1

zizjκ(xi,xj) =

N∑

i,j=1

zizj〈φ(xi), φ(xj)〉H

= 〈
N∑

i=1

ziφ(xi),
N∑

j=1

zjφ(xj)〉H

= ‖
N∑

i=1

ziφ(xi)‖2H ≥ 0.

The opposite statement (any positive semi–definite function is a kernel) is a

consequence of Moore-Aronzajn’s theorem [6], in which they show that given

a positive semi–definite function, it is always possible to construct a valid

RKHS endowed with that function as a reproducing kernel.

Definition 2.3. Composite kernel. Given kernel functions κ`(·, ·) and co-

efficients α` ≥ 0, ` = 1, 2, . . . , L, the composite kernel is defined as

κ(xi,xj) =
L∑

`=1

α`κ`(xi,xj) (2.4)

To show that the composite kernel is indeed a valid kernel, the only thing

that needs to be checked is if it is positive semi–definite. This can be done

using Eq. 2.4. In particular,

N∑

i,j=1

zizjκ(xi,xj) =
N∑

i,j=1

zizj

L∑

`=1

α`κ`(xi,xj) =
L∑

`=1

α`

N∑

i,j=1

zizjκ`(xi,xj) ≥ 0,

since each kernel function is positive semi–definite and the coefficients are

non–negative. These composite kernels are the foundation for Multiple Ker-

nel Learning (MKL) [50], and are necessary for the work in Paper I.

1Also called the Gram matrix

18 CHAPTER 2. KERNEL METHODS

2.1.2 Examples of kernel methods

There are many examples of kernel–based algorithms in the field of machine

learning, both for supervised learning [18, 38, 120], unsupervised learning

[36, 47, 76, 128] and semi–supervised learning [26, 27, 161, 166]. Many of

these methods share the same end–goal: to learn a linear function as shown

in (2.1). In this section, a few important methods will be described briefly.

Kernel Principal Component Analysis Kernel Principal Component

Analysis (KPCA) [128] is a non–linear feature extraction method based

on Principal Component Analysis (PCA). The idea is to find a vectorial

representation of the data, corresponding to projections of the data on the

principal components in kernel space. Since Kernel PCA is an integral part

of the work presented in this thesis, details on the mathematics behind the

method will be presented in Sec. 3.1.2. However, the main result is that the

projection of φ(x) on the k’th principal component in kernel space is given

by

Projvk(φ(x)) =
1√
λk

∑

i

(ak)iκ(xi,x),

where λk is the k’th largest eigenvalue of the kernel matrix and (ak)i is

element i of the corresponding eigenvector. Note that this is on the same

form as Eq. 2.2, with αi = (ak)i√
λk

. This is not incidental, as expressions on

this form shows up in many kernel methods due to the representer theorem

[129], which in in essence states that any minimizer of an empirical risk

function admits a representation on the form of Eq. 2.2.

Kernel SVM The SVM is a classification method in which the end–goal

is to find the best decision hyperplane that optimally separates the classes.

That is, the optimal decision hyperplane maximizes the margin between the

hyperplane and each of the classes as shown in Fig. 2.2. The hyperplane

can be expressed as a linear function on the form

f(x) = 〈w,x〉+ b,

2.1. KERNEL THEORY 19

Margin

Figure 2.2: Illustration of a Support Vector Machine.

where w is a weight vector and b is a bias term. The most basic form of a

SVM has a constraint that all data points must lie outside of the margin.

This can be optimized by Lagrangian optimization, where the Lagrangian

can be shown to be

L(X,y,w,λ) =
1

2
‖w‖2 −

∑

i

λi(yi[〈w,xi〉+ b]− 1),

where yi is the label for data point i and λi is a Lagrange multiplier. The

optimal weight vector for this problem can by differentiation be shown to

be on the form w =
∑

i λiyixi, such that

f(x) = 〈w,x〉+ b = 〈
∑

i

λiyixi,x〉+ b =
∑

i

λiyi〈xi,x〉+ b.

The important part of this expression is that it only depends on the input

data through an inner product. This means that one can utilize the kernel

trick in order to kernelize this method, i.e. substitute 〈xi,x〉 with κ(xi,x) =

〈φ(xi), φ(x)〉H [18]. This yields

f(x) =
∑

i

λiyiκ(xi,x) + b,

which is on the same form as (2.2). This is in general a non–linear function

in input space. In a similar manner, the dual problem of the Lagrangian

can be expressed with dependence on the input data solely through an inner

product, such that the kernel trick can be used during training as well.

20 CHAPTER 2. KERNEL METHODS

Other noteworthy methods There are numerous other examples of ker-

nel methods for various applications. In the following we mention a few

noteworthy methods. For supervised learning, we have for instance Fisher

discriminant analysis [105], Kernel Ridge Regression [3], R-SVM [38] and

Gaussian Processes [123, 80]. Unsupervised methods include kernel k–means

[47, 36], various multiple kernel k–means methods [39, 95, 96], kernel self–

organizing maps [69, 101] and Kernel Entropy Component Analysis [76].

2.2 Examples of kernel functions

Choosing which kernel function to use is always important, as which kernel

function works best is largely dependent on both the input data and the

task at hand. Undoubtedy, the most popular kernel function is the Radial

Basis Function (RBF) kernel2, which is on the form

κ(xi,xj) = e−
1

2σ2
‖xi−xj‖2 , (2.5)

where σ is a tunable hyper–parameter representing the kernel width (i.e. the

scale of the data). This kernel function belongs to the family of shift invari-

ant kernels, which have special properties and are notably used to connect

kernel methods to both Information Theoretic Learning (ITL) and Gaussian

Processes [77, 80]. Other shift invariant kernels include the Laplacian kernel

and the Cauchy kernel. The aforementioned kernels are commonly used for

vectorial data. If the data is non–vectorial in nature, one has to choose

a kernel specifically designed for the data. There are for instance kernels

designed for time–series [106], images [46], text [56, 97, 151], graphs [148]

and even protein data [13, 49, 93].

A common theme for most kernel functions is that they require the user to

choose a hyper–parameter, whose optimal value is highly dependent on the

data and the task. This might not be a big problem if the task is classification

or regression. For unsupervised tasks this could be a big problem, since

except from controlled lab experiments, one cannot expect ground truth

information to be available in real applications. Thus, the performance of

2Often referred to as the Gaussian kernel

2.2. EXAMPLES OF KERNEL FUNCTIONS 21

the kernel machine cannot be evaluated easily for unsupervised tasks and

choosing a good parameter value either comes down to knowledge of the

data or heuristic rules–of–thumb.

22 CHAPTER 2. KERNEL METHODS

Chapter 3

Unsupervised Learning

In modern times, the amount of data available is massive due to data storage

being cheap and data acquisition being cheap and easy. Manual labelling of

the data however is labour intensive, time consuming, and in some cases im-

possible due to the amount of data available. In unsupervised learning, the

goal is to extract information from data without, or at least with minimal,

prior knowledge. Unlike classical supervised learning tasks (classification,

regression, etc.), unsupervised learning can be applied to data where there

is no ground truth. Unsupervised learning has many real world applications,

including medical data analysis [4, 11, 109, 155], market research [82, 90],

identifying fake news [66, 160], image segmentation [8, 134, 162] and social

media segmentation [54, 107].

There are many types of unsupervised learning algorithms. Examples in-

clude, but are not limited to dimensionality reduction, clustering, and rank-

ing. Dimensionality reduction techniques are often used as a pre–processing

step of the data in order to extract/generate relevant information for the

task at hand (e.g. clustering). Most dimensionality reduction techniques

can be considered unsupervised. Clustering is the unsupervised analogue

to classification, where the goal is to find natural groups of similar objects

within the data without relying on labels. Ranking techniques attempt to

generate an ordered list of objects in a meaningful way, such that the most

important objects are located early in the list. The most successful appli-

cation of such ranking techniques is arguably with search engines on the

23

24 CHAPTER 3. UNSUPERVISED LEARNING

internet [20], but it has also been successfully applied to other types of

data/objects like proteins [43], genes [110], images [79] and many more [48].

This chapter contains relevant background theory for the research presented

in this thesis, namely dimensionality reduction, clustering and unsupervised

ranking.

3.1 Dimensionality reduction/feature extraction

This section describes methods for unsupervised dimensionality reduction

and feature extraction, which are relevant for Paper I, Paper II and Paper

V. For a more comprehensive guide on dimensionality reduction methods,

the interested reader is directed towards the numerous surveys on this topic

[23, 33, 143, 150].

In machine learning, dimensionality reduction and feature extraction is a

commonly utilized pre–processing step which is applied to the data in order

to generate a more useful representation than the raw data. What is a useful

representation depends on the application (clustering, classification, ranking

etc.) and the data.

3.1.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [67] is possibly the most used di-

mensionality reduction method in existence. The idea behind PCA is to

transform data with correlated components such that the components in the

transformed data are uncorrelated. This is achieved using a linear transfor-

mation. These uncorrelated components are called the principal components,

and are ordered such that a given principal component has larger variance

than the succeeding ones.

Let x ∈ Rd be a random vector with expectation µx = E[x] and covariance

matrix Σx = E
[
(x− µx) (x− µx)T

]
and define the linear transformation

y = ATx, (3.1)

3.1. DIMENSIONALITY REDUCTION/FEATURE EXTRACTION 25

where A is some nonrandom transformation matrix. Given Eq. 3.1, the

expectation of y is given by µy = E
[
ATx

]
= ATµX and the covariance

matrix is given by

Σy = E
[(

ATx−ATµx

) (
ATx−ATµx

)T]
= ATΣxA. (3.2)

To ensure that the components in y are uncorrelated, we need to find a

transformation matrix A such that the covariance matrix Σy is diagonal.

The covariance matrix Σx is symmetric and can be diagonalized by Σx =

EΛET , where E is the eigenvector matrix of Σx and Λ is diagonal eigenvalue

matrix of Σx. Substituting this into Eq. 3.2 yields Σy = ATEΛETA, from

which we see that letting the transformation matrix A = (ET)−1 yields a

covariance matrix Σy = Λ, which is diagonal. Since Σx is symmetric, E is

orthogonal implying that E−1 = ET , which leads to the final transformation

matrix A = E, such that

y = ETx (3.3)

This is an orthogonal transformation which, in essence, rotates the data

until the components are uncorrelated.

Since the covariance matrix of the transformed data is given by the diagonal

eigenvalue matrix, Λ, the variance of each component of y is simply an

eigenvalue. Furthermore, the total variance is preserved, since

d∑

k=1

σ2x,k = Tr(Σx) =
d∑

k=1

λk, (3.4)

where λk is the k’th eigenvalue of Σx, which we have shown is the variance

of the k’th component of y.

This kind of transformation is mostly used for dimensionality reduction.

The strategy then is to extract the principal components in which the most

information is kept1. To reduce the dimensionality to d′ < d dimensions,

you construct a transformation matrix Ed′ , d
′ < d, which consists of the d′

eigenvectors of Σx with the largest corresponding eigenvalues, such that the

total variance of y is maximized.

1In this context, maximize total variance.

26 CHAPTER 3. UNSUPERVISED LEARNING

3.1.2 Kernel PCA

Kernel Principal Component Analysis (KPCA) [128] is a nonlinear extension

of the theory of PCA. The nonlinear property of KPCA is often useful for

data with structures which cannot be well represented in a linear subspace.

For instance, if we are interested in extracting features as a preprocessing

step for classification of nonlinearly separable data, canonical PCA will not

be very helpful to aid in discriminating between classes. KPCA, however,

may be able to extract features in such a way that the nonlinearly separable

data becomes linearly separable.

KPCA uses the theory of Mercer Kernels to perform an implicit nonlinear

transformation of the data and performs PCA in this (possibly unknown)

kernel space. KPCA has been successfully utilized for many important ap-

plications. This includes face recognition [84, 159], de-noising [72, 141] and

texture classification [83]. One should note that other nonlinear approaches

to PCA have been proposed. For instance [81, 86, 92, 130].

Derivation of KPCA As seen in Eq. 3.3, the k’th principal component

is given by the projection of the data point onto the k’th eigenvector of the

covariance matrix. Let x1,x2, . . . ,xN ∈ X be a sample and let Φ : X → H
be a nonlinear transformation. Assuming the data is centered in kernel

space, the covariance matrix is given by

R = E
[
Φ(x)Φ(x)T

]
,

which can be approximated as

R =
1

N

N∑

i=1

Φ(xi)Φ(xi)
T . (3.5)

Let v be an eigenvector of R with the corresponding eigenvalue λ. Then

Rv =
1

N

N∑

i=1

Φ(xi)Φ(xi)
Tv = λv, (3.6)

3.1. DIMENSIONALITY REDUCTION/FEATURE EXTRACTION 27

such that

v =
1

λN

N∑

i=1

Φ(xi)Φ(xi)
Tv =

N∑

i=1

[
1

λN
Φ(xi)

Tv

]
Φ(xi) =

N∑

i=1

a(i)Φ(xi),

(3.7)

where

a(i) =
1

λN
Φ(xi)

Tv. (3.8)

It is clear that v ∈ Span {Φ(xi), i = 1, 2, . . . , N}. By left multiplying Eq.

3.6 with Φ(xk) and defining the kernel matrix K ∈ RN×N with elements

(K)ij = κ(xi,xj),

and the vector a ∈ RN with (a)i = a(i), we can show that

Ka = Nλa. (3.9)

That is, a is an eigenvector of K with the corresponding eigenvalue λ∗ = Nλ.

The projection of Φ(xk) onto the principal component of R is given by

vTΦ(xk) =
N∑

i=1

a(i)Φ(xi)
TΦ(xk)

=
N∑

i=1

a(i)κ(xi,xk).

(3.10)

This projection is completely defined by the kernel matrix and its eigen-

vectors. From the theory on PCA, we know that the eigenvectors of the

covariance matrix need to be normalized. The squared norm of this eigen-

vector is given by

‖v‖2 = vTv =
N∑

i,j=1

a(i)a(j)κ(xi,xj) = aTKa = λ∗aTa = λ∗‖a‖2

by substitution. In order to normalize the eigenvectors, we need

‖v‖ = 1⇔
√
λ∗‖a‖ = 1⇔ ‖a‖ =

1√
λ∗
.

Thus, v can be normalized by scaling a. Note that λ∗ = Nλ is the corre-

sponding eigenvalue of a, while λ is the corresponding eigenvalue of v. Let

28 CHAPTER 3. UNSUPERVISED LEARNING

a1,a2, . . . ,a` be the ` dominant eigenvectors of K, with λ∗1 ≥ λ∗2 ≥ . . . ≥ λ∗` .
Then using (3.10) and the normalization trick, the projection of Φ(xk) onto

the ` principal components of R can be stored in a vector zk ∈ R`, where

(zk)j = vTj Φ(xk) =
1√
λ∗j

N∑

i=1

aj(i)κ(xi,xk). (3.11)

Centering The derivation of KPCA assumed that the data is centered in

kernel space, i.e.

E [Φ(x)] = 0.

This assumption is not necessarily satisfied in practice. However, by instead

considering the covariance matrix of Φ(xi) − 1
N

∑N
j=1 Φ(xj), it is possible

to show that the same methodology can be used by modifying the kernel

matrix. In particular, instead of using the kernel matrix K directly, we use

K̃ = K− 1NK−K1N + 1NK1N , (3.12)

where 1N ∈ RN×N is a matrix with elements (1N)ij = 1
N . For details, see

[128].

The question now is whether to center the data or not. This question will

not be answered here. The interested reader is directed towards [62] for

a review on this topic. However, there are methods where centering does

not make sense. For instance Kernel Entropy Component Analysis (KECA)

[76].

The Empirical Kernel Space In many cases, the kernel space might

be infinite dimensional (e.g. with a Gaussian kernel). As such, an exact

finite representation of the kernel representation does not necessarily exist.

However, since the inner products are preserved when using KPCA, we are

able to generate a finite representation with the same inner products as in

the possibly infinite dimensional kernel space. Thus, the data is said to be

embedded in the empirical kernel space.

3.1. DIMENSIONALITY REDUCTION/FEATURE EXTRACTION 29

In-sample KPCA

Let x1,x2, . . . ,xN ∈ Rp be a sample and let z1, z2, . . . , zN ∈ R` be the

projections of the sample onto the ` principal components in kernel feature

space. Let K be a kernel matrix with the ` most dominant eigenvectors

a1,a2, . . . ,a` and the corresponding eigenvalues λ∗1, λ
∗
2, . . . , λ

∗
` . It is easy to

see that if we define the eigenvector matrix E =
(
a1 a2 · · · a`

)
and the

diagonal eigenvalue matrix Λ = diag(λ1, λ2, . . . , λ`), a combined calculation

of all the projections is done with

Z =




zT1
zT2
...

zTN




(3.13)

= KTEΛ−
1
2 . (3.14)

Note that K is symmetrical, so KT = K. Furthermore, E is orthogonal.

This implies that E−1 = ET . Thus, the kernel matrix can be diagonalized

by K = EΛET . Using these properties with Eq. 3.13 yields

Z = KTEΛ−
1
2 = KEΛ−

1
2 = EΛETEΛ−

1
2 = EΛ

1
2 . (3.15)

Thus, all the projections can be done in one matrix operation after con-

structing the eigenvector matrix and the eigenvalue matrix. We also see

that the projection only depends on the eigenvalues and eigenvectors of the

kernel matrix, not the kernel function itself. If KPCA is used in combination

with for instance classification or regression, we have both training data and

test data. In this case, we would need to use the general expression in Eq.

3.11 for the test data since the systems are trained based on the projection

of the training data. In clustering, however, we can use the expression in

Eq. 3.15.

30 CHAPTER 3. UNSUPERVISED LEARNING

3.2 Clustering

This section describes methods for clustering, which are relevant for Paper

I and Paper IV. Clustering in general is a far too comprehensive topic to

discuss in detail for this thesis. The interested reader is therefore encouraged

to read some of the survey papers available on this topic [75, 149, 157].

The term clustering refers to the process of finding natural groups in data,

without exploiting label information. In modern days when huge amounts

of data are available, clustering is becoming increasingly more important

as labelling data requires human interaction, which is time consuming and

expensive.

3.2.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is used to model the Probability Density

Function (PDF) of the data. The PDF of the data is assumed to be on the

form

f(x) =

k∑

k′=1

wk′Nd(x |µk′ ,Σk′), (3.16)

where Nd(·) is a multivariate Gaussian distribution with mean vector µk′ ∈
Rd and covariance matrix Σk′ ∈ Rd×d. The weight wk refers to the prior

probability of a datapoint belonging to mixture component k. When used

for clustering, each mixture component is interpreted as a cluster.

Fitting the model to the data (i.e. finding the clusters) consists of finding

mean vectors, covariance matrices and prior probabilities such that the log

likelihood is maximized. This optimization problem cannot be solved di-

rectly, which means that there is no analytical expression that can be used

to calculate the parameters (µk, Σk and wk) that maximizes the objective

function. Instead, the problem is typically optimized using the Expectation

Maximization (EM) algorithm [35], in which one augments the data with

a latent variable and alternates between computing the expectation of the

complete2 log likelihood function given the current parameters and comput-

ing the parameters which maximizes this expectation. It has been shown

2Joint distribution with the data and the hidden variable.

3.2. CLUSTERING 31

that the objective function will increase for each iteration, such that it may

converge to a local optimum [154].

Let x1,x2, . . . ,xN ∈ Rd be a sample and let zi ∈ Rk, i = 1, 2, . . . N be

vectors of latent variables with (zi)j ≥ 0 and 〈1, zi〉 = 1. In particular, let

(zi)k = 1 if xi is drawn from mixture component k and (zi)k = 0 otherwise.

Since wk is the prior probability of a datapoint being drawn from mixture

component k, we have P ((zi)k = 1) = wk. The Probability Mass Function

of zi puts probability mass wk on zi if and only if (zi)k = 1. Thus, the

probability mass function (PMF) of zi is given by

f(zi) =

K∏

k=1

w
(zi)k
k . (3.17)

In order to define the joint distribution of the data and the latent variables,

we need the conditional distribution of a data point given the latent variable.

If (zi)k = 1, the data point xi is drawn from a d-variate normal distribution

with mean µk and covariance matrix Σk. Thus, we have

f(xi|zi) =

k∏

k′=1

[
Nd(xi|µ′k,Σ′k)

](zi)k . (3.18)

Thus, the joint distribution of the latent variable zi and the data xi is

f(xi, zi) = f(xi|zi)f(zi)

=
k∏

k′=1

[Nd(xi|µk′ ,Σk′)]
(zi)k′

k∏

k′=1

w
(zi)k′
k′

=
k∏

k′=1

[wk′Nd(xi|µk′ ,Σk′)]
(zi)k′ .

(3.19)

32 CHAPTER 3. UNSUPERVISED LEARNING

The log–likelihood of the complete data is given by

lc(Θ|X,Z) =
N∑

i=1

ln [f(xi, zi)]

=

N∑

i=1

ln

[
k∏

k′=1

[wk′Nd(xi|µk′ ,Σk′)]
(zi)k′

]

=
N∑

i=1

k∑

k′=1

(zi)k′ ln [wk′Nd(xi|µk′ ,Σk′)] ,

(3.20)

where Θ is the set of all the parameters, X is the set of all data vectors and

Z is the set of all latent variables.

In order to apply the EM–algorithm, we need to compute Q
(
Θ, Θ̂

(l)
)

=

EZ

[
lc(Θ|X,Z)|X, Θ̂(l)

]
. This expression is the expectation of the complete

log–likelihood with respect to Z given the data X and the current estimates

of the parameters, Θ̂
(l)

. The only stochastic variable in Eq. 3.20 is (zi)k′

since the data is assumed observed. Thus, we only need to find the expec-

tation of these given the data and parameters. This yields

E
(

(zi)k′
∣∣∣xi, Θ̂

(l)
)

= 0 · P
(

(zi)k′ = 0
∣∣∣xi, Θ̂

(l)
)

+ 1 · P
(

(zi)k′ = 1
∣∣∣xi, Θ̂

(l)
)

= P
(

(zi)k′ = 1
∣∣∣xi, Θ̂

(l)
)

=
P
(

(zi)k′ = 1
∣∣∣Θ̂(l)

)
f
(
xi

∣∣∣(zi)k′ = 1, Θ̂
(l)
)

∑k
j=1 P

(
(zi)j = 1

∣∣∣Θ̂(l)
)
f
(
xi

∣∣∣(zi)j = 1, Θ̂
(l)
)

=
ŵ

(l)
k′ Nd(xi|µ̂

(l)
k′ , Σ̂

(l)

k′)
∑k

j=1 ŵ
(l)
j Nd(xi|µ̂

(l)
j , Σ̂

(l)

j)

≡ γ̂(l)ik′ .
(3.21)

This can be interpreted as the posterior probability of xi belonging to com-

3.2. CLUSTERING 33

ponent k. Using this result yields

Q
(
Θ, Θ̂

(l)
)

=
N∑

i=1

k∑

k′=1

γ̂
(l)
ik′ ln [wk′Nd(xi|µk′ ,Σk′)]

=
N∑

i=1

k∑

k′=1

γ̂
(l)
ik′

[
lnwk′ −

d

2
ln(2π)− 1

2
ln |Σk′ |

− 1

2
(xi − µk′)TΣ−1k′ (xi − µk′)

]
.

(3.22)

Each iteration of the EM–algorithm is a two–step procedure. 1. Given the

current parameters, find Q
(
Θ, Θ̂

(l)
)

by computing the expectation in Eq.

3.21. 2. Update the parameters by maximizing Q
(
Θ, Θ̂

(l)
)

. The new mean

vectors and covariance matrices are easily found by differentiating Eq. 3.22

with respect to µk′ and Σk′ and equating it to zero. This yields

µ̂
(l)
k′ =

1
∑N

i=1 γ̂
(l)
ik′

N∑

i=1

γ̂
(l)
ik′xi (3.23)

Σ̂
(l)

k′ =
1

∑N
i=1 γ̂

(l)
ik′

N∑

i=1

γ̂
(l)
ik′

(
xi − µ̂(l)

k′

)(
xi − µ̂(l)

k′

)T
.a (3.24)

Due to the nature of probabilities, the prior probabilities wk′ need to be

optimized under the constraint
∑k

k′=1wk′ = 1. The Lagrangian is given by

L
(
Θ, Θ̂

(l)
, λ
)

= Q
(
Θ, Θ̂

(l)
)
− λ

(
k∑

k′=1

wk′ − 1

)
.

Differentiating this with respect to wk′ and equating it to zero yields

wk′ =

∑N
i=1 γ̂

(l)
ik′

λ
. (3.25)

Substituting this into the constraint and solving for λ yields λ = N . Thus,

ŵ
(l)
k′ =

∑N
i=1 γ̂

(l)
ik

N
. (3.26)

Note: The GMM presented in this section is the standard GMM. In Paper

I, a slightly different variant is used in order to construct a kernel function

34 CHAPTER 3. UNSUPERVISED LEARNING

for missing data.

3.2.2 k–means

The k–means clustering algorithm is arguably the most influential and popu-

lar clustering algorithm due to being efficient, easy to implement and easy to

understand. Although being linear out of the box, it can be used in conjunc-

tion with dimensionality reduction techniques in order to handle non–linear

data (like in Spectral Clustering), or alternatively be kernelized with Kernel

k–means [47].

Assume that the number of clusters, k, in the dataset is known. Let θ`, ` =

1, 2, . . . , k be the cluster representative for cluster C`, and let ui` ∈ {0, 1}, i =

1, 2, . . . , N be the cluster assignment for datapoint xi, where ui` = 1 if xi ∈
C` and zero otherwise. The cluster assignments are obtained by minimizing

the cost function

L(X,Θ,U) =

N∑

i=1

k∑

`=1

ui`‖xi − θ`‖2. (3.27)

Since the cluster assignments are discrete, it is not possible to optimize this

directly via differentiation. It can, however, be minimized by alternating

between minimizing with respect to the cluster assignments and with respect

to the cluster representatives. Minimizing Eq. 3.27 with respect to the

cluster assignments can easily be done by letting ui` = 1 if ‖xi − θ`‖2 <
‖xi − θm‖2 ∀m 6= ` and zero otherwise. That is, xi ∈ C` if θ` is the closest

cluster representative. Minimizing Eq. 3.27 with respect to the cluster

representatives can be done with differentiation. In particular,

∂L(X,Θ,U)

∂θ`
= −2

N∑

i=1

ui`(xi − θ`).

Equating this to zero yields

θ` =
1

∑N
i=1 ui`

N∑

i=1

ui`xi =
1

|C`|
∑

xi∈C`
xi. (3.28)

3.2. CLUSTERING 35

Algorithm 1: k–means clustering
input : Datapoints x1,x2, . . . ,xN and number of clusters k
output: Cluster assignments ui` and cluster representatives

θ`, i = 1, 2, . . . , N, ` = 1, 2, . . . , k.

Initialize cluster representatives and cluster assignments;
repeat

// Update cluster representatives

for `← 1 to k do

θ` ← 1∑N
i=1 ui`

∑N
i=1 ui`xi

end
// Update cluster assignments

for i← 1 to N do
for `← 1 to k do

di` ← ‖xi − θ`‖2
end
for `← 1 to k do

ui` ← 1 if di` = min(di1, di2, . . . , dik) else 0
end

end

until convergence;

Thus, the cluster representative is the mean vector of the vectors assigned to

cluster C`, which is the origin of the name of the algorithm. This approach

does not guarantee a global optimum, but it will converge monotonically

[131]. The algorithm is summarized in Alg. 1.

k–means is closely related to GMMs. In particular, if one assumes a spherical

covariance structure in a GMM with the variance σ → 0, the posterior

distributions approaches delta functions with the same assignment rule.

Initialization. Initializing cluster representatives for k–means can, de-

pending on the complexity of the data, be very important for the end result.

This has lead to the invention of numerous initialization methods, most

notably k–means++ [7]. The procedure can be understood as follows:

1. Randomly select the first cluster representative from the datapoints in

the dataset.

2. For all remaining datapoints, compute the distance to its closest cluster

representative.

3. Randomly choose the next cluster representative with probability pro-

36 CHAPTER 3. UNSUPERVISED LEARNING

portional to this distance.

4. Repeat step 2. and 3. until all k cluster representatives have been

selected.

This leads to initial cluster representatives evenly spread over the data.

It has been shown that by initializing the cluster representatives using k–

means++, the clustering procedure converges quickly and improves accuracy

[7].

Kernel k–means. Although not directly relevant for the work in this

thesis, it is worth mentioning that there exists a kernelized version of k–

means. The idea is to map xi 7→ φ(xi) and define cluster representatives in

kernel space. The distances between φ(xi) and the cluster representative can

then be computed solely using elements from the kernel matrix, such that

cluster assignments are possible even without explicitly calculating a cluster

representative. Although difficult to initialize properly [36], this allows for

clustering data with non–linear group structures without employing costly

feature extraction/generation techniques prior to the clustering procedure

(e.g. KPCA). Furthermore, it has been shown that a weighted kernel k–

means, initialized with special weights, is in fact minimizing the cost function

of different spectral clustering techniques [36].

3.2.3 Spectral Clustering

Spectral Clustering (SC) refers to clustering methods in which one exploits

properties of the spectral decomposition of some matrix in order to generate

a representation which can be used to cluster data with intricate non–linear

structures. This section describes the Normalized Cut (NCut) [116, 134],

a graph based approach to SC which at the time was revolutionary for

clustering applications, and is closely related to Markov Chain random walks

[102]. While NCut is not used directly in the work presented in this thesis,

the general approach of a non–linear spectral embedding and clustering is

relevant for Paper I. For a more in-depth introduction to spectral clustering,

the interested reader could take a look at [149].

3.2. CLUSTERING 37

Graph Cut

The goal of the clustering methods is to partition a dataset in K clusters,

where the datapoints in the same cluster are similar, while datapoints from

different clusters are dissimilar. A nice way of representing similarity be-

tween data points is a similarity graph.

Let x1,x2, . . . ,xN be a set of data points that we want to partition into

K clusters and let sij > 0 be some similarity measure between xi and

xj . The similarity graph G = (V,E) consists of vertices and edges. Each

vertex vi represents a data point xi. Each edge is weighted by wij . The

weight, wij = sij if xi and xj are connected in the graph and wij = 0

otherwise. The weights of the graph can be stored in the weight matrix

W = {wij}i,j=1,2,...,N . For an undirected graph, we have wij = wji, so W is

symmetric.

There are three types of similarity graphs that are commonly used:

1. ε-neighborhood graph. In a ε-neighborhood graph, we connect the

vertices vi and vj with an edge if ‖xi − xj‖ < ε, ε > 0. That is, if

the Euclidean distance between the data points are lower than some

threshold, they are connected in the graph.

2. k-nearest neighbor (knn) graph. A k-nearest neighbor graph is con-

structed by considering the k-nearest neighbors of a data point xi.

Notice that if we connect vertex vi to vj by an edge based solely on

the k-nearest neighbors of xi, the graph will become directed. To make

the graph undirected, we connect vi to vj if xj is among the k-nearest

neighbors of xi or xi is among the k-nearest neighbors of xj .

3. Fully connected graph. In a fully connected graph, all points are con-

nected to each other. This is a useful representation if the similarity

measure models local neighborhoods.

The Graph Laplacian The graph Laplacian is an operator that naturally

arises in the context of many graph based learning algorithms, including the

38 CHAPTER 3. UNSUPERVISED LEARNING

normalized cut [134]. In this section, the graph Laplacian is defined for

future use and essential properties are stated.

In order to provide a definition of the graph Laplacian, it is necessary to

first define the degree matrix.

Definition 3.1 (Degree matrix). Let W be a graph weight matrix with

elements (W)ij = wij. Then the degree matrix is defined as

D = diag(d11, d22, . . . , dNN), (3.29)

where dii =
∑N

j=1wij is the degree of vertex i.

Definition 3.2 (Graph Laplacian). Let W be a graph weight matrix with

elements (W)ij = wij, and let D be the degree matrix as defined in Def.

3.1. Then the graph Laplacian is defined as

L = D−W. (3.30)

Property 3.1. For an undirected graph, the quadratic form of the graph

Laplacian can be expressed as

yTLy =
1

2

N∑

i=1

N∑

j=1

(yi − yj)2wij . (3.31)

Proof.

yTLy = yT (D−W)y

= yTDy − yTWy

=
N∑

i=1

y2i di −
N∑

i=1

N∑

j=1

yiyjwij

=
1

2




N∑

i=1

y2i di − 2
N∑

i=1

N∑

j=1

yiyjwij +
N∑

j=1

y2jdj




=
1

2




N∑

i=1

y2i

N∑

j=1

wij −
N∑

i=1

N∑

j=1

2yiyjwij +

N∑

j=1

y2j

N∑

i=1

wji




=
1

2




N∑

i=1

N∑

j=1

y2iwij −
N∑

i=1

N∑

j=1

2yiyjwij +
N∑

i=1

N∑

j=1

y2jwij




3.2. CLUSTERING 39

=
1

2

N∑

i=1

N∑

j=1

(
y2i − 2yiyj + y2j

)
wij

=
1

2

N∑

i=1

N∑

j=1

(yi − yj)2wij .

Property 3.2. The graph Laplacian is positive semidefinite.

Proof. Since wij ≥ 0 and (yi − yj)2 ≥ 0, Eq. 3.31 yields yTLy ≥ 0, such

that L is positive semidefinite by definition.

From Prop. 3.2, it follows that the eigenvalues of L are non–negative. It is

also easy to show that any constant vector c · 1 lies in the null space of L,

such that the smallest eigenvalue of L is 0 with the associated eigenvector

c · 1.

The Normalized Cut Clustering on similarity graphs is often done by

minimizing graph cuts. That is, we want to find a partition of the graph

such that the between-cluster weights are as low as possible while the within-

cluster weights are high. That means that vertices in different clusters are

dissimilar, while vertices within the same cluster are similar. We will con-

sider the situation where we want to partition the dataset into two clusters

and then state a generalized algorithm.

Definition 3.3 (Graph cut). Let A and B be complimentary subsets of the

set of vertices V with A∪B = V and let W be the graph weight matrix with

(W)ij = wij. Then the graph cut is defined as

cut(A,B) =
∑

i∈A

∑

j∈B
wij . (3.32)

The graph cut is the sum of the weights from every vertex in A to every

vertex in B. This optimization problem makes sense intuitively, since the

between–cluster similarity is low if the graph cut is low. Minimizing the

graph cut will unfortunately often lead to a partition with one single vertex

40 CHAPTER 3. UNSUPERVISED LEARNING

in one cluster and all the other vertices in the other cluster [134]. This

problem is solved by including the volume of each cluster, which is defined

in Def. 3.4.

Definition 3.4 (Set volume). Let A ⊆ V and let dii be the degree of vertex

i as defined in Def. 3.1. Then the volume of A is defined as

vol(A) =
∑

i∈A
dii. (3.33)

If A consists of a single vertex, the volume will be the sum of all the weights

of the outgoing edges of that vertex which is small compared to a partition

where A contains more vertices. This leads to the normalized cut.

Definition 3.5 (Normalized cut). The normalized cut is defined as

NCut(A,B) = cut(A,B)

[
1

vol(A)
+

1

vol(B)

]
. (3.34)

The normalized cut will be minimized if cut(A,B) is low while at the same

time vol(A) and vol(B) are high. This ensures that the between-cluster

similarity is low and that the within-cluster similarity is high.

Minimizing the Normalized Cut It can be shown that minimizing the

normalized cut as defined in (3.34) is NP–complete [134]. However, it is

possible to get an appoximate solution by using the graph Laplacian and a

spectral relaxation. Consider the label vector y =
(
y1, y2, . . . , yN

)T
,

where

yi =





1
vol(A) if xi ∈ A
− 1

vol(B) if xi ∈ B
. (3.35)

Using this label definition and the fact that yi − yj = 0 if xi and xj are

assigned to the same cluster, Eq. 3.31 becomes

yTLy =
1

2

∑

i∈A

∑

j∈B

(
1

vol(A)
+

1

vol(B)

)2

wij

=
1

2

(
1

vol(A)
+

1

vol(B)

)2∑

i∈A

∑

j∈B
wij

3.2. CLUSTERING 41

=
1

2

(
1

vol(A)
+

1

vol(B)

)2

cut(A,B).

Furthermore,

yTDy =
∑

i∈A
y2i di +

∑

j∈B
y2jdj

=
∑

i∈A

1

vol2(A)
di +

∑

j∈B

1

vol2(B)
dj

=
1

vol2(A)

∑

i∈A
di +

1

vol2(B)

∑

j∈B
dj

=
1

vol(A)
+

1

vol(B)
,

such that

yTLy

yTDy
=

1

2

(
1

vol(A) + 1
vol(B)

)2
cut(A,B)

1
vol(A) + 1

vol(B)

∝ NCut(A,B).

Thus, the normalized cut can be minimized by

min
y

yTLy

yTDy
. (3.36)

By relaxing the constraints on y in Eq. 3.35 such that any value is allowed,

it is possible to show using Lagrangian optimization that an approximate

minimization of the normalized cut can be obtained by the generalized eigen-

value problem

Ly = λDy, (3.37)

were λ is the second smallest eigenvalue since the smallest is the trivial

solution where λ = 0. The idea is to compute y as an eigenvector of D−1L

and then threshold it to get the cluster labels.

General algorithms In the previous discussion, it was assumed that the

data contained two clusters. The theory can be generalized to k–cluster

problems by including more eigenvectors. For the general algorithms, it is

necessary to define the normalized graph Laplacians.

42 CHAPTER 3. UNSUPERVISED LEARNING

Algorithm 2: Spectral clustering using Lsym

input : Similarity matrix S and the number of clusters k.
output: Cluster assignments.

1. Construct a similarity graph with the weight matrix W.

2. Compute the symmetric normalized graph Laplacian Lsym.

3. Compute the first k eigenvectors of Lsym corresponding to the k smallest
eigenvalues and form the matrix U containing the eigenvectors as columns.

4. Normalize the rows of U to unit length.

5. Let yi, i = 1, 2, . . . , N be the rows of the row-normalized matrix U. Cluster the
data points yi into k clusters using the k-means algorithm.

Definition 3.6 (Normalized Laplacian). The normalized Laplacian is de-

fined as

Lrw = D−1L. (3.38)

Definition 3.7 (Symmetrically normalized Laplacian). The symmetrically

normalized Laplacian is defined as

Lsym = D−
1
2 LD−

1
2 . (3.39)

The first normalized graph Laplacian is related to random walks, while the

second one is symmetrical. It can easily be shown that if y is an eigenvector

of Lrw with the corresponding eigenvalue λ, then z is an eigenvector of Lsym

with the corresponding eigenvalue λ. We also have that y = D−
1
2 z.

Alg. 2 and Alg. 3 shows two general spectral clustering algorithms. The idea

behind both of these algorithms is to generate a representation of the data

using eigenvectors of a Laplacian, and cluster this representation in order to

find cluster labels (typically using k–means). The main difference between

the algorithms is which normalized Laplacian they use. Alg. 2 [116] uses

Lsym, while Alg. 3 [134] uses Lrw. von Luxburg [149] advocates for using Alg.

3 rather than Alg. 2, due to its eigenvectors being interpreted directly as

cluster indicators, such that multiplying these eigenvectors with D
1
2 (Alg. 2)

could lead to undesired artifacts. Furthermore, the row normalization in Alg.

2 could potentially reduce the discriminating properties of the eigenvectors.

3.2. CLUSTERING 43

Algorithm 3: Spectral clustering using Lrw

input : Similarity matrix S and the number of clusters k.
output: Cluster assignments.

1. Construct a similarity graph with the weight matrix W.

2. Compute the normalized graph Laplacian Lrw.

3. Compute the first k eigenvectors of Lrw corresponding to the k smallest
eigenvalues and form the matrix U containing the eigenvectors as columns.

4. Let yi, i = 1, 2, . . . , N be the rows of the matrix U. Cluster the data points yi
into k clusters using the k-means algorithm.

Spectral Clustering using Kernel PCA

The idea behind these SC methods is to use a non–linear feature extrac-

tion method in order to generate a beneficial representation of the data and

use a simple clustering algorithm on this new representation. In the case

of Alg. 3, the feature extractor is the so–called Laplacian Eigenmaps [12].

Another viable option is to use Kernel PCA as the feature extractor, which

could potentially transform non–linearly separable data into linearly sepa-

rable data. Thus, one could for instance use Eq. 3.13 in order to generate a

new representation and cluster this representation using a simple clustering

algorithm like k–means. Since KPCA exploits the eigenvectors and eigen-

values of a kernel matrix, this is a spectral method. A connection between

the Laplacian Eigenmap embedding and the KPCA projections is provided

in [14].

3.2.4 Ensemble Clustering

The main idea behind ensemble learning is to construct a composite model

by a combination of multiple weaker models which yields an overall strong

model. This approach has been used with great success in both supervised

learning [19, 44, 55, 165] and unsupervised learning [5, 10, 42]. This section

describes ensemble clustering [144], which is relevant for Paper I. For an

up–to–date review on ensemble learning in general, the interested reader is

referred to the survey paper by Dong et al. [37], and the references therein.

Even though the amount of clustering algorithms is vast, there is no clus-

44 CHAPTER 3. UNSUPERVISED LEARNING

tering algorithms which will be appropriate to use for every dataset and

different algorithms might produce different partitions for the same dataset.

Even when applying one clustering algorithm several times to the same

dataset with different initial conditions, ambiguous results might arise when

the outputs of different instances are compared. Ensemble clustering (also

called consensus clustering) refers to clustering methods in which multiple

clustering methods, or multiple runs of the same method, are combined in

some way in order to produce a partitioning of the data which is better in

some way than each individual instance. This is often a multi–step proce-

dure, where you

1. Cluster the data multiple times using either multiple clustering algo-

rithms or a single clustering algorithm with different configurations

(random initialization, number of clusters etc.)

2. Construct a similarity matrix based on the partitioning from the pre-

vious step. This is often referred to as the consensus-, co-association-

or ensemble matrix.

3. Use this similarity matrix in order to produce the final partitioning.

In the following, the term co–association matrix is used to denote the simi-

larity matrix.

There are several proposed algorithms to combine clustering results. Fred

and Jain [42] suggests using the k-means clustering algorithm several times

with random initial conditions. In each instance of the clustering algorithm,

the number of clusters, k, is either fixed or chosen randomly in the range

k ∈ [kmin, kmax]. The resulting partitions are then used to vote in a sense.

A N × N co–association matrix S ∈ RN×N , (S)ij = sij is constructed

by counting the number of times the points xi and xj are assigned to the

same cluster in the M different partitions. Each time these data points

are clustered together, it counts as one vote. They call this voting process

evidence accumulation. The elements of S are then calculated by

sij =
nij
M
,

where nij is the number of times xi and xj has been assigned to the same

3.2. CLUSTERING 45

cluster. Since nij = nji, the co–association matrix is symmetrical.

In the ideal case, the elements of S take the values

sij =





1 if xi and xj belong to the same cluster

0 otherwise
.

This happens when xi and xj are clustered together in all of the k-means

trials. If the data points are ordered according to their final cluster assign-

ment, the co-association matrix is a block diagonal matrix. That is, there

exists a permutation matrix Q such that

C = QTSQ,

where C is a block diagonal matrix. In this case, detecting the cluster

structure of the data is trivial. However, in real applications there will be

some non-zero matrix ε in the off-diagonal elements of this matrix and thus,

C is block diagonally dominant.

The co-association matrix is a type of similarity matrix. If two data points

are clustered together in many of the different instances, they are considered

more similar than two data points that are not clustered together as often.

This similarity matrix is used in order to obtain a final partition. Fred and

Jain [42] suggests a hierarchical algorithm like the single link or average link

for this purpose.

In [42], an optimality criteria based on information theory is defined3, which

is used in order to select the number of clusters in the final result. The theory

behind this will not be presented in this thesis, but empirical results in [42]

suggests that the same number of clusters is chosen when using the longest

lifetime based on the dendrogram of the hierarchical clustering algorithm.

While this is the basic idea, other similar approaches have been devised.

Monti et al. [108] includes resampling techniques (like Bootstrapping [41])

to simulate a perturbation of the original dataset. Strehl and Ghosh [140]

use (amongst other things) hypergraph partitioning to obtain a clustering

solution. Hore et al. [64] use centroid based consensus clustering to reduce

3The same criterion was also proposed by Strehl and Ghosh [140].

46 CHAPTER 3. UNSUPERVISED LEARNING

memory complexity for large datasets. Nascimento et al. [115] use spectral

clustering theory. Meyer and Wessell [104] employ a stochastic (random

walk) approach. Ensemble based approaches have also been proposed for

non–vectorial data, like timeseries [106].

3.2.5 Information Theoretic Clustering

This section describes Information Theoretic Quantities used for clustering,

which is relevant for Paper IV. As opposed to traditional machine learning

techniques, Information Theoretic Learning (ITL) uses entropy measures in

order to take into consideration higher order statistics.

The entropy of a statistical distribution describes uncertainty of the distri-

bution, and can be quantified using the Rényi α-order entropy given by

H(p) =
1

1− α log

(∫
p(x)α dx

)
, (3.40)

where p(·) is a probability density function and α > 0, α 6= 1. In order to

compute this quantity for a practical application, it is necessary to either

know the true PDF of the data or to estimate the density. A common

approach is to estimate the PDF using Parzen window estimation [117] with

a Gaussian kernel. That is, given real data x1,x2, . . . ,xN ∈ Rd, the value

of the PDF at x is estimated by

p(x) =
1

N

N∑

i=1

Wσ2(xi − x), (3.41)

where Wσ2(·) = 1

(2πσ2)
d
2
e−

1
2σ2
‖·‖2 is a Gaussian PDF with variance σ2. If

we further set α = 2, the entropy can be computed explicitly [121]. In

particular,

H(p|x1,x2, . . . ,xN) = − log(V (p|x1,x2, . . . ,xN)), (3.42)

3.2. CLUSTERING 47

where V (p|·) is the information potential, defined as

V (p|x1,x2, . . . ,xN) =
1

N2

N∑

i=1

N∑

j=1

W2σ2(xi − xj). (3.43)

In the following, the data points are omitted from the notation for simplicity,

such that H(p) = H(p|x1,x2, . . . ,xN) and V (p) = V (p|x1,x2, . . . ,xN).

In the particular application of clustering, a more useful quantity is the

Cauchý–Schwarz (CS) divergence [77], which measures dissimilarity between

PDFs. The Cauchy–Schwarz divergence between PDFs p1 and p2 is defined

as

DCS(p1, p2) = − log

(∫
p1(x)p2(x) dx∫

p21(x) dx
∫
p22(x) dx

)
, (3.44)

in which we recognize the information potentials V (p1) and V (p2) in the

denominator. Replacing the PDFs with Parzen window estimates yields

[77]

DCS(p1, p2) = − log

(∑
xi∈C1

∑
xj∈C2 W2σ2(xi − xj)∑

i,j∈C1 W2σ2(xi − xj)
∑

i,j∈C2 W2σ2(xi − xj)

)
.

(3.45)

The CS divergence expression in Eq. 3.45 can be used as a loss function

for clustering [78]. The idea is to let p1 and p2 be the estimated PDF of

cluster C1 and C2, respectively. If the datapoints in C1 and C2 are far away

from one another, the numerator in Eq. 3.45 will be close to zero. If each

cluster is dense, the information potentials in the denominator will be large.

Thus, the fraction will be small and the CS divergence will be large. For

simplicity, it is common to minimize the argument of the logarithm, instead

of maximizing the CS divergence.

When W (·) is a valid kernel function (e.g. an RBF function), the argument

of the logarithm in Eq. 3.45 can be interpreted as the cosine of the angle

between the cluster mean vectors in kernel space [77]. Thus, the CS diver-

gence obtains its maximum value when the mean vectors in kernel space are

orthogonal. This has inspired clustering methods based on Kernel Entropy

Component Analysis [53, 76].

