1	Prolonged high-grade metamorphism of supracrustal gneisses from Mühlig-
2	Hofmannfjella, central Dronning Maud Land (East Antarctica)
3	Synnøve Elvevold ^{1*} , Ane K. Engvik ² , Tamer S. Abu-Alam ^{1,3} , Per Inge Myhre ¹ and Fernando
4	Corfu ⁴
5	
6	¹ Norwegian Polar Institute, Fram Centre, P.O.Box 6606 Langnes, N-9296 Tromsø, Norway
7	(email: elvevold@npolar.no)
8	² Geological Survey of Norway, P.O.Box 6315 Torgard, N-7491 Trondheim, Norway
9	³ Currently at: The University of Tromsø - The Arctic University of Norway. P.O.Box 6050
10	Langnes, N-9037 Tromsø, Norway
11	⁴ Department of Geosciences, University of Oslo, P.O.Box 1047 Blindern, N-0316 Oslo,
12	Norway
13	

14 *Corresponding author

15 Highlights

16	٠	Gneisses from Dronning Maud Land record a prolonged Pan-African evolution
17		characterized by ITD followed by IBC path
18	٠	Reaction textures and phase relationships in anatectic paragneisses permit a fine-scale
19		analyses of the metamorphic evolution
20	•	U-Pb ID TIMS geochronology on zircon and monazite are presented
21		

22 Abstract

23 The bedrock of Mühlig-Hofmannfjella, central Dronning Maud Land in eastern Antarctica, is 24 part of the high-grade Maud Belt and comprises a deep-seated metamorphic-plutonic 25 complex. The P-T-t evolution of anatectic supracrustal gneisses has been recovered through a 26 study of mineral assemblages, textural relationships and U-Pb ID TIMS geochronology on 27 zircon and monazite followed by pseudosection modelling. Peak conditions reached granulite 28 facies conditions (T \geq 810-820°C) at moderate crustal depths (P=ca. 8 kbar) and resulted in 29 partial melting. Peak-pressure conditions were followed by isothermal decompression at 30 elevated temperatures. After exhumation to crustal levels of about 4-5 kbar, the area 31 underwent a final near-isobaric cooling, which is documented by a secondary growth of 32 garnet. Zircons indicate a period of growth at 570-566 Ma, whereas monazite ages range from 33 610-525 Ma. A likely heat source for the granulite facies metamorphism is decay of 34 radioactive heat-producing elements in the core of the orogen. The combined geochronology 35 and metamorphic data indicate a prolonged, clockwise P-T path, which reflects collision and 36 formation of a long-lived orogenic plateau.

- Keywords: Dronning Maud Land, Antarctica, East African/Antarctic Orogen, *P-T* path,
 prolonged metamorphism, hot orogen
- 40

41 **1. Introduction**

42 The mountain range of Dronning Maud Land (DML), East Antarctica (Fig. 1), represents a 43 deeply eroded section through the late Neoproterozoic/Early Paleozoic East African/Antarctic 44 Orogen (EAAO) (Jacobs et al. 1998). Metamorphic studies combined with geochronology has 45 shown that the central part of DML has a prolonged Ediacaran-Cambrian tectonothermal history with high-grade metamorphism and granitoid magmatism that span from ca. 650 to 46 47 500 Ma. For instance, granulite facies and UHT metamorphism at 660-630 Ma has been reported from the coastal exposures of Schirmacheroasen (Henjes-Kunst, 2004; Ravikant et 48 49 al., 2007; Baba et al., 2010), whereas high-grade metamorphism in the inland nunataks of the 50 mountain belt range from 630 to 500 Ma (Jacobs et al., 2003a; Paulsson and Austrheim, 2003; 51 Board et al., 2005; Bisnath et al., 2006, Baba et al., 2015; Pauly et al., 2016). The 52 metamorphic complex was intruded by A-type granitoid rocks around 540-490 Ma. The 53 granitoids are generally undeformed and include rocks of granitic, charnockitic, syenitic and 54 monzodioritic compositions.

The apparent long and complex tectonothermal history has been interpreted in different ways.
In a study by Baba et al. (2015), metamorphic zircon ages of ca. 600 and 525 Ma were
obtained from pelitic, cordierite-bearing paragneisses from two different localities in central
DML; Filchnerfjella and Hochlinfjellet, respectively. In both cases, the zircon ages were
interpreted to represent periods immediately succeeding high-temperature peak
metamorphism. The age gap of ~80 Myr was interpreted to indicate different collisional
events related to separate metamorphic terranes (Baba et al., 2015).

62	Jacobs et al. (2003b, 2008), on the other hand, proposed a model for DML which involves a
63	two-stage evolution; an early collision phase between 590 and 560 Ma, followed by
64	extension, high-temperature metamorphism, tectonic exhumation and emplacement of
65	intrusive rocks around 530-490 Ma. The early compressional stage resulted in the major,
66	strong deformation and medium- to high-grade metamorphism and growth of metamorphic
67	zircon rims on older cores (Jacobs et al. 2003b). The extensional stage resulted in isothermal
68	decompression, high-grade reworking (Engvik and Elvevold, 2004) and is characterized by
69	metamorphic as well as magmatic zircon growth (Jacobs et al. 2008).
70	Geological work in Dronning Maud Land is still fragmentary, available metamorphic age data
71	from the central part of the mountain range are scattered and the <i>P</i> - <i>T</i> - <i>t</i> paths are not well
72	constrained. In this contribution, we present new high-precision U-Pb ID TIMS data from
73	zircons and monazite from high-grade supracrustal rocks in Mühlig-Hofmannfjella. Large
74	parts of the thermal history are preserved within zircon and monazite populations in
75	individual samples. We focus on integrating metamorphic petrology, pseudosection modelling
76	and U-Pb geochronology, use the data to infer a <i>P</i> - <i>T</i> - <i>t</i> path of area, and add to the data and
77	discussions provided by previous studies.

79 **2. Geological background**

80 The East African/Antarctic Orogen (EAAO) is one of the largest orogen on Earth and formed

81 during multi-plate collision of various parts of East and West Gondwana (e.g. Stern, 1994;

82 Kröner and Stern, 2005; Fritz et al., 2013). Dronning Maud Land is interpreted to represent

the southernmost segment of EAAO (e.g. Jacobs et al. 1998; 2003b; Grantham et al., 2011),

84 although this view has been challenged by Collins and Pisarevsky (2005).

85	The Maud Belt in western and central DML comprises a metamorphic complex that stretches
86	from Heimefrontfjella in the west through Kirwanveggen, H.U. Sverdrupfjella, Gjelsvikfjella,
87	and Mühlig-Hofmannfjella eastwards (Fig. 1). Previous work has shown that the mountain
88	range has a complex tectonothermal history, which involves two main tectonothermal events;
89	the first in late Mesoproterozoic and the second in Ediacaran-Cambrian times (e.g. Jacobs et
90	al., 1998, 2003a; Paulsson and Austrheim, 2003; Bisnath et al., 2006; Grosch et al. 2015).
91	Outcrop scale structures, as well as mineral assemblages, related to the Mesoproterozoic
92	metamorphic event are difficult to recognize because of the strong Ediacaran-Cambrian
93	overprint. The Mesoproterozoic tectonothermal event is related to the assembly of Rodenia,
94	whereas the younger event is related to the assembly of Gondwana. The Ediacaran-Cambrian
95	event is commonly referred to as the Pan-African orogeny (Kennedy, 1964). The
96	metamorphic rocks in central DML display a strong, high-grade Pan-African overprint,
97	although late Mesoproterozoic protolith ages, as well as metamorphic ages, between 1.2-1.0
98	Ga are reported (Jacobs et al., 1998, 2003a; Paulsson and Austrheim, 2003; Bisnath et al.,
99	2006).
100	The bedrock of western and central DML comprises a metamorphic-plutonic complex where
101	the metamorphic sequence includes gneisses and migmatites of various compositions, which
102	typically contain granulite- or upper amphibolite facies mineralogy. The metamorphic rocks
103	are intruded by an igneous suite, which includes voluminous masses of granite, charnockite,
104	quartz-syenite, monzonite, monzodiorite and several generations of dykes. Some of the
105	granitoids are characterized by Fe-enriched bulk composition and contain fayalite (Ohta et al.,
106	1990). The intrusions show distinctive within-plate geochemistry (D'Souza et al. 2006). The

- 107 early Ediacaran-Cambrian intrusions show various degrees of deformation (Mikhalsky et al.,
- 108 1997; Jacobs et al., 1998), while the later quartz-syenites are mainly undeformed, except for
- 109 late shear zones and brittle faults. The igneous rocks in central DML intruded between 540

and 500 Ma (Mikhalsky et al., 1997; Paulsson and Austrheim, 2003; Jacobs et al., 2003b;
Markl and Henjes-Kunst, 2004; Jacobs et al., 2008).

112 Spectacular examples of fluid-rock interaction phenomena are widespread in central DML 113 (Markl and Piazolo, 1998; Ohta, 1999; Engvik et al., 2005). The fluid-rock interactions form 114 discordant light bands with a central pegmatite or aplite vein (Engvik et al., 2005, 2009; 115 Bucher and Frost, 2005; Engvik and Stöckhert, 2007), and were formed by infiltrating of 116 H_2O-CO_2 volatiles into the characteristic brownish high-grade granitoids. The late pegmatites, 117 fluid infiltration and associated alteration in a quartz-syenite in Filchnerfjella was dated to 118 around 486 Ma by U-Pb ID-TIMS dating of titanite (Paulsson, 2003). Cooling during the latest stage of the orogeny has been recorded by ⁴⁰Ar/³⁹Ar hornblende-, biotite- and K-119 120 feldspar ages, which range from ca. 480 to 435 Ma (Hendriks et al., 2013).

121

122 **3. Analytical methods**

123 The investigated samples from Mühlig-Hofmannfjella were collected during the Norwegian Antarctic Research Expedition 1996/97 (NARE 96/97). Detailed petrographic studies were 124 125 performed by optical microscopy and scanning electron microscopy (SEM) using a LEO1450 126 VP instrument at the Geological Survey of Norway (NGU), including mineral identification 127 with an energy-dispersive spectrometer (EDS) mounted on the SEM. Quantitative 128 microanalyses of mineral phases (Tables 1-4) were obtained using a Cameca SX100 electron 129 microprobe equipped with five wavelength-dispersive spectrometers at the Institute of 130 Geosciences, University of Oslo. The accelerating voltage was 15 kV and the counting time 131 10 s on peak using a beam current of 15 nA. Natural and synthetic silicate and oxides 132 standards were used for calibration. Data reduction was done with the PAP program (Pouchou 133 and Pichoir, 1984). Mineral abbreviations are after Whitney and Evans (2010). The chemical

134	formula were calculated using AX program (https://www.esc.cam.ac.uk/research/research-
135	groups/research-projects/tim-hollands-software-pages/ax). The following assumptions are
136	used to calculate Fe^{2+}/Fe^{3+} ratio: for garnet - total cations are 8 for 12 oxygens; for biotite –
137	the summation of tetrahedral and octahedral cations is 6.9 for 11 oxygens; for cordierite - total
138	cations are 11 for 18 oxygens; for plagioclase – all the iron is ferric oxide.
139	The bulk rock compositions were analyzed at NGU, measured on fused glass beads prepared
140	by 1:7 dilution with lithiumtetraborate. The samples were analyzed on a PANalytical Axios
141	XRF spectrometer equipped with a 4 kW Rh X-ray end-window tube, using common
142	international standards for calibration.
143	The U-Pb analyses on zircon and monazite (Table 5) were carried out by ID-TIMS (Krogh,
144	1973) at the University of Oslo. The selected zircons were subjected to chemical abrasion by
145	annealing at 900 $^{\circ}$ C and partial dissolution overnight in concentrated HF at about 190 $^{\circ}$ C
146	(adapted from Mattinson, 2005). Monazite was analyzed without abrasion. The U-Pb analyses
147	were done using a mixed 202 Pb- 205 Pb- 235 U tracer. The blank correction was ≤ 2 pg for Pb and
148	0.1 pg for U. A more detailed description of the procedure in the Oslo laboratory is given in
149	Corfu (2004). The decay constants are those of Jaffey et al. (1971). The data were calculated
150	and plotted using the program Isoplot (Ludwig 2009).

