
Research Article Vol. 28, No. 25 / 7 December 2020 / Optics Express 37199

Object detection neural network improves
Fourier ptychography reconstruction

FLORIAN STRÖHL,1,* SUYOG JADHAV,2 BALPREET S.
AHLUWALIA,1,3 KRISHNA AGARWAL,1 AND DILIP K. PRASAD4

1Department of Physics and Technology, UiT The Arctic University of Norway, NO- 9037 Tromso, Norway
2Department of Electronics Engineering, Indian Institute of Technology (IIT ISM), 826004 Dhanbad, India
3Department of Clinical Science, Intervention and Technology, Karolinska Insitute, 17177 Stockholm,
Sweden
4Department of Computer Science, UiT The Arctic University of Norway, NO- 9037 Tromso, Norway
*florian.strohl@uit.no

Abstract: High resolution microscopy is heavily dependent on superb optical elements and
superresolution microscopy even more so. Correcting unavoidable optical aberrations during
post-processing is an elegant method to reduce the optical system’s complexity. A prime method
that promises superresolution, aberration correction, and quantitative phase imaging is Fourier
ptychography. This microscopy technique combines many images of the sample, recorded at
differing illumination angles akin to computed tomography and uses error minimisation between
the recorded images with those generated by a forward model. The more precise knowledge of
those illumination angles is available for the image formation forward model, the better the result.
Therefore, illumination estimation from the raw data is an important step and supports correct
phase recovery and aberration correction. Here, we derive how illumination estimation can be
cast as an object detection problem that permits the use of a fast convolutional neural network
(CNN) for this task. We find that faster-RCNN delivers highly robust results and outperforms
classical approaches by far with an up to 3-fold reduction in estimation errors. Intriguingly, we
find that conventionally beneficial smoothing and filtering of raw data is counterproductive in
this type of application. We present a detailed analysis of the network’s performance and provide
all our developed software openly.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Superresolution microscopy received its accolades with the Nobel price in chemistry in 2014 and
has since been firmly established as a method of choice in biomedical imaging core facilities.
A constant burden that goes along with ever higher resolution is the stark dependence on
superb system alignment and performance of the employed optical elements. In practice, this
is impossible to guarantee at all times and hence post-acquisition computational aberration
correction has seen a rapid development recently [1–6].

Fourier ptychographic microscopy (FPM) [7] stands out from the superresolution family as it
is a label-free technique. It is one of the latest microscopy methods to be developed and offers a
range of benefits over conventional brightfield imaging. Its main features are (1) retrieval of the
optical density of a sample without the need for interferometric detection, (2) correction of optical
aberrations induced by the employed optics through recovery of the microscopes complex-valued
coherent transfer function [8], (3) imaging with extraordinarily large space-bandwidth product,
and (4) its ability to achievable resolution much larger than dictated by the microscope objective
lens and thus allow even nanoscopic resolution [9,10].

FPM setups illuminate the sample from a multitude of directions sequentially and capture the
scattered light using an objective lens that forms an image of the sample on a camera. Different
illumination angles cause different features of the sample to be more pronounced. One can easily
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verify this with a flashlight and a relief surface. Mathematically, the sample’s complex scattering
field gets phase-modulated (a rigorous derivation is provided as supplementary information).
This modulation is non-linearly linked to both the pupil function and a sample-dependent
phase-delay, typically called quantitative phase or simply phase. The pupil function describes
optical aberrations and transmission strength of the imaging system, whereas the phase is a
quantitative measure related to the sample’s optical density.

Fig. 1. Flowchart of the calibration and reconstruction process. Raw data is Fourier
transformed and (optionally) pre-processed. Then the system parameters are extracted with
the neural network (FRCNN) and processed via the FPM phase retrieval algorithm using
the alternating projections method. Outputs are the sample’s amplitude, phase, and the
recovered system- (and patch-) specific pupil function.

