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Sammendrag (Norwegian abstract)  

Stress kan føre til en betydelig innvirkning på fysiologien og helsen til individet senere i livet. 

Under en produksjonssyklus av lakse-egg, blir eggene utsatt for ulike typer behandlinger, som 

sjokking og transport. Slike behandlinger ville i voksen fisk kunne utløse en stressrespons. 

Stressresponser kan deles inn i primære, sekundære og tertiære responser. Den primære 

responsen består av to akser, hvor en av dem er hypotalamus-hypofyse-interrenal (HPI) aksen, 

som resulterer i en økning av sirkulerende kortikosteroider. På cellenivå, er heat-shock 

proteiner (HSP) en viktig del av den sekundære responsen. I embryo starter ikke syntesen av 

kortisol, som er den viktigste kortikosteroiden hos teleoster, før rundt klekking. Imidlertid har 

gener som er sentrale i HPI-aksen, og HSP-gener, blitt detektert i embryo i flere 

utviklingsstadier. Selv om HPI-aksen antagelig ikke er fullt utviklet før klekking, kan en stressor 

føre til endringer i genuttrykk.  

 

Basert på dette, ble åtte sentrale gener fra HPI-aksen (crf1, crf2, pomcA1, pomcA2, pomcB, 

gr1, gr2 og mr) og to HSP gener (hsp70a og hsp90a4) hos atlantisk lakse- embryo utsatt for 

sjokking og transport, analysert for å se etter en eventuell behandlingseffekt. I tillegg til dette 

ble nylig klekkede larver, og larver ved startfôring som var utsatt for en stress test, analysert 

for å kunne beskrive ontogenien, og for å analysere mulige langtidseffekter av sjokking og 

transport. Relativt genuttrykk av hele-dyr ble analysert med bruk av revers transkriptase real 

time polymerase kjedereaksjon (RT-qPCR). Resultatene viste at genene var uttrykt i alle 

analyserte stadier gjennom utviklingen. HPI-akse genene viste en økning i relativt utrykk 

gjennom utviklingen, utenom gr1 og gr2 som viste en forsinket økning. HSP genene derimot 

viste et lavere uttrykk i larver ved startfôring enn i embryo og nylig klekkede larver. Relativt 

uttrykk av HPI-akse genene viste ingen spesifikke kortvarig eller langvarig forskjeller etter 

utsettelse for sjokking og/eller transport. HSP genene derimot, viste en akutt økning etter 

transport, men ingen langvarig effekter.   

 

Resultatene fra dette studiet indikerer at sjokking og transport ikke er kraftige nok stressorer 

til at relativt uttrykket av HPI-akse genene blir forandret i embryo. Resultatene indikerer også 

at HSP genene mulig spiller en viktig rolle i den cellulære stressresponsen gjennom 

embryogenesen.  
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Abstract 

Exposure to stress may have a profound impact on the physiology and health of an individual 

later in life. During a production cycle of Atlantic salmon eggs, the eggs are subjected to 

different kind of handling, e.g. shocking and transport. Handling of this extent would have 

elicited stress responses in adult fish. Stress responses can broadly be divided into primary, 

secondary and tertiary response. The primary stress response consists of two pathways where 

one of them, the hypothalamus-pituitary-interrenal (HPI) axis, results in elevations of 

circulating corticosteroids. On a cellular level, heat shock proteins (HSP) play an important role 

as a secondary response. In embryos, cortisol, which is the main corticosteroid in teleosts, is 

not synthesized before around hatching. However, genes that are central in the HPI-axis and 

HSP genes have been detected in fish embryos at several developmental stages. Even though 

the HPI-axis is not fully developed a stressor may alter the gene expressions.  

 

Based on this, eight genes central in the HPI-axis (crf1, crf2, pomcA1, pomcA2, pomcB, gr1, gr2 

and mr) and two HSP genes (hsp70a and hsp90a4) were examined, in Atlantic salmon embryos 

subjected to shocking and transport. In addition, newly hatched larvae, and larvae at start 

feeding subjected to a stress challenge, were analysed to map the ontogeny of the genes, and 

to examine any possible long-term effects of the shocking and transport. Relative gene 

expression of whole-animal were analysed using reverse transcriptase real time polymerase 

chain reaction (RT-qPCR). The results showed that all genes were present in all samples 

examined throughout the development. The HPI-axis genes showed an increased relative 

expression level during development, except for gr1 and gr2 that showed a delayed increase 

probably due to maternal transfer. The HSP genes, however, had a low expression level at 

start feeding compared embryos and newly hatched larvae. The relative expression of the HPI-

axis genes did not show any specific short-term or long-term differences in relative gene 

expression after exposure to shocking and/or transport. The HSP genes, however, showed an 

acute upregulation after transport, but no long-term effects. 

 

The results of this study indicates that shocking and transport are not high enough stressors 

to alter the expression of the HPI-axis genes. They also indicate that the HSP genes may play 

an important role in cellular stress response during development.
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1 Introduction 

Atlantic salmon (Salmo salar L.) is intensively produced in fish farms in Norway, an industry 

that has had enormous growth during the last decade. This has led to an increased demand of 

salmon eggs, and numbers registered by the Norwegian directorate of fishery showed that 

719 009 thousand eggs were transferred to hatcheries during 2014, an increase of 13 % from 

2013 (Fiskeridirektoratet, 2015). When rearing salmonids, stressful events due to handling are 

unavoidable and include, among others, sorting, grading, transport, and shocking. Early 

developmental stages are sensitive and exposure to stress may have a profound impact on 

the physiology and health of an organism later in life (Groot, 1996; Tsalafouta et al., 2014). It 

has been shown that exposure to stressors during development results in permanent changes 

in stress coping phenotypes in mammals, birds, amphibians and fish (Tsalafouta et al., 2014). 

 

1.1 Aquaculture and production of salmon eggs 

A production cycle of salmon eggs and larvae normally starts at an egg production site, where 

eggs are reared until the eyed stage, after which they are transported to a hatchery (see Figure 

1). The eggs hatch at the hatchery and are reared until they eventually become smolts, ready 

for transfer to seawater. 

 

During salmonid development, there are periods where the embryos are more sensitive to 

external stimuli that need to be taken into account, to prevent increase in mortality. The first 

period where salmon eggs shows significant sensitivity to handling is between fertilization and 

the so called eyed-stage, i.e. the stage were the eyes show pigmentation (Egidius and Helland-

Hansen, 1973; Groot, 1996). This is the period of early cell division, blastulation and epiboly, 

in which the embryo begins to take form (Gorodilov, 1996; Groot, 1996). During the eyed-

stage, embryos are more robust, and this is the preferred stage where eggs can be handled 

without causing any harmful effects (Hayes, 1930; Groot, 1996). In production, two main 

handling events occur during this period of development; shocking of eggs and transport 

(Maren Mommens, AquaGen, pers.com). First, eggs are intentionally shocked by agitating the 

eggs enough to rupture the vitelline membrane surrounding the yolk in dead eggs, but not so 

much that normally developing eggs are damaged (Groot, 1996). This results in coagulation of 

the yolk proteins and causes dead eggs to turn white and opaque, and can therefore easily be 
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sorted out (Groot, 1996; Carls et al., 2004). Simultaneously, eggs containing embryo with 

unusual small eyes are also sorted out (Maren Mommens, AquaGen, pers.com). The second 

handling event takes place around 375 day degrees (d°C) when eggs are transported to 

hatcheries. Transportation occurs on ice in special designed styrofoam boxes. Depending on 

the location of the hatchery, the transportation can take from several hours to a couple of 

days (Maren Mommens, AquaGen, pers.com). At the hatchery, eggs are transferred into 

hatching trays and only disturbed by removal of dead eggs. During this period, head and body 

regions are recognizable and the embryo can be seen to move freely within the chorion. Blood 

vessels grows out over the surface of the yolk, and the heart is actively pumping (Gorodilov, 

1996; Groot, 1996). Normally, the hatching of yolk sac larvae takes place around 500d°C. The 

yolk sac larvae lie on the bottom of hatching trays on a substrate that supports them with 

keeping a desired upright position, until they swim up at the onset of exogenous feeding. The 

start feeding occurs approximately at 900d°C (Groot, 1996; Maren Mommens, AquaGen, 

pers.com). Physical disturbances encountered in aquaculture, such as shocking and transport, 

usually evokes a variety of responses in fish (Barton and Iwama, 1991).  

  

Figure 1: Normal production of salmon eggs and larvae. The pictures are showing, from left; early cell division, epiboly, eyed-eggs, embryo 
right before hatching, and newly hatched larvae. The number in brackets indicates the day degrees.  
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1.2 Stress in fish  

Stress can be defined  as a state where the dynamic homeostasis of an animal are threatened 

or disturbed by intern or extern stimuli, commonly termed stressors (Wendelaar Bonga, 

1997). The stress response in vertebrates can broadly be divided into a primary, secondary 

and tertiary response as shown in Figure 2 (Iwama, 1998). The primary response includes 

neuroendocrine responses that results in measurable elevation of cortisol and adrenaline in 

the circulation (Sumpter, 1997). Thereafter, a secondary response is elicited, that includes 

cellular responses and changes in features related to metabolism, respiration, acid-base 

status, hydromineral balance and immune function (Mommsen et al., 1999; Gabriel, 2011). 

Primary and secondary stress responses are adaptive if they result in a physiological response 

that allows a fish to maintain homeostasis (Donaldson et al., 2008). Prolonged stress can give 

rise to a tertiary response, which refers to aspects of whole-animal performance, such as 

changes in growth, reproduction, behaviour, resistance to disease and ultimately survival 

(Barton, 2002). In the present study, the focus will be on the primary and secondary responses. 

A wide range of stressors elicits both the neuroendocrine and cellular stress responses 

(Ackerman et al., 2000). 

 

Abiotic and 
biotic 

stressors

Primary stress response

Neuroendocrine responses

-> Catecholamines↑

-> Corticosteroids↑

Secondary stress response
Cellular response
-> Heat shock proteins↑

Metabolic changes

Osmoregulatory disturbances

Changes in immune functions

Hydromineral balance

Tertiary stress response

Changes in whole-animal 
characteristics:

- growth

- reproduction

- behaviour

- resistanse to disease

-> survival

Figure 2: A figure showing the three grouped stress responses and their action (Modified from Barton et al., 2002). 
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1.2.1 Neuroendocrine stress response 

A stressor activates a two component system in fish; the hypothalamus-sympathetic-

chromaffin (HSC) axis and the hypothalamus-pituitary-interrenal (HPI) axis (Wendelaar Bonga, 

1997). 

 

The HSC-axis leads to an adrenergic response. When elicited, sympathetic nerve fibres 

stimulates chromaffin cells in the head kidney to release catecholamine hormones, adrenaline 

and noradrenaline, into the circulation (Sumpter, 1997; Wendelaar Bonga, 1997; Reid et al., 

1998). Catecholamines, predominantly adrenaline in teleosts, are both synthesized and stored 

in the chromaffin cells and can therefore be rapidly released after stress (Reid et al., 1998; 

Barton, 2002). One of the primary roles of plasma catecholamines is to modulate 

cardiovascular and respiratory functions in order to maintain adequate levels of oxygen in the 

blood. In addition, they serve to mobilize energy stores to provide for the increased energy 

demands that often are required after exposure to stressors (Reid et al., 1998).   

 

The HPI-axis consists of a three stage endocrine pathway as shown in Figure 3, where cortisol 

is the physiologically important hormone responsible for the effect of stress (Sumpter, 1997; 

Mommsen et al., 1999). A hormone cascade is initiated by external stimuli that stimulate the 

hypothalamus to release corticotropin-releasing factor (CRF). CRF will further stimulate 

corticotrophin cells in the anterior pituitary to secrete adrenocorticotropic hormone (ACTH) 

into the circulation, which thereafter stimulates the interrenal cells, in the head kidney, to 

produce and secrete corticosteroids, mainly cortisol in teleost fishes (Sumpter, 1997; 

Wendelaar Bonga, 1997; Mommsen et al., 1999; Flik et al., 2006). The release of cortisol is 

delayed relative to catecholamine release (Reid et al., 1998; Barton, 2002). The main role of 

cortisol is to meet the energy demands in a stress response, by redirecting the metabolism, 

and to limit the defence reactions to stress in order to protect the body from further damage 

(Xiong and Zhang, 2013; Wendelaar Bonga,1997). In the present study, the focus of 

neuroendocrine stress response will be on the HPI-axis, and the following sections will go into 

more detail about some of its important components. 
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1.2.1.1 Cortisol releasing factor (CRF)  

Cortisol releasing factor (CRF) is a neuropeptide that is produced in nucleus preopticus (NPO) 

of the hypothalamus. Various stressors are associated with an increased expression of 

preoptic area CRF, in adult fish (Bernier and Bristow, 2008). In teleosts, CRF controls the HPI-

axis through activation of specific G-protein coupled CRF receptors (CRF-R1 and CRF-R2) and 

is regulated by a shared CRF binding protein (CRF-BP). In addition to the regulation of the 

endocrine stress response, other functions of CRF include for example food intake inhibition 

and behavioural modulation (Alderman and Bernier, 2009). In fishes, CRF is also produced and 

secreted from the caudal neurosecretory system (CNSS), a unique organ located at the caudal 

end of the spinal cord. At the hypothalamic level, CRF is considered to be the major regulator 

of adrenocorticotropic hormone (ACTH) secretion from the pituitary and thereby plays a key 

Figure 3: The HPI-axis and the hormone cascade leading to cortisol secretion. CRF is projected directly from the hypothalamus 
to the pituitary where it binds to CRF-receptors in corticotropic cells. The binding eventually elicit a secretion of ACTH into the 
bloodstream. POMC is the precursor for ACTH. Circulation ACTH binds to MC2-receptors in interrenal cells of the head kidney 
and stimulates to synthesis and eventually secretion of cortisol into the bloodstream. Cortisol enters the target tissues/organ 
by diffusion and binds to GR and MR, which mediates the action of cortisol by altering target gene expression. An elevated level 
of cortisol has a negative feedback on the hypothalamus and pituitary. 
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role in coordinating the neuroendocrine, autonomic, and behavioural responses to stress 

(Alsop and Aluru, 2011).  