48 CHAPTER 3. UNSUPERVISED LEARNING

3.3 Ranking with the Personalized PageRank

This section describes the Personalized PageRank (PPR), which is relevant

for Paper II. The PageRank algorithm [20] is arguably one of the most

influential machine learning methods, in terms of its impact on how people

interact with the internet. The algorithm uses link information on websites

in order to rank the importance of web pages when performing a Google

search. When it was invented in the late 90’s, there were multiple search

engines available. Most of them have perished since then, mostly due to

Google’s superior ability to find relevant web pages, which can be attributed

to its ranking algorithm.

Even though the PageRank algorithm was invented for ranking web pages,

it has seen a multitude of usages in other applications, including Semi–

Supervised Learning [164], image ranking [79], proteins [43], genes [110] and

many more. For an extensive review on the application of PageRank outside

of web–page ranking, the interested reader is directed towards the review

paper by Gleich [48].

Personalized PageRank Let G = {V,E} be a graph with vertices V

and edges E. In terms of web page ranking, the vertices represent web

pages, while the edges represent links between the web pages. The idea

behind the Personalized PageRank (PPR) is to construct a Markov Chain

based on this graph. For each step on the Markov chain random walk, you

proceed according to the graph structure with probability 1−α and restart

according to the seed distribution with probability α, 0 < α < 1. The

seed distribution is denoted by s, with (s)i ≥ 0, sT1 = 1. Let pij be the

transition probability from state i to state j and let P be the transition

probability matrix with (P)ij = pij . Then one step of the Markov chain

random walk is governed by the difference equation

rTt+1 = (1− α)rTt P + αsT . (3.46)

The procedure to rank the vertices in the graph consists of computing the so-

lution of this difference equation, which in fact is the stationary distribution

3.3. RANKING WITH THE PERSONALIZED PAGERANK 49

of a Markov chain with transition probability matrix

Pppr = (1− α)P + α1sT . (3.47)

The vertices in the graph are then ranked according to this stationary dis-

tribution, such that the vertices with the highest stationary probability are

ranked on top. The vertices with the highest stationary probability are the

ones which a random walk will visit the most in the long run.

In the original version of the PageRank algorithm, this was used in order to

rank web pages. In this situation, each web–page is represented by a vertex

in the graph. The idea is to use link–information in order to define transition

probabilities in the Markov chain. In particular, if web page i has an out–link

to web page j, there is an edge between vertex i and vertex j in the graph. If

web page i has a total of `i out–links, the transition probability pij is defined

as pij = 1
`i

. In this original formulation, the seed distribution s is fixed and

uniform. While this is necessary in order for the stationary distribution to

exist due to highly sparse transition probabilities, it is also the basis for

the so–called random surfer model [91]. With probability 1 − α, a random

surfer will follow links on a web page and with probability α, the random

surfer will teleport to a different part of the graph. This teleportation is

analogous to typing in the address of a web page. Although this model does

not accurately model a real surfers behaviour, the PageRank algorithm is

arguably one of the most influential algorithms in modern times, and was a

large contributor to the initial success of the Google search engine.

Graph induced by a symmetric similarity matrix Various graph

based machine learning algorithms need a matrix on the form D−1K, where

K is a similarity matrix with non–negative elements and D is the diagonal

degree matrix. Matrices on this form are right stochastic due to each row

summing to one, and can thus be used in conjunction with the PPR. This

section is relevant for Paper II, and is based on work by Chung and Zhao

[30], where they use a transition probability matrix on this form and present

an explicit solution for the stationary distribution.

Consider the difference equation in Eq. 3.46. Let π(α, s) be the solution of

50 CHAPTER 3. UNSUPERVISED LEARNING

this equation. Then

π(α, s)T = (1− α)π(α, s)TP + αsT , (3.48)

where π(α, s) is considered unknown. Solving Eq. 3.48 for π(α, s) yields

π(α, s)T = (1− α)π(α, s)TP + αsT

π(α, s)T (I− (1− α)P) = αsT

π(α, s)T (αI + (1− α)(I−P)) = αsT

1− α
α

π(α, s)T
(

α

1− αI + I−P

)
= sT

1

β
π(α, s)T (βI + I−P) = sT ,

where β = α
1−α

4. If the stochastic matrix P is on the form D−1K, where K

is symmetric with non–negative entries we get

1

β
π(α, s)T (βI + I−D−1K) = sT

1

β
π(α, s)TD−

1
2 (βI + D−

1
2 (D−K)D−

1
2)D

1
2 = sT

1

β
π(α, s)TD−

1
2 (βI + L)D

1
2 = sT

1

β
π(α, s)TD−

1
2LβD

1
2 = sT , (3.49)

where Lβ = βI + L is the β-normalized Laplacian, and L is the symmetri-

cally normalized Laplacian as defined in Def. 3.7. This can be solved using

a Green’s function. In this case, we use a discrete Green’s function [29]. A

discrete Green’s function Gβ for Lβ satisfies

GβLβ = LβGβ = I.

Substituting this in Eq. 3.49 and transposing the solution yields

π(α, s) = βD
1
2GβD−

1
2 s. (3.50)

4The observant reader will notice that Chung and Zhao [30] use β = 2α
1−α . This

is because they introduce a lazy random walk, which is not needed when the graph is
connected.

3.3. RANKING WITH THE PERSONALIZED PAGERANK 51

Since Lβ is symmetric, it can be decomposed as

Lβ =
N∑

i=1

λieie
T
i = EΛET ,

where λi are the eigenvalues of Lβ and ei are the corresponding orthonormal

eigenvectors. Clearly, we have

Gβ =

N∑

i=1

1

λi
eie

T
i = EΛ−1ET . (3.51)

Thus, the score vector in Eq. 3.50 is found by 1. computing Lβ, 2. comput-

ing the eigenvectors and eigenvalues of Lβ, 3. computing Gβ according to

Eq. 3.51 and 4. use this matrix in Eq. 3.50 in order to compute the score

vector.

52 CHAPTER 3. UNSUPERVISED LEARNING

Chapter 4

Neural Networks

This chapter contains a brief overview of neural networks and neural network

architectures which are relevant for Paper III, Paper IV and Paper V.

Although neural networks were invented several decades ago, higher compu-

tational power, bigger datasets and recent revolutionary advances in neural

network architecture and training methods have ensured that neural net-

works in one form or another are considered state of the art in many appli-

cations these days.

A neural network is a layered computational model. Each layer takes an

input and processes the input in some way to produce an output. The

output of one layer is then fed in as the input to the next layer. This network

architecture is typically trained end–to–end, such that all processing units

in each layer are jointly optimized in order to enable the network to extract

complicated patterns from the data. In the following sections, several types

of processing units and network architectures will be discussed, along with

an optimization procedure.

For the benefit of the reader, most of the theory found in this chapter is

presented in a supervised setting, due to the basic processing units and in-

tuition being application agnostic. The difference between supervised and

unsupervised methods is typically a combination of the choice of cost func-

tion and network architecture. Some relevant unsupervised methods are

53

54 CHAPTER 4. NEURAL NETWORKS

Input Prediction

Figure 4.1: Illustration of a Multi–Layer Perceptron. An illustration of the
neuron computational model is shown in the top right.

briefly described at the end.

4.1 Multi–Layer Perceptron

The Multi–Layer Perceptron (MLP) is the foundation for neural networks

and deep learning. This network architecture is a hierarchical structure of

fully–connected layers, from input to output, in which each layer consists of

computational units referred to as neurons. An illustration of this network

architecture is shown in Fig. 4.1. Each neuron is assigned a simple task:

based on the input, produce a single number. Formally, we define this

mathematical operation as follows. For neuron i in layer `, we compute the

output as

f(x|Θi,`, γi,`) = γi,`(w
T
i,`x + bi,`), (4.1)

where Θi,` = {wi,`, bi,`} are the parameters for the neuron. The vector wi,`

is the neuron’s associated weight vector, bi,` is a bias term and γi,`(·) is the

activation function. The purpose of the activation function is to define the

output of the neuron.

There are many possible choices of activation functions. The traditional

4.2. TRAINING THE NETWORK 55

choice in the hidden layers is a sigmoid function, which is a smooth approx-

imation of a binary step function. This is on the form

γsig(x|a) =
1

1 + e−ax
,

where a is a parameter usually equal to 1. In modern neural networks, the

activation function of hidden units has to a large degree been replaced with

the Rectified Linear Unit (ReLU) [114] due to beneficial properties for deep

networks. The ReLU activation function is on the form

γReLU (x) = max(0, x),

and leads to sparse activations and improved gradient flow. The activation

function in the output layer depends on the application. The standard

choice for classification is a softmax function, which ensures that the output

is non–negative and sums to 1. This is on the form

γsoftmax((x)i) =
e(x)i∑
j e

(x)j
.

4.2 Training the network

One of the benefits of a neural network is that the network is trained end–to–

end, such that all neurons are updated in order to produce a beneficial output

for the task at hand. This is done iteratively: (1) The network is presented

with data. (2) All parameters/weights are updated layer–by–layer from the

output to the input using gradient descent, such that the loss function is

minimized. These two steps are repeated until convergence or some kind

of stopping criterion is met. This is the back–propagation algorithm [125],

which is essentially a practical implementation of the chain rule. Which

loss function to use is a choice that has to be made, and depends on the

application. For a classification task, a common choice is the cross–entropy

loss, which is defined as

L(X,Y) = − 1

N

N∑

i=1

K∑

k=1

yi,k log ŷi,k + (1− yi,k) log(1− ŷi,k),

56 CHAPTER 4. NEURAL NETWORKS

where yi,k ∈ {0, 1} is the true class membership for datapoint xi to class

k and ŷi ∈ [0, 1] is the activation of neuron k in the output layer when

presented with datapoint xi.

Dropout Dropout [139] is a regularization technique for neural networks

which is designed to reduce over–fitting problems. In modern neural net-

work architectures, the number of trainable parameters is enormous, and

the network is almost guaranteed to over–fit to the training data if sufficient

regularization techniques are not in place during training.

The idea behind dropout is to randomly deactivate neurons in the network

during training in order to prevent co–adaptation on the training data [61].

If neurons are randomly deactivated during training, the other neurons have

to learn to accurately predict the output without depending on all neurons

in the network.

Formally, given a dropout probability, p, for each iteration, each neuron is

dropped with probability 1− p and active with probability p. This is done

in practice by sampling from a Bernoulli(p) distribution, one number for

each neuron, and multiplying the output of the neuron with this number

during training.

This procedure can be interpreted as sampling sub–networks from a larger

network during training [139]. At test time, these networks are averaged

in order to produce the full network. Since this averaging procedure is

computationally infeasible, it is approximated by multiplying each weight

by p at test time, such that the actual output at test time is the same as

the expected output during training.

Stochastic Gradient Descent During training, the back–propagation

algorithm [125] is used in order to compute gradients for the weights in the

network. These gradients are then used in conjunction with a gradient de-

scent algorithm in order to update the weights. In the basic gradient descent

algorithm, the gradient is calculated based on all the training data. It is

then multiplied by the learning rate, and subtracted from the current weight.

This updates the weight in such a way that the loss function is smaller than

4.3. CONVOLUTIONAL NEURAL NETWORKS 57

it was before the update. Stochastic gradient descent is similar, but instead

of spending a lot of computational power and memory to calculate the exact

gradient, an estimate of the gradient is calculated based on a smaller portion

of the data (a batch). This not only speeds up the calculation and lowers

the memory requirements, but also injects a certain amount of randomness

into the gradient. This can help combat getting stuck in local minima.

Most implementations today use more advanced variants of this in order

to implement adaptive learning rates for each weight, instead of one global

learning rate. This includes AdaGrad [40] and ADAM [85].

Note: In modern deep learning software packages (e.g. Tensorflow [1] or

PyTorch [118]), the practical implementation of these training procedures

are largely simplified for the end user, as they can automatically differenti-

ate and perform various optimization schemes for a user–specified network

architecture and loss function.

4.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) were invented in the 90’s, specifically

designed to handle image data, and played a massive role in the deep learning

revolution in the early 2010’s. Akin to classical image processing techniques,

CNNs employ image filters, which are applied to the images via the convo-

lution operator. As opposed to classical image processing techniques, the

filters are not hand–crafted but are instead learned from the data in order

to best solve the task at hand. Similar to the MLP, the network has a

hierarchical structure, where filters are applied one after the other in order

to extract higher level features from the data. For classification, the last

layers are usually fully–connected which combines the high–level features

extracted by the convolutional layers in order to solve the task at hand.

Although image data with 2–dimensional convolutions is the most common,

CNNs can be applied to any grid–like data with local dependencies, such as

temporal data (1–dimensional) and video (3–dimensional).

While MLPs require one weight parameter per neuron per input, the filters,

58 CHAPTER 4. NEURAL NETWORKS

Input Convolutional layers Fully connected layers

Prediction

Figure 4.2: Typical CNN architecture with convolutional layers in the be-
ginning of the network and fully connected layers at the end. Stock photo
sourced from pixabay.com

and thus the number of weights, in a CNN are usually fairly small compared

to the size of the input data. This is possible due to the inner workings of the

convolution operator, which in practice slides the filter over the image and

computes a weighted sum based on the filter weights and the pixel intensities

in the underlying local image patch. Due to the relatively low number of

parameters, it is possible to train larger networks without overfitting.

Since the filter weights are fixed during this whole operation, the convolu-

tion operator is translation invariant, i.e. it does not matter which part

of the image an object resides. These two properties synergizes well with

image data, since 1. if the number of weights were equal to the number of

input features (number of pixels in the image), the network would have far

too many weights to train and 2. detecting objects in an image should be

possible regardless of the position of the object.

Fig. 4.2 shows a typical CNN architecture with convolutional layers in the

beginning and fully connected layers in the end. Each convolutional layer

typically contains multiple filters of size W ×W . The activation at location

(i, j) of convolutional layer ` for a given filter is computed as

y`i,j = γ


b` +

i+W/2∑

k=i−W/2

j+W/2∑

m=j−W/2
w`−1k,my

`−1
i+k,j+m


 , (4.2)

where w`−1∗,∗ are filter weights and b` is a bias term. After the activation is

computed, there is usually a pooling operator which computes summarizing

statistics for a local region. Common pooling operators include average

pooling, max–pooling and min–pooling. These pooling operators compute

4.4. RECURRENT NEURAL NETWORKS 59

xt ht

z−1

yt

Wh

Wx Wy

Figure 4.3: Basic RNN model with input xt, state vector ht and output yt.
The z−1 block represents a time delay. The weight matrices Wx,Wh and
Wy are trainable.

average–, maximum– or minimum values for each small (e.g. 2x2) area of

the activation map, which ensures robustness from small local variations in

the input. This also leads to reduced size of the input to the next layer.

4.4 Recurrent Neural Networks

This section describes Recurrent Neural Networks (RNN) as a basis for Echo

State Networks (ESN), which is relevant for Paper V.

Recurrent Neural Networks (RNN) are used for sequential/temporal data,

where there are dependencies between an observation and previous obser-

vations. The idea is simple: feed the state (hidden representation) of the

network at time t − 1 in with the new observation at time t in order to

retain information and account for dependencies from previous time steps.

Formally, we have a network with trainable parameters Θ = {Wh,Wx, bh}.
We define the state vector at time t as ht = γ(Whht−1 +Wxxt+ bh), where

xt is the observed value at time t and γ is an activation function. This

network architecture is illustrated in Fig. 4.3. The state vector can then be

fed into an output layer of some sort to produce an output. This can for

instance be predicting future values of xt (regression).

The RNN is trained using Backpropagation Through Time (BPTT) or Trun-

cated BPTT [111, 152]. The idea is to virtually unroll the network in time

as seen in Fig. 4.4, such that it resembles a MLP with one layer for each

timestep, and apply the backpropgation algorithm. This method can lead

to practical issues, as gradients tend to vanish for deep networks, and the

cost of updating parameters will be very high. Truncated BPTT is used in

60 CHAPTER 4. NEURAL NETWORKS

xt−1

ht−1

yt−1

Wx

Wy

xt

ht

yt

Wx

Wy

xt+1

ht+1

yt+1

Wx

Wy

Wh Wh

· · · · · ·

Figure 4.4: Unrolled RNN model.

practice to reduce the severity of vanishing gradients and cost, but in turn

it reduces the memory of the network. With Truncated BPTT, one splits

the input into several smaller segments and treats each segment as its own

training case for BPTT.

4.4.1 RNN architectures

Issues with the standard RNN includes 1. it is difficult to train and 2.

its memory of past events tends to be short. There are several variants of

RNNs that are used in practice to alleviate these problems, for instance the

Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). These

are gated networks, which are designed to improve the gradient flow during

training such that vanishing gradients are no longer a problem. Furthermore,

these gates are used to decide what to keep and what to forget about previous

states in order to improve long–term memory when necessary. The GRU

solves similar problems to the LSTM, but with fewer gates and thus, fewer

trainable parameters.

4.4.2 Echo State Networks

In tandem with the development of the recurrent architectures described

above, there has been developments of a secondary methodology for time

dependent data. These are the so–called reservoir methods, which are de-

4.4. RECURRENT NEURAL NETWORKS 61

Wo
r

Wo
i

Wr
o

Wr
r

Wr
i

y

h

x

z-1

z-1

Figure 4.5: Schematic depiction of the ESN architecture. The circles rep-
resent input x, state, h, and output, y, respectively. Solid squares Wo

r

and Wo
i , are the trainable matrices of the readout, while dashed squares,

Wr
r, Wr

o, and Wr
i , are randomly initialized matrices. The polygon repre-

sents the non-linear transformation performed by neurons and z-1 is the unit
delay operator.

signed to be light–weight in terms of memory usage and computational cost,

and can thus be implemented on low–end integrated devices, such as micro–

controllers or FPGA. The reservoir methods typically consists of a reservoir,

a randomized mapping from the input to a high dimensional representation,

and a readout mechanism which generates an output of the system from

this high dimensional representation. The only element that is trained in a

reservoir method is the readout. The reservoir is kept fixed. Due to this,

the computational cost of training the system is low.

There are numerous types of reservoir computing models, with the most

famous being the Liquid–State Machine [100] and Echo State Networks [74].

This section describes Echo State Networks, which are relevant for Paper V.

An Echo State Network (ESN) consists of a large randomized and sparse

recurrent layer, which does not require training and a linear readout (output)

layer. The idea is that if the network state is high dimensional and random,

the network state should contain enough information to perform well on the

task at hand as long as the output is trained. A visual representation of an

ESN is reported in Fig. 4.5.

The state–update and output of an ESN can be described by the following

62 CHAPTER 4. NEURAL NETWORKS

equations:

ht =γ(Wr
rht−1 + Wr

ixt + Wr
oyt−1 + ξ), (4.3)

yt =Wo
ixt + Wo

rht, (4.4)

where ξ is a small i.i.d. noise term. The reservoir consists of Nr neurons with

the activation function γ(·), typically implemented as a hyperbolic tangent

function. At time t, the network is driven by the input signal xt ∈ RNi

and it generates the output yt ∈ RNo , where Ni and No is the input and

output dimensionality, respectively. The vector ht ∈ RNr denotes the ESN

internal state. The weight matrices Wr
r ∈ RNr×Nr (reservoir connections),

Wr
i ∈ RNr×Ni (input-to-reservoir), and Wr

o ∈ RNr×No (output-to-reservoir

feedback) contain real values in the [−1, 1] interval, sampled from a uniform

distribution.

The reservoir Wr
r must satisfy the so-called echo state property [99]. This

guarantees that the effect of a given input on the state of the reservoir

vanishes in a finite number of time intervals. A widely used rule-of-thumb

suggests to rescale the matrix Wr
r to have ρ(Wr

r) < 1, where ρ(·) denotes

the spectral radius. Several theoretically-founded approaches have been pro-

posed in the literature to properly tune ρ in an ESN driven by a specific

input [15, 17, 145].

The weight matrices Wo
i and Wo

r are optimized for the task at hand. To

determine them, let us consider the training sequence of Ttr desired input-

outputs pairs given by:

(x1, y1) . . . , (xTtr , yTtr), (4.5)

In the initial phase of training, called state harvesting, the inputs are fed

to the reservoir in accordance with Eq. 4.3, producing a sequence of inter-

nal states h1, . . . ,hTtr . Since, by definition, the outputs of the ESN are

not available for feedback, according to the teacher forcing procedure, the

desired output is used instead in Eq. 4.4. States are stacked in a matrix

4.5. UNSUPERVISED LEARNING 63

S ∈ RTtr×(Ni+Nr) and the desired outputs in a vector y∗ ∈ RTtr:

S =




xT1 , hT1
...

xTTtr , hTTtr


 , y∗ =




y∗1
...

y∗Ttr


 .

The initial D rows S and y∗ are the washout elements that should be dis-

carded, since they refer to a transient phase in the ESN’s behavior.

Since the gain of the sigmoid non-linearity in the neurons is largest around

the origin, three coefficients ωi, ωo and ωf are used to scale the input, desired

output and feedback signals respectively. In this way, it is possible to control

the amount of non-linearity introduced by the processing units.

Training the readout consists of solving a convex optimization problem, for

which several closed form solution have been proposed in the literature. The

standard procedure to train the readout, originally proposed in [73], con-

sists in a regularized least-square regression, which can be easily computed

through the Moore-Penrose pseudo-inverse. To learn a non–linear readout,

one can for instance consider using Support Vector Regression (SVR). This is

a supervised learning model that can efficiently perform a non-linear separa-

tion of data using a kernel function to map the inputs into high-dimensional

feature spaces, where they are linearly separable [22].

4.5 Unsupervised Learning

4.5.1 Autoencoders

An autoencoder is a special neural network architecture, which is essentially

attempting to learn to produce a compressed representation which contains

enough information from the input such that it can be used to approximately

reproduce the input. Autoencoders are commonly used in order to determine

initial weights prior to training a network [59]. Although many different

autoencoder networks exist (e.g. [122, 126, 146, 147]), this section describes

the basic autoencoder in its purest form.

64 CHAPTER 4. NEURAL NETWORKS

�(⋅)�(⋅)

� �(�) �(�(�))

Figure 4.6: Typical autoencoder architecture, with e(·) and d(·) representing
the encoder– and decoder network, respectively.

The autoencoder consists of two important network components: an encoder

network e(·) and a decoder network d(·). The encoder network produces the

code representation of the datapoint, while the decoder network attempts

to reproduce the input based on the code representation. Both encoder and

decoder networks can consist of fully–connected, convolutional or recurrent

layers, depending on the data. A typical auto–encoder is illustrated in Fig.

4.6. As seen in the figure, the dimensionality of the code layer e(x) is

typically lower than the rest of the network in order to ensure that the

encoder– and decoder network does not simply learn identity mappings [147].

This is not necessary if some sort of regularization scheme is implemented

during training (see e.g. [147]).

In its most basic form, the autoencoder is trained to minimize

L(X) =
1

N

N∑

i=1

‖xi − d(e(xi))‖2,

the mean squared error of the input and the networks’ reproduced version.

Since the loss function does not need ground truth labels, this is in fact an

unsupervised learning task. This has been shown to be a useful loss function

with the goal of reproducing the input, as it is maximizing the lower bound

of the mutual information between the input and the code [147], leading to

a code representation with as much information from the input as possible.

4.5. UNSUPERVISED LEARNING 65

4.5.2 Clustering

Clustering using neural networks is an emerging trend with great poten-

tial, which has until recently been considered a too difficult task due to the

extremely high dimensionality of the parameter space and the lack of la-

bels. This task is usually solved through clever use of network architecture

and training procedures. This section briefly describes some notable recent

methods for clustering using neural networks.

Deep embedded clustering (DEC) [156] is one of the earliest successful clus-

tering methods developed for neural networks. DEC uses a MLP in or-

der to produce an embedding in which the clustering is performed. Sim-

ilar to k–means, the clustering procedure defines cluster centroids µk′ in

this embedding space. In order to assign a datapoint xi to a cluster, Xie

et al. [156] define a similarity between its embedding zi and a cluster cen-

troid µk′ . This is defined using a Student’s t–distribution with 1 degree

of freedom. The optimization procedure minimizes the Kullback–Leibler

(KL) divergence between this similarity and a target distribution designed

to promote pure clusters, strengthen high confidence assignments and pre-

vent collapsing clusters. This procedure is designed to jointly optimize the

cluster centroids and the weights in the network, which are initialized using

a stacked denoising autoencoder [147]. This idea has since been extended

with Improved Deep Embedded Clustering (IDEC) [52] and Deep Clustering

Networks (DCN) [158]. The former keeps the decoder after pretraining the

network and jointly optimizes the clustering loss and the autoencoder loss.

The authors argue that this improves clustering performance by ensuring

that the features contain relevant information. The latter introduces a hard

cluster assignment to IDEC, which leads to a two step procedure due to

cluster assignments being non–differentiable.

Other noteworthy methods include SpectralNet [132] which optimizes a spec-

tral clustering objective, and Generative Adverserial Network (GAN) based

clustering methods [112, 138].

66 CHAPTER 4. NEURAL NETWORKS

Part II

Summary of research and

concluding remarks

67

Chapter 5

Summary of Research

Paper I – Unsupervised Learning using PCKID – A

Probabilistic Cluster Kernel for Incomplete Data

In this paper, we develop a novel kernel function designed for vectorial data

with missing elements. The kernel function is founded on ensemble meth-

ods, leading to an adaptive kernel function which is not sensitive to hyper–

parameter choices, and thus is especially suited for unsupervised learning

where no ground truth data is available for parameter cross–validation. The

kernel function is learned by fitting many Gaussian Mixture Models to the

data on different scales (number of mixture components) and with a multi-

tude of initial conditions. The models are inherently capable of dealing with

missing data. These mixture models are under–trained, in order to provide

diversity in the overal ensemble. The pairwise kernel evaluations are con-

structed as the average of the inner products between posterior distributions,

evaluated at two datapoints.

The experiments are performed on spectral clustering and unsupervised

ranking, and compared to various methods and kernels, with promising re-

sults.

69

70 CHAPTER 5. SUMMARY OF RESEARCH

Contributions by the author

• The idea was conceived by me and my co–authors and further devel-

oped by me.

• I made all implementations and ran all experiments.

• I wrote the first draft of the manuscript.

Paper II – Kernel Personalized PageRank

In this paper, we investigate the mathematics behind the Personalized PageR-

ank and provide new insights that lead to new methodology. In particular,

we show that the score vector of the Personalized PageRank, when the

Markov chain transition probability matrix is generated from a kernel simi-

larity function, can be computed using simple projections in the kernel space

associated with the Green’s function of a variant of the graph Laplacian.

This naturally leads to a low–rank spectral embedding space in which the

scores can easily be approximated both for in–sample data and previously

unseen out–of–sample data. This out–of–sample approximation is calculated

by a similar expression to out–of–sample Kernel PCA, using a normalized

version of the kernel function used to generate the transition probabilities.

This result is important, as calculating out–of–sample values of the Green’s

function is not viable. We provide error approximation bounds and use

these to order eigenvectors and eigenvalues such that these error bounds are

minimized.

Experiments show quantitatively that our eigenvector sorting method out-

performs the naive sorting method(by eigenvalues), which is often used for

spectral methods. Furthermore, we show experimentally that using our low–

rank embedding can lead to increased performance compared to the original

PPR.

71

Contributions by the author

• The idea was conceived by me, and further developed with input from

the co–author.

• The mathematical expressions and connections were derived by me.

• I made all implementations and ran all experiments.

• I wrote the first draft of the manuscript.

Paper III – The deep kernelized autoencoder

We develop an auto–encoder that utilizes a kernel–alignment regularization

term between inner products (a linear kernel) in code space and a kernel

function computed in input space. This leads to inner products in code

space that are encouraged to mimic the similarity in input space, which is

computed by a kernel function. This regularization term is used during the

optimization in order to learn meaningful representations in code space.

We demonstrate the usefulness of our code space representation, both quali-

tatively and quantitatively, by using the this representation for classification,

denoising and manifold traversal.

Contributions by the author

• The idea was conceived in joint collaboration with all authors, where

some of the main components were my ideas.

• I helped develop the mathematical groundwork.

• I helped debugging the implementation.

• Parts of the first draft of the manuscript was written by me.

72 CHAPTER 5. SUMMARY OF RESEARCH

Paper IV – Deep divergence–based approach to clus-

tering

We develop a deep clustering network, in which we adapt and incorporate

kernel based and information theoretic clustering losses in the training pro-

cedure that enforces compactness within clusters and separation between

clusters. In particular, we adapt the Cauchy–Schwartz divergence to support

non–discrete cluster assignments in order to incorporate it during training of

the network. This loss can be interpreted as maximizing the angle between

cluster mean vectors in kernel space [77]. The loss is combined with geomet-

ric regularization constraints in order to avoid degenerate structures in the

result. The training procedure is adapted to support batch–wise training,

such that the method scales well to large datasets.

We demonstrate our network on a multitude of clustering tasks, with com-

petitive performances compared to other state–of–the art methods at the

time.

Contributions by the author

• The idea was conceived in joint collaboration with all authors, where

some of the main components were my ideas.

• I helped develop the mathematical groundwork.

• I ran experiments for baseline methods.

• I helped debugging the implementation.

• Parts of the first draft of the manuscript was written by me.

73

Paper V – Training Echo State Networks with Reg-

ularization Through Dimensionality Reduction

In this paper, we introduce unsupervised dimensionality reduction (including

Kernel PCA) as a regularization to Echo State Networks. The dimensional-

ity reduction layer creates a low–rank representation of the large and sparse

reservoir, which is fed into the readout layer. It is shown experimentally

that this low–rank representation is able to capture the underlying dynamic

properties of the time series, and as such it is well suited for the purpose of

prediction.

Contributions by the author

• The initial idea was conceived by the second author and further de-

veloped by all authors.

• I made the implementation1.

• I ran experiments, in collaboration with the second author.

• I wrote the first draft of the manuscript in collaboration with the

second author.

1https://github.com/siloekse/PythonESN

74 CHAPTER 5. SUMMARY OF RESEARCH

Chapter 6

Concluding Remarks

In this thesis, we have leveraged kernel methods for unsupervised learning.

We have proposed a kernel for unsupervised learning with missing data,

which inherently learns to adapt to the structure of the data without the

need of critical user defined hyper–parameters. Furthermore, we have inves-

tigated the Personalized PageRank from a different perspective and shown

that this can be interpreted as a kernel method. This lead to a intuitive

unsupervised approximate method based on Kernel PCA with an included

out–of–sample extension. Theoretical bounds for the approximation error

are provided.

In an effort to improve unsupervised deep learning, we have explored inject-

ing kernels during the learning process. In particular, we have used kernels

to

1. Align inner products in the code space of an autoencoder to a kernel

computed on the input data. This is done in order to learn meaningful

representations in code space.

2. Develop a deep clustering network in which kernel based information

theoretic losses are used during the training procedure in order to

enforce cluster friendly structures in the final hidden representation.

Clustering is performed simultaneously with training the network, and

learning is performed end–to–end without the need of pre–training.

75

76 CHAPTER 6. CONCLUDING REMARKS

Finally, we have introduced unsupervised dimensionality reduction (includ-

ing Kernel PCA) as a regularization to Echo State Networks. This is used in

order to create a low–rank representation of the reservoir. We have observed

that this low–rank representation is able to capture the underlying dynamic

properties of the time series.

6.1 Limitations and future work

Paper I Although ensemble based methods work well for many problems,

we acknowledge that computational cost might be an issue. In the particular

case of the work in Paper I, we try to alleviate this by parallelizing the train-

ing phase and by simplifying the models using diagonal covariance matrices.

However, pairwise kernel evaluations on a large ensemble of models is still

expensive, especially on a large dataset. Runtime complexity could poten-

tially be reduced by incorporating multiple kernel learning in the framework,

in order to reduce the number of model evaluations needed at runtime.

Another limitation of the kernel is that although it does not perform badly

in a supervised setting, it does not necessarily outperform other kernels. Due

to the presence of labels, tuning parameters in other kernels for the task at

hand is certainly possible, and usually makes other kernels perform on par or

better than our kernel. It might be possible to somehow incorporate labels

in the kernel evaluation step in order to increase its viability in supervised

(or semi–supervised) tasks.

Paper II As with all eigenvector based approaches, performing Kernel

PCA to generate our ranking embedding is computationally expensive. This

is somewhat alleviated by the fact that we are able to define an out–of–

sample extension in our embedding. However, we have yet to find a way to

efficiently update the basis when a new datapoint enters the dataset without

recomputing the eigenvectors of the updated kernel matrix.

Paper III Regularizing an autoencoder in order to control the code space

representation is an idea that has been explored in various ways. We decided

6.1. LIMITATIONS AND FUTURE WORK 77

to do this in such a way that the inner products in code space are imitating a

kernel function computed over the input data using a normalized Frobenious

distance, or equivalently, a kernel alignment [32]. We have recently been

made aware of a discussion regarding kernel alignment versus centered kernel

alignment, where the latter is related to the Hilbert Schmidt Independence

Criterion [21]. This has previously been used in Multiple Kernel Learning

with good results [31], although it was outperformed by other measures in

some tasks when utilized for an informativeness measure. Nevertheless, it

would be an idea to test out.

In the paper, we performed the experiments using a Probabilistic Cluster

Kernel (PCK). The choice of kernel is of course important for the end result,

and could be chosen based on the application. For instance, you could

potentially use the results from Paper II in order to train an autoencoder in

which the code layer is suitable for ranking.

Paper IV Loss surfaces within neural networks are by nature highly ir-

regular with many local minima or saddle points, especially in deep learning

where the number of parameters is enormous. This can make optimization

difficult. Furthermore, the kernel/information theoretic based loss function

used in this work is known to have many local minima, especially when the

kernel width parameter is small. Setting this parameter to a sensible value

is inherently difficult, especially on a problem that changes during training

as with the case of neural networks, and mini batch training. A similar loss

function is used in [78]. They solve this problem by employing an annealing

strategy of the kernel width parameter, in order to start off with a smooth

loss surface to approximately find the global minimum, and get a fine–tuned

result as the kernel width decreases. Due to the evolving nature of the in-

put data when dealing with deep neural networks and mini–batch training,

we opted for using rules–of–thumb for this parameter. Instead of annealing

the parameter, we added several regularization terms in order to guide the

network to approach a sensible solution. The result of this was a network

whose input was expected to have uniformly sized clusters (in terms of the

number of datapoints). Furthermore, we experienced that once every now

and then, the network would converge to a bad solution. This is the reason

why we recommend to train several networks and choose the solution with

78 CHAPTER 6. CONCLUDING REMARKS

the lowest loss function value (or perform a voting process). It is unknown

to me at this point in time if there are better ways of dealing with this, but

it is something that would be interesting to investigate in the future.

Paper V The biggest limitation to this work might be the lack of theoret-

ical guarantees for our findings. We do get experimental results on synthetic

data with known dynamical properties that indicate the dimensionality re-

duction layer is able to capture these properties. If this could be shown

theoretically, it would have made the paper much stronger.

Part III

Included papers

79

Paper I

Unsupervised Learning using PCKID – A
Probabilistic Cluster Kernel for Incomplete
Data
Sigurd Løkse, Filippo M. Bianchi, Arnt-Børre Salberg and Robert Jenssen.

In submission

81

Unsupervised Learning using PCKID – A Probabilistic Cluster
Kernel for Incomplete Data

Sigurd Løkse Filippo Maria Bianchi Arnt–Børre Salberg Robert Jenssen

Abstract

In this paper, we propose PCKID , a novel
and robust kernel function for unsupervised
learning, specifically designed to handle in-
complete data. By combining posterior dis-
tributions of Gaussian Mixture Models for
incomplete data on different scales, we are
able to learn a kernel for incomplete data that
does not depend on any critical hyperparam-
eters, unlike the commonly used RBF kernel.
The kernel is applied to two unsupervised
learning tasks, namely spectral clustering and
ranking of multi–attribute data with missing
elements.

1 Introduction

Unsupervised learning concerns the discovery of pat-
terns in data without access to prior knowledge. Due to
an ever-increasing amount of data, and the labeling of
data (acquiring ground truth) being resource-intensive,
unsupervised learning is of utmost importance in the
field of machine learning. Some of the most prominent
examples of unsupervised machine learning approaches
are e.g. clustering [5, 17] and ranking [4, 14, 39].

Analyzing incomplete datasets (with missing features)
poses big challenges within data analysis in general.
These are situations which are oft-encountered in real
applications. For instance, an entry in the dataset may
not be recorded if a sensor is failing or a field in a
questionnaire is left unanswered. This problem is espe-
cially challenging with unsupervised learning problems
where ground truth information cannot be leveraged,
as opposed to supervised learning [7, 27, 32]. This is
reflected in the numerous approaches for trying to deal
with incomplete data in the unsupervised setting, both
using statistical models [13, 21, 25], in addition to non–
statistical based clustering methods [8, 22]. In general,
a common approach is to apply imputation techniques

[10] to estimate the missing values for then to pro-
ceed with the analysis on the imputed, complete, data
set. None of these approaches come without challenges
since the best choice of imputation technique is often
very dependent on the data, and moreover difficult to
evaluate. Furthermore, these methods are specifically
designed for a single task (e.g. clustering), and thus
not suitable for unsupervised learning in general.

Kernel methods have dominated machine learning re-
search [20] by providing a framework in which one
can transform suitable linear methods into non–linear
methods via the kernel trick [1]. This means that as
long as one has access to a suitable kernel function,
one can use this kernel for several different tasks. Su-
pervised learning with kernels for missing data has
shown promising results [3, 7, 23, 32, 41]. However, in
the particular case of kernel methods for unsupervised
learning with missing data, very little work has been
done [26, 34, 38]. The challenge in this setting is that
one often have a user–specified hyper–parameter (or
several such parameters) in the kernel function that
needs to be tuned in order to get good results. The
obtained results are often very sensitive to the choice
of this parameter. Due to not having access to ground
truth in an unsupervised setting, finding a good value
for this parameter is very difficult, especially when
combined with e.g. imputation for missing data.

In this paper, we propose as a new approach to in-
tegrate in a synergistic manner recent advances in
spectral clustering and kernel methods with existing
probabilistic methods for dealing with incomplete data.
In particular, we further develop the Probabilistic Clus-
ter Kernel (PCK) framework [6, 15, 16, 35], which
combines posterior distributions of Gaussian Mixture
Models (GMMs) on different scales to learn a robust
kernel function, capturing similarities on both a global
and a local scale. This kernel function is robust with
regards to hyper–parameter choices, since instead of
assuming some particular structure in the data, the
ensemble of GMMs adapt to the data manifold. We
hypothesize that by integrating GMMs specifically de-
signed to handle incomplete data [21] into the PCK

Unsupervised Learning using PCKID – A Probabilistic Cluster Kernel for Incomplete Data

framework for unsupervised learning, we will be able
to analyze incomplete data sets in a more robust man-
ner compared to existing approaches. The proposed
approach for building this new type of kernel matrix to
be used for unsupervised learning in our framework, is
denoted the Probabilistic Cluster Kernel for Incomplete
Data (PCKID).

We demonstrate the PCKID on numerous clustering
and ranking tasks. PCKID outperforms the baseline
methods in most clustering tasks, over a range of miss-
ingness proportions. PCKID outperforms the baseline
kernels in the ranking tasks, in the sense that the score
vector remains relatively unchanged when injecting
missingness in the data.

2 Background theory

2.1 Missing data mechanisms

Let x = {xj} denote a data vector and let xo and
xm denote respectively the observed and the missing
features of x. Define r = {rj}, where rj = 1 if xj ∈ xm

and zero otherwise to be the missing indicator for x.
In order to train a model that accounts for values in
the dataset that are not observed, one has to rely on
assumptions that describe how missing data occurs. In
this section, we describe the three main missing data
mechanisms that characterize the structure of r [32].

2.1.1 Missing completely at random
(MCAR)

Features are said to be missing completely at random
(MCAR) if the features are missing independently from
both the observed values xo and the missing values xm.
That is,

P (r|x) = P (r).

This is the missingness assumption on the data that
leads to the simplest analysis. However, this assump-
tion is rarely satisfied in practice.

2.1.2 Missing at random (MAR)

If the features are missing independently of their values,
the features are said to be missing at random (MAR).
Then the missingness of the features are only dependent
of the observed values, such that

P (r|x) = P (r|xo).

This missing data mechanism is often assumed when
working with missing data, since many real world miss-
ing data are generated by this mechanism. For instance,
a blood test of a patient might be missing if it is only
taken given some other test (observed value) exceeds a
certain value.

2.1.3 Not missing at random (NMAR)

If the missingness of a feature is dependent on their
values, it is said to be not missing at random (NMAR),
that is

P (r|x) = P (r|xm) .

For instance, NMAR occurs when a sensor measure-
ment is discarded because it goes beyond the maximum
value that the sensor can handle.

2.2 Gaussian Mixture Models for Incomplete
Data

In this section, we briefly summarize how to implement
Gaussian Mixture Models (GMM) when the data have
missing features. This model will be exploited as the
foundation for PCKID to learn a robust kernel function.
For details, we refer the interested reader to [21].

A GMM is used in order to model the probability den-
sity function (PDF) for a given dataset. In a GMM, a
data point xi is assumed to be sampled from a multi-
variate Gaussian distribution Nk(xi|µk,Σk) with prob-
ability πk and k ∈ [1,K], where K corresponds to the
number of mixture components. Accordingly, the PDF
of the data is modeled by a mixture of Gaussians, such
that

f(x) =
K∑

k=1

πkN (x|µk,Σk). (1)

The maximum likelihood estimates for the parame-
ters in this model can be approximated through the
Expectation Maximization (EM) algorithm.

When the data have missing features, we assume that
the elements in a data vector xi can be partitioned
into two components; one observed part xo

i and one
missing part xm

i as explained in Sec. 2.1. Then, one
can construct a binary matrix Oi by removing the rows
from the identity matrix corresponding to the missing
elements xm

i , such that xo
i = Oixi. Given the mean

vector µk and the covariance matrix Σk for mixture
component k, the mean and covariance matrix for the
observed part of missingness pattern i is given by

µo
k,i = Oiµk

Σo
k,i = OiΣkO

T
i .

By defining
So
k,i = OT

i Σo
k,i
−1Oi,

one can show that, under the MAR assumption, the EM
procedure outlined in Alg. 1 will find the parameters
that maximizes the likelihood function [21].

Note that even though the notation in this paper allows
for a unique missingness pattern for each data point
xi, one missingness pattern is usually shared between

Sigurd Løkse, Filippo Maria Bianchi, Arnt–Børre Salberg, Robert Jenssen

Algorithm 1 EM algorithm for incomplete data GMM

1: Initialize µ̂
(0)
k , Σ̂

(0)
k , π̂(0)

k and γ̂(0)
i,k for k ∈ [1, K] and i ∈ [1, N].

2: while not converged do
3: E-Step: Compute

γ̂
(`)
k,i =

π̂
(`)
k N

(
xo
i |µ̂

o(`)
k,i , Σ̂

o(`)
k,i

)

∑K
j=1 π̂

(`)
j N

(
xo
i |µ̂

o(`)
j,i , Σ̂

o(`)
j,i

) ,

Ŷ
(`)
k,i = µ̂

(`)
k + Σ̂

(`)
k Ŝ

o(`)
k,i

(
xi − µ̂

(`)
k

)

4: M-Step: Compute the next model parameters, given by

π̂
(`+1)
k =

1

N

N∑

i=1

γ̂
(`)
k,i,

µ̂
(`+1)
k =

∑N
i=1 γ̂

(`)
k,iŶ

(`)
k,i

∑N
i=1 γ̂

(`)
k,i

,

Σ̂
(`+1)
k =

∑N
i=1 Ω̂

(`)
k,i

∑N
i=1 γ̂

(`)
k,i,

where

Ω
(`)
k,i = γ̂

(`)
k,i

((
Ŷ

(`)
k,i − µ̂

(`+1)
k

)(
Ŷ

(`)
k,i − µ̂

(`+1)
k

)T

+
(
I− Σ̂

(`)
k Ŝ

o(`)
k,i

)
Σ̂

(`)
k

)
.

5: end while

several data points. Thus, to improve efficiency when
implementing Alg. 1, one should sort the data points
by missingness pattern such that parameters that are
common across data points are calculated only once
[21].

2.2.1 Diagonal covariance structure
assumption.

In some cases, when the dimensionality of the data
is large compared to the number of data points, in
combination with many missingness patterns, one could
consider assuming a diagonal covariance structure for
the GMM for computational efficiency and numerical
stability when inverting covariance matrices. This will
of course limit the models to not encode correlations
between dimensions, but for some tasks it provides a
good approximation that is a viable compromise when
limited computational resources are available. In this
case, covariance matrices are encoded in d-dimensional
vectors, which simplify the operations in Alg. 1.

Let σ̂k be the vector of variances for mixture compo-
nent k and let ŝk,i be a vector with elements ŝk,i(`) =

1
σk(`)

if element ` of data point xi is observed and
ŝk,i(`) = 0 otherwise. Define

ŷk,i = µ̂k + σ̂k � ŝk,i � (xi − µ̂k), (2)

and
ωk,i = γ̂k,i

(
(ŷk,i − µ̂k)� (ŷk,i − µ̂k)

+ σ̂k − σ̂k � ŝk,i � σ̂k
) (3)

where � denotes the Hadamard (element wise) prod-
uct. Estimating the parameters with an assumption of
diagonal covariance structure is then a matter of ex-
changing Ŷk,i and Ωk,i with ŷk,i and ωk,i respectively
in Alg. 1.

3 PCKID – A Probabilistic Cluster
Kernel for Incomplete Data

In this paper, we propose a novel procedure to construct
a kernel matrix based on models learned from data
with missing features, which we refer to as PCKID .
In particular, we propose to learn similarities between
data points in an unsupervised fashion by fitting GMMs
to the data with different initial conditions q ∈ [1, Q]
and a range of mixture components, g ∈ [2, G] and
combine the results using the posterior probabilities for
the data points. That is, we define the kernel function
as

κPCKID(xi,xj) =
1

Z

Q∑

q=1

G∑

g=2

γTi (q, g)γj(q, g), (4)

where γi(q, g) is the posterior distribution for data
point xi under the model with initial condition q and g
mixture components and Z is a normalizing constant.
By using Alg. 1 to train the models, we are able to learn
the kernel function from the inherent structures of the
data, even when dealing with missing features. In this
work, we use this kernel for unsupervised learning.

The PCKID is able to capture similarities on both a
local and a global scale. When a GMM is trained with
many mixture components, each mixture component
covers a small, local region in feature space. On the
contrary, when the GMM is trained with a small num-
ber of mixture components, each mixture component
covers a large, global region in feature space. Thus, if
two data points are similar under models on all scales,
they are likely to be similar, and will have a large value
in the PCKID . This procedure of fitting models to the
data on different scales, ensures robustness with respect
to parameters, as long as Q and G are set sufficiently
large. Thus, we are able to construct a kernel function
that is robust with regards to parameter choice. This
way of constructing a robust kernel is similar to the
methodology used in ensemble clustering and recent
work in spectral clustering [16]. However, such recent
methods are not able to explicitly handle missing data.

According to the ensemble learning methodology [28,
40], we build a powerful learner by combining multiple

Unsupervised Learning using PCKID – A Probabilistic Cluster Kernel for Incomplete Data

weak learners. Therefore, one does not need to run the
EM algorithm until convergence, but instead perform
just a few iterations1. This also has the positive side-
effect of encouraging diversity, providing efficiency and
preventing overfitting. To further enforce diversity, it
is beneficial to use sub-sampling techniques to train
different models on different subsets of the data and
evaluate the complete kernel on the full dataset.

