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Abstract
We classify all (locally) homogeneous Levi non-degenerate real hypersurfaces in C

3 with
symmetry algebra of dimension ≥ 6.
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1 Introduction

The main goal of this paper is to provide the complete (local) classification of multiply-
transitive Levi non-degenerate real hypersurfaces in C

3, i.e. hypersurfaces with transitive
symmetry algebra and stabilizer of dimension≥ 1 (Theorem 1.1). It is known [6,21] that any
real hypersurface in C

n with non-degenerate Levi form has symmetry algebra of dimension
at most n(n+2), which is achieved if and only if it is locally equivalent (under biholomorphic
transformations) to a hyperquadric given by:

Im(w) = z1 z̄1 ± · · · ± zn−1 z̄n−1.
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InC
3, the next possible dimension of the symmetry algebra for a Levi non-degenerate hyper-

surface is 8, which is achieved for the so-called Winkelmann hypersurface [23]:

Im(w + z̄1z2) = |z1|4, (1.1)

where (z1, z2, w) are holomorphic coordinates in C
3. The 8-dimensional symmetry algebra

is transitive on this hypersurface. Moreover, it is also transitive on the two open (unbounded)
domains inC

3 separated by this hypersurface.We show in this paper (Theorem1.3) that hyper-
quadrics and the Winkelmann hypersurface are the only homogeneous Levi non-degenerate
hypersurfaces in C

3 whose symmetry algebras have open orbits in C
3.

The analogous classification result in C
2 was obtained by Élie Cartan in his pioneering

works [3,4] on this subject. He also used this result to prove that the only bounded homo-
geneous domain in C

2 is the interior of a hypersphere. He claimed to prove a similar result
for bounded homogeneous domains in C

3, but the details of this proof were never published
and seem to be hidden in the archives of his notes.1 This led him to believe [5] that the only
bounded homogeneous domains in C

n for any n ≥ 2 are given by symmetric homogeneous
spaces. However, this proved to be not correct, and the first counterexample was discovered
by Piatetski-Shapiro in 1959 [16].

Levi non-degenerate hypersurfaces in C
3 with large symmetry algebras were extensively

studied in a series of papers by Loboda. He classified all Levi non-degenerate hyper-
surfaces with 7-dimensional symmetry algebra [11,12], as well as all hypersurfaces with
6-dimensional symmetry algebra and positive definite Levi form [13]. In our paper, we com-
plete the classification of all multiply-transitive hypersurfaces in C

3 by providing the full list
of Levi indefinite hypersurfaces inC

3 with 6-dimensional symmetry algebra.We also correct
the Levi definite list [13, Theorem 3] by adding onemissing hypersurface with 6-dimensional
symmetry algebra:

v = x22
1 + x1

− ln(1 + x1).

Here z1 = x1+ iy1, z2 = x2+ iy2,w = u+ iv so this hypersurface is tubular (see Sect. 4 for
the definition). This corresponds to the Levi definite real form of case D.6-1 in [9]—see also
Table 8. The symmetry algebra here is isomorphic to the semidirect product of sl(2, R) and
the 3-dimensional Heisenberg algebra. In Table 9, we match Loboda’s classifications with
our results.

The main idea of our classification approach is to pass from Levi non-degenerate hyper-
surfaces in C

n to their complex analogue, which turns out to be a complete system of 2nd
order PDEs on one function of n − 1 independent variables (see Sect. 2). Such systems of
PDEs have the same dimension for their symmetry algebra, which is multiply-transitive on
the first jet-space J 1(Cn−1, C) if and only if the corresponding real hypersurface in C

n is
multiply-transitive.

This idea of passing from real hypersurfaces in C
n to families of complex hypersurfaces

(also known as Segre varieties) was first introduced by Segre [17,18], explored in more detail
in the original work of Cartan [4] in the case of real hypersurfaces in C

2, and was extended
to more general cases in [1,14,19,20,22].

Geometrically, any Levi non-degenerate hypersurface M ⊂ C
n inherits a natural CR

structure of codimension 1, which consists of a contact distribution C ⊂ T M equipped
with a complex structure J : C → C . This complex structure is compatible with the natural
conformal symplectic form on C and is integrable. Both these conditions are equivalent to

1 Private communication with Robert Bryant.
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the fact that the eigenspaces J (i) and J (−i) of the operator J on the complexification CC

should be integrable subdistributions of the complexified contact distribution.
The corresponding complete systems of second order PDEs are encoded as complex

analytic manifolds of dimension 2n − 1 equipped with contact distribution C decomposed
into the direct sum of two completely integrable subdistributions E and V . Such structures
are called integrable Legendrian contact (ILC) structures and they were studied in detail in
[9]. The fundamental invariant obstructing flatness2 is harmonic curvature κH , which is a
binary quartic field when n = 3, i.e. dimension five, so one has a Petrov-like classification
based on its (pointwise) root type [9, (3.3)]. For CR structures, this is the complexification
of the degree four part of the Chern–Moser normal equation [10].

All multiply-transitive ILC structures in dimension five (in particular having symmetry
algebra of dimension≥ 6) were classified in [9] and organized according to their Petrov type.
In particular, only types III (triple root), D (two double roots), N (quadruple root), or O (flat
case) arise. Non-flat multiply-transitive CR structures necessarily arise as real forms of ILC
structures only of types D or N (Corollary 3.2).

Any multiply-transitive ILC structure can be encoded by certain complex Lie algebraic
data (s, k; e, v), which includes the symmetry algebra s, two subalgebras e and v that corre-
spond to E and V , and the isotropy subalgebra k = e ∩ v of dimension ≥ 1. In this paper,
we compute CR real forms of this data, which is equivalent to computing anti-involutions
ϕ : s → s that preserve k and swap e and v. (see Sect. 3 and Table 6.) Each such real form
uniquely defines the local structure of the CR geometry on the homogeneous real hypersur-
face.

The main difficulty is then to find the local equations of real hypersurfaces realizing this
algebraic data. To go from an algebraicmodel to a local realization, we use several techniques.
In Sect. 4, we identify tubular hypersurfaces and, in particular, those that correspond to
affine homogeneous hypersurfaces in A

3 (see Tables 7, 8). For example, the Winkelmann
hypersurface corresponds to the surface in A

3 given by the equation u = xy + x4. In Sect. 5,
we discuss the so-calledCartan hypersurfaces, which have semisimple symmetry algebra and
are treated uniformly in this paper, along with certain related quaternionic models. Finally,
in Sect. 6 all remaining local models can be covered by hypersurfaces of Winkelmann type,
which are given by

Im(w + z̄1z2) = F(z1, z̄1),

for some real-valued analytic function F . We can formulate the main result of our paper as
follows.

Theorem 1.1 Any multiply-transitive Levi non-degenerate hypersurface in C
3 is locally

biholomorphically equivalent to one of the following:

(1) themaximally symmetric hypersurfacesIm(w) = z1 z̄1±z2 z̄2 inC
3with15-dimensional

symmetry algebra.
(2) tubular hypersurfaces listed in Tables 7 and 8 with symmetry algebras of dimension 6,

7, or 8.
(3) Cartan hypersurfaces (5.2) (see also Table 4) or the quaternionic models (5.6). These

all have symmetry algebra a real form of so(4, C) ∼= sl(2, C) × sl(2, C).
(4) hypersurfaces of Winkelmann type given in Table 5, having 6-dimensional symmetry

algebra:

(i) Im(w + z̄1z2) = (z1)α(z̄1)ᾱ , where α ∈ C\{−1, 0, 1, 2};
2 Flatness refers to being locally equivalent under point transformations to the trivial PDE system u jk = 0.
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(ii) Im(w + z̄1z2) = exp(z1 + z̄1);
(iii) Im(w + z̄1z2) = ln(z1) ln(z̄1).

Remark 1.2 Among the Winkelmann type hypersurfaces, (ii) and (iii) are equivalent to the

tubular hypersurfaces u = x1x2 + exp(x1) and u = x2 exp(x1) − (x1)2

2 respectively (see

Tables 5 and 7), while (i) admits a tubular representation if and only if (2α−1)2

(α+1)(α−2) ∈ R (see
Sect. 6.)

Finally in Sect. 7, we prove:

Theorem 1.3 Up to local biholomorphism, the only locally homogeneous Levi non-
degenerate hypersurfaces in C

3 whose symmetry algebra is transitive on an open subset
of C

3 are:

(1) the hyperquadric Im(w) = z1 z̄1 ± z2 z̄2;
(2) the Winkelmann hypersurface Im(w + z̄1z2) = |z1|4.
Appendices A, B, and C summarize our classification results for the dimension five case.

Finally, to illustrate our methods in a simpler case, in Appendix D we derive Cartan’s clas-
sification [4, bottom of p.70] of (non-flat) homogeneous CR structures in dimension three
from the classification of (complex) 2nd order ODE that are homogeneous (in fact, simply-
transitive) under point symmetries.

2 Complexification of real submanifolds in C
n

In this section, wemainly follow [14] to establish the relationship between real hypersurfaces
in C

n and complete systems of 2nd order PDEs.

2.1 Complete systems of PDEs defined by real hypersurfaces

Let M be a real analytic submanifold in C
n given by

Fα(z1, . . . , zn, z̄1, . . . , z̄n) = 0,

where Fα are real analytic functions of the holomorphic and antiholomorphic coordinates.
Denote by C̄

n another copy of C
n with the opposite complex structure, so that the map

C
n → C̄

n givenby (z1, . . . , zn) �→ (z̄1, . . . , z̄n) is holomorphic.Let (a1, . . . , an)be standard
coordinates on C̄

n and define a complex submanifold Mc in C
n × C̄

n by:

Fα(z1, . . . , zn, a1, . . . , an) = 0. (2.1)

Definition 2.1 We call Mc the complexification of the real analytic submanifold M ⊂ C
n .

We can regard (2.1) as an n-parameter family of submanifolds in C
n , or locally as an

n-parameter family of graphs of analytic functions from C
n−1 to C. Let E(M) be the corre-

sponding finite-type PDE system whose solution space coincides with this family.

Example 2.2 Take theWinkelmann hypersurface Im(w+ z̄1z2) = |z1|4. Its complexification
is

w − b + a1z2 − z1a2 = 2i(a1z1)
2,
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where (a1, a2, b) are holomorphic coordinates on C̄
3. Regard w as a function of the two

independent variables z1 and z2. Letting w j = ∂w
∂z j

and w jk = ∂2w
∂z j ∂zk

, we obtain

w1 = a2 + 4i(a1)
2z1, w2 = −a1, w11 = 4i(a1)

2, w12 = w22 = 0.

Excluding the parameters (a1, a2, b), we obtain the PDE system

w11 = 4iw2
2, w12 = 0, w22 = 0.

Proposition 2.3 Let M be a Levi non-degenerate codimension 1 real analytic submanifold
in C

n. Then locally E(M) is a complete system of 2nd order PDEs on one function of n − 1
variables.

Proof As shown in [6], locally we can always find a holomorphic coordinate system
(z1, . . . , zn−1, w) such that M is given as:

2Im(w) = ε1 z̄1z1 + · · · + εn−1 z̄n−1zn−1 + F(z1, z̄1, . . . , zn−1, z̄n−1, w̄),

where F is an analytic function whose Taylor series contains only terms of degree 3 and
higher and ε j = ±1 for j = 1, . . . , n − 1. The complexification Mc is given by:

w = b + ε1a1z1 + · · · + εn−1an−1zn−1 + F(z1, a1, . . . , zn−1, an−1, b). (2.2)

Regarding w as a function of z1, . . . , zn−1, and differentiating (2.2) with respect to z j , we
get

w j := ∂w

∂z j
= ε j a j + ∂F

∂z j
. (2.3)

By the implicit function theorem, we can uniquely resolve Eqs. (2.2), (2.3) in
(a1, . . . , an−1, b) in the neighbourhood of the origin in C

n . Differentiating (2.3) one more
time and substituting there solutions for (a1, . . . , an−1, b) we obtain the complete system of
PDEs of 2nd order. 	


It is clear from the construction that if we choose different holomorphic coordinates, this
will result in a system of PDEs point equivalent to the initial system.

2.2 ILC structures

Let us recall [9] that an integrable Legendrian contact (ILC) structure on an odd-dimensional
manifold is defined as a contact distribution C decomposed into a sum C = E ⊕ V of
two completely integrable distributions that are Lagrangian with respect to the (conformal)
symplectic form on C .

The above complete system E(M) of 2nd order PDEs naturally defines an ILC structure
on the space J 1 = J 1(Cn−1, C) of 1-jets of (complex analytic) functions from C

n−1 to C.
The space J 1 carries a natural contact structureC . The distribution V is defined as the tangent
distribution to the fibers of the projection J 1 → J 0 = C

n−1×C. The second complementary
integrable distribution E ⊂ C is defined by the equation E(M) itself. Namely, its fibers are
exactly the 1-jets of all its solutions. (As each solution is uniquely defined by its 1st order
derivatives, we see that through each point in J 1 goes a unique 1-jet of a solution.)

Suppose the equation E(M) is explicitly written as:

∂2w

∂z j∂zk
= f jk(z, w, ∂w), 1 ≤ j, k ≤ n − 1.
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On J 1, introduce local holomorphic coordinates (z j , w, p j ), 1 ≤ j ≤ n−1,where p j = ∂w
∂z j

,

so that the contact distribution C on J 1 is given as:

C = {dw − p1dz1 − · · · − pn−1dzn−1 = 0} .

The distributions E and V have the form:

E = span
{D j := ∂z j + p j∂w + f jk∂pk

}
, V = span{∂p j }.

The integrability conditions of E(M) ensure that the distribution E is indeed completely
integrable.

We can also define a natural ILC structure on Mc ⊂ C
n × C̄

n as follows. Consider
two projections π̄ : Mc → C̄

n and π : Mc → C
n and define two completely integrable

distributions E and V on Mc as the tangent distributions to the fibers of π̄ and π . Define
also C = E ⊕ V . Let us show that this is in fact the same ILC structure as defined in
Proposition 2.3. Indeed, we shall show that Mc can be (locally) identified with J 1 such that
the pairs of distributions (E, V ) on J 1 and Mc match. Let us assume that Mc is given by:

F(z1, . . . , zn, a1, . . . , an) = 0.

Let (z, a) be a point in Mc. Consider now a codimension 1 analytic submanifold Sa ⊂ C
n

given by the above equation, where a ∈ C̄
n is fixed. Define the map:

� : Mc → J 1, (z, a) �→ j1z (Sa) = Tz Sa .

Note that Sa = π(π̄−1(a)), and all such submanifolds are by definition all solutions of E(M).
This immediately implies that � is a local biholomorphism establishing the equivalence of
the pairs of distributions (E, V ) on Mc and J 1.

2.3 Symmetry algebras

We recall that a holomorphic vector field X onC
n is called an (infinitesimal) CR symmetry of

the real analytic submanifoldM ⊂ C
n if X is tangent toM . The set of all CR symmetries ofM

forms a real Lie algebra denoted by Sym(M).We say thatM is (infinitesimally) homogeneous
if Sym(M) is transitive on M , i.e. it spans T M at each point of M .

Let Mc ⊂ C
n × C̄

n be the complexification of M . Denote by Sym(Mc) all holomorphic
vector fields of the form X + Y that are tangent to Mc, where X and Y are holomorphic
vector fields on C

n and C̄
n respectively. It is clear that Sym(Mc) is a complex Lie algebra.

We say that Mc is (infinitesimally) homogeneous, if Sym(Mc) acts transitively on Mc.

