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Abstract
We consider the notion of a (q,m)-polymatroid, due to Shiromoto, and the more general
notion of (q,m)-demi-polymatroid, and show how generalized weights can be defined for
them. Further, we establish a duality for these weights analogous to Wei duality for general-
ized Hamming weights of linear codes. The corresponding results of Ravagnani for Delsarte
rank metric codes, and Martínez-Peñas and Matsumoto for relative generalized rank weights
are derived as a consequence.
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1 Introduction

Rank metric codes are an important variant of linear (block) codes, and they have gained
prominence in the past few decades, partly due to myriad applications in network coding and
cryptography, as also due to their intrinsic interest. Perhaps a more widely studied notion of
rank metric codes is the one that goes back to Gabidulin’s work [8] in 1985. A Gabidulin
rank metric code, or simply, a Gabidulin code, of length n and dimension k may be defined
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as a k-dimensional subspace of the n-dimensional vector space Fn
qm over the extension field

Fqm of Fq . The analogue of Hamming distance here is the notion of rank distance defined as
follows. Fix a Fq -basis of Fqm so as to associate to any vector in F

n
qm an m × n matrix with

entries in Fq . Now, the rank distance between any x, y ∈ F
n
qm is defined as the rank of the

difference of the matrices corresponding to x and y. The notion of a Delsarte rankmetric code
is in fact, older (it goes back to the work [6] of Delsarte in 1978) and more general. Indeed,
a Delsarte rank metric code, or simply, a Delsarte code of dimension K is a K -dimensional
subspace of the Fq -linear space of all m × n matrices with entries in Fq . As before, the rank
distance between twom×nmatrices is the rank of their difference. It is clear that a Gabidulin
code of dimension k is a Delsarte code of dimension mk. But a Delsarte code need not be a
Gabidulin code, even if its dimension is divisible by m.

Generalized Hamming weights (GHW), also known as higher weights, of a linear code
C are a natural and useful generalization of the basic notion of minimum distance of C .
These were studied by Wei [20] who showed that the GHW d1, . . . , dk of a linear code C
of dimension k satisfy nice properties such as monotonicity (d1 < · · · < dk) and more
importantly, duality, whereby the GHW of C and its dual C⊥ determine each other. It was
not immediately clear how an analogue of GHW for rank metric codes could be defined. But
then three definitions for the generalized rank weights (GRW) of a Gabidulin rank metric
code were proposed by three sets of authors working in different parts of the globe, viz.,
Oggier and Sboui [16], Kurihara et al. [13], and Jurrius and Pellikaan [11]. Thankfully, all
three seemingly disparate definitions turn out to be equivalent (cf. [1,11]). Moreover, an
analogue of Wei duality holds for the GRW’s; see, e.g., Ducoat [7]. For the more general
class of Delsarte rank metric codes, Ravagnani [18] proposed an analogous definition of
generalized weights (GW) and showed that in the special case of Gabidulin codes, the km
GW’s of the corresponding Delsarte code are the same as the k GRW’s of the Gabidulin code
(in accordance with the previous definitions), each repeatedm times. Further, Ravagnani [18]
established a duality for the GW’s of Delsarte rank metric codes. The notion of dual Delsarte
codes is facilitated by the trace product, which associates to a pair (A, B) of m × n matrices
with entries in Fq the element Tr(ABt ) of Fq . It is shown by Ravagnani [17] that for suitable
choices of Fq -bases of Fqm , the notions of the (standard) dual of a Gabidulin code and of the
(trace product) dual of the corresponding Delsarte code are compatible.

In the classical case of linear codes, Britz et al. [4] showed thatWei duality for generalized
Hamming weights of linear codes is, in fact, a special case of Wei duality for matroids and
also established Wei-type duality theorems for demi-matroids. It is natural, therefore, to ask
if the notion of generalized (rank) weights for (Gabidulin or Delsarte) rank metric codes can
be studied in the more general context of something like matroids, and if an analogue of
Wei duality can be proved in this set-up. This is the question that we address in this paper.
The notion that turns out to be relevant for us is that of (q,m)-polymatroids, which has
recently been introduced by Shiromoto [19]. We consider, in fact, a little more general class
of (q,m)-demi-polymatroids, define generalized weights for them, and establish a duality in
this context. We show that these can be applied to flags, or chains, of Delsarte rank metric
codes. In particular, by considering pairs, i.e., flags of length 2 of Delsarte codes, we recover
several results of Martínez-Peñas and Matsumoto [15] on the so called relative generalized
weights of Delsarte codes. Also, considering flags of length 1, we can deduce the results of
Ravagnani [18] for the GW’s of Delsarte codes and their duals. We remark that q-analogues
of matroids, called q-matroids and q-polymatroids, have been considered by Jurrius and
Pellikaan [12] and by Gorla et al. [10], respectively. However, as far as we can see, Wei-type
duality for their generalized weights is not shown in these papers.
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This paper is organized as follows. In Sect. 2 below, we review the definition of a (q,m)-
demi-polymatroid and outline some basic notions and results. Generalized weights of a
(q,m)-demi-polymatroid are defined andWei-type duality for them is established in Sect. 3.
These results are then applied to Delsarte rank metric codes as well as to their flags in Sect. 4.
As a corollary, one obtains analogues ofWei duality for generalizedweights aswell as relative
generalized weights of Delsarte rank metric codes.

After this work was submitted and put on the arXiv, we learned of the work of Britz et
al. [5] where results similar to those in Sect. 3 of this paper are proved, albeit using different
methods. A nice comparison of the two approaches is given in the postscript of [5] and we
refer the interested reader to it.

2 Demi-polymatroids: definitions and basic facts

nonnegative integers, m, n denote positive integers, q a prime power, and Fq the finite field
with q elements. We let E be the vector space Fn

q over Fq and let

�(E) = the set of all Fq -linear subspaces ofE .

For X ∈ �(E), we denote by X⊥ the dual of X (with respect to the standard “dot product”),
i.e., X⊥ = {x ∈ E : x · y = 0 for all y ∈ X}. It is elementary and well-known that
X⊥ ∈ �(E) with dim X⊥ = n − dim X and (X⊥)⊥ = X , although X ∩ X⊥ need not be
equal to {0}, but of course E⊥ = {0}.