  

1.2.1.2 ACTH/POMC  

Binding of CRF to CRF R1/R2 in corticotropic cells of the anterior pituitary, elicits the release 

of ACTH into the circulation. ACTH is derived from a precursor hormone termed 

proopiomelanocortin (POMC), which is a large polypeptide that is progressively cleaved by 

prohormone convertases into several biologically active peptides (Flik et al. 2006; Nelson and 

Cox, 2008). In humans the POMC gene expression is stimulated by corticotrophin-releasing 

hormone (CRH) and vasopressin, and is suppressed by glucocorticoids (Raffin-Sanson and 

Bertagna, 2003). The peptides can be broadly divided into three groups: adrenocorticotropic 

hormone (ACTH)-like, endorphin-like and MSH-like products. POMC is primarily synthesised in 

two cell types of the pituitary gland: the corticotrophs of the anterior lobe and the 

melanotrophs of the intermediate lobe, each lobe being responsible for different peptide 

products (Sumpter et al.1997; Mosconi et al., 2006). In brown trout, handling and confinement 

has only showed to activated the corticothrophs, whereas when the handling was combined 

with thermal shock, both corticothrophs and melanotrophs were activated (Sumpter et al. 

1985). POMC has, in addition, shown to be present in a variety of other brain regions, and 

peripheral tissues such as the skin (Hansen et al.2003; Karsi et al. 2004). ACTH is recognized 

as the principle stimulator of cortisol release (Wendelaar Bonga, 1997; Flik et al.2006). 

Circulating ACTH binds to melanocortin 2 receptor (MC2R) in the steroidogenic interrenal cells 

embedded in the head kidney in teleosts. The binding to MC2R stimulates adenylate cyclase 

and cAMP-dependent signalling pathways, to stimulate cortisol synthesis. This receptor has 

shown to be downregulated following stress due to negative feedback control (Alsop and 

Aluru, 2011). 

 

1.2.1.3 Cortisol and the cortisol receptors  

Free circulating cortisol enters target cells, such as hepatocytes, by passive diffusion, where 

its action is mediated by the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) 

(Alsop and Aluru, 2011). These receptors belong to the nuclear receptor superfamily of ligand-

bound transcription factors. The receptors require the presence of certain heat shock proteins 

(e.g. HSP70 and HSP90; see section 1.2.2) to form a steroid compatible heterocomplex (Norris 
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and Hobbs, 2006). When activated the receptors are translocated into the nucleus of the cell, 

where they acts as transcription factors involved in the activation or silencing of specific genes 

(Li and Leatherland, 2012). In fishes, GR and MR are expressed in a variety of tissues including 

liver, gill, muscle, kidney, blood, and brain (Norris and Hobbs, 2006). Mediated by GR, cortisol 

modulate aspects of metabolism, growth, reproduction and immune function during a stress 

elicited response (Wendelaar Bonga, 1997). The roles of MR and its ligand are less clear. The 

main ligand to MR in mammals is aldosterone, due to inactivation of cortisol by an enzyme, 

11_HSD2, allowing aldosterone to bind. Teleosts lack the capacity to synthesize aldosterone, 

but another possible MR ligand that is studied in rainbow trout is 11 deoxycorticosterone 

(DOC) (Sturm et al.2005). Cortisol elicits a negative feedback primarily at the brain to repress 

the release of CRF, thereby reducing ACTH secretion and, ultimately, cortisol secretion (Norris 

and Hobbs, 2006; Bumaschny et al., 2007; Alsop and Aluru, 2011) 

 

1.2.2 Cellular stress response 

Cortisosteroids along with catecholamines, mediate secondary stress responses, in which a 

cellular response is one of them (Donaldson et al., 2008). Fish, like other organisms, produce 

a variety of proteins as part of the stress response, which are included in a generalized 

response system that exists at a cellular level. These proteins, which commonly are called 

stress proteins include among others, metallothioneins and heat shock proteins (Wendelaar 

Bonga, 1997; Basu et al., 2002). The heat shock proteins (HSP) are one of the most common 

and most studied groups of stress proteins in the cellular response (Deane and Woo, 2011).  

 

1.2.2.1 Heat shock proteins 

Heat shock proteins (HSPs) are a group of highly conserved intracellular proteins first detected 

in fruit fly when exposed to heat shock. They are classified into families based on their protein 

molecular size (kDa) which also gives them their names: HSP100, HSP90, HSP70, HSP60, and 

the small HSPs (Deane and Woo, 2011). HSPs are expressed in all tissues and cells 

constitutively, but some are also inducible in response to biotic or abiotic stressors. In an 

unstressed cell, the constitutive HSPs generally function as molecular chaperones assisting the 

folding of nascent polypeptides, protein folding, translocation of proteins, and degradation of 

misfolded proteins (Basu et al., 2002; Deane and Woo, 2011). When exposed to a stressor the 

inducible HSPs are upregulated, which in turn gives the cell added protection to repair and 
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prevent damage from cellular stress associated with protein denaturation (Iwama et al., 1998; 

Basu et al., 2002; Donaldson et al., 2008; Deane and Woo, 2011). Most of the inducible HSP 

genes do not contain introns and therefore their mRNA are rapidly translated into protein 

within minutes after an exposure to a stressor (Morimoto et al., 1992; Iwama et al., 1998). 

HSPs have been found to be upregulated when subjected to both high and low temperatures, 

and it is also widely accepted that their expression can alter upon exposure to a range of other 

abiotic, as well as biotic and chemical stressors (Deane and Woo, 2011; Donaldson et al., 

2008). HSPs are also known to play key roles during embryonic development (Deane and Woo, 

2011). A number of HSPs are expressed at high levels during normal cell growth and has shown 

to be important for reducing temperature-induced damage and deformities of fish embryos 

(Iwama et al., 1999; Donaldson et al., 2008). 

 

The HSP70 family represents the most abundant and the most highly conserved HSPs. HSP70 

is composed of constitutive (HSC70) and stress-inducible (HSP70) isoforms. Inducible isoforms 

are the best studied HSP70 in developing zebrafish and are frequently induced by thermal 

stress (Rupik et al., 2011). The constitutive members play important chaperoning roles in 

unstressed cells (Basu et al.2002). In addition, it has been shown in zebrafish that Hsp70s are 

required during the normal process of lens development under non-stress conditions (Evans 

et al. 2005).  

 

Members of the eukaryotic hsp90 family interacts with and modulates the activity of 

important cellular signalling molecules, such as steroid receptors and transcription factors 

(Krone et al., 2003). It has been estimated that HSP90 accounts for about 1% of the total 

soluble protein in the cytosol of an unstressed cells, which makes it one of the most abundant 

proteins (Picard, 2002). Vertebrates express two hsp90 genes, hsp90α and hsp90β, and 

studies in zebrafish, indicate that these genes are differentially regulated (Basu, 2002; Krone 

et al.2003). HSP90 interacts with a large number of proteins, and its interaction with steroid 

receptors, including GR, results in the formation of a stable heterocomplex (Pratt and Toft, 

1997). The binding of HSP90 increases the receptor stability by allowing GR to be 

conformational competent for ligand binding, in addition to prevent proteasomal degradation 

of GR. HSP90 is thereby a key molecular chaperone that is crucial for cortisol mediated cellular 

action, including GR signal transduction (Pratt and Toft, 1997). In addition, the isoform HSP90α 
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has been shown to be required for normal muscle development in zebrafish during 

embryogenesis (Krone et al., 2003). 

 

1.3 The genes of the HPI-axis  

In the evolution of vertebrates, several whole genome duplication (WGD) events are thought 

to have occurred. One of them occurred 320–350 million years ago specifically in an ancient 

fish, which gave rise to a number of duplicate genes that exist exclusively in teleost today 

(Alsop and Vijayan, 2009). In addition, salmonids have gone through another WGD, which 

occurred about 25-100 million years ago in a common ancestor (Meyer and Schartl, 1999). 

After a WGD, most duplicate genes return to single gene systems, but in some instances, 

duplicate genes are retained (Alsop and Vijayan, 2009). 

 

Two CRF genes have been found in several fish species, including white sucker; Catostomus 

Commersoni, carp; Cyprinus carpio, sockeye salmon; Oncorhynchus nerka, and rainbow trout; 

Oncorhynchus mykiss (reviewed in Alsop and Vijayan, 2009), while only a single CRF system is 

reported in zebrafish; Danio rerio (Chandrasekar et al., 2007; Alsop and Vijayan, 2008). 

According to Alsop and Vijayan, (2009) the duplicate CRF sequences are so similar that only a 

few studies have been able to differentiate the two. Doyon et al. (2003) was able to 

differentiate between the CRF paralogs in rainbow trout brain, which showed that levels of 

both CRFs were highest in the preoptic area of the hypothalamus, and were expressed to the 

same extent.  

 

Similar to the CRF genes, most POMC genes are identified in duplicates among studied species, 

including common carp; Cyprinus carpio (Arends et al., 1998), zebrafish (Nunez and Gonzalez-

Sarmiento, 2003) and sockeye salmon (Okuta et al., 1996). In rainbow trout two POMC genes, 

in addition to a splice variant of one of the genes, has been identified (Salbert et al., 1992; 

Leder and Silverstein, 2006).  

 

Two GR genes and one MR have been found in several teleost, except for zebrafish which only 

have identified a single GR, a homolog to GR2 in other teleosts (Alsop and Vijayan, 2009). 

Between the two GRs, GR2 has shown to be more sensitive to cortisol than GR1 in rainbow 

trout (Bury et al., 2003). As mentioned in section 1.2.1, deoxycorticosterone (DOC) is studied 
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in rainbow trout to be a possible ligand for MR (Sturm et al. 2005). The presence of three 

receptors with different affinities for cortisol raises, according to Norris and Hobbs, (2006), a 

possibility that the response to cortisol in tissues may change, as increasing levels of cortisol 

receptors with lower affinities are bound, and activated at higher cortisol levels. 

 

1.4 Ontogeny of HPI-axis hormones in addition to HSP70 and HPS90 

In fish, the most commonly used stress indicator is, to the author’s knowledge, the elevation 

of cortisol (Gabriel, 2011). In fertilized eggs, embryos and larvae, changes in cortisol content 

at various developmental stages have been examined in several fish species (reviewed by 

Pittman et al. 2013). In fertilized eggs, the cortisol content is of maternal origin and, according 

to Pittman et al. (2013), seems to be necessary for the metabolic needs and for the 

development of various organs during early development. Most of the examined species 

mentioned show a general pattern of changes in cortisol content in the egg, with relatively 

high levels after fertilization, followed by a decrease throughout embryogenesis as the 

maternal deposited cortisol is depleted. The lowest levels are registered around the time of 

hatching and, thereafter, the larva begins to synthesize cortisol and basal levels increase 

(Alsop and Aluru, 2011; Pittman et al., 2013). The timing of de novo synthesis of cortisol varies 

among species. Studies on rainbow trout indicates a cortisol synthesis 6 days before hatching 

(Auperin and Geslin, 2008). In both chinook salmon; Onchorynchus tshawytscha and zebrafish 

de novo synthesis of cortisol was detected around the time of hatching (Feist and Schreck, 

2001; Alsop and Vijayan, 2008). From early embryogenesis, expression of other HPI-axis genes 

also has been shown to undergo dynamic changes, suggesting that they are functional at this 

time (Alsop and Aluru, 2011). Most studies have been conducted on zebrafish, and therefore, 

the following description of the ontogeny of different HPI-axis genes will mainly be based on 

findings in zebrafish embryos and larvae.  

 

Crf has been detected in zebrafish throughout embryogenesis and larvae showed an increase 

in crf expression levels between hatching and exogenous feeding (Alderman and Bernier, 

2009). Crf transcripts have been detected during embryogenesis for several other teleost 

species including tilapia; Oreochromis mossambicus (Pepels and Balm, 2004), rainbow trout 

(Fuzzen et al., 2011), and European sea bass, Dicentrarchus labrax (Tsalafouta et al., 2014). A 

study on rainbow trout showed a pattern of crf expression throughout ontogeny that was 
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similar to cortisol, and the larvae showed a peak in CRF mRNA levels occurring at 56 days post 

fertilization (dpf); the onset of exogenous feeding (Fuzzen et al., 2011). 