Proposition 2.4 ([14, Corollary 6.36]) Assume M ⊂ C
n is Levi non-degenerate. Then

Sym(Mc) is spanned (as a complex vector space) by vector fields X+ X̄ , where X ∈ Sym(M).
Thus, the complex Lie algebra Sym(Mc) is the complexification of the real Lie algebra
Sym(M).

Corollary 2.5 The submanifold M is infinitesimally homogeneous if and only if so is the
submanifold Mc.

Remark 2.6 Proposition 2.3 shows that Levi non-degeneracy of M guarantees that the con-
dition of Proposition 2.17 and its Corollary 6.36 in [14] are satisfied.
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2.4 Algebraic model of hypersurfaces with transitive symmetry algebra

Let M ⊂ C
n be a Levi non-degenerate hypersurface with transitive symmetry algebra

Sym(M). Consider its complexification Mc and let s = Sym(Mc). By Corollary 2.5, s
is infinitesimally transitive on Mc.

Let z0 be an arbitrary point of M ⊂ C
n . Then by definition the point (z0, z̄0) ⊂ C

n × C̄
n

lies in Mc. Let k ⊂ s be the subalgebra consisting of all vector fields that vanish at (z0, z̄0).
Since s is transitive, k has codimension 2n − 1 in s.

As above, let E and V be two completely integrable distributions on Mc defining an
ILC structure on it. Denote by e and v the two subspaces in s consisting of those vector
fields X such that X(z0,z̄0) ∈ E(z0,z̄0) and X(z0,z̄0) ∈ V(z0,z̄0) respectively. Since E and V are
completely integrable, it follows that both e and v are actually subalgebras in s. It is clear
that e ∩ v = k and that e + v is a subspace of codimension 1 in s.

The fact that E+V is a contact structure onMc can be translated to the algebraic language
as follows. Consider the bilinear map:

e/k × v/k → s/(e + v), (X + k, Y + k) �→ [X , Y ] + (e + v).

It is easy to see that it is well-defined and is non-degenerate.
We call the tuple (s, k; e, v) an algebraic model of the ILC structure (E, V ) on Mc. It

uniquely determines the local ILC structure on Mc in a neighbourhood of the point (z0, z̄0).
Consider now the involutive map:

C
n × C̄

n → C
n × C̄

n, (z, a) �→ (ā, z̄).

By definition, it stabilizes Mc and preserves s = Sym(Mc). Its restriction to s defines an
anti-involution ϕ of s that preserves k and swaps e and k. The tuple (s, k; e, v) with the anti-
involution ϕ uniquely determines the local structure of M itself in the neighbourhood of the
point z0.

3 Classification of real forms

Let (s, k; e, v) be the algebraic data associated to a locally homogeneous complex ILC struc-
ture. This satisfies the following properties:

• k ⊂ e, v ⊂ s are Lie subalgebra inclusions, and e ∩ v = k;
• e + v has codimension one in s, and [e, v] 
⊂ e + v.

Recall that any real form of the complex Lie algebra s is the fixed point set sϕ of an anti-
involution ϕ : s → s, i.e. a complex anti-linear map satisfying ϕ2 = id and ϕ([x, y]) =
[ϕ(x), ϕ(y)] for any x, y ∈ s. We say that ϕ is admissible if: (i) it preserves k, and (ii) it swaps
e and v. Any homogeneous CR structure is obtained from some admissible anti-involution
ϕ for a homogeneous complex ILC structure. Indeed, from (sϕ, (e + v)ϕ, kϕ), the contact
subspace C corresponds to (e + v)ϕ mod kϕ , and we designate E := e/k and V := v/k to
be the +i-eigenspace C1,0 and −i-eigenspace C0,1 under (the C-linear extension of) J . The
Levi form [ξ, η̄] mod CC, for ξ, η ∈ �(C0,1) and with conjugation corresponding to ϕ, can
then be evaluated from the above Lie algebraic data.

We say that two admissible anti-involutions ϕ,ψ are equivalent ifψ = T ◦ϕ◦T−1, where
T is an admissible automorphism of s, i.e. it (i) preserves k, and (ii) swaps e, v or preserves
both of them. Equivalent admissible anti-involutions yield isomorphic homogeneous CR
structures, so it suffices to identify representatives from each equivalence class.
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Theorem 3.1 A complete list of representative admissible anti-involutions for all non-flat
5-dimensional multiply-transitive complex ILC structures is given in Table 6.

The proof of Theorem 3.1 is a straightforward, but tedious, computation. We will outline
the details for some examples.

All non-flat 5-dimensional multiply-transitive complex ILC structures were classified in
[9, Tables 6–8]. The structure equations for any model (s, k; e, v) given there are written with
respect to an adapted basis {
 i }, and we let {ei } denote the dual basis. (As usual, the Lie
algebra structure [ei , e j ] = cki j ek is equivalently stated as d(
 i ) = − 1

2c
i
jk


j ∧
 k .) In this

Cartan basis, k = span{ei }dim(s)
i=6 e = span{e1, e2} + k, and v = span{e3, e4} + k .

Note that in swapping e and v, any admissible anti-involution ϕ must swap their respective
derived series. If the respective dimensions occurring in these series differ (in particular for
e(1) = [e, e] and v(1) = [v, v]), then we can immediately rule out the existence of admissible
anti-involutions. This is indeed the case for:

• N.7-1 (see [9, Table 6]): e(1) = span{e2, e6} and v(1) = span{e3, e4, e6}.
• D.6-4 (see [9, Table 7]): e(1) = e = span{e1, e2, e6} and v(1) = span{e3, e4}.
• III.6-2 (see [9, Table 8]): e(1) = span{e1, e2} and v(1) = span{e4}.
For the next three examples, we refer to the structure equations in Table 1, and detail

the arguments. These have dim(s) = 6, so e = span{e1, e2, e6}, v = span{e3, e4, e6},
k = span{e6}, and so an admissible anti-involution ϕ must satisfy ϕ(e6) = λe6 with |λ| = 1.
Let

σ jk := [ϕ(e j ), ϕ(ek)] − ϕ([e j , ek]).
III.6-1: Since e(1) = span{e2} and v(1) = span{e3}, then ϕ(e2) = se3 and ϕ(e3) = 1

s̄ e2
(sinceϕ2 = id). Themaximal abelian subalgebras of e andv containing k, namely span{e1, e6}
and span{e4, e6}, must be swapped by ϕ, so ϕ(e1) = αe4 +βe6 and ϕ(e4) = γ e1 + δe6, with
γα 
= 0. Now

0 = σ26 = [se3, λe6] − 2ϕ(e2) = 2s(λ − 1)e3 ⇒ λ = 1

0 = σ14 = [αe4 + βe6, γ e1 + δe6] − ϕ

(
−e1 + 1

2
e4 − 9

8
e6

)

= γ

(
α − 1

2

)
e1 − α

(γ

2
− 1

)
e4 +

(
β − δ

2
+ 9

8
(1 + γα)

)
e6

0 = σ12 = [αe4 + βe6, se3] − 5

4
ϕ(e2) = −

(
3α + 2β + 5

4

)
se3

0 = σ34 = 1

s̄
([e2, γ e1 + δe6] − 3e2) = −1

s̄

(
5

4
γ − 2δ + 3

)
e2

The first three equations yield (α, β, γ, δ) = ( 12 ,− 11
8 , 2, 7

4 ), but this does not satisfy the
fourth equation, so the system is inconsistent. Thus, there are no CR structures associated
with the type III models in [9]. Since all non-flat multiply-transitive models are of type III,
D, or N, we conclude:

Corollary 3.2 In dimension five, all non-flat multiply-transitive Levi-non-degenerate CR
structures complexify to multiply-transitive complex ILC structures of type D or N.
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Table 1 Some ILC structures in the Cartan basis derived from [9, Tables 6–8]

III.6-1:
e1 e2 e3 e4 e5 e6

e1 · 5
4e2

3
2e3 − e5 −e1 + 1

2e4 − 9
8e6

1
2e2 − 3

16e3 + e5 ·
e2

· ·
e2 + 3

4e3 − e5 · 2e2

e3 · 3e3 · 2e3
e4 · −3

4e3 − 2e5 ·
e5 · 2e5
e6 ·

D.6-1:
e1 e2 e3 e4 e5 e6

e1 · · −e5 + 1
4e6 −√

2e2 3e1 −4e1
e2 · √

2e4 −e5 − 3
4e6

3
2e2 −2e2

e3 · · −3e3 4e3
e4 · −3

2e4 2e4
e5 · ·
e6 ·

N.6-2:
e1 e2 e3 e4 e5 e6

e1 · −2ae2 − e6 −ae3 − e5 −e6 −e3 − 2ae5 −e2 − ae6
e2 · · be2 − e5 · ·
e3 · 2be3 − e6 · ·
e4 · e2 − 2be5 e3 − be6
e5 · ·
e6 ·

(Redundancy classified in [9]: (a, b), (−a, b), (a,−b), (−a,−b) yield equivalent models.)

D.6-1: ϕ must swap e(1) = span{e1, e2} and v(1) = span{e3, e4}. Now
0 = σ16 = λ[ϕ(e1), e6] + 4ϕ(e1), 0 = σ26 = λ[ϕ(e2), e6] + 2ϕ(e2),

so ad(e6)|v(1) = diag( 4
λ
, 2

λ
) in the basis {ϕ(e1), ϕ(e2)}. But also ad(e6)|v(1) = diag(−4,−2)

in the basis {e3, e4}. Thus, λ = −1 and ϕ(e1) = se3, ϕ(e2) = te4. Since ϕ2 = id, then
ϕ(e3) = 1

s̄ e1 and ϕ(e4) = 1
t̄ e2. Now

0 = σ14 =
[
se3,

1

t̄
e2

]
+ √

2ϕ(e2) = √
2
(
− s

t̄
+ t

)
e4 ⇒ s = |t |2 ∈ R

+.

The admissible automorphism (e1, . . . , e6) �→ ( e1
c2

, e2
c , c2e3, ce4, e5, e6) induces s �→ s

|c|4 .
Since s = |t |2 ∈ R

+, we may normalize s = 1 and hence t = ε = ±1. Finally,

0 = σ13 = [e3, e1] − ϕ

(
−e5 + 1

4
e6

)
= e5 + ϕ(e5) ⇒ ϕ(e5) = −e5.

There are two real forms, parametrized by ε = ±1. The fixed point Lie algebra sϕ has (real)
basis

E1 = e1 + e3, E2 = i(e1 − e3), E3 = e2 + εe4, E4 = i(e2 − εe4),

E5 = ie5, E6 = ie6.
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The contact subspace C is spanned by E1, . . . , E4 mod k. In this basis, J =

⎛

⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎟
⎠

since J acts as +i on E = e/k and as −i on V = v/k (and recall C0,1 is associated to
V ). Since ϕ sends (e3, e4) �→ (e1, εe2), i.e. conjugation, then the Levi form [ξ, η̄] mod CC,

for ξ, η ∈ �(C0,1), is represented by

([e3, e1] [e3, εe2]
[e4, e1] [e4, εe2]

)
≡

(
1 0
0 ε

)
e5 mod (e + v). This is

definite if and only if ε = 1.
N.6-2: This family is parametrized by (a, b) ∈ C

2, with the redundancy that (a, b),
(−a, b), (a,−b), (−a,−b) all yield equivalentmodels.3 Thus,we can consider (a2, b2) ∈ C

2

as the essential parameters. Each of e and v contains a unique maximal abelian subalgebra
containing k, namely span{e2, e6} and span{e3, e6} respectively. These must be swapped by
ϕ. For s1t1 
= 0,

ϕ(e1) = s1e4 + s2e3 + s3e6, ϕ(e2) = t1e3 + t2e6, ϕ(e6) = λe6.

Then

0 = σ16 = [s1e4 + s2e3 + s3e6, λe6] + ϕ(e2 + ae6)

= (λs1 + t1)e3 + (t2 − λs1b + āλ)e6 ⇒ t1 = −s1λ, t2 =
(
ā

s1
− b

)
t1

0 = σ12 = [s1e4 + s2e3 + s3e6, t1e3 + t2e6] + ϕ(2ae2 + e6)

= s1(t1(e6 − 2be3) + t2(e3 − be6)) + 2ā(t1e3 + t2e6) + λe6

= (−2bs1t1 + s1t2 + 2āt1)e3 + (s1t1 − s1t2b + 2āt2 + λ)e6

= 3t1(ā − bs1)e3 + (−(s1)
2λ − s1t2b + 2āt2 + λ)e6

⇒ ā = bs1, t2 = 0, (s1)
2 = 1.

We conclude that s1 = ε = ±1 and ā = εb . From e2 = ϕ2(e2) and e1 = ϕ2(e1), we find:

ϕ(e3) = − ε

λ
e2, ϕ(e4) = εe1 + s2

λ
e2 − εs3λe6.

Now we obtain

0 = σ14 =
[
εe4 + s2e3 + s3e6, εe1 + s2

λ
e2 − εs3λe6

]
+ ϕ(e6)

=
[
e4, e1 + ε

s2
λ
e2 − s3λe6

]
+ s2ε [e3, e1] + s3ε [e6, e1] + λe6

= e6 + ε
s2
λ

(−be2 + e5) − s3λ(e3 − be6) + s2ε(ae3 + e5) + s3ε(e2 + ae6) + λe6

= ε(s3 − b(s2/λ))e2 + ε(−εs3λ + s2a)e3 + ε(s2 + (s2/λ))e5 + (εs3a + s3λb + 1 + λ)e6

The coefficients of e2, e5 imply s3 = −s2b and s2 = −s2λ . The remaining coefficients
then become

0 = εs2(1 − |λ|2)b̄, 0 = −s2(1 − |λ|2)|b|2 + 1 + λ = 1 + λ ⇒ λ = −1 , s2 ∈ R .

3 The map (e1, . . . , e6) �→ (ε1e1, ε2e2, ε1e3, ε2e4, e5, ε1ε2e6), where ε1 = ±1 and ε2 = ±1, induces the
parameter change (a, b) �→ (ε1a, ε2b) and ε �→ ε1ε2ε. This is an automorphism only when a = b = 0.
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We can simplify this further by using an automorphism T . For any r ∈ C, the linear map
T fixing e2, e3, e5, e6 and sending

e1 �→ e1 − re2 − are6, e4 �→ e4 + re3 − rbe6

is an automorphism of s that preserves each of k, e, v. In the new basis ẽ1 = T (e1), . . . , ẽ6 =
T (e6), we have ϕ(ẽ1) = εẽ4 + s̃2ẽ3 + s̃3ẽ6, where s̃3 = −s̃2b and (using t1 = −s1λ = ε)
we have s̃2 = s2 − rε − r̄ t1 = s2 − (r + r̄)ε. Since s2 ∈ R, we may normalize s2 = 0 (and

so s3 = 0 ). Hence, ϕ maps (e1, e2, e3, e4) �→ (εe4, εe3, εe2, εe1), and

0 = σ13 = [e4, e2] + ϕ(ae3 + e5) = e5 − be2 + εāe2 + ϕ(e5) = e5 + ϕ(e5) ⇒ ϕ(e5) = −e5 .

Since ϕ sends (e3, e4) �→ (εe2, εe1), then

([e3, εe2] [e3, εe1]
[e4, εe2] [e4, εe1]

)
≡

(
0 ε

ε 0

)
e5 implies an

indefinite Levi-form.
We obtained a unique representative admissible anti-involution:

• ab 
= 0: Since ā = εb, then ε is uniquely determined.
• a = b = 0: Rescaling (e2, e4, e6) by ε normalizes ε = 1.

Using the aforementioned parameter redundancy, we normalize ε = 1 (so that b = ā). Thus,
b2 = ā2 ∈ C are the parameters yielding CR structures, and in each case there is a unique
structure.