To disentangle the pupil and phase components, FPM relies on a reconstruction algorithm
(see Fig. 1) that minimises the error between the recorded frames and computer-generated ’raw’
images based on a forward model of the imaging process. The parameters to optimise in this
process are the sample phase and the pupil function, whereas knowledge about the illumination
geometry serves as necessary constraint.

The accurate extraction and calibration of the illumination geometry from the raw data is the
main focus of this article and we show how the problem of illumination estimation can be cast
as an object detection problem (find and locate an image feature) in the Fourier domain, which
permits the use of recently published high-performance object-detection neural networks. In the
following, we explain how illumination calibration can be formulated in such a way and proceed
by applying and evaluating a suitable neural network to the task. All developed code is freely
available on GitHub (github.com/IAmSuyogJadhav/NN-Illumination-Estimation-FPM/).

2. Theory and methods

The illumination of a scattering sample with a plane wave is equivalent to shifting the object
spectrum by the amount of the lateral illumination wave vector component, which is successively
low-pass filtered by the objective’s pupil function.

As derived rigorously in the supplementary document the oblique illumination in FPM
introduces a spectral shift of the pupil function in the recorded spectrum that is directly
proportional to the illumination wave vector (in + and - directions). These shifts are clearly
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visible in the raw data and are a dominant feature that is largely independent of the sample (see
Fig. 2(b) for an example). Detecting and locating one of these disks in the Fourier domain is
thus equivalent to determining the illumination angle. In addition to the illumination angle,
it is possible to retrieve the effective coherent cut-off frequency by accurately determining
the radius of the displaced pupils. The FPM phase retrieval (with additional embedded pupil
function recovery [8]) makes use of this information to disentangle the pupil from the underlying
spectrum, which is governed by the combined extent of all raw image spectra. This is commonly
implemented as an iteratively solved error minimisation problem (see Supplement 1 for further
details). To summarise, the problem of calibrating the brightfield illumination in FPM can be
simplified into an object detection problem in which a "noisy disk" needs to be automatically
identified and accurately located.

This is a common task in computer vision and can be completed with impressive robustness
and fidelity by specialised object-detection neural networks. Generally, neural networks (NNs)
are more and more regularly used for computer vision and related machine learning tasks. In
microscopy, a whole range of application areas for NNs has emerged [11], including denoising
[12,13], digital staining [14–17], counting and labelling [18], tracking [19], image reconstruction
[20–22], computational microscopy [23–26], virtual focusing [27,28], aberration estimation [29],
and segmentation [30–32]. In the context of FPM, attempts have been made to perform the whole
phase retrieval process with a neural network although using neural networks for the full FPM
reconstruction pipeline is still an area of active research. So far, such approaches have found little
use in practice, due to limited performance increases with respect to the classical phase retrieval
[33] or due to impractically long reconstruction times in unsupervised networks [24]. Reliable
and fast deep-learning-based phase imaging has been shown to be possible in networks with
supervised training [23], but care must be taken when applying such networks to sample types
they were not trained on. Moreover, supervised networks require training sets composed of raw
data and conventionally reconstructed FPM images, highlighting the need for high-fidelity ground
truth reconstructions. The performance thus still hinges on a reliable illumination estimation.
Illumination calibration, in contrast, is largely independent of the sample and thus well-suited for
neural network processing without training on vast sets of experimental ground truth data.

Fig. 2. (a) Block diagram of the Faster-RCNN (FRCNN). (b) Exemplary region propositions
(RPs) on an FPM raw data spectrum. Panels (A,B) highlight RPs with limited value for
object detection, whereas the RP in panel (C) is more beneficial. The blue disc is detected
by the used FRCNN network.

Popular networks for this type of task are two-stage region-proposal convolution neural
networks (RCNNs). A fast and very robust implementation of this network type is faster RCNN
(FRCNN) [34], which is our architecture of choice. Its simplified architecture is shown in Fig. 2(a)
to illustrate the two stages.