The first part of the following key notion is due to Shiromoto [19, Definition 2].

Definition 1 A (q,m)-polymatroid is an ordered pair P = (E, ρ) consisting of the vector
space E = F

n
q and a function ρ : �(E) → N0 satisfying (R1)–(R3) below:

(R1) 0 ≤ ρ(X) ≤ m dim X for all X ∈ �(E);
(R2) ρ(X) ≤ ρ(Y ) for all X , Y ∈ �(E) with X ⊆ Y ;
(R3) ρ(X + Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ), for all X , Y ∈ �(E).

In case the ordered pair P = (E, ρ) satisfies (R1), (R2), and instead of (R3),

(R4) ρ∗ : �(E) → N0 defined by ρ∗(X) = ρ(X⊥)+m dim X −ρ(E) for X ∈ �(E), also
satisfies (R1) and (R2)

then P is called a (q,m)-demi-polymatroid.

If P = (E, ρ) is as above, then the nonnegative integer ρ(E) is called the rank of P
and is denoted by rankP . The function ρ may be called the rank function of P . We have the
following “extension” of [19, Proposition 5].

Proposition 2 Let P = (E, ρ), where E = F
n
q and ρ : �(E) → N0 is any map. Also let ρ∗

be as in (R4) above. Then:

(i) If P is a (q,m)-demi-polymatroid, then so is the ordered pair (E, ρ∗).
(ii) If P is a (q,m)-polymatroid, then so is the ordered pair (E, ρ∗).

Proof (i) It suffices to observe that ρ({0}) = 0 and (ρ∗)∗ = ρ.
(ii) This is [19, Proposition 5].
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An immediate consequence of part (ii) of Proposition 2 is that a (q,m)-polymatroid is a
(q,m)-demi-polymatroid. If P = (E, ρ) and ρ∗ are as in Proposition 2(i), then (E, ρ∗) is
denoted by P∗ and called the dual of P . Note that

rankP∗ = ρ∗(E) = ρ({0}) + m dim E − ρ(E) = mn − rankP and (P∗)∗ = P.

Remark 3 As Shiromoto [19] remarks, a (q,m)-polymatroid is a q-analogue of k-
polymatroids, and a (q, 1)-matroid is a q-analogue of matroids. An alternative approach
to (q,m)-polymatroids is provided by Gorla, Jurrius, Lopez, and Ravagnani [10, Definition
4.1.].

Definition 4 Let P = (E, ρ) be a (q,m)-demi-polymatroid. The nullity function of P is the
map ν : �(E) → N0 defined by

ν(X) = m dim X − ρ(X) for X ∈ �(E).

The conullity function of P is the map ν∗ : �(E) → N0 defined by

ν∗(X) = m dim X − ρ∗(X) = ρ(E) − ρ(X⊥) for X ∈ �(E).

Proposition 5 Let P = (E, ρ) be a (q,m)-demi-polymatroid and let X , Y ∈ �(E) with
X ⊆ Y . Then:

(a) ν(X) ≤ ν(Y ) and ν∗(X) ≤ ν∗(Y );
(b) ν(Y ) − ν(X) ≤ m(dim Y − dim X) and ν∗(Y ) − ν∗(X) ≤ m(dim Y − dim X).

Proof (a) Since ρ∗ satisfies (R2), thanks to (R4), and since Y⊥ ⊆ X⊥, we see that ρ∗(Y⊥) ≤
ρ∗(X⊥), which shows that ρ(Y ) + m dim Y⊥ ≤ ρ(X) + m dim X⊥. Subtracting from
mn = m dim E , we find ν(X) ≤ ν(Y ). Similarly, ν∗(X) ≤ ν∗(Y ).

(b) The desired upper bound for ν(Y ) − ν(X) follows from noting that by (R2),

ν(Y ) − ν(X) = m (dim Y − dim X) + ρ(X) − ρ(Y ) ≤ m (dim Y − dim X) .

As in (a), the inequality for ν∗ follows from using P∗ in place of P . 	

Proposition 6 Let P = (E, ρ) be a (q,m)-demi-polymatroid. If ν and ν∗ denote, as usual,
the nullity and conullity functions of P, then both (E, ν) and (E, ν∗) are (q,m)-demi-
polymatroids, which are, in fact, duals of each other.

Proof Recall that

ν(X) = m dim X − ρ(X) and ν∗(X) = m dim X − ρ∗(X) = ρ(E) − ρ(X⊥)

for any X ∈ �(E). Note, in particular, that ν({0}) = 0 = ν∗({0}), and so Proposition 5
implies that both ν and ν∗ satisfy (R1) and (R2). The dual of ν in the sense of (R4) is the
function that associates to every X ∈ �(E) the integer

ν(X⊥) + m dim X − ν(E) = (
m dim X⊥ − ρ(X⊥)

) + m dim X − (
mn − ρ(E)

)
,

which is easily seen to be ν∗(X). Thus the two possible meanings of ν∗ coincide. Hence, by
Proposition 5, (E, ν) satisfies (R4) as well. Furthermore, it is readily seen that (ν∗)∗ = ν,
and so Proposition 5 also shows that (E, ν∗) satisfies (R4). Thus, both (E, ν) and (E, ν∗)
are (q,m)-demi-polymatroids dual to each other. 	
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We remark that even if P = (E, ρ) is a (q,m)-polymatroid, the associated pairs (E, ν) and
(E, ν∗) need not be (q,m)-polymatroids. This can be seen, for example, using the following
important class of (q,m)-polymatroids.

Example 7 Let r be an integer satisfying 0 ≤ r ≤ n. The uniform (q,m)-polymatroid U (r , n)

is defined as (E, ρ), where E = F
n
q , and ρ(X) = m dim X for all X ∈ �(E)with dim X ≤ r ,

while ρ(X) = mr for all X ∈ �(E) with dim X ≥ r . It is easy to see that U (r , n) is indeed
a (q,m)-polymatroid and also that U (r , n)∗ = U (n − r , n).

Remark 8 Unlike in the case of usual (demi-)matroids, there is no “discrete intermediate value
theorem” saying that every integer value between 0 and ρ(E) is attained as the conullity of
some subspace of E . Consider the uniform (q,m)-polymatroid U (1, 2). Then

ρ(X) =
{
0 if X = {0},
m if X �= {0} and ν(X) = ν∗(X) =

{
0 if X �= E,

m if X = E .