Remark 3.3 For N.6-2, the duality swap induces (a, b) �→ (b, a) (see [9, Table 14]), so the
structure is self-dual if and only if b2 = a2. For the cases admitting CR structures, b2 = ā2,
so these are self-dual precisely when b2 = a2 ∈ R. As shown in Sect. 4, these coincide with
the cases that admit tubular representations—see Table 7 for the tubular models.

All admissible anti-involutions can be computed in the sameway. The final list is presented
in Table 6. The local models for all these anti-involutions are constructed in the following
sections.

4 Homogeneous tubular hypersurfaces

A natural class of CR structures are tubular hypersurfaces, which arise from analytic hyper-
surfaces inR

n (i.e. their “base”). InC
3, the majority of the hypersurfaces in our classification

are indeed tubular (Theorem 4.8). A complete classification of affine-homogeneous surfaces
in R

3 was obtained by Doubrov–Komrakov–Rabinovich [7, Theorem 1], so using their list
is a natural starting point for our study. However, not all (CR-)homogeneous tubular hyper-
surfaces in C

3 have affine-homogeneous base, so it is important to be able to abstractly
identify tubular CR structures and determine the affine symmetry dimension for their base
hypersurfaces.

Consider an analytic hypersurface in R
n :

f (x1, . . . , xn) = 0. (4.1)

A tubular hypersurface M in C
n induced by (4.1) is defined by the equation

f (Re(z1), . . . ,Re(zn)) = 0. (4.2)
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Obviously, this hypersurface admits the symmetries i∂z1 , . . . , i∂zn . Now (4.2) can be rewritten
as

f

(
z1 + z̄1

2
, . . . ,

zn + z̄n
2

)
= 0. (4.3)

From Sect. 2, the complexification Mc of (4.3) is the following complex submanifold of
C
n × C̄

n :

f

(
z1 + a1

2
, . . . ,

zn + an
2

)
= 0. (4.4)

Definition 4.1 We call a complex ILC structure given by (4.4) a tubular ILC structure.

Equation (4.4) can be seen as a (translation-invariant) family of hypersurfaces in C
n

parametrised by a = (a1, . . . , an). The real hypersurface (4.3) is the fixed point set of
the anti-involution

τ : C
n × C̄

n → C
n × C̄

n, τ (z, a) = (ā, z̄). (4.5)

If the real hypersurface (4.1) admits affine symmetries, then these symmetries can be
extended to the complex-affine symmetries of (4.2) in C

n . More precisely, if φ : R
n → R

n

is an affine symmetry

φ(x) = Ax + B, A ∈ GL(n, R), B ∈ R
n,

then for z = x + iy, the transformation z �→ Az+ B is a symmetry of the corresponding real
hypersurface in C

n . The complex-affine symmetries form a subalgebra of the CR symmetry
algebra.

Recall [9] that given an ILC structure with integrable subbundles E and V , the dual ILC
structure is obtained by swapping E and V .

Proposition 4.2 A tubular ILC structure is self-dual.

Proof The involutionσ(z, a) = (a, z) preserves (4.4) and swaps variables z j with parameters
a j . This means that σ is a duality transformation for the ILC structure Mc. 	


It is well known that a hypersurface in R
n with non-degenerate second fundamental form

induces a hypersurface in C
n with non-degenerate Levi form of the same signature. To see

this, consider an analytic hypersurface in R
n . Using affine transformations, we can assume

it is of the form:

u = g(x1, . . . , xn−1) = ε1x
2
1 + · · · + εn−1x

2
n−1 + O(|x |3), ε j = ±1,

where u = xn . The corresponding tubular hypersurface in C
n is:

w + w̄

2
= g

(
z1 + z̄1

2
, . . . ,

zn−1 + z̄n−1

2

)

= ε1

(
z1 + z̄1

2

)2

+ · · · + εn−1

(
zn−1 + z̄n−1

2

)2

+ O(|z|3).

The holomorphic coordinate change w �→ w + 1
2 (ε1z

2
1 + · · · + εn−1z2n−1) transforms it to:

Re(w) = ε1|z1|2 + · · · + εn−1|zn−1|2 + O(|z|3).
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Henceforth assuming non-degeneracy, take M ⊂ R
n of the form u = g(x1, . . . , xn−1)

and with g having nonzero Hessian. Letting w = zn , we see that Mc is of the form

w + c

2
= g

(
z1 + a1

2
, . . . ,

zn−1 + an−1

2

)
.

Differentiate this twice with respect to z j to obtain

w j = g j

(
z1 + a1

2
, . . . ,

zn−1 + an−1

2

)
, w jk = 1

2
g jk

(
z1 + a1

2
, . . . ,

zn−1 + an−1

2

)
.

SinceHess(g) 
= 0, thefirst set of equations can be locally solved for z1+a1, . . . , zn−1+an−1.
Substitution into the second set of equations yields the 2nd order PDE system

w jk = G jk (w1, . . . , wn−1) . (4.6)

The translation group acts locally transitively on the space of solutions. Since hypersurfaces
with non-degenerate 2nd fundamental form cannot admit one-parameter groups of trans-
lations, the infinitesimal stabilizer should be trivial at each point in the solution space (a
hypersurface in C

n).
Recall from Sect. 2 that a complex ILC on Mc can be regarded as a double fibration over

the base manifold Mc/V = C
n and the solution space Mc/E = C̄

n .

Lemma 4.3 Any non-zero symmetry of the complex ILC structure on the manifold Mc has
non-zero projections on C

n and C̄
n.

Proof Without loss of generality, assume that X is a symmetry of the ILC structure on Mc

that projects trivially on C̄
n . This implies X ∈ �(E). From the definition of ILC structure it

follows that for every point p ∈ Mc, there exists Y ∈ �(V ) such that [X , Y ]p /∈ Ep ⊕ Vp .
But then the field X does not preserve V . 	


Every symmetry of PDE (4.6) induces an action on the solution space. Therefore for every
symmetry X ∈ X(Cn) of (4.6), Lemma 4.3 gives a unique Y ∈ X(C̄n) such that X + Y is
tangent to (4.4). We call X + Y the prolongation of the symmetry X to the solution space.

Example 4.4 Consider the following affine surface in R
3:

u = α ln(x) + ln(y), α ∈ R\{0,−1}. (4.7)

It is affinely homogeneous [7] and gives rise to the tubular hypersurface M ⊂ C
3 given by

Re(w) = α ln(Re(z1)) + ln(Re(z2)). (4.8)

Complexifying (4.8), we get a 3-parameter family of surfaces in C
3, parametrized by

(a1, a2, b) ∈ C
3:

w = 2α ln

(
z1 + a1

2

)
+ 2 ln

(
z2 + a2

2

)
− b. (4.9)

Differentiating (4.9) twice yields

w1 = 2α

z1 + a1
, w2 = 2

z2 + a2
, w11 = − 2α

(z1 + a1)2
, w12 = 0, w22 = − 2

(z2 + a2)2
.

We eliminate (a1, a2, b) in w11, w12, w22 using the equations for w,w1, w2, and obtain

w11 = − (w1)
2

2α
, w12 = 0, w22 = − (w2)

2

2
. (4.10)
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Using [9, (3.3)], this complex ILCstructure has typeDharmonic curvature.More precisely,
from [9, Table 1], it is point-equivalent to the D.7 model w11 = (w1)

2, w12 = 0, w22 =
λ(w2)

2 withλ = α.An abstract description forD.7 [9, Table 7] is given in termsof a parameter
a, and [9, Table 12] givesλ = 3+4a

3−4a , hencea = 3
4 (

α−1
α+1 ) ∈ R\{± 3

4 }. The redundancya �→ −a

induces α �→ 1
α
.

The point symmetries of (4.10) can be easily computed, for example in Maple via:

with(DifferentialGeometry): with(GroupActions):
DGsetup([z1,z2,w,w1,w2],M):
F:=-w1ˆ2/2/alpha: G:=0: H:=-w2ˆ2/2:
E:=evalDG([D_z1+w1*D_w+F*D_w1+G*D_w2,D_z2+w2*D_w+G*D_w1+H*D_w2]):
V:=evalDG([D_w1,D_w2]):
InfinitesimalSymmetriesOfGeometricObjectFields([E,V],output="list");

This yields holomorphic vector fields on the jet-space J 1(C2, C): (z1, z2, w,w1, w2) that
are projectable over C

3 = J 0(C2, C): (z1, z2, w). On the latter space, these are given by

∂z1 , ∂z2 , ∂w, z1∂z1 , z2∂z2 , (z1)
2∂z1 + 2αz1∂w, (z2)

2∂z2 + 2z2∂w. (4.11)

Consider the vector fields

∂a1 , ∂a2 , ∂b, a1∂a1 , a2∂a2 , (a1)
2∂a1 + 2αa1∂b, (a2)

2∂a2 + 2a2∂b, (4.12)

which are obtained by replacing z1, z2, w in (4.11) with a1, a2, b. The vector fields (4.12)
are projections of ILC symmetries on (a1, a2, b)-space due to self-duality of tubular ILC
structures. By Lemma 4.3, for every vector field X in the linear span of (4.11), there exists
a unique vector field Y in the linear span of (4.12) such that X + Y is tangent to (4.9), i.e.
X + Y is the prolongation of X to the solution space. Here, the prolonged symmetry algebra
is spanned by:

∂z1 − ∂a1 , ∂z2 − ∂a2 , ∂w − ∂b, z1∂z1 + α∂w + a1∂a1 + α∂b, z2∂z2 + ∂w + a2∂a2 + ∂b,

(z1)
2∂z1 + 2αz1∂w − (a1)

2∂a1 − 2αa1∂b, (z2)
2∂z2 + 2z2∂w − (a2)

2∂a2 − 2a2∂b.

The τ -stable subspace [see (4.5) for τ ] immediately gives the CR symmetry of (4.8):

i∂z1 , i∂z2 , i∂w, z1∂z1 + α∂w, z2∂z2 + ∂w,

i(z1)
2∂z1 + 2iαz1∂w, i(z2)

2∂z2 + 2i z2∂w,

and this is isomorphic to sl(2, R) × sl(2, R) × R. (We use the common convention of sup-
pressing the explicit action on z̄ j .) Note that z1∂z1 +α∂w and z2∂z2 +∂w are affine symmetries
of (4.8).

We already know that the complex ILC structure corresponding to this model is D.7 with
a = 3

4 (
α−1
α+1 ) ∈ R\{± 3

4 }. (Recall that the essential parameter is a2 here.) To complete the
abstract classification of these models, we must determine the anti-involution in Table 6.

First note that (4.7) has Hessian matrix

(
uxx uxy
uxy uyy

)
= diag(− α

x2
,− 1

y2
), so the Levi-form of

(4.8) has definite signature iff α > 0 iff |a| < 3
4 . From the abstract D.7 structure equations

in [9, Table 7], we can identify the real form sϕ of s = sl(2, C) × sl(2, C) × C for each
anti-involution ϕ in Table 6 by examining the signature of the Killing form for the semisimple
part of sϕ . Furthermore, the parameter redundancy a �→ −a induces ϕ

(ε1,ε2)
1 �→ ϕ

(ε2,ε1)
1 , so

we obtain:
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Anti-involution |a| < 3
4 a > 3

4 Levi-form signature

ϕ
(1,1)
1 su(2) × su(2) × R sl(2, R) × su(2) × R Definite

ϕ
(1,−1)
1 sl(2, R) × su(2) × R sl(2, R) × sl(2, R) × R Indefinite

ϕ
(−1,1)
1 sl(2, R) × su(2) × R su(2) × su(2) × R Indefinite

ϕ
(−1,−1)
1 sl(2, R) × sl(2, R) × R sl(2, R) × su(2) × R Definite

Putting all the above facts together, we get the classification in the first line of Table 8.

Example 4.5 Forα ∈ R\{0,−1},u = α ln(e2x+1)+ln(y) andu = α ln(e2x+1)+ln(e2y+1)
in the 2nd and 3rd lines of Table 8 are both affinely inhomogeneous, and the corresponding
tubular CR structures are definite iff α < 0 in the former case, while α > 0 in the latter case.
These have respective tubular ILC structures:

⎧
⎪⎨

⎪⎩

w11 = −w1(w1−2α)
2α ,

w12 = 0,

w22 = − (w2)
2

2

,

⎧
⎪⎨

⎪⎩

w11 = −w1(w1−2α)
2α ,

w12 = 0,

w22 = −w2(w2−2)
2

.

The transformations (z̃1, z̃2, w̃) = (ez1 , z2,− w
2α ) and (z̃1, z̃2, w̃) = (ez1 , ez2 ,− w

2α ) respec-
tivelymap the above systems to (after dropping tildes)w11 = (w1)

2,w12 = 0,w22 = λ(w2)
2,

where λ = α. As in Example 4.4, this leads to a = 3
4 (

α−1
α+1 ). The explicit CR symmetry alge-

bras (see Table 8) are isomorphic to sl(2, R)×su(2)×R and su(2)×su(2)×R respectively.
In the latter case, the data obtained so far (together with the table at the end of Example 4.4)
is sufficient to obtain the corresponding anti-involution classification in Table 8. However,
in the sl(2, R) × su(2) × R cases it is insufficient. To do this, we need to find a Cartan basis
(§ 3) {e1, . . . , e7} with the CR symmetry algebra arising as the fixed point set of one of the
anti-involutions in Table 6.

First, we should work at a nice basepoint. Apply a real affine transformation (x, y, u) �→
(x, y − 1, u − αx − y − α ln(2) + 1), so u = α ln(e2x + 1) + ln(y) becomes

u = α ln(e2x + 1) + ln(y + 1) − αx − α ln(2) − y. (4.13)

The corresponding tubular hypersurface has CR symmetry algebra

f1 = i∂z1 , f2 = i∂z2 , f3 = i∂w,

f4 = (z2 + 1)∂z2 − z2∂w, f5 = i
z2(z2 + 2)

2
∂z2 − i

(z2)2

2
∂w,

f6 = cosh(z1)∂z1 + α sinh(z1)∂w, f7 = i sinh(z1)∂z1 + iα(cosh(z1) − 1)∂w.

These are also point symmetries for the corresponding ILC structure:

w11 = α2 − (w1)
2

2α
, w12 = 0, w22 = − (w2 + 1)2

2
. (4.14)

The complexification of (4.13) has w1 = ∂w
∂z1

and w2 = ∂w
∂z2

vanishing at (z1, z2, w) =
(0, 0, 0) (and (a1, a2, b) = (0, 0, 0)). At the basepoint (z1, z2, w,w1, w2) = (0, 0, 0, 0, 0),
we have k = 〈 f5, f7〉 and
e = 〈E1 := f6 − i f1, E2 := f4 − i f2〉 + k, v = 〈V1 := f6 + i f1, V2 := f4 + i f2〉 + k.
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Recalling that a = 3
4 (

α−1
α+1 ), we find that a Cartan basis is given by:

e1 = E1, e2 = E2 − i f5, e3 = −1

2
(4a − 3)V1, e4 = −1

2
(4a + 3)(V2 + i f5),

e5 = i(4a + 3) f3 + i

2
(2a + 1) f5 − i

2
(2a − 1) f7, e6 = −i f5 − i f7, e7 = −i f5 + i f7.

