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Abstract
The Arctic region shows some of the world's most significant signs of climate
change; for instance, a negative trend in summer sea-ice cover of around 15%
per decade and Arctic amplified surface-air warming that is three times the
global average. The atmospheric energy transport plays an important role in the
Arctic climate. Recently a Fourier-based method for studying the atmospheric
energy transport contribution by planetary- and synoptic-scale waves has been
proposed. Recent studies based on this method show that planetary waves con-
tribute more than synoptic waves to the atmospheric energy transport into the
Arctic. However, this Fourier method suffers from being incapable of resolving
spatially localized systems such as cyclones. Here an attempt to evaluate this
problem is presented by applying the method on synthetic and reanalysis data.
In addition, an alternative method based on a wavelet decomposition is proposed
and compared with the Fourier-based method. The wavelet method is based on
localized basis functions which should be capable of resolving these localized
systems. The wavelet method shows an impact of synoptic-scale transport on
Arctic temperatures which is not captured by the Fourier method, whilst the
planetary-scale effect of both methods appears similar.
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1 INTRODUCTION

The latitudinal variation of incoming solar radiation
induces a poleward energy transport in the climate system
(Holton and Hakim, 2013). The atmosphere contributes
the largest portion of this transport into the Arctic, whilst
the ocean contribution is small north of 45◦N (Trenberth

and Caron, 2001). At the Arctic boundary (∼70◦N) the
atmospheric contribution is comparable to the incoming
solar radiation received by the Arctic (Peixoto and Oort,
1992).

Several atmospheric processes accomplish the merid-
ional energy transport. At low latitudes the Hadley cell
is the main contributor, whilst at mid to high latitudes
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eddies contribute the major part (Vallis, 2017). The eddies
include both planetary-scale Rossby waves (≳ 4,000km)
and synoptic-scale cyclones (≲ 4,000km), both of which
induce meridional energy transport. The atmospheric
energy transport is traditionally decomposed into latent
heat and dry-static components, and into contributions
of transient and stationary eddies (Peixoto and Oort,
1992). The decomposition into stationary and transient
eddies does not reveal the structure and spatial scale of
the eddies transporting energy, since both planetary- and
synoptic-scale systems can be either stationary or tran-
sient.

Identifying the contributions of planetary- and
synoptic-scale systems to the meridional energy transport
is important in order to estimate, for example, the interan-
nual variability of the transport and the effects of climate
change on the transport, since these types of waves may
respond differently to climate change (Graversen and
Burtu, 2016; Yoshimori et al., Nov 2017; Naakka et al.,
2019). In order to examine the scale dependency of atmo-
spheric energy transport, a Fourier decomposition method
(FDM) used to decompose energy transport into contri-
butions from planetary- and synoptic-scale waves was
recently proposed by Graversen and Burtu (2016) here-
after referred to as GB16. Based on the FDM it was shown
that planetary-scale waves contribute the largest portion
of the atmospheric energy transport at the Arctic bound-
ary and hence contribute more to Arctic warming than
do synoptic-scale waves. These findings hold for both the
latent heat and dry-static energy transports. By applying
the FDM to data from the EC-Earth climate model, it was
found that changes in the atmospheric circulation pat-
terns may contribute to the Arctic amplification, even if
the overall energy transport remains constant or declines.
This is because the Arctic cooling due to a projected reduc-
tion of total energy transport encountered due to a decline
of the dry-static part will be more than compensated for
by the warming caused by the increase in planetary latent
heat transport (Koenigk et al., 2013; Graversen and Burtu,
2016).

Several recent studies highlight the importance of
synoptic-scale systems for the latent heat transport into the
Arctic (Boisvert et al., 2016; Woods and Caballero, 2016;
Messori et al., 2018). It is intriguing that the synoptic-scale
transport appears to show little influence on Arctic tem-
peratures according to the FDM (Graversen and Burtu,
2016), since other studies show that synoptic-scale sys-
tems are important for the latent heat transport into the
Arctic. Here we speculate that this discrepancy could be
partly due to a misrepresentation of synoptic systems by
the FDM.

A Fourier decomposition separates fields into a series
of sinusoidal waves. However atmospheric fields are of

course seldom composed of pure sinusoidal waves; for
example there may exist both sharp zonal gradients and
isolated systems simultaneously at one latitude. Such
localized systems are not well represented by the FDM,
since the Fourier basis is composed of non-localized func-
tions.

This problem can be approached by applying a wavelet
decomposition. Wavelets are localized both in space- and
length-scale, and are thus capable of representing spatially
localized properties of fields. As the basis functions of a
wavelet expansion are localized both in length-scale and
space, the wavelet method likely represents the spatially
localized systems more accurately than the FDM does.

The main objective of this study is to re-evaluate
the FDM proposed in GB16 and thus the applicability
of Fourier series for zonal wave decomposition of atmo-
spheric fields. The FDM is first evaluated by applying the
method on synthetic data where only pure synoptic or pure
planetary systems are present. Then the method is applied
on filtered fields from the ERA-Interim reanalysis, where
the filters are designed to find atmospheric states char-
acterized by isolated cyclones and situations where only
planetary waves are present. The same analysis is done
using a wavelet decomposition method (WDM) for com-
parison. Finally both methods are used to assess the effect
of latent heat transport on Arctic daily temperatures as
in GB16.