Thus, a “discrete intermediate value theorem” does not hold for ν as well as for ν∗ if m > 1.
Furthermore, if X , Y are distinct 1-dimensional subspaces of E = F

2
q , then X + Y = E and

X ∩ Y = {0}, and hence

ν(X + Y ) + ν(X ∩ Y ) = m �≤ 0 = ν(X) + ν(Y ).

It follows that neither (E, ν) nor (E, ν∗) is a (q,m)-polymatroid.

This remark proves in particular:

Proposition 9 There are (q,m)-demi-polymatroids that are not (q,m)-polymatroids.

3 Wei duality of (q,m)-demi-polymatroids

The following definition for the generalized weights of a (q,m)-demi-polymatroid appears
to be natural.

Definition 10 Let P = (E, ρ) be a (q,m)-demi-polymatroid and let K = rankP . For
r = 1, . . . , K , the r th generalized weight of P is defined by

dr (P) = min{dim X : X ∈ �(E) with ν∗(X) ≥ r}.
We will now establish some basic properties of these generalized weights.

Proposition 11 Let P = (E, ρ) be a (q,m)-demi-polymatroid. Then

1 ≤ dr (P) ≤ dr+1(P) ≤ n for 1 ≤ r < rankP.

Proof Since ν∗({0}) = 0, it is clear that 1 ≤ dr (P) ≤ n for 1 ≤ r ≤ rankP . Next, if
1 ≤ r < rankP and if dr+1(P) = dim Y for some Y ∈ �(E) with ν∗(Y ) ≥ r + 1, then
ν∗(Y ) ≥ r , and so by definition, dr (P) ≤ dim Y = dr+1(P). 	


Unlike the generalized Hamming weights of linear codes, strict monotonicity may not
hold for generalized weights of (q,m)-demi-polymatroids, i.e., we may not have dr (P) <

dr+1(P). For example, if K = rankP > n, then Proposition 11 implies that dr (P) =
dr+1(P) for some r < K . However, we will show that dr (P) < ds(P) for 1 ≤ r < s ≤ K ,
provided s − r ≥ m. First, we need some preliminary results.
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Lemma 12 Let P = (E, ρ) be a (q,m)-demi-polymatroid and let K = rankP. For x =
0, 1, . . . , n, let �x (E) := {X ∈ �(E) : dim X = x}, and let us define

h(x) := max{ν(X) : X ∈ �x (E)} and h∗(x) := max{ν∗(X) : X ∈ �x (E)}.
Now fix a positive integer x ≤ n. Then h∗(x − 1) ≤ h∗(x) and for 1 ≤ r ≤ K,

x = dr (P) ⇐⇒ h∗(x − 1) < r ≤ h∗(x) (1)

In particular, x is a generalized weight of P if and only if h∗(x − 1) < h∗(x). Also,
h(x − 1) ≤ h(x) and if P∗ is the dual of P, then for 1 ≤ s ≤ rankP∗ = mn − K,

x = ds(P
∗) ⇐⇒ h(x − 1) < s ≤ h(x) (2)

In particular, x is a generalized weight of P∗ if and only if h(x − 1) < h(x).

Proof Let x ∈ N0 with 1 ≤ x ≤ n. If X ∈ �(E) is such that dim X = x − 1 and
h∗(x − 1) = ν∗(X), then by taking Y ∈ �(E) with dim Y = x and X ⊂ Y , we see
from Proposition 5(a) that ν∗(X) ≤ ν∗(Y ) ≤ h∗(x). Thus, h∗(x − 1) ≤ h∗(x). Similarly,
h(x − 1) ≤ h(x). Now let r ∈ N0 with 1 ≤ r ≤ K .

First, suppose x = dr (P). Then x = dim Y for some Y ∈ �(E) with ν∗(Y ) ≥ r . This
implies that h∗(x) ≥ r . Moreover, since x = dr (P), we see that ν∗(X) < r for every
X ∈ �(E) with dim X = x − 1. This implies that h∗(x − 1) < r .

Conversely, suppose h∗(x − 1) < r ≤ h∗(x). Choose Y ∈ �(E) with dim Y = x such
that h∗(x) = ν∗(Y ). Then ν∗(Y ) = h∗(x) ≥ r and so dr (P) ≤ x . Suppose, if possible,
dr (P) ≤ x − 1. Then there is Z ∈ �(E) with dim Z = dr (P) ≤ x − 1 and ν∗(Z) ≥ r .
Enlarge Z to a subspace X of E such that dim X = x − 1. In view of Proposition 5(a), we
obtain h∗(x − 1) ≥ ν∗(X) ≥ ν∗(Z) ≥ r , which contradicts the assumption h∗(x − 1) < r .
This shows that x = dr (P). Thus (1) is proved.

The equivalence (2) follows by applying (1) to P∗ in place of P . 	

Here is a nice relation between the functions h and h∗ defined in Lemma 12.

Lemma 13 Let P = (E, ρ) be a (q,m)-demi-polymatroid and let K = rankP. Then

h∗(x) = h(n − x) − m(n − x) + K for x = 0, 1, . . . , n. (3)

Consequently,

h(n + 1 − x) − h(n − x) = m − (
h∗(x) − h∗(x − 1)

)
for x = 1, . . . , n. (4)

In particular, 0 ≤ h∗(x) − h∗(x − 1) ≤ m for x = 1, . . . , n.

Proof Given any X ∈ �(E), note that ν(X⊥) = m dim X⊥ − ρ(X⊥), and hence ν(X⊥) +
m dim X = mn − ρ(X⊥) = mn − (ρ(E) − ν∗(X)). It follows that

ν∗(X) = ν(X⊥) − m(n − dim X) + K .

Taking maximum as X varies over elements of �(E) with dim X = x , we obtain (3). Now
(3) implies that h∗(x) − h∗(x − 1) = h(n − x) − h(n + 1 − x) + m for x = 1, . . . , n, and
this yields (4). Further, since h∗(x − 1) ≤ h∗(x) and h(n − x) ≤ h(n + 1 − x), thanks to
Lemma 12, we also obtain 0 ≤ h∗(x) − h∗(x − 1) ≤ m for x = 1, . . . , n. 	

