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Abstract: The heat shock response (HSR) regulates induction of stress/heat shock proteins (HSPs)
to preserve proteostasis during cellular stress. Earlier, our group established that the plasma
membrane (PM) acts as a sensor and regulator of HSR through changes in its microdomain
organization. PM microdomains such as lipid rafts, dynamic nanoscale assemblies enriched
in cholesterol and sphingomyelin, and caveolae, cholesterol-rich PM invaginations, constitute
clustering platforms for proteins functional in signaling cascades. Here, we aimed to compare the
effect of cyclodextrin (MβCD)- and nystatin-induced cholesterol modulations on stress-activated
expression of the representative HSPs, HSP70, and HSP25 in mouse B16-F10 melanoma cells.
Depletion of cholesterol levels with MβCD impaired the heat-inducibility of both HSP70 and HSP25.
Sequestration of cholesterol with nystatin impaired the heat-inducibility of HSP25 but not of HSP70.
Imaging fluorescent correlation spectroscopy marked a modulated lateral diffusion constant of
fluorescently labelled cholesterol in PM during cholesterol deprived conditions. Lipidomics analysis
upon MβCD treatment revealed, next to cholesterol reductions, decreased lysophosphatidylcholine
and phosphatidic acid levels. These data not only highlight the involvement of PM integrity in HSR
but also suggest that altered dynamics of specific cholesterol pools could represent a mechanism to
fine tune HSP expression.
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1. Introduction

When exposed to stress, cells induce the heat shock response (HSR), a multi-level signaling
network characterized by the accumulation of a conserved set of so-called stress/heat shock proteins
(HSPs) [1]. Being chaperoning proteins, HSPs recognize and prevent non-native protein conformations
from forming deleterious protein aggregates during stress and, once the stressful event passed,
assist in refolding or proteasomal degradation, depending on the extent of harmful exposure [2].
Based on structural similarities, HSPs are classified in several groups, including HSPA (HSP70),
HSPB (small HSPs), HSPC (HSP90), HSPH (HSP110), HSPD/E (HSP60/HSP10), DnaJB (HSP40),
and CCT (TRiC) [3]. Tight regulatory control of HSP expression is exerted by heat shock factor-1
(HSF1) which, under physiological conditions, mainly resides in the cytosol as an inactive monomer in
complex with multiple HSPs. Stress-induced titration of HSPs from HSF1 allows it to quickly adopt
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a trimeric conformation, which is able to move into the nucleus while being modulated by multiple
posttranslational modifications [4].

Based on this original model, HSP induction was primarily thought to be activated by protein
denaturation and aggregation. However, it is now recognized that cells sense heat stress and activate
the HSP expression machinery in multiple ways. For example, exposure to elevated temperatures
fluidizes the plasma membrane and alters its physical properties and microdomain organization [5].
This activates fluidity-associated feed-back mechanisms controlling stress-responsive genes including
HSPs [6]. Moreover, by acting as membrane-stabilizing factors [7], temporary association of certain
HSPs with the plasma membrane [8] reduces its fluidity level [7], elevates bilayer stability [9], and thus
restores membrane functionality during heat stress. Intriguingly, chemically induced PM fluidization
and lipid raft reorganization with benzyl alcohol to levels similar as what is generally observed under
heat stress caused a downshift of the HSR threshold resulting in induction of selected stress proteins
at physiological temperatures in K562 and B16-F10 cells [10,11]. Of note, although benzyl alcohol
and the close analogue phenethyl alcohol equally fluidized the PM, the latter did not reorganize the
microdomains and subsequent HSP induction was absent, suggesting that a distinct reorganization of
these microdomains is involved in the generation and transmission of stress signals to downstream
HSP activation [10,12].

Different classes of PM microdomains have been recognized. Lipid rafts are PM microdomains
enriched in cholesterol and sphingolipids which play an important role in the initiation of many
signaling pathways. The fast, dynamic modulation of their structure results in an ever-changing
content of both lipids and proteins which are essential for signal perception and transduction [13].
Caveolae are cholesterol-rich PM invaginations which cluster multiple proteins involved in signal
transduction. Caveolae formation is regulated by the integral membrane protein caveolin-1 which
is necessary for and governs the major functions attributed to caveolae through interaction with
caveolae-localized proteins. Upon stimulation, caveolae pinch off from the PM and translocate to the
cytoplasm where they act as intracellular regulators of signaling cascades [14].

