Thromboembolic events after high-intensity training during cisplatin-based chemotherapy for testicular cancer: Case reports and review of the literature

Lene Thorsen1,2 | Hege S. Haugnes3,4 | Sophie D. Fossä1,5 | Marianne Brydøy6 | Torgrim Tandstad7 | Torbjørn Wisløff4,8 | Gunhild M. Gjerset1 | Elisabeth Edvardsen9,10 | Karl-Otto Larsen9 | Per Morten Sandset5,11 | Carola E. Henriksson5,12 | Truls Raastad10 | Helene F. S. Negaard13

1National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital, Oslo, Norway
2Department of Clinical Service, Oslo University Hospital, Oslo, Norway
3Department of Oncology, University Hospital of North Norway, Tromsø, Norway
4Institute of Clinical Medicine, University of Tromsø – The Arctic University, Tromsø, Norway
5Institute of Clinical Medicine, University of Oslo, Oslo, Norway
6Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
7Clinic of Oncology, St. Olavs Hospital, Trondheim, Norway
8Norwegian Institute of Public Health, Oslo, Norway
9Department of Pulmonary Medicine, Oslo University Hospital, Oslo, Norway
10Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
11Department of Haematology, Oslo University Hospital, Oslo, Norway
12Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
13Department of Oncology, Oslo University Hospital, Oslo, Norway

Correspondence
Lene Thorsen, National Advisory Unit on Late Effects after Cancer Treatment, Department of Oncology, Oslo University Hospital and Department of Clinical Service, Oslo University Hospital, Oslo, Norway.
Email: lka@ous-hf.no

Funding information
AKTIV Against Cancer; The Research Council of Norway, Grant/Award Number: 218312; The South-Eastern Norway Regional Health Authority, Grant/Award Number: 2010063

Abstract
The randomized “Testicular cancer and Aerobic and Strength Training trial” (TAST-trial) aimed to evaluate the effect of high-intensity interval training (HIIT) on cardiorespiratory fitness during cisplatin-based chemotherapy (CBCT) for testicular cancer (TC). Here, we report on an unexpected high number of thromboembolic (TE) events among patients randomized to the intervention arm, and on a review of the literature on TE events in TC patients undergoing CBCT. Patients aged 18 to 60 years with a diagnosis of metastatic germ cell TC, planned for 3 to 4 CBCT cycles, were randomized to a 9 to 12 weeks exercise intervention, or to a single lifestyle counseling session. The exercise intervention included two weekly HIIT sessions, each with 2 to 4 intervals of 2 to 4 minutes at 85% to 95% of peak heart rate. The study was...
prematurely discontinued after inclusion of 19 of the planned 94 patients, with nine patients randomized to the intervention arm and 10 to the control arm. Three patients in the intervention arm developed TE complications; two with pulmonary embolism and one with myocardial infarction. All three patients had clinical stage IIA TC. No TE complications were observed among patients in the control arm. Our observations indicate that high-intensity aerobic training during CBCT might increase the risk of TE events in TC patients, leading to premature closure of the TAST-trial.

KEYWORDS
cisplatin-based chemotherapy, high-intensity training, testicular cancer, thromboembolic events

1 | INTRODUCTION

The potential benefits of exercise training during and after cancer treatment have increasingly gained interest. Current evidence suggests that exercise is safe and effective to maintain or improve physical fitness and patient-reported outcomes both during and after treatment.\(^1\)\(^-\)\(^3\) Cancer patients and survivors are therefore generally recommended to avoid inactivity and follow the public guidelines for physical activity if feasible.\(^4\)\(^-\)\(^6\) However, the optimal intensity of exercise during cancer treatment remains unclear; particularly, the efficacy, feasibility and safety of high-intensity training (HIT) across subgroups of cancer patients.\(^7\)

Previous randomized controlled trials (RCTs) examining effects and safety of HIT during chemotherapy have demonstrated beneficial effects and few adverse events (AEs).\(^8\)\(^-\)\(^12\) Notably, only a small minority of patients in these studies were treated with cisplatin.