152 **4. Field relations**

153 The mountains and nunataks of Mühlig-Hofmannfjella (3°30'E to 7°E and 71°40'S to

154 72°10'S) are situated in central DML (Fig. 1) and belong to the Maud Belt. The northern part

155 of Hochlinfjellet (Figs. 1c, 2a), consists of supracrustals, grey gneisses and migmatites. The

156 strongly deformed supracrustal sequence, comprising calc-silicate rocks, garnet-biotite gneiss,

157 garnet-sillimanite-cordierite gneiss and migmatites, is intruded by monzonite and charnockite

(Fig. 2b). The pelitic garnet-bearing gneisses are weakly to strongly foliated, fine- to mediumgrained and display a characteristic brownish weathering color (Figs. 2c, d). The migmatitic
gneisses appear as metatexite, diatexite and raft migmatite. The descriptions below focus on

161 selected samples of garnet-sillimanite-cordierite gneiss and garnet-biotite gneiss.

162

- 163 **5. Petrography and mineral chemistry**
- 164 5.1 Garnet-sillimanite-cordierite gneiss (AHA240, AHA242, AHA245)

165 The gneisses contain variable portions of garnet, sillimanite, cordierite, quartz, feldspar and minor biotite. The feldspars are plagioclase, microcline, perthite and minor antiperthite. 166 167 Accessory minerals are spinel, ilmenite, magnetite, graphite, monazite and zircon. The 168 microtexture is characterized by an inequigranular matrix of quartz, feldspars and cordierite. 169 The matrix minerals define a slight grain flattening fabric and display highly irregular and 170 lobate grain boundaries. The grainsize of matrix quartz and feldspar varies between 0.2 - 4171 mm. Quartz form coarse, flattened grains, up to 3 mm long, and commonly includes tiny 172 biotite laths and plagioclase.

Garnet occurs in two textural varieties; i) as anhedral, poikiloblastic grains Grt₁, up to 8 mm,
and ii) as small euhedral to subhedral grains Grt₂, 0.2 to 1 mm (Fig. 3a). Grt₁ includes quartz,
biotite and ilmenite, and is frequently surrounded by a cordierite moat. The smaller Grt₂
grains are often clustered in elongated biotite-rich aggregates parallel to the foliation or as
small grains in cordierite-rich domains. Grt₂ include quartz and more rarely fibrolitic
sillimanite or cordierite (Fig. 3b).

179 Core compositions of Grt_1 in sample AHA245 are almandine ($X_{alm} = 0.79-0.80$) with pyrope 180 ($X_{prp} = 0.16-0.17$) and minor grossular ($X_{grs} = 0.03-0.04$) and spessartine ($X_{sps} = 0.01$). Grt_1 is

181	weakly zoned with increasing almandine (by 0.01-0.02 units) and decreasing pyrope (by 0.01-
182	0.02 units) towards the rim, whereas the grossular and spessartine content is homogenous.
183	The Fe/(Fe+Mg) values show a rimward increase from 0.83 to 0.85, and this zoning pattern is
184	interpreted as a retrograde feature.
185	Grt_2 is slightly more almandine-rich than the larger Grt_1 . Core composition of Grt_2 is X_{alm}
186	=0.81-0.82, X_{prp} =0.13-14, X_{grs} <0.035 and X_{sps} <0.02. Compositional zoning is present along
187	the crystal rims and is characterized by a rimward increase in Fe and Fe/(Fe+Mg) (Fe and Mg
188	show antithetic patterns). Rim composition is $X_{alm} = 0.83 - 0.85$, $X_{prp} = 0.10 - 12$, $X_{grs} < 0.035$ and
189	X _{sps} <0.02.
190	Two generations of <i>sillimanite</i> are present. Primary sillimanite, Sil ₁ , occurs as scattered
191	euhedral crystals in the matrix, and as inclusions in cordierite. A later generation of
192	sillimanite (Sil ₂) appears as secondary overgrowth on Sil ₁ (Fig. 3c) and as fibrolite along
193	grain boundaries of matrix minerals.
194	Cordierite is present as i) inclusions in Grt ₂ (Fig. 3b) and ii) as unaltered, equidimensional
195	grains in the matrix. It commonly surrounds and encloses spinel and sillimanite (Fig. 3d), and
196	more rarely biotite. Small inclusions of zircon and monazite are surrounded by pleochroic
197	haloes. Matrix cordierite is unzoned with X_{Fe} =0.41. Microprobe analyses are in the range 98-
198	99 wt% indicating the presence of CO_2 , H_2O , N_2 or other gases.
199	Feldspar is present as plagioclase, K-feldspar and as minor perthite and antiperthite. Cuspate
200	habit and low dihedral angles of feldspar grains suggest late crystallization of partial melts
201	(Fig. 3e). Plagioclase cores are An ₃₅₋₃₆ whereas partly recrystallized rims are An ₂₅₋₂₆ .
202	Antiperthite has the composition An_{36} and Or_{88} . Non-perthitic K-feldspar is Or_{86-88} , whereas
203	perthitic alkali feldspar has the composition Or ₈₅ .

204	Minor <i>biotite</i> forms small, lath-like crystals with a distinct reddish-brown color, coexisting
205	with garnet (Grt ₂) and matrix minerals (Fig. 3a). Biotite also occurs as rounded inclusions
206	within K-feldspar, quartz, garnet and cordierite. Very fine-grained biotite + quartz
207	symplectites are observed in contact with garnet (Fig. 4a). Matrix biotite is commonly
208	associated with graphite rods. The mineral chemistry of biotite is closely related to its textural
209	appearance. Core composition of matrix biotite and biotite included in K-feldspar has the
210	highest Fe/(Fe+Mg) ratio, which is in the range 0.63-0.65. Biotite included in garnet generally
211	has lower values (0.42-0.53) of Fe/(Fe+Mg) than matrix biotite. The highest Ti-contents (up
212	to 6.5 wt %) are analyzed in biotite included in K-feldspar and garnet.
213	Spinel is present as clusters of green and brown grains included in cordierite (Fig. 3d),
214	plagioclase and sillimanite. It is not observed in contact with quartz or any other matrix
215	minerals. Spinel is hercynite with $X_{Fe}=0.72-0.74$ and $X_{Zn}=0.10-0.19$.
216	
217	5.2 Garnet-biotite gneiss (AHA241, AHA244)
218	The garnet-biotite gneiss is fine-grained, strongly foliated and contains a higher proportion of
219	biotite than the garnet-sillimanite-cordierite gneiss. The fabric is defined by oriented
220	interstitial biotite, elongated clusters of garnet and flattened quartz grains. Major minerals are
221	garnet, plagioclase, K-feldspar, quartz and biotite, and accessory minerals are orthopyroxene,
222	apatite, ilmenite, graphite, zircon and monazite. The grain size of the quartz-feldspar matrix is
223	0.1-0.5 mm, larger flattened quartz grains are up to 2 mm long. Unlike the garnet-sillimanite-
224	cordierite gneiss, the garnet-biotite gneiss shows no textural evidence for more than one
225	generation of garnet, however, the core region of the larger garnets might belong to an older
226	generation. Subhedral to euhedral garnet porphyroblasts (Grt1?/Grt2) are 0.2-4 mm and
227	include abundant quartz (Fig. 3f) and minor orthopyroxene (Opx1). Garnets show straight

grain boundaries with biotite (Fig. 4b). Matrix biotite (Bt₂) is commonly associated with
 graphite rods. Quartz includes small rounded biotite laths.

- 230 The core composition of *garnet* (Grt_1 ?/ Grt_2) is almandine ($X_{alm} = 0.68-0.69$) with pyrope (X_{prp}
- 231 = 0.23-0.24) and minor grossular (X_{grs} = 0.05-0.06) and spessartine (X_{sps} = 0.02-0.03). The
- 232 Fe/(Fe+Mg) ratio for core is in the range of 0.74-0.75. The rim composition (Grt₂) is X_{alm}
- 233 =0.69-0.70, X_{prp} =0.22, X_{grs} < 0.065 and X_{sps} < 0.03. The values of the Fe/(Fe+Mg) ratio of
- garnet rim is 0.75-0.76, whereas the values are 0.82-0.83 when in contact with matrix biotite.
- Fe/(Fe+Mg) values of *biotite* (Bt_{1?/2}) included in garnet are in the range 0.22-0.30, whereas
- values for matrix biotite (Bt₂) are around 0.38. Ti values of biotite are in the range 0.21 to
- 237 0.32 a.p.f.u.
- 238 *Orthopyroxene* (Opx₁) is present as small inclusions in garnet. Analyzed orthopyroxene has 239 the composition En_{58-63} , and the maximum Al_2O_3 content is 1.99 wt%.
- Core composition of matrix *plagioclase* (Pl₂) is An₄₇₋₅₁Ab₃₉₋₅₂Kfs_{0-0.01}, whereas analyses of
 plagioclase (Pl₁?) included in garnet is An₄₇Ab₅₃.
- 242

243 5.3 Textural interpretation

The early peak assemblages in the garnet-sillimanite-cordierite gneiss are interpreted to comprise $Grt_1 + Sil_1 \pm Spl + Ilm + Qtz \pm Bt + ternary feldspars (perthite and antiperthite) +$ melt, which are indicative of granulite facies conditions. Garnets that occur in leucocratic layers are interpreted to be peritectic products formed during biotite dehydration melting. The presence of ternary feldspars is further indication of high-temperature granulite facies metamorphism. The peak assemblages are partially overprinted by cordierite-bearing assemblages. Grt₁ is surrounded by a cordierite moat (Fig. 3a), while larger cordierite crystals

251	commonly include sillimanite + spinel + ilmenite aggregates. These textures, which are
252	frequently observed in pelitic granulites, are typically formed during decompression at
253	elevated temperatures. Similar textures have been described by Elvevold and Engvik (2013)
254	in equivalent gneisses from Filcherfjella, ca. 100 km east of Hochlinfjellet.
255	A second-generation garnet, Grt ₂ , is found in garnet-sillimanite-cordierite gneiss, and is
256	present as small, subhedral to anhedral grains. Grt_2 enclose fibrolitic sillimanite (Sil ₂) and
257	cordierite (Fig. 3b) in addition to quartz. Grt ₂ may also occur as overgrowth on older garnet
258	(Grt ₁), although this is not easily detected. Grt ₂ is in equilibrium with matrix biotite, which is
259	interpreted to have formed during retrograde evolution of the gneisses, together with
260	secondary fibrolitic sillimanite (Sil ₂) (Fig. 3c). There are no unequivocal textures indicating to
261	which degree feldspars recrystallized during post-peak conditions.
262	Whereas the garnet-sillimanite-cordierite gneisses comprise relict granulite facies
263	assemblages, the matrix minerals in garnet-biotite gneiss is interpreted to represent a
264	retrograde amphibolite facies assemblage. Subhedral to euhedral garnets, which coexist with
265	matrix biotite, are interpreted to be secondary with respect to the peak assemblage. The peak
266	metamorphic assemblage in the garnet-biotite gneiss is interpreted to comprise a garnet +
267	orthopyroxene-bearing granulite facies assemblage. Orthopyroxene is only present as tiny
268	inclusions in garnet and was most probably removed from the equilibrium assemblage during
269	retrogression. As some of the garnet porphyroblasts are large (i.e. 4 mm), the cores regions of
270	theses garnet might be part of the peak assemblage. Phase equilibria modelling, see below,
271	demonstrates that prograde garnet was, at least partly (i.e. rims), consumed during
272	decompression before it resumed growth on isobaric cooling.