3.1 Out of sample

An important property of the GMMs applied in this
framework is that the posterior distributions can be
calculated for out of sample data. From Alg. 1 it is ap-
parent that the posterior distribution only dependends
on the mixture weights, observed values and the mean
vector and covariance matrix of the observed dimen-
sions. Thus, by storing the mixture weights, the full
mean vector and covariance matrix, one can calculate
the posterior distributions for out of sample data. One
can even calculate these distributions for data with
other missingness patterns than the training data, for
instance with fully observed training data and missing
values in the test data, which is a realistic scenario.

3.2 Initialization

For each mixture model that is trained, one needs to
provide an initialization. Since we are fitting large
models to data that in practice does not necessarily fit
these models, the initialization needs to be reasonable
in order to avoid computational issues when inverting
covariance matrices. An initialization procedure that
has been validated empirically for the PCKID is

1. Use mean imputation to impute missing values.

2. Run one k-means iteration (initialized using
kmeans++ [2]) in order to get initial cluster as-
signments and means.

3. Calculate the empirical covariance matrix from
each cluster and calculate empirical prior proba-
bilities for the mixture model based on the cluster
assignments.

Data with imputed values is only used to be able to
calculate initial means and covariances. When training
the model, data without imputed values is used.

1For instance, 10 iterations.

4 Experiments

4.1 Experiment methodology

We demonstrate the performance of PCKID on two
widely important unsupervised tasks, namely spectral
clustering [12, 29, 30, 36, 37] and ranking [9]. Our
PCKID–based procedures, that we use to solve these
two tasks in this paper, are briefly summarized below.

The standard spectral clustering procedure employs a
two–stage approach with a non–linear feature gener-
ation using the eigenvectors and eigenvalues (or spec-
trum) of a (kernel) matrix for then to cluster this repre-
sentation using e.g. the k–means clustering algorithm.
In this work, we exploit the fact that PCKID is a valid
kernel and use Kernel PCA [33] in order to generate
the features. It can be shown that the k-dimensional
representation using Kernel PCA can be computed by

Z = EkΛ
1
2

k , (5)

where Λk ∈ Rk×k is a diagonal matrix containing the
k largest eigenvalues of the kernel matrix along the
main diagonal and Ek ∈ RN×k is a matrix where the k
corresponding eigenvectors are placed as columns.

The ranking procedure is based on a particular for-
mulation of the Personalized PageRank [9]. In par-
ticular, the transition probability matrix is gener-
ated from a similarity matrix (e.g. a kernel ma-
trix) as P = D−1KPCKID,. where element (i, j)
of KPCKID, (KPCKID)ij = κPCKID(xi,xj) and D is
the diagonal degree matrix with elements (D)ii =

dii =
∑N
j=1 κPCKID(xi,xj). Let α, 0 < α < 1 be

the restart probability and let Lβ = βI + L be the
β–normalized Laplacian where β = α

1−α and L =

I−D−
1
2 KPCKIDD−

1
2 is the symmetrically normalized

Laplacian matrix. Furthermore, let Gβ be the Green’s
function (inverse) of Lβ , where Gβ =

∑N
i=1

1
λi

eie
T
i and

ei and λi are the eigenvectors and eigenvalues of Lβ ,
respectively. In this particular case, the score vector
can be computed by

π(α, s) = βD
1
2 GβD−

1
2 s,

where s is the seed vector with si ≥ 0,
∑N
i=1 si = 1.

The seed distribution determines where the Markov
chain restarts and is used in order to specify the query.

4.2 Experiment setup

4.2.1 PCKID parameters

In order to illustrate that PCKID does not need any
parameter tuning, the parameters are set to Q = G =
30 for all experiments. It has been noted in related

Sigurd Løkse, Filippo Maria Bianchi, Arnt–Børre Salberg, Robert Jenssen

works [16, 26] that this type of kernel is robust w.r.t.
parameter choice as long as the parameters are large
enough. In order to increase diversity, each model in
the ensemble is trained on a random subset of 50% of
the whole dataset. Once the models are trained, the
kernel is evaluated on the full dataset. Each GMM
is trained for 10 iterations with a diagonal covariance
structure assumption.

4.3 Clustering experiments

4.3.1 Baseline methods

For the baseline methods, missing data is handled with
imputation techniques, in particular, i) zero imputa-
tion, ii) mean imputation iii) median imputation and
(iv) most frequent value imputation. To produce a
clustering result, each of these imputation techniques
is coupled with i) k-means on the data and ii) spec-
tral clustering using an RBF kernel. Furthermore, we
compare our approach with k-POD [8], a recent state-
of-the-art clustering method which inherently accounts
for incomplete data.

Since no hyperparameters need to be tuned in PCKID ,
the kernel width σ of the RBF is calculated with a rule
of thumb. In particular, σ is set to 20% of the median
pairwise distances in the dataset, as suggested in [18].
This is in agreement with unsupervised approaches,
where labels are not known and cross validation on
hyperparameters is not possible.

4.3.2 Performance metric

In order to assess the performance of PCKID , its super-
vised clustering accuracy is compared with all baseline
models. The supervised clustering accuracy is com-
puted by

ACC = max
M

∑n
i=1 δ{yi =M(ŷi)}

n
, (6)

where yi is the ground truth label, ŷi is the cluster label
assigned to data point i andM(·) is the label mapping
function that maximizes the matching of the labels.
This is computed using the Hungarian algorithm [19].
Note that these labels are only used for calculating the
metrics, and not available for during training.

4.3.3 Clustering setup

Spectral clustering with k clusters is performed by
mapping the data to a k dimensional empirical kernel
space and clustering them with k-means as described
in Sec. 4.1. For all methods, k-means is run 100 times.
The final clustering is chosen by evaluating the k-means
cost function and choosing the partitioning with the

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Missingness

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
lu

st
e

ri
n

g
 a

cc
u
ra

cy

PCKID
Z. imp. RBF
Av. imp. RBF
Med. imp. RBF
M.F.V. imp. RBF
Z. imp. k-means
Av. imp. k-means
Med. imp. k-means
M.F.V. imp. k-means

(b)

Figure 1: (a): Example of missingness patterns. Gray
pixels are considered missing. (b): Mean clustering
accuracy as a function of the percentage of images with
missing values.

lowest cost. The number of clusters, k, is assumed
known.

4.3.4 MNIST 5 vs. 6

In this experiment, subsets containing 1000 of the
MNIST 5 and 6 images are clustered. The subsets
consist of a balanced sample, i.e. there are approx-
imately the same amount of images from each class.
The images are unraveled to 784 dimensional vectors,
which are used as the input to the algorithms. Missing
data is generated by randomly choosing a proportion
pm of the images and removing one of the four quad-
rants in the image according to the MAR mechanism.
These missingness patterns are illustrated in Fig. 1a.
In each test, we consider different probabilities of hav-
ing missing quadrants, i.e. pm ∈ {0.0, 0.1, 0.2, . . . , 0.9},
Each method is run 30 times for each value of pm,
with a unique random subset of the data for each run.
Since there are dimensions in the dataset where there is
no variation between images, they are removed before
training the GMMs. These are dimensions without
information, and causes problems when inverting the
covariance matrices. The number of dimensions with
variance varies across the runs, since the subset from
the dataset and the missingness is randomly sampled
for each run. The number of dimensions with variance
is approximately 500.

Fig. 1b shows a plot of the mean clustering accuracy
over the 30 runs versus the missingness proportion
pm. The proposed method outperforms the baseline
methods for all pm. Although the clustering accuracy
decreases slightly when the pm increases, the results
are quite stable.

Unsupervised Learning using PCKID – A Probabilistic Cluster Kernel for Incomplete Data

Table 1: Average clustering accuracy over 30 runs for different combinations of classes in the Hardangervidda dataset. The
best results are marked in bold. The baseline methods are: ZI (zero imputation), AI (average imputation), MI (median
imputation) and MFVI (most frequent value imputation), combined with either k-means or spectral clustering using an
RBF kernel.

Classes PCKID Spectral clustering, RBF k-means
ZI AI MI MFVI ZI AI MI MFVI

2-3 0.580 0.610 0.610 0.624 0.627 0.601 0.601 0.601 0.605
2-4 0.536 0.663 0.663 0.663 0.674 0.591 0.591 0.590 0.597
2-5 0.661 0.589 0.589 0.598 0.605 0.671 0.671 0.663 0.652
2-6 0.712 0.578 0.578 0.571 0.594 0.672 0.672 0.664 0.639
2-7 0.868 0.519 0.519 0.516 0.501 0.854 0.854 0.858 0.862
3-4 0.698 0.505 0.505 0.505 0.511 0.697 0.697 0.711 0.722
3-5 0.563 0.521 0.521 0.511 0.516 0.534 0.534 0.540 0.540
3-6 0.620 0.565 0.565 0.562 0.564 0.521 0.521 0.519 0.523
3-7 0.933 0.501 0.501 0.726 0.522 0.577 0.577 0.599 0.603
4-5 0.764 0.517 0.517 0.512 0.510 0.839 0.839 0.847 0.848
4-6 0.897 0.517 0.517 0.547 0.547 0.897 0.897 0.894 0.880
4-7 0.931 0.550 0.550 0.547 0.534 0.687 0.687 0.687 0.718
5-6 0.740 0.623 0.623 0.644 0.672 0.554 0.554 0.602 0.606
5-7 0.956 0.687 0.687 0.667 0.698 0.706 0.706 0.706 0.706
6-7 0.970 0.767 0.767 0.752 0.696 0.759 0.759 0.759 0.670

(a) (b)

Figure 2: Example of embedding and clustering in
kernel space with (a): No missingness, (b): 90% miss-
ingness. The marker indicates the true label, while the
color indicates the clustering results.

Fig. 2a–Fig. 2b shows two dimensional representations
using kernel PCA on PCKID with pm = 0 and pm = 0.9,
respectively. The shape of the markers indicates ground
truth class, while the color indicate the clustering result.
It is interesting to see that although the plot with no
missing data has a smoother structure, the overall
topology seems to be very similar when pm = 0.9. The
two-classes seem to be less separable in the plot with
more missing data, which is not surprising, given the
numerical clustering results in Fig. 1b.

When considering the approach of k-means directly
on data with imputed values, we see that none of
the imputation techniques perform as well as PCKID ,
although in this case mean imputation works reasonably
well. To explain performance improvements as pm
increases, it is possible that the missingness patterns
chosen for this experiment introduce some noise that
provides a form of regularization that is beneficial to
certain imputation techniques, or maybe the balance
in the dataset is helping the mean of the observed

values to not introduce bias towards one class. With
median–, zero– and most frequent value imputation,
the clustering accuracy starts to decline around pm =
0.3, with zero imputation and most frequent value
imputation following almost exactly the same path.
This is likely due to the nature of the data, where many
of the dimensions actually contains zeros in most of the
images. The most frequent value in most dimensions
will then be zero.

Spectral clustering using an RBF kernel completely
fails in this experiment, which is probably due to a
sub-optimal kernel width. However, this illustrates the
difficulty with an unsupervised problem, where no prior
information is given, making cross-validation virtually
impossible without expertise knowledge on the data.

4.3.5 Land cover clustering

In this experiment, we cluster pixels in high resolution
land cover images contaminated with clouds, also used
for classification in [31, 32]. The data consists of three
Landsat ETM+ images covering Hardangervidda in
southern Norway, in addition to elevation and slope
information. With 6 bands in each image, the total
dimensionality of the data is 20. In this dataset, a
value is considered missing if a pixel in an image is
contaminated by either clouds or snow/ice. For details
on how the dataset is constructed, see [31].

The pixels in the image are labeled as one of 7 classes: 1)
water, 2) ridge, 3) leeside, 4) snowbed, 5) mire, 6) forest
and 7) rock. In the first part of this experiment, we
exclude the water class since it is easy to separate from
the other classes in the Norwegian mountain vegetation.
To investigate how the PCKID handle the different
combination of classes, we restrict the initial analysis

Sigurd Løkse, Filippo Maria Bianchi, Arnt–Børre Salberg, Robert Jenssen

Figure 3: Example of mapping for the forest–rock class
pair. Colors indicate clustering, while the shape of the
marker indicates the ground truth label.

Table 2: Clustering of the full Hardangervidda dataset
with 7 clusters. The best results are marked in bold.

Accuracy NMI ARI

µ σ µ σ µ σ

GMM 4.81E-01 2.90E-02 4.27E-01 1.81E-02 3.51E-01 2.50E-02
k -POD 4.57E-01 1.40E-02 3.77E-01 2.00E-02 2.79E-01 1.28E-02
PCK
AI 3.87E-01 9.56E-03 4.05E-01 5.90E-03 2.60E-01 4.13E-03
MFVI 3.75E-01 1.41E-02 3.01E-01 9.05E-03 2.01E-01 1.63E-02
MI 3.85E-01 4.90E-03 4.00E-01 4.14E-03 2.61E-01 2.86E-03
ZI 3.86E-01 1.32E-02 2.94E-01 6.12E-03 2.03E-01 8.00E-03

RBF
AI 2.67E-01 1.18E-03 2.53E-01 3.43E-03 2.49E-02 1.31E-03
MFVI 2.69E-01 6.01E-04 2.41E-01 1.13E-03 -7.83E-03 3.70E-03
MI 3.43E-01 9.20E-05 2.53E-01 9.80E-05 7.73E-02 8.55E-05
ZI 2.73E-01 3.31E-04 2.23E-01 1.75E-03 2.10E-02 3.97E-04

k-means
AI 4.52E-01 1.89E-03 3.97E-01 1.40E-03 2.95E-01 2.17E-03
MFVI 4.72E-01 1.94E-04 3.46E-01 1.11E-04 2.64E-01 1.68E-04
MI 4.49E-01 2.55E-03 3.94E-01 2.13E-03 2.91E-01 2.83E-03
ZI 4.62E-01 1.09E-03 2.79E-01 3.81E-04 2.84E-01 1.04E-03

PCKID 4.94E-01 5.84E-03 4.49E-01 3.44E-03 3.52E-01 4.14E-03

to pairwise classes. Each dimension is standardized on
the observed data.

The average clustering accuracy for each combination of
the chosen classes is reported in Tab. 1. The average is
computed over 30 runs of each algorithm. We see that
PCKID seems to perform better for most class pairs.
Although it might struggle with some classes, most
notably class 2. For the class pair 3-5, PCKID wins
with a clustering accuracy of 0.563, which is not much
better than random chance in a two-class problem. It
is however worth to note that the classes labels are set
according the vegetation at the actual location, which
is not necessarily the group structure reflected in the
data. The class combinations where PCKID really
outperforms the other methods seems to be when class
7 (rocks) is present in the data, where we improve
performance by up to 25 percentage points compared
to the baseline methods.

Fig. 3 shows an example of a mapping for the for-

est–rock class pair, where it seems like the rock class,
as defined by the ground truth, actually consists of
two separate structures in the KPCA embedding us-
ing PCKID . This demonstrates the power of PCKIDs
ability to adapt to the inherent structures in the data.

Tab. 2 shows a clustering of the full Hardangervidda
dataset, where all 7 classes are considered simultane-
ously. We report both mean and standard deviation
of the clustering accuracy, NMI and ARI, computed
over 30 runs. PCKID outperforms the baseline meth-
ods in both accuracy and NMI, while the ARI score
is the same for PCKID and the GMM. Salberg and
Jenssen [32] reports a classification accuracy of up to
83% on this dataset, indicating that this is a challenging
dataset, even for supervised methods.

4.3.6 Wine dataset

In this experiment, we cluster the well known Wine
dataset from the UCI Machine Learning Repository
[11]. We generate missing data by simulating three
common missing data mechanisms: missing completely
at random (MCAR), missing at random (MAR) and
not missing at random (NMAR). Similar to [8], we
simulate the MCAR mechanism by removing values at
random from the dataset and the MAR mechanism by
randomly removing values at random from the 1st, 4th
and 7th feature. For the NMAR mechanism, we assume
that the sensor collecting each feature is saturated by
the true value being larger than the maximum value
the sensor can record. To obtain an overall proportion
of missing values, pm, we simulate this by randomly
choosing to remove the largest pm ·100% values of every
column in the data matrix. The results are shown in
Tab. 3.

For the MCAR and MAR results, PCKID outperforms
the baseline methods in all instances, except one where
PCK with an imputation method performs on par with
PCKID . For the difficult NMAR problem, PCKID
does not seem to be the best in most cases, but it is
at least the second best in all instances except one.
The most stable high performing baseline method in
this instance seems to be PCK, combined with an
imputation method. However, we would like to stress
that only the best imputation method is shown in this
table, which will vary depending on the mechanism
used to generate the missing data.

4.4 Ranking incomplete vectorial data

In this experiment, we use PCKID in order to learn
Markov Chain transition probabilities for unsupervised
ranking of data with missing data akin to [24].

Unsupervised Learning using PCKID – A Probabilistic Cluster Kernel for Incomplete Data

Table 3: Mean and standard deviation of accuracy when clustering the Wine dataset over 30 runs. The percentages
indicate the proportion of missing values in the data. For the PCK, k-means and RBF, we only report the best of
the four imputation methods. Best results are highlighted in bold. Second best results are highlighted in italic.

MCAR
pm 5% 15% 25% 35% 45%

µ σ µ σ µ σ µ σ µ σ

GMM 9.56E-01 1.26E-02 9.45E-01 1.96E-02 9.27E-01 1.77E-02 9.09E-01 5.61E-02 8.75E-01 8.15E-02
k-POD 9.59E-01 1.01E-02 9.33E-01 5.68E-02 9.26E-01 1.93E-02 9.08E-01 1.97E-02 8.69E-01 5.53E-02
PCK (Best) 9.61E-01 1.14E-02 9.42E-01 1.35E-02 9.13E-01 1.93E-02 8.95E-01 3.10E-02 8.29E-01 3.31E-02
k-means (Best) 9.60E-01 1.14E-02 9.41E-01 1.31E-02 9.23E-01 1.45E-02 9.12E-01 1.61E-02 8.84E-01 2.09E-02
RBF (Best) 4.23E-01 3.01E-02 4.32E-01 2.98E-02 4.22E-01 3.33E-02 4.05E-01 2.23E-02 4.11E-01 2.16E-02

PCKID 9.65E-01 7.49E-03 9.55E-01 1.31E-02 9.40E-01 1.51E-02 9.29E-01 2.08E-02 9.08E-01 2.12E-02

MAR
pm 5% 9% 13% 17% 21%

µ σ µ σ µ σ µ σ µ σ

GMM 9.39E-01 1.85E-02 9.17E-01 6.13E-02 9.15E-01 5.48E-02 9.07E-01 5.44E-02 9.01E-01 5.91E-02
k-POD 9.41E-01 5.74E-02 9.28E-01 5.53E-02 9.28E-01 8.22E-03 9.19E-01 4.49E-03 9.16E-01 0.00E-00
PCK (Best) 9.59E-01 6.01E-03 9.42E-01 1.68E-02 9.25E-01 1.31E-02 9.19E-01 2.06E-02 8.23E-01 6.83E-02
k-means (Best) 9.47E-01 9.03E-03 9.39E-01 7.24E-03 9.26E-01 8.04E-03 9.20E-01 5.01E-03 9.16E-01 2.22E-16
RBF (Best) 4.31E-01 3.97E-02 4.27E-01 3.93E-02 4.20E-01 1.86E-02 4.21E-01 2.68E-02 4.28E-01 2.16E-02

PCKID 9.59E-01 7.83E-03 9.48E-01 9.33E-03 9.46E-01 6.74E-03 9.43E-01 5.87E-03 9.38E-01 3.55E-03

NMAR
pm 5% 15% 25% 35% 45%

µ σ µ σ µ σ µ σ µ σ

GMM 9.59E-01 6.96E-02 9.60E-01 1.40E-03 9.55E-01 6.08E-02 8.94E-01 7.61E-02 7.18E-01 1.17E-01
k-POD 9.66E-01 3.33E-16 9.49E-01 2.22E-16 8.96E-01 7.26E-02 8.82E-01 5.14E-02 8.58E-01 1.07E-01
PCK (Best) 9.64E-01 2.65E-03 9.38E-01 0.00E-00 9.51E-01 3.53E-03 9.57E-01 8.96E-03 9.29E-01 2.71E-03
k-means (Best) 9.66E-01 3.33E-16 9.49E-01 2.22E-16 9.10E-01 3.33E-16 9.18E-01 2.65E-03 8.83E-01 1.39E-02
RBF (Best) 4.25E-01 2.30E-02 4.37E-01 3.04E-02 4.46E-01 4.01E-02 4.31E-01 1.75E-02 4.26E-01 1.66E-02

PCKID 9.68E-01 3.81E-03 9.53E-01 6.35E-03 9.49E-01 5.98E-03 9.49E-01 5.44E-03 8.99E-01 8.21E-03

4.4.1 Baseline methods and performance
metric

We compare PCKID to baseline kernels using the exact
same ranking procedure for all instances. The baseline
kernels are chosen as RBF kernels with various impu-
tation methods and PCK with the same imputation
methods. The experiment is performed as follows: 1.
Given a query, compute a ranking score vector for the
data without missing values and a score vector for the
same query with missing values using all kernels. 2.
For a given kernel, compute the cosine between the two
score vectors (without and with missing data). This
is performed for 100 random queries, with the same
query being used with all kernels.

4.4.2 Datasets

The datasets used in this experiment consists of stan-
dard UCI machine learning repository datasets (Ecoli,
Iris, WDBC and Wine) and a NIPS document dataset.
The NIPS document dataset is generated from a bag–
of–word representation of 1740 NIPS papers2. This
is then preprocessed using SVD in order to reduce its
dimensionality to 20, a common procedure used for rec-
ommender systems with this type of data. Missingness
in the data is simulated by the MCAR mechanism.

2https://cs.nyu.edu/ roweis/data.html

4.4.3 Results

Let πb(q) and πPCKID(q) denote the ranking score
vector for a given query q for a baseline kernel and
PCKID respectively when the dataset has no miss-
ing values and let πmb (q) and πmPCKID(q) denote their
score vectors when there are missing values in the data.
Fig. 4 shows the performance of the baseline kernels
versus PCKID for different amounts of missing data
for the NIPS document dataset. Each point in the
plot represents a specific query. The values of the first
axis in the plots are calculated as cos(∠[πb(q),π

m
b (q)]),

while the values of the second axis are calculated as
cos(∠[πPCKID(q),πmPCKID(q)]). Intuitively, the cosine
value is close to 1 if the angle between the score vectors
is small. If a point is above the dotted diagonal line, the
score vector of PCKID with missing data is closer to
its non missing data counterpart (in angle) compared
to the corresponding baseline kernel. From the plots, it
is apparent that PCKID outperforms or is on par with
the baseline kernels across all missingness percentages
shown here. It is also clear that for the baseline meth-
ods, the performance might be on par for some queries,
but significantly lower for other queries. For instance,
PCK with zero– or most–frequent–value imputation,
some queries are on (or close to) the diagonal line, while
others are far above it.

Sigurd Løkse, Filippo Maria Bianchi, Arnt–Børre Salberg, Robert Jenssen

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

(a)

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

(b)

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

(c)

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

(d)

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e RBF Average Imp.

RBF Med. Imp.

RBF MFV Imp.

RBF Zero Imp.

PCK Average Imp.

PCK Med. Imp.

PCK MFV Imp.

PCK Zero Imp.

Figure 4: Ranking performance of baseline kernel (first axis) versus PCKID (second axis) with (a) 5% (b) 10%
(c) 15% and (d) 20% missing data. Each dot represents a query.

Fig. 5 shows a more comprehensive comparison on
several datasets. We computed the mean cosine value
for all combinations of

1. Baseline kernel choice (RBF and PCK)

2. Missingness percentage (5%, 10%, 15% and 20%)

3. Imputation method (Average, Median, Most–
frequent–value and Zero imputation)

4. Dataset (NIPS documents, Ecoli, Iris, WDBC and
Wine).

These are compared to the respective mean cosine value
for PCKID in the same setting. Out of the 160 possible
configurations, PCKID outperformed the baseline ker-
nel in 154 instances. All instances where the baseline
kernel outperformed PCKID had 5% missingness and a
PCK, but the imputation method that worked best var-
ied from dataset to dataset. For the Ecoli dataset with
5% missingness, PCK outperformed PCKID with both
mean, median and most–frequent–value imputation,
while for the other datasets (Iris, NIPS documents and
WDBC), the the best imputation method was either
mean– or median imputation.

5 Conclusion

In this paper, we have proposed PCKID , a novel kernel
function for unsupervised learning, designed to i) ex-
plicitly handle incomplete data and ii) be robust with
regards to parameter choice. By combining posterior
distributions of Gaussian Mixture Models for incom-
plete data on different scales, PCKID is able to learn
similarities on the data manifold, yielding a kernel
function without any critical hyperparameters to tune.
Experiments have demonstrated the strength of our
method, by improved spectral clustering accuracy com-
pared to baseline methods. Furthermore, when applied
to ranking tasks, the score vector remains relatively
unchanged when injecting missingness into the data,
compared to the baseline kernels.

0.0 0.5 1.0
Baseline Cosine

0.0

0.5

1.0

P
C
K
ID

C
os
in
e

Figure 5: Comparison of datasets for ranking. Points
above the dotted diagonal line indicates datasets in
which PCKID outperforms the baseline.

Acknowledgments

This work was partially funded by the Norwegian Re-
search Council FRIPRO grant no. 239844 on developing
the Next Generation Learning Machines.

References

[1] Mark A. Aizerman. Theoretical foundations of the
potential function method in pattern recognition
learning. Automation and remote control, 25:821–
837, 1964.

[2] David Arthur and Sergei Vassilvitskii. k-means++:
The advantages of careful seeding. Symposium on
Discrete Algorithms (SODA), 2007.

[3] Lluís A. Belanche, Vladimer Kobayashi, and
Tomàs Aluja. Handling missing values in kernel
methods with application to microbiology data.
Neurocomputing, 141:110 – 116, 2014. ISSN 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2014.
01.047.

Unsupervised Learning using PCKID – A Probabilistic Cluster Kernel for Incomplete Data

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Net-
works and ISDN Systems, 30(1-7):107–117, April
1998. ISSN 01697552. doi: 10.1016/S0169-7552(98)
00110-X.

[5] M Emre Celebi and Kemal Aydin. Unsupervised
learning algorithms. Springer, 2016.

[6] Olivier Chapelle, Jason Weston, and Bernhard
Schölkopf. Cluster kernels for semi-supervised
learning. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information
Processing Systems 15, pages 601–608. MIT Press,
2003. URL http://papers.nips.cc/paper/
2257-cluster-kernels-for-semi-supervised-learning.
pdf.

[7] Gal Chechik, Geremy Heitz, Gal Elidan, Pieter
Abbeel, and Daphne Koller. Max-margin classi-
fication of data with absent features. JMLR, 9
(Jan):1–21, 2008.

[8] Jocelyn T Chi, Eric C Chi, and Richard G Bara-
niuk. k-pod: A method for k-means clustering of
missing data. The American Statistician, 70(1):
91–99, 2016.

[9] F. Chung and W. Zhao. Pagerank and random
walks on graphs. Fete of combinatorics and com-
puter science, pages 1–16, 2010.

[10] John K Dixon. Pattern recognition with partly
missing data. IEEE Transactions on Systems,
Man, and Cybernetics, 9(10):617–621, 1979.

[11] Dheeru Dua and Casey Graff. UCI machine learn-
ing repository, 2017. URL http://archive.ics.
uci.edu/ml.

[12] Maurizio Filippone, Francesco Camastra,
Francesco Masulli, and Stefano Rovetta. A survey
of kernel and spectral methods for clustering.
Pattern recognition, 41(1):176–190, 2008.

[13] Zoubin Ghahramani and Michael I Jordan. Su-
pervised learning from incomplete data via an em
approach. Advances in neural information process-
ing systems, pages 120–120, 1994.

[14] David F Gleich. Pagerank beyond the web. Siam
Review, 57(3):321–363, 2015.

[15] E. Izquierdo-Verdiguier, L. Gómez-Chova, L. Bruz-
zone, and G. Camps-Valls. Semisupervised kernel
feature extraction for remote sensing image analy-
sis. IEEE Transactions on Geoscience and Remote
Sensing, 52(9):5567–5578, 2014.

[16] Emma Izquierdo-Verdiguier, Robert Jenssen, Luis
Gómez-Chova, and Gustavo Camps-Valls. Spec-
tral clustering with the probabilistic cluster kernel.
Neurocomputing, 149:1299–1304, 2015.

[17] Anil K Jain. Data clustering: 50 years beyond k-
means. Pattern recognition letters, 31(8):651–666,
2010.

[18] Robert Jenssen. Kernel entropy component anal-
ysis. IEEE transactions on pattern analysis and
machine intelligence, 32(5):847–860, 2010.

[19] Harold W Kuhn. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97, 1955.

[20] Sun Yuan Kung. Kernel methods and machine
learning. Cambridge University Press, 2014.

[21] Tsung I Lin, Jack C Lee, and Hsiu J Ho. On fast
supervised learning for normal mixture models
with missing information. Pattern Recognition, 39
(6):1177–1187, 2006.

[22] Andrew Lithio and Ranjan Maitra. An efficient k-
means-type algorithm for clustering datasets with
incomplete records. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 11(6):
296–311, 2018.

[23] Tiantian Liu and Yair Goldberg. Kernel ma-
chines with missing responses. arXiv preprint
arXiv:1806.02865, 2018.

[24] Sigurd Lokse and Robert Jenssen. Ranking us-
ing transition probabilities learned from multi-
attribute data. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2851–2855. IEEE, 2018.

[25] Benjamin M Marlin. Missing data problems in ma-
chine learning. PhD thesis, University of Toronto,
2008.

[26] Karl Oyvind Mikalsen, Filippo Maria Bianchi,
Cristina Soguero-Ruiz, and Robert Jenssen. Time
series cluster kernel for learning similarities be-
tween multivariate time series with missing data.
Pattern Recognition, 76:569–581, 2018.

[27] Majid Mojirsheibani and Zahra Montazeri. Statis-
tical classification with missing covariates. Journal
of the Royal Statistical Society: Series B (Statisti-
cal Methodology), 69(5):839–857, 2007.

[28] Stefano Monti, Pablo Tamayo, Jill Mesirov, and
Todd Golub. Consensus clustering: a resampling-
based method for class discovery and visualization
of gene expression microarray data. Machine learn-
ing, 52(1-2):91–118, 2003.

[29] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al.
On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Sys-
tems, pages 849–856, 2001.

[30] Feiping Nie, Zinan Zeng, Ivor W Tsang, Dong
Xu, and Changshui Zhang. Spectral embedded

Sigurd Løkse, Filippo Maria Bianchi, Arnt–Børre Salberg, Robert Jenssen

clustering: A framework for in-sample and out-of-
sample spectral clustering. IEEE Transactions on
Neural Networks, 22(11):1796–1808, 2011.

[31] Arnt-Børre Salberg. Land cover classification of
cloud-contaminated multitemporal high-resolution
images. IEEE Transactions on Geoscience and
Remote Sensing, 49(1):377–387, 2011.

[32] Arnt-Børre Salberg and Robert Jenssen. Land-
cover classification of partly missing data using
support vector machines. International journal of
remote sensing, 33(14):4471–4481, 2012.

[33] Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller. Kernel principal component anal-
ysis. In International Conference on Artificial
Neural Networks, pages 583–588. Springer, 1997.

[34] Kazi Tanzeem Shahid, Akshay Malhotra, Ioan-
nis D. Schizas, and Saibun Tjuatja. Unsupervised
kernel correlations based hyperspectral clustering
with missing pixels. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote
Sensing, 11(6):1799–1810, 2018.

[35] D. Tuia and G. Camps-Valls. Semisupervised re-
mote sensing image classification with cluster ker-
nels. IEEE Geoscience and Remote Sensing Let-
ters, 6(2):224–228, 2009.

[36] Ulrike Von Luxburg. A tutorial on spectral clus-
tering. Statistics and computing, 17(4):395–416,
2007.

[37] Yi Yang, Dong Xu, Feiping Nie, Shuicheng Yan,
and Yueting Zhuang. Image clustering using local
discriminant models and global integration. IEEE
Transactions on Image Processing, 19(10):2761–
2773, 2010.

[38] Dao-Qiang Zhang and Song-Can Chen. Clustering
incomplete data using kernel-based fuzzy c-means
algorithm. Neural processing letters, 18(3):155–
162, 2003.

[39] Dengyong Zhou, Jason Weston, Arthur Gretton,
Olivier Bousquet, and Bernhard Schölkopf. Rank-
ing on data manifolds. In Advances in neural
information processing systems, pages 169–176,
2004.

[40] Arthur Zimek, Matthew Gaudet, Ricardo JGB
Campello, and Jörg Sander. Subsampling for ef-
ficient and effective unsupervised outlier detec-
tion ensembles. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 428–436. ACM,
2013.

[41] Marek Śmieja, Łukasz Struski, Jacek Tabor, and
Mateusz Marzec. Generalized rbf kernel for in-
complete data. Knowledge-Based Systems, 173:

150 – 162, 2019. ISSN 0950-7051. doi: https:
//doi.org/10.1016/j.knosys.2019.02.034.

Paper II

Kernel Personalized PageRank
Sigurd Løkse and Robert Jenssen.

In submission

93

Kernel Personalized PageRank

Sigurd Løkse Robert Jenssen
Department of Physics and Technology,
UiT The Arctic University of Norway,

NO-9037 Tromsø,
Norway

sigurd.lokse@uit.no

Department of Physics and Technology,
UiT The Arctic University of Norway,

NO-9037 Tromsø,
Norway

robert.jenssen@uit.no

Abstract

We introduce the Kernel Personalized PageR-
ank (KPPR) by interpreting the Personalized
PageRank (PPR) as a linear ranking func-
tion in a Reproducing Kernel Hilbert Space
(RKHS). This facilitates a low–rank embed-
ding that enables ranking of out–of–sample
data points by minimizing an approximation
error to the PPR. We show that this error is
provably upper bounded for uniform seed dis-
tributions. The KPPR provides new insight
by disentangling the ranking into a base score
and a Markov chain restart component. We
perform a range of experiments to highlight
these properties and show that the low-rank
KPPR may even outperform the PPR.

1 INTRODUCTION

The Google PageRank algorithm (Brin and Page, 1998)
has had a tremendous impact on our daily lives. Orig-
inally designed to rank web pages, it has also been
applied to other types of data/problems (Gleich, 2015;
Jing and Baluja, 2008; Klicpera et al., 2019; Zhou et al.,
2004b,a). As a more general ranking algorithm, the
Personalized PageRank (PPR) (Chung and Zhao, 2010;
Kloumann et al., 2017) allows for personalized rankings.
This enables the user to specify a seed distribution that
alters where the random walk restarts. One limita-
tion of the PPR is that the computation of the exact
stationary distribution requires inversion of a N ×N
matrix, where N is the size of the dataset. Exact rank-
ing of previously unseen data therefore necessitates a
re–inversion of the new (larger) matrix or to perform
new power iterations, although approximate iterative
methods exist (Bahmani et al., 2010; Lofgren, 2015;
Zhang et al., 2016; Zhan et al., 2019).

In this paper, we introduce the Kernel Personalized
PageRank (KPPR), based on a novel analysis wherein
we show that the PPR is a linear ranking function in
a Reproducing Kernel Hilbert Space (RKHS) for data
represented by undirected graphs with edge–weights in
the form of a symmetric non–negative affinity matrix.
This provides new theoretical insight as the KPPR can
be disentangled into a base score and a Markov chain
restart component which encodes the seed distribution.
Operating in a low-rank empirical (spectral) kernel
space, we show that the KPPR enables ranking of pre-
viously unseen out-of-sample data, without performing
new power iterations or re–inverting potentially large
matrices. This is done by minimizing an approximation
error with respect to the PPR. We show that this error
is provably upper-bounded for uniform seed distribu-
tions. We validate our theory through experiments,
and, finally, we empirically show that the KPPR may
even outperform the PPR in terms of ranking quality.
Note that all proofs are given in the supplementary
material.

Notation Matrices and vectors are denoted by bold
fonts, with upper case for matrices and lower case for
vectors. Element (i, j) in the matrix A is denoted by
(A)ij and element i of vector a is denoted by (a)i. aT

is a transposed vector. 〈·, ·〉 is an inner product. All
vectors are column vectors.

2 PERSONALIZED PAGERANK

Consider the difference equation for the PPR

rTk+1 = (1− α)rTkP + αsT , (1)

where α ∈ (0, 1) is the restart probability and s ∈ RN

is the seed distribution with (s)i ≥ 0,
∑N
i=1(s)i = 1.

The transition probability matrix is assumed to be
on the form P = D−1K, where K is a symmetric
affinity matrix with non–negative values and D =

Kernel Personalized PageRank

diag(di), di =
∑N
j=1(K)ij is its diagonal degree ma-

trix. Eq. (1) converges to the stationary distribu-
tion π(α, s) of the Markov chain associated with the
stochastic matrix P′ = (1−α)P +α1sT , in which case
π(α, s)T = (1− α)π(α, s)TP + αsT . Chung and Zhao
(Chung and Zhao, 2010) showed that solving for π(α, s)
yields

π(α, s) = βD
1
2GβD−

1
2 s, (2)

where β = α
1−α , GβLβ = LβGβ = I, Lβ = βI +

L = (1 + β)I − K. Here, Gβ denotes the Green’s
function (Chung and Yau, 2000) of the β-normalized
Laplacian Lβ , L is the normalized Laplacian and K =

D−
1
2 KD−

1
2 is the symmetrically normalized affinity

matrix. Since the β-normalized Laplacian is symmetric,
it can be written on the form Lβ =

∑N
i=1 λieie

T
i =

EΛET , where λi, i = 1, 2, . . . , N and ei, i = 1, 2, . . . N
are the eigenvalues and orthonormal eigenvectors of
Lβ . Thus, the Green’s function is given by Gβ =∑N
i=1

1
λi

eie
T
i = EΛ−1ET .

3 KERNEL PERSONALIZED
PAGERANK (KPPR)

Proposition 1. The Green’s function Gβ is positive
definite for 0 < α < 1.

A consequence of Prop. 1, and a key observation for the
results in this paper, is that there exists a RKHS where
the inner products are given by the Green’s function
Gβ (Mercer, 1909). That is, (Gβ)ij = Gβ(xi,xj) =
〈φ(xi),φ(xj)〉. Accordingly, Gβ will be referred to as
the Green’s kernel in the remainder of the paper. In
the following proposition, we interpret the score of the
PPR in terms of linear operations in kernel space.
Proposition 2. Let xi be a datapoint with degree di,
and let πi(α, s) be its PPR score. Furthermore, let φ(·)
be the mapping from input space to the RKHS defined
by Gβ. Then, the following holds:

πi(α, s)√
di

∝ 〈φ(xi),w〉, (3)

where w =
∑N
j=1

(s)j√
dj
φ(xj) = ms is a weighted mean

in the RKHS, weighted by the seed.

As seen in Prop. 2, and as a new viewpoint provided
in this paper, the PPR1 is in fact computed by a
linear ranking function in kernel space (a common
family of ranking functions (Li, 2011)). The weight
vector is a weighted mean in kernel space, with weights
that are dependent on the seed distribution. As a
consequence, datapoints in kernel space that are located
furthest away from the origin, in the direction of the
seed–weighted mean are assigned a large score.

1In particular, πi(α,s)√
di

.

3.1 Empirical RKHS and Low–Rank
Approximation

In this section, we define a low–rank approximation of
the embedding in the empirical RKHS of Gβ , which
is used to approximate the score of a datapoint. We
analyze the contribution of the eigenvectors and provide
a method for ordering the eigenvectors used in the
embedding, in order to minimize the norm of a scaled
error vector. Moreover, we show that there exists
an equivalent variant of this low rank approximation,
whose values depends directly on the affinity matrix
used to compute Gβ . This allows for approximating
scores of out–of–sample datapoints without re–inverting
the β–normalized Laplacian.

The empirical embedding to the RKHS induced by Gβ
is given by Zβ = EΛ−

1
2 (Williams, 2002), where E and

Λ are the orthogonal eigenvector matrix and diagonal
eigenvalue matrix of Lβ . This is a representation in a
Euclidean space, in which the inner products contained
in Gβ are preserved. Moreover, by defining the symmet-
rically normalized affinity matrix, K = D−

1
2 KD−

1
2 ,

one can easily show thatK has the same eigenvectors as
Lβ , but with shifted eigenvalues λ∗i = 1+β−λi. There-
fore, the empirical embedding to the RKHS induced by
Gβ is given by Zβ = E((1 + β)I−Λ∗)−

1
2 , which only

depends on the eigenvalues and eigenvectors of K. An
interesting observation is that the eigenvectors used
in the embedding are in fact similar to the ones used
in other graph based methods like spectral clustering,
Laplacian eigenmaps, etc. (Belkin and Niyogi, 2003;
Jenssen, 2010; Maji et al., 2011; Ng et al., 2001; Shi
and Malik, 2000).

Using the previous results, we clearly have Gβ = ZβZTβ
and π(α, s) = βD

1
2 ZβZTβD−

1
2 s. In the same manner

as in Prop. 2, we get the following relationship between
the PPR and the embedded data:
Proposition 3. Let xi be a datapoint with degree di,
and let πi(α, s) be its PPR score. Furthermore, let
zi(β) be its embedding to the empirical kernel space of
Gβ (located in row i of Zβ). Then, the following holds:

πi(α, s)√
di

∝ wT zi(β), (4)

where w =
∑N
j=1

(s)j√
dj

zj(β) = ms is a weighted mean

in the empirical kernel space, weighted by the seed dis-
tribution.

By using this result, we can compute the PPR by an
inner product between vectors in the empirical kernel
space of Gβ . These derivations provide a new viewpoint
to the PPR, and importantly, it opens up for low–rank
approximations of Gβ which is often useful for e.g.
out–of–sample projections.

Sigurd Løkse, Robert Jenssen

3.1.1 Eigenvector Contributions

To further analyze what is actually happening in the
empirical RKHS, we split the contribution from the
eigenvectors to the ranking as shown in the following
proposition.
Proposition 4. Let π = 1

1TD1D1 denote the station-
ary distribution of the Markov Chain with transition
probability matrix P = D−1K (Meyer et al., 2013).
Then the PPR score can be decomposed as follows:

π(α, s) = π + π′(α, s), (5)

where π′(α, s) = βD
1
2G′βD−

1
2 s, G′β = Gβ −

1
βD

1
2 1(D

1
2 1)T =

∑N
k=2

1
1+β−λ∗

k
eke

T
k is the contribu-

tion to the PPR score from all eigenvectors of K, except
the one with largest eigenvalue.

Prop. 4 states that in the empirical RKHS, the PPR
score can be decomposed into two components. 1.
The base score component, π, which is the score of
the initial Markov Chain without restarts. 2. The
restart component, π′(α, s), which alters the base score
according to the seed distribution.

The base score contains all contributions from the
first/largest eigenvector, while the restart component
is based on contributions from all other eigenvectors.
Note that the base score is always known beforehand,
since the first eigenvector is on a known form. There-
fore, we omit it from the embedding and add its con-
tribution afterwards.

3.1.2 Out–of–Sample Extension

In this section, we propose an out–of–sample extension
for the KPPR. Since the Green’s kernel is the inverse of
the β-normalized Laplacian, it is not trivial to calculate
out–of–sample values for the kernel. However, as stated
in Thm. 1, one can relate the embedding itself directly
to the normalized kernel function. In fact, if (K)ij =
κ(xi,xj) is a kernel function, the embedding is almost
identical to Kernel PCA on the normalized kernel K,
only differing with respect to the dimensional scaling.
Theorem 1. Let zi ∈ RN be a vector with (zi)j =

1
λ∗
j

√
1+β−λ∗

j

∑N
k=1K(xi,xk)(ej)k, where xk, k =

1, 2, . . . , N are in-sample data points, λ∗j is the j’th
largest eigenvalue of K, ej is its corresponding eigen-
vector and K(xi,xk) = κ(xi,xk)√

dk
√
di

is the normalized kernel
function evaluated at xi and xk. Then zi is the embed-
ding of xi to the empirical kernel space of Gβ.

From Thm. 1, we see that one can compute the em-
bedding of a datapoint to the empirical kernel space of
Gβ by only considering the normalized kernel function.
Importantly, we can compute out–of–sample values of

this kernel and use Thm. 1 to define an out–of–sample
embedding.

Definition 1 (Out–of–sample kernel). Let xi be an
out–of–sample datapoint and let xk, k = 1, 2, . . . , N
be the in–sample datapoints. Then, the out–of–sample
normalized kernel is defined as

K̂(xi,xk) =
κ(xi,xk)√

d̂idk
, (6)

where d̂i =
∑N
k=1 κ(xi,xk). A similar definition is

given in (Bengio et al., 2004).

Definition 2 (Out–of–sample embedding). Let xi be
an out–of–sample datapoint with the out–of–sample nor-
malized kernel K̂(xi,xk) as defined in Def. 1, where
xk, k = 1, 2, . . . , N are in–sample datapoints. Then,
the out–of–sample embedding is defined as ẑi ∈ RN with

(ẑi)j =
1

λ∗j
√

1 + β − λ∗j

N∑

k=1

K̂(xi,xk)(ej)k, (7)

where λ∗j is the j’th largest eigenvalue of the in–sample
normalized kernel K and ej, its corresponding eigen-
vector.

Definition 3 (Out–of–sample score). Let xi be an out–
of–sample datapoint with the embedding ẑi as defined
in Def. 2 and let zk, k = 1, 2, . . . , N be the in–sample
embeddings for the in–sample datapoints xk. Then the
ranking score for xi is given by

π̂i(α, s) = β

√
d̂iẑ

T
i ms, (8)

where ms =
∑N
k=1

(s)k√
dk

zk.

The out–of–sample score in Def. 3 is on the same form
as the in–sample score as given in Prop. 3. Moreover, by
defining the score in this manner, it can be decomposed
in the same way as the in–sample score in Prop. 4. See
the supplementary material for details.

3.1.3 Dimensionality Reduction/Low–Rank
Approximation

While it is possible to use all eigenvectors in the KPPR,
one might benefit from discarding a portion of the eigen-
vectors to create an embedding with low dimensionality,
corresponding to a low-rank approximation. It is well
known in the general graph literature that low-rank
embeddings may reveal relevant structure in the data
(Ng et al., 2001; Shi and Malik, 2000). Moreover, since
the normalized affinity matrix will often have eigenval-
ues which are zero, or close to zero, we can deduce from
Def. 2 that dimensionality reduction is in fact essential
for ranking out–of–sample datapoints, since we need
to divide by the eigenvalue. In this section, we define

Kernel Personalized PageRank

a low–rank embedding for the KPPR and propose a
novel criterion used to order the eigenvectors based on
minimizing an error norm with respect to the PPR. We
define our low–rank embedding as follows.
Definition 4. Let e1, . . . , ek be the first k eigenvectors
of K with the associated eigenvalues λ∗1, . . . , λ∗k, where
the eigenvalues and eigenvectors are sorted according to
some criterion. Then the low–rank KPPR embedding
is defined as Zk = Ek((1 + β)I − Λ∗k)−

1
2 , where Ek

is a matrix with e1, . . . , ek in its columns and Λ∗k is
a diagonal matrix with λ∗1, λ∗2, . . . , λ∗k along the main
diagonal.

Minimizing Error Norm by Eigenvector Order-
ing In dimensionality reduction methods involving
eigenvectors, one needs a mechanism to choose which
of the eigenvectors to incorporate. Often, this is chosen
based on the value of the eigenvalues (see e.g. (Belkin
and Niyogi, 2003; Hotelling, 1933; Schölkopf et al.,
1997)). The following proposition reveals a link between
a scaled score error vector and the eigenvectors that
are discarded in the dimensionality reduction, where
the scaling is performed for mathematical convenience.
Proposition 5. Let π(α, s) be the exact PPR and
π̂(α, s) be an estimate of the PPR using k eigenvectors
and define the error vector as ε(s) = π(α, s)− π̂(α, s).
Then, the squared norm of the scaled error vector
1
βD−

1
2 ε(s) is given by

∥∥ 1

β
D−

1
2 ε(s)

∥∥2 =
N∑

i=k+2

[
1

1 + β − λ∗i
eTi (D−

1
2 s)

]2
.