Cisplatin-based chemotherapy (CBCT) is standard treatment for metastatic germ cell testicular cancer (TC).\(^13\) During CBCT, TC patients frequently experience reduced cardiorespiratory fitness (CRF) and muscle strength. Furthermore, TC survivors who have received CBCT are at risk of chronic fatigue and development of metabolic syndrome.\(^14\)\(^,\)\(^15\) Given the risk of acute and long-term AEs after treatment of metastatic TC, identification of risk-reducing interventions is of high relevance. To the best of our knowledge, only one study has examined the effects of exercise during chemotherapy for TC, suggesting that high-intensity strength training was safe.\(^16\)

In the “Testicular cancer and Aerobic and Strength Training trial” (TAST-trial), we aimed to evaluate the effects of high-intensity interval training (HIIT) on CRF in TC patients during CBCT. Here, we report on the unexpected high number of thromboembolic (TE) events among the patients randomized to the intervention.

2 | METHODS

2.1 | Study design and patients

The TAST-trial was a two-arm (1:1 ratio) national multicenter RCT, comparing change in CRF measured by peak oxygen uptake (VO\(_{2\text{peak}}\)) in TC patients who during CBCT underwent a training program including HIIT, to controls who received a single lifestyle counseling session. The randomization was computerized in an equal allocation and the patients were stratified by study center.

Patients were recruited at four university hospitals in Norway: Oslo University Hospital, University Hospital of North of Norway, Haukeland University Hospital and St. Olavs University Hospital, from November 2015 to November 2016. Inclusion criteria were men aged 18 to 60 years with metastatic germ cell TC and with a treatment plan of 3 or 4 cycles of cisplatin combined with etoposide (EP) or with etoposide plus bleomycin (BEP). The BEP/EP regimens were given in 3-week cycles and consisted of cisplatin 20 mg/m\(^2\) Day 1 to 5, etoposide 100 mg/m\(^2\) Day 1 to 5, and for BEP, bleomycin 30 mg Day 1, 5 and 15. Exclusion criteria were major physical or mental comorbidity, or not able to perform a maximal cardiopulmonary exercise test (CPET); that is, unable to cope with the equipment, or developing arrhythmias, cardiac ischemia or infarction, severe exercise-induced hypoxemia, or systolic blood pressure above 250 mmHg.

2.2 | Study assessments

All participants underwent the same assessments before and after the intervention period. The primary outcome was VO\(_{2\text{peak}}\) measured...
during a CPET using a continuous graded exercise protocol on a treadmill until exhaustion. Peak heart rate (HRpeak) assessed by 12-leads electrocardiography (ECG) was also measured during the CPET. If the rest and exercise-ECGs were normal and no cardiac symptoms occurred, no further cardiac examinations were performed. For safety reasons, pulmonary function, blood pressure and saturation were also measured before, during and after CPET, all under supervision of an exercise physiologist and a physician. Other assessments included, muscle strength tests, dual-energy X-ray absorptiometry (DXA) scan, routine blood tests and questionnaires.

After the discontinuation of the TAST-trial, the cases were assessed with regard to individual susceptibility for TE complications. Laboratory investigations were performed 3 to 10 months after the TE events for deficiencies of the natural anticoagulants (protein S, protein C and antithrombin), presence of lupus anticoagulant (subtest diluted Russell's viper venom test (dRVVT) and silica clotting time, anti-cardiolipin antibodies and anti-beta2 glycoprotein I abs) and the presence of point mutations in the coagulation factor (F)V gene (c.1601G>A; FV Leiden) and in the prothrombin gene (c.*97G>A). The prechemotherapy computed tomography (CT) scans were re-evaluated for signs of thrombosis in large vessels or pulmonary embolism.