6. Phase equilibria modelling

275	Pseudosections, which illustrate the stability fields of different equilibrium mineral
276	assemblages for a given bulk rock composition, have been calculated for two different bulk
277	compositions using Perple_X version 6.8.6 (http://www.perplex.ethz.ch/; Connolly, 2009) and
278	the most recent internally consistent dataset, hp62ver, of Holland and Powell (2011). The
279	following activity-composition models were used; garnet (Holland and Powell, 1998); ternary
280	feldspar (Fuhrman and Lindsley, 1988); biotite (White et al., 2007); orthopyroxene (Holland
281	and Powell, 1996); melt (White et al., 2001; Holland and Powell, 2001); cordierite (White et
282	al., 2014). The albite-in and the K-feldspar-in boundaries in all pseudosections were
283	calculated by setting the Na/(Na+Ca+K) and K/(Na+Ca+K) of the ternary feldspar solution
284	model to zero; respectively.
285	Phase diagrams were calculated for the <i>P</i> - <i>T</i> range 2-10 kbar and 550-900°C for the XRF
286	analyses cited in the caption for Fig. 5. Sample AHA245 (garnet-sillimanite-cordierite gneiss)
287	comprises minerals with Fe ³⁺ (i.e. cordierite) and was accordingly modelled in the
288	NCKFMASHTO system. The modelling was undertaken in the NCKFMASHT system for
289	sample AHA244 (garnet-biotite gneiss). Iron was assumed to be Fe^{2+} as the Fe^{3+} content of
290	the minerals considered in this sample is negligible and Fe^{3+} oxides are not present. For both
291	samples, the Mn content is minor and is therefore not included into the system. The Ca
292	content has been adjusted to account for the presence of apatite, which is observed in all
293	samples. The water content during peak conditions was estimated by calculating $T-M_{\rm H2O}$
294	pseudosections at constant pressure. A near-peak pressure estimate of 8 kbar was used based
295	on "average pressure" calculations using the program THERMOCALC (Powell and Holland,
296	1988, Table 6).

The pseudosections are based on the measured bulk composition of anatectic gneisses that most probably have experienced melt loss during their prograde evolution. The reintegration of melt into the measured rock composition requires knowledge of the amount of melt that

300	was lost, which is difficult to constrain. Although the melt-reintegration approach has become
301	an increasingly used method (Bartoli, 2017 and references therein), it is beyond the scope of
302	this study. The calculated diagrams, using the composition of residuum after anatexis and
303	melt extraction, are therefore only appropriate for evaluating the near-peak and early
304	retrograde evolution of the gneisses.
305	Sample AHA244 shows petrographic evidence of re-equilibration during retrograde
306	conditions. In order to model the retrograde evolution, a new effective bulk composition was
307	calculated by removing the garnet cores (30% of the garnet chemical composition) from the
308	measured bulk chemistry using the rbi function of the THERMOCALC.
309	
507	
310	6.1 Garnet-sillimanite-cordierite gneiss (AHA245)
311	The T - M_{H2O} pseudosection for the garnet-sillimanite-cordierite bearing gneiss is shown in
312	Figure 5a. The peak assemblage Grt ₁ -Sil ₁ -Bt-ternary feldspars-Qtz melt defines a trivariant
313	field which extend over the full range of $M_{\rm H2O}$ in the temperature range 740-795 °C. The
314	value for the H ₂ O content at the peak conditions was chosen to be equivalent to the $M_{\rm H2O}$ at
315	the lowest temperature where the near-peak assemblage containing melt occurs, i.e. $M_{\rm H2O}$ of
316	0.78, which is equal to 2.73 mol% of H_2O in the system.
317	The calculated pseudosection for sample AHA245 is shown in Fig. 6. The stability field for
318	the assemblage Grt ₁ -Sil ₁ -Bt-Kfs-Pl-Qtz-melt is constrained by the temperature range 750-
319	820°C and pressures above 5 kbar (A in Fig. 6a). If we assume that biotite was absent from
320	the peak assemblage (i.e. Grt ₁ -Sil ₁ -Kfs-Pl-Qtz-melt) the calculated pseudosection constrain
321	the peak conditions to T $>$ 825 °C and P $>$ 7 kbar (A' in Fig. 6a). Small biotite grains are
322	included in cordierite, which suggests that biotite was present when cordierite formed during
323	the early stage of decompression. Biotite was most probably removed from the assemblage as
	14

324	the <i>P</i> - <i>T</i> path entered the Grt-Crd-Sil-melt field (B in Fig. 6a). Further decompression lead to
325	continued growth of cordierite and consumption of garnet and sillimanite (C in Fig. 6a), as
326	indicated by textural relationships.

Sample AHA245 is characterized by growth of secondary garnet (Grt₂) as well as secondary
fibrolitic sillimanite (Sil₂), and textural relationships suggest that Grt₂ and Sil₂ were produced
by breakdown of cordierite (Fig. 3b, c). The final melt crystallized during cooling as the *P*-*T*path crossed the Grt-Bt-Crd-Liq field into the Grt-Bt-Sil-Crd field around 750 °C and 4 kbar
(D in Fig. 6a).

332 Calculated mineral isopleths for grossular in garnet (Ca/(Ca+Fe+Mg) in garnet) and anorthite 333 in plagioclase (Ca/(Ca+Na+K) in plagioclase) are shown in Fig. 6b. Because the diffusion rate 334 of Ca in garnet is thought to be several orders slower than that of Fe and Mg (e.g. Spear, 335 1993), we consider the grossular component of large garnet cores (Grt_1) to have the best 336 potential to represent the mineral composition at the thermal peak. Likewise, because 337 intracrystalline diffusion in plagioclase involves coupled CaAl – NaSi exchange, diffusion 338 processes in plagioclase are limited during cooling. The measured mineral compositions of 339 garnet core and plagioclase inclusions in garnet plot within the Grt-Sil-Bt-melt field, and the 340 intersection of the mineral isopleths X_{Grs} and X_{An} indicate equilibration around 8 kbar and 341 810°C (Fig. 6b). It is worth noticing that the X_{An} isopleths are widely spaced and slight 342 variations in the plagioclase composition will have large impact on the pressure estimation. 343 In order to evaluate the garnet growth history of the sample, garnet modes were calculated 344 and contoured molar quantities are plotted in Fig. 7a. The plot demonstrates that the highest 345 garnet mode (between 10-12 vol %) is at peak conditions. With decreasing pressure, the 346 garnet mode decreases as garnet is being consumed to form cordierite. A small amount of 347 garnet will resume growth on isobaric cooling around the boundary between the Grt-Bt-Crd-

- 348 Sil and the Grt-Bt-Sil field (740-720°C at 4.5-5 kbar), and on further cooling from ca. 700 °C
 349 the garnet mode will slowly decrease again.
- 350

351 6.2 Garnet-biotite gneiss (AHA244)

The garnet-biotite gneiss is modelled in the NCKFMASHT system. The water content was estimated by calculating *T-M*_{H2O} pseudosection (Fig. 5b). The field containing the assumed peak assemblage Opx-Pl-Kfs-Grt-Liq-Qtz-Ilm is stable above 825°C at $M_{H2O} < 0.6$. If we consider the near-peak assemblage Bt-Pl-Kfs-Grt-Liq-Qtz-Ilm, we have chosen values for M_{H2O} at the lowest temperature for this assemblage (M_{H2O} =0.25), which corresponds to 1.9 mol% of H₂O in the system.

358 Figure 8a shows the calculated phase diagram for garnet-biotite gneiss. The high-temperature 359 side of the phase diagram was calculated for the measured bulk chemistry to model the near-360 peak metamorphic conditions, whereas the low-temperature side of the phase diagram was 361 calculated using a new effective bulk chemistry in order to infer the retrograde conditions. 362 The presence of orthopyroxene + garnet in the peak assemblage constrains the stability of the peak assemblage at temperatures $> 820^{\circ}$ C at pressures > 7 kbar. The absence of 363 364 orthopyroxene in the matrix assemblage suggest that the sample recrystallized and 365 equilibrated within the Grt-Bt-Kfs-Pl-Qtz field on the retrograde *P*-*T* path. Petrographic

observations, for example the straight grain boundaries between garnet and matrix biotite
(Fig. 4b) suggest late garnet growth. In order to evaluate the garnet growth history of the
sample, garnet modes were calculated and contoured molar quantities are plotted in Figure 7b.
The plot demonstrates that the higher garnet mode occurs at higher pressures. With decreasing
pressure, the garnet mode decreases and reach 0 around 7 kbar as garnet is being consumed
(assuming isothermal decompression). The contours further illustrate that garnet growth will

372	resume on near-isobaric cooling. The rim composition of garnet in contact with biotite
373	indicates retrograde equilibrium condition of ca. 4.3-4.5 kbar and 630-640 °C (Fig. 8b). These
374	conditions do, however, not correspond to the Grt-Bt field of the calculated phase diagram in
375	Fig. 8a. This inconsistency might be related to uncertainties and accuracy in thermodynamic
376	datasets and solution models. For example, the Grt-Bt field will expand to lower pressure
377	conditions using the biotite solution model of Powell and Holland 1999 (instead of the
378	solution model of White et al. 2007 which is used here) (field with dashed borders in Fig. 8a).
379	
380	7. U-Pb zircon and monazite geochronology
381	7.1 Zircon results
382	Zircon is abundant and highly heterogeneous in all three samples investigated (garnet-
383	sillimanite-cordierite gneiss; AHA240, AHA242 and garnet-biotite gneiss; AHA241). Each
384	sample contains several subpopulations consisting of (i) equant subrounded grains, (ii)
385	prismatic and variously resorbed grains, and (iii) prismatic euhedral crystals. The analyses
386	were done on selections of prismatic euhedral to subhedral crystals. Three zircon grains of
387	sample AHA242 Ma yield identical ²⁰⁶ Pb/ ²³⁸ U ages of about 566 Ma with a slight spread in
388	²⁰⁷ Pb/ ²⁰⁶ Pb age which may reflect small amounts of inherited zircon, or some later resetting
389	(Fig. 9). This may be supported by the fact that the youngest analysis was obtained from an
390	externally resorbed prism. The data sample AHA240 show the strongest spread with two
391	euhedral tips defining concordant analyses at 572-570 Ma but another euhedral zircon tip
392	yielding about 462 Ma. One of the prisms of sample AHA241 yields a discordant
393	Precambrian age whereas two other prisms are concordant at 570-568 Ma, together defining a
394	discordia line with intercept ages of 1038 ± 6 Ma and 569.8 ± 1.5 Ma (Fig. 9).

396 7.2 Monazite results

397	Monazite is present in all three samples in variable quantities, generally as equant, euhedral to
398	anhedral grains. Two grains from each sample were analyzed, obtaining results that are
399	concordant but very different from those of the zircons as they display a wide range of dates
400	(Fig. 9). The two analyses of sample AHA242 yield both the oldest and youngest dates of 606
401	and 526 Ma. A monazite grain of sample AHA241 also yields an age of 591 Ma, older than
402	that of the zircons. The other grain and the two in AHA240 are younger than the zircon.
403	

404 **8. Discussion**

405 8.1 *P*-*T* path

The metamorphic evolution of the investigated rocks from Mühlig-Hofmannfjella in the form 406 407 of a *P*-*T* path, is given in Fig. 10a. Chemical and textural evidence of the early prograde 408 metamorphic evolution is generally difficult to recover in high-grade rocks, and this is also 409 the case with supracrustal rocks studied herein. The calculated phase equilibria for the two 410 modelled bulk composition are consistent and shows good agreement with the observed 411 natural assemblages. Both samples record granulite facies metamorphism and the 412 pseudosections suggest peak metamorphic temperatures \geq 810-820 °C at mid-crustal levels 413 (ca. 8 kbar). The phase diagram and the presumed reaction history of the cordierite-bearing 414 gneiss can be explained by a clockwise *P*-*T* path characterized by post-peak decompression 415 from 8 kbar to about 4 kbar. The decrease in pressure from about 8 kbar to 4 kbar is 416 equivalent to an uplift of about 15 km. In both samples, prograde garnets were consumed 417 during decompression and resumed growth on the isobaric cooling segment of the *P*-*T* path 418 (Fig. 10a).