The data and methods are presented in Section 2, the
results and comparisons in Section 3, and a summary and
concluding remarks are provided in Section 4.

2 DATA AND METHODS

2.1 Synthetic cyclones

The performance of the FDM and WDM in capturing iso-
lated synoptic-scale systems is first illustrated by applying
the methods on synthetic data. The synthetic data are gen-
erated to mimic the geopotential height field associated
with a longitudinal cross-section through a cyclone centre.
The synthetic data are produced with Gaussian functions
in the geopotential height field. This approach is applied
to ensure that no planetary wave activity is present in
the fields used to test the FDM. The winds of the syn-
thetic cyclones are computed assuming geostrophic bal-
ance, which is a reasonable assumption in the extratropics
(Vallis, 2017).

2.2 Fourier decomposition method

The FDM approach of GB16 is based on a Fourier series
expansion in the zonal direction of the energy field E and
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mass transport v dp∕g, where v is the meridional velocity, p
pressure and g is gravitational acceleration. In the present
study, only the latent heat transport is considered such that
E = Lq, where L is the latent heat of evaporation and q is
the specific humidity. Here only the final form of the FDM
is presented. For the detailed derivation of the FDM the
reader is referred to GB16.

A split into wavenumbers by the FDM of the merid-
ional energy transport is given as

vE = d
L∑

i=1

{
av

0,ia
E
0,i

4
+ 1

2
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n=1

(
av

n,ia
E
n,i + bv

n,ib
E
n,i

)}
, (1)

where d = 2𝜋r cos(𝜙) is the circumference at latitude 𝜙,
n the wavenumber, L the number of vertical levels in the
dataset, r Earth's radius, 𝜙 the latitude, and an and bn are
the Fourier coefficients of v dp∕g and E, with wavenum-
ber n at vertical level i. The meridional energy transport
in Equation (1) is further decomposed into contributions
from the zonal-mean circulation (the first term) and from
planetary- and synoptic-scale waves by splitting the last
sum of Equation (1) in terms of wavenumbers. In GB16 the
planetary waves correspond to wavenumbers 1–5 and syn-
optic waves to wavenumbers 6–20. The separation between
planetary and synoptic waves between wavenumbers 5
(∼2, 700 km at 70◦N) and 6 (∼2, 280 km at 70◦N) is some-
what arbitrary. In the present study the wavenumber sep-
aration between planetary- and synoptic-scale waves is
set to between wavenumbers 3 (∼4, 500 km at 70◦N) and
4 (∼3, 400 km at 70◦N). This is chosen to better match
the actual length-scale of synoptic and planetary systems
at 70◦N of approximately 4,000 km (Holton and Hakim,
2013).

The data used in the present study are the same as used
in GB16 for years 1979–2012, and updated by the same
method for years 2013–2017. The present study is based
on latent heat transport only, which has been shown to
affect the Arctic the most (Graversen and Burtu, 2016). The
same evaluation as presented here is also applicable for the
dry-static energy transport, and is expected to yield similar
results.

2.3 Wavelet decomposition method

An alternative method to the FDM is a wavelet decompo-
sition method (WDM). The WDM developed here is based
on a set of basis functions known as wavelets. The WDM is
comparable to the Fourier-based FDM in that both meth-
ods decompose the meridional energy (ME) transport into
components of different length-scales. However there is
a difference in the decompositions: whereas the FDM
decomposes the ME transport into contributions based on

wavenumbers, n, the WDM performs a decomposition into
spatial scales, j. These are not directly comparable, and the
relation between wavenumber n from the FDM and scale
j from the WDM is dependent on the chosen wavelet.

A function 𝜓(x) is a wavelet if it has zero mean
(Equation (2)) and unit energy (Equation (3)):

∫
d

0
𝜓(x) dx = 0, (2)

∫
d

0
|𝜓(x)|2 dx = 1, (3)

where x is the coordinate along a latitude circle with circuit
d = 2𝜋r cos(𝜙), as for the FDM. From a wavelet, 𝜓(x), an
orthonormal basis is formed by stretching and translation
of the wavelet. Additionally, an amplitude scaling is intro-
duced to ensure unit energy of the wavelets (Daubechies,
1992). The orthonormal basis can be shown to be

𝜓j,k(x) = 2j∕2 𝜓
(
2jx − k

)
, j, k ∈ ℤ, (4)

where j is the length-scale and k determines the spatial
localization of the wavelet. Both j and k are integers when
x ∈ [0, 1]. Hence we choose to normalize x by dividing it
by the distance around the latitude circle d. These wavelets
constituting this basis are orthonormal with respect to the
inner product

⟨
𝜓j,k, 𝜓m,n

⟩
= ∫

d

0
𝜓j,k(x) 𝜓m,n(x) dx

=

{
1, j, k = m,n,
0, j, k ≠ m,n.