 

Hansen et al. (2003) registered pomc mRNA expression in fertilized zebrafish eggs by RT-PCR, 

which almost completely disappeared within the next few hours after fertilization, which 

demonstrates maternal expression. After 18hpf, zygotic pomc RNA synthesis levels 

significantly increased with a maximum at 28 hpf (Hansen et al., 2003).  

 

The expression pattern of gr and mr has shown to be distinct during the embryogenesis in 

zebrafish. Expression levels of mr showed a continuous elevation during development from 

fertilization until start feeding, while those of gr followed closely the cortisol profiles seen in 

the embryos; i.e. showing a decrease throughout embryogenesis, followed by a rise around 

hatching, which continued until start feeding (Alsop and Vijayan, 2008)  

 

HSPs studied in zebrafish, have shown to be expressed in spatial and temporal patterns, which 

coincided with the assumed targets of their chaperoning activity (Krone et al. 1997). It was 

also shown that several HSPs may be directly involved in embryonic cellular differentiation 

(Martin et al.2002). Both constitutive and inducible forms of hsp70 have been detected in the 

developing zebrafish. During embryogenesis of zebrafish, basal levels of inducible hsp70 

showed to be low, while constitutive members of hsp70 have shown to be more strongly 

expressed  (Lele et al., 1997; Santacruz et al., 1997). Embryos of Atlantic salmon expressed 

hsp70 mRNA transcripts at all examined stages from 62d°C until 200d°C (Takle et al., 2005). 

Hsp70 expression was upregulated in early larval stage of zebrafish, which also was registered 

in silver sea bream (Sparus sarba) larvae after 14 dph (Yeh and Hsu, 2000; Deane and Woo, 

2003). Deane and Woo, (2003) registered that hsp90 increased from 1dph and onwards, 

where the profiles during 1-14 dph was parallel to cortisol. In addition, the two isoforms, 

hsp90α and hsp90ẞ, have shown to be expressed in zebrafish during embryogenesis (Krone et 

al.1997).  

 

1.5 Stress response in early development 

Several studies have registered that the necessary components for a functioning HPI axis are 

in place before, or at the time of hatching. However, there has not shown to be any stress-
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induced elevation of cortisol during early embryogenesis (reviewed by Pittman et al.2013). In 

fact, stress-induced cortisol alterations have, to the author’s knowledge, not been detected 

before hatch in most species studied. In rainbow trout, stress-induced cortisol elevation was 

not detected before 11 dpf (Auperin and Geslin, 2008) or 14 dpf (Barry et al., 1995a). In 

chinook salmon stress induced elevation of cortisol was detected one week after hatching 

(Feist and Schreck, 2001). In rats, a 2-week stress hyporesponsive period has been shown 

where stressors do not elicit an increase in circulating glucocorticoids levels, as they do in 

adult animals. This period is thought to be a critical time where corticosteroids may have 

permanent effects on the neural organization and development (Barry et al., 1995a; Barry et 

al., 1995b).  

 

Early development represents a critical period during life history of fishes (Groot, 1996). At 

this time of the development environment may irreversibly influence the phenotype (e.g. 

morphology, physiology, behaviour) by allowing rapid adaptations. These adaptations may be 

beneficially for the animal later in life, or in contrast give adverse consequences if there is any 

mismatch between the anticipated and the actual environment later in life (Pittman et al., 

2013). The hypothalamus-pituitary-adrenal (HPA) axis in mammals is highly susceptible to 

‘programming’ during the development (Xiong and Zhang, 2013).  

 

Thus, even though the HPI-axis is not fully functional before hatching in most teleosts studied, 

the genes of the HPI-axis may still be altered by stressors, which in turn might affect the 

individual later in life. Auperin and Geslin (2008) detected in rainbow trout that stress applied to 

eyed-egg, eggs at the time of hatching, and yolk sac larvae, resulted in a reduced cortisol response 

to stress in fingerlings. They suggested that stress during the development of the HPI-axis may 

have long lasting effects and may influence the fish’s ability to cope with stress later in life.  
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1.6 Aim 

This master project was part of a project conducted by Nofima Tromsø in collaboration with 

AquaGen Norway. It was important to clarify several aspects related to some of the possible 

effects mechanical shocking and transportation of eggs may have. The main objective of this 

study was to examine gene expressions of HPI-axis - and HSP genes in Atlantic salmon (Salmo 

salar L.) embryos and larvae in terms of upregulation or downregulation after exposure to 

shocking and/or transport by analysing total RNA from whole eggs and larvae with RT-qPCR. 

 

Sub goal 1: 

Examine the ontogeny of eight HPI-axis genes (crf1, crf2, pomcA1, pomcA2, pomcB, gr1, gr2 

and mr) and two HSP genes (hsp70a and hsp90a4) by using four time points in the embryo 

and larval development. Examine if shocking and transport conducted in rearing of salmonid 

eggs (mechanical shock and transportation on ice), results in alteration of the relative 

expression of these genes.  

 

Sub goal 2: 

Examine if the shocking and transport alters the expression of the mentioned HPI-axis genes 

and HSP genes over time, by examining the relative gene expression in larvae at start feeding. 

In addition, examine if the shocking and transport may lead to different gene expression levels 

when the larvae at start feeding are exposed to a stress challenge. 
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2 Materials and Methods 

 

All chemicals and kits used are listed in appendix I. 

 

2.1 Eggs, fertilization and incubation conditions 

Atlantic salmon (Salmo salar) eggs from one female and milt from one male were sent by 

plane from AquaGen, Kyrkseterøra to Nofima, Tromsø. The package containing eggs and milt 

was immediately transported by car for 30 minutes to the Aquaculture Research Station in 

Kårvika. The eggs and milt were during the whole transport kept in a Styrofoam box; packed 

in plastic bags and laid between two layers of ice covered with newspaper. The eggs and milt 

held a temperature of 2-3°C at the time of unpacking. The whole transportation took less than 

24 hours.  

 

2.1.1 Fertilization 

Approximately 1,825 L eggs were fertilized immediately after transportation to Kårvika, using 

a dry fertilization method obtained from AquaGen. The eggs were carefully poured into a tub 

where they were washed with a washing solution (recipe, AquaGen) until blood and ovary 

fluid was removed. The beam was always pointed towards one of the sides of the tub, avoiding 

directly contact with the eggs. After the washing procedure, the tub was filled with washing 

solution equivalent to 1/3 of the egg volume. Approximately 2 mL milt per litre of eggs was 

added. The milt and the eggs were then evenly distributed with gently stirring. After 25 

seconds, activation solution (recipe, AquaGen) was added to activate the milt. The mixture 

was carefully stirred and left for 2,5 minutes. The milt and activation solution were washed 

away using the washing solution. Directly after the fertilization the eggs were treated with a 

disinfection solution composed of 10 parts Buffodine (Evans Vanodine) to 1000 parts water 

(50mL Buffodine + 5L water from the hatching column). The disinfection solution was poured 

into the tub covering the eggs. It was left for 10 min and then gently washed away with the 

washing solution. The eggs were finally divided into beakers each containing approximately 

175 dL eggs, and transferred to 12 plastic incubator boxes in a hatching column (see chapter 

2.2.2) for swelling.  
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2.1.2 Incubation 

Incubation of eggs and embryos was carried out in a specially 

designed hatching column with temperature regulation and 

continuous water supply that was filtered and free of chloride. The 

hatching column held three incubation units, A, B and C, each 

containing four special incubation boxes as shown in Figure 1. The 

boxes were labelled with four groups, each group having triplicates 

that were evenly distributed in the column to minimize ‘’tank 

effect’’ (see Figure 4). Over the first nine days after fertilization, the 

water temperature was slowly increased from 3°C to 7°C to acclimate the eggs. During the 

rest of the experimental period the eggs and larvae were held under a mean (±SD) water 

temperature of 7,04 (± 0,16) °C and dissolved oxygen levels of  101,7 (± 1,53) %. Opaque, white 

eggs were counted and eliminated once a day. Both the incubation units and the whole 

hatching column was covered with opaque plastic sheets at all time to avoid light entering the 

incubation boxes.  

 

 
Figure 5: A flow chart showing the hatching column containing the units (A, B and C) and the incubation boxes divided into 
four groups of triplicates. 

 

2.2 Experimental design 

Eggs were divided into four groups of triplicates, with each group going through different 

treatments. Group 1 was the control group, group 2 was shocked and transported, group 3 

was shocked and group 4 was transported (see figure 5). At the end of the experimental 

period, all groups were subjected to a stress challenge test to evaluate the effect of the 

previous treatments.  

 

Figure 1:  

Figure 4: A picture showing one 
of the incubation units 
containing four boxes with 
salmon eggs. 
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2.2.1 Shocking of eggs 

Eggs from groups 2 and 3 were shocked at around 326 day degrees, one incubation box at a 

time. Eggs from an incubation box were gently poured into a bucket filled with 7,5cm water. 

The eggs were then poured into another bucket, containing the same amount of water, from 

a height of 60 cm over the water surface as shown in Figure 6. This procedure was repeated 

three times for all replicates within the two groups. 

 
Figure 6: A picture showing shocking of salmon eggs as described in chapter 2.3.1. 

 

2.2.2 Shipment on ice 

Eggs from groups 2 and 4 were transported when the eggs were 377d°C. They were 

transferred to a Styrofoam box specially designed for transportation of fish eggs (obtained 

from AquaGen).  The box contained three shelves, each of them divided into 12 units keeping 

the eggs separate. All the shelves contained small holes in the bottom to enable water to run 

through. During the transport, the upper shelf was filled with ice so that water could drain 

through to the next shelf containing eggs.  It was important that the eggs were wet during the 

whole transportation but not soaked in water. The transportation lasted for 48 hours. The 

temperature in the box was measured at all times by two gauges that were placed separately 

in two empty units on the same shelf as the eggs. During the transportation the two gauges 

showed mean (±SD) temperature of 1,12 (± 0,96) and  1,41 (± 0,91)°C. 

 

2.2.3 Stress test 

Larvae from all groups were stressed when they were approximately 918d°C. Approximately 

20 larvae from an incubation box were continuously transferred as described in section 2.3.4, 

and directly distributed into four special cylindrical incubation devices where three of the 

cylinders were stress challenged. The latter cylindrical incubator was immediately 

euthanatized and sampled as control. The stress challenge test was performed by exposing 
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larvae acclimated to 7°C, to ice water for 1 min and thereafter to air (14°C) for 1 min. After the 

challenge, the cylinders were placed in suitable containers placed in the hatching column so 

that the stressed larvae did not get disturbed between the challenge and the time of sampling. 

 

2.2.4 Sampling 

Samplings were conducted at four time points as shown in Figure 7. Three of the time points 

were sampled in accordance with the different treatments (described in section 2.3.1 – 2.3.3); 

before the treatment started, and 1 hour, 3 hours and approximately 24 hours after the 

treatment was finished. The fourth sample was taken a few days after hatching. Two types of 

samples were taken at all time points; one in RNA-later® (Ambion) for gene expression 

analyses and one immediately frozen in Liquid N2 for other analyses. The RNA-later samples 

contained maximum 20 eggs or larvae and approximately 10 mL of RNA-later® (Ambion) 

solution in 20 mL tubes. Following samplings the tubes containing RNA-later® (Ambion), were 

stored as recommended by the manufacturer; overnight at 4 °C and then frozen at -20 °C the 

following day. The samples that were immediately frozen in liquid N2, contained a maximum 

of 5 eggs or larvae in 1,8 mL Cryo Tubes (Nunc). The samples were transferred to a -80 °C 

freezer the same day as the sampling.  

 

Figure 7: A flow chart containing an overview over the rearing period (blue arrows) and the time of treatments (yellow/orange 
triangles) performed on the four different groups. The orange arrows indicates the time of sampling. 
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Sampling of eggs: 

A special egg tweezer or a spoon was used to collect random eggs on a petri dish kept on ice 

while the sampling was conducted. Normal eggs were sampled on RNA-later® (Ambion) and 

liquid N2. Eggs that were developing at a slower rate (see figure 8) were sampled on separate 

tubes. Underdeveloped, blank eggs were discarded (see figure 8).  

 

Sampling of larvae: 

Larvae were collected using a transparent tube and the siphon principle, which made it 

possible to collect an almost exact sample size without affecting the remaining larvae. All 

larvae that were sampled were euthanatized using an overdose of Benzocaine. They were laid 

on a petri dish on ice and, in the same way as the sampling off eggs; normal larvae were 

selected and transferred to tubes containing RNA-later® (Ambion), and tubes that were put 

on liquid N2. Larvae that were un-normal (see figure 9) were collected in a second tube 

containing RNA-later ® (Ambion).  

  

Normal Small-eyed Blank 

Un-normal larvaeNormal larvae

Figure 8: Pictures showing different developed eggs; normal, small-
eye and blank (stopped developing). 