419	The decompression segment is comparable to the <i>P</i> - <i>T</i> evolution recorded by garnet-
420	orthopyroxene gneisses from Filchnerfjella (Engvik and Elvevold, 2004; Baba et al., 2008;
421	Ravikant, 2009; Elvevold and Engvik, 2013), as well as other parts of central Dronning Maud
422	Land (e.g. Bisnath and Frimmel, 2005; Board et al., 2005; Colombo and Talarico, 2004; Pant
423	et al., 2013; Palmeri et al. 2018). This type of clockwise $P-T$ paths is believed to be a key
424	feature of the Pan-African tectonism (Harley, 2003). A <i>P-T</i> evolution involving a final
425	isobaric cooling segment has also been proposed by Palmeri et al. (2018) for high-pressure
426	granulites from Conradfjella, and by Pauly et al. (2016) for granulites from H.U.
427	Sverdrupfjella.
428	
429	8.2 Zircon and monazite growth
430	Given the morphological variability of the zircon population, the likely presence of old
431	detrital zircon, and the long-lived thermal evolution of the region, it is reasonable to expect a
432	considerable scatter in the zircon data. Somewhat surprisingly, this is not the case. One of the
433	grains in AHA241 preserves an old Mesoproterozoic age, likely due to an original detrital
434	component, but the remaining analyses all yield ages between 572 and 562 Ma. The data for
435	AHA241 converge at 569.8 \pm 1.5 Ma, three analyses of sample AHA242 indicates about 566
436	Ma, and two of AHA240 are about 570 Ma, but with a younger grain at 562 Ma. The
437	dominant euhedral prismatic shape of the analyzed grains and their isotopic coherence
438	suggests that there was a main event of crystallization at around 570 Ma.
439	The monazite results, on the other hand, indicate that the rocks were subjected to prolonged
440	metamorphic conditions and/or were overprinted by later metamorphic events. Individual
441	grains yield ages ranging from 606 to 526 Ma. There are several possible explanations for the
442	pattern; (1) The monazite reflects prolonged crystallization, both earlier and later than zircon,

443 and a late growth event (at \leq 526 Ma) that partially recrystallized and/or overgrew earlier 444 monazites creating the pattern of variable ages. The data shown in Fig. 9 may either be actual 445 times of monazite growth, or they can represent mixing of different generations. Mixed age 446 components in U-Pb-analyses in the simplest case give a discordia line where the maximum and minimum intercept indicate the respective ages of the two mixed components. The fact 447 448 that these analyses do not define any such lines (because they are concordant) means that, if 449 the ages are mixed, these age components are closer in age than the 526 and 606 Ma end 450 member analyses. (2) Alternatively, the young monazite ages may be due to partial diffusion 451 of Pb during permanence at protracted high temperature conditions (e.g. Gasser et al. 2015). 452 The fact that the youngest dated grains in each sample are the smallest ones would seem to 453 support this mechanism. The older dates of 606 and 591 Ma obtained for two of the grains, 454 however, would seems to argue against simple diffusion. A possible explanation is that the 455 latter may have been encapsulated in early grown minerals, hence preventing the build-up of a 456 diffusive gradient in the grains and inhibiting diffusion. Either way, the monazite ages 457 presented here show a prolonged history of these rocks, with monazite growth both prior to 458 and after zircon crystallization at 570-566 Ma.

459

460 8.3 Comparison with previous geochronological data

461 Previous U-Pb zircon age data from Mühlig-Hofmannfjella are reported by Jacobs et al.

462 (2003a, 2003b) and Baba et al. (2015) (Fig. 10b). Jacobs et al. (2003a, 2003b) identified

463 Mesoproterozoic protolith ages in the range 1150-1000 Ma, as well as a Mesoproterozoic

464 metamorphic age at 1061 ± 2 Ma. Similar ages are reported from Gjelsvikfjella (Jacobs et al.,

465 2003a; 2003b; Bisnath et al., 2006), and from H.U. Sverdrupfjella (Board et al. 2005; Pauly et

466 al., 2016). The Mesoproterozoic protolith and metamorphic ages are all from orthogneisses.

467Baba et al. (2015) reported U-Pb zircon ages of 633 ± 4 Ma, 599 ± 1 Ma and 598 ± 2 Ma from468garnet-sillimanite-cordierite gneisses from the northwestern side of Hochlinfjellet (Fig.10b).469These ages are significantly older than the ca. 570 Ma zircon ages obtained in this study. It is,470however, reasonable to assume that the samples studied by Baba et al. (2015) have471experienced identical *P-T-t* evolution as the garnet-sillimanite-cordierite gneisses studied472herein.

473 A deformed leucogranite from Hochlinfjellet yielded 558 ± 6 Ma (U-Pb zircon, Jacobs et al., 474 2003a, Fig. 10b), which was interpreted as the crystallization age of a high-grade melt. The 475 authors report an identical age of 557 ± 13 Ma for another leucosome at the nearby nunatak 476 Festninga (Fig.10b). These ages are somewhat younger than the zircon ages recorded in our 477 study, although comparable considering the analytical errors. Rim overgrowths of zircons 478 from a charnockitic and a migmatitic gneiss record ages of 521 ± 2 Ma and 528 ± 10 Ma, 479 respectively (Fig.10b). These ages are identical to the U-Pb zircon ages of 522-525 Ma from 480 garnet-sillimanite-cordierite gneisses from Filchnerfjella (Baba et al. 2015). The latter metamorphic ages are significantly younger than the zircon ages obtained in this study but are 481 482 comparable to the youngest monazite ages. 483 Jacobs et al. (1998) have reported U-Pb zircon age data from various lithologies from 484 Orvinfjella and Wohlthatmassivet, located 200-250 km east of Hochlinfjellet. In addition to

485 Mesoproterozoic protolith and metamorphic ages (ca. 1130 Ma and ca. 1080 Ma,

486 respectively), two different metamorphic age groups at ca. 570-550 Ma and ca. 530-515 Ma

487 were recorded. Other ages of ca. 570 Ma have been reported from H.U. Sverdrupfjella (Board

488 et al. 2005; Pauly et al., 2016), Gjelsvikfjella (Bisnath et al., 2006) and Humboldtfjella

489 (Mikhalsky et al., 1997).

490 Geochronological data on monazite are available from H.U. Sverdrupfjella (Board et al. 2005; 491 Pauly et al. 2016) and Humboldtfjella (Pant et al., 2013). Board et al. (2005) report a U/Pb 492 concordia SHRIMP age of 528 ± 6 Ma, whereas in-situ dating of monazite yielded an age of 493 544 ± 16 Ma which they interpret as the timing of retrograde amphibolite-facies reworking. 494 The monazite data reported by Board et al. (2005) show an age scatter of a similar magnitude 495 as our results. Their results did not reveal any systematic variation in ages as a function of the 496 textural position of monazite in the sample (Board et al. 2005). Pauly et al. (2016) describe a 497 felsic granulite with monazite dates that range from > 600 Ma to 420 Ma. Matrix monazites 498 are for the most part younger than 570 Ma and yield an age peak at ca. 540 Ma which they 499 interpret as recrystallization after decompression under high-temperature low-pressure 500 conditions. Chemical in-situ dating of monazite from Humboldtfjella indicate growth between 501 640 and 580 Ma (Pant et al., 2013). A younger age group of ca. 540 Ma was interpreted as 502 thermal overprint related to the emplacement of charnockite and A-type granites (Pant et al., 503 2013).

504 Monazite crystallizes over a wide range of P-T conditions and can grow during the prograde 505 and retrograde segments during a single metamorphic cycle (e.g. Yakymchuk et al. 2017). 506 Although they can have different interpretations, the monazite dates obtained in this study are 507 comparable to ages recorded in previous studies (Board et al. 2005; Pant et al. 2013; Pauly et 508 al. 2016) and reveal a pattern that is characteristic of the Pan-African evolution of central 509 DML. Further detailed petrochronology work is needed in order to link the monazite and 510 zircon growth to the *P*-*T* path by considering textural association of the accessory minerals 511 along with geochemical characteristics.

512

513 8.4. Prolonged Pan-African metamorphic history

514 Geochronology demonstrates that the Maud Belt record a prolonged Ediacaran-Cambrian 515 metamorphic history that span > 100 Myr (Fig. 10c). Early, pre-600 Ma metamorphic ages 516 have been recorded in Schirmacheroasen (Baba et al., 2010), Mühlig-Hofmannfjella (Baba et 517 al. 2015), Humboldtfjella (Pant et al. 2013), and in H.U. Sverdrupfjella (Pauly et al., 2016). 518 Pauly et al. (2016) report zircon ages around 600 Ma, as well as > 600 Ma monazite 519 inclusions in garnet, which they interpreted to date the onset of the Pan-African 520 metamorphism. Likewise, Baba et al. (2015) interpreted the U-Pb zircon age of 633 ± 4 Ma 521 from Mühlig-Hofmannfjella (Fig. 10b) to an early metamorphic stage. Accessory phases such as monazite and zircon may preserve sub-solidus, or early supra-solidus prograde 522 523 metamorphic ages when the phases are included in prograde garnet and therefore protected 524 from dissolution during later high-grade metamorphism and anatexis. 525 Post-600 Ma zircon and monazite age data record a large range of ages between 580-520 Ma 526 (Jacobs et al., 2003b, 2008; Board et al., 2005; Bisnath et al. 2006; Pauly et al., 2016; Baba et 527 al. 2015, this study). These ages can be interpreted as a result of one long-lived event, or the result of a metamorphic history that involves more than one thermal cycle. We have not 528 529 observed any petrological indication in the studied samples for undergoing more than one 530 thermal cycle, therefore we prefer to interpret the large range of metamorphic ages to indicate 531 a prolonged metamorphic evolution. This study, as well as previous metamorphic P-T studies 532 of Maud Belt rocks (e.g. Elvevold and Engvik, 2013; Bisnath and Frimmel, 2005; Pauly et al. 533 2016) have shown that peak pressures occurred before peak temperature, which is consistent 534 with a relatively long residence time in the core of the orogen.

535 Crystallization of anatectic melt during cooling from peak temperature is, in fact, expected to 536 be the main mechanism for zircon growth in supra-solidus metamorphic rocks (Yakymchuk et 537 al. 2017). Scatter in U-Pb ages has been described in several studies of granulite facies rocks 538 (e.g. Kunz et al., 2018; Rubatto et al., 2001; Diener et al., 2013). Rocks that have experienced

539	identical <i>P</i> - <i>T</i> evolution, but variable amount of melt loss, will yield different solidus
540	temperatures, which again can be an explanation for differences in zircon ages (Korhonen et
541	al., 2013). Residual granulites and migmatite melanosome may for example contain zircons
542	that have survived heating to peak temperatures, whereas migmatite leucosomes and anatectic
543	granites are predicted to contain mostly newly formed zircon with minimal inherited
544	components (Yakymchuk & Brown, 2014).
545	It has also been shown that zircon can grow directly from breakdown of other Zr-rich major
546	phases such as garnet (Fraser et al, 1997, Degeling et al. 2001). We have shown herein that
547	decompression along the P - T path resulted in garnet consumption (Fig.7), which may have
548	released Zr for new zircon growth.
549	
550	8.5. Heat source of the high-temperature metamorphism
551	Ediacaran-Cambrian high-grade and anatectic rocks are present along the length of the
552	mountain range of DML; extending for more than 1500 km from H.U. Sverdrupfjella (0°) in
553	the west to Lützow-Holmbukta (40-45°E) in the east. The regional-scale high-grade
554	metamorphism and extensive magmatism over large areas, require a heat source capable of
555	maintaining high temperatures for a long time (> 100 Myr). Possible explanations for such
556	high heat flow into the crust are; i) advection of mantle heat by lithospheric extension and
557	magmatism, and ii) radioactive decay of heat producing elements (U, Th and K). Other
558	possibilities, such as shear heating, are not supposed to be significant on a regional scale
559	(Clark et al., 2011).
560	The apparent absence of voluminous, coeval mafic or ultramafic rocks during granulite
561	formation suggests that mantle magmatism is not a likely heat source for the observed high-

562 grade metamorphism in DML. The syn- to late-tectonic granitoid intrusives, including

charnockite, are more likely a crustal response to high temperature conditions rather than the
cause of the metamorphism. The lack of mantle-derived magmatism suggests that the
observed granulite facies metamorphism in DML is the result of radiogenic heat production.
In this scenario, the high heat flow is a result of heat generated within the thickened crustal
column during the Ediacaran-Cambrian collisional orogenesis.
It has been argued that crustal heat production by radioactive decay can be significant in
thickened crust provided that the crust remains thickened over a long period of time (e.g.
Clark et al., 2011; Korhonen et al., 2013; Kelsey and Hand, 2015; Horton et al., 2016).
Numerical modelling of orogens has shown that crustal material with moderate levels of heat
producing elements can reach temperatures in excess of 900°C if the crust is kept at depth
over an extended period (Clark et al., 2011; Jamieson and Beaumont, 2011). Radioactive self-
heating is maximized by high concentration of heat-producing elements and thick continental
crust in long-lived orogens (Clark et al., 2011). In fact, in several regional UHT terranes, the
burial of radioactive heat-producing elements has been interpreted as the primary driver of
UHT metamorphism (Clark et al., 2015; Kelsey and Hand, 2015).
The wide range of recorded Ediacaran-Cambrian metamorphic dates in DML is consistent
with a long-lived heat source. This fact, together with the absence of large-scale mafic
magmatism, indicate the heat source for the observed granulite facies metamorphism is the
result of radioactive heating at mid crustal depths.
8.6 Long-lived, hot orogens
The East African-Antarctic Orogen in Dronning Maud Land appears as a wide, hot orogen
with > 100 Myr of tectonothermal activity. Similar prolonged high-grade metamorphism, and