How changes in plasma membrane physical properties during physiological stress are transmitted
intracellularly is not completely understood. A redistribution of cholesterol rich lipid rafts in parallel
with an increased packing density of PM lipids correlated with enhanced HSP expression levels
following heat exposure [15]. Since the structure of those lipid rafts strongly depends on lipid-phase
behavior, thermally-controlled changes in PM fluidity modify the lateral segregation behavior of the
embedded domains further suggesting their involvement in heat sensing and initiation of HSR [10,16].
In addition, heat-induced translocation of caveolin from the caveolae to the perinucleus has been
reported indicating the involvement of caveolae in heat stress sensing [17]. Although not exactly
understood, cytosolic release of caveolae-contained proteins, including caveolin-1, could thus link the
PM to downstream pathways through direct interaction with specific targets [14].

As cholesterol is critical for the formation and configuration of lipid rafts and caveolae,
targeted modulations of PM cholesterol levels or mobility is a widely used tool to disrupt the
dynamic character of those microdomains and to study their involvement in cellular physiology.
Methyl-β-cyclodextrin (MβCD)—a cyclic polysaccharide with high affinity for cholesterol—is one
of the most commonly used tools to extract cholesterol from cellular membranes [18]. Nystatin—a
polyene sterol-binding antimycotic—has current therapeutic applications and operates through
a bi-phasic concentration-depended mode of action in fungal ergosterol-containing membranes.
At low concentrations, sterol sequestration (immobilization) is observed perturbing the lipid
packing characteristics of the membrane and reducing the ability of cholesterol to interact with
and exert its effects on other membrane components. With increasing nystatin concentrations,
additional nystatin-oligomerization-induced pore formation is generally observed. In mammalian
cholesterol-containing membranes, sterol sequestration was equally observed; however, even at higher
concentrations, pore formation was absent [19].
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In the current study, we aimed to compare the effect of MβCD- and nystatin-induced cholesterol
modulations on heat-induced activation of HSP70 and HSP25—both known to be induced upon
heat—in mouse B16-F10 melanoma cells. Next, we analyzed the effect of MβCD-induced cholesterol
depletion on acquired thermotolerance, an adapted survival against extreme heat. With image-based
fluorescence correlation spectroscopy, we analyzed the lateral diffusion constant of fluorescently labeled
cholesterol in PM during MβCD and nystatin treatment. Finally, as MβCD actively extracts cholesterol
out of PM, pushing the cells towards a new equilibrium, we performed in-depth lipidomics to follow
the immediate effect of cholesterol deprivation on the whole cell lipidome.

2. Materials and Methods

2.1. Cyclodextrin and Nystatin

For each experiment, solutions of MβCD (CylcoLabs, Budapest, Hungary; 10 mM in serum-free
RPMI medium) and nystastin (Sigma-Aldrich, Budapest, Hungary; 50 mg/mL in dimethyl sulfoxide
(DMSO)) were freshly prepared. The MβCD used was a statistically methylated beta-cyclodextrin
with an average degree of methylation of 1.8 methyl groups per glucopyranose units (altogether 12.6
methyl groups per cyclodextrin ring).

2.2. Cell Culture

Mouse B16-F10 (ATCC CRL-6475) melanoma cells were grown in RPMI medium supplemented
with 10% fetal calf serum, 4 mM L-glutamine, and streptomycin/penicillin at 37 ◦C in humidified
incubator with 5% CO2.

2.3. Analysis of HSP70 and HSP25 Expression Levels

Cells were either exposed to 10 mM MβCD for 10 min [18] or to 50 µg/mL nystatin for 1 h [20] at
37 ◦C followed by heat stress for the indicated time at 42 ◦C in serum-supplemented RPMI medium
and 3 h recovery at 37 ◦C. Cells were lysed in RIPA buffer and HSP70 (ADI-SPA-810, Enzo Life
Sciences, Farmingdale, NY, USA), HSP25 (ADI-SPA-801, Enzo Life Sciences), and GAPDH (G9545,
Sigma-Aldrich) protein levels were analyzed through western blotting with the indicated antibodies.
Signals were visualized by the use of HRP-conjugated secondary antibodies.

