
1.  Introduction
Remote sensing reflectance, Rrs(λ) (sr−1), has been listed by the Global Climate Observation System as an 
essential climate variable thanks to its fundamental role in enabling observation of biogeochemical pro-
cesses in the upper ocean (GCOS, 2003, and following updates; Groom et al., 2019). Theoretical studies 
have shown that apparent optical properties (AOPs) of the water such as sub-surface and above-surface 
remote sensing reflectance, rrs(0−, λ) and Rrs(0+, λ) respectively, are related to inherent optical properties 
(IOPs) such as absorption, a(λ) (m−1), and backscattering, bb(λ) (m−1), coefficients which in turn are con-
trolled by the types and concentrations of in-water optical constituents. Significant effort has been devoted 
to deriving both IOPs and constituent concentrations from ocean color signals (IOCCG, 2006, 2014, 2019). 

Abstract  Understanding the relationship between remote sensing reflectance, Rrs(λ) and the 
inherent optical properties (IOPs) of natural waters is potentially a key to improving our ability to 
determine biogeochemical constituents from radiometric measurements. These relationships are usually 
described as a function of absorption, a(λ), and backscattering, bb(λ), coefficients, with the literature 
providing various forms of equation operating on either bb(λ)/a(λ) or bb(λ)/[a(λ)+bb(λ)] to represent the 
impact of variations in light field geometries and changes in sea-water composition. The performance 
of several IOP-reflectance relationships is assessed using HydroLight radiative transfer simulations 
covering a broad range of Case 1 and Case 2 water conditions. While early versions of IOP-reflectance 
relationships assigned variability to associated proportionality factors (e.g., f/Q) or low-order polynomial 
functions, recent studies have demonstrated relationships between Rrs(λ) and bb(λ)/[a(λ)+bb(λ)] are well-
characterized by nonlinear (high-order polynomial), monotonic functions. This study demonstrates that 
this approach is also valid for relationships operating on bb(λ)/a(λ) and that there is no intrinsic benefit 
to functions operating on bb(λ)/[a(λ)+bb(λ)] compared to bb(λ)/a(λ) for Case 2 waters, contrary to recent 
suggestions in the literature. In all cases it is necessary to carefully consider the performance of best fit 
relationships across the full range of variability of IOPs and Rrs(λ), with higher order polynomials required 
to enable equivalent performance across the range of natural variability. The analysis further demonstrates 
insignificant wavelength sensitivity across the visible region, limited sensitivity to changes in solar zenith 
angle and extends to relationships for below surface remote sensing reflectance, rrs(λ).

Plain Language Summary  Ocean color satellites measure the remote sensing reflectance 
of oceans. The magnitude and spectral distribution of this signal (the ocean color) is determined by the 
inherent optical properties (IOPs) of the ocean, primarily the absorption, a(λ), and backscattering, bb(λ), 
coefficients. These IOPs are, in turn, determined by the biogeochemical composition of material dissolved 
and suspended in seawater, usually considered to be a mixture of phytoplankton, colored dissolved 
organic material and sediments. In this study relationships between remote sensing reflectance and 
IOPs are re-examined taking into account differences between forward and inverse directions and also 
considering above and below surface reflectances. It is shown that IOP reflectance relationships operating 
on two previously suggested IOP expressions, bb(λ)/a(λ) and bb(λ)/[a(λ)+bb(λ)], are essentially equivalent 
across a wide range of water types. It is also shown that higher order polynomial forms of relationship are 
needed to ensure accurate return of derived parameters across the full range of material concentrations. 
Existing lower order relationships are shown to perform well, sometimes better, over subranges of 
material concentrations.
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The quasi-single scattering approximation (QSSA) (Gordon, 1973; Gordon et al., 1975) models are widely 
employed in standard ocean color processing and applications because they provide an explicit relationship 
between IOPs and rrs(λ), as formulated by Gordon et al. (1988), coupled with a simple relationship for con-
verting Rrs(λ) to rrs(λ) (Lee et al., 2002). The weakness of QSSA models is their inability to account for mul-
tiple scattering effects and their lower accuracy, compared to radiative transfer (RT) codes (Werdell et al., 
2018). On the other hand, forward RT models such as HydroLight (Sequoia Scientific, Inc.) can provide the 
full radiance distribution below and above the water, as a direct solution to the RT equation (Mobley, 1994). 
Therefore, given a set of input IOPs and appropriate boundary conditions, it is possible to generate precise 
estimates of a full set of AOPs, including rrs(0−, λ) and Rrs(0+, λ). However, the inverse problem of deter-
mining IOPs from AOPs is not straightforward and relies on empirical and/or semi-analytical relationships.

It is intuitively obvious that reflectance signals will increase with backscattering and decrease with absorp-
tion. Early work in this area focused on irradiance reflectance below the sea surface, R (0−,λ) (nondim), 
defined as the ratio of the upwards to downwards planar irradiances, Eu(0−,λ) (Wm−2 nm−1)/Ed (0−,λ) (Wm−2 
nm−1), as this was both practically measureable with available instrumentation and computationally con-
venient (e.g., Kirk, 1984). The results of these early studies (Gordon et al., 1975, 1988; Gordon & Morel, 
1983; Morel & Prieur, 1977) confirmed that R (0−,λ) is a function of the absorption and backscattering 
coefficients. However, in the literature, at least two different expressions are found to approximate this rela-
tionship. Morel and Prieur (1977), modeling the results from RT calculations, found that

�    
 

 
λ

0 ,λ
λ

bb
R f

a
(1)

while Gordon et al. (1975) showed that
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where F represents a polynomial function with factors for up to third order given in the original paper. The 
factor f in Equation 1 has been found to be variable in natural conditions (Morel & Gentili 1991, 1996) ac-
counting for most of the directional effects due to changes in the light field, degrees of multiple scattering 
and in water bio-optical characteristics. The exact form of F in Equation 2 (second or third order polynomi-
al) and the associated polynomial coefficients have not been unambiguously established for all situations, 
though in several cases a second order polynomial has been adopted (e.g., Feng et al., 2005).