(9)

The scaled error
∥∥ 1
βD−

1
2 ε(s)

∥∥2 is minimized by order-
ing the eigenvectors e2, e3, . . . , ek+1 such that |c2| ≥
|c3| ≥ . . . ≥ |ck+1|, where ci = 1

1+β−λ∗
i
eTi (D−

1
2 s).

Note that this result leads to a eigenvector ordering
mechanism similar to (Jenssen, 2010) if s ∝ D

1
2 1.

Random Queries and Uniform Seeds Given the
general result in Prop. 5, we provide specific expressions
for the error for useful seed distributions. Namely, we
look at random queries and uniform seed distributions
over a subset of the dataset. The latter example can for
instance be a uniform seed distribution over a cluster in
the dataset which can be useful to analyze its content.

We define a query as a ranking of the data with a
single datapoint as the seed. Since the expression for
the error would depend on the seed point, we assume
that a datapoint is chosen as a seed with probability
1
N . The expression for the expected error is given in
the following proposition.
Proposition 6. Let s = 1j with probability pj = 1

N ,
where 1j has value 1 in element j and zeros everywhere

else. Then the expected scaled error for this random
query is given by

Es∼r.q.

(∥∥ 1

β
D−

1
2 ε(s)

∥∥2
)

=
1

N

N∑

i=k+2

‖D− 1
2 ei‖2

(1 + β − λ∗i)2
.

(10)

Interestingly, Prop. 6 shows that the optimal eigen-
vector ordering is in fact different compared to the
common method, where eigenvectors are ordered by
the associated eigenvalues. In the following proposition,
we relate the error when the seed is uniform over a
subset of the data with the expected error of a random
query.

Proposition 7. Let Cj be a subset of the dataset with
NCj datapoints. If the seed distribution is uniform over
Cj, then the following holds:

∥∥ 1

β
D−

1
2 ε(s)

∥∥2 ≤ N

NCj
Es∼r.q.

(∥∥ 1

β
D−

1
2 ε(s)

∥∥2
)
.

(11)

In real applications, one might not know the seed/query
beforehand or one might want to perform the ranking
with several different seeds. Thus, it is necessary to
find an eigenvector ordering that works sufficiently well
for several seeds. Because of Prop. 6 and Prop. 7,
we propose to order the eigenvectors according to

|c2| ≥ |c3| ≥ . . . ≥ |ck+1| with c2i = ‖D− 1
2 ei‖2

(1+β−λ∗
i)

2 for
both random queries and rankings where the seed is
uniform over a subset of the data. In the former case,
this will minimize the expected error. In the latter
case, an upper bound of the error will be minimized.

3.1.4 Efficient Score Computation

According to the following proposition, once the eigen-
vectors and eigenvalues are computed, one can com-
pute the score function akin to the representer theorem
(Schölkopf et al., 2001).

Proposition 8. The score function of a datapoint x
is given by

π̂(x|s) =
N∑

i=1

α̂i(s)κ(x,xi),

where α̂i(s) = mT
s ai = 1

1TD1 + m′Ts a′i. Here, ms

is a weighted mean in the empirical kernel space and
(ai)` = β (e`)i√

diλ∗
`

√
1+β−λ∗

`

.

Using Prop. 8, the following analysis holds. (i) Given
the embedding of the training data Zβ , the weighted
mean can be computed by ms = ZTβD−

1
2 s, where

ZTβD−
1
2 ∈ Rk×N . Thus, if the seed vector is sparse with

Sigurd Løkse, Robert Jenssen

0 25 50 75 100 125 150 175
k

0.4
0.5
0.6
0.7
0.8
0.9
1.0

NDCG@10 opt. order
NDCG@20 opt. order
NDCG@30 opt. order
NDCG@40 opt. order
NDCG@10 eig.val. order
NDCG@20 eig.val. order
NDCG@30 eig.val. order
NDCG@40 eig.val. order

(a)

0 20 40 60 80 100 120 140
k

0.5

0.6

0.7

0.8

0.9

1.0

NDCG@10 opt. order
NDCG@20 opt. order
NDCG@30 opt. order
NDCG@40 opt. order
NDCG@10 eig.val. order
NDCG@20 eig.val. order
NDCG@30 eig.val. order
NDCG@40 eig.val. order

(b)

0 50 100 150 200 250 300 350
k

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

NDCG@10 opt. order
NDCG@20 opt. order
NDCG@30 opt. order
NDCG@40 opt. order
NDCG@10 eig.val. order
NDCG@20 eig.val. order
NDCG@30 eig.val. order
NDCG@40 eig.val. order

(c)

0 100 200 300 400 500
k

0.2

0.4

0.6

0.8

1.0

NDCG@10 opt. order
NDCG@20 opt. order
NDCG@30 opt. order
NDCG@40 opt. order
NDCG@10 eig.val. order
NDCG@20 eig.val. order
NDCG@30 eig.val. order
NDCG@40 eig.val. order

(d)

Figure 1: NDCG@k as a function of dimensionality for different eigenvector orderings. (a): Wine, (b): Iris, (c):
Two–moon, (d): WDBC

c non–zero elements, computing the weighted mean is
O(ck). (ii) The vectors a1,a2, . . .aN are independent
of x and s, and can be precomputed. (iii) If ms is
known, computing the coefficients, α = Ams is O(Nk),
where A is a matrix with aTi as its rows. (iv) If ms is
unknown, but the seed vector is sparse with c non–zero
elements, computing the coefficients, α = AZTβD−

1
2 s

is O(Nc) provided that the matrix AZTβD−
1
2 ∈ RN×N

is precomputed and stored. (v) If the seed is fixed, the
coefficients α̂i(s) can be precomputed and stored such
that computing the out–of–sample score is O(N).

Approximate iterative methods for Personalized PageR-
ank (e.g. (Bahmani et al., 2010)) attempts to maintain
scores for a dynamically evolving graph (e.g. social
media graphs or web graphs). This is a different setting
than ours, where we have a training set consisting of N
samples and attempt to approximate scores for out–of–
sample data points. Because of this, we do not perform
comparisons between the methods in the experiments.

(Bahmani et al., 2010) reports a cost of O(N logm
α2) to

maintain global PageRank scores when m adversarially
chosen edges are added to the graph in random order.

While we are not maintaining scores for existing nodes,
computing scores for new nodes with KPPR is O(N),
since the seed is fixed. Furthermore, when using the
representer theorem the weights (kernel function val-
ues) in the sum is often sparse, such that the effective
number of components can potentially be much lower
than N .

4 EXPERIMENTS

The experiments are designed for the following pur-
poses: 1. As a sanity check to show that the KPPR
provides a good approximation to the exact PPR and
that our method for ordering eigenvectors yields a bet-
ter approximation error than the traditional (order
of eigenvalues) method. 2. To show that the KPPR
provides meaningful rankings for out–of–sample data,

eliminating the need to re–invert matrices or perform-
ing new power–iterations. 3. Show that the RKHS
approach with low–rank approximations can even yield
an improvement in ranking performance compared to
the PPR.

We set α = 0.1 for all experiments2. To show that
our theory is applicable regardless of the similarity
function used to compute edge weights, we run ex-
periments using both RBF–like functions (sec. 4.3)
and the recent Probabilistic Cluster Kernel (PCK)
(Izquierdo-Verdiguier et al., 2015) (sec. 4.1–4.2) with
default values (not being sensitive to user–specified
hyper–parameters). We compare the KPPR to the ex-
act PPR using the Normalized Discounted Cumulative
Gain at position k (NDCG@k) (Liu et al., 2009), a
ranking metric that is computed by a weighted sum of
relevance scores of the top k ranked datapoints. The
score of the exact PPR is computed using (2), and is
used to provide relevance scores for NDCG@k.

For reproducibility, experiments are performed on well-
known UCI benchmark datasets3, namely Wine, Iris,
WDBC and Jain’s Two–Moon (Jain and Law, 2005).
Moreover, we use a subset of the Caltech–101 dataset
(Fei-Fei et al., 2007) and a protein similarity network
used in (Weston et al., 2004), described in detail in
their respective sections. Additional experiments can
be found in the supplementary material.

4.1 Eigenvector Ordering

In this experiment, we verify our method for ordering
the eigenvectors. The KPPR embeddings were gener-
ated using two different ordering methods: ordering by
the result in Prop. 6 and ordering by the eigenvalues.

Fig. 1 shows average NDCG@k, k = 10, 20, 30, 40, as
a function of the dimensionality of the embedding for

2This is chosen somewhat arbitrarily, but is within the
range of values used for other PageRank–like methods in
the literature.

3https://archive.ics.uci.edu/ml/index.php

Kernel Personalized PageRank

0.2 0.4 0.6 0.8 1.0
ntr
N

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(a)

0.2 0.4 0.6 0.8 1.0
ntr
N

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(b)

0.2 0.4 0.6 0.8 1.0
ntr
N

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(c)

0.2 0.4 0.6 0.8 1.0
ntr
N

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(d)

0.0 0.2 0.4 0.6 0.8 1.0
pte

0.90

0.92

0.94

0.96

0.98

1.00

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(e)

0.0 0.2 0.4 0.6 0.8 1.0
pte

0.90

0.92

0.94

0.96

0.98

1.00

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(f)

0.0 0.2 0.4 0.6 0.8 1.0
pte

0.90

0.92

0.94

0.96

0.98

1.00

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(g)

0.0 0.2 0.4 0.6 0.8 1.0
pte

0.90

0.92

0.94

0.96

0.98

1.00

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(h)

Figure 2: NDCG@k as a function of the training set size with out–of–sample seed (top row) and out–of–sample
score with in–sample seed (bottom row) for (a, e): Wine, (b, f): Iris, (c, g): Two–moon, (d, h): WDBC

the benchmark datasets. For each dimensionality, we
randomly sampled 100 queries and ranked the data
with the two embeddings and using the exact PPR. We
observe that in this setting, the embedding generated
using Prop. 6 achieves better results relative to the
PPR with fewer dimensions compared to the embedding
where the eigenvectors are ordered by the eigenvalues.

4.2 Out–of–Sample Ranking

We explore the out–of–sample extension of our method
to show that we are able to provide a good approxima-
tion of the exact PPR without re–inverting matrices or
performing power iterations. We split the experiment
in two parts: one where the seed is in the out–of–sample
set, and one where the seed is in the in–sample set.
The exact PPR is computed on the entire dataset4. We
choose the dimensionality of our embeddings as the
number of eigenvectors whose eigenvalues λ∗i > 0.01,
since we need to discard eigenvectors with too small
eigenvalues to avoid dividing by a small number in
Eq. (7).

Out–of–Sample Seed In this experiment, we rank
the data with the seed in an out–of–sample dataset.
Fig. 2 (top row) shows a 95% confidence interval of
NDCG@k as a function of the size of the in–sample
set. For each in–sample–set size, 100 different in–
sample/out–of–sample sets were randomly sampled.
For each random split, we ranked the data using 30
random queries. The seed datapoint was left out of the

4Both in–sample and out–of–sample data

ranking result. Clearly, the KPPR needs the in–sample
set to be of a certain size to get decent results. For the
Wine and Iris dataset, an in–sample size larger than
around 20% seems to be sufficient to get somewhat
stable results. For the other two datasets, the results
are good for the whole range of dataset sizes.

Out–of–Sample Score In this experiment, we let
the seed be in the in–sample training set and vary
the number of out–of–sample points within the top
40 ranked datapoints. The procedure is as follows: 1.
Select a random seed point and calculate the baseline
ranking scores using the exact PPR. 2. Select ∼ pte ·40
random points from the top 40 ranked datapoints to use
as an out–of–sample test set. 3. Train the KPPR on the
in–sample training set and compute the ranking score
for both in–sample and out–of–sample data (discarding
the seed point). 4. Compare the ranking to the baseline
in step 1. using NDCG@k, k ∈ {10, 20, 30, 40}.
Plots of NDGC@k as a function of pte are shown in
Fig. 2 (bottom row). We see that for all the datasets,
the relevance of the top 10 ranked datapoints is stable.
For the Wine and Iris dataset, NDGC@k is decreasing
for k > 10. However, the top 10 ranked datapoints
should still be a good approximation to the exact PPR
ranking.

4.3 KPPR Outperforms PPR

In the previous experiments, we showed that the KPPR
makes sense relative to the PPR, and that ranking
of out-of-sample points are naturally enabled by our

Sigurd Løkse, Robert Jenssen

0.0 0.2 0.4 0.6 0.8 1.0
dim fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
ND

CG
@

50

0.050

0.247

0.444

0.641

0.838

1.035

1.232

1.429

1.626

1.823

sigm
a

(a)

0.0 0.2 0.4 0.6 0.8 1.0
dim fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
ND

CG
@

50

10

110

210

310

410

510

610

710

810

910

sigm
a

(b)

Figure 3: NDCG@50 as a function of the number of eigenvectors used set with 100 different values of σ for the
(a) Caltech image data (b) SCOP protein data.

RKHS approach. In this section, we show that the
KPPR may actually perform better than the PPR
relative to a quantitive ranking criterion. However,
contrary to before, we will in this experiment examine
our method’s performance under the oft-encountered
setting where the weights are computed by a simi-
larity function in which a user–specified parameter is
usually important for good performance. In particu-
lar, we construct 100 different graphs for each dataset
by generating affinity matrices using similarity func-
tions with 100 different values of the RBF-parameter
σ ∈ [σmin, σmax] (see below). We run N queries (one
for each datapoint) for each graph and for a varying
percentage of eigenvectors used in KPPR (dim fraction
∈ {0.01, 0.02, . . . , 1.0}). Note that the exact PPR is
obtained by using all eigenvectors (dim fraction = 1.0).
We report mean NDGC@50 for each σ value, for each
dim fraction.

The analysis is performed on (i) A subset of the Caltech
image dataset and (ii) The SCOP protein network
(Weston et al., 2004).

Caltech Images The Caltech image dataset used
in this experiment is a subset of the full dataset. In
particular, we use all images of transportation vehicles,
namely airplanes, cars, helicopters, ferries, motorbikes
and wheelchairs. The data is vectorized by generating
a bag–of–visual–words representation (Csurka et al.,
2004) using SIFT features5 and clustering the SIFT
features into 1024 bins. The edge weights in the graph
are calculated using an RBF on the form (K)ij =

κ(xi,xj) = e−
1

2σ2
‖xi−xj‖2 , with 100 σ parameters in

the range [0.05, 2]. For the purpose of this experiment,
we are interested in retrieving objects from the same

5Generated using OpenCV and standard parameters.

class as the query. Thus, for query i, datapoint j, the
relevance score rij is set to 1 if xj is in the same class
as xi and zero otherwise. This relevance score is used
to calculate NDCG@50, in which case NDCG@50 = 1
if the 50 top ranked points belong to the same class as
the query and zero if all the top 50 points belong to
the other class.

The results for the Caltech image dataset is shown in
Fig. 3a. We see that in this case, KPPR outperforms
PPR (dim fraction = 1.0) for all values of σ and inde-
pendently of the number of dimensions chosen. When
choosing the best number of dimensions, we get an
average NDCG@50 in the range [0.681, 0.781] with the
number of eigenvectors in the range [3, 13] percent of
the total number of eigenvectors. The best results are
obtained with σ = 0.07, using 4% of the eigenvectors.

The PPR obtains an average NDCG@50 in the
range [0.251, 0.253]. In fact, the PPR performs
worse than a randomly ordered list. The an-
alytical expression for the average NDCG@k is
given by NDCG@k = 1

N

∑N
i=1E(NDCG@k(i)) =∑C

c=1 P (ωc)
2, where P (ωc) is the marginal probability

of a datapoint belonging to class c. For details on how
to get this expression, see the supplementary material.
Using this expression, we get NDCG@k = 0.349 for
a random list in the Caltech dataset, meaning that
the PPR performs worse than just ordering the images
randomly. However, by discarding most of the eigenvec-
tors, KPPR is able to extract meaningful relationships
between datapoints.

SCOP Protein Data We use the protein similarity
network from (Weston et al., 2004) to further evaluate
our approach. The network is generated by running

Kernel Personalized PageRank

the PSI–BLAST software on the SCOP database6 with
parameters as described in (Weston et al., 2004), to
obtain E values that are used as a distance between
sequences. The E value between two sequences i and
j is then used to weight the edges in a graph, such
that the weight between node i and j in the graph
is given by (K)ij = κ(xi,xj) = 1

2

(
e−

Eij
σ + e−

Eji
σ

)
,

where σ is a user–specified hyper–parameter. This
results in a symmetric affinity matrix. The experiment
is performed on the training set from (Weston et al.,
2004). Indices for the training examples were obtained
from the website of (Weston et al., 2004) using the
Wayback Machine7.

We assign relevance scores between proteins in line
with (Weston et al., 2004). Proteins from the same su-
perfamily are assumed to be homologous. Accordingly,
we assign a relevance score rij = 1 if proteins i and
protein j come from the same superfamily. Further-
more, if proteins i and j are from different folds, they
are assumed to be unrelated, such that rij = 0. Pro-
tein pairs in the same fold, but different superfamilies,
have unknown relationships and are discarded from the
evaluation. We evaluate our algorithm with a varying
number of discarded eigenvectors and for 100 values of
σ ∈ [10, 1000].

Fig. 3 shows mean NDCG@50 for different values of
σ and different number of eigenvectors used in KPPR.
An interesting observation is that in all cases, there
is an optimal number of eigenvectors, in which KPPR
outperforms the exact PPR. In other words, there are
some components that deteriorates the structures in
the embedded data, such that meaningful relevances
are not obtainable.

KPPR obtains an average NDCG@50 in the range
[0.801, 0.868] when keeping 6%–15% of the eigenvectors.
The exact PPR obtains an average NDCG@50 in the
range [0.281, 0.855] for the same σ parameters. While
the best performance of PPR is nearly as good as the
best performance of KPPR when σ is chosen carefully
(small σ), KPPR is able to perform well even with a
poor σ parameter.

Discussion KPPR outperforming PPR in this set-
ting is a very interesting result. If we study this in
terms of Prop. 4, the improved results is a consequence
of removing information from the restart component
of the score vector. We suspect that by discarding
information from the restart component, we are in fact
performing some form of de–noising as in the presence
of noise, low–rank embeddings on this form have been
proven useful for that purpose (Jenssen, 2010; Kwok

6Obtained from http://scop.berkeley.edu/astral/ver=1.59
7https://archive.org/web/

and Tsang, 2004; Mika et al., 1999). Moreover, it is
well known in the graph literature that the eigenvectors
used to generate our embedding may reveal structure in
the data (Ng et al., 2001; Shi and Malik, 2000). These
kind of results are to the authors’ best knowledge not
found in the current PageRank literature, and will be
explored further in future work.

5 CONCLUSION

In this paper, we have introduced the Kernel Per-
sonalized PageRank based on a novel analysis of the
Personalized PageRank from a Reproducing Kernel
Hilbert Space perspective. The method requires com-
puting eigenvectors which is expensive. However, we
have shown that these interpretations facilitate out–
of–sample ranking of previously unseen data without
performing new power iterations or re–inverting ma-
trices, allowing for ranking a potentially large dataset
using eigenvectors computed on a smaller subset. We
provided a method for ordering eigenvectors such that
an error criterion is minimized. Experiments show that
the KPPR provide a good approximation for the ex-
act PPR, both for in–sample and out–of–sample data.
Furthermore, we showed empirically that the low-rank
KPPR can actually outperform the PPR.

In the future, we plan on further exploring the empirical
kernel space by visualization/geometric interpretations
and exploiting the fact that we are able to e.g. perform
clustering on the same representation that is used for
ranking.

References

Bahman Bahmani, Abdur Chowdhury, and Ashish
Goel. Fast incremental and personalized pagerank.
Proceedings of the VLDB Endowment, 4(3):173–184,
2010.

M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation.
Neural computation, 15(6):1373–1396, 2003.

Y. Bengio, O. Delalleau, N. L. Roux, J.-F. Paiement,
P. Vincent, and M. Ouimet. Learning Eigenfunctions
Links Spectral Embedding and Kernel PCA. Neural
Computation, 16(10):2197–2219, 2004.

S. Brin and L. Page. The anatomy of a large-scale hyper-
textual Web search engine. Computer Networks and
ISDN Systems, 30(1-7):107–117, April 1998. ISSN
01697552. doi: 10.1016/S0169-7552(98)00110-X.

F. Chung and W. Zhao. Pagerank and random walks on
graphs. Fete of combinatorics and computer science,
pages 1–16, 2010.

Fan Chung and S.-T. Yau. Discrete Green’s Functions.

Sigurd Løkse, Robert Jenssen

Journal of Combinatorial Theory, Series A, 91(1-2):
191–214, July 2000. ISSN 00973165.

Gabriella Csurka, Christopher R. Dance, Lixin Fan,
Jutta Willamowski, and Cédric Bray. Visual cate-
gorization with bags of keypoints. In In Workshop
on Statistical Learning in Computer Vision, ECCV,
pages 1–22, 2004.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning
generative visual models from few training exam-
ples: An incremental bayesian approach tested on
101 object categories. Computer vision and Image
understanding, 106(1):59–70, 2007.

David F Gleich. Pagerank beyond the web. SIAM
Review, 57(3):321–363, 2015.

H. Hotelling. Analysis of a complex of statistical vari-
ables into principal components. Journal of Educa-
tional Psychology, 24(6):417–441, September 1933.

Emma Izquierdo-Verdiguier, Robert Jenssen, Luis
Gómez-Chova, and Gustavo Camps-Valls. Spectral
clustering with the probabilistic cluster kernel. Neu-
rocomputing, 149, Part C(0):1299–1304, 2015.

Anil K Jain and Martin HC Law. Data clustering:
A user’s dilemma. In International conference on
pattern recognition and machine intelligence, pages
1–10. Springer, 2005.

R. Jenssen. Kernel Entropy Component Analysis. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 32(5):847–860, 2010. ISSN 0162-8828. doi:
10.1109/TPAMI.2009.100.

Y. Jing and S. Baluja. VisualRank: applying PageRank
to large-scale image search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(11):
1877–90, November 2008. ISSN 1939-3539.

Johannes Klicpera, Aleksandar Bojchevski, and
Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on
graphs. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=H1gL-2A9Ym.

Isabel M Kloumann, Johan Ugander, and Jon Klein-
berg. Block models and personalized pagerank. Pro-
ceedings of the National Academy of Sciences, 114
(1):33–38, 2017.

JT-Y Kwok and IW-H Tsang. The pre-image problem
in kernel methods. IEEE transactions on neural
networks, 15(6):1517–1525, 2004.

Hang Li. A short introduction to learning to rank. IE-
ICE TRANSACTIONS on Information and Systems,
94(10):1854–1862, 2011.

Tie-Yan Liu et al. Learning to rank for information
retrieval. Foundations and Trends R© in Information
Retrieval, 3(3):225–331, 2009.

Peter Lofgren. Efficient algorithms for personalized
pagerank. arXiv preprint arXiv:1512.04633, 2015.

Subhransu Maji, Nisheeth K Vishnoi, and Jitendra
Malik. Biased normalized cuts. In Computer Vi-
sion and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 2057–2064. IEEE, 2011.

J. Mercer. Functions of Positive and Negative Type,
and their Connection with the Theory of Integral
Equations. Philosophical Transactions of The Royal
Society, A(209):415–446, 1909.

C. D. Meyer, S. Race, and K. Valakuzhy. Determining
the Number of Clusters via Iterative Consensus Clus-
tering. In SDM, pages 94–102. SIAM, 2013. ISBN
978-1-61197-262-7. doi: 10.1137/1.9781611972832.
11.

Sebastian Mika, Bernhard Schölkopf, Alex J Smola,
Klaus-Robert Müller, Matthias Scholz, and Gunnar
Rätsch. Kernel pca and de-noising in feature spaces.
In Advances in neural information processing sys-
tems, pages 536–542, 1999.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On Spectral
Clustering: Analysis and an algorithm. Advances in
Neural Information Processing Systems, pages 849–
856, 2001.

Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller. Kernel principal component anal-
ysis. In International conference on artificial neural
networks, pages 583–588. Springer, 1997.

Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola.
A generalized representer theorem. In International
conference on computational learning theory, pages
416–426. Springer, 2001.

J. Shi and J. Malik. Normalized cuts and image segmen-
tation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8):888–905, August 2000.
ISSN 0162-8828.

Jason Weston, Andre Elisseeff, Dengyong Zhou,
Christina S Leslie, and William Stafford Noble. Pro-
tein ranking: from local to global structure in the
protein similarity network. Proceedings of the Na-
tional Academy of Sciences, 101(17):6559–6563, 2004.

Christopher KI Williams. On a connection between
kernel pca and metric multidimensional scaling. Ma-
chine Learning, 46(1-3):11–19, 2002.

Zexing Zhan, Ruimin Hu, Xiyue Gao, and Nian Huai.
Fast incremental pagerank on dynamic networks. In
International Conference on Web Engineering, pages
154–168. Springer, 2019.

Hongyang Zhang, Peter Lofgren, and Ashish Goel. Ap-
proximate personalized pagerank on dynamic graphs.

Kernel Personalized PageRank

In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 1315–1324. ACM, 2016.

D. Zhou, J. Weston, A. Gretton, O. Bousquet, and
B. Schölkopf. Ranking on Data Manifolds. Advances
in Neural Information Processing Systems, 16:169–
176, 2004a.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal,
Jason Weston, and Bernhard Schölkopf. Learning
with Local and Global Consistency. Advances in
Neural Information Processing Systems, 16(16):321–
328, 2004b.

Kernel Personalized PageRank: Supplementary Material

Proof of Proposition 1

Proof. Let ei be an eigenvector of L with the corre-
sponding eigenvalue λ′i. Then the eigenvalue of Lβ is
given by λi = λ′i +β. Since Gβ =

∑N
i=1

1
λi

eie
T
i , we get

yTGβy = yT
N∑

i=1

1

λ′i + β
eie

T
i y

=
N∑

i=1

1

λ′i + β
yTeie

T
i y

=
N∑

i=1

1

λ′i + β
a2i , ai = yTei

> 0

for 1
λ′i+β

> 0, i = 1, 2, . . . , N . Since L is positive
semidefinite, λ′i ≥ 0. Consequently, 1

λ′i+β
> 0 for

β = α
1−α > 0, which is satisfied for 0 < α < 1.

Proof of Proposition 2

Proof. Recall that (Gβ)ij = Gβ(xi,xj) =
〈φ(xi),φ(xj)〉. By combining this with (2), we
get

πi(α, s)√
di

= β
N∑

j=1

(s)j√
dj
〈φ(xi),φ(xj)〉

= β

〈
φ(xi),

N∑

j=1

(s)j√
dj

φ(xj)

〉
∝ 〈φ(xi),w〉,

where w =
∑N
j=1

(s)j√
dj
φ(xj).

Proof of Proposition 3

Proof. Given Zβ =
(
z1(β) z2(β) · · · zN (β)

)T and
π(α, s) = βD

1
2 ZβZTβD−

1
2 s, we have ZTβD−

1
2 s =

∑N
j=1

(s)j√
dj

zj(β). Thus, element i of π(α, s) can be

computed by πi(α, s) = β
√
di
∑N
j=1

(s)j√
dj

zj(β)T zi(β),

or equivalently πi(α,s)√
di

∝ wT zi(β), where w =

∑N
j=1

(s)j√
dj

zj(β) = ms is a weighted mean in the empir-

ical kernel space, weighted by the seed distribution.

Proof of Proposition 4

Proof.

π(α, s) = βD
1
2GβD−

1
2 s

= βD
1
2

(
N∑

i=1

1

λi
eie

T
i

)
D−

1
2 s

= βD
1
2

(
1

λ1
e1e

T
1 +

N∑

i=2

1

λi
eie

T
i

)
D−

1
2 s.

Using the fact that λ1 = 1 + β − λ∗1 = β and e1 =
1√

1TD1
D

1
2 1, we get

π(α, s) = β
1

β

1

1TD1
D

1
2 D

1
2 11TD

1
2 D−

1
2 s

+ βD
1
2

(
N∑

i=2

1

λi
eie

T
i

)
D−

1
2 s

=
1

1TD1
D11T s + βD

1
2Gβ ′D−

1
2 s = π + π′(α, s),

since 1T s = 1.

Proof of Theorem 1

Proof. Consider the in–sample embedding Zβ =

EΛ−
1
2 , where E is the orthogonal eigenvector matrix of

Lβ and Λ is its diagonal eigenvalue matrix. Recall that
the normalized kernel matrix K has the same eigenvec-
tors, but with shifted eigenvalues Λ∗ = (1 + β)I−Λ,
implying K = EΛ∗ET , where ETE = I. Assuming
that Λ∗

−1

exists, we get

Zβ = EΛ−
1
2 = EΛ∗ETEΛ∗

−1

Λ−
1
2 = KEΛ∗

−1

Λ−
1
2

= KEΛ∗
−1

[(1 + β)I−Λ∗]−
1
2

The result follows.

Kernel Personalized PageRank: Supplementary Material

Out–of–sample decomposition

Let xi be an out–of–sample datapoint with out–of–
sample embedding ẑi as defined in Def. 2 and out–of–
sample score π̂i(α, s) according to Def. 3. Then

π̂i(α, s) = π̂i + β

√
d̂iẑ
′
i
Tms

′ ,

where ẑ′i is the out–of–sample embedding of xi when
discarding the first dimension (trivial eigenvector), π̂i ≡
d̂i

1TD1 and d̂i is defined as in Def. 1

Proof. The out–of–sample score is given by

π̂i(α, s) = β

√
d̂iẑ

T
i ms

= β

√
d̂iẑi,1ms,1 + β

√
d̂iẑ
′
i
Tms

′ ,

where ẑi,1 and ms,1 are the contributions from the
trivial eigenvector e1 = 1√

1TD1
D

1
2 1 for ẑi and ms

respectively. Note that the first eigenvalue is given by
λ∗1 = 1. Using these values in Def. 2 yields

ẑi,1 =
1√
β

N∑

k=1

κ(xi,xk)√
d̂idk

√
dk

1TD1

=
1√

βd̂i1TD1

N∑

k=1

κ(xi,xk)

=

√
d̂i

β1TD1
,

since d̂i =
∑N
k=1 κ(xi,xk) according to Def. 1.Further-

more,

m̂i,1 =
N∑

j=1

(s)j√
dj
zi,1

=
N∑

j=1

(s)j√
dj

1√
β

N∑

k=1

κ(xj ,xk)√
djdk

√
dk

1TD1

=
1√

β1TD1

N∑

j=1

(s)j
dj

N∑

k=1

κ(xj ,xk)

=
1√

β1TD1

N∑

j=1

(s)j

=
1√

β1TD1
,

since dj =
∑N
k=1 κ(xj ,xk) and

∑N
j=1(s)j = 1. Finally,

the contribution from the first eigenvector is given by

β

√
d̂iẑi,1ms,1 = β

√
d̂i

√
d̂i

β1TD1
1√

β1TD1

=
d̂i

1TD1
≡ π̂i.

The result follows.

Proof of Proposition 5

Proof.

∥∥∥∥
1

β
D−

1
2 ε

∥∥∥∥
2

=

∥∥∥∥∥
1

β
D−

1
2π +

N∑

i=2

1

λi
eie

T
i D−

1
2 s

−
(

1

β
D−

1
2π +

k+1∑

i=2

1

λi
eie

T
i D−

1
2 s

)∥∥∥∥∥

2

=

∥∥∥∥∥
N∑

i=k+2

1

λi
eie

T
i D−

1
2 s

∥∥∥∥∥

2

=

∥∥∥∥∥
N∑

i=k+2

ciei

∥∥∥∥∥

2

,

where ci = 1
λi

eTi D−
1
2 s. Then,

∥∥∥∥∥
N∑

i=k+2

ciei

∥∥∥∥∥

2

=

N∑

i=k+2

cie
T
i

N∑

j=k+2

cjej

=
N∑

i=k+2

N∑

j=k+2

cicje
T
i ej =

N∑

i=k+2

c2i

=
N∑

i=k+2

[
1

λi
eTi (D−

1
2 s)

]2
,

since eTi ej = 0, i 6= j.

Proof of Proposition 6

Proof. Let 1j be a vector with 1 in element j and zeros
everywhere else. If datapoint xj is chosen as a query
with probability pj = 1

N , then the expected error norm
is given by

Es∼r.q.

(∥∥ 1

β
D−

1
2 ε(s)

∥∥2
)

=
N∑

j=1

pj
∥∥ 1

β
D−

1
2 ε(1j)

∥∥2

=
N∑

j=1

1

N

N∑

i=k+2

[
1

λi
eTi (D−

1
2 1j)

]2

=
1

N

N∑

i=k+2

1

λ2i

N∑

j=1

(
(ei)j√
dj

)2

=
1

N

N∑

i=k+2

‖D− 1
2 ei‖2
λ2i

.

Proof of Proposition 7

Proof. Let the seed be given by s = 1
NCj

1Cj , where 1Cj
is a vector with value 1 in element ` if x` ∈ Cj and zero
otherwise. Then

∥∥∥∥
1

β
D−

1
2 ε

∥∥∥∥
2

=

N∑

i=k+2

[
1

λi
eTi D−

1
2

1

NCj
1Cj

]2

=
1

N2
Cj

N∑

i=k+2

1

λ2i
〈D− 1

2 ei,1Cj 〉2,

where 〈·, ·〉 denotes an inner product. By the triangle
inequality, we have

〈D− 1
2 ei,1Cj 〉2 ≤ ‖D−

1
2 ei‖2‖1Cj‖2 = NCj‖D−

1
2 ei‖2.

The result follows.

Proof of Proposition 8

Proof. Let z be the image of x in the empir-
ical kernel space of Gβ . Recall that (z)j =

1
λ∗j
√

1+β−λ∗j

∑N
k=1 K̂(x,xk)(ej)k. The PPR of x is

given by

π(x|s) = π̂ + β
√
d(x)z′Tm′s,

where π̂ = d(x)
1TD1 , d(x) =

∑N
i=1 κ(x,xi) is the degree of

x, z′ and m′s are vectors in the empirical kernel space
where the first component is discarded. Then

β
√
d(x)z′Tm′s

= β
√
d(x)

k+1∑

j=2

1

λ∗j
√

1 + β − λ∗j

N∑

i=1

K̂(x,xi)(ej)i(ms)j .

Since K̂(x,xi) = κ(x,xi)√
d(x)
√
di
, we get

β
√
d(x)z′Tm′s

=
N∑

i=1



k+1∑

j=2

β
(ej)i√

diλ∗j
√

1 + β − λ∗j
(ms)j


κ(x,xi)

=
N∑

i=1

m′Ts a′iκ(x,xi),

where (ai)j = β
(ej)i√

diλ∗j
√

1+β−λ∗j
. Finally, substituting

this in the PPR score, we get

π(x|s) = π̂ + β
√
d(x)z′Tm′s

=
d(x)

1TD1
+

N∑

i=1

m′Ts a′iκ(x,xi)

=

∑N
i=1 κ(x,xi)

1TD1
+

N∑

i=1

m′Ts a′iκ(x,xi)

=
N∑

i=1

[
1

1TD1
+ m′Ts a′i

]
κ(x,xi)

=
N∑

i=1

α̂i(s)κ(x,xi),

where α̂i(s) = 1
1TD1 + m′Ts a′. This concludes the

proof.

Expected NDCG@k

In this section, we derive the average expected
NDCG@k for a dataset with class structures, with
a randomly ordered list. For simplicity, we assume that
k ≤ min(N1, N2, . . . , NC), where Nc, c = 1, 2, . . . , C
are the number of datapoints in class ωc. Additionally,
we assume that the relevance of datapoint xj in query
i is given by rij = 1 if xi and xj belong to the same
class and rij = 0 otherwise. The expected NDCG@k
for query i is given by

E(NDCG@k(i)) = E

(
DCG@k(i)

DCG@kopt

)
.

Let ri(k′) be the relevance of the datapoint in position
k′ in an ordered list for query i, i.e. ri(k

′) = rij
if xj is in position k′ in the ordered list. Since
k ≤ min(N1, N2, . . . , NC) the optimal DCG@k is given
by DCG@kopt =

∑k
k′=1

ri(k
′)opt

log2(k
′+1) =

∑k
k′=1

1
log2(k

′+1) ,
which is constant. Then,

E(NDCG@k(i)) =
1

DCG@kopt
E(DCG@k(i))

=
1

DCG@kopt

k∑

k′=1

E(ri(k
′))

log2(k′ + 1)
.

For a randomly ordered list, any datapoint can come
at any position in the list and ri(k′), k′ = 1, 2, . . . , N

Kernel Personalized PageRank: Supplementary Material

0 25 50 75 100 125 150 175
idxte

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(a)

0 20 40 60 80 100 120 140
idxte

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(b)

0 50 100 150 200 250 300 350
idxte

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(c)

0 100 200 300 400 500
idxte

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

NDCG@10
NDCG@20
NDCG@30
NDCG@40

(d)

Figure 1: Leave–one–out NDCG@k as a function of the test/seed index. (a): Wine, (b): Iris, (c): Two–moon, (d):
WDBC

Table 1: Leave–one–out results

NDGC@10 NDGC@20 NDGC@30 NDGC@40

Mean Std Mean Std Mean Std Mean Std

Wine 0.973 0.023 0.967 0.023 0.965 0.021 0.967 0.021

Iris 0.987 0.013 0.975 0.015 0.973 0.015 0.976 0.015

Two moons 0.993 0.013 0.992 0.012 0.989 0.012 0.987 0.012

WDBC 0.979 0.025 0.976 0.025 0.973 0.026 0.970 0.028

are i.i.d. The theorem of double expectation yields

E(ri(k
′)) = E(E(ri(k

′)|ω(xi)))

=
C∑

c=1

P (xi ∈ ωc)E(ri(k
′)|xi ∈ ωc)

=

C∑

c=1

P (xi ∈ ωc)(1 · P (xk′ ∈ ωc)

+
∑

c′ 6=c
0 · P (xk′ ∈ ωc′))

=
C∑

c=1

P (ωc)
2,

where P (ωc), c = 1, 2, . . . , C are the marginal probabil-
ities of a datapoint belonging to class ωc. Notice that
this is independent of the query. Thus,

E(NDCG@k(i)) =
1

DCG@kopt

k∑

k′=1

∑C
c=1 P (ωc)

2

log2(k′ + 1)

=

C∑

c=1

P (ωc)
2DCG@kopt

DCG@kopt

=
C∑

c=1

P (ωc)
2.

Thus, the expected NDCG@k is given by

E(E(NDCG@k(i))) =
C∑

c=1

P (ωc)
2.

Additional experiments

Out–of–sample, leave–one–out results

In addition to the experiments in sec. 4.3 in the main
paper, we ran a leave–one–out like scheme, where we
computed the in–sample embedding based on all dat-
apoints except one. We then used our out–of–sample
extension to compute the embedding for this datapoint,
and ranked the data using the left–out datapoint as
a seed. Fig. 1 shows NDCG@k as a function of the
datapoint which was left out and Tab. 1 shows the
mean and standard deviation of NDGC@k. We see
that our method is, on average, able to retrieve relevant
objects, especially in the top 10 results. However, there
are examples of datapoints where NDCG@k is low as
seen in Fig. 1. These datapoints might be outliers that
are located far away from the other datapoints in input
space.

Ranking and clustering: Seal image data

In this experiment, we perform ranking and clustering
using the seal image data.

The dataset contains aerial RGB images of hooded and
harp seal pups. Vectorial representations of the images
were generated by feeding the images through a neural
network using the AlexNET architecture (Krizhevsky
et al., 2012) and storing the input to the classification
layer. Using publically available pretrained weights1,

1Trained on the ImageNET database

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

−0.1

0.0

0.1

0.2

0.3

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0.0022

(a)
−0.10−0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

−0.1

0.0

0.1

0.2

0.3

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

(b)
−0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

−0.1

0.0

0.1

0.2

0.3

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

(c)
−0.10−0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

−0.1

0.0

0.1

0.2

0.3

0.0005

0.0010

0.0015

0.0020

(d)

Figure 2: In–sample (left) and out–of–sample (right) embedding for the seals dataset with uniform seed over
in–sample data in (a)–(b) cluster 1, (c)–(d) cluster 2. Color indicates ranking score.

(a) (b) (c) (d)

Figure 3: Top ranked images from in–sample (left) and out–of–sample (right) data with a uniform seed over
in–sample data in (a)–(b) cluster 1, (c)–(d) cluster 2.

we finetuned the network on the seal images. The data
used in our experiments are independent on the data
used to finetune the network. For more information on
the data, see e.g. (Kampffmeyer et al., 2019).

We used a small subset of the data to train the PCK
(100 datapoints) and split the remainder of the dataset
into an in–sample and out–of–sample set with 500 and
6312 datapoints, respectively. Because of the high
dimensionality of the input data (4096), we reduced
the dimensionality of the vectorial data to 100 prior to
training the PCK.

Using our method, we transformed the in–sample data
into a 5 dimensional representation and clustered the
data using the k–means clustering algorithm with k = 2.
The remaining data was transformed using our out–of–
sample extension.

Using a uniform seed over each of the clusters, we
ranked both in–sample and out–of–sample data. Fig. 2
shows the first two dimensions of the KPPR represen-
tation of the data. The left column corresponds to the
in–sample data, while the right column corresponds to
the out–of–sample data. Each row corresponds to a
ranking of the data using one of the two seeds. The
color of a data point corresponds to its score (yel-
low=high, blue=low). This plot shows clearly that the
out–of–sample embedding holds the general shape of

the in–sample embedding.

Fig. 3 shows the top ranked images using both seeds2.
Other than noticing that the top ranked out–of–sample
images look similar to the top ranked in–sample images,
one can notice that the top ranked images from the
different seeds are indeed very different. Using this
ranking information, we see that one cluster seems to
contain clean images of white seals. The other cluster
seems to contain images of black seals and images that
are ”contaminated” by shadows or water.

References

Michael Kampffmeyer, Sigurd Løkse, Filippo M.
Bianchi, Lorenzo Livi, Arnt-Børre Salberg,
and Robert Jenssen. Deep divergence-based
approach to clustering. Neural Networks,
113:91 – 101, 2019. ISSN 0893-6080. doi:
https://doi.org/10.1016/j.neunet.2019.01.015.
URL http://www.sciencedirect.com/science/
article/pii/S0893608019300292.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

2The layout is equal to the one in Fig. 2

Paper III

The deep kernelized autoencoder
Michael Kampffmeyer, Sigurd Løkse, Filippo M. Bianchi, Robert Jenssen

and Lorenzo Livi.

Applied Soft Computing, 2018

109

Applied Soft Computing 71 (2018) 816–825

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

The deep kernelized autoencoder

Michael Kampffmeyera,∗, Sigurd Løksea, Filippo M. Bianchia, Robert Jenssena,b,
Lorenzo Livi c

a Machine Learning Group, UiT – The Arctic University of Norway, Norway1

b Norwegian Computing Center, Oslo, Norway
c Department of Computer Science, University of Exeter, UK

a r t i c l e i n f o

Article history:
Received 15 February 2018
Received in revised form 4 June 2018
Accepted 7 July 2018
Available online 18 July 2018

Keywords:
Autoencoders
Kernel methods
Deep learning
Representation learning

a b s t r a c t

Autoencoders learn data representations (codes) in such a way that the input is reproduced at the output
of the network. However, it is not always clear what kind of properties of the input data need to be
captured by the codes. Kernel machines have experienced great success by operating via inner-products
in a theoretically well-defined reproducing kernel Hilbert space, hence capturing topological properties
of input data. In this paper, we enhance the autoencoder’s ability to learn effective data representations
by aligning inner products between codes with respect to a kernel matrix. By doing so, the proposed
kernelized autoencoder allows learning similarity-preserving embeddings of input data, where the notion
of similarity is explicitly controlled by the user and encoded in a positive semi-definite kernel matrix.
Experiments are performed for evaluating both reconstruction and kernel alignment performance in
classification tasks and visualization of high-dimensional data. Additionally, we show that our method
is capable to emulate kernel principal component analysis on a denoising task, obtaining competitive
results at a much lower computational cost.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Autoencoders (AEs) are a class of neural networks that gained
increasing interest in recent years [53,30,44,51,28]. AEs are used
for unsupervised learning of effective latent representations of data
[18,4]. However, what an effective representation consists of is
highly dependent on the target task, such as clustering and classifi-
cation [5]. In standard AEs, representations are derived by training
the network to reconstruct inputs through either a bottleneck layer,
thereby forcing the network to learn how to compress inputs, or
through an over-complete representation. It can be shown that
training autoencoders using a reconstruction error corresponds to
maximizing the lower bound of the mutual information between
input and the learned representation [53]. Regularization meth-
ods are commonly employed for enforcing sparseness, improving
robustness to noise, avoiding trivial identity mappings, or penaliz-
ing sensitivity of the representation to small changes in inputs [5].
Nonetheless, regularization alone provides limited control over the
nature of the hidden representation.

∗ Corresponding author.
E-mail address: michael.c.kampffmeyer@uit.no (M. Kampffmeyer).

1 http://site.uit.no/ml/.

In this paper, we propose a method to learn representations
that preserve desired similarities in input space with an AE. In our
approach, similarities are encoded in form of a kernel matrix, which
is used as a prior to be reproduced by inner products of the hidden
representations learned by the AE. This allows us to learn data rep-
resentations with specified pairwise relationships. The training loss
minimizes a combination of reconstruction error and a term quan-
tifying the misalignment of the prior and the inner products of the
hidden representations; the misalignment is computed by means
of the normalized Frobenius norm. We note that this process acts as
a regularization for the hidden representations and resembles the
well-known kernel alignment procedure [54]. Our contribution is
in principle related to other well-established methods like those
from the family of multidimensional scaling [7], where an explicit
embedding of the data is computed by minimizing a measure of dis-
tortion based on inner products. Further, we will experimentally
show that the proposed regularization method allows mitigating
a problem often observed in non-regularized AEs, where codes for
similar images are not similar themselves and the underlying man-
ifold is disconnected [37].

1.1. Related works

The proposed model, called deep kernelized autoencoder, is
related to recent attempts to incorporate kernel and information

https://doi.org/10.1016/j.asoc.2018.07.029
1568-4946/© 2018 Elsevier B.V. All rights reserved.

M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825 817

theoretic learning methods within neural network architectures
[55,9]. Specifically, it is connected to works on interpreting neu-
ral networks from a kernel perspective [39] and the Information
Theoretic-Learning Auto-Encoder [44], which imposes a prior
distribution over the hidden representation in a variational autoen-
coder [30]. Achille and Soatto [1] proposed a regularization method
exploiting information dropout, an information-theoretic gener-
alization of dropout [48] for neural networks and show that
an AE trained with such a regularization for a specific param-
eter setting simplifies to the variational autoencoder objective.
Other information-theoretic learning concepts, such as the infor-
mation bottleneck [49], have also recently emerged in the deep
learning literature [47]. In [2] variational inference is used to opti-
mize the lower bound on the information bottleneck to learn
representations that maximize the mutual information between
learned representation and output while minimizing the mutual
information between input and hidden representation. Computing
the information bottleneck is difficult, especially with high-
dimensional data. Chalk et al. [8] proposed an efficient variational
scheme for maximizing a lower bound of the original information
bottleneck formulation, which also allows for non-linear mappings
between input and compressed representation via kernel functions.
Beside dimensionality reduction, neural networks utilizing kernel
and information theoretic concepts have also been used to perform
clustering [26].