(5)

Thus any function, f(x), on the domain [0, d] can be
expanded in terms of the orthonormal basis as

f (x) =
∞∑

j=0

2j∑
k=0

cj,k𝜓j,k(x), (6)

where the coefficients cj,k are given as

cj,k =
⟨

f (x), 𝜓j,k(x)
⟩
= ∫

d

0
f (x) 𝜓j,k(x) dx. (7)

The imposed orthogonality conditions require basis
functions to be discrete wavelets, not continuous wavelets
(Daubechies, 1992).

Unlike the Fourier basis, where the basis functions
are unique, there exists a variety of wavelet basis func-
tions. Those of the WDM are based on the assumptions in
Equations (2) and (3) above, which only require them to be
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F I G U R E 1 A selection of Haar
basis functions. The left column (blue
lines) show Haar wavelets with
constant k and j ∈ [0, 6], and the right
column (green lines) constant j = 3
and k ∈ [0, 5]

wavelets. The WDM used here is based on a Haar wavelet
consisting of “box” functions (Figure 1).

Expressing the vdp∕g and E fields in terms of a wavelet
series yields

v
dp
g

=
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respectively. The zonally and vertically integrated merid-
ional energy (ME) transport is given as

vE = ∫
d

0 ∫
ps

0
Ev

dp
g

dx. (10)

Inserting Equations (8) and (9) into Equation (10) and
discretizing the vertical integral yields
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where l denotes the height level in the dataset composed
of L levels, and vEl is the zonal-mean component of the
energy transport at level l. When performing the zonal
integral of Equation (11), only the terms with j′, k′ = j, k
will remain because of the orthogonality of the wavelets,

whereby

vE =
L∑

l=0

⎛⎜⎜⎝vEl +
∞∑

j=0

⎛⎜⎜⎝
2j∑
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⎞⎟⎟⎠
⎞⎟⎟⎠ (12)

is obtained. Note that the sum over k is truncated at k =
2j, as higher values of k are localized outside the domain
[0, d].

The wavelet split in Equation (12) decomposes the
ME transport into components based on length-scale and
spatial localization of the systems transporting energy.
The j-indices denote the length-scale of the systems,
where a larger j denotes a smaller length-scale, and the
k-indices denote the localization in the zonal direction. In
Equation (12) the sums over l and j are interchangeable,
whilst the sum over k is dependent on the sum over j. The
expression can thus be rewritten as

vE = vE +
∞∑

j=0
vEj, (13)

where

vEj =
L∑

l=0

2j∑
k=0

cE,l
j,k cv,l

j,k.

In the following the decomposition is performed on six
scales, in addition to the meridional zonally symmetric
flow. The first three scales correspond to length-scales
greater than 3,400 km, and the last three to length-scales
smaller than that threshold. Hence j = 3 and j = 4 are
chosen as the separation between planetary and synoptic
waves, since this is closest to the wavenumber 3–4 separa-
tion of the FDM. The Python implementation of the WDM
applied for the computations in this project is available
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(a)

(b)

F I G U R E 2 (a) is an illustrative example of the conditional filter applied on geopotential height at 850 hPa at 70◦N. The shown z850 is
one of fields marked as a cyclone by the filter, znc is the mean of the z850 field outside the cyclone region Cr , R is the maximum z-variation
threshold limiting the variability outside Cr , and C is the minimum cyclone threshold defining the depth of the depression in z850 relative to
z. Here xi denotes the indices of the data points of the rotated field. (b) is an illustrative example of the power spectrum-based filter used for
retrieving the planetary waves. One example is shown (blue line) and the associated normalized power spectrum (inset plot) of this field

in a GitHub repository (https://github.com/tuohei/wdm;
accessed 7 May 2020).

2.4 Cyclones and planetary waves
in ERA-Interim

The present study applies the ERA-Interim reanalysis
data (Dee et al., 2011) produced by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). The
ERA-Interim reanalysis is used instead of the more
state-of-the-art ERA5 reanalysis, since the analysis in
GB16 is also based on ERA-Interim, and the main objec-
tive of the present study is to re-evaluate the findings based
on the FDM presented in that study. Similarly to GB16, the
atmospheric fields used in the energy transport are consid-
ered with a 0.5◦ latitude and longitude resolution, and at
60 vertical model levels, and with a 6 hr time resolution.

Time steps where the atmospheric state is
characterized by single cyclones but show little influence

by planetary waves are found by applying a conditional
filter on the 850 hPa geopotential height field (z850). The
longitudinal cross-section of the z850 field of a single
cyclone is characterized by a sharp negative peak which
often resembles a Gaussian function. Constraining the
variation of the z850 field outside the influence domain of
the cyclone hampers the effects of planetary-scale waves,
and the field left is thus dominated by the single cyclone.