With the advent of ocean color satellites measuring top of atmosphere radiance, LTOA(λ) (Wm−2sr−1 nm−1), 
the focus of effort shifted toward remote sensing reflectance, Rrs(0+, λ), defined as the ratio of the water-leav-
ing radiance, Lw (0+, λ), to downwards irradiance, Ed (0+, λ), just above the air-sea interface (Mobley, 1994). 
Rrs (0+,λ) has commonly been used in satellite oceanography as input to inversion methods for deriving 
IOPs and water constituent concentrations (IOCCG, 2006) as it minimizes the effects of environmental 
conditions such as the influence of sun angle. Rrs (0+, λ) measurements are converted to below surface rrs 
(0−, λ) using Equation 3.

�      rs rs0 ,λ 0 ,λR T r (3)

where T is a transmission factor incorporating information including the Fresnel transmittance from water 
to air, the refractive index of seawater (invoking the n2 law of radiances) and several additional factors to 
deal with propagation of downwards irradiance (see Mobley, 1999 and IOCCG, 2019 for more details). The 
resulting conversion factor T exhibits only limited variability (0.50 < T < 0.57) and is usually assumed to 
have a value of 0.54.

Morel and Prieur (1977) adapted Equation 1 to express subsurface remote sensing reflectance rrs (0−,λ) as a 
function of the ratio bb(λ)/a(λ) (wM from here onward):
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where Q(sr) is the bidirectional function defined by Morel and Gentili (1996) as the ratio of upwards irra-
diance Eu (0−,λ) to upwards radiance, Lu (0−,λ), and expresses the nonisotropic character of the radiance 
distribution.

In contemporary ocean color processing (Werdell et al., 2018), rrs (0−,λ) is more often expressed as a function 
of IOPs following the approach of Gordon et al. (1988) using the ratio of bb(λ)/[a(λ)+bb(λ)] (wG from here 
onward).
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Taking Equations 3–5 together, it is clear that Rrs (0+,λ) can be related to IOPs through either wG or wM. 
However, the apparently simple form of Equations 4 and 5 is deceptive. From the outset it was shown that f 
and Q were variable. In a series of papers, Morel and Gentili (1991, 1993, 1996) explored variability in f and 
Q, with the f/Q factor found to be variable in the range 0.075–0.12 in oceanic (Case 1) waters and affected 
by solar zenith angle, sensor viewing geometry, in-water constituent concentrations and wavelength. Fur-
thermore, in coastal (Case 2) waters, additional concentrations of CDOM and mineral particles that do not 
co-vary with the chlorophyll concentration were expected to influence the variability of f/Q, though this 
variability was found to be minimal in the nadir viewing direction and the f/Q factor was almost insensitive 
to different wavelengths when the Sun is at the zenith (Loisel & Morel, 2001). The net result of this work 
was establishment of look up tables (LUTs) for Case 1 waters (Morel & Gentili, 1996; Morel et al., 2002) to 
provide estimates of f/Q which, while certainly addressing the complexity of the underpinning RT physics, 
leaves Equation 4 difficult to use in practice. In addition, attempts have been made to provide suitable LUTs 
for Case 2 waters (e.g., Hlaing et al., 2012; Park & Ruddick, 2005; Salem et al., 2017), but none of these ap-
proaches have been adopted unanimously.

One possible reason for the relative popularity of IOP-reflectance relationships operating on wG is that the 
quadratic form expressed in Equation 5 captures some of the nonlinear behavior in the relationship with 
IOPs that is less obviously elucidated in the LUT approach for f/Q. The limiting factor for Gordon style 
versions of the relationship with IOPs stems from failure to achieve consensus on a single form or set of 
coefficients that performs equally well across the known range of variability for natural waters. Gordon et 
al. (1988) suggested a quadratic form with g0 = 0.0949 and g1 = 0.0794 for Case 1 waters, while for highly 
scattering coastal waters Lee et al. (1999) suggested g0 = 0.084 and g1 = 0.17. Later Lee et al. (2002), aiming 
at applying the forward model to both coastal and open-ocean waters, proposed average values of the co-
efficients from previous studies, g0 = 0.0895 and g1 = 0.1247. Subsequently, focusing on above surface Rrs, 
Albert and Mobley (2003) and Park and Ruddick (2005) developed fourth order polynomial relationships in 
deep and shallow waters, while more recently Lee et al. (2011) and Hlaing et al. (2012) presented second and 
third order polynomial variants respectively. In all cases, the effect of these efforts was to directly address 
apparent variability in the relationship between reflectance and IOPs using a relatively simple equation that 
was easier for end-users to implement than working with LUTs. Of course it is also true that each version 
of the relationship is potentially restricted by the bounds of the modeling parameters used to establish that 
particular relationship, so it is not surprising that a single optimum relationship has not been forthcoming.

As time has passed, the community has gradually become accustomed to working with IOP-reflectance 
models operating on wG. In recent years, there have been claims that wG is generally applicable to all waters, 
including optically complex coastal waters (D'Sa & Miller, 2005) while wM has been suggested to be inappro-
priate for waters where bb(λ) cannot be considered negligible compared to a(λ) (e.g., Loisel & Morel, 2001; 
Morel & Muller, 2002). This has been interpreted by some as suggesting that the wM approach is not suitable 
for use in coastal waters (Marrable, 2014). Anecdotally, we are aware of concerns being raised about the end 
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case scenario of zero absorption causing wM to go to infinity. However, it is difficult to find strong evidence 
in the literature to support the idea that wM models are less effective than wG for coastal waters or elsewhere, 
and the zero absorption argument is a red herring as the absorption simply doesn't go to zero in any natu-
ral water. On the other hand, while wM is a priori unbounded, wG lies within the interval [0, 1]. However, 
unless dealing with extremely turbid waters (total suspended solid >> 100 gm−3) the maximum theoretical 
value of 1 for wG is barely approached. In this study, for example, the maximum value of wG was 0.6, having 
considered concentrations of mineral suspended particles up to 100 gm−3, which is consistent with values 
found for moderate to very turbid waters.

While there has been considerable improvement in our understanding of IOP-reflectance relationships 
since the pioneering studies by Morel and Gordon, there remains confusion in the field about the relative 
merits of wM and wG approaches. Moreover, there is an outstanding requirement to develop easily imple-
mented relationships that permit end users to relate IOPs and reflectance values for both above and below 
surface reflectances corresponding to remote sensing and in situ applications. Most importantly, it is essen-
tial that the performance of any such relationship is equivalent across the wide range of concentrations of 
optical constituents found in natural waters and can be applied equally well in both clear Case 1 waters and 
optically complex Case 2 waters.