 

Figure 9: Picture showing normal and un-normal larvae  
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2.3 Quantitative RT-PCR 

Quantitative real-time polymerase chain reaction (RT-qPCR) has become the leading tool for 

the detection and quantification of DNA or RNA (as cDNA). Using sequence-specific primers, 

the number of copies of a particular DNA or RNA sequence can be determined. The RT-qPCR 

measures the amount of DNA or cDNA after each cycle and thereby monitors the progress of 

the PCR reaction as it occurs in real time. Fluorescent dyes are used as dictation agents  where 

the yield of increasing fluorescent signal are in direct proportion to the number of PCR product 

molecules (amplicons) generated. One fluorescent dye that is suitable to use is SYBR Green. 

SYBR green is a fluorescent DNA-binding dye that binds to any double stranded (ds)DNA and 

provides a fluorescent signal that reflects the amount of DNA product in the sample 

(LifeTechnologies, 2011b, LifeTechnologies, 2014).  

 

 

Figure 10: A flowchart that shows the main steps of quantitative RT-PCR. 

 

In this experiment RT-qPCR was used to examine gene expression from HPI-axis genes of  

corticotropin releasing factor (CRF), proopiomelanocorticoid A1, A2 and B (POMC A1, POMC 

A2 and POMC B), glucocorticoid receptor 1 and 2 (GR 1 & GR 2), mineralocorticoid receptor 

(MR) and heat shock protein 70a and 90a4 (HSP70a and HSP90a4). Eukaryotic Elongation 

factor 1 alfa (ef-1-α), Ribosomal 18S RNA (18S rRNA) and Beta-actin (ẞ-actin) were used as 

housekeeping genes. Primers were designed using the Primer Express 3 software (Life 

Technologies) and synthesized by Eurogentec. All primers are listed in Appendix II. Ten 

individuals from each group were analysed, which equals five individuals from two of the 

replicates (incubation unit B and C).  

 

2.3.1 RNA isolation 

RNA isolation was conducted in three steps; homogenization, purification of nuclei acids and 

DNase treatment. Whole eggs and larvae were used. One random egg from each group, from 

each sampling date, was weighed before the homogenization. This was done because the 

RNA isolation qRT-PCRcDNA synthesis
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weight of the sample tissue needed to be known for further purification. RNase-free 

equipment was used during the whole procedure. 

 

2.3.1.1 Homogenization 

To homogenize salmon eggs and larvae MagMAX-96 Total RNA Isolation Kit (Ambion) was 

used and the procedure was conducted according to the manufacturers protocol, with some 

minor modifications. The amounts needed to homogenize one salmon egg without making 

the homogenate too viscous had earlier been established in the lab. Salmon eggs on RNA-

later® (Ambion) were thawed on the bench, punctured with a pipette tip, and put into tubes 

containing ceramic beads (Precellys) and 800 µL of Lysis/binding solution concentrate 

(Ambion). The samples were homogenized using the machine Precellys 24 lysis and 

homogenization (Bertin technologies) for 3 x (15 seconds x 6800rpm), with 30 seconds pause 

between each round. The tubes containing the homogenate were cooled for about 10 minutes 

and then added 20 µl of Proteinase K (Ambion). After incubation at 37 °C for 90 minutes the 

homogenate was frozen at -80 °C until further analyses. 

 

2.3.1.2 Total nucleic acid isolation 

The MagMaxTM- 96 Total Kit from Ambion was used to extract RNA from salmon eggs. The 

procedure was conducted according to the producers protocol, except from the DNase 

treatment which was done in a separate step (see chapter 2.4.2.1). Homogenized samples 

were thawed, mixed and centrifuged for 2min at 2500rpm (Kubota 1300). All solutions and 

plates were prepared as described in the manufacturers protocol. In brief, the reaction 

volumes (180µL) of the test-plate contained 5mg homogenate adjusted to 100 µL with 

Lysis/binding solution concentrate (Ambion), 20 µL Bead mix solution  and 60 µL 100 % 

isopropanol Prima (Arcus). In addition to the test-plate, plates containing washing solutions, 

elution buffer and special tip compounds were prepared. Total nucleic acids were isolated 

using a magnetic purification machine; MagMAXTM Express 96 (Applied Biosystems). The 

machine purifies the samples by magnetically capturing the RNA binding beads in the 

homogenate and washing them in several steps to remove cell residues, proteins and other 

contaminants (AppliedBiosystems, 2008, LifeTechnologies, 2011a). A MagMax Express plate 

(Applied Biosystems) containing the eluate with the purified nucleic acids was put on an 

Ambion magnetic-ring stand (Applied Biosystems), thereby making it possible to collect the 
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eluate without getting remains of the magnetic beads. The now isolated total nucleic acid 

samples were held on ice or frozen at -80 °C until further analysed. 

 

2.3.1.3 DNase treatment 

To clean the RNA from contamination of genomic DNA the nucleic acid sample TURBO 

DNAfree Kit (Ambion) was used in accordance to the manufacturers protocol 

(LifeTechnologies, 2012). Centrifugation was conducted in a Jouan A14 centrifuge at 10000xg 

in 2min. After the procedure, the supernatant containing the isolated RNA was collected and 

frozen at -80 °C until analysed further.  

 

2.3.2 NanoDrop 

NanoDrop (Saveen Werner AB) is a spectrophotometer using fibre optic technology and 

surface tension to hold 0,5-2 µL of sample in place between two optical surfaces. 

(ThermoFisher, 2015). NanoDrop determines the RNA concentration by measuring its 

absorbance at 260nm (A260).  Additionally it measures the purity of the RNA sample which 

mainly are shown by the A260/A280 ratio (LifeTechnologies, 2011a). All the isolated RNA 

samples were measured on a NanoDrop 8000 (Thermo scientific) before cDNA synthesis, to 

assess RNA quality and quantity. Elution buffer (Ambion) was used as blank.  

 

2.3.3 cDNA synthesis 

RNA is not suitable as target for DNA polymerase and must be reversely transcribed to 

complementary DNA (cDNA) before it can be analysed with RT-qPCR. To reverse transcribe 

the isolated total RNA, High-Capacity cDNA reverse Transcription Kit (Applied Biosystems) was 

used in accordance with the manufacturer’s protocol. The isolated RNA samples were thawed 

on ice and heated at 60 °C for 5 minutes to minimize secondary structures in the RNA. In brief, 

reaction volumes of 25 µl contained 200ng RNA, 2.5 µl 10x Reverse Transcription buffer, 1 µl 

25x dNTPs, 2.5 µl 10x Random Primer, 1 µl Oligo d(T), 1.25 µl Multiscribe Reverse Transcriptase 

and 1.75 µl Nuclease free water (Ambion). The reaction was done in 96-well plates 

(Bioplastics).The plate was carefully mixed, briefly centrifuged and placed in the PCR machine 

2720 Thermal cycler (Applied Biosystems) using the following cycle parameters; denaturation 

for 10 minutes at 25 °C, annealing for 120 minutes at 37 °C and elongation at 85 °C for 

5minutes before the temperature decreased to 4 °C . The newly synthetized cDNA was diluted 
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1:8 in nuclease-free water (Ambion) and used as a stock solution. An aliquot of the stock-

solution was additionally diluted 1:40 for use in the RT-qPCR analyses. The stock-solutions and 

aliquoted user-solutions were stored at -20 °C until further use. 

 

2.3.4 RT-qPCR  

Quantitative RT-PCR was used to study relative differences in gene expressions of central 

stress related genes. RT-qPCR assays of the HPI-axis genes and HSP genes were established by 

Hanne Johnsen.   All primer pairs gave single distinctive melting peaks verifying the absence 

of primer dimers and other unwanted amplification products. The amplification efficiency of 

each primer pair were calculated using a 2-fold dilution series with 11 dilutions, starting with 

cDNA diluted 1:10 from Larvae at 900 day degrees in agreement with the following equation:  

Primer efficiency (E) was calculated following the equation 𝐸 = 10(−1/𝑠𝑙𝑜𝑝𝑙𝑒) (Pfaffl, 2001) 

Quantitative RT-PCR was conducted using the 7900HT Fast Real-Time PCR system (Applied 

biosystems). The RT-qPCR was run in duplicates with each reaction containing 10µL Power 

SYBR Green Master Mix (Life Technologies), 1.2 µL (300 nM) of each primer, 0.6 µL nuclease 

free water (Ambion) and 7µL diluted cDNA to a final concentration of 20 µL. Two different 

controls were included in the RT-qPCR setup for each primer pair and plate; a no template 

control using nuclease free water (Ambion) as template instead of cDNA, and a positive 

control where a pre-made standard pool of cDNA was used as template. Additionally, random 

DNase treated RNA samples were used as templates to test for possible genomic 

contamination. When ready, the 384-well plate (Applied Biosystems) was covered with 

MicroAmp Optical Adhesive Film (Applied Biosystems) and briefly centrifuged in a Jouan RC 

10.22. A template-file was made using the SDS 2.3 software (Applied Biosystems), and a PCR-

program with the following cycling parameters were initiated: denaturation at 90 °C for 10 

minutes, 40 cycles of denaturation at 95 °C for 15 seconds, annealing and elongation at 60 °C 

for 1 minute, and one cycle of denaturation at 95 °C for 15 seconds, annealing and elongation 

at 60 °C for 15 seconds, followed by denaturation at 95 °C for 15 seconds.  

 

2.4 Data analyses and statistics 

The SDS 2.3 software (Applied Biosystems) collected all results from RT-qPCR and the 

threshold was adjusted manually to 0.1. The dissociation and amplification curve for each 

amplicon was checked. Further analyses were processed in Microsoft Excel. The Pfaffl-method 
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was used to calculate the relative expression of the genes studied (Equation 1). This method 

takes into account the efficiency of the primers, in contrast to the ∆∆Ct-method, which 

assumes that all primers are 100% effective (Pfaffl, 2001). The geometric mean of the three 

housekeeping genes (ef-1-α, ẞ-actin and 18S rRNA) was used as reference genes in the Pfaffl-

method to normalize experimental variation. 

 

Equation 1:  

 

𝑅𝑎𝑡𝑖𝑜 =
(𝐸𝑡𝑎𝑟𝑔𝑒𝑡)∆𝐶𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

(𝐸𝑟𝑒𝑓)∆𝐶𝑡 𝑟𝑒𝑓 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)
 

 

Statistics were conducted in IBM SPSS statistics 23 and all graphs were made in GraphPad 

Prism (version 6.07 for Windows, GraphPad Prism Software, Inc). All data, both replicates and 

groups, were subjected to a normality test; Shapiro-Wilk test. Replicates showed that one of 

the two replicates in almost all groups failed to be normally distributed. Because of this, and 

the small replicate sizes (n=5), a non-parametric test called, Kolmogorov Smirnov test, was 

used to test if the duplicates within groups could be merged. The replicates were merged into 

their respective groups and thereby becoming a sample size of n=10. The groups (n=10) of all 

the genes at all time points were tested for normality by the same test as the replicates, 

showing that 91 % of the groups were normally distributed. Data that failed to be normality 

distributed showed no trends in other distributions (e.g. Bimodal), and no trend in skewness. 

Since analysis of variance (ANOVA) has shown to be a robust test even with samples that have 

minor deviations from a normally distributed curve, and since the percentage of un-normal 

distributed groups were so small, one way ANOVA was used to check for significant differences 

between groups (Field, A. 2013). Games-Howell was used as a post-hoc test on groups that 

fails the Levine’s test of variance, and Gabriel’s procedure was used as a post-hoc test on 

groups that consisted Levine’s test of variance. The level of statistical significance for all tests 

was set at p< 0.05. An example from the statistical method conducted on the control group of 

one of the genes (crf1) are shown in Appendix III. 

 

  



Results 
 

30 
 

3 Results 

Expression levels of central HPI-axis genes (crf1, crf2, pomcA1, pomcA2, pomcB, gr1, gr2 and 

mr) in addition to two HSPs (hsp70a and hsp90a4) were examined in embryos and larvae of 

Atlantic salmon, subjected to handling; shocking and transport. The study was conducted to 

evaluate if stress during early development of fish alters the gene expression of the mentioned 

genes. In order to differentiate between the treatments and the group names, abbreviations 

were used for the three group names; shock (S), transport (T) and shock & transport (ST).  

 

3.1 Hatching, mortality and larval growth 

A hatching profile was made by counting the un-hatched eggs of all four groups, once a day 

during the hatching period (Figure 11). The results showed a small difference between the 

groups, where 50% of the eggs in group S were hatched 1-2 days before the other three 

groups. At the end of the hatching period, all groups showed a similar number of total hatched 

larvae. 
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Figure 11: Hatching (%) of Atlantic salmon eggs during normal development, and after exposure to shock and/or transport. 
Abbreviations for the four groups: C = control, S = shock, T = transport and ST = shock & transport. 
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Dead eggs were removed from the hatching column once a day, and the amount was 

registered (Figure 12). Group S and ST showed a rapid increasing amount of dead eggs after 

shocking. Group T showed a rapid, but lower increase of dead eggs after transport. After 

hatching, the un-hatched eggs were removed, which led to a similar total amount of dead eggs 

in all four groups.  
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Figure 12: Mortality (%) of Atlantic salmon eggs during normal development, and after exposure to shock and/or transport. 
Abbreviations for the four groups: C = control, S = shock, T = transport and ST = shock & transport.  