Corollary 14 Let P = (E, ρ) be a (q,m)-demi-polymatroid and let K = rankP. Then for
any positive integers r , s such that r + m ≤ K and s + m ≤ mn − K,

dr (P) < dr+m(P) and ds(P
∗) < ds+m(P∗).
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Proof Let r be a positive integerwith r+m ≤ K . Then dr (P) ≤ dr+m(P), by Proposition 11.
Suppose, if possible, dr (P) = dr+m(P) = x , say. Then by (1) in Lemma 12, h∗(x − 1) < r
and h∗(x) ≥ r + m. Consequently, h∗(x) − h∗(x − 1) ≥ m + 1. This contradicts the last
assertion in Lemma 13. Thus dr (P) < dr+m(P). Replacing P by P∗, we obtain the desired
inequality for the generalized weights of P∗. 	


We shall now proceed to establish a version of Wei duality for the generalized weights of
(q,m)-demi-polymatroids. Recall that if C is a [n, k]q -code, and d1, . . . , dk are the general-
ized Hamming weights (GHW) of C and d⊥

1 , . . . , d⊥
n−k are the GHW of the dual of C , then

Wei duality states that the values

n + 1 − d1, . . . , n + 1 − dk and d⊥
1 , . . . , d⊥

n−k

are all distinct and their union is precisely the set {1, . . . , n}. In the setting of a polymatroid
P = (E, ρ) of rank K , we can similarly consider

n + 1 − d1(P), . . . , n + 1 − dK (P) and d1(P
∗), . . . , dmn−K (P∗).

But these mn values would not constitute {1, . . . ,mn} when m ≥ 2, since they lie between 1
and n. But one could ask for some “m-fold” version of Wei duality, and that is what we give
in Theorems 15 and 17 below. These results are inspired by the related results of Ravagnani
[18] and also of Martínez-Peñas and Matsumoto [15] about the generalized weights and the
relative generalized weights of Delsarte rank metric codes.

Theorem 15 Let P = (E, ρ) be a (q,m)-demi-polymatroid of rank K . Also, let p, i, j be
integers such that 1 ≤ p + im ≤ mn − K and 1 ≤ p + K + jm ≤ K . Then

dp+im(P∗) �= n + 1 − dp+K+ jm(P).

Proof Write r = p+K + jm, s = p+ im, and x = dr (P). Let h and h∗ be as in Lemma 12.
In view of (4), let

g = h(n + 1 − x) − h(n − x) = m − (
h∗(x) − h∗(x − 1)

)
.

Then using (1), we see that

r ≤ h∗(x) and r + m − g = h∗(x) + (
r − h∗(x − 1)

)
> h∗(x).

Thus r ≤ h∗(x) < r + m − g, and therefore by (3), we obtain

p + m( j + n − x) = r + m(n − x) − K ≤ h(n − x) < r + m(n − x + 1) − g − K .

The second inequality above implies that

h(n + 1 − x) = h(n − x) + g < r + m(n − x + 1) − K = p + m( j + n − x + 1).

Now suppose, if possible, n + 1− x = ds(P∗). Then by (2), h(n − x) < s ≤ h(n + 1− x).
Combining this with the inequalities obtained earlier, we see that

p + m( j + n − x) < s < p + m( j + n − x) + m.

But this contradicts the fact that s ≡ p (mod m). 	

Definition 16 For any (q,m)-demi-polymatroid P and s ∈ N0 with s < m, define

Ws(P) = {dr (P) : r = 1, . . . , rankP and r ≡ s (mod m)}, and

Ws(P) = {n + 1 − dr (P) : r = 1, . . . , rankP and r ≡ s (mod m)}.
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The following result may be viewed as a version of Wei duality for generalized weights
of (q,m)-demi-polymatroids. See Remark 18 for further explanation.

Theorem 17 Let P = (E, ρ) be a (q,m)-demi-polymatroid of rank K and let s ∈ N0 with
s < m. Denote by s +m K the unique integer in {0, 1, . . . ,m − 1} congruent to s + K
modulo m. Then Ws(P∗) = {1, 2, · · · , n} \ Ws+mK (P).

Proof By Theorem 15, the sets Ws(P∗) and Ws+mK (P) are disjoint, and by Proposition 11,
they are subsets of {1, 2, · · · , n}. Thus, it suffices to show that the sum of their cardinalities
is n. To this end, write s + K = Am + B for integers A, B with 0 ≤ B < m. Note that
s +m K = B. Let us first consider the case s = 0. Here, by the definition of Ws(P∗), and
the strict monotonicity, guaranteed by Corollary 14, of the ds+ jm(P∗) as j increases, we see
that

|Ws(P
∗)| =

⌊
mn − K

m

⌋
=

⌊
mn − Am − B

m

⌋
=

{
n − A if B = 0,

n − A − 1 if B ≥ 1.

On the other hand, Corollary 14 also shows that

|WB(P)| = |WB(P)| =
{⌊ K

m

⌋ = A if B = 0,

1 + ⌊ K−B
m

⌋ = 1 + A if B ≥ 1.

Consequently, |Ws(P∗)|+|Ws+mK (P)| = n. Next, suppose s > 0.Here, in a similarmanner,
Corollary 14 shows that

|Ws(P
∗)| = 1 +

⌊
mn − K − s

m

⌋
= 1 +

⌊
mn − Am − B

m

⌋
=

{
1 + n − A if B = 0,

n − A if B ≥ 1

and also that

|WB(P)| = |WB(P)| =
{⌊ K−B

m

⌋ = ⌊ Am−s
m

⌋ = A − 1 if B = 0,

1 + ⌊ K−B
m

⌋ = 1 + ⌊ Am−s
m

⌋ = A if B ≥ 1.

So, once again |Ws(P∗)| + |Ws+mK (P)| = n, as desired. 	

Remark 18 The above result shows that the generalized weights of a (q,m)-demi-
polymatroid P and the generalized weights of its dual P∗ determine each other. Indeed,
first we treat only the dr (P∗) and dr+mK (P), for r ≡ s (mod m), for a fixed value of s.
By Theorem 17 they determine each other. Since this is true for each fixed s, as s varies in
{0, 1, . . . ,m − 1}, the assertion holds.