The aim of this study is to exploit the strength of forward RT modeling to generate a consistent set of IOPs 
and corresponding simulated rrs and Rrs values which enables investigation of IOP-reflectance relation-
ships across a wide variety of optically complex water conditions. The majority of the work considers the 
nadir-viewing direction with the Sun at zenith, reflecting fully normalized conditions for remote sensing 
applications, but also briefly considers the impact of other solar zenith angles to better represent in situ 
measuring conditions. Both the sub-surface remote sensing reflectance, rrs, and the remote sensing reflec-
tance in air, Rrs are considered, again to better represent different practical scenarios. This study broadly 
follows the approach of Wong et al. (2019), but the analysis is extended to include wM, and both above (Rrs) 
and below (rrs) surface reflectances. In all cases, additional care is taken to test the performance of IOP-re-
flectance relationships over each decade of variability of wG and wM.

2.  Materials and Methods
2.1.  Field Data

All in situ data used in this study were collected in March 2009 during the BP09 cruise in the Ligurian 
Sea (Figure 1). Located in the northwest part of the Mediterranean Sea, this area includes both deep clear 
oceanic waters (considered Case 1) and shallow turbid coastal waters (considered Case 2). Among 60 sam-
pled stations, 11 offshore stations and 23 onshore stations returned sufficient data set for the purpose of 
this work. A detailed description of the sampling location, data and methods can be found in McKee et al. 
(2014), Bengil et al. (2016), and Ramírez-Pérez et al. (2018).

2.2.  In Situ Optical Measurements

In situ nonwater absorption an(λ) and attenuation cn(λ) (m−1) measurements were made with a WETLabs 25 cm 
path length AC-9 instrument, operating at nine wavelengths across the visible-NIR (412, 440, 488, 510, 532, 555, 
650, 676, and 715 nm, 10 nm FWHM) and corrected for salinity and temperature using data from a Seabird SBE 
19 plus CTD. The proportional method by Zaneveld et al. (1994) was applied to correct AC-9 absorption data. In 
situ backscattering bb(λ) measurements were made with a WETLabs BB-9 backscattering meter. BB-9 data were 
corrected for path length absorption using corrected AC-9 absorption data and the backscattering of pure water 
(Smith & Baker, 1981) was subtracted to obtain the particulate backscattering coefficient, bbp(λ), as detailed in 
Lefering et al. (2016). BB-9 data were linearly interpolated where necessary to match AC-9 wavelengths.

2.3.  Laboratory Measurements

The absorption of all dissolved and suspended components minus water was measured using a point 
source integrating cavity absorption meter (PSICAM), with an estimated accuracy of ±2% even in highly 
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turbid waters (Röttgers et al., 2005; Röttgers & Doerffer, 2007). Measurements were made using fresh 
Milli-Q ultrapure water references and then corrected for salinity and temperature effects on water ab-
sorption (Röttgers & Doerffer, 2007; Röttgers et al., 2014). Measurements of absorption by colored dis-
solved organic matter, acdom(λ), were performed using a 1 m liquid waveguide capillary cell (LWCC) with 
an Ocean Optics USB2000 mini spectrometer, with a noise range of ±0.0001 m−1 at 532 nm (Lefering et 
al., 2017). In this study, the concentration of colored dissolved organic material is represented by its ab-
sorption at 440 nm, CDOM = acdom (440). Total particulate absorption, ap(λ) was derived by subtracting 
acdom(λ) from PSICAM nonwater absorption. Total particulate absorption was also obtained by measuring 
the optical density of particles, ODp(λ) (nondim), retained on a 25 mm GF/F filter using a Shimadzu 
UV-2501 PC benchtop spectrophotometer. After applying dilute bleach and rinsing with filtered seawater 
to remove algal pigments, the measurement was repeated for each sample to provide the detrital opti-
cal density of nonalgal particles, ODdet(λ). The particulate and detrital absorption coefficients, ap(λ) and 
adet(λ) respectively, were obtained from:

�    
 fp λ

λ 2.303
β
x

x
f

A OD
a

V
(6)

where ax(λ) is the required absorption coefficient, Afp is the exposed area of the filter pad, Vf is the volume 
of sample filtered (m3), β is the path length amplification factor (nondim) and ODx(λ) is the required op-
tical density. A linear regression approach (Lefering et al., 2016; McKee et al., 2014) using a combination 
of PSICAM and LWCC data was employed for the determination of path length amplification factors (β) 
and scattering offset corrections for both filter pad absorption measurements. Absorption by phytoplank-
ton, aph(λ), was derived by subtracting absorption of detrital particles from the total particulate absorption, 
aph(λ) = ap(λ)−adet(λ).

Concentrations of chlorophyll-a (CHL) and total suspended solids (TSS) were measured in triplicate 
by colleagues from Management unit of the North Sea mathematical models (MUMM) with aver-
aged results reported here. CHL concentrations were determined by standard HPLC measurements: 
triplicate samples were analyzed using a reversed phase, acetone-based method with a C18 column 
and a Jasco FP-1520 fluorescence detector. TSS concentrations were estimated using preashed, rinsed 
and preweighed 47 mm GF/F filters, careful rinsing each sample with ultrapure water. Filters were 
stored frozen and returned to the lab where they were dried and reweighed. A simple relationship be-
tween TSS and CHL for Case 1 waters, obtained by least squares regression forced through zero, gives 
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Figure 1.  The study area, in the Northwestern Mediterranean Sea, is shown on the left map as a small dashed 
rectangle. On the right, the Ligurian Sea, with the location of the sampling stations (BP09 cruise), classified as offshore 
(empty squares), and onshore (filled squares) stations.
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biogenic TSS (TSSbio) per unit CHL (TSSbio = 0.234 CHL). This is used to estimate the concentration of 
biogenic TSS for Case 2 waters, with mineral (i.e., nonbiogenic) suspended solids (MSS) obtained for 
Case 2 waters by subtracting the estimate of TSSbio from total TSS (Bengil et al., 2016).

2.4.  Bio-Optical Model Development

A linear bio-optical model, based on spectral material-specific IOPs (SIOPs) and populated with a 
wide range of log-spaced constituent concentrations (CHL, MSS, and CDOM) was employed for de-
scribing a broad range of optical water conditions. In this study, the SIOPs have been determined by 
simple linear regression of partitioned IOPs against related optically dominant constituent concentra-
tions, following McKee and Cunningham (2006). This methodology minimizes the effect of the prop-
agation of measurement uncertainties in both optical and biogeochemical measurements (McKee et 
al., 2014).