In brief, the network’s first stage consists of the Resnet-101 unit, which contains a sequence of
33 residual blocks of four varieties (referred to as Conv2, Conv3, Conv4, and Conv5 for ease
of reference in literature). The first 3 blocks are of type Conv2, the next 4 of Conv3, the next
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23 of Conv4, and the remaining 3 of Conv5. Each of these blocks has three convolution layers
connected serially and includes a residual link that skips all the three blocks such that the input
may be directly passed to the output additively. The architectures of the three convolution layers
of Conv2 to Conv5 are described in Table 1. Note that 1 × 1 convolutions of layer 1 and layer 3
are used to decrease the number of features. This is the most common application of this type of
filter and hence these layers are often called feature map pooling layers. The Resnet-101 unit is
followed by the region proposal network (RPN) unit. As the name suggests, it creates proposals
for regions that likely contain the objects of interest. It takes in the feature map generated by
Resnet-101 and simply creates several candidate anchor boxes (or region proposals) at each pixel
in the feature map. The anchor boxes pass through a classifier and a regressor in parallel, such that
the anchor boxes with good classification accuracy are identified by the classifier, and appropriate
coordinates of the bounding boxes in the original image are identified by the regressor. The
bounding boxes with good classification accuracy are therefore identified as the outputs.

Table 1. Details of the residual blocks used in Resnet-101.

Residual block Layer 1 Layer 2 Layer 3

Conv2 64 kernels of 1x1 size 64 kernels of 3x3 size 256 kernels of 1x1 size

Conv3 128 kernels of 1x1 size 128 kernels of 3x3 size 512 kernels of 1x1 size

Conv4 256 kernels of 1x1 size 256 kernels of 3x3 size 1024 kernels of 1x1 size

Conv5 512 kernels of 1x1 size 512 kernels of 3x3 size 2048 kernels of 1x1 size

Our architecture choice is motivated by the following characteristics of our data. Consider the
three region proposals (RPs) shown in Fig. 2(b), which may be generated by an object detection
approach towards learning bounding box locations. It is evident that RPs A and B are ambiguous
in conclusion of foreground or background while RP C may be much more useful towards
detection. In this situation, among all the RPs created by an object detection approach, most will
be ambiguous though and not useful for learning. Conventional single-stage approaches cannot
deal with a poor ratio of useful RPs to those less meaningful. Two-stage approaches, on the
other hand, use their second step of classification towards object detection, which allows them to
handle even poorer ratios.

We used a pre-trained version of FRCNN [35] with ResNet-101 [36] as backbone that uses
dilated convolutions [37] in Conv5 to benefit from transfer learning. This can be justified as
low-level features are largely independent of the detection task at hand. Thus, using pre-trained
networks shortens the training period for microscopy system-specific features like disks or rings.
Furthermore, image spectra of natural images are commonly alike (decreasing amplitude with
higher spatial frequencies). Furthermore, as microscopy systems are commonly designed to
record at the Nyquist limit, the size of the apparent pupil in the raw data spectra relative to the
image size is comparable between most microscopes. This limited search space is beneficial,
as training on a limited range of cut-off values is sufficient to realise a universally applicable
illumination finder. This leads to the conclusion that the application of the network to spectra of
microscopy images is possible without the requirement for additional sample-specific training.

We trained the network on the magnitude spectra of computer-generated raw data obtained
using the FPM forward model (see Supplement 1 for details). Note that since object detection
with conventional NNs is not directly applicable to the complex-valued Fourier domain, we
operated only on the Fourier transform magnitudes. This step can be justified as the imprint of
the pupil function on the spectrum’s phase contains only values between ±π and is thus more
susceptible to the influence of the sample spectrum than the pupil magnitude.

3. Results and discussion

An example reconstruction using illumination calibration with FRCNN is shown in Fig. 3(a).

https://doi.org/10.6084/m9.figshare.13201097


Research Article Vol. 28, No. 25 / 7 December 2020 / Optics Express 37203

Fig. 3. (a) FPM amplitude reconstruction of a USAF target using illumination calibration
with FRCNN. (b) FPM reconstruction using circular edge detection (CED) [38] for calibration.
(c) Example of illumination calibration performance in Fourier space showing disk detection
by a human operator, FRCNN, and CED. The data set is openly available as part of [38].