The conditional filter is constructed by two thresholds:
the cyclone threshold, C, providing the strength of the
depression in the z850 field, and the variation threshold,
R, limiting the planetary wave activity. The length-scale,
Cr, is defining the cyclone region. This region is the region
of influence of the isolated cyclone, defined as a distance
of ∼1, 000 km at both sides of the maximum depression
of the z850 field. The length of Cr is chosen such that
it is well below the length-scale of synoptic systems at
70◦N. The R indicates the upper limit for deviations in the
z850 field outside Cr from the mean of the outside field
(Figure 2).

https://github.com/tuohei/wdm
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F I G U R E 3 (a) The
longitudinal cross-section of the
geostrophic winds of the synthetic
(Gaussian) cyclone, and (b) is the
power spectrum of the geostrophic
winds in (a). (c) is the wavelet scale
spectrum of the geostrophic winds in
(a). The orange dashed line marks the
approximate length-scale of the
synthetic system. The x-axis of (b)
and (c) are set to length-scale 1∕n for
simplicity of comparison, where n is
the zonal wavenumber

(a)

(b)

(c)

Planetary waves are found by imposing two conditions
on the power spectrum of the z850 field. The power of
wavenumber n = 1 is required to be greater than its clima-
tological mean for the considered period, and additionally
the power of the remaining wavenumbers is required to be
less than 10% of the power of wave 1. This yields z850 fields
which are predominantly dominated by a wave 1 pattern.
Wave 1 is chosen as the criterion for planetary waves as it
is on average found to be the most dominant wave type in
the power spectrum of z850.

3 RESULTS

3.1 Synthetic cyclones

First, as an illustrative example to show the basic con-
cepts, the FDM and WDM are applied on synthetic data.
Synthetic data are first generated using a Gaussian func-
tion, meant to represent the longitudinal geopotential
height of a single cyclone (geostrophic winds in Figure 3a).
The Gaussian is a localized function which ensures that
no variability on the planetary scale is present in the
synthetic data. Essentially the synthetic fields could rep-
resent any field, not just the geostrophic winds. These
demonstrations are provided to show special cases where
both the FDM and WDM may have problems attribut-
ing correctly the transport contributions to planetary- and
synoptic-scale systems.

The power spectrum of the geostrophic winds asso-
ciated with the synthetic cyclone (Figure 3b) reveals
that approximately one third of the power of the wind
field is found in the planetary range (wavenumbers 1–3
placed at the 1∕n-scale at approximately 0.5, 0.33, and
0.25 respectively). This does not correspond well with the
length-scale of the synthetic cyclone, which is a clear

synoptic-scale system; the synthetic cyclone is localized,
but has by construction, and what is evident by inspec-
tion by eye, a length-scale corresponding to approximately
wavenumber 5.

The inaccurate representation by a Fourier decom-
position of the synthetic cyclone is due to the localiza-
tion of the system. This is demonstrated by the applica-
tion of the WDM on the same geostrophic winds of the
synthetic cyclone (Figure 3c). Note that the scale spec-
trum (Figure 3c) and the power spectrum (Figure 3b) are
not directly comparable: the length-scales in the wavelet
scale spectrum are decreasing at a higher rate than the
length-scales in the power spectrum. Hence the number
of j-scales presented is smaller than the number of Fourier
wavenumbers n since each j-scale is composed of 2j−1

coefficients. For example, j-scale 4 consists of eight coeffi-
cients and corresponds to a length-scale of approximately
1,700 km at 70◦N, whereas for the WDM wavenumber
n = 4 corresponds to a length-scale of 3,400 km, given a
distance around latitude 70◦ of ∼13, 700 km.

The wavelet decomposition (Figure 3c) appears to
resolve these winds in the synthetic case better than does
the Fourier decomposition (Figure 3b). With a separation
at scales j = 3 and j = 4 between planetary and synop-
tic waves, the wavelet method results in a clear majority
of power at synoptic scales, whilst the Fourier method
yields an even distribution of power between planetary
and synoptic scales when a split between wavenumber
n = 3 and n = 4 is applied. Note again that wavenum-
ber n = 4, the first wavenumber in the synoptic range,
corresponds to a length-scale of approximately 2, 200 km
at 70◦N, which is larger than the first synoptic j-scale
(j = 4).

The wavelet method is known to be shift variant. The
spread of power between the wavelet coefficients will be
dependent on the spatial localization of the decomposed
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(a)

(b)

(c)

F I G U R E 4 (a) Wave 2
structure. (b, c) are as in Figure 3, but
for the wave 2 field in (a)

field. However the total power, sum over all coefficients,
will remain constant, which is important for the usefulness
of the wavelet method for decomposing the energy trans-
port (Daubechies, 1992). This property, combined with
the fact that planetary waves are not localized, may limit
the accuracy of the wavelet method when it comes to the
description of planetary-scale waves. This is demonstrated
by applying both methods on a synthetic wave 2 structure.

The wave 2 (Figure 4a) is phase-shifted such that its
projection onto the j-scale 2 is zero (Figure 4c), even
though it length-scale-wise corresponds to the scale repre-
sented by j = 2. The sinusoidal wave 2 is a basis function
of the Fourier decomposition. This, combined with the
fact that the Fourier method is shift invariant, yields that
the wave 2 structure will always fall on the corresponding
coefficients independent of the spatial localization of the
decomposed field, and thus resolves the wave 2 structure
perfectly. This example demonstrates that for the WDM,
power is shifted to higher scales when the large-scale
waves are out of phase with respect to the wavelet basis.