 

Yolk sac larvae was weighed at three time points; after hatching (583d°C), between hatching 

and start feeding (688°C) and  at the time of start feeding (918d°C). The results showed a 

similar increase during development in all four groups (Figure 13). 
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Figure 13: Weight (g) of Atlantic salmon larvaes at 583d°, 688 d°C and 918 d°C. Abbreviations for the four groups: C = control, 
S = shock, T = transport and ST = shock & transport. (n=28-30). 

 

3.2 Ontogeny and long term treatment effects 

Eggs and larvae collected previous to shocking (326d°C), transportation (377d°C) and stress 

challenge (918d°C; start feeding), in addition to newly hatched larvae (583d°C), were 

examined to study the ontogeny of different genes important in the stress response, and to 

examine possible long-term effect after exposure to shocking and/or transport. All genes 

assessed in the study (crf1, crf2, pomcA1, pomcA2, pomcB, gr1, gr2, mr, hsp70a and hsp90a4), 

were expressed at all studied developmental stages. The results of the examined genes will 

be shown in detail in the next sections. 

 

3.2.1 Ontogeny of the HPI-axis genes and long term treatment effects  

Samples from the control group (C) at the different time points were used to examine the 

normal ontogeny of the genes included in this study. The results showing the normal ontogeny 

of the genes are shown in the following figures; crf1 and crf2 (Figure 14), pomcA1, pomcA2 

and pomcB (Figure 15), and gr1, gr2 and mr (Figure 16). All genes in the control group showed 

an increase during development, with significantly higher gene expression levels in larvae than 

in embryos. The two gr’s however, showed a significant decrease during the embryogenesis 

before an increase at the start of the larval period (Figure 16).  
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Both paralogues, crf1 and crf2 (Figure 14), showed a similar expression pattern in the embryos 

followed by a significant increase after hatching. Further, crf1, in contrast to an increasing crf2, 

showed a significant decrease in larvae at the time of start feeding. The groups S, T and ST 

showed a similar profile as the control group, with a significant increase of both crf1 and crf2 

after hatching, and a steady or increased expression in larvae at start feeding.  When it comes 

to any long-term effect of the different treatments, a significantly lower expression of crf1 was 

detected in group T compared to the control group in newly hatched larvae. This difference, 

however, was also shown in the embryo prior to transport, of which T (untreated) was 

expected to be equal to the control group. Transcripts of crf2 in start feeding larvae were 

lower in group S and ST compared to the control group. The level of expression of Crf2 was 

lower compared to crf1  throughout the development.  

 

 Figure 14: Relative expression levels of genes crf1 and crf2 in eggs and larvae of Atlantic salmon prior to shocking (326 
d°C), prior to transport (377d°C), at hatching (583d°C) and at start feeding (918d°C). Abbreviations for the four groups; 
C=control, S=shock, T=transport, ST=shock & transport. The changes in relative gene expressions were measured by 
quantitative RT-PCR, normalized to the geometric mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the 
lowest expression of crf2 in the control group. The calibrator (value 1) is marked with a red star. Each column is presented as 
mean of 6-10 individuals ± SEM. Arrows indicate in which groups and at what day degrees (d°C) shocking and transport 
happened, and columns with pattern are groups that have been treated. Non-capital and capital letters indicate significant 
differences (p<0.05) within a group, or between groups at the same time point, respectively. 
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In the control group, the expression levels of pomcA1 significantly increased throughout 

development (Figure 15). PomcA2 showed a similar increase in embryos prior to transport, 

while pomcB showed first a decrease in embryos prior to transport before an increase after 

hatching, which was steady until start feeding. A similar profile was seen in the three groups 

S, T and ST, except for the decrease of pomcB.  

When it comes to any long-term effect of the different treatments, there was a significant 

lower expression level of pomcA1 in group T in larvae at start feeding, compared to the control 

group. After hatching group T showed a lower expression level of pomcA2  than group S. Group 

S also had a higher expression level/value of pomcB compared to control, in embryos at 

377d°C. Both pomcA2 and pomcB showed a much lower expression level than pomcA1 from 

377d°C and throughout the development.  
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Figure 15: Relative expression of the genes pomcA1, pomcA2 and pomcB in eggs and larvae of Atlantic salmon prior to 
shocking (326 d°C), prior to transport (377d°C), at hatching (583d°C) and at start feeding (918d°C). Abbreviations for the 
four groups; C=control, S=shock, T=transport, ST=shock & transport. The changes in relative gene expressions were 
measured by quantitative RT-PCR, normalized to the geometric mean of ef-1-α, ẞ-actin and 18s rRNA expression, and 
calibrated to the lowest expression of pomcB in the control group. The calibrator (value 1) is marked with a red star. Each 
column is presented as mean of 6-10 individuals ± SEM. Arrows indicate in which groups and at what day degrees (d°C) 
shocking and transport happened, and columns with pattern are groups that have been treated. Non-capital and capital 
letters indicate significant differences (p<0.05) within a group, or between groups at the same time point, respectively. 
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As previously mentioned, transcripts of gr1 and gr2 (Figure 16) in the control group showed a 

decrease in embryos prior to transport, followed by an increase after hatching and start 

feeding larvae. The expression of gr1 in larvae at start feeding was significantly higher than in 

embryos at prior to shocking, while the expression of gr2 had no significant difference at these 

two time points. A similar pattern was shown for group S, T and ST between the embryos prior 

to shocking and the larvae at start feeding. In contrast to the control, which had a decrease of 

gene expressions in embryos prior to transport, group S and T had an increase. Expression of 

gr1 in embryos at prior to shocking was significantly different between group T (untreated) 

and the control group, which were expected to be similar at this stage. In embryos prior to 

transport, the groups S and ST showed a significantly higher expression of gr1 than the control 

group. However, group T (untreated), also showed a significant increase at this time point. 

Group S and T showed a significant lower gr1 expression level than the control group after 

hatching. In embryos prior to transport, both groups S and ST had a significantly higher 

expression of gr2 compared to the control group, and the gr2 expression level of S was 

significantly higher than ST. However, also here a significant difference was detected between 

group T (untreated) and the control group at the same time point, of which they were 

expected to be similar. 

 

The expression of mr (Figure 16) in the control group showed a significant increase after 

hatching  and start feeding . The same trend was also shown in group ST, while group S and T 

showed a first significant increase in embryo prior to transport followed by a second increase 

in larvae at start feeding. An increase was shown in groups S and ST prior to transport, 

compared to the control group.  However, the group T (untreated) was significantly higher 

than the control. After hatching the now treated group T was significantly lower than the 

control group. 
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Figure 16: Relative expression of the genes gr1, gr2 and mr in eggs and larvae of Atlantic salmon prior to shocking (326 
d°C), prior to transport (377d°C), at hatching (583d°C) and at start feeding (918d°C). Abbreviations for the four groups; 
C=control, S=shock, T=transport, ST=shock & transport. The changes in relative gene expressions are measured by 
quantitative RT-PCR normalized to the geometric mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the 
lowest expression of gr2 (for gr1 and gr2) and mr in the control group. The calibrator (value 1) is marked with a red star. Each 
column is presented as mean of 7-10 individuals ± SEM. Arrows indicate in which groups and at what day degrees (d°C) 
shocking and transport happened, and columns with pattern are groups that have been treated. Non-capital and capital 
letters indicate significant differences (p<0.05) within a group, or between groups at the same time point, respectively. 
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3.2.2 Ontogeny and long term treatment effects of HSP genes 

Transcripts of hsp70a (Figure 17) in the control group showed a significant decrease in 

embryos prior to transport, followed by an significant increase in hatched larvae , and a 

significant decrease in start feeding larvae . Hsp90a4 followed the same pattern, except that 

the embryos showed no significant difference in expression between embryos prior to 

shocking and transport. The three other groups S, T and ST also showed a significant decrease 

in expression levels of both hsp70a and hsp90a4 in start feeding larvae, compared to the 

expression levels found in embryos and hatched larvae. All groups also showed a gradual 

increase of hsp70a from prior to shocking until after hatching, however, this was only 

significant in group ST.  

The embryos in the shocked group S, showed a transient higher expression of hsp70a prior to 

transport, compared to the control group. In the untreated embryos prior to shocking there 

was a significant lower hsp70a expression in group ST compared to the control group. This 

was, however, temporarily, as the same group, now shocked, was similar to the control group 

prior to transport. No significant differences were found between the groups in expression 

levels of hsp90a4.  
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Figure 17: :  Relative expression of the gene hsp70a and hsp90a4 in eggs and larvae of Atlantic salmon prior to shocking 
(326 d°C), prior to transport (377d°C), at hatching (583d°C) and at start feeding (918d°C). Abbreviations for the four groups; 
C=control, S=shock, T=transport, ST=shock & transport. The changes in relative gene expressions are measured by 
quantitative RT-PCR normalized to the geometric mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the 
lowest expression of hsp70a in the control group. The calibrator (value 1) is marked with a red star. Each column is presented 
as mean of 8-10 individuals ± SEM. Arrows indicate in which groups and at what day degrees (d°C) shocking and transport 
happened, and columns with pattern are groups that have been treated. Non-capital and capital letters indicate significant 
differences (p<0.05) within a group, or between groups at the same time point, respectively. 
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3.3 Shocking  

Embryos were collected before (0h), 1 hour, 3 hours and 26 hours post shocking (hps),to 

examine the response of important genes involved in  HPI axis.  

 

3.3.1 Influence of shocking on HPI axis genes 

In general, the HPI-axis genes did not show any long-term (26hps) significant differences after 

treatment. Since group T was untreated at this time point, both the control group and group 

T should function as controls. However, they did show different levels of expression at several 

time points in the genes examined. This difference was temporal significant in crf1 1hps and 

3hps, and gr1 at 0hps and 1hps.    

The crf1 expression levels in group S (Figure 18) showed a temporal significant increase at 

3hps. Group T (untreated) showed a significant increase 26hps. Between the groups there was 

only a significant lower level of crf1 expression in group S 1hps, compared to the control group, 

if the differences between the two untreated groups were disregarded. The transcripts of crf2 

were generally lower than the crf1 transcripts. 
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Figure 18: Relative expression of the genes crf1 and crf2 in eggs and larvae of Atlantic salmon before (0h), 1 hour, 3 hours 
and 26 hours post shock treatment. Abbreviations for the four groups; C=control, S=shock, T=transport, ST=shock & 
transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the geometric mean 
of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of crf2 in the control group, 377d°C. Each 
column is presented as mean of 6-10 individuals ± SEM. The arrows shows which groups that are shocked and columns with 
pattern are treated groups. Non-capital and capital letters indicate significant differences (p<0.05) within a group, or between 
groups at the same time point, respectively. 
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Expression levels of pomcA1 (Figure 19) in the shocked group ST showed a long-term 

significant increase at 1hps that lasted until 26hps, while the shocked group S showed a 

significant increase 26hps. Group T (untreated) also showed a significant increase at 26hps. 

The expression level of pomcA1 in group S at 1hps was significantly higher than in group T 

(untreated). At 1hps, the average expression level of pomcA2 in group ST was found increased 

compared to the level at 0hps, however this difference was not significant. Also here there 

was a significant increase in group T (untreated) 24hps. Between groups, the only significance 

was between T (untreated) and ST at 3hps. The expression of pomcB showed no significant 

differences within all groups, and between groups.  
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Figure 19: Relative expression of the genes pomcA1, pomcA2 and pomcB in eggs and larvae of Atlantic salmon before (0h), 
1 hour, 3 hours and 26 hours post shock treatment. Abbreviations for the four groups; C=control, S=shock, T=transport, 
ST=shock & transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the 
geometric mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of pomcB in the control 
group, 377d°C. Each column is presented as mean of 6-10 individuals ± SEM. The arrows shows which groups that are shocked 
and columns with pattern are treated groups. Non-capital and capital letters indicate significant differences (p<0.05) within 
a group, or between groups at the same time point, respectively. 
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An increase in gr1 (Figure 20) expression level was found in the untreated group T at 3hps that 

lasted until 26hps. Group S also showed an increase of gr1 at 3hps. No significant differences 

were found between treated and both untreated groups. Transcripts of gr2, showed an 

increase at 3hps, which was steady until 26hps in all groups. Between treated and untreated 

groups, a significant difference was shown 3hps between group T (untreated) and the two 

groups S and ST. 