586 comparable ages, are reported from other Gondwana terranes including southern India

587	(Collins et al. 2014; Clark et al. 2015), Madagascar (Boger et al., 2015; Fitzsimons et al.,
588	2016; Holder et al., 2018) and Sri Lanka (He et al., 2018). Even though the amalgamation of
589	Gondwana is commonly discussed in terms of collisional suturing between east and west
590	Gondwana, the assembly was most probably polyphase and involved a series of collisions
591	between juvenile arc terranes and accretion of older continental fragments (Meert, 2003).
592	Formation of the Gondwana supercontinent was thus long-lived and complex (e.g. Meert,
593	2003; Squire et al., 2006; Gray et al., 2008; Meert and Lieberman, 2008; Santosh et al., 2009;
594	Collins et al., 2014; Abu-Alam et al., 2014; Clark et al., 2015; Horton et al., 2016; Fitzsimons
595	2016; He et al., 2018).
596	
597	9. Conclusion
597 598	9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a
597 598 599	 9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a prolonged metamorphic evolution that took place at high-temperature conditions during the
597 598 599 600	 9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a prolonged metamorphic evolution that took place at high-temperature conditions during the Pan-African orogeny. Peak metamorphism reached granulite facies conditions (T ≥ 810-
 597 598 599 600 601 	9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a prolonged metamorphic evolution that took place at high-temperature conditions during the Pan-African orogeny. Peak metamorphism reached granulite facies conditions (T ≥ 810- 820°C) at mid-crustal levels (ca. 30 km) and resulted in partial melting. The peak stage was
 597 598 599 600 601 602 	 9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a prolonged metamorphic evolution that took place at high-temperature conditions during the Pan-African orogeny. Peak metamorphism reached granulite facies conditions (T ≥ 810- 820°C) at mid-crustal levels (ca. 30 km) and resulted in partial melting. The peak stage was followed by near-isothermal exhumation to crustal depths of ca. 15 km and subsequent final
 597 598 599 600 601 602 603 	 9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a prolonged metamorphic evolution that took place at high-temperature conditions during the Pan-African orogeny. Peak metamorphism reached granulite facies conditions (T ≥ 810- 820°C) at mid-crustal levels (ca. 30 km) and resulted in partial melting. The peak stage was followed by near-isothermal exhumation to crustal depths of ca. 15 km and subsequent final isobaric cooling.
 597 598 599 600 601 602 603 604 	9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a prolonged metamorphic evolution that took place at high-temperature conditions during the Pan-African orogeny. Peak metamorphism reached granulite facies conditions (T ≥ 810- 820°C) at mid-crustal levels (ca. 30 km) and resulted in partial melting. The peak stage was followed by near-isothermal exhumation to crustal depths of ca. 15 km and subsequent final isobaric cooling. Available age data from central Dronning Maud Land suggest that continental collision may
 597 598 599 600 601 602 603 604 605 	9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a prolonged metamorphic evolution that took place at high-temperature conditions during the Pan-African orogeny. Peak metamorphism reached granulite facies conditions (T ≥ 810- 820°C) at mid-crustal levels (ca. 30 km) and resulted in partial melting. The peak stage was followed by near-isothermal exhumation to crustal depths of ca. 15 km and subsequent final isobaric cooling. Available age data from central Dronning Maud Land suggest that continental collision may have started in the early Ediacaran (630-600 Ma) and ended in the Cambrian (ca. 520 Ma).
 597 598 599 600 601 602 603 604 605 606 	9. Conclusion The supracrustal gneisses from western Mühlig-Hofmannfjella, Maud Belt, record a prolonged metamorphic evolution that took place at high-temperature conditions during the Pan-African orogeny. Peak metamorphism reached granulite facies conditions (T ≥ 810- 820°C) at mid-crustal levels (ca. 30 km) and resulted in partial melting. The peak stage was followed by near-isothermal exhumation to crustal depths of ca. 15 km and subsequent final isobaric cooling. Available age data from central Dronning Maud Land suggest that continental collision may have started in the early Ediacaran (630-600 Ma) and ended in the Cambrian (ca. 520 Ma).

607

609 Acknowledgments

26

Land are consistent with radiogenic heat accumulation beneath a long-lived orogenic plateau.

Samples for this study were collected during the Norwegian Antarctic Research Expedition
1996/97. We thank M. Erambert for help in the microprobe laboratory at University of Oslo
and B. Willemoes-Wissing at the SEM laboratory at the Geological Survey of Norway. M.
Flowerdew, J. Majka and V. Pease and two anonymous reviewers, are thanked for valuable
and constructive comments on earlier versions of the manuscript.
References
Abu-Alam, T.S., Hassan, M., Stüwe, K., Meyer, S.E. & Passchier, C.W., 2014. Multistage
tectonism and metamorphism during Gondwana collision: Baladiyah Complex, Saudi
Arabia. Journal of Petrology, 55, 1941–1964.
Baba, S., Owada, M., and Shiraishi, K. 2008. Contrasting metamorphic P-T path between
Schirmacher Hills and Mühlig-Hofmannfjella, central Dronning Maud Land, East
Antarctica. In Satish-Kumar, M.; Motoyoshi, Y.; Osanai, Y.; Hiroi, Y.; and Shiraishi,
K., eds. Geodynamic evolution of East Antarctica: a key to the East-West Gondwana
connection. Geol. Soc. Lond. Spec. Publ., 308, 401-417.
Baba, S., Hokada, T., Kaiden, H., Dunkley, D.J., Owada, M., Shiraishi, K., 2010. SHRIMP
zircon U-Pb dating of sapphirine-bearing granulite and biotite-hornblende gneiss in
the Schirmacher Hills, east Antarctica: implications for Neoproterozoic ultrahigh-
temperature metamorphism predating the assembly of Gondwana. Journal of
Geology, 118, 621–639.
Baba, S., Horie, K., Hokada, T., Owada, M., Adachi, T., Shiraishi, K., 2015. Multiple
collisions in the East African-Antarctic Orogen: Constraints from timing of
metamorphism in the Filchnerfjella and Hochlinfjellet terranes in central Dronning
Maud Land. Journal of Geology, 123, 55-78.

- Bartoli, O., 2017. Phase equilibria modelling of residual migmatites and granulites: An
 evaluation of the melt-reintegration approach. Journal of Metamorphic Geology, 35,
 919-942.
- Bisnath, A., Frimmel, H.E., 2005. Metamorphic evolution of the Maud Belt: P-T-t path for
 high-grade gneisses in Gjelsvikfjella Dronning Maud Land, East Antarctica. Journal
 of African Earth Sciences, 43, 505-524.
- Bisnath, A., Frimmel, H.E., Armstrong, R.A., Board, W.S., 2006. Tectono-thermal evolution
 of the Maud Belt: new SHRIMP U-Pb zircon data from Gjelsvikfjella, Dronning
 Maud Land, East Antarctica. Precambrian Research, 150, 95–121.
- Board, W.S., Frimmel, H.E., Armstrong, R.A., 2005. Pan-African tectonism in the Western
 Maud Belt: P-T-t path for high-grade gneisses in the H.U. Sverdrupfjella, East
 Antarctica. Journal of Petrology, 46, 671-699.
- Boger, S.D., Hirdes, W., Ferreira, C.A.M., Jenett, T., Dallwig, R., Fanning, C.M., 2015. The
 580-520 Gondwana suture of Madagascar and its continuation into Antarctica and
 Africa. Gondwana Research, 28, 1048-1060.
- 649 <u>http://dx.doi.org/10.1016/j.gr.2014.08.017</u>
- Bucher, K., Frost, B.R., 2005. Fluid transfer in high-grade metamorphic terrains intruded by
 anorogenic granites: the Thor range, Antarctica. Journal of Petrology 47, 567-593.
- Clark, C., Fitzsimons, I.C.W., Healy, D., Harley, S.L., 2011. How does the continental crust
 get really hot? Elements, 7, 235-240
- Clark, C., Healy, D., Johnson, T., Collins, A.S., Taylor, R.J., Santosh, M., Timms, N.E., 2015.
 Hot orogens and supercontinent amalgamation: A Gondwana example from southern
 India. Gondwana Research, 28, 1310-1328. https://doi.org/10.1016/j.gr.2014.11.005
- 657 Collins, A.S., Pisarevsky, S.A., 2005. Amalgamating eastern Gondwana: The evolution of
 658 Circum-Indian Orogens. Earth Science Reviews, 71, 229-270.

- Collins, A.S., Clark, C., Plavsa, D., 2014. Peninsular India in Gondwana: The tectonothermal
 evolution of the Southern Granulite Terrane and its Gondwanan counterparts.
 Gondwana Research, 25, 190–203
- Colombo, F., Talarico, F., 2004. Regional metamorphism in the high-grade basement of
 Central Dronning Maud Land, East Antarctica. Geologische Jahrbuch B96, 7-47.
- 664 Connolly, J.A.D., 2009. The geodynamic equation of state: What and how. Geochemistry,
 665 Geophysics, Geosystems, 10, Q10014
- 666 Connolly, J.A.D., Kerrick, D.M., 1987. An algorithm and computer program for calculating
 667 composition phase diagrams. CALPHAD 11, 1-55.
- Corfu, F., 2004. U-Pb age, setting and tectonic significance of the anorthosite-mangerite charnockite-granite suite, Lofoten-Vesterålen, Norway: Journal of Petrology 45,
 1799-1819, https://doi: 10.1093/petrology/egh034
- D'Souza, M.J., Prasad, A.V.K., Ravindra, R., 2006. Genesis of ferropotassic A-type granitoid
 of Mühlig-Hofmannfjella, Central Dronning Maud Land, East Antarctica. In:
- 673 Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F. (Eds)
- Antarctica: Contributions to Global Earth Sciences, Springer Verlag BerlinHeidelberg, 45-54.
- Degeling, H., Eggins, S., Ellis, D.G., 2001. Zr budgets for metamorphic reactions, and the
 formation of zircon from garnet breakdown. Mineral Magazine, 65, 749-758.
- Diener, J.F., White, R.W., Link, K., Dreyer, T.S., Moodley, A., 2013. Clockwise, low-P
 metamorphism of the Aus granulite terrain, southern Namibia, during the
- 680 Mesoproterozoic Namaqua Orogeny. Precambrian Research, 224, 629–652
- Elvevold, S., Engvik A.K., 2013. Pan-African decompressional P-T path recorded by
 granulites from central Dronning Maud Land, Antarctica. Mineralogy and Petrology,
 107, 651-664.

- Engvik, A.K., Elvevold, S., 2004. Pan-African extension and near-isothermal exhumation of a
 granulite facies terrain, Dronning Maud Land, Antarctica. Geological Magazine, 141,
 1-12.
- Engvik, A.K., Kalthoff, J., Bertram, A., Stöckhert, B., Austrheim, H., Elvevold, S., 2005.
 Magma-driven hydraulic fracturing and infiltration of fluids into the damaged host
 rock an example from Dronning Maud Land, Antarctica. Journal of Structural
 Geology, 27, 839-854.
- Engvik, A.K., Stöckhert, B., 2007. The inclusion record of fluid evolution crack healing and
 trapping from a heterogeneous system during rapid cooling of pegmatitic veins
 (Dronning Maud Land; Antarctica). Geofluids, 7, 171-185.
- Engvik, L., Stöckhert, B., Engvik, A.K., 2009. Fluid infiltration, heat transport, and healing of
 microcracks in the damage zone of magmatic veins: Numerical modeling. Journal of
 Geophysical Research, 114, B05203, https://doi:10.1029/2008JB005880
- Fitzsimons, I.C.W., 2016. Pan-African granulites of Madagascar and southern India:
 Gondwana assembly and parallels with modern Tibet. Journal of Mineralogical and
- 699 Petrological Sciences, 111, 73-88. <u>https://doi.org/10.2465/jmps.151117</u>.
- Fraser, G., Ellis, D., Eggins, S. 1997. Zirconium abundance in granulite-facies minerals, with
 implications for zircon geochronology in high-grade rocks. Geology, 25, 607-610
- Fritz, H., Abdelsalam, M., Ali, K.A., Bingen, B., Collins, A.S., Fowler, A.R., Ghebreab, W.,
 Hauzenberger, C.A., Johnson, P.R., Kusky, T.M., Macey, P., Muhongo, S., Stern,
 R.J., Viola, G., 2013. Orogen styles in the East African Orogen: A review of the
 Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences,
 86, 65-106.
- Fuhrman, M.L., Lindsley, D.H., 1988. Ternary-feldspar modeling and thermometry.
 American Mineralogist, 75, 201-215.