The reconstruction quality of FRCNN is on a par with a reconstruction for which illumi-
nation calibration was performed with the classical circular edge detection (CED) method
(github.com/Waller-Lab/Angle_SelfCalibration) [38] (shown in panel b). However, looking at
the disk detections in Fourier space (panel c), an improvement in favour of FRCNN can be seen
(all frames of this data set are contained in Supplement 1, Figure S4). To objectively quantify the
performance of FRCNN with respect to CED, we performed disk detection with both techniques
on over 1000 images (128 × 128 pixels) generated from ground truth images using the FPM
forward model. The error in localisation of disks is shown in the violin plot [39] of Fig. 4(a).
The violin plots (github.com/bastibe/Violinplot-Matlab) were generated in MATLAB and show
each data point as well as an estimate of the probability density of the data. The mean absolute
error for CED was 2.4 pixels while the the mean absolute error of FRCNN was 0.9 pixels (∼ 3×
reduction in error).

Intriguingly, we find an almost bimodal distribution in CED, which indicates that a failure
of the algorihm might be at times severe. Nevertheless, even the portion of "successful" disk
estimations in CED are below the performance of FRCNN. Further, the error spread of FRCNN
is smaller and only shows very few outliers, which speaks for its robustness.

Next we investigated the effect of image size. Because of spatially varying pupil aberrations,
the imaging forward model can only be considered linear shift-invariant (LSI) in a small image
area called an isoplanatic patch. Calibration (and reconstruction) should hence be performed on
image sizes not larger than such a patch to fulfill the LSI imaging model to correctly estimate the
pupil and illumination. However, a smaller image size makes illumination detection accuracy
more difficult as Fourier space pixels become larger and overall less information is available to
determine the illumination angle. Hence we compare FRCNNs trained separately on image sizes
of 64×64, 128×128, 256×256, and 512×512 pixels to find the best performing model given a
certain isoplanatic patch size. When comparing localization error values, in pixels, from different
image sizes, the error values from larger image sizes appear larger as a relatively small error in
a large image corresponds to more pixels than a ’similar’ error in a smaller image. To remove
this inherent bias, we use as metric both the error in µm−1 as well as in pixels. The conversion
formula is

δdpxl = Np δdµm−1 . (1)

https://doi.org/10.6084/m9.figshare.13201097
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Fig. 4. (a) Violin plots of localization error distribution of CED [38] and FRCNN. (b) Error
in terms of pixels and µm−1 between different patch sizes. (c) Effect of raw-data filtering on
disk localisation performance of FRCNN. The plots show the error values for various patch
sizes either without or with pre-processing. Difference between performance on raw and
filtered raw data are measured using the Kolmogorov-Smirnoff test with outlier removal via
the generalised extreme student deviate test (ns = not significant, ** = null hypothesis (no
difference between distributions) rejected below the 1% significance level).

In Eq. (1), p is the effective camera pixel size in the sample plane. Since the conversion factor
between pixels (δdpxl) and µm (δdµm−1) scales with image size N, we get error values that
conform to the same scale and thus can be compared over different patch sizes. As illustrated
in Fig. 4(b), we find that increasing patch size reduces the error in terms of physical parameter
(µm−1), while in terms of pixel accuracy a larger patch size increases the error. The lower limit
for necessary wave vector estimation precision is determined by the degree of spatial coherence
of the illumination light [38] while the maximal image size is determined by the isoplanatic patch
size. Therefore, it is possible to choose the image size that offers both a suitable isoplanatic
patch size and achieves high illumination estimation precision. Note that we also used CED on
these patch sizes, which performed always at least three times less accurate than FRCNN (results
contained in Supplement 1).