All groups showed a similar mr expression pattern as the gr2 transcripts, with a significant 

increase at 3hps that was steady until 26hps. A significant difference between ST and the 

control groups, was shown 1hps.  
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Figure 20: Relative expression of the genes gr1, gr2 and mr in eggs and larvae of Atlantic salmon before treatments (0h), 1 
hour, 3 hours and 26 hours post shock treatment. Abbreviations for the four groups; C=control, S=shock, T=transport, 
ST=shock & transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the 
geometric mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of gr2 (for gr1 and gr2), 
and mr in the control group, 377d°C. Each column is presented as mean of 7-10 individuals ± SEM. The arrows shows which 
groups that are shocked and columns with pattern are treated groups. Non-capital and capital letters indicate significant 
differences (p<0.05) within a group, or between groups at the same time point, respectively.  
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3.3.2 Influence of shock on HSPs genes 

In general, there was no evident effect on the gene expression of the two HSPs after the shock 

treatment (Figure 21). The two shocked groups did not have significantly different gene 

expressions compared to both the untreated groups simultaneously. The shocked groups S 

and ST, and the untreated group T, all showed a significantly increase in hsp70a expression at 

3hps compared to 1hps (S and T) and before shocking (ST). However, this increase was not 

significant in the control group. An increase was also shown 26hps for hsp90a4 expression in 

the group T (untreated), while the opposite was shown in the shocked group ST, compared to 

before shocking (0h). 
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Figure 21: Relative expression of the gene hsp70a and hsp90a4 in eggs and larvae of Atlantic salmon before (0h), 1 hour, 3 
hours and 26 hours post shock treatment. Abbreviation for the four groups; C=control, S=shock, T=transport, ST=shock & 
transport. The changes in relative gene expressions are measured by quantitative RT-PCR compared to a calibrator and 
normalized to the geometric mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of 
hsp70a in the control group, 918d°C. Each column is presented as mean of 6-10 individuals ± SEM. The arrows shows which 
groups that are shocked and columns with pattern are treated groups. Non-capital and capital letters indicate significant 
differences (p<0.05) within a group, or between groups at the same time point, respectively. 
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3.4 Transport  

Eggs collected before (0h), 1 hour, 3 hours and 26 hours post transport (hpt) were examined, 

in order to study the response of genes associated with a stress response.  It is important to 

stress that the transport lasted for 48 hours. The abundance of genes was measured by 

quantitative RT-PCR and the results of relative expression were plotted against the different 

time points in a bar chart. At current time point (377d°C), group S and ST had already been 

shocked.  

 

3.4.1 Influence of transport on HPI axis genes 

In general, most of the HPI-axis genes did not show any long-term (26hpt) significant 

differences after transport. The control group had a gradual increase that was significant in 

transcripts of all genes, except for pomcB. Group T was, as the control group, untreated before 

transport (0h). However, between the groups, gr1, gr2 and mr showed significant different 

levels of gene expression.  
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Transcripts of both crf1 and crf2 (Figure 22) showed a significant decrease 1hpt in the shock 

treated group ST, followed by an increase in expression that was significant for crf2 29hpt. 

Between groups, the shock treated group S, showed a temporal significantly higher expression 

of crf1 than the untreated group T before transport (0h). At 3hpt the now transported group 

T showed a transient significantly lower expression of crf2 than the control group, and the 

same was also shown for crf1 29hpt. The transcripts of crf2 were lower than crf1. 

 

C S T S T C S T S T C S T S T C S T S T

0

2

4

6

8

1 0

c r f1

R
e

la
ti

v
e

 e
x

p
r
e

s
s

io
n

a a

a

A b

A

A

B

B a

b

T ra n s p o r t

C S T S T C S T S T C S T S T C S T S T

0

1

2

3

c r f2

R
e

la
ti

v
e

 e
x

p
r
e

s
s

io
n

a

A b

b

a

b

a

B

T ra n s p o r t

*

0 h 1 h 3 h 2 9 h 0 h 1 h 3 h 2 9 h

 

Figure 22: Relative expression of the genes crf1 and crf2 in eggs and larvae of Atlantic salmon before (0h), 1 hour, 3 hours 
and 29 hours post transport. Abbreviations for the four groups; C=control, S=shock, T=transport, ST=shock & transport. 
The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the geometric mean of ef-1-α, 
ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of crf2 in the control group. The calibrator (value 1) 
is marked with a red star. Each column is presented as mean of 7-10 individuals ± SEM. The arrows shows which groups that 
are transported, and columns with pattern represents groups that have been through a treatment (shock and/or transport). 
Non-capital and capital letters indicate significant differences (p<0.05) within a group, or between groups at the same time 
point, respectively. 

 

  



Results 
 

44 
 

Transcripts of both pomcA1 and pomcA2 (Figure 23) showed significant differences between 

time points within group ST. The transcripts of pomcA1 showed a temporal, though not 

significant, decrease at 1hpt, followed by a significant increase 3hpt. An increase was also 

shown in the same group of pomcA2 3hpt, followed by a decrease 29hpt. The opposite was 

shown for pomcB, where the expression level in group ST increased between 3hpt and 29hpt. 

In addition, the not transported group S, showed a significant decrease of pomcB expression 

1hpt, that also was significant 3hpt. Before transport (0h), a significant difference in pomcB 

expression was shown between control and the shocked group S. Of the transported groups, 

group T showed a temporal significantly lower expression of pomcA1 compared to the control 

group at 3hpt. Both group T and ST showed a significantly lower expression of pomcA2 29hpt 

compared to the control group. PomcA2 and pomcB were expressed lower compared to 

pomcA1.  
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Figure 23: Relative expression of the genes pomcA1, pomcA2 and pomcB in eggs and larvae of Atlantic salmon before (0h), 
1 hour, 3 hours and 29 hours post transport. Abbreviation for the four groups; C=control, S=shock, T=transport, ST=shock 
& transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the geometric 
mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of pomcB in the control group. The 
calibrator (value 1) is marked with a red star.  Each column is presented as mean of 7-10 individuals ± SEM. The arrows shows 
which groups that are transported, and columns with pattern represents groups that have been through a treatment (shock 
and/or transport). Non-capital and capital letters indicate significant differences (p<0.05) within a group, or between groups 
at the same time point, respectively. 
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As a general pattern of the gr1 (Figure 24), the three groups S, T and ST showed a significant 

decrease in gene expression 1hpt, which remained decreased until 29hpt. Only group ST had 

a minor increase of gr1 at 3hpt and 29hpt. A similar pattern was shown for gr2 expression, 

which in groups S and T decreased at 1hpt. The expression level of gr2 in group T decreased 

3hpt which remained decreased until 29hpt. Group ST showed a significant decrease 29hpt 

compared to before transport. Before transport (0h), both gr’s showed a higher expression in 

groups S, T (untreated) and ST compared to the control group. A higher expression of gr1 was 

also shown in the now transported group T 1hpt, while at 29hpt group T was significantly 

lower than the control group. Group T also showed a decrease of crf2 expression at 3hpt 

compared to 1hpt and 0hpt.  

Transcript of mr showed the same pattern as for the gr1 and gr2, with a decrease of expression 

1hpt in groups S and T, which was steady until 29hpt. Before transport, the expression pattern 

was similar to gr2, and the pattern 1hpt between control and group T was similar to that 

explained for the gr1 expression. 
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Figure 24: Relative expression of the genes gr1, gr2 and mr in eggs and larvae of Atlantic salmon before (0h), 1 hour, 3 
hours and 29 hours post transport. Abbreviations for the four groups; C=control, S=shock, T=transport, ST=shock & 
transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the geometric mean 
of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of gr2 (for gr1 and gr2) and mr in the 
control group. The calibrator (value 1) is marked with a red star. Each column is presented as mean of 7-10 individuals ± SEM. 
The arrows shows which groups that are transported, and columns with pattern represents groups that have been through a 
treatment (shock and/or transport). Non-capital and capital letters indicate significant differences (p<0.05) within a group, 
or between groups at the same time point, respectively. 
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3.4.2 Influence of transport on HSP genes 

Both HSP genes showed an increase after the transportation (Figure 25). Hsp70a expression 

showed a significantly increase 1hpt in the two transported groups S and T, which was 

transiently and at 29hpt had decreased to the same level as before transport. This increase 

was significantly higher than in the two groups that were not transported. The same was 

shown for the expression of hsp90a4, where the both transported groups had an increase, 

only group ST was a bit more delayed. In contrast to hsp70a expression, the hsp90a4 

expression remained elevated 29hpt. The control group showed a significant increase of both 

hsp70a and hsp90a expression levels at 29hpt, but hsp90a was significantly lower than group 

T at 1hpt, both group T and ST at 3hpt and group ST at 29hpt. 
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Figure 25: Relative expression of the gene hsp70a and hsp90a4 in eggs and larvae of Atlantic salmon before (0h), 1 hour, 3 
hours and 29 hours post transport. Abbreviation for the four groups; C=control, S=shock, T=transport, ST=shock & 
transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the geometric mean 
of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of hsp70a in the control group, 918d°C. 
Each column is presented as mean of 7-10 individuals ± SEM. The arrows shows which groups that are transported, and 
columns with pattern represents groups that have been through a treatment (shock and/or transport). Non-capital and 
capital letters indicate significant differences (p<0.05) within a group, or between groups at the same time point, respectively. 
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3.5 Stress challenge  

Larvae were collected before (0h), 1 hour, 3 hours and 24 hours after a stress challenge 

conducted on all four groups, to examine a possible effect of the treatment and possible long-

term effects of previous treatments. The control group was also stress challenged. 

 

3.5.1 Influence of stress on HPI axis genes  

In general, the control group showed the highest increase in expression of crf1, crf2, gr2 and 

mr after the stress challenge, and both the control group and group ST showed highest 

increase in expression of pomcA1, pomcA2 and pomcB.  

The treated control group was the only group that showed any significant difference between 

examined time points for both crf1 and crf2 (Figure 26). The expression level of crf1 in the 

control group was significantly increased after 24h, and significantly higher than groups S and 

T at 24h. The control group showed an increase of crf2 after 1h, followed by a significant 

decrease after 3h, and then a significant increase after 24h. After 24h the control group was 

significantly higher than group T.  Before the stress challenge (0h) crf2 expression level was 

significant lower in group S and ST compared to the control.  
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Figure 26: Relative expression of the gene crf1 and crf2 in eggs and larvae of Atlantic salmon before (0h), 1 hour, 3 hours 
and 24 hours after a stress challenge. Abbreviation for the four groups; C=control, S=shock, T=transport, ST=shock & 
transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the geometric mean 
of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of crf2 in the control group, 377d°C. The 
calibrator (value 1) is marked with a red star. Each column is presented as mean of 8-10 individuals ± SEM. The arrows shows 
all groups that are stress challenged, and columns with pattern represents groups that have been through a treatment (shock, 
transport and/or stress challenge). Non-capital and capital letters indicate significant differences (p<0.05) within a group, or 
between groups at the same time point, respectively. 
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Expression levels of the pomc’s (Figure 27) showed a similar pattern from 0h to 24h, in both 

the control group and ST, and they both had a general higher expression levels than group S 

and T. Over time, pomcA1 generally showed an increase in gene expression, but this was only 

significant in group ST, and between 0h and 3h in group T. PomcA2 showed no significant 

expression difference within the groups. PomcB expression showed a gradually increase in all 

groups, which was statistically significant in both the treated control group (24h), and the 

group S (3h). General expression of PomcA2 and PomcB was lower than PomcA1. 
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Figure 27: Relative expression of the genes pomcA1, pomcA2 and pomcB in eggs and larvae of Atlantic salmon before (0h), 
1 hour, 3 hours and 24 hours after a stress challenge. Abbreviation for the four groups; C=control, S=shock, T=transport, 
ST=shock & transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the 
geometric mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of pomcB in the control 
group, 377d°C. The calibrator (value 1) is marked with a red star. Each column is presented as mean of 8-10 individuals ± 
SEM. The arrows shows all groups that are stress challenged, and columns with pattern represents groups that have been 
through a treatment (shock, transport and/or stress challenge). Non-capital and capital letters indicate significant differences 
(p<0.05) within a group, or between groups at the same time point, respectively. 

 

  



Results 
 

49 
 

Expression of gr1 (Figure 28) did not show any specific alteration, except for a significant 

decrease in group T 24h after the stress challenge, compared to 3h after the challenge. Gr2 

showed an increase in expression in both the control group and group S 24h after the 

challenge. Expressions of mr showed an increase in the treated control group and group S at 

1h and a significant increase in treated control, group S and group ST at 24h. Across the four 

groups, gr1 showed no significant differences. Results for both gr2 and mr showed that the 

treated control group after 24h had significant higher gene expression than the other groups 

at the same time point. 
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Figure 28: Relative expression of the gene gr1, gr2 and mr in eggs and larvae of Atlantic salmon before (0h), 1 hour, 3 hours 
and 24 hours after a stress challenge. Abbreviation for the four groups; C=control, S=shock, T=transport, ST=shock & 
transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the geometric mean 
of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of gr2 (for gr1 and gr2) and mr in the 
control group, 377d°C. Each column is presented as mean of 8-10 individuals ± SEM. The arrows shows all groups that are 
stress challenged, and columns with pattern represents groups that have been through a treatment (shock, transport and/or 
stress challenge). Non-capital and capital letters indicate significant differences (p<0.05) within a group, or between groups 
at the same time point, respectively. 
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3.5.2 Influence of stress on HSP genes 

A general trend of the HSP genes in all four groups (Figure 29) was a gradually increasing 

expression of hsp70a, with a significantly higher expression 24h after the stress challenge than 

before the challenge. The expression of hsp90a4 was also generally higher in all groups 24h 

after the stress challenge than before (0h), but only group S showed a statistical significant 

difference between these two time points. Comparing the four groups, hsp70a showed a 

significant difference between the control group and group T, 1h and 24h after stress 

challenge. Group S was also significantly lower than the control group 24h after stress 

challenge.  
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Figure 29: Relative expression of the gene hsp70a and hsp90a4 in eggs and larvae of Atlantic salmon before (0h), 1 hour, 3 
hours and 24 hours after a stress challenge. Abbreviation for the four groups; C=control, S=shock, T=transport, ST=shock 
& transport. The changes in relative gene expressions are measured by quantitative RT-PCR normalized to the geometric 
mean of ef-1-α, ẞ-actin and 18s rRNA expression, and calibrated to the lowest expression of hsp70a in the control group. The 
calibrator (value 1) is marked with a red star. Each column is presented as mean of 8-10 individuals ± SEM. The arrows shows 
all groups that are stress challenged, and columns with pattern represents groups that have been through a treatment (shock, 
transport and/or stress challenge). Non-capital and capital letters indicate significant differences (p<0.05) within a group, or 
between groups at the same time point, respectively. 
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4 Discussion 

The main objective of this study was to examine the influence of production related handling 

stress on acute and long-term expressions of HPI-axis and HSP genes in Atlantic salmon (Salmo 

salar L.) embryos and larvae. In general, the data obtained from the current study indicates 

that egg shocking do not result in any consistent acute changes in expression of the genes 

investigated. However, transport was found to initiate an acute upregulation of two HSP 

genes, indicating that handling may be experienced as a stressful event for the developing 

embryo. On the other hand, it was not found that any of the methods used for egg handling 

resulted in any long-term effects on basal HPI-axis or HSP gene expression.  