2.4. Analysis of HSF1 Expression/Posttranslational Modification Levels

Cells were either exposed to 10 mM MβCD for 10 min [18] or to 50 µg/mL nystatin for 1 h [20] at
37 ◦C followed by heat stress for the indicated time at 42 ◦C in serum-supplemented RPMI medium.
Immediately after heat stress, cells were lysed in RIPA buffer and HSF1 (ADI-SPA-901, Enzo Life
Sciences; RT-405, Thermo-Scientific, Waltham, MA, USA) and GAPDH (G9545, Sigma-Aldrich) were
analyzed through western blotting with the indicated antibodies. Signals were visualized by the use of
HRP-conjugated secondary antibodies.

2.5. Analysis of Cholesterol Levels

B16-F10 cells were exposed for 10 min to 10 mM MβCD at 37 ◦C followed by 30, 60, or 90 min heat
stress at 42 ◦C in serum-supplemented RPMI medium. Immediately after stress, cholesterol levels were
measured with the Amplex-red cholesterol assay kit according to the supplier’s guidelines (Thermo
Scientific).

2.6. Stress Survival Experiments

For acquired thermotolerance (ATT) measurements, B16-F10 cells were exposed to 10 mM MβCD
for 10 min at 37 ◦C followed by 30, 60, or 90 min heat stress at 42 ◦C in serum-supplemented RPMI
medium. After 16–18 h recovery at 37 ◦C, all cells were exposed for 30 min to 45 ◦C. To estimate the
fraction of surviving cells, resazurin, a fluorescent indicator of cellular metabolism, was added to
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the medium and cells were further incubated at 37 ◦C. At regular time points, the resulting change
in fluorescence of growth medium was monitored at 565 nm excitation wavelength and 580 nm
emission wavelength.

To test if a limited cholesterol resupply after MβCD treatment during heat stress exposure should
have an effect on the survival of MβCD-pretreated cells, B16-F10 cells were incubated for 10 min with
10 mM MβCD at 37 ◦C followed by 60 or 90 min heat shock at 42 ◦C in serum-supplemented RPMI- or
serum-free RPMI medium. After pre-exposure heat stress, serum-free medium was exchanged for
complete medium and cells were allowed to recover for 16–18 h at 37 ◦C. Then, cells were exposed for
30 min at 45 ◦C and the following day, the fraction of surviving cells was estimated with resazurin as
described above.

2.7. Image-Based Fluorescence Correlation Spectroscopy (ImFCS)

Cells were seeded into glass bottom dishes (MatTek Corporation, Ashland, MA, USA) two days
before experiment. Measurements were performed in culturing media without phenol red at room
temperature after labeling cells with 100 nM Abberior Star 488 PEG cholesterol (ASP-Chol; Abberior,
Göttingen, Germany) for 5 min and the subsequent washing steps. Objective type Total Internal
Reflection illumination was used for achieving the thinnest excited sample volume with a high numerical
aperture objective (alpha Plan-FLUAR 100; Zeiss, Oberkochen, Germany). Excitation wavelength
488 nm from a Spectra-Physics Stabile 2018 (Spectra-Physics; Santa Clara, CA, USA) laser as light source
was introduced to the microscope (Zeiss Axiovert 200) by two tilting mirrors. The laser beam was focused
on the back focal plane of the objective after a 488 nm cleanup filter and aZT488/647/780rpc-UF1 dichroic
mirror (Chroma Technology GmbH, Olching, Germany). Sample signal was collected by the objective
and filtered by a 535/70 emission filter (Chroma). For acquisition, we used a ProEM512 EMCCD camera
(Princeton Instruments, Trenton, NJ, USA) with 3 milliseconds effective exposure time and 20 × 40 pixel
acquisition area per measurement (pixel size 0.16 µm). The image-based fluorescence correlation
spectroscopy (ImFCS) plugin (http://www.dbs.nus.edu.sg/lab/BFL/imfcs_image_j_plugin.html) for
ImageJ software was used for data evaluation. The autocorrelation functions (ACFs) for every pixels
were calculated using a multi-tau correlation scheme [21]. An exponential of polynomial bleach
correction was used to correct data before fitting. For obtaining the diffusion coefficient (D) for all
pixels, ACFs were fitted as described earlier [22]. The decreased number of reporter molecules caused
by cholesterol depletion does not affect the calculated D since this evaluated parameter is independent
in a broad range of molecule number [23].