We remark also that our proofs of Theorem15 and the two preceding lemmas aremotivated
by the proofs of the corresponding result for usual matroids (see, e.g., [14, Proposisjon 5.18]).
Further, the proof of Theorem 17 uses arguments that are analogous to those in the proof of
[18, Corollary 38].

4 Generalized weights of flags of Delsarte rankmetric codes

In this section, we will denote byMm×n(Fq), or simply byM the space of allm×n matrices
with entries in the finite field Fq . Note that M is a vector space over Fq of dimension mn.
As stated in the Introduction, by a Delsarte rank metric code, or simply a Delsarte code, we
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mean a Fq -linear subspace ofM. We denote by dimFq C , or simply dimC , the dimension of
a Delsarte code C .

Following Shiromoto [19], we now associate to a Delsarte codeC , (i) a family of subcodes
of C indexed by subspaces of E = F

n
q , and (ii) a (q,m)-polymatroid.

Definition 19 Let C be a Delsarte code.

(i) Given any X ∈ �(E), we define C(X) to be the subspace of C consisting of all matrices
in C whose row space is contained in X .

(ii) By ρC we denote the function from �(E) to N0 defined by

ρC (X) = dimFq C − dimFq C(X⊥) for X ∈ �(E).

Further, by P(C) we denote the (q,m)-polymatroid (E, ρC ).

Remark 20 It is shown in [19, Proposition 3] that P(C) = (E, ρC ) is indeed a (q,m)-
polymatroid. Note also that the conullity function ν∗

C of P(C) is given by

ν∗
C (X) = dimC(X) for X ∈ �(E). (5)

4.1 Demi-polymatroids associated to flags of Delsarte codes

Motivated by the work in [3,4] on demi-matroids, we consider the following natural and
useful extension of the notion defined in part (ii) of Definition 19.

Definition 21 By a flag of Delsarte codes we shall mean a tuple F = (C1, . . . ,Cs) of sub-
spaces of M = Mm×n(Fq) such that Cs ⊆ Cs−1 ⊆ · · · ⊆ C1. The rank function associated
to a flag F = (C1, . . . ,Cs) is the map ρ

F
: �(E) → Z given by

ρ
F
(X) =

s∑

i=1

(−1)i+1ρCi
(X) for X ∈ �(E). (6)

The pair (E, ρ
F
) is a (q,m)-demi-polymatroid, and it is denoted by P(F).

We will presently show that P(F) = (E, ρ
F
) is indeed a (q,m)-demi-polymatroid for any

flag F of Delsarte codes. First, we need a couple of auxiliary results.

Lemma 22 Let C1,C2 be Delsarte codes in M = Mm×n(Fq) such that C2 ⊆ C1 and let
ρi = ρCi

for i = 1, 2. Then ρ2(X) ≤ ρ1(X) for all X ∈ �(E).

Proof Note that the row space of any A ∈ M consists of vectors vA as v varies over Fm
q

(elements of Fm
q and F

n
q are thought of as row vectors); also note that (vA) · u = u(vA)t =

u(Atvt ) for any u ∈ F
n
q . Now let X ∈ �(E) and define

U = {A ∈ Mm×n(Fq) : uAt = 0 for all u ∈ X}.
Clearly, U is a subspace ofM and C(X⊥) = C ∩U for any Delsarte code C . Also,

C2

C2 ∩U
� C2 +U

U
⊆ C1 +U

U
� C1

C1 ∩U
.

Hence dimC2 − dimC2 ∩U ≤ dimC1 − dimC1 ∩U , which yields ρ2(X) ≤ ρ1(X). 	
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Lemma 23 Let C1,C2 be Delsarte codes in M = Mm×n(Fq) such that C2 ⊆ C1 and let
X , Y ∈ �(E) be such that X ⊆ Y . Then

dimC1(X) − dimC2(X) ≤ dimC1(Y ) − dimC2(Y ).

Proof Since C2 ⊆ C1 and X ⊆ Y , it is clear from Definition 19 (i) that

C1(X) ∩ C2(Y ) = C2(X) and C1(X) + C2(Y ) ⊆ C1(Y ).

Consequently, dimC1(X) + dimC2(Y ) − dimC2(X) ≤ dimC1(Y ), as desired. 	


Theorem 24 Let F = (C1, . . . ,Cs) be a flag of Delsarte codes in M and let ρ
F
be the rank

function associated to F. Then P(F) = (E, ρ
F
) is a (q,m)-demi-polymatroid.

Proof Let ρ j := ρC j
for 1 ≤ j ≤ s. First, suppose s is even, say s = 2t . Then for any

X ∈ �(E),

ρ
F
(X) =

t∑

i=1

(
ρ2i−1(X) − ρ2i (X)

)
. (7)

By Lemma 22, each summand is nonnegative, and so ρ
F
(X) ≥ 0. In case s = 2t + 1,

ρ
F
(X) = ρ2t+1(X) +

t∑

i=1

(
ρ2i−1(X) − ρ2i (X)

)
. (8)

and once again ρ
F
(X) ≥ 0, thanks to Remark 20 and Lemma 22. Next, if s > 1 and if

F′ = (C2, . . . ,Cs) denotes the flag obtained from F by dropping the first term, then by what
is just shown ρ

F′(X) ≥ 0 for any X ∈ �(E). Hence,

ρ
F
(X) = ρ1(X) − ρ

F′(X) ≤ ρ1(X) ≤ m dim X for all X ∈ �(E).