2.3 | Intervention arm

Because CRF was the primary outcome of the trial, we composed an intervention that emphasized high-intensity aerobic exercise. The intervention included two one-to-one supervised sessions per week for 9 or 12 weeks depending on the number of chemotherapy cycles. Walking uphill on a treadmill was the primary choice of exercise, but ergometer-cycling, rowing and out-door walking were possible alternatives. Each session consisted of 10 minutes warm-up at 60% to 70% of HRpeak, followed by HIIT; that is, 2 to 4 intervals of 2 to 4 minutes at 85% to 95% of HRpeak (high-intensity zone); separated by 2 minutes' active recovery, and followed by 10 minutes' cool-down (Figure 1). Thereafter, an optional 15 minutes strength training was performed, depending on the patient's energy level. HRpeak obtained during the pre-intervention CPET was used to calculate the training zones. The HR and the Borg Rating of Perceived Exertion Scale were registered each minute during the HIIT. If the patients felt unwell before or during a session, the physiotherapists/personal trainers were instructed to make individual adaptations regarding the intensity, duration and/or number of intervals. If the patient's condition was not compatible with HIIT, the planned session was postponed or canceled.

2.4 | Control arm

During the first chemotherapy cycle, patients in the control arm received a 30-minute counseling session on general lifestyle recommendations.

2.5 | Sample size calculation

Based on our experience from a pilot study, we expected reductions in VO2 peak during chemotherapy by 14 mL/kg/min in the control

![FIGURE 1](http://example.com/figure1.png)

FIGURE 1 Typical session including 10 minutes warm-up, four intervals of high-intensity (85%-95% of HRpeak) physical exercise separated by active recovery, and 10 minutes cool-down. HR, heart rate; HRpeak, peak heart rate (beat min⁻¹) [Color figure can be viewed at wileyonlinelibrary.com]
group and 9 mL/kg/min in the exercise group, with a SD of 5 mL/kg/min for both groups. Upfront sample size calculations showed that we needed 47 patients in each group to detect a mean group difference in change of VO₂ peak during chemotherapy of 5 mL/kg/min with a SD of 7 mL/kg/min (two-sided significance level of 5%, power of 90% and 10% dropout).

TABLE 1 Baseline characteristics of the patients in the intervention- and control arm, and of each case who developed a thromboembolic event

<table>
<thead>
<tr>
<th></th>
<th>Intervention arm (n = 9)</th>
<th>Control arm (n = 8)</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, year (median [range])</td>
<td>31 (21-50)</td>
<td>31 (25-56)</td>
<td>21</td>
<td>43</td>
<td>30</td>
</tr>
<tr>
<td>Cancer characteristics (n or median [range])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminoma</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonseminoma</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIA</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IIB</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIC</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hCG (IU/L)</td>
<td>3.2 (0.1-7.6)</td>
<td>4.1 (0.1-31.1)</td>
<td>3.4</td>
<td>6.3</td>
<td>3.5</td>
</tr>
<tr>
<td>AFP (kU/L)</td>
<td>3 (1-117)</td>
<td>6 (2-1294)</td>
<td>3</td>
<td>5</td>
<td>117</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>172 (137-348)</td>
<td>183 (161-329)</td>
<td>196</td>
<td>148</td>
<td>140</td>
</tr>
<tr>
<td>Prognosis group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEP × 3</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EP × 4</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khorana scoreb (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>≥3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipids and glucose (median [range])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>4.7 (3.3-6.3)</td>
<td>5.0 (3.6-6.2)</td>
<td>4.7</td>
<td>5.0</td>
<td>6.3</td>
</tr>
<tr>
<td>HDL-cholesterol (mmol/L)</td>
<td>1.6 (0.8-1.8)</td>
<td>1.1 (0.8-1.7)</td>
<td>1.6</td>
<td>1.7</td>
<td>1.0</td>
</tr>
<tr>
<td>LDL-cholesterol (mmol/L)</td>
<td>2.9 (2-4.7)</td>
<td>3.5 (2.3-4.9)</td>
<td>2.8</td>
<td>3.0</td>
<td>4.7</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.4 (0.6-1.7)</td>
<td>0.9 (0.8-1.9)</td>
<td>1.6</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>5.5 (4.6-6.2)</td>
<td>5.4 (4.9-6.9)</td>
<td>5.1</td>
<td>5.1</td>
<td>5.9</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.0 (4.8-5.2)</td>
<td>5.3 (5.0-5.6)</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>Other variables relevant to thrombosis (median [range] or n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO₂peak (mL/kg/min)</td>
<td>43.0 (33-56)</td>
<td>41.6 (30-51)</td>
<td>35.0</td>
<td>46.3</td>
<td>32.8</td>
</tr>
<tr>
<td>% of expected (%)</td>
<td>102 (67-120)</td>
<td>91 (76-104)</td>
<td>67</td>
<td>109</td>
<td>68</td>
</tr>
<tr>
<td>BMI (kg)</td>
<td>24.9 (21.6-31.7)</td>
<td>28.9 (21.4-32.5)</td>
<td>29.9</td>
<td>24.8</td>
<td>31.7</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (never/stopped)</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Yes, occasionally</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meeting PA guidelines precancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESULTS

The TAST-trial was prematurely discontinued after inclusion of 19 of the planned 94 patients, due to an unexpected high number of TE events among the patients in the intervention arm. This decision was made by the principal investigator in accordance with recommendations from the safety evaluation committee.

During the 12 months inclusion period, nine patients were randomized to the intervention arm and 10 to the control arm. After randomization, one patient withdrew and another was excluded due to change in planned chemotherapy, leaving eight patients in the control arm. Three of nine patients (33%, 95% confidence interval [CI] 7%–70%) in the intervention arm developed TE complications, as compared to none in the control arm. Two of the patients developed pulmonary embolism and one patient myocardial infarction. All three patients had nonseminoma TC, Royal Marsden Hospital clinical Stage IIA, and were classified as International Germ Cell Cancer Collaborative Group good prognosis group.19

Two patients, both in the control arm, received anticoagulants at study entry: One patient as treatment for renal vein thrombosis, the other as thromboprophylaxis due to inferior caval vein compression. Baseline characteristics of the patients are presented in Table 1.

TABLE 1 (Continued)

<table>
<thead>
<tr>
<th>Intervention arm (n = 9)</th>
<th>Control arm (n = 8)</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comorbidity (self-reported)</td>
<td>5(^i)</td>
<td>3(^j)</td>
<td>1(^k)</td>
<td>1(^l)</td>
</tr>
</tbody>
</table>

| Comorbidity (self-reported) | 4 | 5 | 1 |

| Comorbidity (self-reported) | 4 | 5 | 1 |

Abbreviations: AFP, alpha-fetoprotein; BEP, bleomycin, etoposide and cisplatin; BMI, body mass index; EP, etoposide and cisplatin; HbA1c, glycated hemoglobin; hCG, human chorionic gonadotropin; HDL, high-density lipoprotein; IU/L, international units per liter; kU/L, kilounits per liter; LDH, lactate dehydrogenase; LDL, low-density lipoprotein; mmol/L, millimole per liter; PA, physical activity; RPLN, retroperitoneal lymph node; U/L, units per liter.

\(^{a}\)Stage according to Royal Marsden Hospital Stadium.

\(^{b}\)Cancer site (testicular cancer = 1), prechemotherapy platelet count $\geq 350 \times 10^9$/L, hemoglobin < 100 g/L, prechemotherapy leukocyte count $> 11 \times 10^9$/L, body mass index ≥ 35 kg/m2 (Khorana et al\(^{35}\)).

\(^{c}\)Minimum 150 minutes of moderate intensity PA or 75 minutes of high-intensity PA per week.

\(^{d}\)Psychological distress (n = 2), muscle and skeletal disease (n = 2) and chronic lung disease (n = 1).

\(^{e}\)Hypertension (n = 1), muscle and skeletal pain/disorder (n = 2), mild/moderate asthma (n = 1) and epilepsy (n = 1).

3.1 | Case reports

3.1.1 | Case 1

A 21-year-old man completed four of seven planned supervised exercise sessions before being diagnosed with pulmonary embolism. He preferred to switch between ergometer cycle, treadmill and rowing machine. In the four completed sessions, 9 of the 16 planned intervals were in the HIIT zone (Table 2 and Figure S1A).