2.8. Lipidomics

B16-F10 cells were exposed to 10 mM MβCD for 2, 5, and 10 min at 37 ◦C and immediately thereafter
collected. The pellets were shaken in 1 mL methanol containing 0.001% butylated hydroxytoluene as
an antioxidant for 10 min and centrifuged at 10,000× g for 5 min. The supernatant was transferred into
a new reaction tube and stored at −20 ◦C [24]. All experiments were done in two biological repeats,
each containing three technical repeats. Mass spectrometry analyses were done as described earlier [25].
PLS-DA was performed with the Metaboanalyst suite 4.0 [26].

2.9. Statistics

Band intensities of HSP70 and HSP25 measured upon MβCD followed by heat were analyzed with
2-way ANOVA followed by Sidak’s multiple comparisons test. Band intensities of HSP70 and HSP25
upon nystatin followed by heat were analyzed with one-way ANOVA followed by Tukey’s multiple
comparisons test. Band intensities of HSF1 upon MβCD or nystatin followed by heat were analyzed
with one-way ANOVA followed by Tukey’s multiple comparisons test. Data of ATT experiments,
effect of serum-supplemented versus serum-free medium experiments, and cholesterol replenishment
experiments was analyzed with ANOVA followed by Tukey’s multiple comparisons test.

http://www.dbs.nus.edu.sg/lab/BFL/imfcs_image_j_plugin.html
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3. Results

3.1. Plasma Membrane Modulations with Methyl-β-Cyclodextrin (MβCD) and Nystatin Impair the
Heat-Induced Stress Response

Considering the involvement of cholesterol-rich PM microdomains in HSR, we wanted to compare
the effect of MβCD- and nystatin-induced cholesterol modulations on the stress-induced activation of
selected HSPs. We decided to focus on stress-induced activation of HSP70 (HSPA1A) and the small
HSP HSP25 (HSPB1), representative HSPs known to be highly upregulated upon heat exposure.

First, B16-F10 cells were incubated for 10 min with 10 mM MβCD at 37 ◦C followed by
30, 60, or 90 min heat stress at 42 ◦C and 3 h recovery at 37 ◦C. Compared to untreated cells,
MβCD treatment resulted in lower heat-induced HSP70 and HSP25 levels in a time-dependent
manner (Figure 1A). Considering the impaired heat-induced stress response upon MβCD exposure,
we analyzed HSF1 post-translational modification (PTM) levels. Upon stress, HSF1 is modulated by
multiple posttranslational modifications. Currently, 30 amino acids have been identified in the HSF1
sequence which are susceptible to phosphorylation, acetylation, summoylation, and O-glycosylation [4].
As PTMs add to the molecular weight of the targeted protein, this might result in a pronounced band
shift which can be visualized by western blotting. B16-F10 cells exposed for 2, 5 or 10 min to 10 mM
MβCD at 37 ◦C followed by 1 h heat shock at 42 ◦C had a reduced HSF1 band shift in a time-dependent
manner (Figure 1B), suggesting a modulated HSF1 posttranslational profile.

Next, B16-F10 cells were exposed for 1 h to 50 µg/mL nystatin at 37 ◦C followed by 1 h heat stress at
42 ◦C and 3 h recovery at 37 ◦C. Compared to untreated cells, nystatin resulted in reduced heat-induced
HSP25 levels but had no effect on HSP70 levels (Figure 1C). We then analyzed for nystatin-induced
changes in HSF1 expression/post-translational modification levels and exposed B16-F10 cells for 1 h
to 50 µg/mL nystatin at 37 ◦C followed by heat stress for 1 h at 42 ◦C. Immediately after heat stress,
nystatin exposure resulted in a less pronounced HSF1 signal compared to the heat stress control
(Figure 1D).
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exposed for 1 h to 50 µg/mL nystatin at 37 °C followed by 1 h heat stress at 42 °C and 3 h recovery at 
37 °C; (D) B16-F10 cells were exposed for 1 h to 50 µg/mL nystatin at 37 °C followed by heat stress for 
1 h at 42 °C. Bar graphs show quantified band intensities normalized to GAPDH (n = 3). CD (X): cells 
exposed for 2, 5, or 10 min to MβCD. DMSO was treated as a vehicle control for nystatin. A.U.: 
arbitrary units, HS: heat shock. 
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Figure 1. Effect of PM modulation on heat-induced heat shock response. (A) B16-F10 cells were
incubated for 10 min with 10 mM Methyl-β-cyclodextrin (MβCD) at 37 ◦C followed by 30, 60, or 90 min
of heat stress at 42 ◦C and 3 h recovery at 37 ◦C; (B) B16-F10 cells were incubated for 2, 5, or 10 min
with 10 mM MβCD at 37 ◦C followed by 1 h heat shock at 42 ◦C; (C) B16-F10 cells were exposed
for 1 h to 50 µg/mL nystatin at 37 ◦C followed by 1 h heat stress at 42 ◦C and 3 h recovery at 37 ◦C;
(D) B16-F10 cells were exposed for 1 h to 50 µg/mL nystatin at 37 ◦C followed by heat stress for 1 h at
42 ◦C. Bar graphs show quantified band intensities normalized to GAPDH (n = 3), * p < 0.05; ** p < 0.01.
CD (X): cells exposed for 2, 5, or 10 min to MβCD. DMSO was treated as a vehicle control for nystatin.
A.U.: arbitrary units, HS: heat shock.