Following the methodology reported in Ramírez-Pérez et al. (2018) for Case 2 waters, each total IOP can be 
considered as the sum of partial IOPs, and each partial IOP can be expressed as the product of SIOPs, and 
associated constituent concentrations:

�                   Tot ph bdet ndet cdomλ λ CHL λ CHL λ MSS λ CDOM λwa a a a a a (7)
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where the subscripts represent the following five bio-optical constituents: phytoplankton (ph), biogenic 
detritus (bdet), nonbiogenic detritus (ndet), colored dissolved organic material (cdom) and pure water 
(w). The constituent concentrations are: chlorophyll, CHL, absorption of colored dissolved organic ma-
terial at 440 nm, CDOM, and mineral suspended solids, MSS (the nonbiogenic detrital component of 
TSS). Here the detrital particulate absorption has been considered as the sum of two separate biogenic 
and nonbiogenic components. Unfortunately, it is not possible to experimentally partition scattering and 
backscattering measurements so the level of discrimination possible for these parameters is reduced. 
Biogenic partial IOPs are assumed to co-vary with CHL, while the nonbiogenic partial IOPs are assumed 
to co-vary with MSS.

A set of material-specific absorption and scattering coefficients was previously prepared for Ramírez-
Pérez et al. (2018). However, in the present study, only values at each standard AC-9 wavelength have 
been considered (Figures 2a–2f, black lines). These SIOPs have been determined by simple linear regres-
sions forced through zero of partitioned IOPs against associated constituent concentrations from surface 
water samples. The optimal SIOP value has been estimated using the linear regression slope with the 
95% confidence interval (CI) representing the associated uncertainty (Figure 2, red dashed lines). In 
addition to the previously provided SIOPs for partitioned absorption and scattering coefficients, the 
material-specific backscattering coefficients are presented here following the same methodology. The 
chlorophyll-specific phytoplankton backscattering coefficient,  *

ph λbb , shown in Figure 2g, was deter-
mined using data from offshore stations (considered Case 1 waters), where the particle population is as-
sumed to be biogenic in origin. However, it is assumed to be representative of algal and biogenic detrital 
backscattering for all stations, offshore and onshore. For onshore stations (considered Case 2 waters) 
it is assumed that there will be an additional nonbiogenic contribution,  ndet λbb , that can be found af-

ter subtraction of the water and biogenic contribution (   ph λ CHLbb ) from  Tot λbb . The MSS-specific 

nonbiogenic detrital backscattering coefficient,  
pndet λbb  shown in Figure 2h was obtained by regressing 

 ndet λbb  against MSS.
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Figure 2.  Material-specific IOPs (black lines) with 95% confidence bounds (red dashed lines) obtained by linear 
regression at 9 wavelengths. (a) chlorophyll (CHL)-specific phytoplankton absorption-full data set. (b) CDOM absorption 
normalized at the signal at 440 nm-full data set. (c) CHL-specific biogenic detrital absorption-offshore data set. (d) CHL-
specific phytoplankton scattering-offshore data set. (e) MSS-specific nonbiogenic detrital absorption coefficient-onshore 
data set. (f) MSS-specific nonbiogenic detrital scattering coefficient-onshore data set. SIOPs in (a–f) are recalculated 
SIOPs from Ramírez-Pérez et al. (2018) after further quality control measures were implemented. (g) The CHL-specific 
phytoplankton backscattering coefficient has been determined by linear regression forced through zero applied to the 
offshore data set, and (h) MSS-specific nonbiogenic detrital backscattering coefficient has been determined with the 
same methodology. Regressions on backscattering coefficients returned average R2 values of 0.78. CHL, chlorophyll; IOP, 
inherent optical properties; MSS, mineral suspended solids; SIOP, specific inherent optical properties.
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2.5.  Radiative Transfer Simulations

Input IOPs for the simulations were generated by populating the bio-optical model, described in the pre-
vious section at 9 standard AC-9 wavelengths (412, 440, 488, 510, 532, 555, 650, 676, and 715 nm). A total 
of 1,690 unique combinations of constituent concentrations and associated IOPs were calculated from log-
spaced distributions of constituent concentrations in specific ranges (0.01< CHL <100 mg/m3, n = 13; 
0.01< MSS <100 g/m3, n = 13; 0.01< CDOM <10 m−1, n = 10). The data set of modeled IOPs was arranged 
in the form of 1690 virtual AC-9 and BB-9 type files in the MATLAB® environment (MathWorks Inc.). 
Nonwater absorption and beam attenuation coefficients were given as functions of depth and wavelength 
via the user-supplied AC-9 type data files. The RT numerical model HydroLight 5.2 (Sequoia Scientific 
Inc.) was used to process the input IOP data and generate a synthetic data set of remote sensing reflec-
tance spectra, both below and above the sea-air interface, rrs (0−, λ) and Rrs (0+, λ), respectively. As all 
combinations of the log-spaced biogeochemical concentrations were included in the RT runs, the resulting 
input data set broadly represents the conditions of a substantial portion of natural coastal waters. Based on 
the considered constituent concentration ranges, the total absorption at 412 nm, a (412), was in the range 
0.0218–27.1346 m−1, while the total backscattering coefficient, bb (412), varied from 0.0036 to 2.3240 m−1, 
where the minimum (maximum) values represent the total IOPs when all the constituent concentrations 
are at their lowest (highest). Pure water absorption and scattering values were taken from Pope and Fry 
(1997) and Smith and Baker (1981). All the input files were processed in HydroLight using the ABACBB 
model which provides sample dependent phase functions, dynamically generated through the Mobley et al. 
(2002) parameterization of the Fournier-Forand scattering phase function. This method allows estimation 
of wavelength-dependent scattering phase functions based on the particle backscattering ratio, bbp(λ)/bp(λ) 
which showed significant variability at each waveband (e.g., between 0.01 and 0.03 at 412 nm and between 
0.007 and 0.025 at 650 nm). The subsurface remote sensing reflectance, rrs (0−,λ) calculated by HydroLight 
as the ratio of upwards radiance Lu (0−,λ) to downwards irradiance Ed (0−,λ) and the remote sensing reflec-
tance in air, Rrs (0+,λ), calculated as the ratio of water-leaving radiance Lw (0+,λ) to downwards irradiance 
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Figure 3.  Frequency distribution (in the range 0–1, with 1 corresponding to 100%) of the ratio f/Q at 4 different 
wavelengths (440, 510, 555, and 676 nm), as in Figure9b of Morel and Gentili (1993). Values of f/Q have been estimated 
from Equation 4.
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Ed (0+,λ) just above the sea surface, were computed considering the Sun at the zenith and a nadir-viewing 
direction     θ 0 , 0S v . These runs were repeated for solar zenith angles of 30 and 60° in order to inves-
tigate how the solar geometry affects the results. For the sake of simplicity, the water body was modeled as a 
homogeneous and infinitely deep medium. Sky radiance was modeled using RADTRAN-X (Gregg & Carder, 
1990) with no wind and the mean Earth-Sun distance was employed. Other atmospheric conditions such as 
sea-level pressure, relative humidity, horizontal visibility, and ozone concentration were set at default val-
ues, which are described in the HydroLight 5 technical documentation (Mobley & Sundman, 2008). Raman 
(inelastic) scattering by water itself is ubiquitous and was considered since it is easy to model without any 
extra information, while fluorescence emissions due to chlorophyll and CDOM were not included, due to 
lack of information about fluorescence quantum yields.