Although ie5, ie6, ie7 are real, i.e. lie in the CR symmetry algebra, this Cartan basis is not
aligned to the representative anti-involutions in Table 6.We still need to use the residual basis
change freedom diag(c1, c2, 1

c1
, 1
c2

, 1, 1, 1) preserving the ILC D.7 structure equations [9,
Table 7]:

a α c1 c2 Anti-involution ϕ
(ε1,ε2)
1

a > 3
4 α < −1

√
4a−3
2

√
(−4a+3)

2 α ϕ
(−1,−1)
1

a < − 3
4 −1 < α < 0

√
3−4a
2

√
4a−3
2 α ϕ

(+1,+1)
1

|a| < 3
4 0 < α < ∞

√
3−4a
2

√
(−4a+3)

2 α ϕ
(+1,−1)
1

(Recall that the parameter redundancy a �→ −a induces the flip ϕ
(ε1,ε2)
1 �→ ϕ

(ε2,ε1)
1 , which

explains why it is not necessary to list ϕ(−1,+1)
1 above.)

Example 4.6 For α ∈ R, u = α arg(i x + y) + ln(x2 + y2) has corresponding tubular ILC
structure:

w11 = −w22 = w1w2α − (w1)
2 + (w2)

2

α2 + 4
, w12 = ((w2)

2 − (w1)
2)α − 4w1w2

2(α2 + 4)
.

The complex affine transformation (z̃1, z̃2, w̃) = (z2+ i z1, z1+ i z2, cw), where c = − iα+2
α2+4

,

transforms this system (after dropping tildes) to the D.7 model w11 = (w1)
2, w12 =

0, w22 = λ(w2)
2 with λ = 2+iα

2−iα . As mentioned in Example 4.4, λ = 3+4a
3−4a , so we

obtain a = 3
8 iα. From Table 6, we see that ϕ2 gives rise to these CR structures (that have

sl(2, C)R × R symmetry). It is clear that a �→ −a is a parameter redundancy here since the
reflection x �→ −x induces α �→ −α.

Existence of a tubular representation can be characterized at a Lie-algebraic level.

Definition 4.7 A tubular realization for the complex homogeneous ILC structure (s, k; e, v)
in dimension dim(s/k) = 2n − 1 is a pair (a, ϕ), where

(T.1) a ⊂ s is an n-dimensional abelian subalgebra;
(T.2) the centralizer c(a) = {X ∈ s : [X , Y ] = 0, ∀Y ∈ a} coincides with a itself;
(T.3) a is transverse to both e and v, i.e. a ∩ e = 0 = a ∩ v, so a complements both e and v

in s;
(T.4) ϕ is an admissible anti-involution of (s, k; e, v) (see Sect. 3) that preserves a.

For a tubular ILC structure (arising from (4.4)), the ILC symmetry algebra s contains
a = spanC{∂z1−∂a1 , . . . , ∂zn −∂an }, which is n-dimensional abelian (T.1). ByLemma4.3,we
can identify awith its projection span{∂z1 , ..., ∂zn } toM/V = C

n , and similarly its projection
span{∂a1 , ..., ∂an } to M/E = C̄

n . Every vector field on C
n commuting with all ∂z j is itself
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an infinitesimal translation, so (T.2) holds. The Lie group of translations acts transitively on
M/V = C

n and M/E = C̄
n , which by dimension reasons forces a ∩ v = 0 = a ∩ e, so

(T.3) holds. The anti-involution ϕ of s induced by τ (4.5) preserves a, i.e. (T.4) holds, and
aϕ = spanR{i∂z j } (or more precisely, i(∂z j − ∂z̄ j ) here).

The elements of N (a)/a are in 1-1 correspondence with complex affine symmetries
of (4.2). Indeed, let X ∈ X(M/V ) lie in N (a), so [∂z j , X ] = Ak

j∂zk , where Ak
j ∈ C.

Then X = Ak
j zk∂z j + Bj∂z j , where Bj ∈ C, is complex-affine. Obviously any complex

affine symmetry belongs to N (a). Moreover since the second fundamental form of (4.1)
is non-degenerate, there are no symmetries of (4.2) that are translations. This makes the
correspondence with N (a)/a one to one.

Most of the CR structures in this article are tubular. (Exceptions are discussed in Sects. 5
and 6.)

Theorem 4.8 Every multiply-transitive Levi non-degenerate hypersurface in C
3 admits a

tubular realisation unless it is a real form of D.6-3 (a2 ∈ R\{0, 9}) or N-6.2 (b2 = ā2 ∈
C\R).

Proof First, we show that the exceptional models do not have any tubular realisations. We
can see this immediately for D.6-3 (a2 
= 9) since the 6-dimensional symmetry algebra in
this case is semisimple and cannot have a 3-dimensional abelian subalgebra.

As discussed in Sect. 3, the ILC N.6-2 models have essential parameters (a2, b2) ∈ C
2.

These admit underlying CR structures when b2 = ā2 ∈ C. By Remark 3.3, such structures
are self-dual when b2 = a2 ∈ R, which is a necessary condition for tubular realisability
according to Proposition 4.2.

The existence of tubular realisations for all other cases is examined on the Lie algebra
level. In Table 2 we list abelian subalgebras a defining tubular realizations. Corresponding
affine surfaces and symmetries of induced tubular CR hypersurfaces are listed in Tables 7
and 8. 	


Example 4.9 (N.6-2 tubular cases) InR
3, consider the affine surface u = y exp(x)+exp(αx),

for α ∈ R\{−1, 0, 1, 2}. Proceeding similarly as in Example 4.4 yields the complex ILC
structure

w11 = α(α − 1)(w2)
α + w1

2
, w12 = w2

2
, w22 = 0.

Then (z̃1, z̃2, w̃) = (exp( z12 ), z2 exp(
z1
2 ), cw), where c = 2

1
α−1 , transforms the above system

to

w̃11 = α(α − 1)(z̃1)
α−2(w̃2)

α, w̃12 = w̃22 = 0.

From [9, Table 1], this is equivalent (for α 
= 0, 1) to an N.6-2 model with μ = α and
κ = α − 2. The parameters (μ, κ) are related to Cartan basis parameters (a, b) by [9, Table
12]:

μ = 1

2
+ 3b

2
√
b2 + 4

, κ = −3

2
+ 3a

2
√
a2 + 4

. (4.15)

Hence,μ = α and κ = α−2 forces for α ∈ R\{−1, 0, 1, 2} the relation displayed in Table 7:

b2 = a2 = −(2α − 1)2

(α + 1)(α − 2)
∈ R\

(
[−4, 0) ∪

{
1

2

})
. (4.16)
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For u = xy + exp(x), we get ILC structure w11 = 1
2e

w2 , w12 = 1
2 , w22 = 0. Then

(z̃1, z̃2, w̃) = ( z12 , z2
2 , w

2 − z1z2
4 ) transforms it to the N.6-2 model in [9, Table 1] with

μ = κ = ∞, which is the same as b2 = a2 = −4 [9, Table 12]. Similarly, u = y exp(x)− x2
2

yields the system w11 = 1
2 (w1 + ln(w2) − 1), w12 = 1

2w2, w22 = 0. Then (z̃1, z̃2, w̃) =
(e

z1
2 , z2

2 exp( z12 ), w
2 + (z1)2

8 ) transforms this to the N.6-2 model with μ = 0, κ = −2, i.e.
b2 = a2 = 1

2 .
It remains to describe the tubular cases corresponding to b2 = a2 ∈ (−4, 0]. For β ∈ R,

consider u cos(x)+ y sin(x) = exp(βx). Replacing (x, y, u) by ( i x2 , i(y+u),−y+u)maps

this to ue−x/2 − yex/2 = eβi x/2, or u = yex +eαx with α = βi+1
2 . We get to (4.16) as above,

which yields b2 = a2 = − 4β2

β2+9
. This yields the classification on the third line from the end

of Table 7.

Example 4.10 In the D.6-2 case, consider the affine surface u = y2 + εxα for x > 0 and
α ∈ R\{0, 1, 2}. Following the procedure above, we get μ = α−2

α−1 , where μ is the parameter

appearing in [9, Table 1, D.6-2]. Since μ = 6(a−1)
3a−4 from [9, Table 12], we get a = 2

3 (
α+1
α

) ∈
R\{ 23 , 4

3 , 1}. From Table 6, we have τ = − (3a−2)(a−1)
9 = 2(α−2)

27α2 , and for ρ = ±1 the

anti-involution ϕ(ρ) for D.6-2 in Table 6 yields a definite structure if and only if ρτ > 0, i.e.
ρ(α − 2) > 0. On the other hand, we find that the 2nd fundamental form of u = y2 + εxα is
definite if and only if εα(α − 1) > 0. This forces ρ = ε for α ∈ (0, 1)∪ (2,∞) and ρ = −ε

for α ∈ (−∞, 0) ∪ (1, 2), i.e. ρ = ε sgn(α(α − 1)(α − 2)). In terms of a, this is the same
(after simplification) as ρ = ε sgn((3a − 2)(3a − 4)(a − 1)).

As in the above examples, we can consider other affine-homogeneous surfaces inR
3 listed

in [7]. According to [7], all of those with at least 3-dimensional affine symmetry algebra are

given by cylinders with homogeneous base, quadrics, or the Cayley surface u = xy − x3
3 . In

almost all cases, these give surfaces with degenerate 2nd fundamental form or lead to flat CR
structures. The only exceptions are the (pseudo-)spheres u2 + ε1x2 + ε2y2 = 1, where we
can take (ε1, ε2) ∈ {±(1, 1), (1,−1)}. These lead to complex ILC structures of type D.6-3
(with a2 = 9 and symmetry algebra so(3, C) � C

3) and their corresponding CR real forms.
In all other cases in [7], the affine symmetry dimension is precisely 2.

Remark 4.11 Note all surfaces in [7] give multiply-transitive tubular hypersurfaces, e.g.

• u = x(α ln x+ ln y): type I when α 
= −1, 0, 8; type II when α = 8; type Nwhen α = 0;
Levi-degenerate when α = −1.

• xu = y2 ± xα: type I when α 
= 0, 1, 2, 4; type D when α = 0, 4; Levi-degenerate when
α = 1, 2.

Recall from Table 6 that all the CR structures in our classification are of type N or D.

We conclude this section by showing that the dimensions of the affine symmetry subalge-
bras, i.e. dim(N (a)/a), listed in Table 2 are maximal among all possible tubular realizations
(a, ϕ). It remains to prove this for those cases in Table 2 with dim(N (a)/a) ≤ 1. See Tables 7
and 8 for models.

N.7-2.Here, s = sl(2, C)�(V2⊕V0), where Vk denotes the standard (k+1)-dimensional
irreducible sl(2, C)-module. (Here, V2 ⊕ V0 is an abelian ideal in the symmetry algebra.)
Then ϕ(+1) and ϕ(−1) (see Table 6) lead to CR structures with sl(2, R) � (V2 ⊕ V0) and
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su(2) � (V2 ⊕ V0) symmetry respectively.4 It suffices to consider the latter case. We will
show N (a) = a always.

Since a ⊂ s is self-centralizing, then a 
⊂ V2 ⊕ V0 or else c(a) ⊃ V2 ⊕ V0. The projection
of a on su(2) must be 1-dimensional. Consider x + v ∈ a, where 0 
= x ∈ su(2) and
v ∈ V2 ⊕ V0. From the centralizer of x + v, we get a = 〈x + v, v0, v1〉, where v0 spans V0
and 0 
= v1 ∈ V2 is in the kernel of x . Since x + v is semisimple and has 1-dimensional
kernels on su(2) and V2, then dim(N (a)) = 3.

D.7. When a 
= ± 3
4 , the symmetry algebra is s = sl(2, C) × sl(2, C) × C. All real

forms of s are determined by real forms of the semisimple part, namely sl(2, R) × sl(2, R),
sl(2, R)× su(2), su(2)× su(2), and sl(2, C)R. Any 3-dimensional abelian subalgebra a ⊂ s

is generated by the center and one element Tj from each copy of sl(2, C), and N (a) is
the intersection of the normalizers of Tj . The element Tj has a 2-dimensional normalizer
in the corresponding copy of sl(2, C) if it is nilpotent and 1-dimensional otherwise. Since
su(2) consists of semisimple elements, we immediately see that dim(N (a)) ≤ 5 for the
sl(2, R) × sl(2, R) and sl(2, C)R cases, dim(N (a)) ≤ 4 for the sl(2, R) × su(2) case, and
finally dim(N (a)) = 3 for the su(2) × su(2) case.

When a = ± 3
4 , s = sl(2, C) × r, where r has relations [S, X ] = X , [S, Y ] =

−Y , [X , Y ] = Z . Since c(a) = a, and r contains no 3-dimensional abelian subalgebra,
then a must be spanned by the central element Z , a non-central element R ∈ r, and some
T ∈ sl(2, C). The normalizer in r of R is at most 3-dimensional in r, and the normalizer in
sl(2, C) of T has dimension 2 if T is nilpotent and 1 if T is semisimple. Hence, if the real
form of s contains so(3) (namely, for ϕε1,1), then dim(N (a)) ≤ 4.

N.6-2. Tubular CR structures arise when b2 = a2 ∈ R. Using the parameter redundancy
(see Sect. 3), we can always assume that b = a. In the generic case, b2 = a2 ∈ R\{−4, 1

2 },
consider the basis of s from [9, Table 12]. This satisfies κ = μ − 2 and the commutator
relations in [9, Table 9]:

S1 S2 N1 N2 N3 N4

S1 · · (μ − 1)N1 μN2 μN3 (μ − 1)N4

S2 · (μ − 1)N1 (μ − 1)N2 μN3 μN4

with n = 〈N1, N2, N3, N4〉 an abelian ideal. From (4.15), we have μ = 1
2 + 3a

2
√
a2+4

∈
C\{0, 1}, and according to [9, Table 13] models parametrised byμ and 1−μ are equivalent.

To show dim(N (a)) ≤ 4 for any affine realization a ⊂ s, it suffices to show
dim(N (a) ∩ n) ≤ 2. First note that a 
⊂ n, since otherwise its centralizer would con-
tain n (4-dimensional). Therefore a must contain an element T = αS1 + βS2 + v, where
v ∈ n and (α, β) 
= (0, 0). Since a is abelian, then (AdT |N (a))

2 = 0. Since AdT |n is diag-
onalizable, then ker(AdT |n)2 = ker(AdT |n). Hence, N (a) ∩ n ⊂ ker(AdT |n). We want
dim(ker(AdT |n)) ≤ 2. The eigenvalues of AdT |n are

(α + β)(μ − 1), (α + β)μ − β, (α + β)μ, (α + β)μ − α, (4.17)

and dim(ker(AdT |n)) ≥ 3 would contradict (α, β) 
= (0, 0). Thus, dim(N (a) ∩ n) ≤ 2
follows.

4 We have abused notation here: V2 refers to the adjoint representation of sl(2, R) or su(2) respectively, and
V0 is the trivial 1-dimensional representation.
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The two remaining cases are a2 = b2 = −4 and a2 = b2 = 1
2 . The former admits an

affinely homogeneous tubular representation, while the latter has structure constants (see [9,
Table 12]):

S1 S2 N1 N2 N3 N4

S1 · N3 −N1 · · −N4

S2 · −N1 −N2 · ·
(Again, n = 〈N1, N2, N3, N4〉 is an abelian ideal.) The condition dim(ker(AdT |n)) ≤ 2
easily follows.

N.6-1 (a2 = 2). From [9, Table 9], we have abelian n = 〈N2, N3, N4, N5〉 and commu-
tators

S N1 N2 N3 N4 N5

S · N1 − N2 N2 2N3 3N4 2N5
N1 · N3 N4 · ·

As above, a 
⊂ n, and a contains T = αS + βN1 + v, where v ∈ n and (α, β) 
= (0, 0).
Since dim(a) = 3, then dim(a ∩ n) ≥ 1, and AdT |a∩n = 0. This forces α = 0. Hence, a
must be spanned by N1 + t2N2 + t3N3, N4, N5. Note N3 ∈ N (a), so dim(N (a)) ≥ 4. But
dim(N (a)) ≤ 4, since

[γ S + δN2, N1 + t2N2 + t3N3] = γ (N1 + (t2 − 1)N2 + 2t3N3) − δN3

≡ γ (−N2 + t3N3) − δN3 mod a,

indicates that γ S + δN2 ∈ N (a) only when γ = δ = 0.