This shows that P(F) satisfies (R1). Next, let X , Y ∈ �(E) with X ⊆ Y . We will show
that ρ

F
(X) ≤ ρ

F
(Y ). To this end, observe that since ρ

F
(X) (and likewise ρ

F
(Y )) can be

expressed as in (7) or (8), and since ρ2t+1 satisfies (R2), it suffices to show that the difference
�i := (

ρ2i−1(Y )−ρ2i (Y )
)−(

ρ2i−1(X)−ρ2i (X)
)
is nonnegative for each i = 1, . . . , t . But

an easy calculation shows that for 1 ≤ i ≤ t ,

�i = (
dimC2i−1(X

⊥) − dimC2i (X
⊥)

) − (
dimC2i−1(Y

⊥) − dimC2i (Y
⊥)

)
,

and by Lemma 23, this is nonnegative since Y⊥ ⊆ X⊥. Thus P(F) satisfies (R2).
To prove that P(F) satisfies (R4), note that the case s = 1 is trivial. Thus suppose s > 1

and let F′ = (C2, . . . ,Cs). Also, let

ρ∗(X) = ρ
F
(X⊥) + m dim X − ρ

F
(E) and ρ′(X) = ρ

F′(X) for X ∈ �(E).

Since ρ
F

= ρ1 − ρ′ and since ρ∗
1 satisfies (R1) while ρ′ satisfies (R2), we see that

ρ∗(X) = (
ρ1(X

⊥) + m dim X − ρ1(E)
) + (

ρ′(E) − ρ′(X⊥)
) ≥ ρ∗

1 (X) + 0 ≥ 0.

Also, ρ∗(X) = m dim X + (
ρ
F
(X⊥) − ρ

F
(E)

) ≤ m dim X , since ρ
F
satisfies (R2). Thus ρ∗

satisfies (R1). Finally, if X , Y ∈ �(E) with X ⊆ Y , then we can write ρ∗(Y ) − ρ∗(X) =
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(
ρ
F
(Y⊥) + m dim Y − ρ

F
(E)

) − (
ρ
F
(X⊥) + m dim X − ρ

F
(E)

)
as

m
(
dim Y − dim X

) + (
ρ
F
(Y⊥) − ρ

F
(X⊥)

)

= m
(
dim X⊥ − dim Y⊥) − (

ρ1(X
⊥) − ρ1(Y

⊥)
) + (

ρ′(X⊥) − ρ′(Y⊥)
)

= (
ν1(X

⊥) − ν1(Y
⊥)

) + (
ρ′(X⊥) − ρ′(Y⊥)

)
,

where ν1 denotes the nullity function of (E, ρ1). Thus, using Proposition 6 and the fact that
ρ′ satisfies (R2), we see that ρ∗ satisfies (R4). 	


4.2 Generalized weights of flags of Delsarte codes

Using Theorem 24 and Definition 10, we can talk about generalized weights of flags of
Delsarte codes. The following observation makes them explicit.

Lemma 25 Let F = (C1, . . . ,Cs) be a flag of Delsarte codes. Then the conullity function ν∗
F

of the associated (q,m)-demi-polymatroid P(F) = (E, ρ
F
) is given by

ν∗
F
(X) =

s∑

i=1

(−1)i+1 dimCi (X) for X ∈ �(E).

Proof For i = 1, . . . , s, let ρi be as in (6) and let ν∗
i be the conullity function of the (q,m)-

polymatroid (E, ρi ). Then in view of (5) in Remark 20 we see that

ν∗
F
(X) = ρ

F
(E) − ρ

F
(X⊥) =

s∑

i=1

(−1)i+1ν∗
i (X) =

s∑

i=1

(−1)i+1 dimCi (X).

for any X ∈ �(E). 	

The generalized weights of flags of Delsarte codes may be defined as follows.

Definition 26 Let F = (C1, . . . ,Cs) be a flag of Delsarte codes inM, and let K = ρ
F
(E) =

∑s
i=1(−1)i+1 dimCi . Then for r = 1, . . . , K , the r th generalized weight of F is denoted by

dr (F) or by dM,r (C1, · · · ,Cs), and is defined by

dr (F) = min
{
dim X : X ∈ �(E) with

s∑

i=1

(−1)i+1 dimCi (X) ≥ r
}
.

In the case of singleton flags, i.e., when s = 1, the definition reduces to the follow-
ing notion, first considered by Martínez-Peñas and Matsumoto [15, Definition 10], of the
generalized weight of a Delsarte code C :

dr (C) := min{dim X : X ∈ �(E) with dimC(X) ≥ r} for r = 1, . . . , dimC . (9)

This is related to, but distinct from Ravagnani’s definition (see Sect. 4.5 for details). In the
case s = 2, generalized weights in Definition 26 coincide with the notion of Relative Gen-
eralized Matrix Weights, or RGMW profiles, as defined by Martínez-Peñas and Matsumoto
[15, Definition 10].

Our definitions of generalized weights for (q,m)-demi-polymatroids and flags of Delsarte
rank metric codes are of course compatible, and we record this below.
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Theorem 27 Let F = (C1, · · · ,Cs) be a flag of Delsarte rank metric code and let P(F) =
(E, ρ

F
) be the corresponding (q,m)-demi-polymatroid. Then

s∑

i=1

(−1)i+1 dimCi = rankP(F) and for r = 1, . . . , rankP(F), dr (F) = dr (P(F)).

Proof This follows directly from the definitions and Lemma 25. 	


4.3 Duality of Delsarte rankmetric codes

As indicated in the Introduction, the notion of dual for Delsarte rank metric codes is defined
using the trace product. See for example [18, Definition 34]. We recall the basic definition
below.

Definition 28 Let C be a Delsarte code. The trace dual, or simply the dual, of C is the
Delsarte code C⊥ defined by

C⊥ = {N ∈ Mm×n(Fq) : Trace(MNt ) = 0 for all M ∈ C},
where Nt denotes the transpose of a m × n matrix N and, as usual, Trace(MNt ) is the trace
of the square matrix MNt , i.e., the sum of all its diagonal entries.

There is a natural connection between duals of Delsarte codes and the duals of (q,m)-
polymatroids. It is shown by Shiromoto [19] as well as Gorla et al. [10], and we record it
below.

Theorem 29 [19, Proposition 11] Let C be a Delsarte code. Then

P(C⊥) = P(C)∗.

The proof is quite short and natural and given in [19, Proposition 11], and also in [10,
Theorem 8.1]. An immediate consequence is the following.

Corollary 30 LetC beaDelsarte code inMm×n(Fq)and let K = dimC.Then the generalized
weights dr (C) = min{dim X : X ∈ �(E) with dimC(X) ≥ r} of C (1 ≤ r ≤ K) are
related to the generalized weights ds(C⊥) of C⊥ (1 ≤ s ≤ mn − K) via the “m-fold” Wei
duality described in Theorem 17.