3.2. Plasma Membrane Modulation with MβCD Alters Acquired Thermotolerance of B16-F10 Cells

Acquired thermotolerance (ATT) is an adapted ability of cells to survive otherwise lethal heat in
response to an earlier pre-exposure to non-lethal stress. Considering the observed effects of targeted
PM modulation by MβCD on heat-induced HSP70 and HSP25 expression, we next wanted to analyze
its effect on ATT.

First, B16-F10 cells were exposed for 10 min to 10 mM MβCD at 37 ◦C followed by 30, 60, or 90 min
of heat stress at 42 ◦C in serum-supplemented RPMI medium (pre-exposure). Then, after 16–18 h
recovery at 37 ◦C, cells were re-exposed to heat stress for 30 min at 45 ◦C. The following day, the fraction
of surviving cells was estimated with resazurin. Upon 30 min of pre-exposure heat, MβCD resulted in
reduced ATT compared to non-treated heat-shocked cells. However, from 60 min pre-exposure heat
onwards, a similar ATT was observed in MβCD-treated cells compared to the time-matched control
cells (Figure 2A).

Following this observation and considering the very high affinity of MβCD for cholesterol,
we hypothesized that while being exposed to heat stress, plasma membrane cholesterol levels might
re-equilibrate allowing for restored heat sensing and resulting stress response as observed from 60 min
pre-exposure heat onwards. Thus, a limited cholesterol resupply after MβCD treatment during heat
stress exposure should have an effect on the survival of MβCD-pretreated cells. To test this possibility,
B16-F10 cells were incubated for 10 min with 10 mM MβCD at 37 ◦C followed by 60 or 90 min heat
shock at 42 ◦C in serum-supplemented RPMI- or serum-free RPMI medium. After pre-exposure heat
stress, serum-free medium was exchanged for complete medium and cells were allowed to recover for
16–18 h at 37 ◦C. Then, cells were exposed for 30 min at 45 ◦C and the following day, the fraction of
surviving cells was estimated with resazurin. As expected, pre-exposure heat in serum-supplemented
RPMI medium for 60 min or longer resulted in similar ATT in MβCD-treated cells compared to
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time-matched pre-exposure heat control cells (Figure 2B). However, pre-exposure heat in serum-free
RPMI medium for 60 min almost reached statistical significantly lower ATT in MβCD-treated cells
compared to time-matched pre-exposure heat control cells (p = 0.06), whereas pre-exposure heat
in serum-free RPMI medium for 90 min resulted in significantly lower ATT in MβCD-treated cells
compared to time-matched pre-exposure heat control cells (p < 0.05) (Figure 2B). Considering the high
affinity of MβCD towards cholesterol, this suggested that most probably cholesterol supply from the
serum-supplemented medium influences the restoration of the MβCD-impaired stress response.
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in B16-F10 cells. (A) B16-F10 cells were exposed for 10 min to 10 mM MβCD at 37 ◦C followed by 30,
60, or 90 min of heat stress at 42 ◦C (pre-exposure). Then, after 16–18 h recovery at 37 ◦C, cells were
re-exposed to heat stress for 30 min at 45 ◦C. The following day, the fraction of surviving cells was
estimated with resazurin (n = 4, * p < 0.05); (B) B16-F10 cells were incubated for 10 min with 10 mM
MβCD at 37 ◦C followed by 60 or 90 min heat shock at 42 ◦C in serum-supplemented- or serum-free
RPMI medium (limiting cholesterol supply). After pre-exposure heat stress, serum-free medium was
exchanged for complete medium and cells were allowed to recover for 16–18 h at 37 ◦C. Then, cells were
exposed for 30 min at 45 ◦C and the following day, the fraction of surviving cells was estimated with
resazurin (n = 3, # p = 0.06, * p < 0.05); (C) B16-F10 cells were exposed for 10 min to 10 mM MβCD
at 37 ◦C followed by 30, 60, or 90 min heat shock at 42 ◦C and cholesterol levels were measured
immediately after heat stress (n = 6, * p < 0.05 compared to 37 ◦C control,). A.U.: arbitrary units.