5 Real forms of ILC D.6-3 models

5.1 Real form symmetry algebras

The ILC D.6-3 models [9, Table 7] admit a single essential parameter a2 ∈ C\{0}. In the
Cartan basis, the D.6-3 structure equations are:

e1 e2 e3 e4 e5 e6
e1 · a

2 e6 −e5 − 3
2e6 · − 3

2e1 − a
2 e4 −e1

e2 · · −e5 + 3
2e6 − 3

2e2 − a
2 e3 e2

e3 · − a
2 e6 + 3

2e3 + a
2 e2 e3

e4 · + 3
2e4 + a

2 e1 −e4
e5 · ·
e6 ·

(5.1)

When a2 = 9 (labelled D.6-3∞ in [9]), the symmetry algebra is s ∼= so(3, C) � C
3, the

model admits a tubular representation, and all CR real forms are given in Table 8. (The 2nd
fundamental form for u2 + ε1x2 + ε2y2 = 1 has definite signature if and only if ε1ε2 > 0, so
(ε1, ε2) = (1,−1) corresponds to ϕ1 since this yields an indefinite structure (Table 6). The
ϕ

(±1)
2 cases are then identified from (5.1) and the semisimple part of the symmetry algebra.)
All models with a2 ∈ C\{0, 9} are non-tubular with symmetry algebra s ∼= sl(2, C) ×

sl(2, C) ∼= so(4, C). Recall that the real forms of so(4, C) and their Killing form signatures
are
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Table 3 CR structures underlying ILC D.6-3 models with so(4, C)-symmetry

Anti-involution a2 range Real form of so(4, C) Levi-form type

ϕ1
0 < a2 < 9
a2 > 9

so(3, 1)
so(2, 2)

Indefinite

ϕ
(+1)
2

0 < a2 < 9
a2 > 9

so(4)
so(3, 1)

Definite

ϕ
(−1)
2

0 < a2 < 9
a2 > 9

so(2, 2)
so(3, 1)

Definite

ϕ3 a2 < 0 so∗(4) Indefinite

so(4) ∼= su(2) × su(2) : (0, 6);
so(3, 1) ∼= sl(2, C)R : (3, 3);

so(2, 2) ∼= sl(2, R) × sl(2, R) : (4, 2);
so∗(4) ∼= sl(2, R) × su(2) : (2, 4).

Using our list of the D.6-3 admissible anti-involutions ϕ (Table 6), we obtain a basis of the
real form sϕ of so(4, C), and classify sϕ from the signature of its Killing form (Table 3).
Note that these CR structures only arise when a2 ∈ R\{0, 9} (Theorem 4.8).

5.2 Cartan hypersurfaces

Let (·, ·) denote a non-degenerate symmetric bilinear form on C
4. The Lie group O(4, C)

preserves Q = {[z] : (z, z) = 0} ⊂ CP
3 and acts transitively on CP

3\Q. Define A =(
(z, z) (z, z̄)
(z, z̄) (z̄, z̄)

)
. The (complex) scaling z �→ λz induces A �→ L AL̄ , where L = diag(λ, λ̄).

On CP
3\Q, this scaling action has invariant α := (z,z̄)2

(z,z)(z̄,z̄) . We will fix (·, ·) that is non-

degenerate and R-valued on R
4 ⊂ C

4, so that (z̄, z̄) = (z, z). In this case, β := (z,z̄)
|(z,z)| ∈ R is

invariant under complex scalings, and α = β2. We refer to the real hypersurfaces of CP
3\Q

uniformly described by

(z, z̄) = β|(z, z)| (5.2)

as Cartan hypersurfaces. A precise list of inequivalent such structures is given in Table 4.
Restricting z = (z1, . . . , z4)� in (5.2) to the standard affine coordinate chart z1 = 1 on
CP

3 recovers Loboda’s models [11, Eqs. (2.8) and (2.9)], [13, eqns (6)&(7)], which are
generalizations of models found by Cartan [3, Eq. (10)]. In this subsection, we match these
models with their corresponding ILC structures and identify the associated anti-involutions.

Given z = (z1, . . . , z4)�, consider (z, z) = ε1(z1)2+· · ·+ε4(z4)2, where ε j = ±1. Then
so(4, C) can be identifiedwith theC-span of Z jk = ε j z j∂zk −εk zk∂z j , where 1 ≤ j < k ≤ 4.
Their R-span is identified with the real form of so(4, C) that preserves the restriction of (·, ·)
to R

4 ⊂ C
4. Let us classify real 5-dimensional orbits of each of O(4),O(3, 1),O(2, 2) on

CP
3\Q. (Here, we take O(3, 1) corresponding to ε1 = ε2 = ε3 = +1 and ε4 = −1, etc.)

Given [z] in such an orbit, v = Re(z) andw = Im(z) span a real 2-plane� in R
4 (otherwise

the orbit is only 3-dimensional). Since (c1 + c2i)(v + wi) = c1v − c2w + (c2v + c1w)i ,
then the new real and imaginary parts satisfy

(c1v − c2w, c2v + c1w) = c1c2((v, v) − (w,w)) + (c21 − c22)(v,w). (5.3)
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This quadratic in c1, c2 has discriminant ((v, v) − (w,w))2 + 4(v,w)2 ≥ 0. Thus, using
complex multiplication, we may assume that (v,w) = 0. Hence, 0 
= (z, z) = (v + wi, v +
wi) = (v, v) − (w,w) so that only real (c2 = 0) or purely imaginary (c1 = 0) rescalings
preserve this orthogonality.

Suppose that (·, ·)|� is non-degenerate. Applying each real orthogonal group and the
residual rescalings to the orthogonal pair {v,w}, we obtain the following normal forms for
[z] ∈ CP

3\Q:

(1) � positive-definite: z = (1, iy, 0, 0), where 0 < y < 1. Then β = 1+y2

1−y2
> 1.

(2) � indefinite: assuming signature (+ + +−) or (+ + −−), we have

• z = (1, 0, 0, iy), where 0 < y < 1 ⇒ β = 1−y2

1+y2
satisfies 0 < β < 1;

• z = (iy, 0, 0, 1), where 0 < y < 1 ⇒ β = − 1−y2

1+y2
satisfies −1 < β < 0.

The negative-definite case can be made positive-definite by absorbing a sign in (5.2) into β.
For a given orbit M with basepoint a normal form o = [z] above, the standard com-

plex structure J on CP
3 induces H = T M ∩ J (T M) and a CR structure. For each such

M , we determine a Cartan basis e1, . . . , e6 of so(4, C), i.e. so that the ILC D.6-3 struc-
ture equations are satisfied. (Each basis element will be a C-linear combination of Zi j .)
We begin by choosing a generator e6 for the (complex) isotropy k ⊂ so(4, C) so that
ad(e6) has eigenvalues (+1,−1,−1,+1) on (e + v)/k (which corresponds to H ). We then
choose a basis e1, . . . , e4 adapted to the ±i-eigenspaces for J , then rescale the basis so that
[e1, e2] = −[e3, e4] ∈ k, and finally choose e5 to satisfy the remaining structure equations.
We summarize the results below. In each case, with respect to the basis e1, . . . , e4 mod k, we

have J = diag

((
0 −y
1
y 0

)
,

(
0 −y
1
y 0

))
. We also define v1, v2 so that

{
+i eigenspace e/k = span{v1, v2}mod k,

−i eigenspace v/k = span{v1, v2}mod k.
(5.4)

(1) � positive-definite for O(4),O(3, 1),O(2, 2): o = [(1, iy, 0, 0)�], 0 < y < 1. Isotropy:
Z34.

Z13|o = ∂z3 , Z23|o = iy∂z3 , Z14|o = ∂z4 , Z24|o = iy∂z4 (contact subspace);
{
v1 := yZ13 + iZ23,

v2 := yZ14 + iZ24
a = 3(1 − y2)

1 + y2
⇒ 0 < a2 < 9, β > 1 .

• O(4)-case: ρ =
√

3
4(1+y2)

,

⎧
⎪⎨

⎪⎩

e1 = ρ(v1 − iv2), e2 = ρ(v1 + iv2),

e3 = ρ(v1 + iv2), e4 = ρ(v1 − iv2),

e5 = 3iy
1+y2

Z12, e6 = iZ34

• O(3, 1)-case: ρ =
√

3
4(1+y2)

,

⎧
⎪⎨

⎪⎩

e1 = ρ(v1 − v2), e2 = ρ(v1 + v2),

e3 = ρ(v1 + v2), e4 = ρ(v1 − v2),

e5 = 3iy
1+y2

Z12, e6 = Z34

• O(2, 2)-case: ρ =
√ −3

4(1+y2)
,

⎧
⎪⎨

⎪⎩

e1 = ρ(v1 + iv2), e2 = ρ(v1 − iv2),

e3 = ρ(v1 − iv2), e4 = ρ(v1 + iv2),

e5 = 3iy
1+y2

Z12, e6 = iZ34
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(2) � indefinite for O(3, 1),O(2, 2): o = [(1, 0, 0, iy)�], 0 < y < 1. Isotropy: Z23.

Z12|o = ∂z2 , Z24|o = iy∂z2 , Z13|o = ∂z3 , Z34|o = iy∂z3 (contact subspace);
{
v1 := yZ12 + iZ24,

v2 := yZ13 + iZ34
a = 3(1 + y2)

1 − y2
⇒ a2 > 9, 0 < β < 1

• O(3, 1)-case: ρ = i
√

3
4(1−y2)

,

⎧
⎪⎨

⎪⎩

e1 = ρ(v1 − iv2), e2 = ρ(v1 + iv2),

e3 = ρ(v1 + iv2), e4 = ρ(v1 − iv2),

e5 = 3iy
1−y2

Z14, e6 = iZ23

Anti-involution: ϕ(−1)
2 , since so(3, 1) = spanR{i(e1 + e3), e1 − e3, i(e2 + e4), e2 −

e4, ie5, ie6}.

• O(2, 2)-case: ρ =
√

3
4(y2−1)

,

⎧
⎪⎨

⎪⎩

e1 = ρ(v1 − v2), e2 = ρ(v1 + v2),

e3 = ρ(v1 + v2), e4 = ρ(v1 − v2),

e5 = 3iy
1−y2

Z14, e6 = Z23

(3) � indefinite for O(3, 1): o = [(iy, 0, 0, 1)�], 0 < y < 1. Isotropy: Z23.

Z24|o = ∂z2 , Z12|o = iy∂z2 , Z34|o = ∂z3 , Z13|o = iy∂z3 (contact subspace);
{
v1 := yZ24 + iZ12,

v2 := yZ34 + iZ13
a = 3(1 + y2)

1 − y2
⇒ a2 > 9, −1 < β < 0

• O(3, 1)-case: ρ =
√

3
4(1−y2)

,

⎧
⎪⎨

⎪⎩

e1 = ρ(v1 − iv2), e2 = ρ(v1 + iv2),

e3 = ρ(v1 + iv2), e4 = ρ(v1 − iv2),

e5 = 3iy
1−y2

Z14, e6 = iZ23

Anti-involution: ϕ
(+1)
2 , since so(3, 1) = spanR{e1 + e3, i(e1 − e3), e2 + e4, i(e2 −

e4), ie5, ie6}. By flipping the signature, we can write this as an O(1, 3) case with
0 < β < 1.

• O(2, 2)-case: Flipping the signature reduces this to the earlier O(2, 2) case.

A posteriori, we have a2 = 9
α

= 9
β2 , so all of Table 3 is covered except for the models

arising from ϕ3. The complete list of inequivalent Cartan hypersurfaces (5.2) is given in
Table 4. This classification is consistent with that of Loboda [11, Eqs. (2.8) and (2.9)], [13,
Eqs. (6) and (7)].

5.3 Quaternionic models

It remains to describe the CR structures associated with the anti-involution ϕ3, which are
all indefinite type and admit so∗(4) symmetry. To our knowledge, these models are new.
While so∗(4) is customarily defined via a skew-Hermitian form η on H

2, where H is the
quaternions, we will instead focus on the special isomorphism so∗(4) ∼= sl(2, R)× su(2). In
doing so, we will work with a particularly simple representation of this Lie algebra and the
choice of η will arise naturally from this. In contrast, if we were to fix a choice of η first, the
resulting realization of so∗(4) could be quite complicated.

Recall that H is the associative R-algebra with R-basis 1, i, j,k, standard relations ij =
k, i2 = j2 = k2 = −1, conjugation satisfying q1q2 = q2 q1, and norm |q|2 = qq = qq . Let
SU(2) denote the unit quaternions, which act on H on the left. Let ŜL(2, R) denote 2×2 real
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Table 4 Inequivalent Cartan hypersurfaces {[z] : (z, z) = β|(z, z)|} ⊂ CP
3\Q, where (z, z) = ε1z

2
1 + · · · +

ε4z
2
4 with ε j = ±1. These complexify to the ILC D.6-3 model with a2 = 9

β2

Real form Signature of (·, ·)|
R4 β-range Levi-form type Anti-involution

O(4) + + ++ β > 1 Definite ϕ
(+1)
2

O(3,1) + + +− 0 < β < 1 Definite ϕ
(−1)
2

β > 1 Indefinite ϕ1

O(1,3) +− − − 0 < β < 1 Definite ϕ
(+1)
2

O(2,2) + + −− 0 < β < 1 Indefinite ϕ1

β > 1 Definite ϕ
(−1)
2

matrices with determinant±1, which act onR
2. The group S = ŜL(2, R)×SU(2) acts on the

external tensor product R
2 ⊗R H, and we identify this naturally with H

2. This identification

is S-equivariant if for q =
(
q1
q2

)
∈ H

2, we declare that A ∈ ŜL(2, R) and q0 ∈ SU(2) each

act by multiplication on the left, with the latter identified with diag(q0, q0). (These actions
commute.) While H

2 is naturally a right H-vector space, it will be more important for us
to consider it as a C-vector space by restricting this right action to C := {1s + it : s, t ∈
R} ⊂ H. (This in particular distinguishes the imaginary unit i.) We will be interested in the
5-dimensional S-orbits in CP

3 ∼= PC(H2).
There exists an S-invariant skew-Hermitian form onH

2 (unique up to a real scaling) given
by η(q, w) = q1w2 − q2w1, and this is valued in Im(H). Let η(q, q) = ib + jμ, for b ∈ R

and μ ∈ C. Given λ ∈ C, η(qλ, qλ) = λ̄η(q, q)λ, hence (b, μ) �→ (b|λ|2, μλ2). Writing

q =
(
z1 + jz2
z3 + jz4

)
for z j ∈ C,

η(q, q) = z1z3 + z2z4 + j(z1z4 − z2z3). (5.5)

Note that Q# = {[q] : Re(iη(q, q)) = 0} is the flat (indefinite) CR structure Im(z1z3 +
z2z4) = 0, so we exclude b = 0. We will also exclude the μ = 0 case (see below), since this
yields only 4-dimensional S-orbits. When bμ 
= 0, we have the complex scaling invariant
γ = b

|μk| ∈ R\{0}. Since b = −Re(iη(q, q)) and μ = −jη(q, q) − bk, the S-orbits in

CP
3\Q# satisfy

Re(iη(q, q)) = −γ |jη(q, q)k + Re(iη(q, q))|. (5.6)

Equivalently, Im(z1z3 + z2z4) = γ |iRe(z1z3 + z2z4) − (z1z4 − z2z3)k|, which further
simplifies to

Im(z1z3 + z2z4) = γ
√

|Re(z1z3 + z2z4)|2 + |z1z4 − z2z3|2. (5.7)

Let us find representatives for the S-orbits on CP
3\Q#. Given 0 
= q ∈ H

2, we may
swap q1 and q2 if necessary to assume q1 
= 0, and then use SU(2) and a real rescaling

to assume q1 = 1. Using

(
1 0

−Re(q2) 1

)
∈ SL(2, R), we may assume Re(q2) = 0. Using

eiφ ∈ SU(2) and the right C-action by e−iφ , we can replace q2 �→ eiφq2e−iφ , so choose φ

to normalize q2 = is + jt , where s, t ∈ R with t ≤ 0. Finally, use diag(λ, 1
λ
) ∈ SL(2, R)

and right multiplication by 1
λ
to normalize q2 to be of unit length. Thus, we have q2 = iekθ ,
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for some fixed 0 ≤ θ < π . For q =
(

1
iekθ

)
, we have η(q, q) = 2iekθ . When θ = π

2

or 0, we have b = 0 or μ = 0, so we exclude these. The (S-equivariant) conjugation

arising from the identification H
2 = C

4, i.e. ũ + jv = ū + jv̄ (where u, v ∈ C
2), maps(

1
iekθ

)
�→

(
1

iek(π−θ)

)
. Thus, we can restrict to γ = cot(θ) > 0, or equivalently require

θ ∈ (0, π
2 ). Hence, we can restrict to 0 < θ < π

2 , which is in 1-1 correspondence with
γ = cot θ ∈ R

+.