 

4.1 Mortality and developmental timing 

Effects of the treatment on morality, hatching and size at hatching, in addition to larval 

growth, were registered to account for possible bias in the sampling material. The results 

showed differences between groups at hatching. When it came to egg mortality the current 

study showed that the total amount of dead eggs eventually became similar in all four groups. 

However, the path was different as the three treated groups had a rapid increase in mortality 

following the treatments. This was probably because dead and undeveloped eggs got their 

vitelline membrane ruptured during the treatments. Almost all of the outgoing eggs were un-

developed or small-eyed eggs and during sampling only normal eyed-eggs were collected. The 

weight at hatch, and larval development rate in weight was similar in all groups.   

 

4.2 Ontogeny of the HPI- and HSP-genes 

In the present study, all examined genes of the HPI-axis, except for the gr1 and gr2, showed 

an increased expression throughout embryogenesis with a higher relative gene expression in 

newly hatched larvae than before hatching. This is in agreement with previous studies showing 

an increased expression of crf, pomc and mr during early life stages of zebrafish and tilapia 

(Hansen et al., 2003; Pepels and Balm, 2004; Alsop and Vijayan, 2008; Alderman and Bernier, 

2009). To the author’s knowledge, the ontogeny of the HPI-axis is poorly investigated in 

salmonids, and Atlantic salmon in particular. Embryos that have been studied to date have, to 

the author’s knowledge, not shown a functional stress response with respect to cortisol 

release after exposure to a stressor. This applies to several species (reviewed by Pittman et al. 
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2013), including Atlantic salmon (H. Tveiten, pers. Comm) and other salmonids (Auperin and 

Geslin, 2008). The expression of the different HPI-axis related genes during the embryogenesis 

may therefore indicate that they have a different role beside the HPI-axis.  

 

In the current study, expression of both crf1 and crf2 were detected during the 

embryogenesis, and showed a significant increase at hatching (Figure 14). This is in accordance 

with  Tsalafouta et al. (2014) which registered that expression of crf in European sea bass 

embryos showed a peak at hatching. After hatching, however, a difference in expression 

pattern of the two crf genes was detected in the current study. Expression of crf2 showed a 

second increase at start feeding, while crf1 expression decreased. In Atlantic salmon, it has 

been detected that the two crf genes shows a decreasing expression after hatching, followed 

by an increase towards the time of start feeding (Johnsen and Tveiten, unpublished). The lack 

of increasing crf1 expression at start feeding in the current study, may therefore be due to a 

delayed increase. Fuzzen et al. (2011) also detected an increase at start feeding in rainbow 

trout. The increase towards start feeding may correlate with de novo synthesis of cortisol and 

increase in cortisol production, and thereby indicate a developing HPI-axis. Crf has been shown 

to be involved in the regulation of appetite (Bernier and Peter, 2001), which may also explain 

the increase towards the time of start feeding in the current study. The detection of expressed 

crf1 and crf2 during the embryogenesis may indicate that they have a different role beside the 

HPI-axis, in embryos. Alderman and Bernier, (2009) detected CRF by in situ hybridization in 

the larval retina, and crf has shown to have a peak in expression at the time of eye opening in 

mammals (Bagnoli et al.2003). Also, in addition to being ACTH releasing factor, CRF-related 

peptides are also involved in secretion of pituitary thyroid hormone, thyrotropin, which have 

been shown to play a vital role during normal development of zebrafish (Alderman and 

Bernier, 2009).  

 

POMC is the precursor for ACTH and several other biomolecules. The ontogeny of the pomc’s 

in current study showed that they all had a significant increase at hatching (Figure 15). In 

addition, both pomcA1 and pomcA2 had a second significant increase at the time of start 

feeding, which, due to increasing cortisol synthesis (H. Tveiten., pers. comm.) may indicate a 

developing HPI-axis. PomcA1 showed a statistical significant increase in embryos at 377d°C 

compared to 326d°C, which may indicate that the expression increases rapidly during this time 
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of development. This is in agreement with a study on Atlantic salmon, which showed a rapid 

increase of pomcA1, pomcA2, pomcB expression between approximately 300d°C and 455°C 

(Johnsen and Tveiten, unpublished). POMC is synthesized in both corticotropic and 

melanotrophic cells of the pituitary, in addition to other regions of the brain and peripheral 

tissues (Hansen et al., 2003). Several studies have tried to assess different roles for the pomc’s, 

but to the author’s knowledge, there is no clear evidence of possible different functions. In 

the current study, there was shown a difference in the expression levels of the pomc’s in larvae 

at start feeding. PomcA2 and pomcB showed a relatively lower expression level compared to 

pomcA1, which may indicate that they have different roles at this development stage. 

However, it may also indicate a delayed increase of pomcA2 and pomcB expression. 

 

GRs and MR are receptors that mediates the action of cortisol. In the current study both gr1 

and gr2 expressions (Figure 16) showed significant decreases in embryos at 377d°C, followed 

by an increase at hatching and a second increase around the time of start feeding – at a time 

when salmonids are able to mount a cortisol response to stress (Auperin and Geslin 2008; H. 

Tveiten pers. comm.). It differs only seven days between the two time points measured during 

embryogenesis in the current study, but the findings are supported by a study on zebrafish, 

which also detected a decrease in embryo gr expression during the embryogenesis (Alsop and 

Vijayan, 2008). This increase may indicate that both gr’s in Atlantic salmon are maternally 

deposited and the mRNA depleted, and that somewhere between 377d°C and hatching, the 

zygotic transcription is initiated. This indication is in accordance to findings in Atlantic salmon 

(Johnsen and Tveiten, unpublished). Alsop and Vijayan, (2008) discovered that the profile of 

gr expression was similar to that of cortisol, which is known to start the de novo synthesis 

around the time of hatching, which also seem to be the case in salmonids (Auperin and Geslin 

2008; H. Tveiten pers. comm.). This indicates that the two gr’s may play an important role in 

conveying the action of cortisol. The expression of mr did not show any decrease before 

hatching in the current study. A decrease, however, might have occurred before or after the 

two measured time points, as the level of expression not showed any differences between 

these seven days. Other studies have detected a continuous elevation during development of 

mr, and to the author’s knowledge, there is no evidence that mr is maternally deposited, 

neither in Atlantic salmon (Alsop and Vijayan, 2008; Tsalafouta et al., 2014, Johnsen and 

Tveiten, unpublished). The continuous increase of mr expression, may indicate that also other 
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hormones than cortisol can be ligands for this receptor. Deoxycorticosterone (DOC) is studied 

in rainbow trout as a possible ligand for MR (Sturm et al. 2005). 

 

Members of the HSP70 family are present in all intracellular compartments and are known to 

play a crucial role in protein folding and translocation within the cells (Krone et al., 2003). 

Hsp70a expression in current study showed a slightly decrease in embryos at 377d°C, followed 

by an increase at hatching, which at start feeding was significantly decreased (Figure 17). 

Fuzzen et al. (2011) registered in rainbow trout a basal expression of HSP70 mRNA level that 

increased throughout ontogeny, but it was not clarified which hsp70 that was detected. The 

profile of hsp90a4 expression in current study was similar to hsp70a expression pattern with 

an increase in newly hatched larvae, followed by a significant decrease at start feeding. The 

expression levels of both the examined hsp’s in the current study, showed their lowest 

expression level at start feeding. This is opposite to the cortisol profile, which showed an 

increase towards start feeding in Atlantic salmon (Johnsen and Tveiten, unpublished). The 

decrease of the hsp’s may therefore indicate that HSPs play an important role as stress 

proteins during embryogenesis, and are downregulated sometime after hatching because of 

a functional HPI-axis is developing. Deane and Woo, (2003) detected in silver seabream larvae 

that the expression of hsp70 remained unchanged between 1-14dph, before increasing as 

larval development progressed. Also, studies conducted on fruit flies have demonstrated that 

expression of hsp70 can be detrimental to growth (Deane and Woo, 2003).  

 

4.3 Does stress alter gene expression? 

Even though the genes examined might have other functions than the hormone cascade that 

elicit the cortisol response, during the embryogenesis, they might still be altered upon stress.   

The genes were therefore examined to study how expected stressors like shocking and 

transport would be manged in embryos before the HPI-axis were functional. As mentioned 

earlier, the ontogeny of genes are poorly studied, and also, to the author’s knowledge, very 

few studies have reported transcript differences in larvae after exposure to stressors, and 

even fewer on embryonic response.  
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4.3.1 Short term effects of two treatments during embryonic development 

In the present study the stressors used were two main handling procedures eggs normally 

encounter during an egg production cycle; shocking and transportation. Both procedures 

occurred during the so-called eye-stage, which is associated with robust embryos (Egidius and 

Helland-Hansen, 1973; Groot, 1996). 

 

Shocking exposed the eggs to mechanical stress. During shocking, eggs were agitated so that 

the vitelline membrane of dead eggs was ruptured, but not so much that normal eggs were 

damaged. By doing this, dead eggs turned white and were easily sorted out. As a general 

explanation of the current results, there was not detected any specific effect of the shocking 

on any of the genes (Figure 18-21). The findings supports that the HPI-axis is not functional at 

this developmental stage. Some of the studied genes showed a transient increase, but a lack 

of increase in the other shocked group or a simultaneously increase of an un-shocked group, 

made these results hard to interpret. When one disregards this, the results showed a general 

increase during 24 hours in several of the genes examined. This is especially evident in gr2 and 

mr expression levels in all four groups.  

 

The transportation was a long-lasting treatment of which the eggs were both mechanical 

stressed and subjected to temperature changes. The samples were taken 1, 3 and 29 hours 

after a 48 hours transport, which means that the samples were taken 49, 51 and 77 hours 

after the 0 hour sampling. All measured gene expression of the control group showed an 

increase during this period. Pepels and Balm, (2004) showed, that there was a correlation 

between body weight and the level of crf expression during early development in tilapia. With 

this in mind, and assuming that the other genes also are correlated with weight, it is tempting 

to suggest that the increase of the control group might be because of rapid development of 

the embryo. As mentioned previously, Johnsen and Tveiten, (unpublished) showed that 

between approximately 300d°C and 455°C the expression of crf1, crf2, pomcA1, pomcA2, 

pomcB, gr1 and gr2 had a rapid increase, which is in the period where shocking and transport 

happened in the current study.  

During the transport, the eggs were held on a temperature that went below zero degrees, of 

which may indicate that they were subjected to a cold shock. The definition of cold shock 

according to Donaldson et al. (2008) is an ‘’acute decrease in ambient temperature that has 



Discussion 
 

56 
 

the potential to cause a rapid reduction in body temperature, resulting in a cascade of 

physiological and behavioural responses’’. In current study a decrease of both crf1 and crf2 

expression was shown after one hour, in the transported group that previously had been 

shocked (Figure 22). However, the decreased expression level was not sustained, and not 

significant different from the control. The same group showed an increase of pomcA1 and 

pomcA2 after 3 hours, and of pomcB after 29 hours (Figure 23). The other transported group 

showed no significant difference in expression of the HPI-axis genes during time points, except 

for a sustained decrease of gr2 after 3 hours. The discussed differences in expression levels of 

the HPI-axis after transport were minor, and there were several factors that made them 

difficult to interpret. Because of this, it is tempting to conclude that there were no distinct 

effect on the HPI-axis genes after transport in the current study. This is in accordance to the 

results of a study conducted on European sea bass embryos exposed to transport for 8 hours 

followed by netting and air exposure for 1 minute, which did not lead to any significant effect 

on crf, gr1, gr2 or mr expression levels (Tsalafouta et al., 2014).  

 

Both HSP genes however, showed an effect of the transport (Figure 25). Hsp70a showed a 

significant increase after 1h in both transported groups, which were back to normal levels 

after 29 hours. This is in accordance with Fuzzen et al. (2011) that detected a marked 

stimulator effect on hsp70 gene expression in embryos of rainbow trout 28dpf subjected to 

hypoxic treatment.  Hsp90a4 showed a significant increase after 1 hour in the transported 

group and after 3 hours in the group that had been both shocked and transported. This 

increase sustained in both groups until 29hour after transport. When knowing this, in addition 

to that the HPI-axis genes showed minor effect, one may speculate that the HSPs play a major 

role in stress response during embryogenesis, as the HPI-axis is not functional.  