Thirdly, we explored the effect of pre-processing of the Fourier spectra before feeding them to
the neural network. In standard machine learning tasks, pre-processing of the raw data improves
results and smoothing and denoising an image is generally deemed beneficial for algorithms to
detect image features. On the other hand altering the image spectrum might obscure the actual
location of the shifted pupil. The effects of pre-processing on the disk center estimation are
summarised in the violin plots in Fig. 4(c), which compares the localisation error (in pixels)
between un-processed raw spectra and filtered spectra using the full pre-processing pipeline. We
find a limited or even at times adverse effect of pre-processing (mirrored by the violin plots
of localisation errors in Fig. 4(c)). A detailed analysis (see Supplement 1) shows that bilateral
filtering can have a small positive effect (yet not significant) on some patch sizes, whereas other
filters for image smoothing can be highly disadvantageous. In contrast to most deep-learning
application in computer vision, our experiments thus indicate that pre-processing provides no

https://doi.org/10.6084/m9.figshare.13201097
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advantage when applied to object detection tasks in Fourier space, but might indeed worsen the
performance while further increasing computation time.

Lastly, we investigated the generalisability of illumination calibration via neural networks.
We used both conventional refractive objective data ("normal") and reflective objective data
possessing a prominent obscuration ("obscuration") as input of three differently trained FRCNNs.
Network 1 had seen only "normal" objective data, network 2 was trained on reflective objective
data only, and network 3 was trained on both types of data. Note that the network architecture
was the same in all cases and only the obscuration was modelled additionally in the forward
model for networks 2 and 3. The patch size was 256x256 and no Fourier space pre-processing
was applied. As is evident in Table 2, the presence of the obscuration significantly worsened the
performance of the network that had never seen it during training.

Vice versa, the network trained on obscuration data had a steep decline in calibration accuracy
when applied to "normal" data. Two other observations can be made though: Firstly, the presence
of an obscuration is beneficial for illumination calibration (the overall error is smaller). We assume
that any additional feature of the pupil would have this effect as more useful RPs would be present
for the network to work with. Secondly, the performance of a more broadly trained network is
largely on a par with a specialised one. Intriguingly, this extension of illumination calibration to
reflective objectives only required a small adaption of the forward model, which would not have
been feasible in such a simple and straightforward way with conventional approaches like CED.

Table 2. Mean error of center estimation (in pixels) for three differently trained NNs.

Trained on

Tested on normal obscuration both

normal 1.02 4.51 1.01

obscuration 7.81 0.51 0.69

4. Summary

It is interesting that illumination estimation can be posed as an object detection problem which is a
common deep learning task, albeit not in Fourier space where it has not been conventionally tried
to the best of our knowledge. We observe that use of faster RCNN for illumination estimation
shows improvements over traditional methods like CED [38] with a 3-fold reduction in disk
localisation error. Further, deep learning allows us to design tailor-made algorithms unique to
particular microscopy setups with different isoplanatic patch sizes. The increased degree of
abstraction in neural networks further eliminates the need for devising dedicated feature detection
routines for distinct microscopy setups - the network can adapt to any pupil shape, as for example
found in reflective microscope objectives. This can also help mitigate the loss of precision usually
observed when an algorithm is tried on a type of data that is substantially different from the data it
was designed to be used on. This also renders our approach highly user-friendly, as it is free from
user-set parameters for successful illumination estimation. We additionally investigated the effect
of pre-processing. Contrary to common knowledge in the context of many other image processing
tasks involving neural networks, where such pre-processing proves very useful, we found that it is
less viable on small image patch sizes in FPM illumination calibration. Finally, with the progress
made in computational hardware in recent years, deep learning showed to be computationally
feasible and could provide much more precise estimations with less computational overhead
compared to CED by a factor of 2.

Looking ahead, using neural networks for the full FPM reconstruction pipeline is also an
area of active research. An interesting approach in this respect is the combination of classical
reconstruction routines and neural networks, where only the first FPM image of a time-series is
reconstructed classically and serves as the sole training set for a neural network [40]. Given a
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long enough time-series, training of the network and application to consecutive frames is then
considerably faster than classical reconstruction of each frame, while maintaining equivalent
image quality. Moreover, as fewer raw frames are required for reconstruction with neural networks,
the overall frame-rate can be increased tremendously. In the end though, it hinges on a reliable
illumination estimation.
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