These demonstrations with synthetic data show that
the WDM represents localized systems better than the
FDM in terms of a separation between planetary- and
synoptic-scale contributions. However, since the WDM
does not explicitly resolve all wavenumbers, there appears
a misrepresentation of systems at the length-scales associ-
ated with these unrepresented wavenumbers. In addition,
the WDM may have a spread of power from planetary
non-localized systems to smaller scales, leading to an mis-
representation of these non-localized system. The spread
of power will occur when the phase between the wavelets
and the geophysical fields is such that the planetary-scale
wavelets are out of phase with the planetary features of the
geophysical fields. In comparison, the non-localized waves
are well represented with the FDM, since the Fourier
basis by nature is non-localized. The synthetic situations

presented here are chosen to show extreme cases for both
the FDM and WDM. Hence these are not representative for
the general circulation in the atmosphere. These extreme
cases are chosen to illustrate the plausible misrepresen-
tations occurring in both methods. However this does
not indicate that the WDM generally misrepresents the
planetary-scale contribution, and the FDM the contribu-
tions by localized synoptic-scale systems.

Both the FDM and WDM are linear methods. This
implies that a superpositioned field decomposed by these
methods will be the superposition of the decompositions
of the individual components of the field. Hence the mis-
representation which might be induced by extreme cases
resembling the synthetic ones will be partly hidden in
the mean.

3.2 ERA-Interim cyclones
and planetary waves

Should cases similar to the synthetic cyclone exist in the
ERA-Interim data, the FDM will have trouble attributing
the transport correctly in these situations. A conditional
filter, as defined in Section 2.4, is therefore applied on
ERA-Interim data in order to reveal such cases in real
data. The filter is designed to extract cases with local-
ized cyclones but weak planetary wave activity. Applying
the conditional filter on ERA-Interim data, cases which
resemble the idealized cyclone are found at 70◦N. The fil-
ter is applied with several values of thresholds C and R
(Figure 2). In total 73 such cases are identified by the con-
ditional filter. For the extracted cases the FDM and WDM
are then computed. The fraction of total energy trans-
port in the synoptic range is plotted as a histogram in
Figure 5a for the FDM with both a wavenumber separa-
tion between n = 5 and 6 (FDM56; as in GB16) and n = 3
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F I G U R E 5 Histograms for
FDM, FDM56, and WDM based on
the cases found by the two filters. (a)
synoptic situations identified by the
conditional filter; x-axis indicates
absolute fraction of transport
accomplished by the synoptic scales.
(b) planetary situations identified by
the power spectrum-based filter; the
x-axis is similar to (a) but for
planetary scales. Solid vertical lines
denote the mean values of the three
methods, FDM (blue), FDM56
(yellow) and WDM (red), and m
denotes the number of time steps.
The darker colours in the histograms
indicate overlapping values between
the three methods

(a) (b)

and 4 (FDM34), as well as for the WDM with a separation
at j = 3 and 4.

When applied on the filtered cases, the FDM56
attributes on average ∼30% of the transport to synoptic
waves, whereas both the FDM34 attributes over 50% and
the WDM over 75% to these waves (Figure 5a). Hence it
is evident that the separation between planetary and syn-
optic waves between n = 5 and n = 6 does not capture
well the characteristics of the isolated systems at 70◦N.
The FDM34 resolves the isolated systems better than does
FDM56, since some of the planetary coefficients in FDM56
have been transferred to the synoptic range.

As a contrasting method to the filter to extract fields
that are composed of isolated cyclones, fields character-
ized by strong planetary-scale waves are found through
conditions imposed on the z850 power spectrum. Hence
this method can be used to assess the capability of both
the FDM and WDM to decompose planetary-scale trans-
port correctly. The fields found by this method have no
constraint on their phase, hence the fields may not nec-
essarily correspond to problematic cases for the WDM, as
for example that shown in Figure 4. Here the fractions of
transport in the planetary range are computed similarly to
those computed for the cases found by the conditional fil-
ter. In total 461 situations are identified where the wave 1
structure is the dominant pattern of the z850 (Figure 5b).
For these cases FDM56 attributes on average ∼75% of the
transport to the planetary scales. The WDM attributes
∼70% to the planetary scales, whilst FDM34 attributes
∼60% to these scales. For these cases a large fraction of
transport in the planetary range is expected; the FDM56
provides on average the largest fraction with the WDM
following closely.

The difference between the WDM and FDM34 is not
as large as the difference between WDM and FDM56 for
the synoptic cases, but it is evident that the WDM yields
more average transport in the synoptic range than does
the FDM34. For the planetary cases, the FDM56 yields the
largest average fraction of the transport in the planetary
range, whilst FDM34 yields the smallest fraction. Addi-
tionally FDM34 is closer to the WDM when considering
both the synoptic and planetary cases found by the two
fields. Hence for the rest of the study, the wavenumber
separation between n = 3 and 4 will be used when referred
to the FDM.