In our work, we exploit kernel alignment to match the inner
products of the learned representations with a similarity measure
in the input space encoded as a kernel matrix. A recent related work
in this direction by Horn and Müller [21] attempts to learn repre-
sentations that preserve pairwise similarity by means of AEs. The
authors specifically focus on dimensionality reduction, showing
the possibility to approximate the pairwise data similarity in input
space in linear fashion from the learned low-dimensional represen-
tation. In practice, given an input data point, the network is trained
to recreate the related row of the similarity matrix. Recently, Chu
and Cai [10] propose a similarity-preserving AE based on clustering
data in input space. Hidden representations are learned in such a
way that data points belonging to the same cluster are similar also
in the hidden representation.

Another recent approach consists in integrating Wasserstein
Generative Adversarial Neural Networks into the AE framework
[28]. Similarly, Tolstikhin et al. [51] propose the Wasserstein
Autoencoder, which is based on a novel regularization technique
minimizing the Wasserstein distance between the model distribu-
tion and a target distribution.

1.2. Contribution and paper organization

In addition to providing more control over hidden representa-
tions, our method also has several benefits that compensate for
important drawbacks of traditional kernel methods. By means of
an end-to-end training procedure, we learn an explicit approxi-
mate mapping function from the input to a kernel space, as well as
the associated back-mapping to the input space. Once the mapping
is learned, it can be applied to inputs and operations performed in
kernel space can then be explicitly simulated by means of linear
operations in code space, thus in practice allowing to perform non-
linear operations in input space. Mini-batch training is used in the
proposed method in order to lower the computational complex-
ity inherent to traditional kernel methods and, especially, spectral
methods [45,6,24]. Furthermore, our method can be used with
arbitrary kernel functions, even those computed with an algorith-
mic procedure, i.e., where inner products in kernel space are not
expressed by an analytic function. To stress this fact, in our exper-
iments we consider the probabilistic cluster kernel (PCK), a kernel
function that is the result of a feature generation procedure. PCK is

robust with respect to hyperparameter choices and has been shown
to often outperform counterparts such as the radial basis function
(RBF) kernel [23].

A preliminary version of this method appeared in [25]. Here we
extend our work by:

• providing a thorough literature background discussion, placing
our work into a broader context;

• extending the experimental evaluation to additional datasets,
namely (i) the image dataset CIFAR-10, (ii) the text dataset
Reuters, and (iii) the remote sensing dataset Cloud;

• experimentally analyzing the effectiveness of the learned
representations for classification tasks and visualizing high-
dimensional data, and for generating new data samples beyond
those seen during training.

The paper is structured as follows. Section 2 provides the reader
with a discussion of the relevant background, such as AEs and ker-
nel methods; notably in Section 2.3 we introduce PCK, adopted
here for obtaining kernel matrices to be used in our method. Sec-
tion 3 describes the proposed methodology. Experimental results
are discussed in Section 4 and Section 5. Finally, Section 6 draws
conclusions and points to future research directions.

2. Background

2.1. Autoencoders and stacked autoencoders

AEs simultaneously learn two functions. The first one, the
encoder, provides a mapping from an input domain, X , to a code
domain, C, i.e., the hidden representation. The second function, the
decoder, maps from C back to X . For a single hidden layer AE, the
encoding function E(·) and the decoding function D(·) are defined
as

h = E(x) = �(WEx + bE)

x̃ = D(h) = �(WDh + bD),
(1)

where �(·) denotes a suitable transfer function (e.g., a sigmoid
applied component-wise), x, h, and x̃ denote, respectively, a sam-
ple from the input space, its hidden representation also called code,
and its reconstruction; finally, WE and WD are the weights, and bE

and bD the bias of encoder and decoder, respectively.
In order to minimize the discrepancy between the original data

and its reconstruction, model parameters in Eq. (1) are learned by
minimizing, usually through stochastic gradient descent (SGD), a
reconstruction loss of the form

Lr(x, x̃) = ‖x − x̃‖2
2. (2)

Differently from Eq. (1), a stacked autoencoder (sAE) consists of
several hidden layers [18]. Deep architectures are capable of learn-
ing complex representations by transforming input data through
multiple layers of nonlinear processing [5]. The optimization of the
weights is harder in this case and pretraining is beneficial, as it is
often easier to learn intermediate representations, instead of train-
ing the whole architecture end-to-end [4]. A common application
of pre-trained sAE is the initialization of layers in deep neural net-
works [53]. Pretraining is performed in different phases, each of
which consists of training a single AE layer. After the first AE has
been trained, its encoding function E(·) is kept fixed and is applied
to the input and the resulting representation is used to train the
next AE in the stacked architecture. Each layer, being trained inde-
pendently, aims at capturing more abstract features by trying to
reconstruct the representation in the previous layer. Once all indi-
vidual AEs are trained, their hidden layers (encoding and decoding

818 M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825

functions) are extracted and stacked on each other, yielding a pre-
trained sAE.

2.2. A brief introduction to kernel methods

Kernel methods process data in a reproducing kernel Hilbert
space (RKHS) K associated with an input space X through an implicit
(non-linear) mapping � : X → K . There, data are more likely to
become separable by linear methods [11], which produces results
that are otherwise only obtainable by nonlinear operations in
the input space. Explicit computation of the mapping �(·) and its
inverse �−1(·) is, in practice, not required. In fact, operations in the
kernel space are expressed through inner products (kernel trick),
which are computed as Mercer kernel functions in input space: �(xi,
xj) = 〈�(xi), �(xj)〉.

As a major drawback, kernel methods scale poorly with the
number of samples n: traditionally, memory requirements of these
methods scale with O(n2) and computation with O(n2 × d), where
d is the input dimension [13]. For example, kernel principal com-
ponent analysis (kPCA) [45], a common dimensionality reduction
technique that projects data into the subspace that preserves the
maximal amount of variance in kernel space, requires to com-
pute the eigendecomposition of a kernel matrix K ∈ R

n×n, with
Kij = �(xi, xj), xi, xj ∈ X , with computational and memory costs
scaling as O(n3) and O(n2), respectively. For this reason, kPCA is
not applicable to large-scale problems. The availability of effi-
cient (approximate) mapping functions, however, would reduce
the complexity, thereby enabling these methods to be applica-
ble to larger datasets [9]. In this direction, Rahimi and Recht [41]
and Vedaldi and Zisserman [52] proposed approximate mappings
preserving the dot product structure by using low-dimensional ran-
domized features, hence allowing the use of fast linear methods in
an explicit way. Furthermore, finding an explicit inverse mapping
from K to the input domain is a central problem in several applica-
tions, such as image denoising performed with kPCA, also known
as the pre-image problem [3,20].

Our proposed method instead, attempts to approximate the
operations in the kernel space using an AE architecture that scales
to large datasets, provides an implicit inverse mapping, and, once
trained, can process new samples efficiently.

2.3. Probabilistic cluster kernel

The Probabilistic Cluster Kernel (PCK) [23] is a robust kernel
function, which automatically adapts to the inherent structures
in the data. Its robustness comes from the fact that it does not
depend on any critical user-specified hyperparameters, like the
width in Gaussian kernels. The PCK is trained by fitting multiple
Gaussian Mixture Models (GMMs) to the input data using the EM
algorithm and combining these models to generate a single kernel.
In particular, GMMs are trained using different number of mixture
components g = 2, 3, . . ., G, each with different randomized initial
conditions q = 1, 2, . . ., Q. Let �i(q, g) denote the posterior distribu-
tion for data point xi under a GMM with g mixture components and
initial condition q. The PCK is then defined as

�PCK(xi, xj) = 1
Z

Q∑

q=1

G∑

g=2

�T
i (q, g)�j(q, g), (3)

where Z is a normalizing constant.
Intuitively, the posterior distribution under a mixture model

contains probabilities that a given data point belongs to a certain
mixture component in the model. Thus, the inner products in Eq.
(3) are large if data pairs often belong to the same mixture compo-
nent. By averaging these inner products over a range of g values, the
kernel function has a large value if these data points are similar on

both global scale (small g → large mixture components) and local
scale (large g → small mixture components).

The PCK has previously been used for semi-supervised learn-
ing [22] and spectral clustering [23]. Additionally, variations of the
method for handling missing data have been proposed for both time
series [38] and vectorial data [35].

3. Deep kernelized autoencoders

In this section, we describe our contribution, which is a method
combining deep AEs with kernel methods: the deep kernelized AE
(dkAE). A dkAE is trained by minimizing the following loss function

L = (1 − �)Lr(x, x̃) + �Lc(C, P), (4)

where Lr(·, ·) is the reconstruction loss in Eq. (2). Lc(·, ·) is the code
loss, a distance measure between two matrices, P ∈ R

n×n, the ker-
nel matrix given as prior, and C ∈ R

n×n, the inner product matrix
of codes associated to the input data. The objective of Lc(·, ·) is to
enforce the similarity between C and the kernel matrix P. � is a
hyperparameter ranging in [0, 1], which weights the importance
of the two objectives in Eq. (4); for � = 0, the loss function simpli-
fies to the traditional AE loss in Eq. (2). A depiction of the training
procedure is reported in Fig. 1.

We implement Lc(·, ·) as the normalized Frobenius distance
between C and P. Each matrix element Cij in C is given by
Cij = E(xi) · E(xj) and the code loss is computed as

Lc(C, P) = ‖ C
‖C‖F

− P
‖P‖F

‖F . (5)

It is worth noting that minimizing the normalized Frobenius
distance between the kernel matrices is equivalent to maximizing
the traditional kernel alignment cost, since

‖ C
‖C‖F

− P
‖P‖F

‖F =
√

2 − 2A(C, P), (6)

where A(C, P) = 〈C,P〉F
‖C‖F ‖P‖F

is exactly the kernel alignment cost func-
tion [12,54]. Note that the distance in Eq. (6) can be implemented
also with more advanced differentiable measures of (dis)similarity
between positive-definite matrices, such as divergence and mutual
information [32,14]. However, these options are not explored in
this paper and are left for future research.

In this paper, the prior kernel matrix P is computed by means
of the PCK algorithm introduced in Section 2.3, such that P = KPCK.
However, our approach is general and any kernel matrix can be
used as prior in Eq. (5).

Note, that the kernel alignment also acts as a regularization, dis-
couraging the learning of trivial mappings. Furthermore, we also
employ tied weights in the encoder and decoder as additional reg-
ularization following [27].

3.1. Mini-batch training

We use mini batches of k samples to train the dkAE, thereby
avoiding the computational restrictions of kernel and especially
spectral methods outlined in Section 2.2. In particular, the memory
complexity of the algorithm can be reduced to O(k2), where k � n.
Finally, we note that the computational complexity scales linearly
with regard to the network parameters. Given a mini batch of k
samples, the dkAE loss function is defined by taking the average of
the per-sample reconstruction cost

Lbatch = 1 − �

kd

k∑

i=1

Lr(xi, x̃i) + �‖ Ck

‖Ck‖F
− Pk

‖Pk‖F
‖F , (7)

where d is the dimensionality of the input space, Pk is a subset of
P that contains only the k rows and columns related to the current

M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825 819

Fig. 1. Schematic illustration of dkAE architecture. Loss function L depends on two terms. First, Lr(·, ·), is the reconstruction error between the true input xi and the output
of the dkAE, x̃i . The second term, Lc(·, ·), is the distance measure between matrices C (computed as inner products of codes {ci}n

i=1) and the target prior kernel matrix P.
For mini-batch training the matrix C is computed over the codes of the data in the mini-batch and that distance is compared to the submatrix of P related to the current
mini-batch.

Fig. 2. The encoder maps input xi to ci , which lies in code space. In dkAEs, the code
domain approximates the space associated to the prior kernel P. A linear method
receives input ci and produces output zi . The decoder maps zi back to input space.
The result yi can be seen as the output of a non-linear operation on xi in input space.

mini-batch, and Ck contains the inner products of the codes related
to the mini-batch. Note that Ck is re-computed for each mini batch
(O(k2)), while Pk is obtained by means of indexing operations with
cost O(k).

3.2. Operations in code space

Linear operations in code space can be performed as shown
in Fig. 2. The encoding scheme of the proposed dkAE implicitly
approximates �(·), mapping an input xi onto the kernel space. In
particular, in dkAEs, the feature vector �(xi) is approximated by
the code ci. Our non-linear encoder maps the inputs into a space
where they are more likely to be linearly separable, as there the
code vectors preserve a non-linear similarity computed in the input
space. A linear operation on ci produces a result in the code space,
zi, relative to the input xi. Unlike other kernel methods where the
explicit mapping back to the input space is not defined, we can map
codes back by means of a decoder, which in our case approximates
the inverse mapping �(·)−1 from the kernel space back to the input
domain. This enables dkAEs to provide visualization and interpre-

tation of the results in the original space; we further explore these
perspectives in the experiments.

4. Analysis of dkAE

In this section, we perform an analysis of the proposed method
by considering three experiments. Section 4.1 delineates the exper-
imental setting. In Section 4.2, we evaluate the sensitivity of the
two terms in the objective function (Eq. (7)) when varying the �
hyperparameter (in Eq. (4)) and the size of the code layer (i.e.,
number of neurons in the innermost hidden layer). Successively,
in Section 4.3 we evaluate the reconstruction accuracy and kernel
alignment performance implemented by dkAEs. Further, in Section
4.4 we compare dkAEs approximation accuracy of the prior kernel
matrix with kPCA as the number of retained principal components
increases.

4.1. Experimental setting

The analysis is performed on the MNIST dataset, which consists
of 60,000 handwritten digit images [33]. We use a subset of 20,000
samples due to the computational restrictions imposed by the PCK,
which we use to illustrate dkAEs ability to learn arbitrary kernels,
even if they originate from an ensemble procedure.

We train PCK by fitting GMMs on a subset of 200 training sam-
ples using parameters Q = G = 30. These parameters are sufficiently
large to ensure robust results [35]. Once trained, the GMM mod-
els are applied to the remaining data to calculate the whole kernel
matrix. We use 70%, 15% and 15% of the data for training, validation,
and testing, respectively.

The network architecture used in the experiments is
d–500–500–2000–Nc (see Fig. 1), which has been demonstrated
to perform well on several datasets, including MNIST, for both
supervised and unsupervised tasks [36,19]. Here, Nc refers to the
dimensionality of the code layer. Training was performed using

820 M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825

Fig. 3. (a) Tradeoff when choosing �. High � values result in low Lc , but high reconstruction cost, and vice versa. (b) Both Lc and reconstruction costs decrease when code
dimensionality Nc increases.

Fig. 4. Illustrating the reconstruction error and kernel alignment trade-off in for different � values. We note that the reconstruction for a small � is generally better (see also
Fig. 3(a)), but that small � yields high Lc .

the sAE pretraining approach outlined in Section 2.1. To avoid
learning the identity mapping on each individual layer, we applied
a common [27] regularization technique where the encoder and
decoder weights are tied, i.e., WE = WT

D . This is done during
pretraining and fine-tuning. Unlike in traditional sAEs, to account
for the kernel alignment objective, the code layer is optimized
according to Eq. (4) also during pretraining.

Size of mini-batches for training was chosen to be k = 200 ran-
domly, independently sampled data points; in our experiments,
an epoch consists of processing (n/k)2 batches. Pretraining is
performed for 30 epochs per layer and the final architecture is fine-
tuned for 100 epochs using gradient descent based on Adam [29].
The dkAE weights are randomly initialized according to Glorot et al.
[15].

4.2. Sensitivity analysis of hyperparameter � and size Nc of code
layer

Here, we evaluate the influence of the two main hyperparam-
eters influencing the resulting model. Note that the experiments
shown in this section are performed by training the dkAE on the
training set and evaluating the performance on the validation set.
We evaluate both the out-of-sample reconstruction Lr and Lc. This
is done in order to select the optimal parameters for evaluating the

test set in the successive experiments. Fig. 3(a) illustrates the effect
of � for a fixed value Nc = 2000 of neurons in the code layer. It can
be observed that the reconstruction loss Lr increases as more and
more focus is put on minimizing Lc (obtained by increasing �). This
quantifies empirically the trade-off in optimizing the reconstruc-
tion performance and the kernel alignment at the same time. By
inspecting the results, specifically the near constant losses for � in
range [0.1, 0.9] the method appears robust to changes in hyperpa-
rameter �.

Analyzing the effect of varying Nc given a fixed � = 0.1 (Fig. 3(b)),
we observe that both losses decrease as Nc increases. This could
suggest that an even larger architecture, characterized by more lay-
ers and more neurons w.r.t. the architecture adopted here might
work well, as the dkAE does not seem to overfit; due also to the
regularization effect provided by the kernel alignment.

4.3. Reconstruction error and kernel alignment

By considering the previous results, in the following experi-
ments we set � = 0.1 and Nc = 2000. Fig. 4 illustrates the results in
Section 4.2 qualitatively by displaying a set of original images from
our test set and their reconstruction error for the chosen � value
and a non-optimal one. Similarly, the prior kernel (rows/columns
sorted by class in the figure, to ease the visualization) and the dkAEs

M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825 821

Table 1
We compute Lc with respect to the ideal kernel matrix KI for our test dataset (10
classes) and compare the relative improvement for the three kernels in Fig. 4. It can
be seen that the kernel matrix produced by dkAE (C) is quantitatively comparable
to the prior kernel (P) with regard to its distance from the ideal kernel matrix and
outperforms the traditional sAE (KAE).

Kernel Improvement [%] vs. Lc(·, KI)

P KAE C

P 0 12.7 −0.2 1.0132
KAE −11.3 0 −11.4 1.1417
C 0.2 12.9 0 1.0115

Fig. 5. Comparing dkAEs approximation of the kernel matrix to kPCA for an increas-
ing number of components. The plot shows that dkAE reconstruction is more
accurate for low number (i.e., m < 16) of components.

approximated kernel matrices, relative to test data, are displayed
for two different � values. Note that, to illustrate the difference
to a traditional sAE, one of the two � values is set to zero. It can
be clearly seen that, for � = 0.1, both the reconstruction error and
kernel matrix closely resemble the original, which agrees with the
plots in Fig. 3(a).

Inspecting the kernels obtained in Fig. 4, we compare the dis-
tance between the kernel matrices, C and P, and the ideal kernel
matrix, obtained by considering supervised information. We build
the ideal kernel matrix KI, where KI(i, j) = 1 if elements i and j belong
to same class, otherwise KI(i, j) = 0. Table 1 illustrates that the ker-
nel approximation produced by dkAE outperforms a traditional sAE
with regard to kernel alignment with the ideal kernel. Additionally,
it can be seen that the kernel approximation C actually is more sim-
ilar to the ideal kernel than the kernel prior, which we hypothesize
is due to the reconstruction objective, which allows the codes to
capture additional information (w.r.t. to PCK) about the structure
of the input space.

4.4. Approximation of kernel matrix given as prior

In order to quantify the kernel alignment performance, we com-
pare dkAE to the approximation provided by kPCA when varying
the number of retained principal components. For this test, we take
the kernel matrix P of the training set and compute its eigende-
composition. We then select an increasing number of components
m (with m ≥ 1 components related to the largest eigenvalues) to
project the input data as follows: Zm = Em�1/2

m , d = 2, . . ., N. The
approximation of the original kernel matrix (prior) is then given
by Km = ZmZT

m. We compute the distance between Km and P fol-
lowing Eq. (6) and compare it to the dissimilarity between P and C.
For evaluating the out-of-sample performance, we use the Nyström
approximation for kPCA [45] and compare it to the dkAE kernel
approximation on the test set.

Fig. 5 shows that the approximation obtained by means of dkAEs
achieves a more accurate reconstruction then kPCA when using a
small number of components, i.e., m < 16. Note that it is common
in spectral methods to chose a number of components equal to
the number of classes in the dataset [40], in which case, for the 10
classes in MNIST, dkAE would outperform kPCA. As expected, when

the number of selected components increases, the approximation
provided by kPCA is better. However, as shown in the previous
experiment (Section 4.3), this does not mean that the approxima-
tion performs better with regard to the ideal kernel. In fact, in that
experiment the kernel approximation of dkAE actually performed
at least as well as the prior kernel (kPCA with all components taken
into account).

5. Applications of dKAEs in classification, denoising, and
visualization of high-dimensional data

In this section, we evaluate the effectiveness of dkAEs learned
representations on multiple tasks. In Section 5.1, we compare clas-
sification performance on different benchmarks and illustrate how
dkAEs can be used also for visualization of high-dimensional data.
In Section 5.2, we present an application of our method for image
denoising, where we apply PCA in dkAE code space C to remove
noise.

For our classification experiments, apart from MNIST, we con-
sider also the following datasets:

• CIFAR-10, which consists of 60,000 32 × 32 color images belong-
ing to 10 classes (airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck) [31]. Similar to the MNIST dataset, we
consider a subset of 20,000 samples.

• Cloud, a dataset containing three multispectral satellite images
captured over Spain and France. Each pixel in the images is
represented by 19 dimensions, where 13 dimensions represent
spectral bands from the MEdium Resolution Imaging Spectrom-
eter (MERIS) instrument on board the Environmental Satellite
(ENVISAT) [42], while the remaining six dimensions are related
to physical features [16]. Each pixel is labeled according to the
presence of a cloud in that particular area. This is a binary clas-
sification task, where the goal is to identify areas in the image
which are obscured by clouds. The dataset is identical to the one
previously used in [17]. Similar to the MNIST dataset, we consider
a subset of 20,000 samples, where the training set consists of pix-
els sampled from one image, the validation set is sampled from
a different image and the test set is sampled from the remaining
image.

• Reuters, which consists of 800,000 news stories that have been
manually categorized into a category tree [34]. Similar to [56]
we choose the four root categories as labels and remove stories
that are labeled with multiple root categories. To represent each
news story we compute feature vectors consisting of the Term
Frequency-Inverse Document Frequency (TF-IDF) of the 2000
most frequently occurring word stems and then use a Singular
Value Decomposition (SVD) to produce 20 dimensional vectors
prior to training. The SVD is performed on the training set, with
out-of-sample transformations for validation and test sets.

5.1. Visualization and classification in code space

In order to evaluate the learned representation and illustrate
the use of our method on an independent test set, we evaluate the
classification performance of the learned representation. Here we
make use of a linear support vector machine (SVM) operating in
the code space and compare it to a linear and a non-linear kernel
SVM (kSVM) operating directly in input space. The dKAE is trained
on the training dataset, the SVMs model parameters are optimized
on the validation set and the final accuracy is shown on the test
dataset. Table 1 shows that linear SVM trained in the code space
(cSVM) outperforms the SVM models operating in input space on
all datasets.

822 M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825

Table 2
Quantitative analysis of the learned feature representation of dkAE for classification
tasks. A linear SVM operating in code space (cSVM) is compared with a linear SVM
and a kernel SVM (kSVM) operating directly in input space. We also considered a
linear SVM operating in code space where the prior P for the alignment is given by
the outer product of class labels (scSVM).

Method MNIST CLOUD CIFAR-10 Reuters

SVM 90.60 99.50 36.60 91.40
kSVM 93.80 99.60 36.93 93.23
cSVM 94.80 99.63 38.17 93.77
scSVM 96.23 99.70 42.73 94.17

As a consequence of the fact that our code representation is
controlled by an arbitrary kernel matrix, we can also extend our
work to learn representations in a supervised manner by align-
ing the code matrix C with the ideal kernel matrix. Similar to the
experiments for the unsupervised representation, we train a linear
SVM in the code space representation that has been learned (by
exploiting supervised information) and provide the achieved accu-
racy (scSVM) in Table 2. As expected, when exploiting supervised
information to learn representations, improvements are observed

for all datasets. To illustrate the robustness of our approach with
respect to architectural choices, we make use of the same architec-
ture for all datasets, namely the one described in Section 4. Note,
however, to avoid overfitting to the training data when training the
supervised representation for the CLOUD dataset, the architecture
for this particular dataset was reduced to d–50–50–200–200 for all
experiments.

Now we assess the capability to visualize high-dimensional
data. Fig. 6 shows the visualization of a low-dimensional represen-
tation learned by dkAE for the MNIST dataset; here, we consider
2000-dimensional codes. We utilize PCA to map the learned codes
to two-dimensional vectors. We take into account also the low-
dimensional representation learned by four alternative methods,
namely an autoencoder without the use of kernel alignment, a
denoising autoencoder (DAE) [53] with 20% masking noise, and ker-
nel entropy component analysis (KECA) [24] as well as ISOMAP [50],
two popular non-linear dimensionality reduction methods. Note,
that the visualization here is presented for the test set and not the
training data. For KECA we utilize an RBF kernel with � being set
to 15 percent of the median pairwise euclidean distances between
data points, following a rule of thumb from [24]. We use KECA to

Fig. 6. MNIST data. Two dimensional embedding of the code space obtained using standard AEs, DAEs and our dKAE. The codes are projected to two dimensions using PCA.
We compare their preformance to non-linear dimensionality reduction techniques KECA and ISOMAP.

M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825 823

Table 3
1-Nearest neighbor classification accuracy on representations shown in Fig. 6. The
overall best result is highlighted in bold.

KECA ISOMAP AE + PCA DAE + PCA dkAE + PCA

29.5 36.8 30.5 31.2 39.6

reduce the dimensionality to 10 dimensions, the number classes
in the dataset, before using PCA to reduce it further down to 2. In
order to provide a quantitative evaluation of the visualizations, we
consider the generalization error on a 1-Nearest Neighbor classi-
fication task following the example of [43]. Results are shown in
Table 3, which demonstrate the superior performance obtained by
means of dkAE.

5.2. Denoising and visualizing code space traversal in input space

Here, we highlight the potential of performing explicit oper-
ations in code space as initially described in Section 3.2. We try
to emulate kPCA by performing PCA in our learned code space
and evaluate the performance on a denoising task. Denoising is a
task that requires both a mapping to the kernel space, as well as
a back-projection to the input space. Traditional kernel methods
cannot perform back-projection explicitly; approximate solutions
have been proposed in the literature [3,20]. We choose the method
proposed by Bakir et al. [3], where they use kernel ridge regression,
such that a different kernel (in our case an RBF) can be used for
back-mapping. Due to the challenge of finding a good � for the RBF
kernel that works on all MNIST numbers, we performed this test
on the 5 and 6 class only. The regularization parameter and the �
required for the back-projection where found via grid search, where
the best regularization parameter according to mean squared error
(MSE) reconstruction was found to be 0.5 and � as the median of
the Euclidean distances between the projected feature vectors.

Both models are fitted on the training set and additive Gaussian
noise is added to the test set. For both methods, 32 principal compo-
nents are used. Table 4 shows that dkAE + PCA outperforms kPCAs
reconstruction in terms of MSE. However, as MSE is not necessarily
a good measure for denoising [3], we also visualize the results in
Fig. 7. It can be seen that dkAE yields sharper images in the denois-
ing task. We further compare the results to a denoising autoencoder

Table 4
MSE of reconstruction.

Noise std. kPCA DAE + PCA dkAE + PCA

0.25 0.0427 0.0173 0.0358

(DAE + PCA). We observe that the denoising autoencoder is able
to outperform the dkAE with regard to the MSE measure as it is
explicitly trained for the denoising task. Qualitatively, however, we
observe in Fig. 7 that the qualitative difference between these two
is small, with DAE outperforming the dkAE on some images while
producing more washed out images on others. For example, the
reconstruction of the first image in the first row is better recon-
structed using the DAE, while the second and fifth image in the
first row are better reconstructed by the dKAE.

dkAE allows to explicitly explore the code space beyond the
image of the dataset at hand and accordingly generate new
instances with related representations in input space. To this end,
we visualize the effect of movements in code space, illustrated in
Fig. 8. For this experiment, we perform k-means clustering in code
space and chose the number of clusters to be equal to the number
of classes in MNIST. We select pairs of cluster centroids at random
and interpolate between two centroids following a straight path in
code space; in future works, we will consider also non-linear meth-
ods to obtain a smoother interpolation between the centroids [46].
The first and last image in Fig. 8 correspond to the cluster centers.
The intermediate images are generated by mapping points along
the aforementioned path in code space back to the input space by
means of the trained decoder. In the first two panels, we observe
a smooth transition of an 8 and a 7 to a 0. The third panel, instead,
illustrates that k-means found two clusters in the 1s class, one for
the far leaning ones and one for the straight ones. Interpolating
between these two allows us to generate numbers with a varying
degree of leaning to the right.

6. Conclusions

We proposed a novel model for autoencoders, dubbed deep
kernelized autoencoders, that exploits information provided by
a user-defined kernel matrix to learn similarity-preserving data
representations. The proposed model is trained end-to-end in an

Fig. 7. Denoising with kPCA in input space and PCA in code space.

Fig. 8. First and the last image of each panel show two k-means centroids in code space obtained on the MNIST dataset. Additional numbers are generated by “walking” on
interpolated points between the two centroids.

824 M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825

unsupervised way. By means of a parameter-free kernel alignment
procedure based on inner products between codes, we are able
to approximate arbitrary kernel functions defined in input space.
This allows us to learn an explicit mapping from the input space
to the code space, as well as the backward mapping. We evalu-
ated the learned data representations on classification tasks and
illustrated how the learned backmapping can be used to visual-
ize operations performed directly in code space. In addition, the
proposed autoencoder enables us to emulate well-known kernel
methods for unsupervised learning, such as kernel PCA; however,
our approach scales well with the number of data points as it is not
based on eigendecomposition procedures.

In future work, we will continue to investigate this line of
research by exploring alternative loss functions for kernel align-
ment, beyond those based on Frobenius norm. In particular, we will
investigate the use of information-theoretic divergence measures
and formulations based on mutual information between positive
semi-definite matrices.

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the GPU used for this research. This work was
partially funded by the Norwegian Research Council FRIPRO grant
no. 239844 on developing the Next Generation Learning Machines.

References

[1] A. Achille, S. Soatto, Information Dropout: Learning Optimal Representations
Through Noise, 2017 arXiv:1611.01353.

[2] A.A. Alemi, I. Fischer, J.V. Dillon, K. Murphy, Deep Variational Information
Bottleneck, 2017 arXiv:1612.00410.

[3] G.H. Bakir, J. Weston, B. Schölkopf, Learning to find pre-images, in: Advances
in Neural Information Processing Systems, 2004, pp. 449–456.

[4] Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn. 2 (1)
(2009) 1–127.

[5] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new
perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (August (8)) (2013)
1798–1828, http://dx.doi.org/10.1109/TPAMI.2013.50, ISSN 0162-8828.

[6] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin
classifiers, Proceedings of the Fifth Annual Workshop on Computational
Learning Theory (1992) 144–152.

[7] A.M. Bronstein, M.M. Bronstein, R. Kimmel, Generalized multidimensional
scaling: a framework for isometry-invariant partial surface matching, Proc.
Natl. Acad. Sci. U. S. A. 103 (5) (2006) 1168–1172, http://dx.doi.org/10.1073/
pnas.0508601103.

[8] M. Chalk, O. Marre, G. Tkacik, Relevant sparse codes with variational
information bottleneck, in: D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R.
Garnett (Eds.), Advances in Neural Information Processing Systems, Currant
Associates, Inc., 2016, pp. 1957–1965.

[9] Y. Cho, L.K. Saul, Kernel methods for deep learning, in: Y. Bengio, D.
Schuurmans, J.D. Lafferty, C.K.I. Williams, A. Culotta (Eds.), Advances in Neural
Information Processing Systems, Curran Associates, 2009, pp. 342–350.

[10] W. Chu, D. Cai, Stacked similarity-aware autoencoders, in: Proceedings of the
26th International Joint Conference on Artificial Intelligence, AAAI Press,
2017, pp. 1561–1567.

[11] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, New York,
1991.

[12] N. Cristianini, A. Elisseeff, J. Shawe-Taylor, J. Kandola, On kernel-target
alignment, in: Advances in Neural Information Processing Systems, 2001.

[13] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F.F. Balcan, L. Song, Scalable kernel
methods via doubly stochastic gradients, in: Advances in Neural Information
Processing Systems, 2014, pp. 3041–3049.

[14] L.G.S. Giraldo, M. Rao, J.C. Principe, Measures of entropy from data using
infinitely divisible kernels, IEEE Trans. Inf. Theory 61 (November (1)) (2015)
535–548, http://dx.doi.org/10.1109/TIT.2014.2370058.

[15] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, Proceedings of the International Conference on Artificial
Intelligence and Statistics (May 2010) 249–256.

[16] L. Gómez-Chova, G. Camps-Valls, J. Calpe-Maravilla, L. Guanter, J. Moreno,
Cloud-screening algorithm for ENVISAT/MERIS multispectral images, IEEE
Trans. Geosci. Remote Sens. 45 (12) (2007) 4105–4118.

[17] L. Gómez-Chova, R. Jenssen, G. Camps-Valls, Kernel entropy component
analysis for remote sensing image clustering, IEEE Geosci. Remote Sens. Lett.
9 (2) (2012) 312–316.

[18] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with
neural networks, Science 313 (5786) (2006) 504–507, http://dx.doi.org/10.
1126/science.1127647, ISSN 0036-8075.

[19] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief
nets, Neural Comput. 18 (7) (2006) 1527–1554.

[20] P. Honeine, C. Richard, A closed-form solution for the pre-image problem in
kernel-based machines, J. Signal Process. Syst. 65 (3) (2011) 289–299.

[21] F. Horn, K.-R. Müller, Learning Similarity Preserving Representations with
Neural Similarity Encoders, 2017 arXiv:1702.01824.

[22] E. Izquierdo-Verdiguier, L. Gomez-Chova, L. Bruzzone, G. Camps-Valls,
Semisupervised kernel feature extraction for remote sensing image analysis,
IEEE Trans. Geosci. Remote Sens. 52 (9) (2014) 5567–5578.

[23] E. Izquierdo-Verdiguier, R. Jenssen, L. Gómez-Chova, G. Camps-Valls, Spectral
clustering with the probabilistic cluster kernel, Neurocomputing 149 (2015)
1299–1304.

[24] R. Jenssen, Kernel entropy component analysis, IEEE Trans. Pattern Anal.
Mach. Intell. 32 (5) (2010) 847–860.

[25] M. Kampffmeyer, S. Løkse, F.M. Bianchi, R. Jenssen, L. Livi, Deep kernelized
autoencoders, in: P. Sharma, F.M. Bianchi (Eds.), 20th Scandinavian
Conference on Image Analysis, Springer International Publishing, Tromsø,
Norway, June 2017, pp. 419–430, http://dx.doi.org/10.1007/978-3-319-
59126-1 35.

[26] M. Kampffmeyer, S. Løkse, F.M. Bianchi, L. Livi, A.-B. Salberg, R. Jenssen, Deep
divergence-based clustering, IEEE International Workshop on Machine
Learning for Signal Processing (September 2017) 1–8, http://dx.doi.org/10.
1109/MLSP.2017.8168158.

[27] H. Kamyshanska, R. Memisevic, The potential energy of an autoencoder, IEEE
Trans. Pattern Anal. Mach. Intell. 37 (6) (2015) 1261–1273, http://dx.doi.org/
10.1109/TPAMI.2014.2362140.

[28] J. Zhao, Y. Kim, K. Zhang, A. Rush, Y. LeCun, Adversarially Regularized
Autoencoders, Proceedings of the 35th International Conference on Machine
Learning (2018).

[29] D. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014
arXiv:1412.6980.

[30] D.P. Kingma, M. Welling, Auto-encoding Variational Bayes, 2013
arXiv:1312.6114.

[31] A. Krizhevsky, Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[32] B. Kulis, M.A. Sustik, I.S. Dhillon, Low-rank kernel learning with Bregman
matrix divergences, J. Mach. Learn. Res. 10 (Feb) (2009) 341–376.

[33] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[34] D.D. Lewis, Y. Yang, T.G. Rose, F. Li, RCV1: a new benchmark collection for text
categorization research, J. Mach. Learn. Res. 5 (Apr) (2004) 361–397.

[35] S. Løkse, F.M. Bianchi, A.-B. Salberg, R. Jenssen, Spectral clustering using
PCKID – a probabilistic cluster kernel for incomplete data, in: Scandinavian
Conference on Image Analysis, Springer, 2017, pp. 431–442.

[36] L. Maaten, Learning a parametric embedding by preserving local structure,
International Conference on Artificial Intelligence and Statistics (2009)
384–391.

[37] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial
Autoencoders, 2015 arXiv:1511.05644.

[38] K.Ø. Mikalsen, F.M. Bianchi, C. Soguero-Ruiz, R. Jenssen, Time series cluster
kernel for learning similarities between multivariate time series with missing
data, Pattern Recognit. 76 (2018) 569–581.

[39] G. Montavon, M.L. Braun, K.-R. Müller, Kernel analysis of deep networks, J.
Mach. Learn. Res. 12 (2011 Nov) 2563–2581, ISSN 1532-4435.

[40] A.Y. Ng, M.I. Jordan, Y. Weiss, et al., On spectral clustering: analysis and an
algorithm, in: Advances in Neural Information Processing Systems, 2001, pp.
849–856.

[41] A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: J.C.
Platt, D. Koller, Y. Singer, S.T. Roweis (Eds.), Advances in Neural Information
Processing Systems, Curran Associates, Inc., 2008, pp. 1177–1184.

[42] M. Rast, J. Bezy, S. Bruzzi, The ESA medium resolution imaging spectrometer
MERIS a review of the instrument and its mission, Int. J. Remote Sens. 20 (9)
(1999) 1681–1702.

[43] G. Sanguinetti, Dimensionality reduction of clustered data sets, IEEE Trans.
Pattern Anal. Mach. Intell. 30 (3) (2008) 535–540.

[44] E. Santana, M. Emigh, J.C. Principe, Information Theoretic-Learning
Auto-encoder, 2016 arXiv:1603.06653.

[45] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel
eigenvalue problem, Neural Comput. 10 (5) (1998) 1299–1319.

[46] H. Shao, A. Kumar, P.T. Fletcher, The Riemannian Geometry of Deep
Generative Models, 2017 arXiv:1711.08014.

[47] R. Shwartz-Ziv, N. Tishby, Opening the Black Box of Deep Neural Networks via
Information, 2017 arXiv:1703.00810.

[48] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J. Mach.
Learn. Res. 15 (1) (2014) 1929–1958.

[49] S. Still, Information bottleneck approach to predictive inference, Entropy 16
(2) (2014) 968–989, http://dx.doi.org/10.3390/e16020968.

[50] J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework for
nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323,
http://dx.doi.org/10.1126/science.290.5500.2319.

[51] I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, Wasserstein Auto-encoders,
2017 arXiv:1711.01558.

M. Kampffmeyer et al. / Applied Soft Computing 71 (2018) 816–825 825

[52] A. Vedaldi, A. Zisserman, Efficient additive kernels via explicit feature maps,
IEEE Trans. Pattern Anal. Mach. Intell. 34 (March (3)) (2012) 480–492, http://
dx.doi.org/10.1109/TPAMI.2011.153, ISSN 0162-8828.

[53] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked
denoising autoencoders: learning useful representations in a deep network
with a local denoising criterion, J. Mach. Learn. Res. 11 (2010) 3371–3408.

[54] T. Wang, D. Zhao, S. Tian, An overview of kernel alignment and its
applications, Artif. Intell. Rev. 43 (2) (2015) 179–192.

[55] A.G. Wilson, Z. Hu, R. Salakhutdinov, E.P. Xing, Deep kernel learning,
Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics (2016) 370–378.

[56] J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering
analysis, Proceedings of the 33rd International Conference on Machine
Learning, vol. 48 (2016) 478–487, JMLR.org.

120

Paper IV

Deep divergence–based approach to clus-
tering
Michael Kampffmeyer, Sigurd Løkse, Filippo M. Bianchi, Lorenzo Livi,

Anrt-Børre Salberg and Robert Jenssen.

Neural Networks, 2019

121

Neural Networks 113 (2019) 91–101

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Deep divergence-based approach to clustering
Michael Kampffmeyer a,∗, Sigurd Løkse a, Filippo M. Bianchi a, Lorenzo Livi b,c,
Arnt-Børre Salberg d, Robert Jenssen a,d

a Machine Learning Group, UiT the Arctic University of Norway, Norway 1

b Department of Computer Science, University of Exeter, UK
c Departments of Computer Science and Mathematics, University of Manitoba, Canada
d Norwegian Computing Center, Oslo, Norway

a r t i c l e i n f o

Article history:
Received 8 June 2018
Received in revised form 14 January 2019
Accepted 29 January 2019
Available online 8 February 2019

Keywords:
Deep learning
Clustering
Unsupervised learning
Information-theoretic learning
Divergence

a b s t r a c t

A promising direction in deep learning research consists in learning representations and simultaneously
discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to
superviseddeep learning, this line of research is in its infancy, andhow todesign andoptimize suitable loss
functions to train deep neural networks for clustering is still an open question. Our contribution to this
emerging field is a new deep clustering network that leverages the discriminative power of information-
theoretic divergence measures, which have been shown to be effective in traditional clustering. We
propose a novel loss function that incorporates geometric regularization constraints, thus avoiding
degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and
real datasets show that the proposed network achieves competitive performance with respect to other
state-of-the-art methods, scales well to large datasets, and does not require pre-training steps.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Deep neural networks (Goodfellow, Bengio, & Courville, 2016;
Krizhevsky, Sutskever, & Hinton, 2012) excel at hierarchical repre-
sentation learning (Bengio, Courville, & Vincent, 2013), and yield
state-of-the-art performance in image classification (Krizhevsky
et al., 2012), object detection (Ren, He, Girshick, & Sun, 2015),
segmentation (Kampffmeyer, Salberg, & Jenssen, 2016; Long, Shel-
hamer, & Darrell, 2015), time series prediction (Bianchi, Maior-
ino, Kampffmeyer, Rizzi, & Jenssen, 2017) and speech recognition
(Graves, Mohamed, & Hinton, 2013), to name a few. However,
deep networks are usually trained in a supervised manner, hence
requiring a large amount of labeled data. This is a challenge inmany
application domains.

Clustering (Jain, 2010; Von Luxburg, 2007), one of the funda-
mental areas in machine learning, aims at categorizing unlabeled
data into groups (clusters). A promising direction in deep learning
research is to learn representations and simultaneously discover
cluster structure in unlabeled data by optimizing a discriminative
loss function. Deep Embedded Clustering (DEC) (Xie, Girshick, &
Farhadi, 2016) exemplifies this line of work and represents, to the
best of our knowledge, the state-of-the-art. DEC is based on an
optimization strategy in which a neural network is pre-trained by

∗ Corresponding author.
E-mail address: michael.c.kampffmeyer@uit.no (M. Kampffmeyer).

1 http://machine-learning.uit.no/.

means of an autoencoder and then fine-tuned by jointly optimizing
cluster centroids in output space and the underlying feature rep-
resentation. Another example is (Yang, Fu, Sidiropoulos and Hong,
2016), where the authors propose a joint optimization for dimen-
sionality reduction using a neural network and k-means clustering.
Alternative approaches to unsupervised deep learning based on
adversarial networks have recently been proposed (Goodfellow
et al., 2014). These approaches are different in spirit but can also
be used for clustering (Makhzani, Shlens, Jaitly, Goodfellow, & Frey,
2015; Springenberg, 2015).

In this work, we propose what we called the Deep Divergence-
based Clustering (DDC) algorithm. Our method takes inspiration
from the vast literature on traditional clustering techniques that
optimize discriminative loss functions based on information-
theoretic measures (Dhillon, Mallela, & Kumar, 2003; Jenssen,
Erdogmus, Hild, Principe, & Eltoft, 2007; Tishby & Slonim, 2001;
Vikjord & Jenssen, 2014). The main motivation for this choice
is that the divergence, as a measure of dissimilarity between
clusters represented by their probability density functions, builds
on two fundamental objectives (Fig. 1): the separation between
clusters and the compactness within clusters. These are desirable
properties to increase identifiability of nonparametric mixtures
(Aragam, Dan, Ravikumar, & Xing, 2018). Our new divergence-
based loss function for deep clustering supports end-to-end learn-
ing and explicitly exploits knowledge about the geometry of the
output space during the optimization. DDC achieves state-of-the-
art performance without requiring hand-crafted feature design,
reducing also the importance of a pre-training phase.

https://doi.org/10.1016/j.neunet.2019.01.015
0893-6080/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

92 M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101

Fig. 1. Our approach takes advantage of the power of deep learning to extract fea-
tures and perform clustering in an end-to-end manner. The proposed loss function
is rooted in two fundamental objectives of clustering: separation and compactness
of clusters.

A preliminary version of this paper appeared in Kampffmeyer,
Løkse, Bianchi, Livi, Salberg and Jenssen (2017). The preliminary
version was targeted towards image clustering combining a con-
volutional neural network architecture with our proposed clus-
tering loss function. Here, we extend our work by (i) modifying
the proposed architecture such that it can also handle textual
data; (ii) conducting experiments and comparisons on additional
datasets (including textual data — Reuters dataset); (iii) providing
a thorough analysis of the proposed cost function and its compo-
nents via ablation experiments; (iv) illustrating and discussing the
functioning of the method in controlled settings; (v) interpreting
predictions of the network by means of guided backpropagation
(Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014); and finally
(vi) providing a more thorough literature background discussion,
placing our work into a broader context.

This paper is structured as follows. Section 2 provides an
overview of related works. Section 3 presents the proposed
methodology for performing clustering with deep networks. In
Section 4, we show the experimental results on several datasets
and analyze the proposed cost function in detail. Finally, in
Section 5 we draw conclusions and point to future directions.

2. Related work

Common approaches to unsupervised deep learning include
methods based on deep belief networks, autoencoders, and gener-
ative adversarial networks (Bengio et al., 2013; Goodfellow et al.,
2014). These methods have been mainly used for unsupervised
pre-training (Erhan, Bengio, Courville, Manzagol, Vincent, & Ben-
gio, 2010). Deep belief networks were the first of these models to
be proposed and consist of stacked restricted Boltzmannmachines
that are trained in a greedy fashion (Hinton, Osindero, & Teh, 2006).
Once trained, deep belief networks can be used to initialize neural
networks.

Although several types of autoencoders have been proposed, all
share a common underlying architecture consisting of an encoding
and a decoding layer. The encoder is responsible for producing a
hidden representation; the decoder re-generates inputs from the
hidden representation. Both can efficiently be learned using back-
propagation, by minimizing the reconstruction loss between orig-
inal input and decoder output. Variations include, among others,
denoising autoencoders (Vincent, Larochelle, Bengio, & Manzagol,
2008), which regularize the original autoencoder model by adding
noise to inputs and then changing the objective to both include
reconstruction and denoising, contractive autoencoders (Rifai, Vin-
cent, Muller, Glorot, & Bengio, 2011), and more recently autoen-
coders that are regularized by preserving similarities in input space
(Kampffmeyer, Løkse, Bianchi, Jenssen and Livi, 2017). Variational

autoencoders (Kingma & Welling, 2013) have been used recently
for several unsupervised tasks, such as image generation (Gregor,
Danihelka, Graves, Rezende, & Wierstra, 2015) and segmentation
(Sohn, Lee, & Yan, 2015). This approach assumes that data are
generated from directed graphical models and uses a variational
approach to learn latent representations.

Adversarial generative models (Goodfellow et al., 2014) are
more recent approaches to unsupervised deep learning. Here, two
networks are trained: one is responsible for discriminating be-
tween real and generated images; the other is responsible for
generating realistic-enough images to confuse the first network.

Clustering is a classic information processing problem, par-
ticularly important in machine learning (Bianchi, Livi, & Rizzi,
2016; Jain, 2010; Myhre, Mikalsen, Løkse, & Jenssen, 2018; Nie,
Tian, & Li, 2018; Rodriguez & Laio, 2014). Countless approaches
exist for clustering, with mean shift (Comaniciu & Meer, 2002),
k-means and expectation–maximization algorithms (Aggarwal &
Reddy, 2013), being some of the most well-known ones. In the last
decade, spectral clustering played a prominent role in the field, see
for instance (Jenssen, 2010; Ng, Jordan, Weiss, et al., 2002; Nie,
Zeng, Tsang, Xu, & Zhang, 2011; Von Luxburg, 2007; Yang, Xu, Nie,
Yan, & Zhuang, 2010). Spectral clustering exploits the spectrum of
similaritymatrices to partition input data. Although thesemethods
have demonstrated good performance in complex problems, they
suffer from lack of scalability with respect to the number of input
data points; cubic computational complexity for eigensolvers and
quadratic complexity in terms of memory occupation. Attempts
to solve these problems have been made by designing approxi-
mations or employing different optimization techniques (Dhillon,
Guan, & Kulis, 2004; Han & Filippone, 2016; Yan, Huang, & Jordan,
2009).