Proof Follows from Theorems 17, 27, and 29. 	

We remark that Corollary 30 gives another proof of [15, Proposition 65].

4.4 Duality for flags of Delsarte rankmetric codes

Now that we have associated a (q,m)-demi-polymatroid P(F) = (E, ρ
F
) to a flag F of

Delsarte codes, it seems natural to ask whether P(F)∗ is also a (q,m)-demi-polymatroid
associated to some flag of Delsarte codes. The answer is yes, and it involves, quite naturally,
a dual flag.

Definition 31 By the dual flag corresponding to a flag F = (C1, . . . ,Cs) of Delsarte codes,
we mean the flag F⊥ = (C⊥

s , . . . ,C⊥
1 ) of Delsarte codes, where C⊥

i is the trace dual of Ci

for i = 1, . . . , s. Note that C⊥
1 ⊆ · · · ⊆ C⊥

s so that F⊥ is indeed a flag in the sense of
Definition 21. Note also that (F⊥)⊥ = F.
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The following result is an analogue of [3, Theorem 10].

Proposition 32 Let F = (C1, . . . ,Cs) be a flag of Delsarte codes and F⊥ the dual flag
corresponding to F. Also let ν∗

F
denote the conullity function of the (q,m)-demi-polymatroid

P(F) = (E, ρ
F
) associated to F. Then

ρF⊥ =
{

ρ∗
F

if s is odd,

ν∗
F

if s is even.

Proof A proof can be given, following word for word the proof of the corresponding result,
[3, Theorem 10], for linear block codes. 	


Proposition 32 identifies the dual (q,m)-demi-polymatroid of P(F) as that associated to
the dual flag, when F is a flag of odd length s. This includes the case s = 1 corresponding
to Theorem 29. But what if s is even (and in particular, s = 2)? Also what about a version
of Wei duality for the generalized weights of flags of Delsarte codes? These questions are
answered below.

Theorem 33 Let F = (C1, . . . ,Cs) be a flag of Delsarte codes and let G = (C1, . . . ,Cs, {0})
denote the flag of length s + 1 obtained by appending to F the zero subspace to F (regardless
of whether or not Cs = {0}). Then:
(a) If s is odd, then P(F)∗ = P(F⊥), and the generalized weights of F and F⊥ are in Wei

duality with each other as described in Theorem 17.
(b) If s is even, then P(F)∗ = P(G⊥), and the generalized weights of F and G⊥ are in Wei

duality with each other as described in Theorem 17.

Proof Part (a) follows from Theorems 17, 24, and 27 together with Proposition 32. Part (b)
follows from part (a) by noting that ρ

G
= ρ

F
. 	


Corollary 34 Let C1,C2 be distinct Delsarte codes in Mm×n(Fq) with C2 ⊆ C1, and let
K = dimC1 − dimC2. Then the relative generalized weights

dr = min{dim X : X ∈ �(E) with dimC1(X) − dimC2(X) ≥ r}
are related to the relative generalized weights

d⊥
r = min{dim X : X ∈ �(E) with dimM(X) − dimC⊥

2 (X) + dimC⊥
1 (X) ≥ r}

via the “m-fold” Wei duality described in Theorem 17, for r = 1, . . . , K.

Proof If s is even and F = (C1, . . . ,Cs) and G are as in Theorem 33, then

ρ∗
F

= ρ∗
G

= ρ
G⊥ = ρ{0}⊥ − ρ

C⊥
s

+ · · · + (−1)sρ
C⊥
1

= ρ
M

− ρ
C⊥
s

+ · · · + ρ
C⊥
1
.

In particular, if s = 2, then ρ∗
F

= ρ
M

− ρ
C⊥
2

+ ρ
C⊥
1
. Thus, the desired result follows from

Theorem 33 in view of Eq. (5) in Remark 20. 	


4.5 Another definition of generalized weights

Ravagnani has given another definition in [18, Definition 23] of generalized weights of
(single) Delsarte codes that is based on the following notion of optimal anticodes.
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Definition 35 By an optimal anticode we mean an Fq -linear subspaceA ofMm×n(Fq) such
that dimFq A = m(maxrank(A)), where maxrank(A) denotes the maximum possible rank
of any matrix in A.

Here is Ravagnani’s definition of generalized weights of Delsarte codes.

Definition 36 Let C be a Delsarte code of dimension K . For r = 1, . . . , K , define

ar (C) = 1

m
min

{
dimFq A : A an optimal anticode such that dimFq (A ∩ C) ≥ r

}
.

A relationship between the two notions of generalized weights (given in equation (9) and
Definition 36) is stated below.

Theorem 37 Let C be a Delsarte code. Then for each r = 1, . . . , dimC,

ar (C) = dr (C) if m > n, whereas ar (C) ≤ dr (C) if m = n.

Further, ifCT denotes theDelsarte code inMn×m(Fq) consisting of transposes of thematrices
in C, then ar (C) = dr (CT ) if m < n.

Proof For a proof in the case m > n or m = n, see [15, Theorem 9] (or alternatively, [10,
Proposition 2.11]). For the case m < n, see [9, Theorem 5.18].

When m = n, both [18, Corollary 38] and Corollary 30 are still valid, but the ar and the
dr are not necessarily the same. An example where they are different is given by Martínez-
Peñas and Matsumoto [15, Section IX,C]. A precise relationship between the two notions of
generalized weights in this case of square matrices is given in [9, Theorem 5.18]. We will
discuss a (q,m)-demi-polymatroid version of this below, and deduce the said relationship as
a consequence.

First note that if m = n and if C ⊆ Mm×n(Fq) is a Delsarte rank metric code, then so is
CT := {Mt : M ∈ C}, and thus, we obtain two (q,m)-polymatroids P(C) = (E, ρC ) and
P(CT ) = (E, ρ

CT ) as in part (ii) of Definition 19.

Proposition 38 Assume that m = n. Let C ⊆ Mm×n(Fq) be a Delsarte rank metric code.
Consider E = F

n
q and define ρ : �(E) → N0 by

ρ(X) = min{ρC (X), ρCT (X)} for X ∈ �(E).