For the extreme filtered cases considered in Figure 5,
the FDM and WDM attribute differently as regards the
planetary and synoptic scales. However, in general the
transport appears to be attributed similarly by the two
methods. As an example, the time series for one winter
season (DJF) is shown in Figure 6, where the planetary
and synoptic components of both FDM and WDM are
shown. The season shown is the 1985–1986 winter. This
winter season has no special statistical characteristics;
it is a typical winter season in terms of the attribution
of transport to planetary scales, both by the FDM and
WDM. Performing a linear regression of the planetary
contribution of the FDM on the planetary contribution
on the WDM yields r2 = 0.82, which indicates that the
two time series are strongly correlated. The mean r2 for
winter seasons is r2 = 0.83. Hence the two methods are
describing the planetary- and synoptic-scale transport con-
tributions similarly in the winter season. There is some
variation between the transports, which is to be expected
since they are based on methods that are fundamentally
different, however the large agreement of the transports
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(a)

(b)

F I G U R E 6 Time series of (a)
planetary transport vQp for both the
FDM (Fp) and the WDM (Wp), and (b)
synoptic transport vQs in the winter
season of 1985–1986 across 70◦N.

yields a strong argument for the existence of meaningful
separation of transport by planetary- and synoptic-scale
systems.

Next, FDM and WDM are applied on unfiltered data
for latitudes 𝜙 ≥ 60◦N and averaged over time (Figure 7).
The WDM with a separation of planetary and synoptic
waves between scales j = 3 and j = 4 (Figure 7a) and
the FDM with wavenumber separation at n = 3 and 4
(Figure 7) yield similar time-averaged latent heat transport
for the studied period (1979–2017). The largest differences
in the distribution between planetary and synoptic waves
are found at low to mid latitudes (not shown), whilst
in the high latitudes the differences are small. The fact
that the independent methods yield similar time averages
strengthens the credibility of both methods to represent
the true distribution of transport between planetary- and
synoptic-scale waves. But it does not guarantee that the
methods actually solve individual time steps equally, as the
time average only indicates the mean distribution between
transport at planetary and synoptic scales. This difference
in individual time steps is evident from the amount of
described eddy-transport variance by both methods, pre-
sented in Table 1. The WDM yields higher amounts of
described eddy-transport variance by both the planetary-
and synoptic-scale transport. The transport components of
the two methods are also regressed on each other, which
shows that the planetary components describe approxi-
mately 70% of the variance in the other and the synoptic

component approximately 60% of the variance in the other.
This indicate that there are differences between the meth-
ods although the time averages are similar. Although simi-
lar time-average transports are found using both methods,
the difference in described variance may be a contributing
factor to the differences in the regressions on Arctic tem-
peratures. Localized systems are still resolved differently,
as indicated in Figure 5, which affects the regressions on
surface temperatures as shown in the following section.

3.3 Regressions on Arctic temperatures

The relationship between the latent heat transport across
70◦N and the mean 2 m temperature in the Arctic region
(above 70◦N) can be examined by using a linear regres-
sion analysis (e.g., Wu and Straus (2004); Graversen and
Burtu (2016)). Here we compute lagged regressions per lat-
itude based on the assumption that a correlation between
anomalies in the zonal-mean atmospheric latent heat
transport into the Arctic and consecutive anomalies in
near-surface temperature inside the Arctic indicates the
temperature response to the incoming flux of latent heat.
Figure 8 shows the regression of mean 2 m temperature
anomalies north of 30◦N in response to transport anoma-
lies across 70◦N from the FDM and WDM, respectively.
The regressions are based on daily data from the time
period 1979–2017, at a spatial resolution of 2.5◦. Time
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F I G U R E 7 Meridional latent heat
transport and its components as a
function of latitude. (a) Wavelet split into
meridional circulation (j = 0), planetary
waves (j = 1–3), and synoptic waves
(j = 4–6). (b) Fourier split into meridional
circulation (n = 0), planetary waves
(n = 1–3), and synoptic waves (n = 4–20)

(a)

(b)

T A B L E 1 r2 coefficients from regressions of
both the WDM and FDM total eddy transport on
the planetary (p) and synoptic (s) components and
from regressions between the components of the
two methods

FDMp FDMs Total

WDMp 0.73 0.04 0.64

WDMs 0.07 0.63 0.48

Total 0.60 0.42 1.00

lags up to 20 days are implemented to show the time
frame of the temperature response to latent heat transport
anomalies. The annual cycle is removed in both the trans-
port data and the temperature data, and a 7-day running
mean filter is applied. The black lines indicate areas in
the time–latitude plane with statistically significant results
based on a Monte-Carlo approach, in which the regres-
sion coefficients are compared to 5,000 regressions, where
the phases are shifted randomly while keeping the power
spectrum time series the same as the original one. A regres-
sion is considered statistically significant at the 99% (95%)
level if less than 1% (5%) of the synthetic data yield more
extreme values in an absolute sense than the original
regression coefficient.