The elements i, j,k span su(2), and let H =
(
1 0
0 −1

)
,X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
span

sl(2, R). Consider the S-orbit M through [q] ∈ CP
3\Q#, where q =

(
1

iekθ

)
for 0 <

θ < π
2 . Then [q] has 1-dimensional isotropy k spanned by T = −iekθ + X − Y. (Note

k = spanR{i,X − Y} when θ = 0.) The complex structure J on CP
3 is induced from right

multiplication by i on H
2. Defining

w1 := k, w2 := j − 2 sin(θ)Y, w3 := H, w4 := i + 2 cos(θ)Y, (5.8)

the elements w1 · q, . . . ,w4 · q mod [q] span the contact subspace H[q] ⊂ T[q]M . In this

basis, J = diag(

(
0 −1
1 0

)
,

(
0 −1
1 0

)
). In spanC{w1, . . . ,w4, T}, define

v1 := i sin(θ)(w1 + iw2) − i(cos(θ) − 1)(w3 + iw4) − (cos(θ) − 1)T, (5.9)

v2 := i sin(θ)(w1 + iw2) − i(cos(θ) + 1)(w3 + iw4) + (cos(θ) + 1)T. (5.10)

Herewe have distinguished the scalar i from theLie algebra element i. The−i-eigenspace v/k
for J is spanned by {v1, v2}mod T, while the+i-eigenspace e/k is spanned by {v1, v2}mod T.
(We caution that this conjugation fixes each of w1, . . . ,w4, T and conjugates the scalars. It
is distinct from the conjugation on H, and that associated with H

2 = C
4.) The ILC D.6-3

structure equations are satisfied if we take

ρ =
√
3

4

√
1 + sec(θ),

⎧
⎪⎨

⎪⎩

e1 = 3(1+cos(θ))
16ρ cos(θ) sin(θ)

v1, e2 = iρ
1+cos(θ)

v2,

e3 = ρ
sin(θ)

v1, e4 = 3i
16ρ cos(θ)

v2
e5 = 3

4 i sec(θ)(iekθ + X − Y), e6 = − i
2T

, a = 3i tan θ.

(5.11)

In particular, a2 = − 9
γ 2 < 0 classifies the corresponding ILC D.6-3 structure.

6 Hypersurfaces of Winkelmann type

Generalizing (1.1), we say that a real hypersurface in C
3 is of Winkelmann type if in some

holomorphic coordinate system (z1, z2, w), it is given by

Im(w + z̄1z2) = F(z1, z̄1), (6.1)

where F is an arbitrary real-valued analytic function. These all admit the symmetries

N1 = z1∂z2 , N2 = ∂z2 + z1∂w, N3 = i∂z2 − i z1∂w, N4 = ∂w.
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Table 5 CR structures underlying ILC N.6-2 models

Model ILC N.6-2 classification CR symmetries aside from N1, N2, N3, N4

Im(w + z̄1z2) = (z1)
α(z̄1)

ᾱ

(α ∈ C\{−1, 0, 1, 2})
b̄2 = a2 = −(2α−1)2

(α+1)(α−2)
∈ C\{−4, 1

2 }
z1∂z1 + (α + ᾱ − 1)z2∂z2 + (α + ᾱ)w∂w,

i z1∂z1 + i(α − ᾱ + 1)z2∂z2 + i(α − ᾱ)w∂w

Im(w + z̄1z2) = exp(z1 + z̄1) b2 = a2 = −4
i∂z1 + i z2∂w,

∂z1 + 2z2∂z2 + (2w − z2)∂w

Im(w + z̄1z2) = ln(z1) ln(z̄1) b2 = a2 = 1
2

z1∂z1 − z2∂z2 + 2i ln(z1)∂w,

i z1∂z1 + i z2∂z2 + 2 ln(z1)∂w

They span an abelian Lie algebra that induces a (holomorphic) foliation of C
3 by 2-

dimensional holomorphic hypersurfaces z1 = const outside of the singular set z1 = 0.
Complexifying (6.1), we get the following complex hypersurfaces in C

3 × C̄
3:

w = b − a1z2 + z1a2 + 2i F(z1, a1). (6.2)

Regardingw = w(z1, z2), we obtainw1 := ∂w
∂z1

= a2+2i Fz1(z1, a1) andw2 := ∂w
∂z2

= −a1.
Differentiate with respect to z1 and z2 once more and eliminate the parameters (a1, a2, b).
Making the variable change z2 �→ −z2, we arrive at the PDE system

w11 = 2i Fz1z1(z1, w2), w12 = w22 = 0. (6.3)

The harmonic curvature [9, (3.3)] is of type N if Fz1z1w2w2 
= 0. Let us consider the specific
Winkelmann type hypersurfaces given in Table 5.

Writing out (6.3) for F(z1, z̄1) = (z1)α(z̄1)ᾱ , we obtain

w11 = 2iα(α − 1)(z1)
α−2(w2)

ᾱ, w12 = w22 = 0. (6.4)

Using a constant rescaling of z2, and relabelling, we can bring (6.4) into the same form as
that listed in [9, Table 1] for the N.6-2 models with μ = ᾱ and κ = α − 2. The F(z1, z̄1) =
exp(z1) exp(z̄1) and F(z1, z̄1) = ln(z1) ln(z̄1) cases are handled similarly. The corresponding
ILC N.6-2 models have μ = κ = ∞ for the former and (μ, κ) = (0,−2) for the latter, c.f.
[9, Table 1].

As discussed in Sect. 3, the N.6-2 models are described using (a, b) ∈ C
2, with (a2, b2)

being essential parameters. Using (4.15) with μ = ᾱ and κ = α − 2, we find that for
α ∈ C \ {−1, 0, 1, 2}:

b̄2 = a2 = −(2α − 1)2

(α + 1)(α − 2)
∈ C \

{
−4,

1

2

}
.

(The α = −1 and α = 2 cases lead to the ILC N.8 model.) The b2 = a2 ∈ {−4, 1
2 } cases

were described in Example 4.9. From Sect. 4, the b2 = a2 ∈ R cases are tubular (see Table 7
for models).

Proposition 6.1 The hypersurfaces of Winkelmann type given in Table 5 are models for all
real forms of the complex ILCN.6-2 structures. Their (6-dimensional) CR symmetry algebras
are never transitive outside of these hypersurfaces.
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Proof From Table 6, b2 = ā2 ∈ C are the parameter values that yield underlying CR
structures, and in each case there is a unique structure. Thus, Table 5 gives a complete
classification as claimed.

For the second claim, let us fix a basepoint o ∈ C
3 and suppose that z1|o = c+ di , where

c, d ∈ R. Then N1−cN2−dN3+ (c2+d2)N4 vanishes at o. Thus, these symmetry algebras
have at most 5-dimensional orbits at all points in C

3. 	


7 Transitivity of the symmetry algebra

In this section, we prove Theorem 1.3. According to [14, Cor.6.36], Sym(M) is transitive on
an open subset of C

3 if and only if Sym(Mc) is transitive on an open subset of C
3 × C̄

3.

Proposition 7.1 Suppose M ⊂ C
3 is locally transitive, and let (s, k; e, v) be an algebraic

model of the ILC structure (E, V ) on Mc. Then Sym(Mc) is transitive on a non-empty open
subset of C

3 × C̄
3 if and only if for some T ∈ Int(s), we have:

e + T (v) = s. (7.1)

Proof Assume that s = Sym(Mc) is transitive on a non-empty open subset ofC
3×C̄

3 and fix
a point (z, a) in this subset. Then the projection of s on C

3 is transitive on an open subset of
C
3 containing z ∈ C

3. The isotropy subalgebra of this action at z is conjugate to v by means
of some inner automorphism T1 ∈ Int(s). Similarly, the projection of s to C̄

3 is transitive at
a ∈ C̄

3 with the isotropy subalgebra equal to T2(e) for some T2 ∈ Int(s).
Note that s is transitive at (z, a) if and only if the projection of T1(v) to C̄

3 is transitive
at a ∈ C

3, or, similarly, if the projection of T2(e) to C
3 is transitive at z ∈ C

3. Both these
conditions are equivalent to the equality T1(v) + T2(e) = s. Applying T−1

2 to both sides of
this equality we get e + T (v) = s, where T = T−1

2 T1. 	

Corollary 7.2 The symmetry algebra s = Sym(Mc) is transitive on a non-empty open subset
of C

3 × C̄
3 if and only if the set of ε ∈ C satisfying:

e + exp(εX)(v) = s

is non-empty for any X ∈ s not contained in e + v.

Proof Fix X ∈ s\(e+v), and decompose s into a direct sumof linear subspaces V1⊕CX⊕V2,
where V1 ⊂ e and V2 ⊂ v. It is well-known that the exponential map:

exp : V1 × C × V2 �→ Int(s), (X1, ε, X2) �→ exp(X1) exp(εX) exp(X2)

is locally biholomorphic in a neighborhood of 0. Taking T = exp(X1) exp(εX) exp(X2) in
(7.1) and multiplying both sides by exp(−X1) we get:

exp(−X1)(e) + exp(εX) exp(X2)(v) = s

But by construction exp(−X1)(e) = e and exp(X2)(v) = v. 	

Corollary 7.3 If s has a non-trivial center, then s is not transitive at any point of C

3 × C̄
3.

Proof Let Z be any central element in s. Since the subalgebra k is effective, then Z /∈ k.
Recall that Levi non-degeneracy of M ⊂ C

3 implies that the bilinear form:

�2(e + v)/k → s/(e + v), (X + k) ∧ (Y + k) �→ [X , Y ] + (e + v)
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is non-degenerate. Hence, it follows that Z does not lie in e + v. But it is obvious that
exp(εZ)(v) = v for any ε ∈ C, and s is not transitive according to Corollary 7.2. 	


This proposition implies that the local transitivity of Sym(Mc) on C
3 × C̄

3, and hence
the local transitivity of Sym(M) on C

3, is a property of the algebraic model (s, k; e, v) itself
and does not depend on the particular realization of this model in local coordinates.

Transitivity off the hypersurface is well-known in the maximally symmetric and Winkel-
mann hypersurface cases [23]. Consider all remaining cases. For N.7-2, D.6-1, and D.7, s
has non-trivial center, so these are ruled out by Corollary 7.3. (See also Example 4.4 where
it is computed explicitly as a Lie algebra of vector fields on C

3 × C̄
3.)

The remaining cases have 6-dimensional symmetry, so it suffices to exhibit a relation
amongst the symmetry vector fields. For N.6-1, tubular realizations are given in Table 7 and

share the symmetries N1 = i∂z2 , N2 = i∂w , N3 = ∂z2 + z1∂w, and N4 = i z1∂z2 + i
z21
2 ∂w.

Letting z1 = a+bi , we have aN1+ a2+b2
2 N2−bN3−N4 = 0. TheN.6-2 caseswere similarly

ruled out in Proposition 6.1. The D.6-2 realizations (see Table 8) share the symmetries
N1 = i∂z2 , N2 = i∂w , N3 = ∂z2 + 2z2∂w, and N4 = i z2∂z2 + i z22∂w . Letting z2 = c + di ,
we have cN1 + (c2 + d2)N2 − dN3 − N4 = 0. For D.6-3 (a2 = 9), the symmetries of the
tubular models in Table 8 have an obvious dependency. Finally, for D.6-3 (a2 
= 9), see § 5
where the orbits of Sym(M) are described explicitly.
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Appendix A: Representative admissible anti-involutions

In Table 6, we classify all representative admissible anti-involutions (see Sect. 3) for all
non-flat 5-dimensional multiply-transitive complex ILC structures. Each anti-involution is
expressed in the same basis used in [9, Tables 6–8].

There are ILC parameter redundancies resulting from certain basis changes [9, Table 13]:

• N.6-1, D.7, and D.6-3: a �→ −a.
• N.6-2: a �→ −a and b �→ −b are independent redundancies.
• D.6-2: none.

These have no effect on anti-involutions except in the D.7 case: (ϕ
(ε1,ε2)
1 , ϕ2) �→

(ϕ
(ε2,ε1)
1 , ϕ2).
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Table 6 Representative admissible anti-involutions

Model Representative anti-involution Parameter conditions Levi form
type

N.8 ϕ = diag

⎛

⎜
⎝

⎡

⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎦ ,−1,−1,

[
0 1
1 0

]
⎞

⎟
⎠ – Indefinite

N.7-2 ϕ(ε) = diag

⎛

⎜
⎝

⎡

⎢
⎣

0 0 0 ε

0 0 ε 0
0 ε 0 0
ε 0 0 0

⎤

⎥
⎦ ,−1, −1,−1

⎞

⎟
⎠ ε = ±1 Indefinite

N.6-1 ϕ = diag

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

0 0 0 τ

0 0 τ 0
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Appendix B: Tubular hypersurfaces

In Tables 7 and 8, we give the complete (local) classification of (non-flat) homogeneous
tubular hypersurfaces in C

3 with non-degenerate Levi form, organized according to Petrov
type. The third column classification is given in terms of our ILC classification and the anti-
involutions presented in Table 6. (No anti-involution is specified if there is a unique one.)
We let ε = ±1 here, and write x = Re(z1), y = Re(z2), and u = Re(w). CR parameter
redundancies are indicated, e.g. α ∼ −α.

By Theorem 4.8, the structures excluded from this list are D.6-3 (a2 ∈ R\{0, 9}) and
N.6-2 (b2 = a2 ∈ C\R). These are discussed in Sects. 5 and 6 respectively.

Remark B.1 For u = y exp(x) + exp(αx) in the N.6-2 case, α = 0, 1 lead to the flat model,
while α = −1, 2 give alternative descriptions of the N.8 model.

Remark B.2 In the first three D.7 cases, α = −1 yields the flat model. This is also true in the
D.6-2 case when α = 0, 1, 2.

Appendix C: Loboda’s models

In Table 9, we give a dictionary between Loboda’s classifications and our results. The first two
series of examples describe all non-degenerate hypersurfaces with 7-dimensional symmetry
algebra and indefinite [11] or definite [12] Levi form. The last seven rows correspond to
hypersurfaces with 6-dimensional symmetry algebra and positive-definite Levi form found
in [13].5 All equations here use the notation z j = x j + iy j and w = u + iv.