On Day 10 of the second BEP cycle (7 days since last exercise session), he experienced cough and thoracic pain. The CT scan at the local emergency department revealed cryptogenic organizing pneumonia, and treatment with prednisolone and azithromycin was initiated. On Day 15 of the second BEP cycle, repeat CT scan showed thrombosis of the left internal and common iliac veins, and a large embolism in the right pulmonary artery. He received dalteparin subcutaneously for 6 months.

Potential risk factors for venous TE

Re-evaluation of the prechemotherapy CT scan did not reveal venous thrombosis or pulmonary embolism. The patient’s grandfather had a provoked deep vein thrombosis after orthopedic surgery. The patient was heterozygous for the FV Leiden mutation, increasing his risk of venous TE twofold to sixfold. Lupus anticoagulant was weakly positive in one subtest (dRVVT), and still weakly positive after 13 and 30 weeks. Taken together, this patient had a modestly increased risk of venous TE. All other coagulation analyses were within reference ranges.

3.1.2 | Case 2

A 43-year-old man completed nine of 10 planned supervised exercise sessions before diagnosed with pulmonary embolism. He preferred to walk uphill on the treadmill. In the nine completed sessions, 13 of 40 planned intervals were in the HIIT zone (Table 2 and Figure S1b).

On Day 15 of the second BEP cycle (3 days since last exercise session), a preplanned evaluation CT scan detected large thrombotic masses in the inferior caval vein and bilateral pulmonary embolism. In retrospect, the patient had experienced increasing inspiratory thoracic
pain and dyspnea from day seven of the second BEP cycle, which he had not reported to health professionals. He received dalteparin subcutaneously for 10 months, thereafter warfarin for 4 months.

Potential risk factors for venous TE

Re-evaluation of the prechemotherapy CT scan did not reveal venous thrombosis or pulmonary embolism. This patient had no hereditary factors for venous TE events, and all coagulation analyses were within reference ranges.

3.1.3 | Case 3

A 30-year-old man completed 12 of 14 planned supervised exercise sessions prior to a myocardial infarction. He preferred to walk uphill on the treadmill. In the 12 completed sessions, 38 of 48 planned intervals were in the HIIT zone (Table 2 and Figure S1c).

He experienced chest-pain from Day 6 of the third BEP cycle (3 days since last exercise session). After 12 hours of persistent pain, he consulted his oncologist. He was immediately referred to the local emergency department where he was diagnosed with ST-segment elevation myocardial infarction. Peak troponin I was 8541 ng/L (<35 ng/L). Angiography showed a clinically nonsignificant stenosis of the left anterior descending artery. Coronary angiography indicative of thromboembolic rather than atherosclerotic origin in TC patients during CBCT has been described previously.20 He was given ticagrelor for 3 months and long-term acetylsalicylic acid and atorvastatin.

Potential risk factors for arterial TE

He had hereditary risk factors for cardiovascular disease, as one parent had angina pectoris, and several family members had hypercholesterolemia. All coagulation analyses were within reference ranges. His body mass index was 32 kg/m². He had no signs of hypertension (blood pressure 110/75 mmHg) or hyperglycemia. He was a never-smoker. Although within reference ranges, the lipid profile at baseline was unfavorable (Table 1). Taken together, this patient had a modest increased risk of arterial TE.

All three cases completed three cycles of BEP as planned, achieving durable complete remissions.

4 | DISCUSSION

Three of nine patients in the intervention arm experienced a TE event, that is, pulmonary embolism and myocardial infarction. Since the risk of pulmonary embolism or myocardial infarction are expected to be low in patients with TC during or shortly after CBCT, our observations indicated a substantially higher rate than reported in the literature (33% vs 0-15%). Pretreatment, none of the cases had any TC-specific risk factors for TE events, such as large abdominal lymph nodes, elevated LDH or central venous access. In accordance with national guidelines for treatment of TC in Norway, they did not receive primary thromboprophylaxis. Case 1 and 3 had predisposing factors for venous and arterial TE events, respectively.20 Although we are fully aware that the TE events in the intervention arm might have been a play of chance, we find it hard to ignore that the HIIT might have contributed to the unexpected high number of TE events. Proposed mechanisms for possible interactions between CBCT and high-intensity aerobic exercise that can potentiate the risk of TE events are described after a review of the literature.