The regressions in Figure 8 based on the FDM,
are as in GB16 but with a wavenumber separation of
planetary and synoptic waves between wavenumbers 3

and 4 relative to the earlier work. This shift of separa-
tion yields a larger fraction of time-average transport in
the synoptic range at 70◦N which is closer to that indi-
cated by the WDM. The FDM suggests that the latent
heat transport of planetary waves (Figure 8a) contributes
significantly to the subsequent warming of the Arctic.
From the regressions on the transport split by the WDM
(Figure 8c) it is found that the effect of the planetary wave
transport on temperature is weaker than that obtained
by the FDM. The weaker effect of planetary transport
might be because of an under-representation of plane-
tary waves in the WDM, combined with the fact that
localized systems yield an enhanced planetary transport
in the FDM.

Regressions of temperature on FDM synoptic transport
(Figure 8b) can be intepreted in the light of the predom-
inant enhanced temperature gradient which likely gives
rise to increased baroclinic instability and to enhanced
activity by synoptic systems: the regressions yield nega-
tive temperature anomalies north of 70◦N and positive
anomalies south of 70◦N at the time of the anomaly,
indicating an enhanced temperature gradient which sets
up favourable conditions for baroclinic instability. The
FDM regressions lack signals of warming by synoptic-scale
waves in the Arctic. When instead performing the split
with the WDM, the synoptic transport pattern shows posi-
tive temperature anomalies all over the Arctic for positive
time lags (Figure 8d). The signal of an enhanced tem-
perature gradient is present in the WDM regressions as
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Regression of temperature on vQp at 70°N
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(a) Regression of temperature on vQs at 70°N
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Regression of temperature on vQp at 70°N
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(c) Regression of temperature on vQs at 70°N
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(d)

F I G U R E 8 Regressions of temperature on (a) the planetary n = 1 − 3 and (b) synoptic n = 4 − 20 latent heat transport decomposed
with the FDM, and (c) planetary j = 1 − j = 3 and (d) synoptic j = 4 − j = 6 decomposed with the WDM. The colours represent the
regressions coefficients in K/PW, and the black contours denote the 0.95 and 0.99 significance levels found by a Monte-Carlo approach

well, but shifted towards negative timelags. This indicates
again the presence of increased baroclinic instability asso-
ciated with large synoptic-scale activity, but the signal
of enhanced temperature gradient and Arctic cooling
appears before the transport anomaly is at its maximum,
in contrast to what is suggested by the FDM. Hence
the enhanced baroclinic instability will contribute to the
formation of the synoptic-scale systems which transport
the energy into the Arctic, to the extent that the Arc-
tic shows positive temperature regressions at positive
timelags.

In summary, the difference between the FDM and
WDM is especially noticeable for the synoptic part of
the transport. From the filtered cases, the FDM is found
to represent synoptic systems less accurately than does
the WDM, and one effect is shown in the difference
between the FDM and WDM synoptic regressions. From

the FDM there is no clear evidence of warming in the
Arctic due to the synoptic latent heat transport at 70◦N,
whereas the regressions on the WDM synoptic trans-
port show an Arctic warming approximately 10 days
after the transport anomaly at 70◦N. This implies that,
according to the WDM, synoptic systems contribute
significantly to the subsequent warming of the Arc-
tic, which is in agreement with other previous stud-
ies (Woods and Caballero, 2016; Boisvert et al., 2016;
Messori et al., 2018).

4 DISCUSSION
AND CONCLUSIONS

Fourier series are widely used to decompose atmo-
spheric fields into processes acting on different scales
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(Peixoto and Oort, 1992). The present study highlights
the problem of using non-localized basis functions to
decompose atmospheric fields. Investigations of syn-
thetic fields and filtered ERA-Interim data demonstrate
that the FDM has difficulties attributing the latent heat
transport of individual cyclones. This is a fundamen-
tal problem of the Fourier series expansion of spiked
signals (e.g., Smith 2007). The WDM circumvents this
problem by building upon basis functions localized both
in space and scale. Hence the split into synoptic and
planetary waves in the presence of localized systems
appears more appropriate to be represented with the WDM
than FDM.

The problem with localized systems is not present
in the classical split into stationary and transient eddies
(Peixoto and Oort, 1992). However this split is fundamen-
tally different, as it is based on a time-filtering and does
not impose any conditions on the spatial scales of the sys-
tems; both synoptic- and planetary-scale systems can be
stationary or transient. The length-scale split, based on
either the FDM or WDM, does not regard the time-scales at
which atmospheric systems occur. The length-scale-based
methods are used to separate systems based on the dynam-
ical processes leading to their formation. Planetary-scale
systems are often forced by orography and land–sea con-
trasts, whilst the synoptic-scale systems are usually formed
by instability processes in the atmosphere. These insta-
bilities are more frequent in some regions (e.g., in the
North Atlantic), hence the synoptic-scale systems are
not only transient systems but do also have a stationary
part. Due to orography and land–sea contrast, the plan-
etary waves too have a stationary component, but these
waves are also travelling inducing a transient compo-
nent. Hence the classical split into stationary and transient
eddies is unable to separate between the planetary- and
synoptic-scale systems, which is accomplished by the FDM
and WDM.