Loboda’s models are not in the tubular form (4.2), but we find the corresponding complex
ILC structures as in Sect. 2.1 (by replacing barred variables with parameters), see for instance
Example 2.2.We then proceed similarly as in the examples in Sect. 4 to identify these models
in our classification.

5 As noted in the Introduction, a D.6-1 real form is missing from Loboda’s list.

123



B. Doubrov et al.

Ta
bl
e
7

R
ea
la
ffi
ne

su
rf
ac
es

an
d
sy
m
m
et
ri
es

of
co
rr
es
po
nd
in
g
tu
bu
la
r
C
R
st
ru
ct
ur
es
:t
yp
e
N
ca
se
s

R
ea
la
ffi
ne

su
rf
ac
e
F

(x
,
y,
u
)
=

0
A
ffi
ne

ho
m
.?

C
la
ss
ifi
ca
tio

n
C
R
sy
m
s
of

F
(R

e(
z 1

),
R
e(
z 2

),
R
e(

w
))

=
0
be
yo

nd
i∂
z 1

,
i∂
z 2

,
i∂

w

u
=

x
y

+
x4

�
N
.8

∂
z 2

+
z 1

∂
w

,

iz
1
∂
z 2

+
i(z

1
)2 2

∂
w

,

z 1
∂
z 1

+
3z

2
∂
z 2

+
4w

∂
w

,

∂
z 1

−
6(
z 1

)2
∂
z 2

+
(z
2

−
2(
z 1

)3
)∂

w
,

iz
1
∂
z 1

+
i(
z 2

−
2(
z 1

)3
)∂
z 2

+
i(
z 1
z 2

−
(z
1
)4 2

)∂
w

u
=

x
y

+
x
ln

(x
)

�
N
.7
-2

sl
(2

,
R

)
�

(V
2

⊕
V
0
)

ϕ
(+

1)

∂
z 2

+
z 1

∂
w

,

iz
1
∂
z 2

+
i(z

1
)2 2

∂
w

,

z 1
∂
z 1

−
∂
z 2

+
w

∂
w

,

i(z
1
)2 2

∂
z 1

+
i(

w
−

z 1
)∂
z 2

+
iw

z 1
∂
w

u
=

X
y

+
X
ln

(
X

),

X
=
ex
p(
2x

)
+

1
×

N
.7
-2

su
(2

)
�

(V
2

⊕
V
0
)

ϕ
(−

1)

co
sh

(z
1
)∂
z 1

−
(
1 2
ex
p(

−z
1
)w

+
ex
p(
z 1

))
∂
z 2

+
w
si
nh

(z
1
)∂

w
,

ex
p(

−z
1
)∂
z 2

+
2
co
sh

(z
1
)∂

w
,

i( ex
p(

−z
1
)∂
z 2

−
2
si
nh

(z
1
)∂

w

) ,

is
in
h(
z 1

)∂
z 1

+
i(

1 2
ex
p(

−z
1
)w

−
ex
p(
z 1

))
∂
z 2

+
iw

co
sh

(z
1
)∂

w

u
=

x
y

+
xα

(α
∈R

\{0
,
1,
2,

3,
4})

�
N
.6
-1

a2
=

1−
α

α
−4

∈R
\{−

1,
−

1 4
,
0,

1 2
,
2}

∂
z 2

+
z 1

∂
w

,

iz
1
∂
z 2

+
i(z

1
)2 2

∂
w

,

z 1
∂
z 1

+
(α

−
1)
z 2

∂
z 2

+
α
w

∂
w

u
=

x
y

+
ln

(x
)

�
N
.6
-1

a2
=

−
1 4

∂
z 2

+
z 1

∂
w

,

iz
1
∂
z 2

+
i(z

1
)2 2

∂
w

,

z 1
∂
z 1

−
z 2

∂
z 2

+
∂
w

u
=

x
y

+
x2

ln
(x

)
�

N
.6
-1

a2
=

1 2

∂
z 2

+
z 1

∂
w

,

iz
1
∂
z 2

+
i(z

1
)2 2

∂
w

,

z 1
∂
z 1

+
(z
2

−
z 1

)∂
z 2

+
2w

∂
w

123



Homogeneous Levi non-degenerate hypersurfaces inC
3

Ta
bl
e
7

co
nt
in
ue
d

R
ea
la
ffi
ne

su
rf
ac
e
F

(x
,
y,
u
)
=

0
A
ffi
ne

ho
m
.?

C
la
ss
ifi
ca
tio

n
C
R
sy
m
s
of

F
(R

e(
z 1

),
R
e(
z 2

),
R
e(

w
))

=
0
be
yo

nd
i∂
z 1

,
i∂
z 2

,
i∂

w

u
=

x
y

+
x3

ln
(x

)
×

N
.6
-1

a2
=

2

∂
z 2

+
z 1

∂
w

,

iz
1
∂
z 2

+
i(z

1
)2 2

∂
w

,

z 1
∂
z 1

+
(2
z 2

−
3 2
(z
1
)2

)∂
z 2

+
(3

w
−

1 2
(z
1
)3

)∂
w

u
=

y
ex
p(
x)

+
ex
p(

α
x)

(α
∈R

\{−
1,
0,

1,
2};

α
∼

1
−

α
)

×
N
.6
-2

b2
=

a2
=

−(
2α

−1
)2

(α
+1

)(
α
−2

)

∈R
\([

−4
,
0)

∪{
1 2
})

∂
z 1

+
(α

−
1)
z 2

∂
z 2

+
α
w

∂
w

,

ex
p(

1 2
z 1

)∂
w

+
ex
p(

−
1 2
z 1

)∂
z 2

,

ie
xp

(
1 2
z 1

)∂
w

−
ie
xp

(−
1 2
z 1

)∂
z 2

u
co
s(
x)

+
y
si
n(
x)

=
ex
p(

β
x)

(β
∈R

;β
∼

−β
)

×
N
.6
-2

b2
=

a2
=

−4
β
2

β
2
+9

∈(
−4

,
0]

∂
z 1

−
(β

z 2
+

w
)∂
z 2

+
(z
2

−
β
w

)∂
w

,

si
n(
z 1

)∂
z 2

−
co
s(
z 1

)∂
w

,

−i
co
s(
z 1

)∂
z 2

−
is
in

(z
1
)∂

w

u
=

x
y

+
ex
p(
x)

�
N
.6
-2

b2
=

a2
=

−4
∂
z 2

+
z 1

∂
w

,

iz
1
∂
z 2

+
i(z

1
)2 2

∂
w

,

∂
z 1

+
z 2

∂
z 2

+
(w

+
z 2

)∂
w

u
=

y
ex
p(
x)

−
x2 2

×
N
.6
-2

b2
=

a2
=

1 2

∂
z 1

−
z 2

∂
z 2

−
z 1

∂
w

,

ex
p(

1 2
z 1

)∂
w

+
ex
p(

−
1 2
z 1

)∂
z 2

,

ie
xp

(
1 2
z 1

)∂
w

−
ie
xp

(−
1 2
z 1

)∂
z 2

123



B. Doubrov et al.

Ta
bl
e
8

R
ea
la
ffi
ne

su
rf
ac
es

an
d
sy
m
m
et
ri
es

of
co
rr
es
po
nd
in
g
tu
bu
la
r
C
R
st
ru
ct
ur
es
:t
yp
e
D
ca
se
s

R
ea
la
ffi
ne

su
rf
ac
e
F

(x
,
y,
u
)
=

0
A
ffi
ne

ho
m
.?

C
la
ss
ifi
ca
tio

n
C
R
sy
m
s
of

F
(R

e(
z 1

),
R
e(
z 2

),
R
e(

w
))

=
0
be
yo

nd
i∂
z 1

,
i∂
z 2

,
i∂

w

u
=

α
ln

(x
)
+

ln
(y

)

(α
∈R

\{−
1,
0};

α
∼

1 α
)

�
D
.7

sl
(2

,
R

)
×

sl
(2

,
R

)
×

R

a
=

3 4
(
α
−1

α
+1

)
∈R

\{±
3 4
}

ϕ
(−

1,
−1

)
1

,
|a|

<
3 4
;

ϕ
(1

,−
1)

1
,
a

>
3 4
;

ϕ
(−

1,
1)

1
,
a

<
−

3 4

z 1
∂
z 1

+
α
∂
w

,

z 2
∂
z 2

+
∂
w

,

i(
z 1

)2
∂
z 1

+
2i

α
z 1

∂
w

,

i(
z 2

)2
∂
z 2

+
2i
z 2

∂
w

u
=

α
ln

(
X

)
+

ln
(y

),

X
=

ex
p(
2x

)
+

1
(α

∈R
\{−

1,
0};

α
∼

1 α
)

×
D
.7

sl
(2

,
R

)
×

su
(2

)
×

R

a
=

3 4
(
α
−1

α
+1

)
∈R

\{±
3 4
}

ϕ
(1

,1
)

1
,
a

<
−

3 4
;

ϕ
(1

,−
1)

1
,
|a|

<
3 4
;

ϕ
(−

1,
−1

)
1

,
a

>
3 4

z 2
∂
z 2

+
∂
w

,

i(
z 2

)2
∂
z 2

+
2i
z 2

∂
w

,

co
sh

(z
1
)∂
z 1

+
α
ex
p(
z 1

)∂
w

,

is
in
h(
z 1

)∂
z 1

+
iα

ex
p(
z 1

)∂
w

u
=

α
ln

(
X

)
+

ln
(Y

),

X
=

ex
p(
2x

)
+

1,
Y

=
ex
p(
2
y)

+
1

(α
∈R

\{−
1,
0};

α
∼

1 α
)

×
D
.7

su
(2

)
×

su
(2

)
×

R

a
=

3 4
(
α
−1

α
+1

)
∈R

\{±
3 4
}

ϕ
(1

,1
)

1
,
|a|

<
3 4
;

ϕ
(−

1,
1)

1
,
a

>
3 4
;

ϕ
(1

,−
1)

1
,
a

<
−

3 4

co
sh

(z
1
)∂
z 1

+
α
ex
p(
z 1

)∂
w

,

co
sh

(z
2
)∂
z 2

+
ex
p(
z 2

)∂
w

,

is
in
h(
z 1

)∂
z 1

+
iα

ex
p(
z 1

)∂
w

,

is
in
h(
z 2

)∂
z 2

+
ie
xp

(z
2
)∂

w

u
=

α
ar
g(
ix

+
y)

+
ln

(x
2

+
y2

)

(α
∈R

;α
∼

−α
)

�
D
.7

sl
(2

,
C

) R
×

R

ϕ
2
,
a

=
3 8
iα

z 1
∂
z 1

+
z 2

∂
z 2

+
∂
w

,

z 2
∂
z 1

−
z 1

∂
z 2

+
α
∂
w

,

z2 1
−z

2 2
2

∂
z 1

+
z 1
z 2

∂
z 2

+
(z
1

−
α
z 2

)∂
w

,

z 1
z 2

∂
z 1

−
z2 1

−z
2 2

2
∂
z 2

+
(α

z 1
+

z 2
)∂

w

123



Homogeneous Levi non-degenerate hypersurfaces inC
3

Ta
bl
e
8

co
nt
in
ue
d

R
ea
la
ffi
ne

su
rf
ac
e
F

(x
,
y,
u
)
=

0
A
ffi
ne

ho
m
.?

C
la
ss
ifi
ca
tio

n
C
R
sy
m
s
of

F
(R

e(
z 1

),
R
e(
z 2

),
R
e(

w
))

=
0
be
yo

nd
i∂
z 1

,
i∂
z 2

,
i∂

w

u
=

y2
+

ε
ln

(x
)

�
D
.7

Se
m
is
im

pl
e
pa
rt
=
sl

(2
,
R

)

ϕ
(ε

,−
1)

,
a

=
3 4

∂
z 2

+
2z

2
∂
w

,

z 1
∂
z 1

+
ε
∂
w

,

iz
2
∂
z 2

+
i(
z 2

)2
∂
w

,

i(
z 1

)2
∂
z 1

+
2i

ε
z 1

∂
w

u
=

y2
+

ε
ln

(
X

),

X
=

ex
p(
2x

)
+

1
×

D
.7

Se
m
is
im

pl
e
pa
rt
=
su

(2
)

ϕ
(ε

,1
)
,
a

=
3 4

∂
z 2

+
2z

2
∂
w

,

iz
2
∂
z 2

+
i(
z 2

)2
∂
w

,

co
sh

(z
1
)∂
z 1

+
ε
ex
p(
z 1

)∂
w

,

is
in
h(
z 1

)∂
z 1

+
iε

ex
p(
z 1

)∂
w

xu
=

y2
−

ε
x
ln

(x
)

�
D
.6
.1

ϕ
(ε

)

z 1
∂
z 2

+
2z

2
∂
w

,

2z
1
∂
z 1

+
z 2

∂
z 2

−
2ε

∂
w

,

i(
z 1

)2
∂
z 1

+
iz
1
z 2

∂
z 2

+
i(

−2
ε
z 1

+
(z
2
)2

)∂
w

u
=

y2
+

ε
xα

(x
>

0)
(α

∈R
\{0

,
1,
2})

�
D
.6
-2

a
=

2 3
(
α
+1 α

)
∈R

\{
2 3
,
4 3
,
1}

ϕ
(ρ

)
,
ρ

=
ε
sg
n[(

a
−

2 3
)(
a

−
4 3
)(
a

−
1)

]

∂
z 2

+
2z

2
∂
w

,

iz
2
∂
z 2

+
i(
z 2

)2
∂
w

,

z 1
∂
z 1

+
α
z 2 2

∂
z 2

+
α
w

∂
w

u
=

y2
+

ε
x
ln

(x
)

�
D
.6
-2

ϕ
(−

ε
)
,
a

=
4 3

∂
z 2

+
2z

2
∂
w

,

iz
2
∂
z 2

+
i(
z 2

)2
∂
w

,

z 1
∂
z 1

+
1 2
z 2

∂
z 2

+
(ε
z 1

+
w

)∂
w

u
2

+
ε 1
x2

+
ε 2
y2

=
1

(ε
1
,
ε 2

)
∈{

±(
1,
1)

,
(1

,
−1

)}
�

D
.6
-3

a2
=

9
so

(1
,
2)

�
R
3
,

ϕ
1
,

(ε
1
,
ε 2

)
=

(+
1,

−1
);

so
(3

)
�

R
3
,

ϕ
(+

1)
2

,
(ε
1
,
ε 2

)
=

(+
1,

+1
);

so
(1

,
2)

�
R
3
,

ϕ
(−

1)
2

,
(ε
1
,
ε 2

)
=

(−
1,

−1
)

ε 1
z 2

∂
z 1

−
ε 2
z 1

∂
z 2

,

w
∂
z 1

−
ε 1
z 1

∂
w

,

w
∂
z 2

−
ε 2
z 2

∂
w

123



B. Doubrov et al.

Ta
bl
e
9

C
or
re
sp
on

de
nc
e
w
ith

L
ob

od
a’
s
m
od

el
s

N
um

be
r

Su
rf
ac
e

Pa
ra
m
et
er

O
ur

cl
as
si
fic
at
io
n

7D
In
de
f
(2
)

v
=

(z
1
z̄ 2

+
z 2
z̄ 1

)
+

(1
+

ε
|z 1

|2 )
ln

(1
+

ε
|z 1

|2 )
ε

=
±1

N
.7
-2
,ϕ

(−
ε
)

7D
In
de
f
(3
)

v
=

ei
θ
ln

(1
+

z 1
z̄ 2

)
+

e−
iθ

ln
(1

+
z 2
z̄ 1

)
θ

∈(
−

π 2
,

π 2
)