709	Gasser, D., Jeřábek, P., Faber, C., Stünitz, H., Menegon, L., Corfu, F., Erambert, M.
710	Whitehouse, M.J., 2015. Behavior of geochronometers and timing of metamorphic
711	reactions during deformation at lower crustal conditions: phase equilibrium modelling
712	and U-Pb dating of zircon, monazite, rutile and titanite from the Kalak Nappe
713	Complex, northern Norway. Journal of Metamorphic Geology,
714	https://doi:10.1111/jmg.12131
715	Grantham, G.H., Manhica, A.D.S.T., Armstrong, R.A., Kruger, F.J., Loubser, M., 2011. New
716	SHRIMP, Rb/Sr and Sm/Nd isotope and whole rock chemical data from central
717	Mozambique and western Dronning Maud land, Antarctica: Implications for the
718	nature of the eastern margin of the Kalahari Craton and the amalgamation of
719	Gondwana. Journal of African Earth Sciences, 59, 74–100.
720	Gray, D.R., Foster, D.A., Meert, J.G., Goscombe, B.D., Armstrong, R., Trouw, R.A.,
721	Passchier, C.W., 2008. A Damara orogen perspective on the assembly of
722	southwestern Gondwana. Geological Society, London, Special Publications 294,
723	257–278.
724	Grosch, E., Frimmel, H., Abu-Alam, T.S., Kosler J., 2015. Metamorphic and age constraints on
725	crustal reworking in the western H.U. Sverdrupfjella: Implications for the evolution of
726	Western Dronning Maud Land, Antarctica. Journal of the Geological Society, 172,
727	499-518.
728	Harley, S.L., 2003. Archaean-Cambrian crustal development in East Antarctica: Metamorphic
729	characteristics and tectonic implications. In: Yoshida, M., Windley, B.F., Dasgupta,
730	S. (Eds.) Proterozoic East Gondwana: Supercontinent Assembly and Breakup,
731	Geological Society of London Special Publication 206, 203-230.
732	He, X.F., Hand, M., Santosh, M., Kelsey, D.E., Morrissey, L.J., Tsunogae, T., 2018. Long-
733	lived metamorphic P-T-t evolution of the Highland Complex, Sri Lanka: Insights

734	from mafic granulites. Precambrian Research, 316, 227-243.
735	https://doi.org/10.1016/j.precamres.2018.08.008
736	Hendriks, B.W.H., Engvik, A.K., Elvevold, S., 2013. ⁴⁰ Ar/ ³⁹ Ar record of late Pan-African
737	exhumation of a granulite facies terrain, central Dronning Maud Land, East
738	Antarctica. Mineralogy and Petrology 107, 665-677.
739	Henjes-Kunst, F., 2004. Further evidence for Pan-African polyphase magmatism and
740	metamorphism in central Dronning Maud Land, East Antarctica, from rocks at
741	Schirmacheroase: a geochronological study. Geologisches Jahrbuch B96, 255-291.
742	Holland, T., Powell, R., 1996. Thermodynamics of order-disorder in minerals: I. Symmetric
743	formalism applied to minerals of fixed composition. American Mineralogist 81,
744	1413–1424.
745	Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic dataset for phases
746	of petrological interest. Journal of Metamorphic Geology 16, 309–343.
747	Holland, T.J.B., Powell, R., 2001. Calculation of phase relations involving haplogranitic melts
748	using an internally consistent thermodynamic dataset. Journal of Petrology 42, 673-
749	683.
750	Holland, T.J.B, Powell, R., 2011. An improved and extended internally consistent
751	thermodynamic dataset for phases of petrological interest, involving a new equation
752	of state for solids. Journal of Metamorphic Geology, 29, 333-383.
753	https://doi.org/10.1111/j.1525-1314.2010.00923.x
754	Horton, F., Hacker, B., Kylander-Clark. A., Holder, R., Jöns, N., 2016. Focused radiogenic
755	heating of middle crust caused ultrahigh temperatures in southern Madagascar.
756	Tectonics, 35, 293-314. https://doi.org/10.1002/2015TC004040
757	Jacobs. J., Fanning, C.M., Henjes-Kunst, F., Olesch, M., Paech, HJ., 1998. Continuation of
758	the Mozambique Belt into East Antarctica: Grenville-age metamorphism and

- polyphase Pan-African high-grade events in Central Dronning Maud Land. Journalof Geology 106, 385-406
- Jacobs, J., Bauer, W., Fanning, C.M., 2003a. New age constraints for Grenville-age
 metamorphism in western central Dronning Maud Land (East Antarctica), and
 implications for the paleogeography of Kalahari in Rodinia. International Journal of
 Earth Sciences 92, 301–315.
- Jacobs, J., Bauer, W., Fanning, C.M., 2003b. Late Neoproterozoic/Early Palaeozoic events in
 central Dronning Maud Land and significance for the southern extension of the East
 African Orogen into East Antarctica. Precambrian Research 126, 27-53
- Jacobs, J., Bingen, B., Thomas, R.J., Bauer, W., Wingate, M.T.D., Feitio, P., 2008. Early
 Paleoproterozoic orogenic collapse and voluminous late tectonic magmatism in
- Dronning Maud Land and Mozambique: insight into the partially delaminated
 orogenic root of the East African-Antarctic Orogen? In: Satish-Kumar, M.,
- Motoyoshi, Y., Osanai, Y., Hiroi, Y., Shiraishi, K., (Eds.) Geodynamic evolution of
 East Antarctica: a key to the East-West Gondwana connection. Geological Society
- 774London Special Publication 308, 69–90.
- Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., Essling, A. M., 1971. Precision
 measurement of half-lives and specific activities of U-235 and U-238: Physical
 Review C, 4, 1889.
- Jamieson, R.A., Beaumont, C., 2011. Coeval thrusting and extension during lower crustal
 ductile flow implications for exhumation of high-grade metamorphic rocks. Journal
 of Metamorphic Geology, 29, 33-51. <u>https://doi.org/10.1111/j.1525-</u>
- 781 <u>1314.2010.00908.x</u>
- Kelsey, D.E., Hand, M., 2015. On ultrahigh temperature crustal metamorphism: Phase
 equilibria, trace element thermometry, bulk composition, heat sources, timescales

and tectonic settings. Geoscience Frontiers, 6, 311-356.

785 <u>https://doi.org/10.1016/j.gsf.2014.09.006</u>

- Kennedy, W.Q., 1964. The structural differentiation of African in the Pan-African (+- 500
 m.y.) tectonic episode. 8th Annual Report of the Research Institute of African
 Geology, University of Leeds, UK, 48-49.
- Korhonen, F.J., Clark, C., Brown, M., Bhattacharya, S., Taylor, R., 2013. How long-lived is
 ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite
 geochronology in the Eastern Ghats orogenic belt, India. Precambrian Research.
- 792 <u>https://doi.org/10.1016/j.precamres.2012.12.001</u>
- Krogh, T. E., 1973. A low-contamination method for hydrothermal decomposition of zircon
 and extraction of U and Pb for isotopic age determinations: Geochimica et
- 795 Cosmochimica Acta 37, 485-494, doi: <u>http://dx.doi.org/10.1016/0016-</u>
 796 <u>7037(73)90213-5.</u>
- Kröner, A., Stern, R.J., 2005. Pan-African orogeny. Encyclopedia of Geology (2004), 1, 1-12
- Kunz, B.E., Regis, D., Engi, M., 2018. Zircon ages in granulite facies rocks: decoupling from
 geochemistry above 850°C? Contribution to Mineralogy and Petrology, 173, 26,
 https://doi.org/10.1007/s00410-018-1454-5
- Ludwig, K.R., 2009. Isoplot 4.1. A geochronological toolkit for Microsoft Excel, Berkeley
 Geochronology Center Special Publications, Volume 4.
- Markl, G., Piazolo, S., 1998. Halogen-bearing minerals in syenites and high-grade marbles of
 Dronning Maud Land, Antarctica: self-retrogression of originally anhydrous rocks by
 late-magmatic fluids and modelling of their chemical, thermal and isotope evolution
- 806 Markl, G., Henjes-Kunst, F., 2004. Magmatic conditions of formation and autometasomatism
- 807 of post-kinematic charnockites in Central Dronning Maud Land, East Antarctica.

808 Geologische Jahrbuch B96, 139-188.

809	Mattinson, J. M., 2005, Zircon U-Pb chemical abrasion ("CA-TIMS") method: Combined
810	annealing and multi-step partial dissolution analysis for improved precision and
811	accuracy of zircon ages: Chemical Geology, v. 220, no. 1-2, p. 47-66, doi:
812	http://dx.doi.org/10.1016/j.chemgeo.2005.03.011
813	Meert, J.G., 2003. A synopsis of events related to the assembly of Eastern Gondwana.
814	Tectonophysics 362, 1-40.
815	Meert, J.G., Lieberman, B.S., 2008. The Neoproterozoic assembly of Gondwana and its
816	relationship to the Ediacaran–Cambrian radiation. Gondwana Research 14, 5–21.
817	Mikhalsky, E.V., Beliatsky, B.V., Savva, E.V., Wetzel, HU., Fedorov, L.V., Weiser, T. &
818	Hahne, K. 1997. Reconnaissance geochronological data on polymetamorphic and
819	igneous rocks of the Humboldt Mountains, central Queen Maud Land, East
820	Antarctica. In: Ricci, C.A. (ed.) The Antarctic Region: Geological Evolution and
821	Processes. Terra Antarctica Publication, Siena, 45-53
822	Ohta, Y., Tørudbakken, B.O., Shiraishi, K., 1990. Geology of Gjelsvikfjella and western
823	Mühlig-Hofmannfjella, Dronning Maud Land, East Antarctica. Polar Research, 8,
824	99-126.
825	Ohta, Y., (ed) 1999. Nature environment map: Gjelsvikfjella and Western Mühlig-
826	Hofmannfjella, Dronning Maud Land, Antarctica 1:100.000 – Sheets 1 and 2. With
827	explanatory text, 37 pp. Norsk Polarinstitutt Temakart 24.
828	Palmeri, R., Godard, G., Di Vincenzo, G., Sandroni, S., Talarico, F.M., 2018. High-pressure
829	granulite-facies metamorphism in central Dronning Maud Land (East Antarctica):
830	Implications for Gondwana assembly. Lithos 300-301, 361-377.
831	https://doi.org/10.1016/j.lithos.2017.12.014
832	Pant N.C., Kundu A., D'Souza M.J., Saikia A. 2013. Petrology of the Neoproterozoic
833	granulites from Central Dronning Maud Land, East Antarctica – Implications for

- southward extension of East African Orogen (EAO). Precambrian Research 227,
 389-408.
- Paulsson, O., 2003. U-Pb geochronology of tectonothermal events related to the Rodenia and
 Gondwana supercontinents observations from Antarctica and Baltica. Litholund
 theses 2, Lund University, Sweden.
- Paulsson, O., Austrheim, H., 2003. A geochronological and geochemical study of rocks from
 the Gjelsvikfjella, Dronning Maud Land, Antarctica implications for
 Mesoproterozoic correlations and assembly of Gondwana. Precambrian Research,
 125, 113-138.
- Pauly, J., Marschall, H.R., Meyer, H.P., Chatterjee, N., Monteleone, B., 2016. Prolonged
 Ediacaran-Cambrian metamorphic history and short-lived high-pressure granulitefacies metamorphism in the H.U. Sverdrupfjella, Dronning Maud Land (East
 Antarctica): Evidence for continental collision during Gondwana assembly. Journal
 of Petrology, 57, 185-228.
- 848 Pouchou, J.P., Pichoir, 1984. Cameca PAP program. La Recherche Aerospatiale, 3, 167-192.
- Powell, R., Holland, T.J.B., 1988. An internally consistent thermodynamic dataset with
- uncertainties and correlations: 3. Application to geobarometry, worked examples anda computer program. Journal of Metamorphic Geology, 6, 173-204.
- Powell, R., Holland, T.J.B., 1999. Relating formulations of the thermodynamics of mineral
 solid solutions: activity modelling of pyroxenes, amphiboles and micas. American
 Mineralogist 84, 1-14.
- Ravikant, V., Laux, J.H., Pimentel, M.M., 2007. Sm-Nd and U-Pb isotopic constraints for
 crustal evolution during Late Neoproterozoic from rocks of the Schirmacher Oasis,
 East Antarctica: geodynamic development coeval with the East African Orogeny. In:
 Cooper, A.K., Raymond, C.R. et al. (Eds.) A Keystone in a Changing World-Online