From the inspections of the synthetic cases, the WDM
appears as an attractive alternative to the FDM. Also based
on isolated systems in ERA-Interim data, it is reasonable
to assume that the WDM performs better than the FDM
for this type of system. In particular, comparisons of the
FDM and WDM for cases found with the conditional filter
(Figure 5a) suggests that the WDM outperforms the FDM
when it comes to the representation of strongly localized
systems.

The WDM resolves synoptic localized systems with lit-
tle spread of power to planetary scales. However the WDM
has some caveats: the wavelet series expansion is shift
variant, that is, the wavelet coefficients are dependent on
the localization of the atmospheric fields relative to the
wavelets. The shift variance affects the planetary waves the
most since there are few coefficients representing these

length-scales as compared to the coefficients representing
the synoptic scales. In addition, the planetary-scale waves
are not localized, which makes the wavelet basis less
suitable to attribute these waves. However the WDM has
been tested for several different shifts (not shown here),
and the results do not change significantly. In addition, the
WDM does not attribute the transport into all wavelengths,
as demonstrated by the Haar basis (Figure 1). This implies
that some of the wavelengths will be represented by differ-
ent scales than those of these waves. The WDM will also
have a dependency on the chosen wavelet, since the val-
ues of the wavelet coefficients are dependent on the shape
of the wavelet (Daubechies, 1992; Domingues et al., 2005).
The WDM in this study is based on the Haar wavelet,
which is a box function. It is unlikely to find patterns simi-
lar to the Haar wavelet in the atmosphere. However, other
discrete wavelet families (Daubechies, 1992) are often not
significantly closer to atmospheric states, and are often dif-
ficult to relate directly to the length-scales of systems. Thus
the Haar wavelet, although its shape is somewhat artificial,
serves the purpose of this study as the alternatives are not
obviously better.

In GB16 the wavenumber separation between plane-
tary and synoptic waves was chosen between n = 5 and n =
6. At 70◦N wavenumber n = 5 represents a length-scale
of ∼2700 km. This is smaller than the threshold of syn-
optic scales, which is defined as ∼4, 000 km (Holton and
Hakim, 2013). Shifting the wavenumber separation to
between n = 3 and n = 4 results in more similar decom-
positions for the FDM and the WDM. The separation
of planetary and synoptic waves between n = 3 and n =
4 is also physically more accurate with respect to the
length-scale separation of synoptic and planetary waves
at 70◦N (Holton and Hakim, 2013). Thus the threshold
scale at which the planetary and synoptic scales are sepa-
rated is not completely arbitrary, and careful consideration
of the latitudinal dependence of the length-scale of waves
when choosing the threshold is recommended for future
studies.

Regressions of temperature on WDM synoptic trans-
port show a positive correlation in the Arctic with a timelag
of approximately 10 days (Figure 8d), implying a warm-
ing of the Arctic following enhanced energy transport. In
contrast, the FDM synoptic transport (Figure 8b) shows
no significant warming signal at these latitudes. The fact
that the latent heat transport by synoptic systems results
in an Arctic warming is consistent with previous studies
(Woods et al., 2013; Woods and Caballero, 2016; Messori
et al., 2018). It appears as a clear weakness of the FDM that
the Arctic warming by synoptic waves is not well captured.
Both the warming due to the WDM and FDM planetary
latent heat transport show a similar pattern, but the sig-
nal is weaker for the WDM case. This weaker signal is
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likely due to a misrepresentation of some of the planetary
waves by the WDM and the fact that localized systems,
likely misrepresented by the FDM, are more correctly
represented by the WDM. The truth likely lies somewhere
between the results of the WDM and FDM, since the WDM
under-represents planetary-scale waves whilst the FDM
over-represents these scales. However the importance of
latent heat transport by planetary-scale waves is indicated
both by the WDM and FDM and the warming effect is
stronger than for the synoptic-scale waves, in agreement
with GB16.

In summary, spatially localized systems are poorly rep-
resented by sine functions, hence a Fourier series approach
will misrepresent these systems and should be used with
care. The FDM captures the main effect of planetary latent
heat transport on Arctic temperatures, but thus fails to
accurately represent the synoptic transport effect. The
WDM captures the overall effect of planetary as well as
the synoptic latent heat transport on Arctic temperatures.
A test of the robustness of the WDM results is to per-
form a similar analysis as in the present study based on
a different wavelet basis. The WDM and FDM show a
similar effect of planetary latent heat transport on Arc-
tic temperatures. Hence planetary waves play an impor-
tant role on Arctic temperatures, as uncovered in GB16,
and the FDM seems to adequately represent the latent
heat transport of planetary-scale systems. In general the
FDM will over (under)represent and the WDM under
(over)represent planetary (synoptic) transport. Thus it is
likely that the true effect of planetary and synoptic trans-
ports lies somewhere between the WDM and FDM rep-
resentations. Hence, when investigating effects of energy
transport in the atmosphere at different scales, the FDM
and WDM should be used together to form a more com-
plete picture.
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