Only a few methods have been proposed to exploit deep learn-
ing architectures for clustering, thereby taking advantage of hier-
archical feature representations learned by such networks. CatGAN
(Springenberg, 2015) and AAE (Makhzani et al., 2015) are based on
the idea of adversarial networks. CatGAN is a method for learning
a discriminative model, trained by optimizing a loss function im-
plementing two different objectives. The first accounts for mutual
information and predicted categorical distribution of classes in
the data. The second objective maximizes the robustness of the
discriminative network against an adversarial generative model.
AAE instead assumes that data are generated from two latent vari-
ables, one associated with a categorical distribution and the other
with a Gaussian distribution, and uses two adversarial networks to
impose these distributions on the data representation. In a recent
contribution (Bojanowski & Joulin, 2017), the authors propose an
unsupervised training algorithm for CNNs and test its performance
on image classification problems. The idea is to deal with the so-
called ‘‘feature collapse problem’’ by mapping the learned features
on random targets uniformly distributed on a d-dimensional unit
sphere. A combination of recurrent and convolutional networks
has also been used to perform image clustering by interpreting
agglomerative clustering as a recurrent process (Yang, Parikh and
Batra, 2016). Another recent approach to clustering based on the
idea of hierarchical feature representation learning is provided by
Zhang (2018),whoproposes amultilayer bootstrap networkwhere
each layer performs multiple mutually independent k-centroids
clusterings. Each layer gets trained individually in a bottom-up
fashion and the input of consecutive layers is an indicator vector of
which centroids are closest to a given input. Unlike the previously
discussed methods, the multilayer bootstrap network does not
offer end-to-end training.

To the best of our knowledge, DEC (Xie et al., 2016) is the
method that is most closely related to our approach, as it is also
founded on traditional clustering approaches. DEC simultaneously
learns a feature representation as well as a cluster assignment in

M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101 93

a two-step procedure. In the first step, soft assignments are com-
puted between the data and cluster centroids based on a Student’s
t-distribution. Then, the parameters are optimized by matching
soft assignments to a target distribution, which expresses confi-
dence in assignments. The matching is performed by minimizing
the Kullback–Leibler divergence. However, the effectiveness of
DEC depends on a pre-training step implemented with autoen-
coders and does require explicit feature design to handle complex
image data, e.g., Histogram of Oriented Gradients (HOG) features
(Dalal & Triggs, 2005).

3. Deep clustering

We first describe, in Section 3.1 the proposed clustering loss
function and present a description of the overall algorithm in
Section 3.2. Successively, in Section 3.3, we discuss the deep net-
work architectures that we propose to use for clustering problems,
namely one that is based on convolutional layers for image clus-
tering and one based on fully connected layers for vectorial data.
Finally, we discuss scalability in Section 3.4.

Inspired by recent successes of introducing companion losses
(Lee, Xie, Gallagher, Zhang, & Tu, 2015) to supervised deep learning
models, we propose a loss function for clustering that includes
terms computed over several network layers. The details of the loss
function are outlined in what follows.

3.1. The loss function for clustering

The design of a loss function that allows the network to learn
via gradient descent the intrinsic cluster structure in the input
data is a fundamental part of this work. As illustrated in Fig. 2
and explained below, in addition to exploiting the geometry of the
output space induced by the softmax activation,we adopt a kernel-
based approach to estimate the divergence between clusters.

3.1.1. Loss term based on information-theoretic divergence measures
An information-theoretic divergence measure computes the

dissimilarity between probability density functions (PDFs). For a
clustering application, onewouldmodel each cluster by its PDF and
optimize cluster assignments such that the divergence between
their PDFs is maximized. Several different formulations of diver-
gence measures exist in the literature (Basseville, 2013), many of
which are suitable for clustering. In this work, we focus on one
particular divergence measure that has been proven useful for
clustering in the past, namely the Cauchy-Schwarz (CS) divergence
(Jenssen, Principe, Erdogmus, & Eltoft, 2006; Vikjord & Jenssen,
2014), also referred to as the Information Cut in a graph clustering
perspective (Jenssen et al., 2007). The CS divergence can be used
in multi-cluster problems (i.e., problems with more than two clus-
ters) by averaging the pairwise divergence over all pairs of cluster
PDFs.

Considering k ≥ 2 distinct PDFs, the CS divergence is defined as

Dcs(p1, . . . , pk) = − log

⎛⎝1
k

k−1∑
i=1

∑
j>i

∫
pi(x)pj(x)dx√∫

p2i (x)dx
∫
p2j (x)dx

⎞⎠ .

(1)

For a pair of PDFs, pi and pj, we have 0 ≤ Dcs(p1, p2) < ∞,
where we obtain the minimum value iff pi = pj. Thus, in order to
maximize cluster separation and compactness, we want the diver-
gence to be as large as possible. Since the logarithm is a monotonic
function, maximizing (1) is in practice equivalent to minimizing
the argument of the logarithm. We observe that the minimum
is obtained when the numerator is small and the denominator
is large. Intuitively, this fact implies that the similarity between

samples in different clusters is small (numerator) and similarity of
samples within the same cluster is large (denominator).

In this paper, we make use of the divergence in (1) to measure
the distance between clusters. Since the underlying true densities
pi, pj are unknown, we follow a data-driven approach and approx-
imate the PDFs using a Parzen window estimator, configured with
a Gaussian kernel having bandwidth σ . We define the matrix K ∈

Rn×n that encodes the similarities betweenn input data. Thematrix
element ki,j stores the value exp(−d(xi, xj)2/(2σ 2)), where d(xi, xj)
is the Euclidean distance between data point xi and xj. Using the
Parzen window estimator, the CS divergence can be expressed as
(Jenssen et al., 2006)

Dcs = − log

⎛⎝1
k

k−1∑
i=1

∑
j>i

∑
q∈Ci

∑
l∈Cj

kq,l√∑
q,q′∈Ci

kq,q′

∑
l,l′∈Cj

kl,l′

⎞⎠ . (2)

Note that this estimate in (2) of the CS divergence can also be
interpreted as measuring the cosine of the angle between cluster
means in a Reproducing Kernel Hilbert Space (Jenssen et al., 2006)
and is closely related to maximum mean discrepancy (Gretton,
Borgwardt, Rasch, Schölkopf, & Smola, 2012). Assume that we have
a n × k cluster assignment matrix A = [αq,i], with elements αq,i ∈

{0, 1} that represent the crisp cluster assignment of data point q
to cluster Ci. Thus, each data point q is represented by a one-hot
vector. Then,∑
q∈Ci

∑
l∈Cj

kq,l =

n∑
q,l=1

αq,iαl,jkq,l = αT
i Kαj,

where αi is the ith column of A. The CS-divergence becomes Dcs =

− log (dα), where

dα =
1
k

k−1∑
i=1

∑
j>i

αT
i Kαj√

αT
i Kαiα

T
j Kαj

. (3)

The formulation of the CS-divergence in (2) generalizes to soft
cluster assignments, αq,i, preserving the differentiability of the loss
function. In our architecture, the soft cluster assignments corre-
spond to the softmax outputs and thereby the probability of a data
point q to belong to cluster Ci.

The similarity values in K depend on the data representation.
In particular, as data are processed by the neural network, sev-
eral non-linear transformations map inputs onto different feature
spaces, representing different levels of abstraction. The kernel
bandwidth σ is computed based on the statistics of the learned
representations. More details can be found in Section 4.6. To take
advantage of the different representations and use the idea of
companion losses for restricting the intermediate representations
of the network, we use the hidden representation computed by the
last fully connected layer before the output layer in addition to the
soft cluster assignments produced by the softmax output layer.We
do this by computing a (kernel) similarity matrix Khid, which, by
considering the corresponding dhid,α in (3), yields a similarity score.

3.1.2. Loss term based on the geometry of the output space
The output space has a fixed number of dimensions (corre-

sponding to the number of output neurons/clusters) and a precise
geometry induced by the softmax activations used in the output
layer (whose elements sum to 1), which we exploit in our algo-
rithm:

1. The output space is a simplex in Rk;
2. A data points degree of membership to a given cluster is

maximized if the cluster assignment lies in a corner of the
simplex (i.e., αq,i = 1 if data point q is fully assigned to
cluster Ci);

94 M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101

Fig. 2. Schematic depiction of the proposed architecture for image datasets and details of the loss function. The network consists of two convolution layers (each one
followed by a pooling layer, not depicted in the figure) and a fully connected (FC) layer. Each layer is followed by a non-linear ReLU transformation. Finally, a fully connected
output layer implements a logistic function (softmax). The unsupervised loss function operates on the kernel matrix Kh encoding data similarities evaluated on the hidden
representation, and the values of the cluster assignment returned by the softmax function. The orthogonality constraint is derived from cluster assignments, while separation
and compactness constraints come from the Cauchy-Schwarz divergence, computed on the similarity matrix (weighted by cluster assignments). The convolutional layers
are replaced when non-image data are considered.

3. Following from the previous point, cluster assignment vec-
tors of data points assigned to different clusters, in the
optimal case, should be orthogonal to each other.

This intuition about the geometry enables us to introduce a
term that avoids degenerate solutions by addressing the afore-
mentioned problem of collapsing features/clusters and encourages
diversity in cluster assignment. For a given cluster assignment
matrix,A, the strictly upper triangular elements ofAAT , denoted by
triu(AAT), consists of inner products between cluster assignment
vectors. Unless explicitly stated, triu(AAT) will denote the sum
of these elements. Note that we do not include the elements on
the diagonal. Further, AAT will consist entirely of non-negative
elements because A is non-negative; cluster assignment vectors
are orthogonal if and only if these inner products are zero. Thus, our
criterion consists of enforcing low values in the upper triangular
elements. This also has the effect of a regularization term if the
number of clusters is smaller than the number of input data points.
Indeed, not all data points in the restricted space can be orthogonal
to each other, forcing data points to repel eachother, thereby acting
against the terms that try to improve similarity. This term also
encourages a balanced distribution of data points in the different
classes, which makes our loss ideal for problems with balanced
classes. Alternative regularization methods that are not based on
the balanced class assumption will be investigated in future work.

The fact that cluster assignment vectors are orthogonal, how-
ever, does not imply that such vectors are embedded in a corner of
the simplex. As an example, assume that αq,i = 1 and αl,i = 0.
Due to the restrictions of the simplex geometry, it follows that
αq,k = 0, k ̸= i and therefore αT

qαl = 0 independently of the
values of αl,k, k ̸= i. Thus, l is not restricted to a simplex corner.
Therefore, in order to enforce closeness to a corner of the simplex,
we define an additional term for the loss function that reads

mq,i = exp(−∥αq − ei∥2),

where ei ∈ Rk is a vector denoting the ith corner of the simplex;
representing cluster Ci. This exponential evaluates to one only
when αq is located in a corner of the simplex. We make use of this
fact by defining a third similarity term dhid,m, where mi = [mq,i] ∈

Rn takes the place of αi in (3).

3.1.3. The final clustering loss function
The weights in the neural network architecture described in

Section 3.3 can then be trained byminimizing the sum of the three

different terms discussed in the previous section:

L = dhid, α + triu(AAT) + dhid,m

=
1
k

k−1∑
i=1

∑
j>i

αT
i Khidαj√

αT
i Khidαiα

T
j Khidαj

+ triu(AAT)

+
1
k

k−1∑
i=1

∑
j>i

mT
i Khidmj√

mT
i KhidmimT

j Khidmj

(4)

As a proof of concept, we illustrate the functioning of our clus-
tering method on a classical synthetic dataset where one class is
represented by a small circle and the other class is a ring. Note, that
we use a fully-connected architecture (described in Section 3.3)
for these experiments as we are considering non-image data. The
dataset is shown in Fig. 3a. Figs. 3b and 3c illustrate the clustering
outcome using k-means and the proposed method, respectively.
It can be observed that the proposed method captures the highly
nonlinear structure in the data and is able to discover clusters
of non-spherical shapes, a highly desirable quality of clustering
algorithms (Rodriguez & Laio, 2014).

Further, in Fig. 4 we visualize the output space for a three-
cluster experiment. We chose three classes of the MNIST dataset
(for dataset details see Section 4) and visualize the output space
configuration during three different stages of the optimization
process. As expected, the proposed clustering loss function (4)
attempts to separate the data points by grouping similar points in
ideal cluster centers located at the corners of the simplex. Note, we
are using the convolutional architecture described in Section 3.3 as
we are considering images in this experiment.

3.2. Description of complete algorithm

In this section, we summarize the proposed algorithm. For a
given data batch, the assignment vectors and the hidden repre-
sentation are obtained via a single forward pass. Based on the
hidden representation, the kernel bandwidth, σ , is estimated and
the kernel matrix is computed. From the assignment vectors, the
distance to each of the ideal cluster centers (simplex corners) is
computed, obtainingmq for each data point q in a givenminibatch.
Using Eq. (4), we then can compute the loss based on the kernel
matrix, the assignment vector αq, and mq. Finally, all weights in
the network are updated using Adam (Kingma & Ba, 2014). The full
algorithm is outlined in Algorithm 1.

M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101 95

Fig. 3. Illustration of DDC clustering outcome on a synthetic dataset, showing the capability of learning non-linear structures.

Fig. 4. Illustration of DDC output space for three class MNIST training. Colors indicate class information of data points.

Algorithm 1 Deep Divergence-Based Clustering

Input: X = {xi}ni=1
Output: Cluster assignments A = {αi}

n
i=1

1: Randomly initialize network parameters Θ
2: while not converged do
3: Sample data batch X (b) from X
4: Obtain assignment vectors A(b) and hidden representations

H(b)

5: Computemq,i = exp(−∥αq − ei∥2), ∀ αq ∈ A(b)

6: Estimate kernel bandwidth σ and compute K(b)
hid from H(b)

7: Compute loss with (4) and update Θ with gradient descent
8: end while

3.3. Architecture overview

The network architecture is a design choice, and as such there
are many options. In this paper, we choose an approach based on
convolutional neural networks to process different image
datasets, using a LeNet-inspired architecture (LeCun, Bottou, Ben-
gio, & Haffner, 1998). We selected LeNet since it is a well-known
benchmark network that supports end-to-end learning and has
been widely used for image classification. The architecture is
depicted in Fig. 2. It consists of two convolutional layers: the first
one with 32 and the second one with 64 5 × 5 filters, each of
them followed by a 2 × 2 max pooling layer and a ReLU activa-
tion. The last convolutional layer is followed by a fully connected
layer with 100 nodes, another ReLU nonlinearity and, finally, the
softmax output layer, whose dimensionality corresponds to the
number of desired clusters. Batch-normalization (Ioffe & Szegedy,
2015) is applied in the fully connected layer. This design choice
was made to increase the models’ robustness and is explained in
Section 4.6.

Our approach can also be applied to cluster data that are not
images simply by replacing the convolutional and pooling layers
with fully connected layers. In particular, for the experiments
conducted on non-image data, we use an architecture with four
fully connected layers of size 200 − 200 − 500 − C . The 500 unit
fully connected layer includes batch-normalization and the C unit
layer corresponds to the softmax output layer with dimensionality
equal to the number of clusters.

Recently, theoretical advances in the theory of neural networks
(Giryes, Sapiro, & Bronstein, 2016) highlighted how the metric
structure of input data is preserved by deep neural networks with
random i.i.d Gaussian weights. One restriction is the fact that this
is only true in the case where the intrinsic dimensionality of the
data is proportional to the network width. However, Giryes et al.
(2016) proved that the intrinsic dimensionality of the data does
not increase as the data propagate through the network, which
suggests that thewidth of the network (the number of hidden units
per layer) that we consider for our experiments should suffice.
This theoretical property supports the design choice behind the
proposed loss function, which estimates the divergence over the
hidden representation, rather than in input space.

3.4. Main memory footprint

Using gradient-based optimization in neural networks allows
us to process large datasets, overcoming well-known limitations
of spectral methods mentioned in the introduction with regards
to memory requirements. The memory cost of our approach is
kept low by the use of mini-batch training and scales linearly with
the number of input data points, n, compared to the quadratic
or super quadratic complexities encountered in spectral methods.
The proposedmethod scales quadraticallywith themini-batch size
m as the kernelmatrix is computed over the hidden representation
for a given mini-batch; however, this is generally not an issue as
m ≪ n.

96 M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101

Fig. 5. Examples from the SEALS-3 dataset. The top row displays examples from
the harp seal class, the middle row from the hooded seal, and the bottom row from
the background class.

4. Experiments

We evaluate DDC on the MNIST handwritten image dataset as
it represents a well-known benchmark dataset in the literature.
In addition, we evaluate our algorithm on two more challenging
real-world datasets: one dataset for detection of seal pups in aerial
images here referred to as the SEALS-dataset and the Reuters
dataset for news story clustering. In the results, we compare our
method to four alternative clustering approaches.

4.1. MNIST dataset

The MNIST dataset contains 70000 handwritten images of the
digits 0 to 9 (LeCun et al., 1998) and consists of images that were
originally in the National Institute of Standards and Technology
(NIST) dataset. The images are grayscale with the digits centered
in the 28 × 28 images.

4.2. SEALS dataset

The SEALS-3 dataset consists of several thousand aerial RGB
images acquired during surveys in the West Ice east of Greenland
in 2007 and 2012 and east of New Foundland, Canada, in 2012.
The images are acquired from approximately 300m altitude, and
the pixel spacing is about 3 cm (depending on the exact flight
altitude). A typical image size is 11500 × 7500 pixels. From these
images 64 × 64 image crops of harp seal pups, hooded seal pups
and background (non-seals) were extracted and down-sampled to
28× 28 to fit our chosen architecture. As the smallest class consists
of 1000 images, we select a reduced set of 1000 images from each
class to create a balanced dataset. Fig. 5 shows example images for
the three classes in the SEALS-3 dataset.

As the background class contains a large variety of images, such
as white snow and black water images, unsupervised algorithms
are likely to partition these instances into different clusters. There-
fore, we additionally created and tested another dataset (SEALS-2),
where the background class was not included.

4.3. Reuters dataset

The Reuters dataset consists of 800000 news stories that have
been manually categorized into a category tree (Lewis, Yang, Rose,
& Li, 2004). In this work, similarly to Xie et al. (2016), we chose
the four root categories as labels, removed stories that are labeled
with multiple root categories and represent each news story as a
feature vector consisting of the TermFrequency-InverseDocument
Frequency (TF-IDF) of the 2000 most frequently occurring word
stems. As done for the SEALS dataset, we select 54000 datapoints
from each class in order to balance the dataset.

4.4. Performance measures

To evaluate the partition quality obtained after training, we
consider two different supervised measures. The first measure is
the Normalized mutual information (NMI), defined as

NMI =
I(l, c)

1
2 [H(l) + H(c)]

, (5)

where I(·, ·) and H(·) denote mutual information and entropy
functionals, respectively. The second evaluation metric is the un-
supervised clustering accuracy

ACC = max
M

∑n
i=1 δ(li = M(ci))

n
, (6)

where li refers to the ground truth label, ci to the assigned cluster of
data point i, and δ(·) is the Dirac delta. M is the mapping function
that corresponds to the optimal one-to-one assignment of clusters
to label classes implemented bymeans of the Hungarian algorithm
(Kuhn, 1955), which solves the linear assignment problem of as-
signing a cluster to its label class in polynomial time.

4.5. Baseline methods

Asmethods for comparison,we use k-means (with the so-called
k-means++ initialization Arthur & Vassilvitskii, 2007) as a well-
known baseline and a hierarchical information theoretic cluster-
ing approach (Vikjord & Jenssen, 2014) based on implicit cluster
density estimation using (1) a k-NN approach (ITC-kNN) and (2) a
parzen window approach (ITC-parzen). Further we compare our
approach to a representative subset of state-of-the-art methods
in clustering, namely Deep Embedded Clustering (DEC) (Xie et al.,
2016),2 Spectral Embedded Clustering (SEC) (Nie et al., 2011), and
Local Discriminant Models and Global Integration (LDMGI) (Yang
et al., 2010). SEC and LDMGI are spectral clustering algorithms
based on the foundations discussed in Ng et al. (2002). In SEC,
the authors jointly optimize the normalized cut loss function and
a linear transformation from input to the embedding space for
spectral clustering, such that the transformed data is close to the
embedded data. The similarity is modeled using a Gaussian kernel.
LDMGI optimizes a similar objective function, but the Laplacian
matrix is learned by exploiting manifold structure and discrimi-
nant information, in contrast to most spectral clustering methods
where the Laplacian is calculated by using a Gaussian kernel. Both
of these methods use spectral rotation (Yu & Shi, 2003) to obtain
the final cluster assignments instead of k-means, which is common
for many spectral clustering methods. To the authors best knowl-
edge, these two methods represent the current state-of-the-art in
spectral clustering, outperforming conventional spectral clustering
methods in awide variety of clustering tasks (Nie et al., 2011; Yang
et al., 2010).

Following the experiment setup of Xie et al. (2016), the param-
eters in the baseline models are set according to the suggestions
in their respective papers, varying their hyperparameters over 9
possible choices. For each one, we run the baseline models 20
times. The best result is shown in the experiments. Due to the lack
of hyperparameters in k-means (except the number of clusters k,
which is fixed in our experiments), the accuracy for the best run
from 20 different random initializations is reported.

4.6. Implementation

The proposed network model is trained end-to-end by using
Adam (Kingma & Ba, 2014) and implemented using the Theano
framework (Theano Development Team, 2016). For each image

2 Caffe version of DEC publicly available: https://github.com/piiswrong/dec.

M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101 97

datasets we used the same convolutional architecture and for each
vectorial datasets we used the same fully connected architecture.
Training is performed on mini-batches of size 100. By avoiding
a fine-tuning for each problem at hand, we show the robustness
of our architecture. Training is performed with a learning rate of
0.001 for the convolutional neural network and 10−5 for the fully
connected network. The network is trained for 70000 iterations
and the ordering of themini-batches was reshuffled at each epoch.
Weights of the network are initialized following He, Zhang, Ren,
and Sun (2015). Following the rule-of-thumb in Jenssen (2010),
σ of the Gaussian kernel was chosen to be 15% of the median
pairwise Euclidean distances between the feature representation
produced by the first fully-connected layer, which produced sat-
isfying results for all datasets. The median is adaptive and recom-
puted as part of the cost function evaluation. In our experiments,
we observed that this rule-of-thumb benefited considerably from
activation rescaling through batch-normalization.

As DDC is prone to get stuck in local minima, a common prob-
lem for unsupervised deep architectures, we run DDC for 20 runs
and report the accuracy of the run with the lowest value of our
unsupervised loss function. We also report the results of a vot-
ing scheme of the top three runs according to our unsupervised
loss function. Following Strehl and Ghosh (2002) and Vikjord and
Jenssen (2014), clustering results of the best performing run are
used as a starting point and the clustering results of the other two
runs are aligned to it via the mapping function provided by the
Hungarian algorithm in an unsupervised manner. Once the results
are aligned, we combine them via a simple voting procedure and
compute the final unsupervised clustering accuracy using (6). In
the following, this network ensemble is referred to as DDC-VOTE.
Note that the voting procedure is completely unsupervised and is
commonly used in ensemble approaches.

4.7. Results

We compare DDC and DDC-VOTE to the baseline algorithms on
the MNIST and SEALS datasets and observe that they outperform
the baseline methods on all datasets. The results can be found
in Table 1. Due to very high computational complexity, the ITC
algorithm could not be evaluated on MNIST and large datasets in
general. This also highlights an important advantage of our formu-
lation with regards to previous clustering approaches based on the
CS divergence. Unlike cluster algorithms that estimate the optimal
number of clusters from data, our method and the baseline ap-
proaches require the user to specify the number of clusters before-
hand. By following a commonpractice,wehave chosen the number
of clusters equal to the number of classes in the corresponding
datasets. It can be observed that DDC-VOTE generally outperforms
DDC, except in the case of the SEALS-3 dataset, where all tested
clustering algorithms perform poorly due to the high variation
characterizing the background class. Methods based on adversarial
networks, namelyAAE andCatGAN, have shown to performwell on
the MNIST clustering task (the only real dataset analyzed in these
papers), by clustering the dataset into a large number of groups
(≥ 16), and mapping these into the 10 original classes in a post-
processing step. A similar approach could potentially be employed
by DDC to boost performance and will be explored in future work.

In what follows, we qualitatively analyze obtained clustering
performance. Fig. 6 displays clustering results for the SEALS-3
dataset, where each row corresponds to the top ten scoring im-
ages for each of the three clusters. It is possible to note that the
clustering result for the second and third cluster corresponds to a
mix of background and seal images, with the third one containing
white background images and harp seals and the second cluster
containing black background images and hooded seals. As cluster-
ing is an unsupervised task and does not necessarily agreewith the

Table 1
Clustering accuracy for DDC, DDC-VOTE, and the baseline models. Best results are
highlighted in bold.
Datasets Method NMI ACC[%]

MNIST

K-means 0.50 53.33
ITC (parzen) – –
ITC (kNN) – –
SEC 0.77 68.82
LDMGI 0.81 83.03
DEC 0.81 84.31
DDC 0.83 86.58
DDC-VOTE 0.87 88.49

SEALS-3

K-means 0.13 51.33
ITC (parzen) 0.003 35.30
ITC (kNN) 0.10 53.95
SEC 0.15 49.00
LDMGI 0.13 50.43
DEC 0.17 50.33
DDC 0.14 55.97
DDC-VOTE 0.13 53.30

SEALS-2

K-means 0.015 56.85
ITC (parzen) 0.003 51.55
ITC (kNN) 0.020 57.20
SEC 0.021 58.15
LDMGI 0.018 57.85
DEC 0.005 54.04
DDC 0.15 72.05
DDC-VOTE 0.18 74.65

Reuters

K-means 0.38 60.5
ITC (parzen) – –
ITC (kNN) – –
SEC – –
LDMGI – –
DEC 0.38 63.79
DDC 0.50 73.06
DDC-VOTE 0.51 77.62

available supervised information, this result is not unexpected due
to the fact that the background class includes large variations.

To further illustrate the clusters found in the dataset, we in-
creased the number of clusters for the SEALS-3 dataset to 10. Fig.
7a shows an overview over the learned clusters. It can be observed
thatDDCgenerally finds reasonable clusters, for example by group-
ing water (dark patches) in one cluster and white background
images in another. Also, it is possible to note that DDC generally
groups the two different seal classes into separate clusters and
assigns images containing both water and snow to a specific class.

Fig. 7b illustrates clustering results on MNIST. Interestingly,
each cluster represents a distinct number. However, it can be
observed that the 7’s and 9’s are mixed, which is expected due to
their shape similarity. Furthermore, theMNIST dataset contains 1’s
that are straight and 1’s that are rotated. Our results indicate that
some of the far leaning 1’s are clustered together with the 2 class,
which has a similar diagonal line.

The results for the SEALS-3 dataset coincide with our intuition
that the background class is likely to be divided into different
classes. For the SEALS-2 dataset, we observe that DDC outperforms
the competitor algorithms by a large margin (Table 1). As the
SEALS dataset is less structured andmore challenging datasets, we
observe that methods that operate directly in pixel space (i.e., raw
input space) performpoorly, stressing the importance of extracting
higher-level features for clustering. Fig. 8 shows clustering results
for DDC, where it can be clearly observed that hooded seals and
harp seals are separated into two distinct clusters.

The proposed clustering cost function is not dependent on the
convolutional architecture used in the previous two experiments
and can also be used for training fully connected neural networks
— which are used when working with vectorial data. For this pur-
pose, we consider the Reuters dataset and substitute convolutional
layerswith fully connected ones as described in Section 3.3. Results

98 M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101

Fig. 6. Clustering result for the three classes in the SEALS-3 dataset. The first cluster appears to correspond to hooded seals, whereas the other two clusters correspond to a
mix of background and seal images.

Fig. 7. (a) Results for the SEALS-3 dataset when clustering into ten clusters. (b) Clustering result for the ten-class MNIST dataset.

Fig. 8. Clustering result for the two classes in the SEALS-2 dataset. DDC groups the two seal types in distinct clusters. The dark seals in the top row corresponding to hooded
seals and the light seals in the bottom row corresponding to harp seals. The red box indicates a mismatch.

are shown in Table 1, where it is possible to observe that DDC out-
performs the competitors. Note that, due to the size of the Reuters
dataset, running LDMGI and SEC was impossible as a consequence
of their memory requirements discussed in Section 3.4. Note that,
from the results presented in Xie et al. (2016), we can see that DEC
still performs well when handling the imbalanced Reuters dataset,
where the balanced assumption of DDC does not hold.

4.8. Loss function

In the following, we analyze the proposed loss function (4),
providing empirical evidence of the importance of the different
terms; moreover, we evaluate whether the different terms in the
loss are related to the performance of the model. Fig. 9a shows the
different terms in the loss function during the training phase as we
monitor the accuracy of the best run onMNIST. It is clearly possible
to observe that all terms (and also the overall loss) agree reasonably
well with the overall clustering accuracy.

Considering that the network architecture is identical to net-
works used in supervised approaches and the availability of la-
bels in our datasets, we can also monitor the terms of the loss
function during supervised training. Fig. 9b shows how each term
in the loss function and the overall loss decrease as we perform
supervised training on MNIST using a cross-entropy loss function.
Again, it is possible to notice that the individual terms have a
similar decreasing trend. Note that large variations in the second
loss term correspond to the aforementioned regularization effect
(see Section 3.1.2).

In order to further analyze our method, we perform an abla-
tion experiment (Nguyen, Yosinski, & Clune, 2015) to investigate
the effect of the different terms on the clustering result. To this
end, we recompute clustering accuracy on MNIST and Reuters
for all different combinations of cost function terms. We repeat
the experiments five times (20 runs each), compute the overall
accuracy for the run with the lowest cost function each time and
report the mean, standard deviation and the maximum accuracy
values over these five results. The maximum accuracy value is

M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101 99

Fig. 9. (a) Comparison of the supervised accuracy with the unsupervised loss function (Loss) and its three terms (l1 = dhid,α , l2 = triu(AAT), and l3 = dhid,m) during training.
(b) Values of the loss function and its three terms when training the network using a supervised loss function (Sup Loss). Note, the losses have been rescaled to range [0,1].

Table 2
Results of the ablation experiment for theMNIST and the Reuters datasets, illustrat-
ing the effect of the three different terms (l1 = dhid,α , l2 = triu(AAT), and l3 = dhid,m)
composing the loss function (4).
Cost MNIST Reuters

Mean ± std Max Mean ± std Max

l1 26.1 ± 2.9 31.5 39.3 ± 4.8 48.7
l2 48.9 ± 1.5 51.8 41.1 ± 2.9 46.0
l3 74.0 ± 2.9 77.0 70.2 ± 6.4 78.8

l1+l2 71.9 ± 8.0 83.5 66.0 ± 8.2 75.9
l1+l3 84.7 ± 5.1 88.6 64.8 ± 5.2 72.7
l2+l3 74.8 ± 5.5 84.3 70.3 ± 4.4 75.4

l1+l2+l3 80.8 ± 5.8 87.5 69.8 ± 7.3 82.6

reported solely in order to illustrate the maximum potential of the
proposed method. In practice, the strategy from Section 4.6 would
be used, wherein the best models according to the unsupervised
cost function from each run are combined, denoted as DDC-Vote.
Note, this differs from the results reported in Table 1 for DDC,
where we report the accuracy only over 20 runs. Results for the
MNIST and Reuters datasets are reported in Table 2. Our results il-
lustrate that, by using all three terms together, we generally obtain
better performance. However, the contribution of each term to the
final performance is not consistent over all datasets. For instance,
we observe that the l2 regularization term does not improve the
overall result on the MNIST dataset, but does have a positive effect
on the Reuters dataset.

The three terms in the loss function (4) were equally weighted
in all experiments. However, better performance might be
achieved by weighing such terms according to the data properties.
For instance, decreasing the importance on l2 = triu(AAT) might
allow our method to better handle imbalanced datasets. The anal-
ysis of more advanced weighting schemes is left for future work.

We further conducted experiments where we replaced the CS
divergence (2) with a symmetrized Kullback–Leibler (KL) diver-
gence, the divergence used by DEC. However, in our experiments
we noticed that the performance of the proposed method drops
considerably. On MNIST DDC with KL divergence only obtains an
accuracy of 53.66%. Further, using a cosine similarity togetherwith
the KL divergence for DDC obtains 35.48% accuracy. We hypoth-
esize that this is mainly due to the fact that the KL divergence
encourages separation of clusters, but does not necessarily enforce
their compactness. A more thorough analysis of alternative diver-
gence measures is left for future work.

Fig. 10. Kernel matrix computed over the learned hidden representation. White
colors correspond to low values in the kernel matrix, whereas dark values indicate
large values.

4.9. Learned representation

Fig. 10 illustrates the final kernel matrix K computed over the
hidden layer for the best MNIST run. Here, unlike in the case of
training, where data points are fed to themodel in a random order,
the data points have been sorted according to their class labels. A
clear block structure is evident from the figure. White and black
values indicate low and high similarity, respectively. However,
especially the 4 and 9 class show high in-between class similarity,
which is not surprising due to their closeness in shape.

4.10. Interpretability of neural network predictions

A recent trend in deep learning is the development of meth-
ods to interpret predictions of neural networks trained with su-
pervised information (Montavon, Lapuschkin, Binder, Samek, &
Müller, 2017; Springenberg et al., 2014). However, interpretability
is not only a problem in supervised settings. It could be argued that
it is even more essential for unsupervised training, where learning
is task-driven. One such approach is the guided backpropagation
(Springenberg et al., 2014), which allows visualizing pixels in the
image that are most influential for a given output decision. We
use this technique to visualize what the model learns to recog-
nize MNIST images. Fig. 11 illustrates the results for 10 random

100 M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101

Fig. 11. Interpretability results for a random subset of MNIST examples using the
guided backpropagation technique.

numbers of theMNIST dataset. Red pixels indicate pixels positively
correlated with the output, in our case the input to the softmax
layer (the unnormalized class score) and lowering the value of the
red pixels will lead to a reduced class score. We observe that our
method focuses on features that are unique for a specific number.
This includes, for instance, the loop for the 6 and the top part of the
4. Rendering of the interpretability results overlaying the MNIST
number was inspired by Lapuschkin, Binder, Montavon, Müller,
and Samek (2016).

5. Conclusion and future work

In this paper, we proposed a novel approach to clustering,
dubbed DDC, which (i) takes advantage of the power of deep
learning architectures, (ii) is trainable end-to-end in a fully unsu-
pervisedway, (iii) does not require pre-training or complex feature
design such as HOG (Dalal & Triggs, 2005) and SIFT (Lowe, 2004),
and finally (iv) achieves results that outperform or are comparable
with state-of-the-art methods on two real-world image datasets
and a news story text dataset. We have also evaluated the per-
formance of an ensemble DDC approach, which generally outper-
formed a single DDCmodel in the considered benchmarks. Overall,
experimental results presented here are promising and stress the
importance of unsupervised learning in modern deep learning
methods.

In future works, we intend to study the robustness of our
method. Further, we will explore alternative loss function formu-
lations, including approaches that are not based on divergence
measures and information-theoretic learning. Finally, it would be
interesting to explore the use of the proposed method for related
clustering settings, such as for instance multi-view clustering (Nie
et al., 2018) and constraint clustering (Li et al., 2018).

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the GPU used for this research. This work was
partially funded by the Research Council of Norway FRIPRO grant
no. 239844 on developing the Next Generation Learning Machines
and IKTPLUSS grant no. 270738 Deep Learning for Health. Thanks
to the Research Council of Norway (UAVSEAL project, no. 234339)
for funding, and the Institute of Marine Research, Norway, and
Northwest Atlantic Fisheries Centre, Canada, for providing images
and ground truth information about the location of the seal pups
in the images.

References

Aggarwal, C. C., & Reddy, C. K. (2013). Data clustering: Algorithms and applications.
Boca Raton, Florida, US: CRC Press.

Aragam, B., Dan, C., Ravikumar, P., & Xing, E. P. (2018). Identifiability of nonpara-
metricmixturemodels and Bayes optimal clustering, arXiv preprint arXiv:1802.
04397.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms. Society for Industrial and Applied Mathematics.

Basseville, M. (2013). Divergence measures for statistical data processing–an anno-
tated bibliography. Signal Processing, 93(4), 621–633. http://dx.doi.org/10.1016/
j.sigpro.2012.09.003.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis andMachine Intelligence,
35(8), 1798–1828. http://dx.doi.org/10.1109/TPAMI.2013.50.

Bianchi, F. M., Livi, L., & Rizzi, A. (2016). Two density-based k-means initialization
algorithms for non-metric data clustering. Pattern Analysis and Applications,
19(3), 745–763.

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., & Jenssen, R. (2017). An
overview and comparative analysis of recurrent neural networks for short term
load forecasting, arXiv preprint arXiv:1705.04378.

Bojanowski, P., & Joulin, A. (2017). Unsupervised learning by predicting noise, arXiv
preprint arXiv:1704.05310.

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(5), 603–619.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection.
In Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer
society conference on, Vol. 1 (pp. 886–893). IEEE.

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). Kernel k-means: spectral clustering and
normalized cuts. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 551–556). ACM.

Dhillon, I. S., Mallela, S., & Kumar, R. (2003). A divisive information-theoretic feature
clustering algorithm for text classification. Journal of Machine Learning Research
(JMLR), 3(Mar), 1265–1287.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P. -A., Vincent, P., & Bengio, S. (2010).
Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research (JMLR), 11(Feb), 625–660.

Giryes, R., Sapiro, G., & Bronstein, A. M. (2016). Deep neural networks with random
gaussianweights: A universal classification strategy? IEEE Transactions on Signal
Processing, 64, 3444–3457.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press, http:
//www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.
(2014). Generative adversarial nets. In Advances in neural information processing
systems (pp. 2672–2680).

Graves, A., Mohamed, A. -r., & Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics,
speech and signal processing (pp. 6645–6649). IEEE.

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015). Draw:
A recurrent neural network for image generation, arXiv preprint arXiv:1502.
04623.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A kernel
two-sample test. Journal ofMachine Learning Research (JMLR), 13(Mar), 723–773.

Han, Y., & Filippone, M. (2016). Mini-batch spectral clustering, arXiv preprint arXiv:
1607.02024.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision (pp. 1026–1034).

Hinton, G. E., Osindero, S., & Teh, Y. -W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527–1554.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8), 651–666.

Jenssen, R. (2010). Kernel entropy component analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(5), 847–860. http://dx.doi.org/10.1109/
TPAMI.2009.100.

Jenssen, R., Erdogmus, D., Hild, K. E., Principe, J. C., & Eltoft, T. (2007). Information
cut for clustering using a gradient descent approach. Pattern Recognition, 40(3),
796–806.

Jenssen, R., Principe, J. C., Erdogmus, D., & Eltoft, T. (2006). The Cauchy–Schwarz
divergence and Parzen windowing: Connections to graph theory and Mercer
kernels. Journal of the Franklin Institute, 343(6), 614–629.

Kampffmeyer, M., Løkse, S., Bianchi, F. M., Jenssen, R., & Livi, L. (2017).
Deep kernelized autoencoders. In Scandinavian conference on image analysis
(pp. 419–430). Springer.

Kampffmeyer, M., Løkse, S., Bianchi, F. M., Livi, L., Salberg, A. -B., & Jenssen, R.
(2017). Deep divergence-based clustering. In Proceedings of the IEEE workshop
on machine learning for signal processing. Tokyo, Japan.

Kampffmeyer, M., Salberg, A. -B., & Jenssen, R. (2016). Semantic segmentation of
small objects and modeling of uncertainty in urban remote sensing images
using deep convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops (pp. 1–9).

M. Kampffmeyer, S. Løkse, F.M. Bianchi et al. / Neural Networks 113 (2019) 91–101 101

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980.

Kingma, D. P., &Welling, M. (2013). Auto-encoding variational bayes, arXiv preprint
arXiv:1312.6114.

Krizhevsky, A., Sutskever, I., &Hinton, G. E. (2012). Imagenet classificationwith deep
convolutional neural networks. In Advances in neural information processing
systems (pp. 1097–1105).

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1–2), 83–97.

Lapuschkin, S., Binder, A., Montavon, G., Müller, K. -R., & Samek, W. (2016). The
lrp toolbox for artificial neural networks. Journal of Machine Learning Research
(JMLR), 17(114), 1–5, URL http://jmlr.org/papers/v17/15-618.html.

LeCun, Y., Bottou, L., Bengio, Y., &Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lee, C. -Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2015). Deeply-supervised nets. In
AISTATS, Vol. 2 (p. 6).

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). Rcv1: Anewbenchmark collection for
text categorization research. Journal ofMachine Learning Research (JMLR), 5(Apr),
361–397.

Li, Z., Nie, F., Chang, X., Nie, L., Zhang, H., & Yang, Y. (2018). Rank-constrained spectral
clustering with flexible embedding. IEEE Transactions on Neural Networks and
Learning Systems.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for seman-
tic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 3431–3440).

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2), 91–110.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2015). Adversarial
autoencoders, arXiv preprint arXiv:1511.05644.

Montavon, G., Lapuschkin, S., Binder, A., Samek,W., &Müller, K. -R. (2017). Explain-
ing nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65, 211–222.

Myhre, J. N., Mikalsen, K. Ø., Løkse, S., & Jenssen, R. (2018). Robust clustering using
a knn mode seeking ensemble. Pattern Recognition, 76, 491–505.

Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and
an algorithm. Advances in Neural Information Processing Systems, 2, 849–856.

Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 427–436).

Nie, F., Tian, L., & Li, X. (2018). Multiview clustering via adaptively weighted
procrustes. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining (pp. 2022–2030). ACM.

Nie, F., Zeng, Z., Tsang, I. W., Xu, D., & Zhang, C. (2011). Spectral embedded clus-
tering: A framework for in-sample and out-of-sample spectral clustering. IEEE
Transactions on Neural Networks, 22(11), 1796–1808.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in neural information
processing systems (NIPS).

Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the
28th international conference on machine learning (ICML-11) (pp. 833–840).

Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks.
Science, 344(6191), 1492–1496.

Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using
deep conditional generativemodels. InAdvances in neural information processing
systems (pp. 3483–3491).

Springenberg, J. T. (2015). Unsupervised and semi-supervised learning with cate-
gorical generative adversarial networks, arXiv preprint arXiv:1511.0639.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for
simplicity: The all convolutional net, arXiv preprint arXiv:1412.6806.

Strehl, A., & Ghosh, J. (2002). Cluster ensembles—a knowledge reuse framework
for combining multiple partitions. Journal of Machine Learning Research (JMLR),
3(Dec), 583–617.

Theano Development Team (2016). Theano: A Python framework for fast compu-
tation of mathematical expressions, arXiv e-prints abs/1605.02688. URL http:
//arxiv.org/abs/1605.02688.

Tishby, N., & Slonim, N. (2001). Data clustering by Markovian relaxation and the
Information Bottleneck Method. In Advances in neural information processing
systems, Vol. 13 (pp. 640–646).

Vikjord, V. V., & Jenssen, R. (2014). Information theoretic clustering using a k-nearest
neighbors approach. Pattern Recognition, 47(9), 3070–3081. http://dx.doi.org/
10.1016/j.patcog.2014.03.018.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. -A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
25th international conference on Machine learning (pp. 1096–1103). ACM.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing,
17(4), 395–416.

Xie, J., Girshick, R., & Farhadi, A. (2016). Unsuperviseddeep embedding for clustering
analysis. In Proceedings of the 33rd international conference on international
conference on machine learning, Vol. 48 (pp. 478–487). JMLR.org.

Yan, D., Huang, L., & Jordan, M. I. (2009). Fast approximate spectral clustering.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 907–916). ACM.

Yang, B., Fu, X., Sidiropoulos, N. D., & Hong, M. (2016). Towards k-means-friendly
spaces: Simultaneous deep learning and clustering, arXiv preprint arXiv:1610.
04794.

Yang, J., Parikh, D., & Batra, D. (2016). Joint unsupervised learning of deep repre-
sentations and image clusters. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 5147–5156).

Yang, Y., Xu, D., Nie, F., Yan, S., & Zhuang, Y. (2010). Image clustering using local dis-
criminant models and global integration. IEEE Transactions on Image Processing,
19(10), 2761–2773.

Yu, S. X., & Shi, J. (2003). Multiclass spectral clustering. In Computer vision, 2003.
Proceedings. Ninth IEEE international conference on (pp. 313–319). IEEE.

Zhang, X. -L. (2018). Multilayer bootstrap networks. Neural Networks, 103, 29–43.

Paper V

Training Echo State Networks with Regu-
larization Through Dimensionality Reduc-
tion
Sigurd Løkse, Filippo M. Bianchi and Robert Jenssen.

Cognitive Computation, 2017

133

Cogn Comput
DOI 10.1007/s12559-017-9450-z

Training Echo State Networks with Regularization Through
Dimensionality Reduction

Sigurd Løkse1 · Filippo Maria Bianchi1 ·Robert Jenssen1

Received: 7 September 2016 / Accepted: 2 January 2017
© Springer Science+Business Media New York 2017

Abstract In this paper, we introduce a new framework
to train a class of recurrent neural network, called Echo
State Network, to predict real valued time-series and to
provide a visualization of the modeled system dynamics.
The method consists in projecting the output of the inter-
nal layer of the network on a lower dimensional space,
before training the output layer to learn the target task.
Notably, we enforce a regularization constraint that leads
to better generalization capabilities. We evaluate the perfor-
mances of our approach on several benchmark tests, using
different techniques to train the readout of the network,
achieving superior predictive performance when using the
proposed framework. Finally, we provide an insight on
the effectiveness of the implemented mechanics through a
visualization of the trajectory in the phase space and rely-
ing on the methodologies of nonlinear time-series analysis.
By applying our method on well-known chaotic systems,
we provide evidence that the lower dimensional embed-
ding retains the dynamical properties of the underlying
system better than the full-dimensional internal states of
the network.

� Filippo Maria Bianchi
filippo.m.bianchi@uit.no

Sigurd Løkse
sigurd.lokse@uit.no

Robert Jenssen
robert.jenssen@uit.no

1 Machine Learning Group, Department of Physics
and Technology, University of Tromsø - The Arctic
University of Norway, Tromsø, Norway

Keywords Echo state network · Nonlinear time-series
analysis · Dimensionality reduction · Time-series
prediction

Introduction

In order to solve a multitude of complex tasks, neurons
in the prefrontal and parietal cortices participate to multi-
ple ensembles, showing each time with different behaviors
in their activity [64]. Beside this heterogeneity in neu-
rons responses, to further increase the dimensionality of
the firing rate space, neurons activities are related through
non-linear dependencies. This is analog to the blessing of
dimensionality in computational learning theory and it is
formalized by Cover’s theorem [65], which states that inputs
implicitly mapped by non-linear functions (kernels) into
high-dimensional space become linearly separable. Accord-
ingly, when external stimuli are mapped into such a high
dimensional representation, a large number of task-related
responses can be solved by using a linear readout [66].
Consider now that the input data naturally lay on a low-
dimensional manifold, in this high-dimensional response
space and assume the presence of noise. This latter pro-
duces small variations along each possible direction, with
a consequent increment of the minimum number of dimen-
sions necessary to embed the data manifold. Also, due
to its non-repeatability, noise generates additional compo-
nents, which are useless to obtain the desired separability on
different realizations. This unwanted increment in dimen-
sionality reduces the discriminability along the directions
where noise introduces these small variations and it must
be contrasted with a form of regularization [64]. Therefore,
the brain must perform two opposing tasks, which are pro-
jecting the inputs into a high dimensional space where they

Cogn Comput

are separable and reducing the dimensionality to get rid of
non relevant factors. To implement and to study the effec-
tiveness of this strategy, we analyze a biologically inspired,
artificial, recurrent neural network, called Echo State Net-
work (ESN). ESNs belong to the class of computational
dynamical systems, implemented according to the so-called
reservoir computing approach [40]. An input signal is fed
to a large, recurrent, and randomly connected dynamic hid-
den layer, the reservoir, whose outputs are combined by a
memory-less layer called readout to solve a specified task.
Contrary to most computationally expensive approaches,
which demand long training procedures to learn model
parameters through an optimization algorithm [28], ESN
is characterized by a very fast learning phase that usually
consists in solving a convex optimization problem.