3.  Results
3.1.  Establishing the Nature of IOP-Reflectance Relationships

Variations in the bidirectional properties of the radiant flux leaving the water and returned toward the at-
mosphere have been extensively studied (Morel & Gentili, 1991, 1993, 1996; Morel et al., 2002). The term f/Q 
in Equation 4 implicitly describes the magnitude of these variations, mainly due to changes in the light field 
geometry and bio-optical characteristics of the water body. Figure 3 shows distributions of f/Q as obtained 
in this study from RT simulations, calculated from Equation 4. These results are broadly consistent with 
Morel and Gentili (1993) who found values in the range 0.075–0.12. In that paper the distribution of f/Q was 
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Figure 4.  (a) rrs(λ) versus wM and (b) rrs(λ) versus wG for  θ 0S  and   0 . wM and wG data were derived from the bio-optical model and rrs data were taken 
from HydroLight simulations. Each wavelength has been shown in a different color to highlight the ranges of the variables. The effect on rrs(λ) due to changing 
solar zenith angles (    θ 0 ,30 ,60S ) is shown for (c) wM and (d) wG.
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noted to be affected by variations in Sun angles and viewing geometries. This is confirmed in Figures 4c and 
4d where it can be seen that changing solar zenith angle has a small but defined impact on relationships 
between Rrs and both wM and wG. In the present study, unless otherwise stated, the results refer only to a 
zenith Sun and a vertical viewing direction, meaning that the variability of the f/Q factor here is due mainly 
to differences in water constituent concentrations.

The RT simulations can also be used to assess variability in the transmission factor T by rearranging Equa-
tion 3. Mobley (1999) suggested a range between 0.50 and 0.57 for typical ocean waters and solar and sensor 
geometries. In this study, T was found to vary in the range 0.52–0.63 considering the Sun at the zenith and 
the sensor in the vertical direction, with the differences in ranges between the two studies presumably 
associated with the range of water conditions (and therefore IOPs) considered. Overall, it is reasonable to 
suggest that the variability described by f/Q and T factors observed in this study are broadly consistent with 
previous studies. This preliminary check is encouraging because it confirms the capability of the synthetic 
data set to realistically describe the variability of both f/Q and T, allowing a systematic study of the IOP 
reflectance relationships in optically complex waters. No angular dependency has been considered in this 
part of the study, therefore the variability of f/Q and T mentioned here are determined by the bio-optical 
properties of the water body only. We would anticipate further variability in both f/Q and T in the case of 
extending the study to other sun-sensor angle combinations.

Empirical relationships between rrs(λ) and IOPs (primarily operating on wG) have already been expressed 
in several studies through quadratic or higher polynomial functions (Albert & Mobley, 2003; Gordon et al., 
1988; Lee et al., 2002, 2004; Wong et al., 2019) with several others focusing on relationships between above 
surface Rrs(λ) and IOPs (Gege & Albert, 2006; Gilerson et al., 2007; Hlaing et al., 2012; Park & Ruddick, 
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Figure 5.  (a) Rrs(λ) versus wM and (b) Rrs(λ) versus wG are shown for  θ 0S  and   0 ). Rrs(λ) values were taken from HydroLight simulations operating on 
the previously described bio-optical model. Each wavelength has been shown in a different color to highlight the ranges variability. The effect on Rrs(λ) due to 
changing solar zenith angles is shown for (c) wM and (d) wG.
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2005). This study investigates relationships between IOPs and both rrs(λ) and Rrs(λ) considering both wM and 
wG forms, and also considers both forward and inverse directions.

Plotting the HydroLight output rrs(λ) values against the input IOP terms, wM and wG, (Figures 4a and 4b), 
the relationships between rrs(λ) and either wM or wG are found to be nonlinear but, crucially, monotonic. It 
is evident that a significant amount of the apparent variability in f/Q is associated with the nonlinear nature 
of the relationship with wM. Whereas the frequency distributions shown in Figure 3 do not offer any means 
of predicting a particular value of f/Q, Figure 4 suggests the possibility of establishing relationships between 
rrs and either wM or wG with strong predictive power in both the forward and reverse directions. A first visual 
comparison of the two plots in Figure 4 suggests that both approaches (wM and wG) are equivalently valid 
and confirms that the dependence of the subsurface remote sensing reflectance on wavelength (400 nm<λ 
< 700 nm) is minimal in Case 2 waters, when considering the nadir-viewing direction only and the Sun at 
the zenith (Loisel & Morel, 2001). Changing the solar zenith angle (θs = 0°; 30°; 60°) generates similar but 
nonidentical nonlinear, monotonic relationships (Figures 4c and 4d). The main focus of this study is to 
establish IOP-reflectance relationships for the fully normalized case of both sun and sensor at zenith, with 
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Figure 6.  Performances of second to seventh order polynomials (colored lines) in fitting HydroLight simulated data (gray points). In the upper two plots the 
ratios of (a) wM and (b) wG are considered as independent variables while in the lower two plots (c and d) rrs is considered the independent variable. All plots are 
on log-log scales to better show the behavior of polynomials across the range of values. Note that some of the best fits produced negative values that cannot be 
represented using this scaling (see truncated lines in the upper two plots).