4.1 | TE events during CBCT—review of the literature

Within the three main concepts: testicular neoplasms, cisplatin and thromboembolism; MeSH terms with variations were searched in titles, abstracts and author keywords in MEDLINE (Ovid) and Embase.
TABLE 3
Studies with thromboembolic events as an endpoint in testicular cancer patients during cisplatin-based chemotherapy included in the review of the literature

<table>
<thead>
<tr>
<th>References</th>
<th>Induction period</th>
<th>n</th>
<th>Stage of disease</th>
<th>Metastatic treatment lines</th>
<th>TEE, n (%)</th>
<th>VTE, n (%)</th>
<th>PE, n (%)</th>
<th>ATE, n (%)</th>
<th>MI, n (%)</th>
<th>PE/MI, n (%)</th>
<th>Risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paffenholz et al 23</td>
<td>2003-2018</td>
<td>255</td>
<td>All stages, 66 Stage I First and second line CBCT</td>
<td></td>
<td>52/255 (20.4)</td>
<td>49/255 (19.2)</td>
<td>24/255 (9.4)</td>
<td>3/255 (1.2)</td>
<td>1/255 (0.4)</td>
<td>25/255 (9.4)</td>
<td>Clinical stage ≥ IIC,</td>
</tr>
<tr>
<td>Heidegger et al 24</td>
<td>2003-2015</td>
<td>153</td>
<td>All stages, 30 Stage I First, second and third line CBCT</td>
<td></td>
<td>26/153 (17.0)</td>
<td>11/153 (7.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lugano stage ≥ IIC</td>
</tr>
<tr>
<td>Bezan et al 25</td>
<td>2000-2013</td>
<td>300</td>
<td>Metastatic disease CBCT</td>
<td></td>
<td>37/300 (12.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clinical stage IIC and III</td>
</tr>
<tr>
<td>Gonzalez-Billalbeitia et al 26</td>
<td>2004-2014</td>
<td>658</td>
<td>Metastatic disease First line CBCT</td>
<td></td>
<td>72/658 (10.9)</td>
<td>21/658 (3.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gizi et al 27</td>
<td>2001-2014</td>
<td>279</td>
<td>All stages, 47 Stage I First line CBCT</td>
<td></td>
<td>28/279 (10.0)</td>
<td>26/279 (9.3)</td>
<td>0/279 (0.0)</td>
<td>2/279 (0.7)</td>
<td>0/279 (0.0)</td>
<td>0/279 (0.0)</td>
<td>>40 years, LN metastases</td>
</tr>
<tr>
<td>Solari et al 28</td>
<td>2008-2013</td>
<td>93</td>
<td>All stages, 30 Stage I First, second and third line CBCT</td>
<td></td>
<td>22/93 (23.6)</td>
<td>22/93 (23.6)</td>
<td>10/93 (10.7)</td>
<td>8/93 (8.6)</td>
<td>4/93 (4.3)</td>
<td>14/93 (15.1)</td>
<td>>40 years, LN metastases</td>
</tr>
<tr>
<td>Lubberts et al 29</td>
<td>2006-2012</td>
<td>73</td>
<td>Metastatic disease First line CBCT</td>
<td></td>
<td>8/73 (11.0)</td>
<td>4/73 (5.5)</td>
<td>4/73 (5.5)</td>
<td>0/73 (0.0)</td>
<td>4/73 (5.5)</td>
<td></td>
<td>vWF and FVIII</td>
</tr>
<tr>
<td>Srikkanthan et al 29</td>
<td>2000-2010</td>
<td>324</td>
<td>Metastatic disease First line CBCT</td>
<td></td>
<td>31/324 (9.6)</td>
<td>31/324 (9.6)</td>
<td>11/324 (3.4)</td>
<td></td>
<td></td>
<td></td>
<td>RPLN >5 cm,</td>
</tr>
<tr>
<td>Honecker et al 30</td>
<td>2000-2009</td>
<td>193</td>
<td>All stages, 41 adjuvant First and second line CBCT</td>
<td></td>
<td>4/193 (2.1)</td>
<td>1/193 (0.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supradiacvular LN metastases, CVA</td>
</tr>
<tr>
<td>Dieckmann et al 31</td>
<td>1996-2008</td>
<td>8233</td>
<td></td>
<td></td>
<td>25/8233 (0.3)</td>
<td>20/8233 (0.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Haas et al 31</td>
<td>1977-2004</td>
<td>324</td>
<td>Metastatic nonseminoma</td>
<td></td>
<td>26/324 (8.0)</td>
<td>3/324 (0.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuver et al 31</td>
<td>1998-2004</td>
<td>65</td>
<td>Metastatic nonseminoma</td>
<td></td>
<td>6/65 (9.2)</td>
<td>4/65 (6.2)</td>
<td>2/65 (3.1)</td>
<td>2/65 (3.1)</td>
<td>2/65 (3.1)</td>
<td>4/65 (6.2)</td>
<td></td>
</tr>
<tr>
<td>Piketty et al 32</td>
<td>1992-1998</td>
<td>177</td>
<td>All stages, 25 Stage I First line CBCT</td>
<td></td>
<td>29/177 (16.4)</td>
<td>28/177 (15.8)</td>
<td>3/177 (1.7)</td>
<td>1/177 (0.6)</td>
<td>0/177 (0.0)</td>
<td>3/177 (1.7)</td>
<td></td>
</tr>
<tr>
<td>Weijl et al 33</td>
<td>1979-1997</td>
<td>179</td>
<td>Metastatic disease First line CBCT</td>
<td></td>
<td>15/179 (8.4)</td>
<td>13/179 (7.3)</td>
<td>9/179 (5.0)</td>
<td>3/179 (1.7)</td>
<td>0/179 (0.0)</td>
<td>9/179 (5.0)</td>
<td>Liver metastasis, high dose corticosteroids</td>
</tr>
<tr>
<td>Cantwell et al 34</td>
<td>NR</td>
<td>52</td>
<td>Newly diagnosed</td>
<td></td>
<td>10/52 (19.2)</td>
<td>7/52 (13.5)</td>
<td>2/52 (3.8)</td>
<td>3/52 (5.8)</td>
<td>1/52 (1.9)</td>
<td>3/52 (5.8)</td>
<td>RPLN >5 cm</td>
</tr>
</tbody>
</table>