Standard ESNs and their variants [42, 44] have been
adopted in a variety of different contexts, such as static clas-
sification [1], time-series classification [41], speech recog-
nition [55], intrusion detection [23], adaptive control [24]
harmonic distortion measurements [46] and, in general, for
modeling of various kinds of non-linear dynamical systems
[25]. The application field where ESN has been employed
the most is the prediction of real valued time-series relative,
for example, to telephonic or electric load, where the fore-
cast is usually performed 1 and 24 h ahead [6, 15, 16, 49,
59]. Outstanding results have also been achieved by ESN in
prediction of chaotic time-series [32, 37], which highlighted
the capability of these neural networks to learn amazingly
accurate models to forecast a chaotic process from almost
noise-free training data.

Although a large reservoir provides a greater descriptive
power and it could capture the dynamics of the underly-
ing system more accurately, the resulting model is more
complex and its internal dynamics become more redun-
dant. This could lead to overfit the training data, with a
consequent decrement in the generalization capabilities of
the model. Additionally, having a large number of reser-
voir neurons means that high-dimensional data have to be
handled in training the readout layer. This could raise the
well-known curse of dimensionality issue, which causes
increments in both the computational requirements and
the resource needed, as the classification/regression model
requires a higher amount of data to be trained [7]. To damper
the high variance of such models characterized by a large
complexity, regularization techniques are required.

Dimensionality reduction is a form of regularization
which, beside being implemented by biological brains [67],
has been adopted in several signal processing and machine
learning applications, to evaluate regression functions [63],
performing classification [14], or finding neighbors [29]. In
fact, by operating on a space with reduced dimensionality,
it is possible in many cases to maintain meaningful dis-
tance relationships between original data and to constraint

the complexity of the model the same time. Through dimen-
sionality reduction, redundant features are removed, noise
can be filtered, and algorithms that are unfit to deal with a
large number of dimensions become applicable.

In the ESN literature, different regularization methods
have been proposed to increase the generalization capability
of the network. For example, in [17], the authors introduce a
bias in the model by shrinking the weights of the connections
from the reservoir to the readout layer. In [52], by pruning
some connections from the reservoir to the readout layer,
better generalization capabilities are achieved along with
some insight on which neurons are actually useful for the
output, providing clues on how to create a good reservoir.

Inspired by the strategy of biological neural networks that
allow to achieve better generalization by enforcing invari-
ance to inputs that should not influence the desired response,
we propose a novel framework for training an ESN. We
introduce an additional computational block to process the
output of the internal reservoir, before being fed into the
readout layer. In particular, the internal state of the network
is mapped to a lower dimensional subspace, using both lin-
ear and nonlinear transformations. In this way, we are able
to use a large reservoir to accurately model the dynamics of
the underlying system, while maintaining the generalization
capabilities of the network, due to regularization constraints
provided by dimensionality reduction on its internal phase
space.

Even if additional operations are introduced to compute
the reduced dimensionality embedding, training the read-
out layer becomes less demanding, especially in regression
methods whose computational complexity depends on input
dimension [18]. We stress that the dimensionality reduc-
tion treated here is intended to deal with sparsity in the
state space, i.e., the actual number of parameters which
are necessary to describe the evolution of the dynamics
of the system. We do not focus on dimensionality reduc-
tion in the input space, since it is not an issue in ESNs. In
fact, to better separate the data, the ESN maps the input
into a high-dimensional kernel space, which is even more
sparse. Through this mapping, dependencies in the data are
more likely to become linearly separable, even in the orig-
inal input space, the dynamics are linked through complex,
nonlinear relationships.

In this paper, we show how through the proposed pro-
cedure we improve the generalization capabilities of an
ESN, achieving better results on well-known benchmark-
ing problems with respect to the standard ESN architecture.
Additionally, in cases where data can be mapped to spaces
with 2 or 3 dimensions, internal network dynamics can be
visualized precisely and relevant patterns can be detected.
To justify the results obtained and to understand the mech-
anisms which determines the effectiveness of the proposed
system, we provide a theoretical study based on methods

Cogn Comput

coming from the field of nonlinear time-series analysis.
To the best of the authors’ knowledge, the coupling of
dimensionality reduction with the ESN architecture has not
been explored before. However, a recent work is pointing in
this direction, while focusing more on memory properties
[13].

The remainder of the paper is organized as follows. In
the “Background Material” section, we describe the ESN
structure along with existing approaches for its training and
we review the dimensionality reduction methods adopted
in this work. In the “Proposed Architecture” section, we
discuss the details of the proposed architecture. In the
“Experiments” section, we describe the datasets used to test
our system, the experimental settings adopted and the per-
formance reached on several prediction problems. In the
“Discussion” section, we analyze the results and the func-
tioning of our system through the perspective of nonlinear
time-series analysis. Finally, in the “Conclusions and Future
Directions” section, we draw our conclusions.

Background Material

In the following, we shortly review the methodologies
adopted in our framework. Initially, we describe the classic
ESN architecture and two effective approaches adopted for
its training. Successively, we summarize two well-known
methods used for reducing the dimensionality of the data
and for mapping them in a smaller subspace.

Echo State Network

An ESN consists of a large, untrained recurrent layer of non-
linear units and a linear, memory-less readout layer, usually
trained with a linear regression. A visual representation of
an ESN is reported in Fig. 1.

The equations describing the ESN state-update and out-
put are, respectively, defined as follows:

h[k] = φ(Wr
rh[k − 1] + Wr

i x[k] + Wr
oy[k − 1] + ξ), (1)

y[k] = Wo
i x[k] + Wo

rh[k], (2)

where ξ is a small i.i.d. noise term. The reservoir consists of
Nr neurons characterized by a transfer/activation function
φ(·), typically implemented as a hyperbolic tangent func-
tion. At time instant k, the network is driven by the input
signal x[k] ∈ R

Ni and it generates the output y[k] ∈ R
No ,

being Ni and No the dimensionality of input and output,
respectively. The vector h[k] ∈ R

Nr describes the ESN
(instantaneous) state. The weight matrices Wr

r ∈ R
Nr×Nr

(reservoir connections), Wr
i ∈ R

Nr×Ni (input-to-reservoir),
and Wr

o ∈ R
Nr×No (output-to-reservoir feedback) contain

real values in the [−1, 1] interval, sampled from a uniform
distribution.

Fig. 1 Schematic depiction of the ESN architecture. The circles repre-
sent input x, state, h, and output, y, respectively. Solid squaresWo

r and
Wo

i , are the trainable matrices of the readout, while dashed squares,
Wr

r , Wr
o, and Wr

i , are randomly initialized matrices. The polygon rep-
resents the nonlinear transformation performed by neurons and z-1 is
the unit delay operator

According to the ESN theory, the reservoir Wr
r must

satisfy the so-called echo state property (ESP) [40]. This
guarantees that the effect of a given input on the state of
the reservoir vanish in a finite number of time intervals. A
widely used rule-of-thumb suggests to rescale the matrix
Wr

r to have ρ(Wr
r) < 1, where ρ(·) denotes the spectral

radius, but several theoretically founded approaches have
been proposed in the literature to properly tune ρ in an ESN
driven by a specific input [8, 9, 60].

The weight matrices Wo
i and Wo

r instead are optimized
for the task at hand. To determine them, let us consider the
training sequence of Ttr desired input-outputs pairs given by

(x[1], y∗[1]) . . . , (x[Ttr], y[Ttr]), (3)

In the initial phase of training, called state harvesting, the
inputs are fed to the reservoir in accordance with Eq. 1, pro-
ducing a sequence of internal states h[1], . . . ,h[Ttr]. Since,
by definition, the outputs of the ESN are not available for
feedback, according to the teacher forcing procedure, the
desired output is used instead in Eq. 2. States are stacked in
a matrix S ∈ R

Ttr×Ni+Nr and the desired outputs in a vector
y∗ ∈ R

T
tr :

S =
⎡
⎢⎣

xT [1], hT [1]
...

xT [Ttr], hT [Ttr]

⎤
⎥⎦ , y∗ =

⎡
⎢⎣

y∗[1]
...

y∗[Ttr]

⎤
⎥⎦ .

The initial D rows S and y∗ are the washout elements that
should be discarded, since they refer to a transient phase in
the ESN’s behavior.

Since the gain of the sigmoid nonlinearity in the neurons
is the largest around the origin, three coefficients ωi , ωo, and
ωf are used to scale the input, desired output, and feedback
signals, respectively. In this way, it is possible to control the
amount of nonlinearity introduced by the processing units.

Cogn Comput

The training of the readout consists in solving a con-
vex optimization problem, for which several closed form
solution have been proposed in the literature. The standard
procedure to train the readout, originally proposed in [30],
consists in a regularized least-square regression, which can
be easily computed through the Moore–Penrose pseudo-
inverse. However, to learn the optimal readout, we also
consider the support vector regression (SVR), a supervised
learning model that can efficiently perform a nonlinear sep-
aration of data using a kernel function to map the inputs into
high-dimensional feature spaces, where they are linearly
separable [11].

Ridge Regression to train the readout with a linear regres-
sor, we adopted ridge regression, whose solution can be
computed by solving the following regularized least-square
problem:

W∗
ls = arg min

W∈RNi+Nr

1

2
‖SW − y∗‖2 + λ

2
‖W‖2

=
(
ST S + λI

)−1
ST y∗ , (4)

where W = [
Wo

i W
o
r

]T and λ ∈ R
+ is the L2 regularization

coefficient.

Support Vector Regression we adopt a ν-SVR [54] with
a Gaussian kernel, initially proposed in [7] as method for
readout training. In this case, the ESN acts as a preprocessor
for a ν-SVR kernel and their combination can be seen as
an adaptive kernel, capable of learning a task-specific time

dependency. The state si = [
xT [i] hT [i]]T is projected to

a higher dimensional feature space φ(si), and the ν-SVR
is applied on the resulting space. The dual optimization
problem can be written as:

W∗
svr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α,α∗∈RTtr

1

2

(
α − α∗)K (

α − α∗) + y∗T
(
α − α∗)

subject to 1T
(
α − α∗) = 0 ,

1T
(
α + α∗) ≤ λν ,

0 ≤ αi, α
∗
i ≤ λ

Ttr

, i = . . . , Ttr

(5)

where each entryKij is given byK
(
si , sj

)
, with K(·, ·) being

a reproducing Gaussian kernel associated with the feature
mapping, given by K(si , sj) = exp

{−γ ‖si − sj‖2
}
, where

γ is denoted as the scale parameter.
By an extension of the representer’s theorem, the output

of the ESN at a generic time-instant t in this case is given by

y[t] =
Ttr∑
i=1

(
αi − α∗

i

)
K (si , st) , (6)

where αi and α∗
i are the entries of the optimal solution to

problem Eq. 5, and they are non-zero only for patterns that
are support vectors.

Dimensionality Reduction Methods

In the following, we describe the dimensionality reduc-
tion techniques that we implemented in our framework.
We underline that several approaches can be followed
for reducing the dimensionality of the data and to learn
underlying manifold on a subspace of the data space
[34, 35, 43, 58]. In this work, we limit our analysis
to the well-known and effective, yet simple procedures,
namely principal component analysis (PCA) [27] and ker-
nel principal component analysis (kPCA) [53]. We stress
that the dimensionality reduction method to be included
in our framework must implement out of sample exten-
sions. This is not guaranteed by the original formula-
tion of more complex methods, such as locally linear
embedding, Laplacian eigenmaps, and multidimensional
scaling. For these approaches, one has to rely on spe-
cific workarounds [5]. Additionally, we believe that using
more advanced/complicated methods could hinder the inter-
pretability of the results, as they could be dependent on
some complex, hidden mechanism in the dimensionality
reduction method.

PCA is a statistically motivated method, which projects the
data onto an orthonormal basis that preserves most variance
in the input signal, while ensuring that the individual com-
ponents are uncorrelated. These basis vectors are called the
Principal Components. Let X ∈ R

p be a random vector
and let �X = E�ET be its covariance matrix, where E =(
e1e2 · · · ep

)
and � = diag (λi) is the orthogonal eigenvec-

tor matrix and the diagonal eigenvalue matrix, respectively.
Then, the linear transformation Y = ET X ensures that
the covariance matrix of Y is �Y = �, which clearly
implies that the components of Y are uncorrelated. We also
see that

p∑
i=1

V arXi =
p∑

i=1

V arYi =
p∑

i=1

λi. (7)

To reduce the dimensionality to d dimensions, we project
the data onto the d eigenvectors with the largest eigenvalues.
That is,

Ŷ = ET
d X,

where Ed = (e1 e2 · · · ed) is the truncated eigenvector
matrix associated with the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd .
According to Eq. 7, this ensures that Ŷ preserves most of
the variance of X.

Cogn Comput

Kernel Principal Component Analysis (kPCA) is a non-
linear extension of PCA. Given a valid positive semidefinite
(psd) Mercer Kernel

K(h[i], h[j]) = 〈
(h[i]),
(h[j])〉H,

where
 is some nonlinear mapping from feature space to
a Hilbert space H, Kernel PCA implicitly performs PCA in
H.

Let K = {Kij }N×N , where Kij = K(h[i], h[j]) be
the kernel matrix and let E and � be its eigenvector and
eigenvalue matrix respectively with the eigenvalues sorted
in descending order. Then, the projection of the in-sample
data onto the principal components in H is given by

H̄ = E�
1
2 . (8)

The out-of-sample approximation for the projection of a
data point h[k] onto the �th principal component is given
by

h̄�[k] = 1√
λ�

N∑
i=1

e�(i)K(h[i], h[k]). (9)

Just like canonical PCA, to perform dimensionality reduc-
tion with kPCA, one need to use the truncated eigenvector-
and eigenvalue matrix with Eqs. 8 and 9.

The kernel function that is commonly used in practice
is the Gaussian kernel which is given by K(h[i], h[j]) =
exp

{−γ ‖h[i] − h[j]‖2
}
, where γ controls the width of the

kernel.
Both PCA and kPCA methods admit an out-of-sample

extension, a feature which is required in our framework, as
discussed later.

Proposed Architecture

In this section, we provide the details of the architecture of
the framework proposed.

The large size of the reservoir, specified by the amount
Nr of hidden neurons, is one of the main features that
determines the effectiveness of the reservoir computing

paradigm. Due to the high quantity of neurons, the inter-
nal recurrent connections in the reservoir are capable of
generating a rich and heterogeneous dynamic to solve com-
plex memory-dependent tasks. However, as the size of
the reservoir increases, also the complexity of the model
grows, with a consequent risk of overfitting and a reduced
generalization capability [4]. Dimensionality reduction and
manifold learning are techniques that allow to diminish
the variance in the data and to introduce a bias, which
can reduce the expected value on the prediction error [20].
In the architecture proposed, we use a large reservoir in
order to capture the dynamic of the underlying unknown
process and then, through a dimensionality reduction pro-
cedure, we enforce regularization constraints to increase the
generalization capability of our model. Another important
consequence that follows from reducing the dimensionality
of the reservoir is that complex regression methods can ben-
efit from a reduced computational complexity if the internal
states are described by a lower number of variables. Details
on the computational complexity for different configura-
tions of the architecture are given in Table 1. Additionally,
several methods used to identify, in an unsupervised way,
the configurations of hyperparameters which maximize the
computational capabilities of the network, require compu-
tational demanding procedures of analysis [8, 9, 39]. These
procedures would greatly benefit from the simplification
offered by our proposed architecture.

At each time step t , the vector h[t] ∈ R
Nr that represents

the internal state of the reservoir is mapped into a lower
dimensional space by a projector P : RNr → R

d . The new
d-dimensional state vector h̄[t] = P(h[t]) is then processed
by the readout to compute the predicted value y[t].

To train our system, the time-series is split in three
contiguous parts, namely the training {Xtr ,Ytr}, validation
{Xvs,Yvs} and test set {Xts ,Yts}. Since we deal with time-
series prediction problems, each set contains coupled real
values, which represent the input value and the ground truth
of the associated prediction. For example, in the training set,
we have {x[t], y[t]}Ttr

t=1, where y[t] is the predicted value of
x[t]. The regression function in the readout is implemented
according to one of the two procedures proposed in the

Table 1 Comparison of computational complexity (C.C.) and memory complexity (M.C.). We indicate the dominating operation which
determines the complexity

Model C.C. —Dimensionality reduction C.C. —Training readout M.C.

Ridge reg. ESN – Pseudo-inverse O(N3
r) Empirical covariance matrix O(N2

r)

Ridge reg. PCA Eigendecomposition O(N3
r) Pseudo-inverse O(d3) Empirical covariance matrix O(N2

r)

Ridge reg. kPCA Eigendecomposition O(T 3
tr) Pseudo-inverse O(d3) Kernel matrix O(T 2

tr)

ν-SVR ESN – QP Solver O(T 3
tr) Kernel matrix O(T 2

tr)

The parameters are as follows: The number of neurons in the network (Nr), the dimensionality after the dimensionality reduction layer (d), and
the number of samples in the training set (Ttr).

Cogn Comput

Fig. 2 When a new element x[t] is fed into the network, the inter-
nal state of the ESN is updated and its new value is stored in h[t].
Such state vector is then projected on a subspace, computed during the

training on the state matrix Htr and the vector of reduced dimensional-
ity in this subspace h̄[t] is evaluated. At this point, the predicted output
value ŷ[t] is computed by the ESN readout

“Echo State Network” section and the model parameters are
learned on the training data. The system depends on sev-
eral hyperparameters, which affects the network behavior
and they must be carefully tuned on the specific problem at
hand by performing a cross-validation procedure on the val-
idation set, with a method whose details are provided in the
next section.

Once the model has been trained, a new test element x[t]
of the test set is processed and the relative internal reser-
voir state h[t] is generated. Successively, the projection h̄[t]
in the subspace with reduced dimensionality is evaluated
using a suitable out of sample approximation. In the case
of PCA, this can be done by projecting h[t] on the basis
defined by the covariance matrix computed on the Ttr states
relative to the elements in training set, which are collected
in the matrix Htr during the training phase. For kPCA, it is
possible to use the Nÿstrom approximation [2], which spec-
ifies an interpolating function for determining the values of
out-of-sample data points.

A schematic representation of the whole procedure is
depicted in Fig. 2.

Hyperparameter Optimization

The set of hyperparameters θ that are used to control the
architecture of the ESN, the regression in the readout, and
the dimensionality reduction procedure are optimized by
minimizing a loss function L(·), defined as

L(θ i) = (1 − α)Err(Yvs) + αθ
(d)
i , (10)

where θ (d) = d
Nr

is the hyperparameter that defines the
number of dimensions, d, of the new subspace. In order to
lower the complexity of the model, L(·) jointly penalizes
prediction error on the validation set and the number of
dimensions retained after the dimensionality reduction.

The loss function is minimized using a standard genetic
algorithm with Gaussian mutation, random crossover,

Fig. 3 Overview of the hyperparameters optimization in the pro-
posed architecture. At the i-th iteration, the input elements of the
validation set Xvs are processed by the ESN configured with the
hyperparemeters in θ i , which is the i-th individual generated by
the GA. The predicted output Ŷvs produced by the network is

matched against the ground truth Yvs , the resulting similarity (pre-
diction error) is used to compute the fitness of θ i with the loss
function L(θ i). In the next iteration, a new individual θ i+1 is gener-
ated, depending on results obtained so far and on the policies of the
GA

Cogn Comput

Table 2 Each hyperparameter
is searched by the GA in the
interval [min, max] with
resolution σ

Nr ξ ωi ωo ωf ρ θ (d) γ λ C ν

min 100 0.0 0.1 0.1 0.0 0.5 0.001 0.001 0.001 0.001 0.001

max 500 0.1 0.9 0.9 0.6 1.4 1.0 0.1 1.0 10.0 1.0

σ 5 0.01 0.08 0.08 0.06 0.09 0.1 0.01 0.1 1.0 0.1

The fields in the table are the following: spectral radius of the reservoir (ρ), neurons in the reservoir (Nr),
noise in ESN state update (ξ), scaling of input, teacher and feedback weights (ωi , ωo, ωf), embedding

dimension
(
θ (d) = d

Nr

)
, L2 norm regularization factor (λ), and ν-SVR parameters (C, γ , ν).

elitism, and tournament selection [56]. While the hyper-
parameter optimization is performed on the validation set,
the best individual found is stored and it is successively
used to configure the network during the training phase. A
schematic description of the training procedure is depicted
in Fig. 3.

Experiments

The component of the loss function (Eq. 10) relative to the
error on the given task is implemented by the normalized
root mean squared error (NRMSE):

NRMSE =
√

〈‖y[k] − y∗[k]‖2〉
〈‖y[k] − 〈y∗[k]〉‖2〉 ,

where y[k] is the ESN prediction and y∗[k] the
desired/teacher output.

The GA uses a population size of 50 individuals and eval-
uates 20 generations. The individuals are mutated and bred
at each generation with a mutation probability of Pmut = 0.2
and a crossover probability of Pcx = 0.5. The individuals
in the next generation are selected by a tournament strategy
with a tournament size of four individuals. The bounds for
all parameters are shown in Table 2. The weight parameter
α in the loss function (Eq. 10) is set to 0.1.

Due to the stochastic nature of the ESN, which is a con-
sequence of the random initialization of the weight matrices
Wr

i , Wr
r and Wr

o, each individual is evaluated on the val-
idation set using five networks initialized with different
weight parameters. The fitness is then given by the NRMSE,
averaged over these five networks. Once the optimal set of
parameters θ∗ has been found, we predict values for the test
set using 32 randomly initialized networks, using the same
set of optimal parameters.

Datasets Description

To test our system, we consider three benchmark tasks
commonly used in time-series forecasting, namely the pre-
diction of Mackey-Glass time-series, of multiple superim-
posed oscillator and of the NARMA signal. The forecasting

problems that we consider have a different level of diffi-
culty, given by the nature of the signal and the complexity
of the prediction task. Accordingly to a commonly used
approach [33], in each prediction task, we set the forecast
step τf by computing a statistic that measures the inde-
pendence of τf -separated points in the time series. One
usually wants the smallest τf that guarantees the measure-
ments to be decorrelated. Hence, we considered the first
zero of the autocorrelation function of the time series, which
yields the smallest τf that maximizes the linear indepen-
dence between the samples. Alternatively, it is possible to
choose the forecast step by considering more general forms
of independence, such as the first local minimum on the
average mutual information [19] or on the correlation sum
[38].

Mackey-Glass Time-series the input signal is generated
from the Mackey-Glass (MG) time-delay differential sys-
tem, described by the following equation:

dx

dt
= αx(t − τMG)

1 + x(t − τMG)10
− βx(t).

We generated a time-series of 150,000 time-steps using
τMG = 17, α = 0.2, β = 0.1, initial condition x(0) = 1.2,
and 0.1 as integration step for (4.1).

NARMA Signal the non-linear autoregressive moving
average (NARMA) task, originally proposed in [31],
consists in modeling the output of the following r-order
system:

y(t + 1) = 0.3y(t) + 0.05y(t)

[
r∑

i=0

y(t − i)

]

+1.5x(t − r)x(t) + 0.1.

The input to the system x(t) is a uniform random noise in
[0, 1], and the model is trained to reproduce y(t + 1). The
NARMA task is known to require a memory of at least r

past time-steps, since the output is determined by the current
input and outputs relative to the last r time-steps. In our test,
we set r = 20.

Cogn Comput

Multiple Superimposed Oscillator The prediction of a
sinusoidal signal is a relatively simple task, which demands
a minimum amount of memory to determine the next net-
work output. However, superimposed sine waves with not
integer frequencies are much harder to predict, since the
wavelength can be extremely long. The signal we consider
is the multiple superimposed oscillator (MSO), studied in
[32] and defined as

y(t) = sin(0.2t) + sin(0.311t) + sin(0.42t) + sin(0.51t)

+sin(0.63t) + sin(0.74t)

ESN struggles to solve this task, since neurons in the
reservoir tends to couple, while the task requires the simul-
taneous existence of multiple decoupled internal states [61].

Results

The averaged prediction results and the standard devia-
tions are reported in Table 3. The convergence rate during
the optimization of the hyperparameters for each method,
expressed as the NRMSE error on the validation set, is
depicted in Fig. 4.

The prediction of MG is a quite simple task and each
model manages to achieve high forecast accuracy. How-
ever, by applying a dimensionality reduction on the states
of the reservoir, it is possible to lower the error by one
or more order of magnitude. Also, the standard deviation
of the prediction error decreases, especially in the mod-
els using kPCA. The best results are achieved by ν-SVR
+ PCA and ν-SVR + kPCA, while using ν-SVR without
reducing the dimensions of the reservoir demonstrated to
be less effective. This means that nonlinearities benefit the
training, but without enforcing the regularization constraint,
the complexity of the model is too high to fit well testing
points. As we can see, in every case, the number of dimen-
sions d retained by both PCA and kPCA is much lower
than the optimal number of neurons Nr identified. This
underlines the effectiveness of the regularization conveyed
by our architecture. From Fig. 4a results that the model
implementing ridge regression + kPCA achieves the lowest
convergence rate during the cross-validation step. How-
ever, thanks to the generalization power provided by the
nonlinear dimensionality reduction, the test error is lower
than the other models, whose readout is trained with ridge
regression.

In NARMA prediction task, the best result is achieved by
training the readout function with ν-SVR on a reservoir out-
put, whose dimensionality is reduced by kPCA. NARMA
is a more complex task which requires a higher amount
on nonlinearity to be solved. This is clearly reflected by
the results, which improve as more nonlinearity is intro-
duced to learn the function, both in the readout training

and in the dimensionality reduction procedure. At the same
time, the bias introduced by the regularization enhance
the generalization capability of the network significantly.
For what concerns the number of dimensions of the opti-
mal subspace, it is higher than in MG task, except for the
model implemented with ridge regression + PCA. In this
latter cases, however, we obtain the worst performance.
Interestingly, from Fig. 4b, we observe that kPCA has the
lower convergence rate, even if this is the best performing
model in the testing phase. In this case, the dimensional-
ity reduction introduces a bias, which prevents the model
to overfit on the validation data and to develop a high pre-
dictive power. On the other hand, the model with ν-SVR
and no dimensionality reduction overfits on the valida-
tion data with a consequent poor performance in the test
phase.

Finally, in the MSO task, the model with the highest pre-
diction performance is ν-SVR without the dimensionality
reduction. In this case, the signal to predict has an infinitely
long periodicity, which benefits from a network model char-
acterized by a high complexity, a large amount of memory.
Hence, the compression of the information through the
dimensionality reduction could hamper the memory capac-
ity of the network. Furthermore, due to the long periodicity,
the slice of time-series used to train the network can be quite
different from the slice to be predicted in the test. Conse-
quently, test points are projected in a subspace which is not
optimal, as the basis is learned from the training data. As
expected, the number of dimensions kept after the dimen-
sionality reduction is larger than in the other tasks. The
need of a high degree of complexity is also denoted by the
poor results obtained by using ridge regression in the read-
out training. From Fig. 4c, we observe the convergence rate
to be faster in models equipped with ν-SVR, which obtain
better results both in validation and in testing phase. This
symmetry on performances on test and validation reflects
the scarce effectiveness of the regularization constraints for
this task.

Discussion

To understand the mechanics and the effectiveness of the
proposed architecture, we analyze the results through the
theory of nonlinear time-series analysis, which offer pow-
erful methods to retrieve dynamical information from time-
ordered data [10]. The objective of time-series analysis is
to reconstruct the full dynamics of a complex nonlinear
dynamical system, starting from a measurement of only one
of its variables. In fact, in many cases, it is possible to
observe only a subset of the components necessary to deter-
mine the time-evolution law which governs the dynamical
system.

Cogn Comput

Ta
bl
e
3

A
ve

ra
ge

pr
ed

ic
tio

n
re

su
lts

ob
ta

in
ed

on
th

e
te

st
se

t

R
T

D
R

N
r

ρ
ξ

ω
i

ω
o

ω
f

θ
(d

)
γ

k
λ

C
ν

γ
r

E
rr

or

M
G

ri
dg

e
re

g.
–

37
8

1.
22

0.
0

0.
55

0.
21

2
0.

25
–

–
0.

62
5

–
–

–
3.

06
4E

−2
±

1.
64

8E
−4

ri
dg

e
re

g.
PC

A
31

8
1.

21
4

0.
04

2
0.

80
7

0.
84

0
0.

35
5

89
–

0.
29

4
–

–
–

6.
48

3E
−3

±
9.

12
6E

−3
ri

dg
e

re
g.

k
PC

A
44

5
1.

14
8

0.
0

0.
33

9
0.

20
2

0.
42

2
33

0.
05

0
0.

52
1

–
–

–
4.

28
3E

−3
±

1.
89

3E
−4

ν
-S

V
R

–
49

0
1.

05
1

0.
0

0.
87

3
0.

58
8

0.
56

8
–

–
–

0.
23

4
5.

34
6

0.
86

8
1.

70
0E

−1
±

5.
17

1E
−2

ν
-S

V
R

PC
A

47
4

1.
04

4
0.

0
0.

60
4

0.
80

7
0.

35
0

3
–

–
2.

53
5

0.
34

0
0.

82
5

3.
21
0E

−5
±

3.
12
2E

−5
ν

-S
V

R
k

PC
A

46
6

0.
73

8
0.

0
0.

37
3

0.
66

4
0.

06
9

14
0.

05
9

–
7.

97
5

0.
44

8
0.

29
9

4.
90

2E
−4

±
9.

61
9E

−6
N

A
R

M
A

ri
dg

e
re

g.
–

40
6

1.
03

1
0.

05
3

0.
19

0.
23

1
0.

19
4

–
–

0.
16

3
–

–
–

3.
75

9E
−1

±
1.

40
9E

−3
ri

dg
e

re
g.

PC
A

40
9

0.
93

4
0.

01
6

0.
13

5
0.

12
7

0.
07

3
22

–
0.

96
3

–
–

–
3.

79
1E

−1
±

4.
88

7E
−4

ri
dg

e
re

g.
k

PC
A

34
2

0.
88

7
0.

01
8

0.
16

7
0.

40
7

0.
0

22
5

0.
00

8
0.

00
1

–
–

–
1.

02
4E

−1
±

1.
54

2E
−3

ν
-S

V
R

–
44

0
0.

92
8

0.
01

5
0.

12
9

0.
60

3
0.

03
1

–
–

–
4.

33
2

0.
27

1
0.

01
7

7.
29

8E
−2

±
7.

90
1E

−4
ν

-S
V

R
PC

A
43

3
0.

95
2

0.
0

0.
10

7
0.

20
7

0.
26

7
27

4
–

–
4.

09
9

0.
13

4
0.

02
8

6.
43

8E
−2

±
6.

25
4E

−4
ν

-S
V

R
k

PC
A

46
0

0.
96

2
0.

00
2

0.
1

0.
30

2
0.

03
7

16
3

0.
02

8
–

4.
28

1
0.

75
2

0.
42

0
5.
85
2E

−2
±

1.
47
5E

−3
M

SO
ri

dg
e

re
g.

–
29

8
1.

14
8

0.
00

8
0.

34
5

0.
14

7
0.

04
5

–
–

0.
43

8
–

–
–

9.
42

7E
−1

±
1.

67
5E

−2
ri

dg
e

re
g.

PC
A

49
9

1.
14

1
0.

01
7

0.
18

7
0.

18
4

0.
30

9
43

8
–

0.
60

1
–

–
–

7.
64

2E
−1

±
1.

18
9E

−1
ri

dg
e

re
g.

k
PC

A
45

4
1.

05
3

0.
00

3
0.

13
7

0.
16

9
0.

18
4

40
7

0.
04

0
0.

11
7

–
–

–
5.

95
9E

−1
±

3.
23

3E
−2

ν
-S

V
R

–
44

4
1.

0
0.

00
1

0.
11

4
0.

1
0.

09
–

–
–

3.
71

4
0.

28
2

0.
03

7
2.
35
3E

−1
±

1.
60
9E

−2
ν

-S
V

R
PC

A
45

9
1.

14
7

0.
00

1
0.

17
4

0.
14

4
0.

27
6

22
5

–
–

6.
37

3
0.

38
0.

60
1

7.
09

1E
−1

±
2.

18
2E

−2
ν

-S
V

R
k

PC
A

48
0

1.
02

7
0.

03
2

0.
1

0.
62

7
0.

01
1

13
5

0.
00

2
–

3.
52

9
0.

20
4

0.
49

5
4.

86
0E

−1
±

2.
08

2E
−2

T
he

ta
bl

e
co

nt
ai

ns
th

e
fo

llo
w

in
g

fi
el

ds
:

m
et

ho
d

fo
r

re
ad

ou
t

tr
ai

ni
ng

(R
T

),
di

m
en

si
on

al
ity

re
du

ct
io

n
pr

oc
ed

ur
e

(D
M

),
sp

ec
tr

al
ra

di
us

of
th

e
re

se
rv

oi
r

(ρ
),

ne
ur

on
s

in
th

e
re

se
rv

oi
r

(N
r
),

no
is

e
in

E
SN

st
at

e
up

da
te

(ξ
),

sc
al

in
g

of
in

pu
t,

te
ac

he
r

an
d

fe
ed

ba
ck

w
ei

gh
ts

(ω
i,

ω
o
,ω

f
),

di
m

en
si

on
al

ity
(d

),
kP

C
A

ke
rn

el
w

id
th

(γ
k
),

L
2

no
rm

re
gu

la
ri

za
tio

n
fa

ct
or

(λ
),

an
d

ν
-S

V
R

pa
ra

m
et

er
s

(C
,ν

,
γ

r)
.B

es
tr

es
ul

ts
ar

e
hi

gh
lig

ht
ed

in
bo

ld
.

Cogn Comput

3 6 9 12 15 18 21

0

0.1

0.2

0.3

0.4

0.5

3 6 9 12 15 18 21

0

0.3

0.6

0.9

1.2

1.5

2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 4 Convergence of the error on the validation set in hyperparameters optimization with the GA. Black lines represent models whose readout
is trained with ν-SVR, models trained with ridge regression are depicted with gray lines

The main idea which inspires this analysis is that a dynamic
system is completely described by the time-dependent
trajectory in its phase space. Hence, a recurrent neural net-
work that is capable of reconstructing with a high degree of
accuracy the dynamic attractor can calculate future states
assumed by the system, given a state at any particular
moment.

A frequently used method for phase space reconstruc-
tion is the delay-coordinate embedding, which provides an
estimation of the attractor that is topologically identical to
the true one. From this reconstruction, it is possible to infer
several properties of the hidden dynamical system, which
are invariant under diffeomorhpism. We refer to these mea-
sures as the dynamical invariants of the system. The most
commonly studied are the fractal dimension of the attrac-
tor, the Lyapuanov exponents, and the Rényi entropy. In
the following, we briefly introduce the delay-coordinate
embedding procedure and two approaches used to esti-
mate the aforementioned dynamical invariants. We refer the
interested reader to [21, 36] for a comprehensive overview
of these methods and many other aspects of time-series
analysis.

Delay-coordinate Embedding a dynamical system is
characterized by a time-evolution law, which determines its
trajectory in the phase space. Each specific state of the sys-
tem at time t is defined by a d-dimensional vector in the
state space: s(t) = [s1(t), . . . , sd(t)]T , being d the number
of variables of the system. The delay-coordinate embed-
ding method allows to reconstruct such state vectors from
a discrete time measurement of only one generic smooth
function of the state space [47]. Given a time-series x =
{x(i�t)}Ni=1 evenly sampled at rate �t , the embedding is
defined as

ŝ(i) =
m∑

j=1

x(i + (j − 1)τe)ej , (11)

where m is the embedding dimension, τe is the time delay,
and ej form an orthonormal basis in R

m.

With a proper choice of embedding parameters m and
τe, Taken theorem guarantees the existence of a diffeomor-
phism between the real and reconstructed dynamic [57].
A sufficient condition for a correct reconstruction is m ≥
2d + 1. The value of m is usually computed with the false
nearest-neighbors algorithm [51], which provides an esti-
mation of the smallest sufficient embedding dimension. On
the other hand, a suitable time-delay τe can be estimated
looking at the first zero of the autocorrelation function of x
or by relying on nonlinear time dependencies, such as the
mutual information [12].

Correlation Dimension dimension is an invariant property
under diffeomorphism that allows to quantify the similar-
ity of geometrical objects. Attractors of dissipative chaotic
systems often exhibit complicated geometries (hence the
name strange) which are contained in a fractal dimension
Dq , called Rényi dimension [50]. An efficient estimator of
fractal dimensions is Grassberger-Procaccia algorithm [22],
which computes the correlation dimension D2 through the
correlation sum C2:

C2(m, ε)= 1

2Nε(Nε − τc)

∑
i

∑
j<i−τc

� (ε−‖x(i)−x(j)‖) .

(12)

The temporal spacing parameter τc is chosen to ensure tem-
poral independence between samples, � is the Heaviside
function, and ε is the dimension of a set of Nε small boxes
used to cover the geometric shape of the attractor. If m ≥
D2, C2(m, ε) ∝ εD2 . The correlation dimension D2 is com-
puted as the slope of the log-log scaling between C2 and box
size, ε.

Lyapuanov Exponent the Lyapuanov spectrum {λ1, . . . ,

λd} is another invariant measure that characterizes the pre-
dictability of a dynamical system. Lyapuanov exponents
quantify the rate of separability of two trajectories, which
are infinitesimally close at the initial time instant. Such
exponents are related to the second order Rényi entropy

Cogn Comput

K2, as described by the Peisin identity: K2 ≤ ∑
λi>0 λi .

This quantity measures the number of possible trajecto-
ries that the system can take for a given number of time
steps in the future. A perfectly non-chaotic, determinis-
tic system can only evolve along one possible trajectory
and hence K2 = 0. In contrast, for purely stochastic sys-
tems, the number of possible future trajectories increases
to infinity, so K2 → ∞. Chaotic systems are character-
ized by a finite value of K2, as the number of possible
trajectories diverges but not as fast as in the stochastic
case.

The largest Lyapuanov exponent (LLE) λ1 is a good
estimate of K2, and its sign determines whether a sys-
tem is chaotic or not. The so-called direct methods can
be used to compute λ1 by estimating the divergent motion
of the reconstructed space, without fitting a model to
the data [48, 62]. In particular, the average exponential
growth of the distance of neighboring orbits can be stud-
ied on a logarithmic scale by monitoring the prediction
error p(t):

p(t) = 1

N

N∑
k=1

log2

(
‖x[k + t] − x[k]

nn [t]‖
‖x[k] − x[k]

nn ‖

)
, (13)

being x[k]
nn the nearest neighbor of x at time k. The LLE

is estimated as λ1 ∝ p(t)/T with t ∈ [1, T], where T

is the forecast horizon within which the divergence of the
trajectory in the phase space is evaluated.

ESN Phase Space Reconstruction

In the following, we analyze two chaotic time-series gener-
ated by the Lorenz and the Moore–Spiegel system respec-
tively. We evaluate the accuracy of the phase space recon-
struction performed with our ESN by comparing the topo-
logical properties of the true attractor of the dynamic, with
the one obtained by applying a dimensionality reduction to
the network reservoir. The equivalence of attractors geome-
tries are computed by measuring the dynamical invariants,
estimated through the correlation sum and the largest Lya-
puanov exponent.

In the following, we refer to true attractor, as the
trajectory in the phase space generated directly by the
differential equations of the dynamic system. With delay-
embedding attractor, we refer at the trajectory described by
the embedding, generated with the delay-coordinate proce-
dure. Finally, ESN attractor is the trajectory spanned by the
component of the multivariate vector h̄. The latter is the
output of the dimensionality reduction procedure applied to
the multivariate vector h, which contains the sequence of
the states of the reservoir (see the “Proposed Architecture”
section). For these tests, we considered only the compo-
nent of the loss function relative to the prediction error,

by setting α = 0 in Eq. 10, and we fixed the number
of dimensions in PCA and kPCA to 3. Finally, to further
empathize the effectiveness of the architecture proposed,
we also consider the phase space reconstruction obtained
directly from h, in the case where the reservoir contains only
3 neurons (Nr = 3).

Lorenz the system is governed by the following ordinary
differential equations:

dx

dt
= σ(y − x),

dy

dt
= x(ρ − z)− y,

dz

dt
= xy −βz, (14)

where variables x, y and z define the state of the system,
while σ , ρ and β are system parameters. In this work, we
set σ = 10 , β = 8/3, and ρ = 28, values for which the
system exhibits chaotic behavior.

Figure 5 depicts the geometric shapes of the true attrac-
tor, the delay-embedding attractor, the two ESN attractors,
generated using a dimensionality reduction or a reservoir
with three neurons. As it is possible to observe visually,
both the embedding and ESN with dimensionality reduc-
tion manage to reconstruct well the trajectory described by
the differential equations of the dynamic system. To quan-
tify formally this similarity, we compute on the dynamical
invariants previously introduced each attractor. In Table 4,
we report for each phase space trajectory the estimated
correlation dimension and the largest Lyapuanov exponent,
which as previously discussed, represents a good approxi-
mation of the K2 entropy. Due to the stochastic nature of
the approaches adopted for estimating these quantities, we
repeated the procedure 10 different times and we report
their average values and the standard deviations. As we can
see from the results, both the trajectories described by h̄
in the subspace computed using PCA and kPCA generate
an attractor whose dynamic invariants are well approxi-
mated. In particular, the accuracy of the reconstruction is
comparable to the one obtained by the classic time-delay
embedding method and in some case, it is even better. The
standard deviations in the measurements of both correla-
tion dimension and LLE are very small, which indicates
a high degree of reliability on both measurements. For
what concerns the ESN with three neurons, the trajectory
described is more “flat,” as it can be seen in the figure.
This is confirmed by the estimated correlation dimension
and LLE, whose values are much lower than in the other
cases. This denotes that the reconstructed dynamic is not
rich enough, a symptom that the complexity and the mem-
ory of the network is not sufficient to model the underlying
system.

Moore–Spiegel this dynamical systems manifests interest-
ing synchronization properties, generated by complicated
patterns of period-doubling, saddle-node, and homoclinic

Cogn Comput

Fig. 5 Trajectory of the
attractors of the Lorenz
dynamical system in the phase
space. In a, the true trajectory,
which is computed directly from
the ordinary differential
equations of the system. In b,
the trajectory reconstructed
using time-delay embedding. In
c, the trajectory generated by the
internal state of ESN internal
state, on the subspace defined by
the first three components of the
PCA. In d, the trajectory
described by the internal state of
an ESN with a small reservoir
with 3 neurons

bifurcations [3]. The differential equations which governs
system dynamics are the following:

dx

dt
= y,

dy

dt
= z,

dz

dt
= −z − (t − r + rx2)y − tx, (15)

where x, y, and z form the state of the system and r and t are
the parameters of the model. In this study, we set r = 100,
b = 10, and c = 14, for which the dynamics of the system
exhibits a chaotic behavior.

In Fig. 6, we show the shape of the attractors of the
dynamic, evaluated directly on the differential equations of
the system, on the time-delay embedding, on the internal
state of the ESN reduced through PCA, and on the state
of the ESN with three neurons. In this second test, the
reconstructed trajectories of the Moore–Spiegel system are
more jagged and irregular, with respect to the original one.
This suggest a poorer approximation of the true dynamic

of the system and is confirmed by the results in Table 4.
Compared to the Lorenz case, the dynamical invariants
estimated on the time-delay embedding and on ESN state
trajectories approximate with less accuracy the real ones.
The reconstructed attractors have a lower correlation dimen-
sion, which usually denotes a poor embedding [45]. The
results in prediction accuracy are reasonably good because
of the simplicity of the task. However, the performance is
inferior to the one obtained with the Lorenz system. It is
worth to notice that the two attractors reconstructed by the
ESN+PCA and ESN+kPCA have a larger C2 value than the
time-delay embedding and hence they approximate better
the true dynamics. For what concerns the LLE, the esti-
mated value in each reconstructed dynamic is larger than
in the original one. This means that both the time-delay
embedding and the ESNs generate a more chaotic dynamic,
as is also reflected by the jagged trajectories in Fig. 6.

Table 4 Correlation dimension (D2) and largest Lyapuanov exponent (LLE) of the attractors of Lorenz and Moore-Spiegel dynamical systems

System Invariant True Emb ESN+PCA ESN+kPCA ESN small

Lorenz D2 2.068 ± 4E−6 1.8871 ± 8E−6 2.1722 ± 3E−6 1.8614 ± 5E−6 1.6044 ± 1E−6

LLE 0.9056 ± 5E−4 0.9181 ± 6E−4 1.0397 ± 5E−4 0.91496 ± 8E−4 0.76138 ± 3E−5

Moore–Spiegel D2 1.9802 ± 1E−6 0.83499 ± 4E−6 0.87619 ± 3E−6 0.95588 ± 1E−6 0.63507 ± 2E−7

LLE 0.00708 ± 7E−4 0.7003 ± 4E−4 0.51611 ± 4E−4 0.54784 ± 4E−4 0.75421 ± 2E−5

Each invariant is estimated on the trajectories generated by: the ordinary differential equations (True); the dime-delay embedding (Emb); the
ESN reservoir state, whose dimensionality is reduced using PCA (ESN+PCA) or k-PCA (ESN+kPCA); the internal state of an ESN with a small
reservoir with 3 neurons (ESN small)

Cogn Comput

Fig. 6 Trajectory of the
attractors of the Moore–Spiegel
dynamical system in the phase
space. In a, the true trajectory,
which is computed directly from
the ordinary differential
equations of the system. In b,
the trajectory reconstructed
using time-delay embedding. In
c, the trajectory generated by the
internal state of ESN internal
state, on the subspace defined by
the first three components of the
PCA. In d, the trajectory
described by the internal state of
an ESN with a small reservoir
with three neurons

Even in this case, however, LLE is better approximated by
ESN+PCA and ESN+kPCA than by the time-delay embed-
ding. Like before, the standard deviations of the estimates of
the two dynamical invariants is very small, which provides
a high degree of confidence on the measurements. For what
concerns the trajectory described by the ESN state with a
small reservoir of three neurons, the geometric properties
of the reconstruct attractor are even more different from the
real ones. This confirms that also in this case, such a small
amount of neurons cannot catch the dynamic properties of
the system to be modeled.

As a concluding remark, it is important to understand
another aspect of the utility of the ESN in reproducing
the attractor of the system dynamic. In fact, this provides
a valid alternative to the standard approach based on the
time-delay embedding for reconstructing the phase of the
system, which presents several caveats and pitfalls [10].
This a fundamental tool for a wide set of applications, where
an accurate estimation of the phase space of the system is
required [36].

Conclusions and Future Directions

In this work, we have presented a new framework for train-
ing an Echo State Network, which enhances its generaliza-
tion capabilities through the regularization constraints intro-
duced by the smoothing effect of a dimensionality reduction
procedure. Through a series of test on benchmark dataset,

we have demonstrated how the proposed architecture can
achieve better prediction performance in different contexts.
Successively, we provided a theoretically grounded expla-
nation of the functioning of the proposed architecture, based
on the theory of nonlinear time-series analysis. By study-
ing the dynamical properties of the network under this novel
perspective, we showed that through an ESN, it is possi-
ble to reconstruct the phase space of the dynamic system;
this offers a solid, yet simple alternative to the time-delay
embedding procedure.