Journal of Geophysical Research: Oceans

application to fully processed ocean color data in mind. We note that other combinations of sun-sensor 
angles require further additional modeling, consistent with Hlaing et al. (2012).

Plotting the HydroLight output Rrs(λ) values against the input IOP terms, wM or wG, (Figures 5a and 5b), the 
relationships between Rrs(λ) and either wM or wG have an analogous behavior compared to the correspond-
ing cases of subsurface reflectance, with slightly less sensitivity to changing solar angles (Figures 5c and 5d).

3.2.  Determination of Optimal IOP-Rrs Relationships

This study considers a wide input data range and applies a systematic curve fitting procedure in order to 
find second-to-seventh order polynomial models for the simulated set of data. The polynomial curve fitting 
has been performed in the Matlab environment using the polyfit operator. This built-in function returns 
the coefficients of a polynomial of the chosen degree, which is a best fit for the dependent variable in a 
least squares sense, along with the 95% confidence bounds for each coefficient. Different polynomial forms 
have been investigated for both forward and inverse applications, considering rrs(λ) versus IOPs (Figures 6a 
and 6b) and vice versa (Figures 6c and 6d), focusing on the case of a solar zenith angle,  θ 0S , and nadir 
viewing sensor direction,   0 . Both wM and wG have been used as representations for IOPs and the per-
formance of each polynomial has been assessed across the full range of data (Figure 7). Because high-order 
polynomials cannot be easily inverted algebraically (González-Cardel & Díaz-Uribe, 2006) and numerical 
inversions are computationally demanding, a practical choice was to apply the same fitting procedure for 
estimating IOPs from rrs(λ) instead of mathematically inverting the forward model. It is clear from Figure 
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Figure 7.  Comparison between second to seventh orders of polynomial models, in terms of mean absolute error: (a and b). The inherent optical properties 
terms are considered as independent variables in the fitting process; (c and d) rrs is considered as an independent variable. Data have been binned by order of 
magnitude therefore mean absolute error is referred to the order of magnitude of the independent variable.
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6 that there is significant divergence in the performance of each best fit polynomial for low values of both 
wM and wG, and similarly when these parameters are derived from rrs(λ). In contrast, performance for high 
values of rrs(λ), wM and wG is less sensitive to choice of polynomial. It is therefore important to consider per-
formance over all relevant ranges of signal strength when attempting to establish a set of optimal empirical 
relationships.

The performance of each best fit polynomial is primarily assessed using the mean absolute error (MAE), a 
commonly used forecasting metric that describes the typical magnitude of the residuals, giving the average 
error in units of the variable of interest (Figures 7a–7d). When estimating rrs(λ) from wM or wG (Figures 7a 
and 7b) it is possible to directly compare the two approaches because the derived term in both cases is rrs(λ). 
However, when comparing retrievals of bb(λ)/a(λ) and bb(λ)/[a(λ)+bb(λ)], it is important to bear in mind 
that the two variables are not numerically equivalent (Figures 7c and 7d). As both IOPs and rrs(λ) values 
vary over several orders of magnitude, the data set has been split into subranges that permit evaluation of 
performance for each order of magnitude. The results of this systematic exercise show that higher order 
polynomial models provide better performance than second order models to ensure similar goodness of 
fit across all decades of signal variation. Based on analysis of Figure 7, the recommended relationships in 
retrieving rrs(λ) from wM and vice versa are sixth and fifth order polynomials, respectively (Figures 7a and 
7c). A third order polynomial is the suggested choice for retrieving rrs(λ) from wG, (Figure 7b), while a sixth 
order polynomial is needed for estimating wG from rrs(λ) (Figure 7d). The coefficients for these four poly-
nomial relationships, with related 95%CI, are reported in Table 1. It is interesting to note that wM and wG 
approaches produce similar levels of MAE if sufficiently well-tuned polynomials are selected. There may 
be minor benefits for some applications of selecting the approach with the lowest number of factors for 
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IOP-rrs(λ) relationships for sun and sensor at zenith

Poly6 p0 p1 p2 p3 p4 p5 p6

x = wM 1.653e−05 8.366e−02 4.962e−02 −1.553e−01 1.601e−01 −7.909e−02 1.520e−02

y = rrs(λ)

95% conf. bounds 1.298e−06 3.176e−05 8.314e−02 4.506e−02 −1.708e−01 1.362e−01 −9.602e−02 1.073e−02

8.418e−02 5.417e−02 −1.399e−01 1.839e−01 −6.216e−02 1.967e−02

Poly5 p0 p1 p2 p3 p4 p5 -

x = rrs(λ) −3.957e−05 1.190e+01 −7.053e+01 2.365e+03 −2.342e+04 1.109e+05 -

y = wM

95% conf. bounds −2.275e−04 1.183e+01 −7.669e+01 2.160e+03 −2.623e+04 9.743e+04 1.244e+05 -

1.484e−04 1.197e+01 −6.437e+01 2.570e+03 −2.061e+04

Poly3 p0 p1 p2 p3 - - -

x = wGy = rrs(λ) 2.476e−06 8.410e−02 1.360e−01 −1.522e−02 - - -

95% conf. bounds −1.112e−05 1.607e−05 8.378e−02 1.343e−01 −1.738e−02 - - -

8.442e−02 1.376e−01 −1.307e−02

Poly6 p0 p1 p2 p3 p4 p5 p6

x = rrs(λ) 2.502e−05 1.182e+01 −1.953e+02 4.200e+03 −5.933e+04 4.483e+05 −1.366e+06

y = wG

95% conf. bounds −1.003e−04 1.176e+01 −2.030e+02 3.817e+03 −6.804e+04 3.571e+05 −1.724e+06

1.504e−04 1.189e+01 −1.875e+02 4.583e+03 −5.062e+04 5.396e+05 −1.009e+06

Note. The polynomial relationships are in the form y = p0 + p1x + p2x2 + … + pnxn, where n is the order of the polynomial. Each polynomial coefficient is supplied 
with associated 95% confidence bounds.
Abbreviation: IOP, inherent optical properties.