Thus, we analyzed cholesterol levels during pre-exposure heat in MβCD-treated cells. B16-F10
cells were exposed for 10 min to 10 mM MβCD at 37 ◦C followed by 30, 60, or 90 min heat shock at 42 ◦C
and cholesterol levels were measured immediately after heat stress. At every time point measured,
cholesterol levels of MβCD-treated cells did not recover to baseline and were always significantly
lower compared to those of untreated non-heat-shocked control cells (Figure 2C). This would suggest
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that apart from cholesterol, hitherto unknown factors present in serum might influence the restoration
of the MβCD-impaired stress response.

Treatment of B16-F10 cells with nystatin resulted in reduced heat-induced HSP25 expression
level (Figure 1C). Considering the published involvement of HSP25 on development of
thermotolerance [27,28], we did not perform nystatin-related ATT assays as a similar effect as to
that observed with MβCD was anticipated.

3.3. Exposure to MβCD Alters the Lateral Diffusion of Cholesterol in the Plasma Membrane

To analyze the immediate effect of PM modulation on the lateral diffusion of cholesterol,
a fluorescent analogue (ASP-Chol) was used which reports only from the outer leaflet of PM since
the flip/flop of this reporter is prevented due to the polyethylene linker. First, imaging fluorescence
correlation spectroscopy (ImFCS) measurements were performed on labeled cells before and during
MβCD exposure. The significant decrease of lateral diffusion speed observed within the first minutes
of MβCD exposure was followed by a slower decay (Figure 3). Next, ImFCS measurements were
performed on labeled cells before and after 1 h of nystatin exposure. However, exposure to nystatin
did not result in any significant change of the diffusion constant (data not shown).
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3.4. Lipidomics Analysis Indicates an Immediate and Extensive MβCD-Induced Lipidome Remodeling

As MβCD actively extracts cholesterol out of PM, we anticipated that it might push the cell
towards a new PM compositional equilibrium. Thus, we decided to perform in-depth lipidomics to
follow the immediate effect of MβCD-induced cholesterol deprivation on the whole cell lipidome.

B16-F10 cells were treated with 10 mM MβCD for 2, 5, and 10 min at 37 ◦C and immediately
thereafter the total cellular lipid content was isolated and analyzed with mass spectrometry.
First, we confirmed the established affinity of MβCD towards cholesterol in our dataset by reaching
a reduction of up to 50% of cholesterol levels in 10 min (Figure 4A). Next, before proceeding with
the statistical analysis, we removed the cholesterol values from our dataset. As such, we avoid that
the large effect of MβCD on cholesterol might mask more subtle but potentially relevant changes of
other lipid species. Interestingly, PLS-DA analysis [29] still indicated a good separation of the different
time points (Figure 4B); cross-validation with 2 components revealed good predictability (Q2 = 0.74)
and high goodness of fit (R2 = 0.93). Sphingomyelin, lysophosphatidylcholine, and phosphatidic
acid species were identified among the 10 mostly altered features due to MβCD exposure (Figure 4C).
By analyzing the time-dependent changes in the levels of these lipid species, an immediate decrease of
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lysophosphatidylcholine species was visible (Figure 4D) whereas phosphatidic acid and sphingomyelin
species displayed a more delayed onset of decrease (Figure 4E,F).
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Figure 4. Effect of MβCD on B16-F10 lipidome. (A) Time-dependent changes in the levels of
cholesterol; (B) PLS-DA scores plot generated without cholesterol values; (C) Most important
discriminative features due to MβCD treatment: lysophosphatidylcholine (LPC), phosphatidic acid
(PA), lysophosphatidylinositol (LPI), sphingomyelin (SM); Time-dependent changes in the levels of
lysophosphatidylcholine (D), sphingomyelin (E), and phosphatidic acid (F). CD (X): cells exposed for 2,
5, or 10 min to MβCD.
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In mammalian cholesterol-containing membranes, nystatin operates through sterol
sequestration/immobilization without the formation of pores [19]. Therefore, in-depth nystatin-related
lipidomics were not performed as similar cholesterol levels compared to control were anticipated
excluding the need for the cells to reach a new PM compositional equilibrium.