We believe that this work could be useful not only to
enhance the prediction capabilities of an ESN, but also pro-
vide a new tool for analysis of dynamical systems. As a
follow-up of a recent work focused on identifying the edge
of criticality of an ESN by evaluating the Fisher informa-
tion on the state matrix [39], we plan to study the criticality
using more reliable Fisher Information Matrix estimators,
which are capable of working only on space with few
dimensions (e.g., [26]). We also plan on investigating other
dimensionality reduction methods, manifold learning, and
semi-supervised learning approaches to shrink and regular-
ize the output of the network recurrent layer [4, 5]. Finally,
as a future work, we propose to use different dimensional-
ity reduction techniques in parallel and combine their result
through a single reservoir to produce the final result.

Compliance with Ethical Standards

Conflict of Interests The authors declare that they have no conflict
of interest.

Cogn Comput

Informed Consent All procedures followed were in accordance
with the ethical standards of the responsible committee on human
experimentation (institutional and national) and with the Helsinki Dec-
laration of 1975, as revised in 2008 (5). Additional informed consent
was obtained from all patients for which identifying information is
included in this article.

Human and Animal Rights This article does not contain any
studies with human or animal subjects performed by any of the authors.

References

1. Alexandre LA, Embrechts MJ, Linton J. Benchmarking reservoir
computing on time-independent classification tasks. IJCNN Inter-
national Joint Conference on Neural Networks, 2009. IEEE; 2009.
p. 2009.

2. Baker CT. The numerical treatment of integral equations. Claren-
don Press, Israel Program for Scientific Translations, 1973. ISBN
019853406X.

3. Balmforth N, Craster R. Synchronizing moore and spiegel.
Chaos: An Interdisciplinary Journal of Nonlinear Science.
1997;7(4):738–752.

4. Belkin M, Niyogi P, Sindhwani V. Manifold regularization:
a geometric framework for learning from labeled and unlabeled
examples. J Mach Learn Res. 2006;7:2399–2434.

5. Bengio Y, Paiement J-F, Vincent P, Delalleau O, Le Roux
N, Ouimet M. Out-of-sample extensions for lle, isomap, mds,
eigenmaps, and spectral clustering. Adv Neural Inf Proces Syst.
2004;16:177–184.

6. Bianchi FM, De Santis E, Rizzi A, Sadeghian A. Short-term elec-
tric load forecasting using echo state networks and PCA decom-
position. IEEE Access. 2015a;3:1931–1943. ISSN 2169-3536.
doi:10.1109/ACCESS.2015.2485943.

7. Bianchi FM, Scardapane S, Uncini A, Rizzi A, Sadeghian
A. Prediction of telephone calls load using Echo State Net-
work with exogenous variables. Neural Netw. 2015b;71:204–213.
doi:10.1016/j.neunet.2015.08.010.

8. Bianchi FM, Livi L, Alippi C. Investigating echo state
networks dynamics by means of recurrence analysis. 2016.
arXiv:1601.07381.

9. Boedecker J, Obst O, Lizier JT, Mayer NM, Asada M. Informa-
tion processing in echo state networks at the edge of chaos. Theory
Biosci. 2012;131(3):205–213.

10. Bradley E, Kantz H. Nonlinear time-series analysis revis-
ited. Chaos: An Interdisciplinary Journal of Nonlinear Science.
2015;25(9):097610.

11. Burges CJ. A tutorial on support vector machines for pattern
recognition. Data Min Knowl Disc. 1998;2(2):121–167.

12. Cao L. Practical method for determining the minimum embed-
ding dimension of a scalar time series. Physica D: Nonlinear
Phenomena. 1997;110(1):43–50.

13. Charles A, Yin D, Rozell C. Distributed sequence mem-
ory of multidimensional inputs in recurrent networks. 2016.
arXiv:1605.08346.

14. Davenport MA, Duarte MF, Wakin MB, Laska JN, Takhar D,
Kelly KF, Baraniuk RG. The smashed filter for compressive clas-
sification and target recognition. Electronic Imaging 2007, pages
64980H–64980H. International Society for Optics and Photonics;
2007.

15. Deihimi A, Showkati H. Application of echo state networks in
short-term electric load forecasting. Energy. 2012;39(1):327–340.

16. Deihimi A, Orang O, Showkati H. Short-term electric load and
temperature forecasting using wavelet echo state networks with
neural reconstruction. Energy. 2013;57:382–401.

17. Dutoit X, Schrauwen B, Campenhout JV, Stroobandt D, Brussel
HV, Nuttin M. Pruning and regularization in reservoir computing.
Neurocomputing. 2009;72(7–9):1534 – 1546. ISSN 0925-2312.
doi:10.1016/j.neucom.2008.12.020 Advances in Machine Learn-
ing and Computational Intelligence16th European Symposium on
Artificial Neural Networks 200816th European Symposium on
Artificial Neural Networks 2008.

18. Fodor IK. A survey of dimension reduction techniques Technical
report. 2002.

19. Fraser AM, Swinney HL. Independent coordinates for strange
attractors from mutual information. Phys Rev A. 1986;33(2):1134.

20. Friedman JH. On bias, variance, 0/1—loss, and the curse-of-
dimensionality. Data Min Knowl Disc. 1997;1(1):55–77.

21. Gao J, Cao Y, Tung W-w, Hu J. Multiscale analysis of complex
time series: integration of chaos and random fractal theory, and
beyond: John Wiley & Sons; 2007. ISBN 978-0-471-65470-4.

22. Grassberger P, Procaccia I. Measuring the strangeness of strange
attractors. The Theory of Chaotic Attractors. Springer; 2004. p.
170–189.

23. Hai-yan D, Wen-jiang P, Zhen-ya H. A multiple objective opti-
mization based echo state network tree and application to intrusion
detection. Proceedings of 2005 IEEE International Workshop on
VLSI Design and Video Technology, 2005; 2005. p. 443–446.
doi:10.1109/IWVDVT.2005.1504645.

24. Han S, Lee J. Fuzzy echo state neural networks and funnel
dynamic surface control for prescribed performance of a nonlinear
dynamic system. IEEE Trans Ind Electron. 2014a;61(2):1099–
1112. ISSN 0278-0046. doi:10.1109/TIE.2013.2253072.

25. Han SI, Lee JM. Fuzzy echo state neural networks and funnel
dynamic surface control for prescribed performance of a nonlinear
dynamic system. IEEE Trans Ind Electron. 2014b;61(2):1099–
1112.

26. Har-Shemesh O, Quax R, Miñano B, Hoekstra AG, Sloot
PMA. Nonparametric estimation of Fisher information from
real data. Phys Rev E. 2016;93(2):023301. doi:10.1103/Phys-
RevE.93.023301.

27. Hotelling H. Analysis of a complex of statistical variables into
principal components. J Educ Psychol. 1933;24(6):417–441.

28. Huang C-M, Huang C-J, Wang M-L. A particle swarm opti-
mization to identifying the armax model for short-term load
forecasting. IEEE Trans Power Syst. 2005;20(2):1126–1133.

29. Indyk P, Motwani R. Approximate nearest neighbors: towards
removing the curse of dimensionality. Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM; 1998. p.
604–613.

30. Jaeger H. The echo state approach to analysing and training
recurrent neural networks-with an erratum note. Bonn, Germany:
German National Research Center for Information Technology
GMD Technical Report. 2001;148:34.

31. Jaeger H. Adaptive nonlinear system identification with echo state
networks. Advances in neural information processing systems;
2002. p. 593–600.

32. Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. science.
2004;304(5667):78–80.

33. Jan van Oldenborgh G, Balmaseda MA, Ferranti L, Stockdale
TN, Anderson DL. Did the ecmwf seasonal forecast model out-
perform statistical enso forecast models over the last 15 years? J
Clim. 2005;18(16):3240–3249.

34. Jenssen R. Kernel entropy component analysis. IEEE Trans Pat-
tern Anal Mach Intell. 2010;32(5):847–860. ISSN 0162-8828.
doi:10.1109/TPAMI.2009.100.

Cogn Comput

35. Jenssen R. Entropy-relevant dimensions in the kernel fea-
ture space: cluster-capturing dimensionality reduction. IEEE
Signal Process Mag. 2013;30(4):30–39. ISSN 1053-5888.
doi:10.1109/MSP.2013.2249692.

36. Kantz H, Schreiber T, Vol. 7. Nonlinear time series analy-
sis: Cambridge university press; 2004. ISBN 9780511755798.
doi:10.1017/CBO9780511755798.

37. Li D, Han M, Wang J. Chaotic time series prediction based on
a novel robust echo state network. IEEE Transactions on Neural
Networks and Learning Systems. 2012;23(5):787–799.

38. Liebert W, Schuster H. Proper choice of the time delay for the
analysis of chaotic time series. Phys Lett A. 1989;142(2-3):107–
111.

39. Livi L, Bianchi FM, Alippi C. Determination of the edge
of criticality in echo state networks through fisher information
maximization. 2016. arXiv:1603.03685.

40. Lukoševičius M, Jaeger H. Reservoir computing approaches
to recurrent neural network training. Computer Science Review.
2009;3(3):127–149. doi:10.1016/j.cosrev.2009.03.005.

41. Ma Q, Shen L, Chen W, Wang J, Wei J, Yu Z. Functional echo
state network for time series classification. Inf Sci. 2016;373:1 –
20. ISSN 0020-0255. doi:10.1016/j.ins.2016.08.081.

42. Malik ZK, Hussain A, Wu J. Novel biologically inspired
approaches to extracting online information from temporal
data. Cogn Comput. 2014;6(3):595–607. ISSN 1866-9964.
doi:10.1007/s12559-014-9257-0.

43. Malik ZK, Hussain A, Wu J. An online generalized eigen-
value version of laplacian eigenmaps for visual big data.
Neurocomputing. 2016a;173(2):127 – 136. ISSN 0925-2312.
doi:10.1016/j.neucom.2014.12.119.

44. Malik ZK, Hussain A, Wu QJ. Multilayered echo state machine:
A novel architecture and algorithm. 2016b.

45. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for
the analysis of complex systems. Phys Rep. 2007;438(5):237–329.

46. Mazumdar J, Harley R. Utilization of echo state networks for
differentiating source and nonlinear load harmonics in the util-
ity network. IEEE Trans Power Electron. 2008;23(6):2738–2745.
ISSN 0885-8993. doi:10.1109/TPEL.2008.2005097.

47. Packard NH, Crutchfield JP, Farmer JD, Shaw RS. Geometry
from a time series. Phys Rev Lett. 1980;45(9):712.

48. Parlitz U. Nonlinear Time-Series Analysis. Boston, MA:
Springer US; 1998, pp. 209–239. ISBN 978-1-4615-5703-6.
doi:10.1007/978-1-4615-5703-6 8.

49. Peng Y, Lei M, Li J-B, Peng X-Y. A novel hybridization of
echo state networks and multiplicative seasonal ARIMA model for
mobile communication traffic series forecasting. Neural Comput
& Applic. 2014;24(3-4):883–890.

50. Rényi A. On the dimension and entropy of probability distri-
butions. Acta Mathematica Academiae Scientiarum Hungarica.
1959;10(1-2):193–215.

51. Rhodes C, Morari M. The false nearest neighbors algorithm: An
overview. Comput Chem Eng. 1997;21:S1149–S1154.

52. Scardapane S, Comminiello D, Scarpiniti M, Uncini A.
Significance-Based Pruning for Reservoir’s Neurons in Echo State
Networks: Springer International Publishing, Cham; 2015, pp. 31–
38. ISBN 978-3-319-18164-6. doi:10.1007/978-3-319-18164-6 4.

53. Schölkopf B, Smola A, Müller K-R. Kernel principal component
analysis. International Conference on Artificial Neural Networks.
Springer; 1997. p. 583–588.

54. Schölkopf B, Smola AJ, Williamson RC, Bartlett PL. New
support vector algorithms. Neural Comput. 2000;12(5):1207–
1245.

55. Skowronski MD, Harris JG. Automatic speech recognition
using a predictive echo state network classifier. Neural Netw.
2007;20(3):414–423.

56. Srinivas M, Patnaik LM. Genetic algorithms: a survey. Computer.
1994;27(6):17–26. ISSN 0018-9162. doi:10.1109/2.294849.

57. Takens F. Detecting strange attractors in turbulence. Berlin, Hei-
delberg: Springer Berlin Heidelberg; 1981, pp. 366–381. ISBN
978-3-540-38945-3. doi:10.1007/BFb0091924.

58. Van Der Maaten L, Postma E, Van den Herik J. Dimensionality
reduction: a comparative. J Mach Learn Res. 2009;10:66–71.

59. Varshney S, Verma T. Half Hourly Electricity Load Prediction
using Echo State Network. International Journal of Science and
Research. 2014;3(6):885–888.

60. Verstraeten D, Schrauwen B. On the quantification of dynamics in
reservoir computing. Artificial Neural Networks – ICANN 2009.
In: Alippi C, Polycarpou M, Panayiotou C, and Ellinas G, editors.
Heidelberg: Springer Berlin; 2009. p. 985–994. ISBN 978-3-642-
04273-7. doi:10.1007/978-3-642-04274-4 101.

61. Wierstra D, Gomez FJ, Schmidhuber J. Modeling systems with
internal state using evolino. Proceedings of the 7th annual con-
ference on Genetic and evolutionary computation. ACM; 2005. p.
1795–1802.

62. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining
lyapunov exponents from a time series. Physica D: Nonlinear
Phenomena. 1985;16(3):285–317.

63. Zhou S, Lafferty J, Wasserman L. Compressed and privacy-
sensitive sparse regression. IEEE Trans Inf Theory. 2009;55(2):
846–866.

64. Fusi S, Miller EK, Rigotti M. Why neurons mix: high dimension-
ality for higher cognition. Curr Opin Neurobiol. 2016;37:66–74.
ISSN 0959-4388. doi:10.1016/j.conb.2016.01.010.

65. Cover TM. Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition. IEEE
Transactions on Electronic Computers. 1965;EC-14(3):326–334.
ISSN 0367-7508. doi:10.1109/PGEC.1965.264137.

66. Mante V, Sussillo D, Shenoy KV, Newsome WT. Context-
dependent computation by recurrent dynamics in prefrontal
cortex. Nature. 2013;503(7474):78–84. ISSN 0028-0836.
doi:10.1038/nature12742.

67. DiCarlo JJ, Cox DD. Untangling invariant object recogni-
tion. Trends Cogn Sci. 2007;11(8):333–341. ISSN 1364-6613.
doi:10.1016/j.tics.2007.06.010.

Part IV

Appendix

149

Appendix A

Missing data

The term missing data refers to data in which elements are missing, and is

a common occurrence in real world applications. Examples of this include

a censor that fails/saturates or questions on a questionnaire that is left

unanswered. No matter which mechanism under which the data is missing,

this requires the analyst to take extra steps in order to analyze the data.

Note that the terms incomplete data and missing data mean the same thing

and are often used interchangeably.

A.1 Missing data mechanisms

There are essentially three mechanisms defined under which missing data

is generated, namely Missing Completely At Random MCAR, Missing At

Random MAR and Not Missing At Random NMAR [45]. These all refer to

different assumptions on how/why the elements in the data are missing. In

the following, these assumptions will be defined mathematically.

Let X ∈ Rd be a random vector and let R ∈ Rd be a vector denoting which

elements are missing from X. That is, (R)k = 1 if entry (X)k is missing and

0 otherwise. Furthermore, let Xo and Xm denote the observed and missing

portion of X, respectively. The data is said to be MCAR if the elements

151

152 APPENDIX A. MISSING DATA

being missing does not depend on the data, i.e.

p(R|X) = p(R).

This is the least strict assumption, and can easily be handled. An example

of this is if, in the examples above, questions in the questionnaire is left

unanswered randomly because the participants forgets to answer them.

MAR refers to when the data being missing only depends on the observed

value, such that

p(R|X) = p(R|Xo).

This is more strict, but can still be handled by the analyst if extra care

is taken. From the questionnaire example, this might happen if the ques-

tionnaire is designed in such a way that parts of the questionnaire is left

unanswered based on previous answers.

NMAR refers to when the data being missing depends on the missing data,

such that

p(R|X) = p(R|Xm).

This is the most strict assumption, and is difficult to deal with. From the

sensor example, this will happen if the sensor is saturated. That is, the value

is not recorded because the true value is outside of the range the sensor can

handle.

A.2 Examples of methods dealing with missing

data

This section describes a few of the common approaches for handling missing

data. The methods described here are mainly application agnostic, mean-

ing that they are not incorporated in the machine learning method itself,

but rather used as a pre–processing step of the data. For a comprehen-

sive overview of existing missing data approaches, the interested reader is

directed towards other sources on the topic [45, 94, 119].

A.2. EXAMPLES OF METHODS DEALING WITH MISSING DATA153

Complete– and available case analysis Complete case analysis meth-

ods refer to the act of analysing only the complete cases in the dataset by

manipulating the data, such that one obtains a rectangular complete–data

format [45]. This is done by simply ignoring all datapoints (cases) with

missing data. With this approach, one assumes that the data is MCAR

[119], which is more likely to happen when the amount of missing data in

the dataset is small (∼ 5% [45]).

Available case analysis is often used when one is interested in computing

model parameters/statistics, and is utilizing all observed data to do so. In

this situation, one would compute e.g. the mean of a variable based on

all cases in which that variable is available. This approach is usually not

applicable for machine learning methods, as the focus is not necessarily on

model parameters/statistics, but rather on generating a complete dataset

which can be analyzed further with machine learning methods.

Data imputation Data imputation is used in order to estimate values

of missing elements. This is used as a pre–processing step before further

analysis. There are several methods used in order to impute missing values.

The most common ones are mean imputation, median imputation and zero

imputation. These imputation methods are performed by replacing all miss-

ing values by these values, where the mean and median are computed based

on all observed values in the dataset of the variable in question. These are

examples of the so–called single imputation methods, where missing values

are replaced by a single value. There are also multiple imputation methods

[124], in which one computes M plausible values, generating M complete

datasets. This facilitates uncertainty estimates for the missing values.

154 APPENDIX A. MISSING DATA

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,

Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-

jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. URL https://www.tensorflow.org/.

Software available from tensorflow.org.

[2] Mark A. Aizerman. Theoretical foundations of the potential func-

tion method in pattern recognition learning. Automation and remote

control, 25:821–837, 1964.

[3] Ahmed Alaoui and Michael W. Mahoney. Fast randomized kernel

ridge regression with statistical guarantees. In Advances in Neural

Information Processing Systems, pages 775–783, 2015.

[4] Hany Alashwal, Mohamed El Halaby, Jacob J. Crouse, Areeg Abdalla,

and Ahmed A. Moustafa. The application of unsupervised clustering

methods to alzheimer’s disease. Frontiers in computational neuro-

science, 13:31, 2019.

[5] Tahani Alqurashi and Wenjia Wang. Clustering ensemble method.

155

https://www.tensorflow.org/

156 BIBLIOGRAPHY

International Journal of Machine Learning and Cybernetics, 10(6):

1227–1246, 2019.

[6] Nachman Aronszajn. Theory of reproducing kernels. Transactions of

the American mathematical society, 68(3):337–404, 1950.

[7] David Arthur and Sergei Vassilvitskii. k-means++: The advantages

of careful seeding. Symposium on Discrete Algorithms (SODA), 2007.

[8] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image segmenta-

tion. IEEE transactions on pattern analysis and machine intelligence,

39(12):2481–2495, 2017.

[9] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon

Brakel, and Yoshua Bengio. End-to-end attention-based large vocab-

ulary speech recognition. In 2016 IEEE international conference on

acoustics, speech and signal processing (ICASSP), pages 4945–4949.

IEEE, 2016.

[10] Liang Bai, Jiye Liang, and Yike Guo. An ensemble clusterer of multi-

ple fuzzy k-means clusterings to recognize arbitrarily shaped clusters.

IEEE Transactions on Fuzzy Systems, 26(6):3524–3533, 2018.

[11] Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John Guttag, and

Adrian V. Dalca. An unsupervised learning model for deformable

medical image registration. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 9252–9260, 2018.

[12] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimen-

sionality reduction and data representation. Neural computation, 15

(6):1373–1396, 2003.

[13] Asa Ben-Hur and William Stafford Noble. Kernel methods for predict-

ing protein–protein interactions. Bioinformatics, 21(suppl 1):i38–i46,

2005.

[14] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François

Paiement, Pascal Vincent, and Marie Ouimet. Learning eigenfunc-

tions links spectral embedding and kernel pca. Neural computation,

16(10):2197–2219, 2004.

BIBLIOGRAPHY 157

[15] Filippo Maria Bianchi, Lorenzo Livi, and Cesare Alippi. Investigating

echo-state networks dynamics by means of recurrence analysis. IEEE

transactions on neural networks and learning systems, 29(2):427–439,

2016.

[16] Filippo Maria Bianchi, Enrico Maiorino, Michael C. Kampffmeyer,

Antonello Rizzi, and Robert Jenssen. Recurrent neural networks for

short-term load forecasting: an overview and comparative analysis.

Springer, 2017.

[17] Joschka Boedecker, Oliver Obst, Joseph T. Lizier, N. Michael Mayer,

and Minoru Asada. Information processing in echo state networks at

the edge of chaos. Theory in Biosciences, 131(3):205–213, 2012.

[18] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A

training algorithm for optimal margin classifiers. In Proceedings of the

fifth annual workshop on Computational learning theory, pages 144–

152, 1992.

[19] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[20] Sergey Brin and Larry Page. The anatomy of a large-scale hypertex-

tual Web search engine. Computer Networks and ISDN Systems, 30(1-

7):107–117, April 1998. ISSN 01697552. doi: 10.1016/S0169-7552(98)

00110-X.

[21] Austin J. Brockmeier, Tingting Mu, Sophia Ananiadou, and John Y.

Goulermas. Quantifying the informativeness of similarity measure-

ments. The Journal of Machine Learning Research, 18(1):2592–2652,

2017.

[22] Christopher J.C. Burges. A tutorial on support vector machines for

pattern recognition. Data mining and knowledge discovery, 2(2):121–

167, 1998.

[23] Christopher J.C. Burges. Dimension reduction: A guided tour. Now

Publishers Inc, 2010.

[24] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regu-

larized least-squares algorithm. Foundations of Computational Math-

ematics, 7(3):331–368, 2007.

158 BIBLIOGRAPHY

[25] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan,

Xiaodong Cui, Michael Witbrock, Mark A Hasegawa-Johnson, and

Thomas S Huang. Dilated recurrent neural networks. In Advances in

Neural Information Processing Systems, pages 77–87, 2017.

[26] Xiangyu Chang, Shao-Bo Lin, and Ding-Xuan Zhou. Distributed semi-

supervised learning with kernel ridge regression. The Journal of Ma-

chine Learning Research, 18(1):1493–1514, 2017.

[27] Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster ker-

nels for semi-supervised learning. In Advances in neural information

processing systems, pages 601–608, 2003.

[28] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.

Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected crfs. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 40(4):834–848, 2018.

[29] Fan Chung and S.-T. Yau. Discrete Green’s Functions. Journal of

Combinatorial Theory, Series A, 91(1-2):191–214, July 2000. ISSN

00973165.

[30] Fan Chung and Wenbo Zhao. Pagerank and random walks on graphs.

Fete of combinatorics and computer science, pages 1–16, 2010.

[31] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algo-

rithms for learning kernels based on centered alignment. The Journal

of Machine Learning Research, 13(1):795–828, 2012.

[32] Nello Cristianini, John Shawe-Taylor, Andre Elisseeff, and Jaz S. Kan-

dola. On kernel-target alignment. In Advances in neural information

processing systems, pages 367–373, 2002.

[33] John P. Cunningham and Zoubin Ghahramani. Linear dimensional-

ity reduction: Survey, insights, and generalizations. The Journal of

Machine Learning Research, 16(1):2859–2900, 2015.

[34] George Cybenko. Approximation by superpositions of a sigmoidal

function. Mathematics of control, signals and systems, 2(4):303–314,

1989.

BIBLIOGRAPHY 159

[35] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum

likelihood from incomplete data via the em algorithm. Journal of the

Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[36] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means:

spectral clustering and normalized cuts. In Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 551–556, 2004.

[37] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A

survey on ensemble learning. Frontiers of Computer Science, pages

1–18, 2020.

[38] Harris Drucker, Christopher J.C. Burges, Linda Kaufman, Alex J.

Smola, and Vladimir Vapnik. Support vector regression machines.

In Advances in neural information processing systems, pages 155–161,

1997.

[39] Liang Du, Peng Zhou, Lei Shi, Hanmo Wang, Mingyu Fan, Wenjian

Wang, and Yi-Dong Shen. Robust multiple kernel k-means using l21-

norm. In Twenty-fourth international joint conference on artificial

intelligence, 2015.

[40] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient

methods for online learning and stochastic optimization. Journal of

machine learning research, 12(Jul):2121–2159, 2011.

[41] Bradley Efron and Robert J. Tibshirani. An introduction to the boot-

strap. CRC press, 1994.

[42] Ana L. N. Fred and Anil K. Jain. Combining multiple clusterings using

evidence accumulation. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 27(6):835–850, 2005.

[43] Valerio Freschi. Protein function prediction from interaction networks

using a random walk ranking algorithm. In 2007 IEEE 7th Interna-

tional Symposium on BioInformatics and BioEngineering, pages 42–

48. IEEE, 2007.

[44] Jerome H. Friedman. Stochastic gradient boosting. Computational

statistics & data analysis, 38(4):367–378, 2002.

160 BIBLIOGRAPHY

[45] Pedro J. Garćıa-Laencina, José-Luis Sancho-Gómez, and Ańıbal R.

Figueiras-Vidal. Pattern classification with missing data: a review.

Neural Computing and Applications, 19(2):263–282, 2010.

[46] Peter Vincent Gehler. Kernel learning approaches for image classifi-

cation. PhD thesis, Citeseer, 2009.

[47] Mark Girolami. Mercer kernel-based clustering in feature space. IEEE

Transactions on Neural Networks, 13(3):780–784, 2002.

[48] David F. Gleich. Pagerank beyond the web. Siam Review, 57(3):

321–363, 2015.

[49] Shawn M. Gomez, William Stafford Noble, and Andrey Rzhetsky.

Learning to predict protein–protein interactions from protein se-

quences. Bioinformatics, 19(15):1875–1881, 2003.

[50] Mehmet Gönen and Ethem Alpaydin. Multiple kernel learning algo-

rithms. Journal of machine learning research, 12(64):2211–2268, 2011.

[51] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016. http://www.deeplearningbook.org.

[52] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved

deep embedded clustering with local structure preservation. In IJCAI,

pages 1753–1759, 2017.

[53] Luis Gómez-Chova, Robert Jenssen, and Gustavo Camps-Valls. Kernel

entropy component analysis for remote sensing image clustering. IEEE

Geoscience and Remote Sensing Letters, 9(2):312–316, March 2012.

ISSN 1558-0571. doi: 10.1109/LGRS.2011.2167212.

[54] Mark S. Handcock, Adrian E. Raftery, and Jeremy M. Tantrum.

Model-based clustering for social networks. Journal of the Royal Sta-

tistical Society: Series A (Statistics in Society), 170(2):301–354, 2007.

[55] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class

adaboost. Statistics and its Interface, 2(3):349–360, 2009.

[56] David Haussler. Convolution kernels on discrete structures. Technical

report, Technical report, Department of Computer Science, University

of California . . . , 1999.

http://www.deeplearningbook.org

BIBLIOGRAPHY 161

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778,

2016.

[58] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask

r-cnn. In Proceedings of the IEEE international conference on com-

puter vision, pages 2961–2969, 2017.

[59] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the di-

mensionality of data with neural networks. Science, 313(5786):504–

507, 2006.

[60] Geoffrey E. Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-

rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Van-

houcke, Patrick Nguyen, Tara N. Sainath, et al. Deep neural networks

for acoustic modeling in speech recognition: The shared views of four

research groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[61] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,

and Ruslan R. Salakhutdinov. Improving neural networks by

preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, 2012.

[62] Paul Honeine. An eigenanalysis of data centering in machine learning,

July 2014.

[63] John J. Hopfield. Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the national academy

of sciences, 79(8):2554–2558, 1982.

[64] Prodip Hore, Lawrence O. Hall, and Dmitry B. Goldgof. A scalable

framework for cluster ensembles. Pattern recognition, 42(5):676–688,

2009.

[65] Kurt Hornik. Approximation capabilities of multilayer feedforward

networks. Neural networks, 4(2):251–257, 1991.

[66] Seyedmehdi Hosseinimotlagh and Evangelos E. Papalexakis. Unsu-

pervised content-based identification of fake news articles with tensor

162 BIBLIOGRAPHY

decomposition ensembles. In Proceedings of the Workshop on Misin-

formation and Misbehavior Mining on the Web (MIS2), 2018.

[67] Harold Hotelling. Analysis of a complex of statistical variables into

principal components. Journal of educational psychology, 24(6):417,

1933.

[68] Aapo Hyvärinen and Erkki Oja. Independent component analysis:

algorithms and applications. Neural networks, 13(4-5):411–430, 2000.

[69] Ryo Inokuchi and Sadaaki Miyamoto. Lvq clustering and som using

a kernel function. In 2004 IEEE International Conference on Fuzzy

Systems (IEEE Cat. No. 04CH37542), volume 3, pages 1497–1500.

IEEE, 2004.

[70] Emma Izquierdo-Verdiguier, Luis Gómez-Chova, Lorenzo Bruzzone,

and Gustavo Camps-Valls. Semisupervised kernel feature extraction

for remote sensing image analysis. IEEE Transactions on Geoscience

and Remote Sensing, 52(9):5567–5578, 2014.

[71] Emma Izquierdo-Verdiguier, Robert Jenssen, Luis Gómez-Chova, and

Gustavo Camps-Valls. Spectral clustering with the probabilistic clus-

ter kernel. Neurocomputing, 149:1299–1304, 2015.

[72] A. M. Jade, B. Srikanth, V. K. Jayaraman, B. D. Kulkarni, J. P. Jog,

and L. Priya. Feature extraction and denoising using kernel {PCA}.
Chemical Engineering Science, 58(19):4441–4448, 2003. ISSN 0009-

2509.

[73] Herbert Jaeger. The “echo state” approach to analysing and training

recurrent neural networks-with an erratum note. Bonn, Germany:

German National Research Center for Information Technology GMD

Technical Report, 148(34):13, 2001.

[74] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting

chaotic systems and saving energy in wireless communication. science,

304(5667):78–80, 2004.

[75] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern

recognition letters, 31(8):651–666, 2010.

BIBLIOGRAPHY 163

[76] Robert Jenssen. Kernel Entropy Component Analysis. Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on, 32(5):847–860,

2010. ISSN 0162-8828. doi: 10.1109/TPAMI.2009.100.

[77] Robert Jenssen, Jose C. Principe, Deniz Erdogmus, and Torbjørn

Eltoft. The cauchy–schwarz divergence and parzen windowing: Con-

nections to graph theory and mercer kernels. Journal of the Franklin

Institute, 343(6):614 – 629, 2006. ISSN 0016-0032. doi: https:

//doi.org/10.1016/j.jfranklin.2006.03.018.

[78] Robert Jenssen, Deniz Erdogmus, Kenneth E. Hild II, Jose C.

Principe, and Torbjørn Eltoft. Information cut for clustering using a

gradient descent approach. Pattern Recognition, 40(3):796–806, 2007.

[79] Yushi Jing and Shumeet Baluja. Visualrank: Applying pagerank to

large-scale image search. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 30(11):1877–1890, 2008.

[80] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and

Bharath K. Sriperumbudur. Gaussian processes and kernel meth-

ods: A review on connections and equivalences. arXiv preprint

arXiv:1807.02582, 2018.

[81] Juha Karhunen and Jyrki Joutsensalo. Representation and separation

of signals using nonlinear {PCA} type learning. Neural Networks, 7

(1):113–127, 1994. ISSN 0893-6080.

[82] Melody Y. Kiang, Michael Y. Hu, and Dorothy M. Fisher. An extended

self-organizing map network for market segmentation—a telecommu-

nication example. Decision Support Systems, 42(1):36–47, 2006.

[83] K. I. Kim, S. H. Park, and H. J. Kim. Kernel principal component

analysis for texture classification. Signal Processing Letters, IEEE, 8

(2):39–41, February 2001. ISSN 1070-9908.

[84] K. I. Kim, K. Jung, and H. J. Kim. Face recognition using kernel

principal component analysis. Signal Processing Letters, IEEE, 9(2):

40–42, February 2002. ISSN 1070-9908.

[85] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

164 BIBLIOGRAPHY

[86] Mark A. Kramer. Nonlinear principal component analysis using au-

toassociative neural networks. AIChE journal, 37(2):233–243, 1991.

[87] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. In Advances in

neural information processing systems, pages 1097–1105, 2012.

[88] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney.

Semi-supervised graph clustering: a kernel approach. Machine learn-

ing, 74(1):1–22, 2009.

[89] Sun Yuan Kung. Kernel methods and machine learning. Cambridge

University Press, 2014.

[90] Ren Jieh Kuo, L.M Ho, and C.M Hu. Cluster analysis in industrial

market segmentation through artificial neural network. Computers &

Industrial Engineering, 42(2-4):391–399, 2002.

[91] Amy N. Langville and Carl D. Meyer. Google’s PageRank and beyond:

The science of search engine rankings. Princeton university press,

2011.

[92] Neil Lawrence. Probabilistic Non-linear Principal Component Analysis

with Gaussian Process Latent Variable Models. J. Mach. Learn. Res.,

6:1783–1816, 2005. ISSN 1532-4435.

[93] Christina Leslie, Eleazar Eskin, and William Stafford Noble. The

spectrum kernel: A string kernel for svm protein classification. In

Biocomputing 2002, pages 564–575. World Scientific, 2001.

[94] Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with

Missing Data. John Wiley & Sons, Inc., 1986. ISBN 0471802549.

[95] Xinwang Liu, Yong Dou, Jianping Yin, Lei Wang, and En Zhu. Mul-

tiple kernel k-means clustering with matrix-induced regularization. In

Proceedings of the thirtieth AAAI conference on artificial intelligence,

pages 1888–1894, 2016.

[96] Xinwang Liu, Xinzhong Zhu, Miaomiao Li, Lei Wang, En Zhu,

Tongliang Liu, Marius Kloft, Dinggang Shen, Jianping Yin, and Wen

BIBLIOGRAPHY 165

Gao. Multiple kernel k k-means with incomplete kernels. IEEE trans-

actions on pattern analysis and machine intelligence, 42(5):1191–1204,

2019.

[97] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini,

and Chris Watkins. Text classification using string kernels. Journal

of Machine Learning Research, 2(Feb):419–444, 2002.

[98] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convo-

lutional networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages

3431–3440, 2015.

[99] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing ap-

proaches to recurrent neural network training. Computer Science Re-

view, 3(3):127–149, 2009.

[100] Wolfgang Maass and Henry Markram. On the computational power of

circuits of spiking neurons. Journal of Computer and System Sciences,

69(4):593 – 616, 2004.

[101] Donald MacDonald and Colin Fyfe. The kernel self-organising map.

In KES’2000. Fourth International Conference on Knowledge-Based

Intelligent Engineering Systems and Allied Technologies. Proceedings

(Cat. No. 00TH8516), volume 1, pages 317–320. IEEE, 2000.

[102] Marina Meila and Jianbo Shi. A Random Walks View of Spectral

Segmentation. In A random walks view of spectral segmentation., 2001.

[103] James Mercer. Functions of Positive and Negative Type, and their

Connection with the Theory of Integral Equations. Philosophical

Transactions of The Royal Society, A(209):415–446, 1909.

[104] Carl D. Meyer and Charles D. Wessell. Stochastic data clustering.

SIAM Journal on Matrix Analysis and Applications, 33(4):1214–1236,

2012.

[105] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard Scholkopf,

and Klaus-Robert Mullers. Fisher discriminant analysis with kernels.

In Neural networks for signal processing IX: Proceedings of the 1999

166 BIBLIOGRAPHY

IEEE signal processing society workshop (cat. no. 98th8468), pages

41–48. Ieee, 1999.

[106] Karl Øyvind Mikalsen, Filippo Maria Bianchi, Cristina Soguero-Ruiz,

and Robert Jenssen. Time series cluster kernel for learning similarities

between multivariate time series with missing data. Pattern Recogni-

tion, 76:569–581, 2018.

[107] Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E. Tar-

jan. Clustering social networks. In International Workshop on Algo-

rithms and Models for the Web-Graph, pages 56–67. Springer, 2007.

[108] Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Con-

sensus clustering: a resampling-based method for class discovery and

visualization of gene expression microarray data. Machine learning,

52(1-2):91–118, 2003.

[109] Takayasu Moriya, Holger R. Roth, Shota Nakamura, Hirohisa Oda,

Kai Nagara, Masahiro Oda, and Kensaku Mori. Unsupervised seg-

mentation of 3d medical images based on clustering and deep repre-

sentation learning. In Medical Imaging 2018: Biomedical Applications

in Molecular, Structural, and Functional Imaging, volume 10578, page

1057820. International Society for Optics and Photonics, 2018.

[110] Julie L. Morrison, Rainer Breitling, Desmond J. Higham, and David R.

Gilbert. Generank: using search engine technology for the analysis of

microarray experiments. BMC bioinformatics, 6(1):233, 2005.

[111] Michael C. Mozer. A focused back-propagation algorithm for temporal

pattern recognition. Complex systems, 3(4):349–381, 1989.

[112] Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kan-

nan. Clustergan: Latent space clustering in generative adversarial

networks. In Proceedings of the AAAI Conference on Artificial Intel-

ligence, volume 33, pages 4610–4617, 2019.

[113] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clus-

tering: an overview. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 2(1):86–97, 2012.

BIBLIOGRAPHY 167

[114] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve

restricted boltzmann machines. In ICML, 2010.

[115] Mariá Cristina Vasconcelos Nascimento, Franklina Maria Bragion

De Toledo, and André C. Ponce Leon Ferreira Carvalho. Consen-

sus clustering using spectral theory. In International Conference on

Neural Information Processing, pages 461–468. Springer, 2008.

[116] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On Spectral Clus-

tering: Analysis and an algorithm. Advances in Neural Information

Processing Systems, pages 849–856, 2001.

[117] Emanuel Parzen. On estimation of a probability density function and

mode. The annals of mathematical statistics, 33(3):1065–1076, 1962.

[118] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward

Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

Pytorch: An imperative style, high-performance deep learning library.

In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing

Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[119] Therese D. Pigott. A review of methods for missing data. Educational

research and evaluation, 7(4):353–383, 2001.

[120] Anthony J. Pinar, Joseph Rice, Lequn Hu, Derek T. Anderson, and

Timothy C. Havens. Efficient multiple kernel classification using fea-

ture and decision level fusion. IEEE Transactions on Fuzzy Systems,

25(6):1403–1416, 2016.

[121] Jose C. Principe and Dongxin Xu. An introduction to information

theoretic learning. In IJCNN’99. International Joint Conference on

Neural Networks. Proceedings (Cat. No.99CH36339), volume 3, pages

1783–1787 vol.3, 1999.

[122] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, An-

drew Stevens, and Lawrence Carin. Variational autoencoder for deep

168 BIBLIOGRAPHY

learning of images, labels and captions. In Advances in neural infor-

mation processing systems, pages 2352–2360, 2016.

[123] Carl Edward Rasmussen. Gaussian Processes in Machine Learning,

pages 63–71. Springer Berlin Heidelberg, 2004.

[124] Donald B Rubin. Multiple imputation for nonresponse in surveys,

volume 81. John Wiley & Sons, 2004.

[125] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.

Learning representations by back-propagating errors. nature, 323

(6088):533–536, 1986.

[126] Eder Santana, Matthew Emigh, and Jose C. Principe. Information

theoretic-learning auto-encoder. In 2016 International Joint Confer-

ence on Neural Networks (IJCNN), pages 3296–3301. IEEE, 2016.

[127] Jürgen Schmidhuber. Deep learning in neural networks: An overview.

Neural networks, 61:85–117, 2015.

[128] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Ker-

nel principal component analysis. In International conference on ar-

tificial neural networks, pages 583–588. Springer, 1997.

[129] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized

representer theorem. In International conference on computational

learning theory, pages 416–426. Springer, 2001.

[130] Matthias Scholz and Ricardo Vigário. Nonlinear PCA: a new hierar-

chical approach. In ESANN, pages 439–444, 2002.

[131] Shokri Z. Selim and Mohamed A. Ismail. K-means-type algorithms: A

generalized convergence theorem and characterization of local optimal-

ity. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-6(1):81–87, 1984.

[132] Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen Basri,

and Yuval Kluger. Spectralnet: Spectral clustering using deep neural

networks. arXiv preprint arXiv:1801.01587, 2018.

[133] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern

analysis. Cambridge university press, 2004.

BIBLIOGRAPHY 169

[134] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-

tion. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 22(8):888–905, August 2000. ISSN 0162-8828.

[135] Tao Shi, Mikhail Belkin, Bin Yu, et al. Data spectroscopy: Eigenspaces

of convolution operators and clustering. The Annals of Statistics, 37

(6B):3960–3984, 2009.

[136] Bernard W. Silverman. Density estimation for statistics and data

analysis, volume 26. CRC press, 1986.

[137] Paul Smolensky. Parallel distributed processing: Volume 1: Founda-

tions, de rumelhart, jl mcclelland, eds, 1986.

[138] Jost Tobias Springenberg. Unsupervised and semi-supervised learn-

ing with categorical generative adversarial networks. arXiv preprint

arXiv:1511.06390, 2015.

[139] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. The journal of machine learning research,

15(1):1929–1958, 2014.

[140] Alexander Strehl and Joydeep Ghosh. Cluster Ensembles — a Knowl-

edge Reuse Framework for Combining Multiple Partitions. The Jour-

nal of Machine Learning Research, 3:583–617, 2002.

[141] Takashi Takahashi and Takio Kurita. Robust de-noising by kernel

pca. In International Conference on Artificial Neural Networks, pages

739–744. Springer, 2002.

[142] Devis Tuia and Gustavo Camps-Valls. Semisupervised remote sensing

image classification with cluster kernels. IEEE Geoscience and Remote

Sensing Letters, 6(2):224–228, 2009.

[143] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik.

Dimensionality reduction: a comparative. J Mach Learn Res, 10(66-

71):13, 2009.

[144] Sandro Vega-Pons and José Ruiz-Shulcloper. A survey of clustering

ensemble algorithms. International Journal of Pattern Recognition

and Artificial Intelligence, 25(03):337–372, 2011.

170 BIBLIOGRAPHY

[145] David Verstraeten and Benjamin Schrauwen. On the quantification

of dynamics in reservoir computing. In International Conference on

Artificial Neural Networks, pages 985–994. Springer, 2009.

[146] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine

Manzagol. Extracting and composing robust features with denoising

autoencoders. In Proceedings of the 25th international conference on

Machine learning, pages 1096–1103, 2008.

[147] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and

Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning

useful representations in a deep network with a local denoising crite-

rion. Journal of machine learning research, 11(Dec):3371–3408, 2010.

[148] S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and

Karsten M. Borgwardt. Graph kernels. Journal of Machine Learn-

ing Research, 11(Apr):1201–1242, 2010.

[149] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and

Computing, 17(4):395–416, 2007. ISSN 0960-3174.

[150] Fei Wang and Jimeng Sun. Survey on distance metric learning and

dimensionality reduction in data mining. Data mining and knowledge

discovery, 29(2):534–564, 2015.

[151] Chris Watkins. Dynamic alignment kernels. Advances in neural infor-

mation processing systems, pages 39–50, 1999.

[152] Paul J. Werbos. Generalization of backpropagation with application

to a recurrent gas market model. Neural networks, 1(4):339–356, 1988.

[153] S lawomir T. Wierzchoń and Mieczys law K lopotek. Modern algorithms

of cluster analysis. Springer, 2018.

[154] C. F. Jeff Wu. On the convergence properties of the em algorithm.

The Annals of Statistics, 11(1):95–103, 1983.

[155] Jing Wu and Mohamed R. Mahfouz. Robust x-ray image segmentation

by spectral clustering and active shape model. Journal of Medical

Imaging, 3(3):034005, 2016.

BIBLIOGRAPHY 171

[156] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep

embedding for clustering analysis. In International conference on ma-

chine learning, pages 478–487, 2016.

[157] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering

algorithms. Annals of Data Science, 2(2):165–193, 2015.

[158] Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. To-

wards k-means-friendly spaces: Simultaneous deep learning and clus-

tering. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 3861–3870. JMLR. org, 2017.

[159] M-H Yang, Narendra Ahuja, and David Kriegman. Face recognition

using kernel eigenfaces. In Proceedings 2000 International Conference

on Image Processing (Cat. No. 00CH37101), volume 1, pages 37–40.

IEEE, 2000.

[160] Shuo Yang, Kai Shu, Suhang Wang, Renjie Gu, Fan Wu, and Huan

Liu. Unsupervised fake news detection on social media: A genera-

tive approach. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 5644–5651, 2019.

[161] Dit-Yan Yeung and Hong Chang. A kernel approach for semisuper-

vised metric learning. IEEE Transactions on Neural Networks, 18(1):

141–149, 2007.

[162] Xiangrong Zhang, Licheng Jiao, Fang Liu, Liefeng Bo, and Maoguo

Gong. Spectral clustering ensemble applied to sar image segmentation.

IEEE Transactions on Geoscience and Remote Sensing, 46(7):2126–

2136, 2008.

[163] Yan-Qing Zhang and Jagath Chandana Rajapakse. Machine learning

in bioinformatics, volume 4. Wiley Online Library, 2009.

[164] Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet,

and Bernhard Schölkopf. Ranking on data manifolds. In Advances in

neural information processing systems, pages 169–176, 2004.

[165] Zhi-Hua Zhou and Ji Feng. Deep forest. National Science Review, 6

(1):74–86, 2019.

172 BIBLIOGRAPHY

[166] Jerry Zhu, Jaz Kandola, Zoubin Ghahramani, and John D. Lafferty.

Nonparametric transforms of graph kernels for semi-supervised learn-

ing. In Advances in neural information processing systems, pages

1641–1648, 2005.

	Abstract
	Acknowledgments
	List of Figures
	Abbreviations
	Introduction
	Challenges and opportunities
	Objectives
	Proposed approaches
	Potential synergies
	Brief summary of included papers
	Other papers
	Reading guide

	I Methodology and context
	Kernel methods
	Kernel theory
	Kernels
	Examples of kernel methods

	Examples of kernel functions

	Unsupervised Learning
	Dimensionality reduction/feature extraction
	Principal Component Analysis (PCA)
	Kernel PCA

	Clustering
	Gaussian Mixture Models
	k–means
	Spectral Clustering
	Ensemble Clustering
	Information Theoretic Clustering

	Ranking with the Personalized PageRank

	Neural Networks
	Multi–Layer Perceptron
	Training the network
	Convolutional Neural Networks
	Recurrent Neural Networks
	RNN architectures
	Echo State Networks

	Unsupervised Learning
	Autoencoders
	Clustering

	II Summary of research and concluding remarks
	Summary of Research
	Concluding Remarks
	Limitations and future work

	III Included papers
	Paper I: Unsupervised Learning Using PCKID – A probabilistic Cluster Kernel for Incomplete Data
	Paper II: Kernel Personalized PageRank
	Paper III: The deep kernelized autoencoder
	Paper IV: Deep divergence–based approach to clustering
	Paper V: Training Echo State Networks with Regularization Through Dimensionality Reduction

	IV Appendix
	Missing data
	Missing data mechanisms
	Examples of methods dealing with missing data

	Bibliography