Table 1 
Coefficients of Best Fit Polynomials for IOP-Rrs(λ) Relationships and Vice Versa, With Sun at zenith
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example; in terms of computational speed, but overall there is no significant accuracy benefit of one form 
of IOP expression over the other. The results of this exercise show that with suitably careful selection of em-
pirical relationship, using wM or wG is broadly equivalent. This is particularly true for high reflectance values 
typical of Case 2 waters, strongly contradicting previous suggestions that the wM form was inappropriate for 
these waters (e.g., Marrable, 2014).

3.3.  Determination of Optimal IOP-Rrs Relationships

The same systematic curve fitting procedure applied in Section 3.2 for rrs(λ) has been employed in order to 
find second-to-seventh order polynomial models for the simulated set of data considering Rrs(λ) versus IOPs 
(Figures 8a and 8b) and vice versa (Figures 8c and 8d). The assessment of the fitting performance of each 
polynomial is shown in Figure 9, with MAE supplied. Similarly to the previous case, higher order polyno-
mials are suggested to ensure similar goodness of fit across all decades of signal variation, with the greatest 
impact occurring at small data values. From a closer analysis of Figure 9, the recommended relationships 
in retrieving Rrs(λ) from wM and vice versa are the fifth order polynomials in both cases (Figures 9a and 9c, 
respectively). On the other hand, for retrieving Rrs(λ) from wG, a fourth order polynomial is the suggested 
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Figure 8.  Performances of second to seventh order polynomials as in Figure 6 but considering the remote sensing reflectance in air. Inherent optical properties 
and Rrs(λ) (  θ 0S  and   0 ) values come from HydroLight simulations.
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choice (Figure 9b), while a seventh order polynomial is needed for estimating wG from Rrs(λ) (Figure 9d). 
The coefficients for these four polynomial relationships, with related 95%CI, are reported in Table 2.

Using the suggested models, Rrs(λ) can be expressed as a function of the absorption and backscattering 
coefficients of the water and it is equally valid to represent the IOPs using wM or wG. The limiting factor is 
not choice of either wM or wG, rather it is in selecting an appropriate formulation to represent variation the 
nonlinear relationship with IOPs.

3.4.  Comparison With Previous Studies

Many studies (Albert & Mobley, 2003; Chami et al., 2006; Lee et al., 2004; Mobley et al., 2002; Morel & 
Gentili, 1991, 1993; Park & Ruddick, 2005; Wong et al., 2019) have shown that the nonlinear increase of 
reflectances with IOPs (in the form of either wM or wG) can be attributed to multiple scattering. However, 
the existing established models for representing rrs(λ) (Gordon et al., 1988; Lee et al., 2002, 2004) or Rrs(λ), 
based on low-order polynomial relationships, are unable to fully account for the effect of multiple scattering 
which is particularly relevant in Case 2 waters (Wong et al., 2019). Interestingly, the results presented above 
suggest that the performance of low-order polynomials tends to be worst for clear waters. It is clear from 
this analysis that higher order polynomials are generally necessary in order to achieve optimal performance 
across the full range of natural variability.
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Figure 9.  Comparison between second to seventh orders of polynomial models, in terms of mean absolute error, as in Figure 7 but considering above surface 
Rrs(λ).
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Previous studies have typically reported best fit IOP-reflectance relationships for conditions with the sun 
placed away from zenith. For the purpose of comparison with these previous studies, we have assembled 
best fit polynomial parameters for the case of the Sun at θs = 30° and the sensor in nadir viewing direction 
(Table 3). Figure 10a shows comparison with a number of earlier studies, while Figure 10b shows the MAE 
on rrs(λ) by order of magnitude of wG. The performance of our proposed Poly5 model is very close to the ver-
sion of Gordon's model with coefficients suggested by Lee et al. (2002) which was intended to be applicable 
to both Case 1 and Case 2 waters. Wong et al. (2019) presented an updated version of a model by Lee et al. 
(2004) that operates on molecular and particulate components (uw and up) separately. Applying the Wong 
et al. (2019) approach to our data set presents smaller MAEs for lower values of wG, but higher MAE for 
higher values of wG. It is important to note that the family of curve models shown in Figure 10a falls within 
the 95% confidence bounds of the proposed Poly5 relationship at the high end of the range (Figure 10c) 
while the 95% confidence bounds at the low end (Figure 10d) are an order of magnitude greater than the 
MAE differences between the various proposed relationships for the equivalent range in Figure 10b. This 
comparison (Figure 10) does not identify a clear cut “winner” but does illustrate clearly the need to consider 
performance across the full range of values of interest.

4.  Discussion and Conclusions
In this study, a series of RT simulations across a very broad range of optical conditions has been conduct-
ed using the HydroLight RT code. Input IOPs have been supplied through a linear spectral bio-optical 
model, varying the concentrations of in-water optical constituents across a wide range of concentrations 
to simulate natural variability. The resulting set of synthetic above and below surface reflectances have 
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IOP-Rrs(λ) relationships for sun and sensor at zenith

Poly5 p0 p1 p2 p3 p4 p5

x = wM 2.258e−06 4.449e−02 3.111e−02 −6.299e−02 4.451e−02 −1.173e−02 - -

y = Rrs(λ)

95% conf. bounds −6.370e−06 4.426e−02 2.973e−02 −6.610e−02 4.165e−02 −1.265e−02 - -

1.089e−05 4.471e−02 3.249e−02 −.989e−02 4.738e−02 −1.108e−02

Poly5 p0 p1 p2 p3 p4 p5 - -

x = Rrs(λ) 1.037e−04 2.233e+01 −2.819e+02 1.224e+04 −1.973e+05 1.342e+06 - -

y = wM

95% conf. bounds −8.375e−05 2.222e+01 −2.982e+02 1.138e+04 −2.160e+05 1.200e+06 - -

2.912e−04 2.245e+01 −2.656e+02 1.310e+04 −1.786e+05 1.484e+06

Poly4 p0 p1 p2 p3 p4 - - -

x = wG 1.652e−05 4.336e−02 9.085e−02 −1.768e−02 5.108e−02 - - -

y = Rrs(λ)

95% conf. bounds 6.999e−06 4.302e−02 8.782e−02 −2.685e−02 4.232e−02 - - -

2.604e−05 4.370e−02 9.389e−02 −8.519e−03 5.985e−02

Poly7 p0 p1 p2 p3 p4 p5 p6 p7

x = Rrs(λ) −4.720e−05 2.258e+01 −8.501e+02 4.158e+04 −1.481e+06 3.222e+07 −3.776e+08 1.816e+09

y = wG

95% conf. bounds −1.801e−04 2.244e+01 −8.876e+02 3.745e+04 −1.700e+06 2.625e+07 −4.579e+08 1.392e+09

8.567e−05 2.271e+01 −8.125e+02 4.571e+04 −1.262 + 06 3.818e+07 −2.972e+08 2.240e+09

As in Table 1 but for IOP-Rrs(λ) relationships.
Abbreviation: IOP, inherent optical properties.