 

4.3.2 Does the treatments shocking and transport give any long-term effects? 

Samples taken at the time of start feeding did not show any different expression between the 

groups of all genes except, crf2, which showed a significant lower expression level in both the 

shocked group compared to the control, and pomcA1, which had a significant lower 

expression in the transported group compared to the control (Figure 14 and 15). The lack of 

different expression between groups of the other genes, indicates that there was not shown 

any specific long-term effect after exposure to shocking and/or transport. The endocrine 
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system however, is a very complex system, and these findings do not exclude that stress may 

alter expression of other genes and pathways, e.g. immune genes and growth related genes. 

The increased expression of the HSP genes after transport indicates that this handling may be 

experienced as a stressful event for the developing embryo. One may speculate that exactly 

because the HPI-axis is not functional during the embryogenesis, this may be a period where 

other endocrine systems are more exposed and susceptible to changes after exposure to 

stress.  

 

Larvae around the time of start feeding were subjected to a stress challenge, of which 

consisted of one minute in ice water, followed by one minute in air. The control group showed 

a higher level of transcripts after 24 hours of crf1 and hsp70a compared to the shocked and 

the transported group, crf2, pomcA1, pomcA2 and pomcB compared to the transported group, 

and gr2 and mr compared to all groups (Figure 26-29). The fact that the control group showed 

an increase in several of the genes examined, after stress, may indicate that the HPI-axis is 

functional. Johnsen and Tveiten, (unpublished), showed in Atlantic salmon, a minor increase 

in cortisol in larvae at start feeding in response to stress, but not in the same amount as in 

juveniles Atlantic salmon, shown in the same study (Johnsen and Tveiten, unpublished). This 

indicates that the HPI-axis is functional at this time. The lack of increase in other groups may 

indicate that the gene expressions of previous treated groups have been depressed due to the 

subjected treatments. Except for the three pomc’s none of the other genes showed any 

difference in expression between the previous treated groups. The group that had been 

submitted to both shock and transport showed a similar expression level of all three pomc’s 

as the control after 24 hours. In addition, both groups showed significantly higher expression 

levels than the transported group. It is therefore tempting to speculate that when a gene is 

subjected to high enough amounts of stress, the depressed expression of the gene is reversed. 

Nofima has previous detected similar findings, where embryos subjected to repeated stress 

eventually became more similar to the control group (H. Tveiten, pers. Comm.). This may 

indicate that there are some epigenetic effects that possibly alters the gene expression when 

exposed to a stressor.  

The hsp’s did show a small effect of stress. However, compared to the effect of transport on 

the hsp genes, the stress challenge did not show similar response when the larvae was stress 

challenged at the time of start feeding. The hsp70a expression only showed a significant 



Discussion 
 

58 
 

increase over time. This is in accordance a study conducted by Fuzzen et al. (2011) which 

registered that hsp70 response to stressor was lower in larvae compared to embryos. In 

current study, hsp90a showed no effect, except for an increase in the shocked group. So, also 

with this gene the effect of stress was more pronounced in embryos than in larvae. When 

knowing this, in addition to the effect of transport during embryogenesis, and the high 

expression levels in embryos, it is tempting to conclude that hsp’s play a major role when it 

comes to dealing with stressors during embryogenesis.  
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5 Conclusions  

Several aspects related to mechanical shocking and transportation of Atlantic salmon eggs 

were clarified through this thesis and some basic knowledge was obtained. It was clear that 

the treatments (shock and transport) had a direct effect on weak eggs in the sense that it 

speeded up the process of sorting them out. However, the overall mortality was not 

significantly affected through the treatments. Further, the ontogeny of the HPI-axis genes; 

crf1, crf2, pomcA1, pomcA2, pomcB and mr, showed an increase in relative gene expression 

during the development, with higher expression levels in larvae than in embryo. Relative 

expression of gr1 and gr2 showed a decrease during the embryogenesis before an increase in 

newly hatched larvae, indicating that they are maternally transferred. The ontogeny of the 

HSP genes, hsp70a and hsp90a4, showed the highest levels of relative gene expression in 

newly hatched larvae and the lowest levels of gene expression in larvae at start feeding. It was 

not shown any specific alterations of any of the genes examined after the embryo had been 

exposed to shocking. The HPI-axis genes examined did not show any specific alterations after 

exposure to transport. Hsp70a and hsp90a4 however, showed an increase in relative 

expression after exposure to transport, which for hsp90a4 also was significant after 29 hours. 

As a possible long-term effect, it was shown a significant difference in crf2 and pomcA1 

expression between the control group and some of the treated groups at start feeding. This 

needs to be further analysed in future studies.  For the other genes, however, significant 

alteration was not detected between groups. After exposure to a stress challenge, there was 

shown alteration of crf1, crf2, pomcA1, pomcA2, pomcB, gr2, mr and hsp70a expression after 

24 hours. All these mentioned genes were lower expressed in the transported group than in 

the control group. Also in pomcA1, pomcA2 and pomcB the group that had been previous 

subjected to both shocking and transport, showed a similar increase in expression as in the 

control group 24 hours after the stress challenge. 
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Appendix I 

Chemicals  

Reagents Producer 

Absolute alcohol prime   

High Capacity cDNA Reverse Transcription Kit (4368814) Applied Biosystems 

Isopropanol  

Power SYBR Green PCR Master Mix (4367659) Applied Biosystems 

Proteinkinase K (AM2548) Ambion 

MagMAX Lysis/Binding Solution Concentrate (AM8500) Ambion 

MagMAX-Total RNA Isolation Kit (AM1830) Ambion 

Nuclease-free water (AM9937) Ambion 

Oligo d(T)16 Primer, 50µM (N8080128) Invitrogen 

RNA-later® solution (AM7021) Ambion 

TURBO DNA-free kit (AM1907) Ambion 
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Appendix II 

Tabell 1: Primers used in RT-qPCR 

Gene Sequence (5’-3’) Gene bank acc. no. E= 

Ef1α FW CGCCAACATGGGCTGG AF321836 2 

Ef1α RW TCACACCATTGGCGTTACCA   

ẞ-actin FW CAGCCCTCCTTCCTCGGTAT BT059604 2 

ẞ-actin RW CGTCACACTTCATGATGGAGTTG   

18S rRNA FW TGTGCCGCTAGAGGTGAAATT AJ427629 2 

18S rRNA RW CGAACCTCCGACTTTCGTTCT   

CRF 1 FW GCGGTCAACAGCGGTCA Unpublished 2 

CRF 1 RW TCTGGTTAGCGTAGCTGTTCAGA   

CRF 2 FW GTCGAGAGCCCTGACGATGT Unpublished 2 

CRF 2 RW CGTTGCCCAGTCGGATGT   

POMC A1 FW TGGAAGGGGGAGAGGGAG AB462418 2 

POMC A1 RW CAGCGGAAGTGGTTCATCTTG   

POMC A2 FW TCCCTGGAGGCTGGGACT AB462419 2 

POMC A2 RW CCAGCGGAAGTGGTTCATCTTA   

POMC B FW ACTAAGGTAGTCCCCAGAACCCTC DQ508935 2 

POMC B RW GCTACCCCAGCGGAAGTGA   

MR FW TGTCCAAAACTGTGGCTGAATC Unpublished 2 

MR RW CCGAAGCCGCCAAAGTCT   

GR1 FW ACCGCAGCAGAACCAACAG Unpublished 2 

GR1 RW TGGATCGATTCAAATCTGCAAT   

GR2 FW TGTCCATGAGGACGGAGACA Unpublished 2 

GR2 RW CCAATGTACCCTTCCTGATCCA   

HSP70a FW CTGGGCTGAATGTGCTGAGA Unpublished 2 

HSP70a RW CTGGACATGCCTTTGTCCATG   

HSP90a4 FW GAAGAAGCAAGAGGAGCTGAACA Unpublished 1.94 

HSP90a4 RW AACTGAAACCTTCTCAATCTTCTTGTC   

 

 



Appendix V 
 

67 
 

Appendix V 

Statistics on relative gene expression of crf1 

Table 2: Normality test of relative gene expression of the four groups; C=control, S=shock, T=transport and ST=shock & 
transport. 

     

 

 

 

 

 

Statistic df Sig. Statistic df Sig.

StressChallenge_0h_C
,244 10 ,093 ,929 10 ,440

StressChallenge_0h_ST
,226 10 ,159 ,887 10 ,157

StressChallenge_0h_S
,162 10 ,200

* ,956 10 ,738

StressChallenge_0h_T
,180 10 ,200

* ,940 10 ,553

StressChallenge_1h_C
,127 10 ,200

* ,930 10 ,448

StressChallenge_1h_ST
,217 9 ,200

* ,956 9 ,753

StressChallenge_1h_S
,203 10 ,200

* ,954 10 ,716

StressChallenge_1h_T
,205 10 ,200

* ,907 10 ,261

StressChallenge_3h_C
,153 10 ,200

* ,978 10 ,953

StressChallenge_3h_ST
,209 10 ,200

* ,878 10 ,124

StressChallenge_3h_S
,117 9 ,200

* ,977 9 ,946

StressChallenge_3h_T
,164 10 ,200

* ,974 10 ,927

StressChallenge_24h_C
,121 10 ,200

* ,982 10 ,973

StressChallenge_24h_S

T
,185 10 ,200

* ,973 10 ,920

StressChallenge_24h_S
,172 10 ,200

* ,946 10 ,624

StressChallenge_24h_T
,210 10 ,200

* ,927 10 ,417

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Tests of Normality

CRF1
Kolmogorov-Smirnov

a
Shapiro-Wilk
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The ontogeny of CRF expression, the control group: 

Tabell 3: Descriptives of the data from the analysed control group.  

 

 

Tabell 4: Levene’s test for homogeneity in varians conducted on the control group.  

 

 

Tabell 5: One way ANOVA 

 

 

Lower Bound Upper Bound

10 20,6420 3,71933 1,17616 17,9814 23,3026 15,63 28,27

10 27,2470 4,45137 1,40765 24,0627 30,4313 19,58 31,80

10 6,5160 1,30486 ,41263 5,5826 7,4494 4,33 8,20

10 5,5160 3,31534 1,04840 3,1443 7,8877 2,88 11,10

49 20,0300 16,57033 2,36719 15,2704 24,7896 2,88 77,18

Fixed Effects
9,75714 1,39388 17,2208 22,8392

Random 

Effects
6,77959 1,2069 38,8531 219,73341

Shock_0h_C

Total

Model

Descriptives

Values conrol group (C )

N Mean Std. Deviation Std. Error

95% Confidence Interval for 

Mean

Minimum Maximum

Between- 

Component 

Variance

Stress challenget_0h_C

Hatching_C

Transport_0h_C

Levene 

Statistic df1 df2 Sig.

16,592 4 44 ,000

Test of Homogeneity of Variances

Values control group (C )

Sum of 

Squares df Mean Square F Sig.

Between 

Groups
8990,769 4 2247,692 23,610 ,000

Within 

Groups
4188,877 44 95,202

Total
13179,646 48

ANOVA

Values control group (C )
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Tabell 6: Robust tests of equality was used because the data failed the Lavine’s test. 

 

 

Tabell 7: Games-Howell  as a post hoc test analysing the CRF1- data from the control group. 

  

 

 

 

  

Statistic
a

df1 df2 Sig.

Welch 75,895 4 19,542 ,000

Brown-

Forsythe
21,317 4 9,581 ,000

Robust Tests of Equality of Means

Values control group (C )

a. Asymptotically F distributed.

Lower Bound Upper Bound

Hatching_C
-6,60500

* 1,83434 ,016 -12,1700 -1,0400

Transport_0h_C
14,12600

* 1,24644 ,000 10,1064 18,1456

Shock_0h_C
15,12600

* 1,57559 ,000 10,3552 19,8968

StressChallenget_0h_C
6,60500

* 1,83434 ,016 1,0400 12,1700

Transport_0h_C
20,73100

* 1,46688 ,000 15,9504 25,5116

Shock_0h_C
21,73100

* 1,75517 ,000 16,3779 27,0841

StressChallenge_0h_C
-14,12600

* 1,24644 ,000 -18,1456 -10,1064

Hatching_C
-20,73100

* 1,46688 ,000 -25,5116 -15,9504

Shock_0h_C 1,00000 1,12668 ,896 -2,6048 4,6048

StressChallenge_0h_C
-15,12600

* 1,57559 ,000 -19,8968 -10,3552

Hatching_C
-21,73100

* 1,75517 ,000 -27,0841 -16,3779

Transport_0h_C -1,00000 1,12668 ,896 -4,6048 2,6048

*. The mean difference is significant at the 0.05 level.

Multiple Comparisons

Dependent Variable: 

(I) Ontogeny, control group (C ) CRF1
Mean 

Difference (I-

J) Std. Error Sig.

95% Confidence Interval

Games-

Howell

StressChallenge_

0h_C

Hatching_C

Transport_0h_C

Shock_0h_C
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