Abbreviations: ATE, arterial thromboembolic events; BSA, body surface area; CBCT, cisplatin-based chemotherapy; CVA, central venous access; FVIII, factor VIII; LDH, lactate dehydrogenase; LN, lymph node; MI, myocardial infarction; N, number; PE, pulmonary embolism; RPLN, retroperitoneal lymph node; TEE, thromboembolic events; VTE, venous thromboembolic events; vWF, Von Willebrand factor.
1980 to 2019. The Medical Library at the University of Oslo performed the search in August 2019. The search was limited to English language. Detailed search strategies are described in Supporting Information File S1. After screening and assessing 567 unique abstracts and full-text articles for eligibility, 15 articles with TE events as an endpoint in TC patients during CBCT were included (Table 3). Studies limited to venous access-associated thrombosis were excluded. The selection process is further detailed in Figure S2.

The majority of studies were retrospective, apart from two studies with a prospective design,20,21 and one where the design was not reported.22 The studies were heterogeneous and study populations were often poorly described. Thus, the expected rate of TE events among TC patients in clinical stage IIA without elevated LDH or central venous access is not deductible. During CBCT, 14 studies reported on incidence rates of venous TE events, ranging from 2% to 24% (Table 3).20-33 The reported rates of venous TE events presented in Table 3 consists of deep vein thrombosis and pulmonary embolism, except for one study26 which also includes superficial vein thrombosis. The reported incidence rate of pulmonary embolism ranged from 0% to 11%.20-24,26-33 Nine studies reported on the incidence rate of myocardial infarction ranging from 0% to 4%.20-23,27,28,32-34 Eight studies reported on the incidence rate of both pulmonary embolism or myocardial infarction, ranging from 0% to 15%.20-23,27,28,32,33