Table 2 
Coefficients of Best Fit Polynomials and 95% Confidence Bounds Suggested for Calculating y Variables
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enabled investigation of relationships with IOPs expressed as either wM or wG. Consistent with previous 
studies, the results demonstrate that the relationship between IOPs and either rrs or Rrs are highly predict-
able and can be well-modeled by a nonlinear but monotonic curve, which is not significantly wavelength 
dependent for 400 nm<λ<700 nm. However, it has been shown here that in order to achieve consistent 
levels of prediction performance across the broad range of optical coastal water conditions considered, it 
is generally necessary to consider higher order polynomial relationships. Comparison of wM and wG var-
iants demonstrate effectively equivalent performance: there is no immediate advantage or disadvantage 
to use of either form in coastal waters. This contradicts previous claims that wM was not valid for Case 
2 waters (e.g., Loisel & Morel, 2001; Marrable, 2014; Morel & Mueller, 2002) and highlights the general 
proposition that either combination of absorption and backscattering contains sufficient relevant infor-
mation to both predict and interpret remote sensing signals. There may be situations where future end 
users may have reason to prefer use of one form over another and this study suggests there is no reason 
to be concerned over either.

We note that the relationships presented here are empirical and only valid for the range of conditions from 
which they have been derived and due to their high order are likely to deviate rapidly from reality beyond 
these conditions. Nonetheless, the range covered is particularly broad so the results are expected to be 
generally useful for a wide range of natural waters. The details of the bio-optical model, such as the use 
of linear relationships between IOPs and constituents, used to set up the RT simulations are potentially 
open to criticism. However, it should be noted that it would have been possible (and in some senses possi-
bly preferable) to have produced a comprehensive suite of values of bb(λ) and a(λ) with no reference to a 
bio-optical model at all. The purpose of the bio-optical model in this case is simply to assure readers that 
the range of IOPs considered genuinely covers a broad range of optical water conditions. We also note that 
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IOP-rrs(λ) relationships for 30° sun angle and nadir direction

Poly6 p0 p1 p2 p3 p4 p5 p6

x = wM −1.902e−05 8.535e−02 5.739e−02 −1.851e−01 2.010e−01 −1.046e−01 2.123e−02 -

y = rrs(λ)

95% conf. bounds −3.481e−05 8.481e−02 5.267e−02 −2.011e−01 1.762e−01 −1.222e−01 1.660e−02 -

−3.218e−06 8.590e−02 6.211e−02 −1.691e−01 2.257e−01 −8.706e−02 2.586e−02

Poly7 p0 p1 p2 p3 p4 p5 p6 p7

x = rrs(λ) −3.689e−05 1.207e+01 −1.564e+02 8.527e+03 −2.341e+05 3.789e+06 −3.156e+07 1.054e+08

y = wM

95% conf. bounds −2.618e−04 1.193e+01 −1.800e+02 6.932e+03 −2.863e+05 2.908e+06 −3.893e+07 8.117e+07

1.880e−04 1.221e+01 −1.328e+02 1.012e+04 −1.819e+05 4.670e+06 −2.418e+07 1.296e+08

Poly5 p0 p1 p2 p3 p4 p5 - -

x = wG 1.642e−05 8.206e−02 1.962e−01 −2.691e−01 4.327e−01 −2.662e−01 - -

y = rrs(λ)

95% conf. bounds −1.317e−06 8.116e−02 1.838e−01 −3.329e−01 2.967e−01 −3.681e−01 - -

3.417e−05 8.297e−02 2.086e−01 −2.054e−01 5.688e−01 −1.643e−01

Poly7 p0 p1 p2 p3 p4 p5 p6 p7

x = rrs(λ) −7.903e−05 1.206e+01 −2.848e+02 1.064e+04 −2.714e+05 4.008e+06 −3.086e+07 9.559e+07

y = wG

95% conf. bounds −2.099e−04 1.198e+01 −2.985e+02 9.718e+03 −3.018e+05 3.495e+06 −3.515e+07 8.152e+07

5.179e−05 1.215e+01 −2.710e+02 1.157e+04 −2.411e+05 4.520e+06 −2.657e+07 1.097e+08

The polynomial relationships are in the form y = p0 + p1x + p2x2 + … + pnxn, where n is the order of the polynomial. Each polynomial coefficient is supplied 
with associated 95% confidence bounds.
Abbreviation: IOP, inherent optical properties.

Table 3 
Coefficients of Best Fit Polynomials for IOP-Rrs(λ) Relationships and Vice Versa, With 30° Solar Angle
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the results are restricted to the wavelength range (400–700 nm) and sun-sensor angle conditions used in 
the simulations. Relationships derived for both sun and sensor in the zenith position (Tables 1 and 2) are 
offered for consideration for ocean color remote sensing applications where data have been fully corrected 
for BRDF effects. The relationships provided in Table 3, for the sensor at zenith and Sun at 30° from zenith, 
are offered for applications involving vertically profiling in situ radiometers; the differences in practice are 
small but potentially significant.

Data Availability Statement
Data supporting the conclusions can be found in the PANGAEA database (https://doi.org/10.1594/
PANGAEA.880523).
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Figure 10.  (a) Scatter plot of rrs(λ) on wG from HydroLight simulations (gray points) compared to previous models (Gordon et al., 1988; Lee et al., 1999, 2002; 
Wong et al., 2019) and the model Poly5 from the present study.  θ 30S  and nadir viewing sensor direction have been considered for this comparison, with 
Poly5 considered as the best performing polynomial model among second-seventh- order polynomials at 30  solar angle. (b) Mean absolute error as in Figure 
7b has been calculated for each model. The 95% confidence bounds of the Poly5 relationship are shown at both the high end (c) and the low end (d) of the data 
distribution, using a linear and log-log scale, respectively.
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