859	Proceedings of the 10th ISAES, edited by USGS Open-File Report 2007-1047, Short
860	Research Paper 007, 5 p.; https://doi:10.3133/of2007-1047.srp007.
861	Ravikant, V., 2009. Tectono-metamorphic history recorded in high-grade rocks from
862	Filchnerfjella: Further evidence for Pan-African reworking of the Grenville aged
863	crust in central Dronning Maud Land, East Antarctica. Indian Journal of Geosciences
864	63, 1-12.
865	Rubatto, D., Williams, I.S., Buick, I.S., 2001. Zircon and monazite response to prograde
866	metamorphism in the Reynolds Range, central Australia. Contribution to
867	Mineralogy and Petrology, 140, 458–468
868	Santosh, M., Maruyama, S., Yamamoto, S., 2009. The making and breaking of
869	supercontinents: some speculations based on superplume, superdownwelling and the
870	role of tectosphere. Gondwana Research 15 (3–4), 324–341.
871	Squire, R.J., Campbell, I.H., Allen, C.M., Wilson, C.J.L., 2006. Did the Transgondwanan
872	Supermountain trigger the explosive radiation of animals on Earth? Earth and
873	Planetary Science Letters 250, 116–133.
874	Stern, R.J., 1994. Arc assembly and continental collision in the Neoproterozoic East African
875	Orogeny: implications for the consolidation of Gondwanaland. Annual Reviews
876	Earth Planetary Sciences 22, 319-351
877	Walsh, A.K., Kelsey, D.E., Kirkland, C.L., Hand, M., Smithies, R.H., Clark, C., Howard,
878	H.M., 2015. P-T-t evolution of a large, long-lived, ultrahigh-temperature Grenvillian
879	belt in central Australia. Gondwana Research, 28, 531-564.
880	https://doi.org/10.1016/j.gr.2015.05.012
881	White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of partial melting equilibria in
882	the system Na ₂ O–CaO–K ₂ O–FeO–MgO–Al ₂ O ₃ –SiO ₂ –H ₂ O (NCKFMASH). Journal
883	of Metamorphic Geology 19, 139–153.

884	White, R. W., Powell, R., Holland, T. J. B., 2007. Progress relation to calculation of partial
885	melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511-527.
886	White, R.W, Powell, R., Holland, T. J. B, Johnson, T.T., Green, E.C.R., 2014. New mineral
887	activity-composition relations for thermodynamic calculations in metapelitic
888	systems. Journal of Metamorphic Geology, 32, 261-286.
889	https://doi.org/10.1111/jmg.12071
890	Whitney, D.L., Evans, B.W., 2010. Abbreviations of names of rock-forming minerals.
891	American Mineralogist 95, 185-187.
892	Yakymchuk, C., Brown, M., 2014. Behavior of zircon and monazite during crustal melting.
893	Journal of Geological Society of London, 171, 465-479
894	Yakymchuk, C., Clark, C., White, R.W., 2017. Phase relations, reaction sequences and
895	petrochronology. In: Kohn, M.J., Engi, M and Lanari, P (Eds.) Petrochronology:
896	Methods and Applications. Reviews in Mineralogy and Geochemistry 83, 13-53.
897	
898	Figure captions
899	Figure 1. a) and b) The study area is located in Mühlig-Hofmannfjella in central Dronning
900	Maud Land. c) Geological map of Mühlig-Hofmannfjella after Ohta (1999).
901	Figure 2. a) The supracrustal rocks outcrop in the low-lying areas between Hoggestabben and
902	Hochlinfjellet. b) The foliated supracrustal gneisses are intruded by charnockite. Fluids
903	released from the gneisses have caused a bleached alteration zone in the charnockite along the
904	intrusive contact. c) The pelitic gneisses are associated with calc-silicate rocks and garnet-
905	biotite gneisses. d) Garnet-sillimanite-cordierite gneisses are characterized by brownish
906	weathering and foliation-parallel anatectic veins. e) Neosome in garnet-sillimanite-cordierite
907	gneiss.

908	Figure 3. Photomicrographs of garnet-sillimanite-cordierite gneiss (a-e) and garnet-biotite
909	gneiss (f). a) Garnet are present in two textural varieties; as larger anhedral inclusion-rich
910	grains (Grt1) and as smaller euhedral to subhedral grains (Grt2). The large garnet is mantled
911	by a moat of cordierite. The arrow points to a resorption embayment where garnet is replaced
912	by secondary sillimanite and biotite. b) Small, secondary garnets, Grt ₂ , include cordierite. c)
913	A euhedral sillimanite crystal (Sil ₁) is surrounded by secondary fibrolitic sillimanite (Sil _{1sec})
914	along the grain boundaries. d) Spinel and sillimanite are overgrown and replaced by
915	cordierite. e) Feldspar with low dihedral angel is interpreted to represent late crystallization of
916	partial melts. f) The garnet-biotite gneiss contains a higher proportion of biotite than the
917	sillimanite and cordierite bearing gneiss. Orthopyroxene is present as small inclusions in
918	poikiloblastic garnet.
919	Figure 4. a) Biotite-quartz intergrowth and very fine-grained symplectite in contact with
920	garnet. b) Secondary garnet displays straight grain boundaries towards biotite and irregular
921	boundary in contact with quartz.
922	Figure 5. Calculated T- $M_{\rm H2O}$ pseudosection for a) garnet-cordierite-sillimanite gneiss
923	(AHA245) and b) garnet-biotite gneiss (AHA244) at constant pressure of 8 kbar. All fields
924	include quartz and ilmenite in addition to the listed phases. Higher variance field are shown
925	by progressively darker shading. The stars indicate the lowest temperature for the stability of
926	the near-peak assemblages. The bulk composition for AHA245 is (wt%); SiO ₂ : 66.80, Al ₂ O ₃ :
927	16.90, FeO: 7.04, MgO: 2.08, CaO: 1.42, Na ₂ O: 1.52, K ₂ O: 2.18. The bulk composition for
928	AHA244 is (wt%); SiO ₂ : 63.00, Al ₂ O ₃ : 16.40, FeO: 5.59, MgO: 3.31, CaO: 4.30, Na ₂ O: 2.21,
929	K ₂ O: 2.16.
930	

Figure 6. a) Pseudosection calculated for garnet-sillimanite-cordierite gneiss (AHA245) in the
NCKFMASHTO system with the adjusted H₂O content of 2.7 mol%. All fields include

933	quartz, two feldspars, ilmenite and magnetite in additional to the listed phases. Higher
934	variance field are shown by progressively darker shading. The points A (A'), B, C and D in
935	the diagram are constrained by textural relationships. The peak- or near-peak assemblage,
936	point (A) plot in the Grt-Bt-Sil-Liq field (or alternatively in the Grt-Sil-Liq field – (A')). This
937	assemblage is replaced by cordierite-bearing assemblages (B). Breakdown of sillimanite to
938	produce cordierite document further decompression and progression into the Crd-Grt-Liq
939	field (C). Secondary growth of garnet, sillimanite and biotite reflect cooling into the field Grt-
940	Bt-Sil (D). b) The diagram shows the modelled isopleths of Ca/(Ca+Fe+Mg) in Grt and
941	$Ca/(Ca+Na+K)$ in Pl. The isopleth for the measured composition of Grt_1 core and plagioclase
942	inclusion intersects (red star) within the Grt-Bt-Sil-Liq field (shaded area) and indicate
943	equilibrium conditions of ca. 8 kbar and 810°C.
944	
945	Figure 7. a) P-T diagram contoured for molar quantities of garnet in sample AHA245. The
946	plot demonstrates that a small amount of garnet will grow along an isobaric cooling path in
947	the temperature range 740-720°C. b) Contoured molar quantities of garnet in sample
948	AHA244. The highest garnet mode occurs at higher pressures and decreases with decreasing
949	pressure. The contours show that garnet will start to grow again on isobaric cooling.
950	
951	Figure 8. Pseudosection of sample AHA244 calculated in the NCKFMASHT system with the
952	adjusted H ₂ O content of 1.9 mol%. The high-T side of the phase diagram was calculated for
953	the measured bulk chemistry to model the near-peak metamorphic conditions, whereas the
954	low-T side of the phase diagram was calculated using a new effective bulk chemistry in order

to infer the retrograde conditions. The presence of orthopyroxene in the peak assemblage

956 constrains the peak metamorphic temperatures $> 820^{\circ}$ C. b) The low-T part of the diagram

957	shows modelled isopleths of X_{Alm} in Grt_2 and $Fe/(Fe+Mg)$ in Bt_2 . The isopleths intersect at
958	4.3-4.5 kbar and 640-630°C.
959	
960	Figure 9. U-Pb concordia diagrams and plane light photographs of monazite and zircon grains
961	from the analyzed samples. Error ellipses show 2 sigma errors.
962	
963	Figure 10. a) The estimated <i>P</i> - <i>T</i> path for supracrustal rocks from Vedskålen. b) Map showing
964	published U-Pb ages from Festninga and Hochlinfjellet by Jacobs et al. (2003a)(J2003a),
965	Jacobs et al. (2003b)(J2003b) and Baba et al. (2015)(B2015). c) Summary of temperature-
966	time evolution of central Dronning Maud Land. The onset of Pan-African metamorphism is
967	indicated by zircon and monazite ages that fall in the range 640-600 Ma. Peak metamorphism
968	is interpreted to have occurred around 570-550 Ma, whereas exhumation and final cooling
969	took place in the period 530-435 Ma.

Table 1

Representative microprobe garnet analyses (formula calculated on the basis of 12 oxygens)

Lithology	grt-sil-crd gneiss	grt-sil-crd gneiss	grt-sil-crd gneiss	grt-sil-crd gneiss	grt-sil-crd gneiss	grt-sil-crd gneiss	grt-bt gneiss	grt-bt gneiss	grt-bt gneiss
Sample	AHA245	AHA245	AHA245	AHA245	AHA240	AHA240	AHA244	AHA244	AHA244
Anal, no,	94	99	100	103	13	19	5	59	54
Туре	core Grt ₁	rim Grt ₁	core Grt ₂	$\operatorname{rim}\operatorname{Grt}_2$	core Grt ₂	$\operatorname{rim}\operatorname{Grt}_2$	core	rim	rim cont bt
SiO ₂	37,10	37,42	36,74	36,89	36,51	36,69	37,80	37,59	36,92
TiO ₂	0,01	0,03	b.d.l	b.d.l	b.d.l	0,01	b.d.l	0,01	0,04
Al_2O_3	21,12	21,01	21,00	20,70	21,00	20,68	21,39	21,55	21,07
FeO	35,91	36,19	37,02	36,76	36,80	38,10	31,52	31,67	33,97
MnO	0,47	0,55	0,47	0,63	0,61	0,71	1,17	1,24	1,52
MgO	4,15	3,67	3,43	2,97	3,36	2,54	5,98	5,63	3,84
CaO	1,09	1,09	1,08	1,09	1,14	1,09	2,15	2,22	2,12
Cr ₂ O ₃	0,07	0,16	0,08	0,13	0,08	0,16	0,11	0,02	0,08
Total	99,92	100,15	99,98	99,24	99,73	100,12	100,25	100,02	99,68
Si	2,973	3,002	2,963	3,003	2,955	2,976	2,974	2,968	2,966
Al	1,995	1,987	1,997	1,987	2,004	1,978	1,984	2,006	1,996
Ti	0,001	0,002	-	-	-	0,001	-	0,001	0,002
Fe ³⁺	0,054	-	0,072	-	0,082	0,059	0,060	0,056	0,064
Fe ²⁺	2,352	2,428	2,426	2,503	2,409	2,526	2,014	2,035	2,219
Mn	0,032	0,037	0,032	0,043	0,042	0,049	0,078	0,083	0,104
Mg	0,496	0,439	0,412	0,360	0,405	0,307	0,701	0,662	0,459
Ca	0,094	0,094	0,093	0,095	0,099	0,095	0,181	0,188	0,182
Cr	0,004	0,010	0,005	0,008	0,005	0,010	0,007	0,001	0,005
X _{grs}	0,032	0,031	0,031	0,032	0,034	0,032	0,061	0,063	0,061
X _{sps}	0,011	0,012	0,011	0,014	0,014	0,016	0,026	0,028	0,035
X _{alm}	0,791	0,810	0,819	0,834	0,815	0,849	0,677	0,686	0,749
X _{prp}	0,167	0,146	0,139	0,120	0,137	0,103	0,236	0,223	0,155
Fe/(Fe+Mg)	0,83	0,85	0,85	0,87	0,86	0,89	0,74	0,75	0,83