4. Discussion

The involvement of cholesterol-rich PM microdomains such as lipid rafts and caveolae in HSR
was previously suggested [17,30]. To further study the involvement of those microdomains in HSR,
we compared the effect of MβCD- and nystatin-induced modulations on stress-induced activation of
the representative HSPs HSP70 and HSP25 in mouse B16-F10 melanoma cells.

Treatment with MβCD resulted in diminished heat-induced HSP70 and HSP25 expression
(Figure 1A), whereas treatment with nystatin diminished heat-induced HSP25 expression without
affecting HSP70 induction (Figure 1C). These observations suggest that, under the conditions used,
MβCD and nystatin likely acted upon different cholesterol pools. Interestingly, a specific selectivity
of MβCD-induced cholesterol depletion towards lipid raft regions has been suggested, depending
on exposure time (up to 10 min) and/or concentration used [18]. Additionally, a specific disruption
of caveolae by nystatin without modifying other PM microdomains was previously suggested by
deep-etch freeze microscopy [20]. Consequently, based on our results and considering the published
conditional selectivity of MβCD and nystatin towards respectively lipid rafts and caveolae, it is
tempting to speculate that selective heat-induced activation of lipid rafts or caveolae are likely to target
specific HSP subpopulations. Consistent with our nystatin data is the intriguing observation that
genetic disruption of caveolin-1—an essential component of functional caveolae—in mouse mammary
tumor cells was shown to impair the expression of HSP25 but not HSP70 [31].

In line with the observed altered HSP profile compared to untreated heat shocked cells, we observed
an altered stress-induced HSF1 PTM pattern upon PM modulation with MβCD or nystatin (Figure 1B,D).
Upon heat, HSF1 is targeted by multiple PM-originating signaling cascades which play a defining role
in its activation [32]. Currently, we can only speculate which signaling cascade(s) might be affected.
For example, both JNK [33] and p38 MAP kinases [34] were previously suggested to take part in
membrane-associated HSP25 induction. Of note, cholesterol depletion inhibited JNK and p38 MAP
kinase-associated signaling in different model systems [35,36]. Thus, it is tempting to speculate that
MβCD- or nystatin-induced PM modifications impair different signaling cascades towards HSF1
resulting in an altered PTM profile. Although the precise role of HSF1 PTMs is unknown [37] it is
suggested to provide specificity towards its binding preferences to selected heat shock elements in the
promotor region of a subset of hsp genes [38]. In addition, induction of HSP70 and HSP25 depends on
the nuclear domain ND-10-associated proteins Daxx and PML [39]. Previously, interaction of Daxx
and HSF1 during HSR was reported [40]. In fact, in mouse embryonic fibroblasts, release of Daxx from
the nuclear domain correlated with HSP25 suppression whereas release of PML correlated with lower
HSP70 levels. Considering that Daxx acts as a regulator of cholesterol synthesis through association
with the androgen receptor [41], it is tempting to speculate that MβCD-induced cholesterol depletion
could titrate Daxx away from the HSF1 regulatory complex resulting in the observed impaired HSP25
induction upon heat.