Among cancer patients in general, the following are identified as TE risk factors: Platelet count >350×10⁹/L, hemoglobin <10 g/dL, leukocyte count >11×10⁹/L, BMI > 35 kg/m², CBCT and TC.35,36 These risk factors do not seem to apply for TC patients receiving CBCT. In TC patients receiving CBCT, several studies identify retroperitoneal lymph nodes >5 cm, central venous access and elevated serum LDH as risk factors for TE (Table 3).22-25,27,29,32

4.2 | TE events during CBCT—possible mechanisms

Venous thrombi are formed when the physiologic balance between procoagulant and anticoagulant reactions is disrupted. Blood coagulation is initiated, followed by amplification and propagation phases involving activated platelets.37 Platelet activation and aggregation are contributing factors in the mechanism of arterial thrombus formation.28,29 Proposed mechanisms for the increased risk of TE events during CBCT in TC patients are that CBCT induces endothelial damage39 and upregulation of procoagulant factors such as coagulation factor VIII.20,40 As a hypothetical consequence, endothelial damage with subsequent exposure of the subendothelium and release of collagen and fibronectin to the blood could activate platelets. Moreover, CBCT-induced endothelial damage may lead to exposure of tissue factor, which can initiate blood coagulation.41,42 Studies have shown that HIT sessions are followed by a transient increase in platelet activation and aggregation.44-46 The increase in factor VIII and the degree of platelet activation and aggregation after exercise are associated with the intensity of the exercise.47-49 Furthermore, the degree of platelet activation after HIT is reported to be related to individual physical fitness, leaving untrained individuals in at higher risk than well-trained individuals.33

4.4 | Possible increased TE risk during CBCT combined with HIT

The limited existing data on HIT during CBCT have not included reports on TE events. Adamsen et al examined the effects of an exercise intervention including HIT during chemotherapy. Among 135 patients randomized to the intervention, seven TC patients received CBCT.8 No patients had TE events during the six-week intervention (L. Adamsen, personal communication, July 2019). One could speculate whether high-intensity training adds to the risk of TE events of CBCT among TC patients, rendering them more prone to TE events. It is possible that exercise programs with lower intensity and more gradual increase in intensity might be more favorable than the HIIT program in the TAST-trial.

ACKNOWLEDGEMENTS

The authors thank the patients for participating and the doctors, nurses, physiotherapists and trainers at the four hospitals and in the municipality involved in the TAST-trial. We will also thank Laima Taylor at the Institute for Cancer Genetics and Informatics at OUH for contributing to the randomization procedures and Hilde Iren Flaatten, Senior Medical Librarian, University of Oslo for performing the literature search.
CONFLICT OF INTEREST
Prof Wisloff has received funding for work with Varicella and Herpes Zoster vaccine from MSD, not relevant for this article. The other authors declare no potential conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of our study are available on request from the corresponding author, and with permission from Regional Committee for Medical and Health Research Ethics. The data are not publicly available due to privacy and ethical restrictions. The present findings are previously published as an abstract/poster at the ASCO Annual Meeting 2017. DOI: 10.1200/JCO.2017.35.15_suppl4551

ETHICS STATEMENT
The TAST-trial was approved by the Regional Committee for Medical and Health Research Ethics (2014/1169/REC South-East) and registered in ClinicalTrial.gov (NCT02577172). All participants signed an informed consent before inclusion, and the three cases have read this report and provided a written consent for publication.

ORCID
Lene Thorsen https://orcid.org/0000-0002-7857-5475

REFERENCES

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Thorsen L, Haugnes HS, Fosså SD, et al. Thromboembolic events after high-intensity training during cisplatin-based chemotherapy for testicular cancer: Case reports and review of the literature. Int. J. Cancer. 2020; 147:3189–3198. https://doi.org/10.1002/ijc.33151