Table 2

Representative microprobe biotite analyses (formula calculated on the basis of 11 oxygens)

T '41 - 1	grt-sil-crd	grt-sil-crd	grt-sil-crd	grt-sil-crd	grt-bt	grt-bt	grt-bt
Lithology	gneiss	gneiss	gneiss	gneiss	gneiss	gneiss	gneiss
Sample	AHA240	AHA240	AHA240	AHA245	AHA244	AHA244	AHA244
Anal, no,	40	23	26	35	11	3	52
Туре	incl Grt1	matrix	incl Kfs	matrix	matrix	incl grt	cont w grt
SiO ₂	34,81	34,53	34,19	34,47	36,64	38,27	36,92
TiO ₂	3,17	4,07	5,35	3,86	2,59	2,04	2,74
Al_2O_3	19,26	18,65	17,37	18,80	16,66	16,55	16,79
FeO	16,79	21,60	21,86	21,40	15,28	10,80	15,17
MnO	b.d.l	0,02	0,01	b.d.l	0,02	b.d.l	0,03
MgO	10,55	6,52	6,72	7,10	13,96	18,20	13,86
CaO	0,02	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.1
Na ₂ O	0,20	0,08	0,09	0,13	0,12	0,62	0,13
K ₂ O	9,68	9,75	9,87	9,78	9,41	8,19	9,45
Cr_2O_3	0,18	0,25	0,35	0,10	0,11	0,14	0,07
Total	94,66	95,48	95,80	95,64	94,81	95,00	95,16
Si	2,644	2,664	2,644	2,652	2,750	2,775	2,757
Al	1,725	1,697	1,584	1,705	1,474	1,415	1,479
Ti	0,181	0,236	0,311	0,223	0,146	0,111	0,154
Fe ³⁺	-	-	-	-	0,007	0,098	0,000
Fe ²⁺	1,067	1,394	1,414	1,377	0,952	0,556	0,947
Mn	-	0,001	0,001	-	0,001	-	0,002
Mg	1,194	0,750	0,774	0,814	1,562	1,967	1,543
Ca	0,002	-	-	-	-	-	-
Na	0,029	0,012	0,013	0,019	0,017	0,087	0,019
Κ	0,938	0,960	0,974	0,960	0,901	0,758	0,900
Cr	0,011	0,015	0,021	0,006	0,007	0,008	0,004
Fe/(Fe+Mg)	0,47	0,65	0,65	0,63	0,38	0,22	0,38

Table 3

Representative microprobe cordierite analyses (formula calculated on the basis of 18 oxygens)

Lithology	grt-sil-crd	grt-sil-crd	grt-sil-crd
Litilology	gneiss	gneiss	gneiss
Sample	AHA240	AHA240	AHA245
Anal, no,	25	33	33
Туре	matrix	w/spl incl	matrix
SiO ₂	48,07	47,69	48,07
TiO ₂	b.d.l	0,01	b.d.l
Al_2O_3	32,38	32,55	32,85
FeO	10,11	9,67	10,05
MnO	0,06	0,03	0,05
MgO	7,41	7,58	7,35
CaO	0,01	b.d.l	0,01
Na ₂ O	0,10	0,10	0,13
Total	98,25	97,75	98,54
Si	4,989	4,964	4,967
Al	3,962	3,994	4,001
Ti	-	0,001	-
Fe ³⁺	0,082	0,096	0,091
Fe ²⁺	0,796	0,746	0,777
Mn	0,005	0,003	0,004
Mg	1,146	1,176	1,132
Ca	0,001	-	0,001
Na	0,02	0,02	0,03

Table 4Representative microprobe of additional phases

Lithology	grt-bt	grt-bt	grt-sil-crd	grt-sil-crd
Commla				
Sample	АПА244 50	АПА244	107	110
Anal. no.	50	2	107	110
Mineral	pl	opx incl gr	t spl incl crd	pl
SiO ₂	56,63	51,08	0,05	59,39
TiO ₂	0,01	0,06	0,02	0,02
Al_2O_3	27,62	1,99	56,06	25,87
FeO	b.d.l	25,98	29,95	b.d.l
MnO	b.d.l	0,27	0,03	0,02
ZnO	b.d.l	b.d.l	8,64	b.d.l
MgO	b.d.l	20,10	2,04	b.d.l
CaO	9,90	0,14	0,02	7,41
Na ₂ O	6,07	0,01	b.d.l	7,34
K ₂ O	0,11	b.d.l	b.d.l	0,16
Cr_2O_3	b.d.l	0,08	1,25	b.d.l
Total	100,34	99,83	98,06	100,22
Si	2,535	1,935	0,002	2,643
Al	1,458	0,089	1,950	1,358
Ti	-	0,002	-	0,001
Fe ³⁺	-	0,037	0,017	-
Fe ²⁺	-	0,786	0,722	-
Zn	-	-	0,188	-
Mn	-	0,009	0,001	0,001
Mg	-	1,135	0,090	-
Ca	0,475	0,006	0,001	0,353
Na	0,527	0,001	-	0,633
Κ	0,006	-	-	0,009
Cr	-	-	0,03	-

Table 5. U-Pb data for supracrustal rocks, Mühlig-Hofmannfjella

U-Pb data

	No	Characteristics ¹⁾	Weight	U	Th/U ³⁾	Pbi ⁴⁾	Pbc ⁴⁾	²⁰⁶ Pb/	²⁰⁷ Pb/	2 s	²⁰⁶ Pb/	2 s	rho	²⁰⁷ Pb/	2 s	²⁰⁶ Pb/	2 s	²⁰⁷ Pb/	2 s	²⁰⁷ Pb/	2 s
			[11] ²⁾	[ppm] ²⁾		[nnm]	[pg]	²⁰⁴ Pb ³	²³⁵ U ⁰⁾		²³⁸ U ⁰			²⁰⁰ Pb ⁰⁾	[Mo]	²³⁸ U ⁰	[abc]	²³⁵ U ⁰⁾	[abc]	²⁰⁰ Pb ⁰	[abc]
		AHA240 garnat	cillimoni	ito cordi	rito anoi	[ppiii]	lpgj		[abs]		[abs]			[abs]	[Ivia]	[lvia]	[abs]	[IVIA]	[abs]	[aus]	[abs]
AUA240 420/19	1	Zahla CA [1]	5111111a111 1 4	101		33	0.0	15629	0 7572	0.0022	0.00270	0.00021	0.70	0.05010	0.00011	572.0	1 2	572 5	14	5741	4.1
AHA240 439/16	1	Z so IP CA [1]	14	101	0,37	0,00	0,9	10000	0,7575	0,0023	0,09279	0,00021	0,79	0,05919	0,00011	572,0	1,2	572,5	1,4	574,1	4,1
AHA240 439/16	2	Z eu tip CA [1]	1 /	184	0,34	0,00	1,1	16866	0,7538	0,0020	0,09249	0,00019	0,88	0,05911	0,00008	570,2	1,1	570,4	1,1	5/1,5	2,7
AHA240 439/17	3	Z eu tip CA [1]	16	216	0,30	0,00	1,4	13821	0,7391	0,0019	0,09116	0,00019	0,87	0,05880	0,00008	562,4	1,1	561,9	1,1	559,7	2,8
AHA240 441/S.93	4	M eu eq NA [1]	20	1820	13,80	0,40	10,1	20383	0,7248	0,0017	0,08975	0,00019	0,96	0,05857	0,00004	554,1	1,1	553,5	1,0	551,2	1,6
AHA240 441/S.104	5	M an eq NA [1]	1	10454	4,63	0,49	2,5	22667	0,6933	0,0017	0,08655	0,00018	0,95	0,05810	0,00005	535,1	1,1	534,8	1,0	533,5	1,7
		AHA241 garnet-	biotite g	neiss																	
AHA241 439/20	6	Z eu lp-tip CA [1]] 6	418	0,12	0,00	1,7	12898	1,3126	0,0034	0,13730	0,00029	0,90	0,06934	0,00008	829,4	1,7	851,3	1,5	908,8	2,3
AHA241 439/19	7	Z eu lp-tip flat CA	A 73	220	0,39	0,00	1,3	70148	0,7526	0,0018	0,09243	0,00019	0,96	0,05905	0,00004	569,9	1,1	569,7	1,0	569,1	1,5
AHA241 439/21	8	Z sb lp-tip CA [1]] 35	314	0,26	0,00	1,4	46849	0,7493	0,0019	0,09211	0,00020	0,95	0,05900	0,00005	568,0	1,2	567,8	1,1	567,0	1,8
AHA241 441/S.39	9	M an eq NA [1]	5	3959	18,91	1,09	7,5	15994	0,7910	0,0020	0,09612	0,00021	0,96	0,05968	0,00005	591,6	1,2	591,7	1,1	592,2	1,6
AHA241 441/S.44	10	M an eq NA [1]	1	4495	39,43	2,34	4,4	5627	0,6969	0,0019	0,08685	0,00019	0,87	0,05820	0,00008	536,9	1,1	537,0	1,2	537,2	3,0
		AHA242 garnet-	sillimani	ite-cordie	erite gnei	SS															
AHA242 439/23	11	Z eu lp-tip CA [1]] 3	525	0,25	0,00	0,7	12491	0,7498	0,0020	0,09191	0,00018	0,83	0,05917	0,00009	566,8	1,1	568,1	1,2	573,2	3,2
AHA242 439/22	12	Z eu sp CA [1]	15	288	0,24	0,00	1,0	24961	0,7483	0,0019	0,09182	0,00019	0,91	0,05911	0,00006	566,3	1,1	567,3	1,1	571,1	2,3
AHA242 439/24	13	Z eu lp CA [1]	22	199	0,11	0,00	1,7	15113	0,7470	0,0019	0,09174	0,00019	0,90	0,05905	0,00007	565,8	1,1	566,5	1,1	568,9	2,4
AHA242 441/S.36	14	M an eq NA [1]	15	4245	9,45	0,43	8,4	46775	0,8172	0,0021	0,09858	0,00022	0,97	0,06012	0,00004	606,1	1,3	606,5	1,1	607,8	1,4
AHA242 441/S.38	15	M an NA [1]	5	2428	10,30	0,85	6,3	10355	0,6788	0,0016	0,08510	0,00018	0,95	0,05785	0,00005	526,5	1,0	526,1	1,0	524,2	1,7

 $^{1)}$ Z = zircon; M = monazite; eu = euhedral; sb = subhedral; an = anhedral; lp = long prisamatic; eq = equant; CA = chemically abraded; NA = non-abraded; [20] = number of grains

in fraction

^{2,4)} weight and concentrations are known to better than 10%, except for those near and below the ca. 1 ug limit of resolution of the balance

³⁾ Th/U model ratio inferred from 208/206 ratio and age of sample

⁴⁾ Pbi = initial common Pb; Pbc = total common Pb in sample (initial + blank)

⁵⁾ raw data corrected for fractionation

⁶⁾ corrected for fractionation, spike, blank and initial common Pb; error calculated by propagating the main sources of uncertainty.

Sample	Assemblage	Av P (kbar)	SdP (kbar)
AHA245	Grt+Sil+Pl Kfs Bt	7.8	1.7
AHA244	Grt+Opx+Pl+Bt	7.7	1.3

Table 6. Results from «Average P» calculation using Thermocalc (Holland and Powell, 1988).