Interestingly, MβCD impaired acquired thermotolerance in B16-F10 when cells were pre-exposed
to a short (30 min) period of sublethal heat (Figure 2A). However, prolonged pre-exposure (>60 min)
to sublethal heat did not result in MβCD-induced impaired acquired thermotolerance. Multiple
scenarios might explain this observation. (a) MβCD-induced alterations in PM cholesterol levels and
microdomain disruption are restored during prolonged pre-exposure to sublethal heat resulting in
restored signaling cascades and HSP expression levels. The finding that even prolonged pre-exposure
to sublethal heat in serum-free medium—limiting external cholesterol supply—impaired acquired
thermotolerance, supports this assumption (Figure 2B). However, even when cells were pre-exposed
for up to 90 min of sublethal heat in serum-supplemented medium, cellular cholesterol levels were
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not restored to levels comparable to those of untreated cells (Figure 2C). Additionally, prolonged
pre-exposure for up to 90 min to sublethal heat did not result in restored HSP expression levels
(Figure 1A). (b) As a potential feedback mechanism, prolonged pre-exposure to sublethal heat might
activate alternative signaling and/or survival mechanisms resulting in restored survival. In fact,
the mouse macrophage tumor cell line P388D1 displayed heat-induced thermotolerance in the absence
of HSF1 transactivation capacity and subsequent HSP induction [42]. Additionally, CHO [25] and
murine B-cell lymphoma CH1 [43] cells displayed heat-induced thermotolerance in the complete
absence of HSP expression. As of now, we can only speculate about the potential nature of these
alternative mechanisms. Currently, in-depth RNAseq experiments are ongoing in our lab to explore the
specific underlying molecular mechanisms responsible for the observed restored ATT upon prolonged
pre-exposure to sublethal heat.

Recently, by using advanced fluorescence imaging and spectroscopy approaches, a two-component
diffusion model for cholesterol in the PM of live cells was proposed suggesting a heterogeneous
diffusion in the cell membrane which is due to its nanoscale interactions and localization in the
membrane [44]. In the current study, by using a fluorescently-labeled cholesterol analogue as a reporter
for lateral cholesterol diffusion, we observed a quick decrease of the diffusion constant during MβCD
treatment (Figure 3). Although our fluorescent cholesterol probe might not completely reflect the
native behavior of the endogenous cholesterol, this might suggest an altered composition and structure
of the PM caused by the cholesterol depletion. Of note, one-hour nystatin exposure did not affect the
lateral diffusion of the cholesterol probe. Currently, we can only speculate about the differences in
the observed changes in lateral diffusion between MβCD- or nystatin exposure and assume that they
might be due to their respective mode of action (extraction vs. sequestration/immobilization).

Apart from cholesterol, we identified additional potentially relevant MβCD-induced changes
in the lipidome of B16-F10 cells. In addition to previously reported MβCD-induced decreases in
sphingomyelin levels [18], a gradual decrease in lysophosphatidylcholine (LPC) and phosphatidic
acid (PA) species was observed (Figure 4D–F). Thus, our study indicates that MβCD affects other lipid
species as well suggesting that the effects of MβCD on cell physiology as described in the literature
might go well beyond changes in cholesterol levels and in fact be of a much more complex nature.
Precisely how these changes came about—active uptake by MβCD, lipid metabolism, or passive
leakage/active transport into the extracellular milieu—is currently not known.

Of note, based on in vitro studies, a chaperone-like function of LPC able to prevent
thermally-induced protein denaturation was suggested, implying a potential function in preserving
the conformation and function of PM-embedded signaling proteins during heat stress [45]. On the
other hand, PA functions as a precursor for the generation of bioactive lipids such as diacylglycerol
(DAG) [46]. Intriguingly, since perception of heat stress at the level of PM relies among others on
DAG-mediated arachidonic acid generation which ultimately modulates HSF1 activity [32], these minor
but relevant reduction in LPC and/or PA levels might also have a potential role in the observed impaired
stress sensing. In fact, we earlier demonstrated the role of nutritional lipid supply to cell culture
medium in stress-sensing through reorganization of cholesterol-rich microdomains [47]. Currently,
we can only speculate about the potential underlying mechanisms of these changed lipid species levels
in our findings which should be addressed in future studies. For example, the size and/or function of
the specific lipid-associated HSP70 pools—as recently discussed by Balogi et al. [48]—could be affected
by the observed MβCD-induced lipidome alterations and might be of importance when interpreting
our current findings.

5. Conclusions

Our data demonstrated impaired heat-induced HSP expression levels upon targeted PM
modulation in B16-F10 cells. These data not only highlight the involvement of PM integrity in
HSR but also suggest that altered dynamics of specific cholesterol pools could represent a mechanism
to fine tune HSP expression. Considering that cholesterol exchange between cells through direct
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cell–cell contacts has recently been shown [49], membrane-compound exchange through cell-to-cell
communication could in fact represent an hitherto less recognized mechanism through which stress
adaptation could spread throughout a larger cell population.
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