D
.7
,ϕ

2
,
a

=
3i 4

ta
n(

θ
)

7D
In
de
f
(4
)

v
=

ln
(1

−
|z 1

|2 )
−

b
ln

(1
−

|z 2
|2 )

b
∈(

0,
1)

D
.7
,ϕ

(1
,−

1)
1

,
a

=
3 4
1+

b
1−

b

7D
In
de
f
(5
)

v
=

ln
(1

+
|z 1

|2 )
+

b
ln

(1
−

|z 2
|2 )

b
∈(

0,
∞

)
D
.7
,ϕ

(1
,−

1)
1

,
a

=
3 4
1−

b
1+

b

7D
In
de
f
(6
)

v
=

ln
(1

+
|z 1

|2 )
−

b
ln

(1
+

|z 2
|2 )

b
∈(

0,
1)

D
.7
,ϕ

(−
1,
1)

1
,
a

=
3 4
1+

b
1−

b

7D
In
de
f
(7
)

v
=

|z 2
|2

+
ε
ln

(1
−

ε
|z 1

|2 )
ε

=
±1

D
.7
,ϕ

(ε
,−

ε
)

1
,
a

=
3 4

7D
D
ef

(0
.1
)

v
=

ln
(1

+
|z 1

|2 )
+

b
ln

(1
+

|z 2
|2 )

b
∈(

0,
1]

D
.7
,ϕ

(1
,1

)
1

,
a

=
3 4
1−

b
1+

b

7D
D
ef

(0
.2
)

v
=

ln
(1

+
|z 1

|2 )
−

b
ln

(1
−

|z 2
|2 )

b
∈(

0,
1)

D
.7
,ϕ

(−
1,

−1
)

1
,
a

=
3 4
1+

b
1−

b

7D
D
ef

(0
.2
)

v
=

ln
(1

+
|z 1

|2 )
−

b
ln

(1
−

|z 2
|2 )

b
∈(

1,
∞

)
D
.7
,ϕ

(1
,1

)
1

,
a

=
3 4
1+

b
1−

b

7D
D
ef

(0
.3
)

v
=

ln
(1

−
|z 1

|2 )
+

b
ln

(1
−

|z 2
|2 )

b
∈(

0,
1]

D
.7
,ϕ

(−
1,

−1
)

1
,
a

=
3 4
1−

b
1+

b

7D
D
ef

(0
.4
)

v
=

|z 2
|2

+
ε
ln

(1
+

ε
|z 1

|2 )
ε

=
±1

D
.7
,ϕ

(ε
,ε

)
1

,
a

=
3 4

6D
D
ef

(1
)

v
=

x2 2
+

(1
+

x 1
)α

−
1

α
∈(

−∞
,
0)

∪(
1,
2)

D
.6
-2
,ϕ

(−
1)

,
a

=
2 3

α
+1 α

6D
D
ef

(1
)

v
=

x2 2
+

(1
+

x 1
)α

−
1

α
∈(

2,
∞

)
D
.6
-2
,ϕ

(1
) ,

a
=

2 3
α
+1 α

6D
D
ef

(2
)

v
=

x2 2
−

(1
+

x 1
)α

+
1

α
∈(

0,
1)

D
.6
-2
,ϕ

(−
1)

,
a

=
2 3

α
+1 α

6D
D
ef

(3
)

v
=

x2 2
+

(1
+

x 1
)
ln

(1
+

x 1
)

−
D
.6
-2
,ϕ

(−
1)

,
a

=
4 3

6D
D
ef

(4
),
(5
)

ε
(x

2 1
+

x2 2
)
+

u
2

=
1

ε
=

±1
D
.6
-3

,
a2

=
9,

ϕ
(ε

)
2

6D
D
ef

(6
)

1
+

ε
(|z

1
|2

+
|z 2

|2 )
+

|w
|2

=
c|1

+
z2 1

+
z2 2

+
w
2
|

c
>

1,
ε

=
±1

D
.6
-3

,
a2

=
9 c2

<
9,

ϕ
(ε

)
2

6D
D
ef

(7
)

1
+

ε
(|z

1
|2

+
|z 2

|2 )
−

|w
|2

=
c|1

+
z2 1

+
z2 2

−
w
2
|

0
<

c
<

1,
ε

=
±1

D
.6
-3

,
a2

=
9 c2

>
9,

ϕ
(−

ε
)

2

123



Homogeneous Levi non-degenerate hypersurfaces inC
3

Appendix D: Homogeneous 3-dimensional CR structures

It is well-known that all Levi non-degenerate real hypersurfaces in C
2 admit at most an

8-dimensional symmetry algebra. Moreover, the submaximal symmetry dimension is 3 and
É. Cartan gave a complete local classification of all such (homogeneous) models [4, bottom
of p.70]. Here we outline how this classification can be alternatively derived from the well-
known classification of (complex) 2nd order ODE that are homogeneous (in fact, simply-
transitive, so the isotropy subalgebra is everywhere trivial) under point symmetries [15, Table
7].6 The list is:

(A): u′′ = 3(u′)2
2u + u3

(B): u′′ = 6uu′ − 4u3 + c(u′ − u2)3/2, where c ∈ C\{0}; c ∼ −c
(C): u′′ = (u′)γ , where γ ∈ C\{0, 1, 2, 3}; γ ∼ 3 − γ

(D): u′′ = e−u′

All parameters that yield equivalent models are indicated, e.g. γ ∼ 3− γ . Set p = u′ below.

Label Point symmetries Lie algebra structure

(A)
e1 = ∂x , e2 = x∂x − u∂u − 2p∂p,
e3 = x2∂x − 2xu∂u − (4xp + 2u)∂p

[e1, e2] = e1
[e1, e3] = 2e2
[e2, e3] = e3

(B)
e1 = ∂x , e2 = x∂x − u∂u − 2p∂p,
e3 = x2∂x − (2xu + 1)∂u − (4xp + 2u)∂p + c

2 e2 − e1

[e1, e2] = e1
[e1, e3] = c

2 e1 + 2e2
[e2, e3] = 2e1 − c

2 e2 + e3

(C)
e1 = (γ − 1)x∂x + (γ − 2)u∂u − p∂p
e2 = ∂x , e3 = ∂u ,

[e1, e2] = −(γ − 1)e2
[e1, e3] = −(γ − 2)e3
[e2, e3] = 0

(D)
e1 = ∂x , e2 = ∂u ,

e3 = x∂x + (x + u)∂u + ∂p

[e1, e2] = 0
[e1, e3] = e1 + e2
[e2, e3] = e2

For each model, pick a general point o, identify the (1-dimensional) subalgebras e and v

of the point symmetry algebra s corresponding to the line fields E = span{∂x + p∂u + f ∂p}
and V = span{∂p} at o, and then classify all anti-involutions of s that swap e and v. (This is
tedious, but straightforward.) All representative such admissible anti-involutions are given
in Table 10.

6 The ODE u′′ = 3(u′)2
2u + cu3 as listed in [15, Table 7] is flat when c = 0 (so 8 symmetries) and all c 
= 0

are equivalent via scalings, so we normalized c = 1. Similar normalizations were done in the other cases.
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Table 10 Anti-involutions associated to (non-flat) homogeneous 2nd order ODE

Label General point e v Anti-involutions swapping e and v

(A) x = 0, u = 1,
p = 0

e1 − 1
2 e3 e3 None

(B) x = 0, u = 0,
p = 1

e3 e2 ϕ =
⎛

⎝
−ε 0 0

ε
4σ (cσ − 2) 0 ε

σ
ε
4 (cσ − 2) σ 0

⎞

⎠ , ε =
c̄
c = σ

σ̄
= ±1,

σ 2 = 4
16+c2

(C) x = y = 0,
p = 1

e2 + e3 − e1 e1

γ ∈ R\{0, 1, 2, 3} : ϕ1 =
⎛

⎝
1 0 0

−1 −1 0
−1 0 −1

⎞

⎠

Re(γ ) = 3
2 : ϕ2 =

⎛

⎝
−1 0 0
1 0 1
1 1 0

⎞

⎠

(D) x = y = p = 0 e1 + e3 e3 ϕ =
⎛

⎝
−1 0 1
0 −1 0
0 0 1

⎞

⎠

It is easy to recognize tubular CR structures from Table 10. These arise from (C) and
(D), since each admits a unique abelian subalgebra a (namely, span{e2, e3} and span{e1, e2}
respectively) that is complementary to both e andv, and satisfies the properties given inSect. 4.
(None exists for (B) since s ∼= sl(2, C).) The listed anti-involutions preserve a in these cases,
and since dim(N (a)/a) = 1, the base curve for the tubular CR hypersurface model is affine
homogeneous. The classification (up to affine equivalence) of locally homogeneous curves
in the affine plane consists of lines, quadrics, and the curves given below. (See Example 1 in
[8], particularly p.32 there.)

Real affine curve F(x, u) = 0 Classification CR syms of F(Re(z),Re(w)) = 0
beyond i∂z , i∂w

u = xa

(a ∈ R\{0, 1
2 , 1, 2}; a ∼ 1

a )
(C), γ = a−2

a−1 , ϕ1 z∂z + aw∂w

u = ln(x) flat model 8 CR symmetries

u = x ln(x) (D) z∂z + (z + w)∂w

x2 + u2 = exp(b arg(x + iu))

(b ∈ R; b ∼ −b)
(C), γ = 3

2 ± b
4 i, ϕ2 (bz − 2w)∂z + (bw + 2z)∂w

Upon complexification (Sect. 2), u = ln(x) leads to uxx = −(ux )2, which is equivalent
to ũxx = 0 via (x̃, ũ) = (x, eu), and hence this leads to the flat CR structure with 8 CR
symmetries. On the other hand, u = xa and u = x ln(x) lead to the CRmodels underlying (C)
(withγ = a−2

a−1 ∈ R\{0, 1, 2, 3} and anti-involutionϕ1) and (D). This is not so straightforward
for x2 + u2 = exp(b arg(x + iu)), so we instead work abstractly and align the Lie algebra
data. Letting
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L1 = (bz − 2w)∂z + (bw + 2z)∂w, L2 = i∂z, L3 = i∂w,

we have

[L1, L2] = −bL2 − 2L3, [L1, L3] = 2L2 − bL3, [L2, L3] = 0.

On the other hand, the anti-involution ϕ2 from case (C) has real fixed point set spanned by

E1 = 4i(e1 − e2), E2 = e2 + e3, E3 = i(e2 − e3).

Since we must have γ = 3
2 + ti , then

[E1, E2] = 4t E2 − 2E3, [E1, E3] = 2E2 + 4t E3, [E2, E3] = 0.

To align the structures, take t = − b
4 . Clearly (x, u) �→ (x,−u) induces the parameter

redundancy b �→ −b, so γ = 3
2 ± b

4 i . Hence, all CR structures underlying (C) and (D) have
been accounted for.

All ODE models for (B) admit s = sl(2, C) ∼= so(3, C) symmetry. We show that all
underlying CR structures are exhausted by the Cartan hypersurfaces (z, z̄) = β|(z, z)| as in
(5.2). Since the classified anti-automorphisms for (B) are very complicated, we proceed in a
different manner. Note that s has two real forms: sl(2, R) ∼= so(2, 1) and su(2) ∼= so(3). For
each, a left-invariant CR structure is uniquely determined by a two-dimensional subspace
C with [C,C] 
⊂ C , and a complex structure J : C → C . The subspace C is uniquely
determined by its Killing perp C⊥. In su(2), [C,C] 
⊂ C always. In sl(2, R), [C,C] ⊂ C
if and only if C⊥ is spanned by a nilpotent element, and C is conjugate to the subalgebra of
upper-triangular matrices in sl(2, R). (Exclude this last case.)

Identifying J with a 2×2 realmatrix satisfying J 2 = −1, we have J 2−tr(J )J+det(J ) =
0. If tr(J ) 
= 0, then J is a real scalar matrix, which cannot satisfy J 2 = −1. Thus, tr(J ) = 0

and det(J ) = 1. Hence, J = (
a b
c −a

)
with a2 + bc = −1, i.e. c = − a2+1

b .
Let us classify all J : C → C up to automorphisms stabilizingC . For example, in sl(2, R)

consider the case of C⊥ spanned by h = (
1 0
0 −1

)
. Then C has basis e1 = (

0 1−1 0

)
, e2 = (

0 1
1 0

)
,

and Adexp(th) is represented in this basis by T =
(
cosh(2t) sinh(2t)
sinh(2t) cosh(2t)

)
. With J as above, we find

that T JT−1 is anti-diagonal iff tanh(4t) = 2a
b−c = 2ab

a2+b2+1
. This is valued in (−1, 1), so

such t exists. Thus, J can always be brought to the form
(

0 −α
1/α 0

)
. Note that C is also stable

under Ad
(
0 1
1 0

)
. It induces the transformation e1 �→ −e1, e2 �→ e2 and thus the parameter

equivalence α ∼ −α. Performing similar computations for other subspaces C , we get the
following list of all algebraic models for case (B).

Real form
of sl(2, C)

Basis of C⊥ Basis of the contact plane C Complex structure Parameter
equivalence

su(2)

(
i 0
0 −i

)
e1 =

(
0 1

−1 0

)
, e2 =

(
0 i
i 0

) (
0 −α

1/α 0

)
α ∼ −α, 1/α

sl(2, R)

(
0 1

−1 0

)
e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

) (
0 −α

1/α 0

)
α ∼ −α, 1/α

sl(2, R)

(
1 0
0 −1

)
e1 =

(
0 1

−1 0

)
, e2 =

(
0 1
1 0

) (
0 −α

1/α 0

)
α ∼ −α

The first of these cases is treated in detail in [2]. The two others are their non-compact
analogues.
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To construct the local models, we proceed as in Sect. 5.2 and just give a summary here.
Given z = (z1, z2, z3)�, consider (z, z) = ∑3

j=1 ε j (z j )2, where ε j = ±1. Then so(3, C)

is identified with the C-span of Z jk = ε j z j∂zk − εk zk∂z j , where 1 ≤ j < k ≤ 3. Let
Q = {[z] : (z, z) = 0}. Given [z] in a real 3-dimensional orbit of O(3) or O(2, 1) in CP

2\Q,
v = Re(z) and w = Im(z) span a real 2-plane � in R

3. Using complex multiplication, we
can assume (v,w) = 0. Taking (·, ·)|� non-degenerate, the following are normal forms for
[z] ∈ CP

2\Q (which slightly differ from those given in Sect. 5.2):

(1) � is positive-definite and the signature of the scalar product (z, z) is (+++) or (++−):

z = (1, iy, 0), where 0 < y < 1. Then β = 1+y2

1−y2
> 1.

(2) � is indefinite: assuming signature (+ + −), we have: z = (1, 0, iy), where 0 < y 
= 1.

Then β = 1−y2

1+y2
satisfies 0 < |β| < 1.

Matching these orbits with the above algebraic models is straightforward. Fix the affine chart
(1, z2, z3) in CP

2. For case (1), the orbit of O(3) or O(2, 1) has 3-dimensional real tangent
space in C

2 ∼= T[z]CP
2 given by 〈(1− y2)∂z2 , ∂z3 , iy∂z3〉. (The scaling z1∂z1 + z2∂z2 + z3∂z3

on C
3 induces a trivial action on CP

2, so in the given chart, we can make the substitutions
∂z1 = −z2∂z2 − z3∂z3 into Z jk .) ThenC = 〈∂z3 , iy∂z3〉, and multiplication by i is represented

by
(

0 −y
1/y 0

)
in this basis. The range 0 < y < 1 matches with the first two cases in the table

above (namely, set y = α). Case (2) is handled similarly.
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