Then P = (E, ρ) is a (q,m)-demi-polymatroid and its conullity function is given by

ν∗(X) = max{dimC(X), dimCT (X)} for X ∈ �(E).

Moreover, the generalized weights of P are given by

dr (P) = min{dr (P(C)), dr (P(CT ))} for r = 1, . . . , ρ(E).

Consequently,m-foldWei duality as in Theorem17holds forRavagnani’s generalizedweights
ar (C).

Proof It is obvious that ρ satisfies (R1) and (R2) of Definition 1, since we know that each
of ρC and ρCT satisfies these properties. So, in order to prove that P is a (q,m)-demi-
polymatroid, it remains to show that (R4) is satisfied, which means that ρ∗ satisfies (R1) and
(R2). To this end, let X ∈ �(E). Then

ρ∗(X) = ρ(X⊥) + m dim X − ρ(E)

= min{ρC (X⊥), ρCT (X⊥)} + m dim X − dimC

= min{dimC − dimC(X), dimC − dimCT (X)} + m dim X − dimC .
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It follows that
ρ∗(X) = m dim X − max{dimC(X), dimCT (X)}. (10)

This implies that ρ∗(X) ≤ m dim X . Moreover, it also implies that ρ∗(X) ≥ 0, because from
(5) and Proposition 6 we see that both m dim X − dimC(X) and m dim X − dimCT (X) are
nonnegative. Thus, ρ∗ satisfies (R1). Next, we show that ρ∗ satisfies (R2). Fix X , Y ∈ �(E)

with X ⊆ Y . In view of (10), the difference ρ∗(Y ) − ρ∗(X) can be written as

m(dim Y − dim X) − (
max{dimC(Y ), dimCT (Y )} − max{dimC(X), dimCT (X)}).

Since the expression above is symmetric inC andCT , wemay assumewithout loss of general-
ity thatmax{dimC(Y ), dimCT (Y )} = dimC(Y ).Now, in casemax{dimC(X), dimCT (X)}
= dimC(X), we see that

ρ∗(Y ) − ρ∗(X) = m(dim Y − dim X) − (dimC(Y ) − dimC(X)) = ρ∗
C (Y ) − ρ∗

C (X),

which is nonnegative since ρ∗
C satisfies (R1), thanks to Proposition 2. In case max{dimC(X),

dimCT (X)} = dimCT (X), then dimCT (X) ≥ dimC(X), and so

ρ∗(Y ) − ρ∗(X) = m(dim Y − dim X) − (dimC(Y ) − dimCT (X)) ≥ ρ∗
C (Y ) − ρ∗

C (X),

which is again nonnegative. Thus, ρ∗ satisfies (R2). This proves that P = (E, ρ) is a (q,m)-
demi-polymatroid. The desired formula for the conullity function of P is immediate from
(10). This, in turn, shows that

dr (P) = min
{
dr (P(C)), dr (P(CT ))

}
for r = 1, . . . , ρ(E).

Indeed, the inequality dr (P) ≤ min{dr (P(C)), dr (P(CT ))} is clear from the defini-
tion and equation (5). For the other inequality, it suffices to consider X0 ∈ �(E) with
max{dimC(X0), dimCT (X0)} ≥ r such that dr (P) = dim X0.

The last assertion about Wei duality for Ravagnani’s generalized weights ar (C) is an
immediate consequence of Theorem 17 because we know from [9, Theorem 38] that ar (C) =
min{dr (P(C)), dr (P(CT ))} for 1 ≤ r ≤ dimC = ρ(E). 	

Acknowledgements We are grateful to Frédérique Oggier for introducing us to rank metric codes and pro-
viding initial motivation for this work. We thank the DST in India and RCN in Norway for supporting
our collaboration through an Indo-Norwegian project “Mathematical Aspects of Information Transmission:
Effective Error Correcting Codes”. The last named author is grateful to the Department of Mathematics, IIT
Bombay for itswarmhospitality, and for providing optimal conditions for research, during a visit in September–
December 2018 when most of this work was done. We also thank Elisa Gorla for her useful comments on a
preliminary version of this paper and for pointing out the survey article [9]. Those comments led us to make
an appropriate revision in Theorem 37 and to introduce Proposition 38. We are also grateful to the referees
for many helpful comments and suggestions.

Funding Open Access funding provided by UiT The Arctic University of Norway

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


2546 S. R. Ghorpade, T.Johnsen

References

1. Berhuy, G., Fasel, J., Garotta, O.: Rank weights for arbitrary finite field extensions. Adv. Math. Commun.
(2020). https://doi.org/10.3934/amc.2020083

2. Britz T.: Higher support matroids. Discret. Math. 307, 2300–2308 (2007).
3. Britz T., Johnsen T., Mayhew D., Shiromoto K.: Wei-type duality theorems for matroids. Des. Codes

Cryptogr. 62, 331–341 (2012).
4. Britz T., Johnsen T., Martin J.: Chains, demi-matroids and profiles. IEEE Trans. Inform. Theory 60,

986–991 (2014).
5. Britz T., Mammoliti A., Shiromoto K.: Wei-type duality theorems for rank metric codes. Des. Codes

Cryptogr. 88, 1503–1519 (2020).
6. Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory Ser.

A 25, 226–241 (1978).
7. Ducoat J.: Generalized rank weights: a duality statement. In: Kyureghyan G.M., Pott A. (eds.) Topics in

Finite Fields, pp. 114–123. American Mathematical Society, Providence, RI (2015).
8. Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21, 1–12 (1985).
9. Gorla, E.: Rank-Metric Codes. arXiv:1902.02650 [cs.IT] , 26 pp (2019).

10. Gorla E., Jurrius R., Lopez H.H., Ravagnani A.: Rank-metric codes and q-polymatroids. J. Algebr. Com-
bin. 52, 1–19 (2020).

11. Jurrius R., Pellikaan R.: On defining generalized rank weights. Adv.Math. Commun. 11, 225–235 (2017).
12. Jurrius R., Pellikaan R.: Defining the q-analogue of a matroid. Electron. J. Combin. 25, 32 (2018).
13. Kurihara J., Matsumoto R., Uyematsu T.: Relative generalized rank weight of linear codes and its appli-

cations to network coding. IEEE Trans. Inform. Theory 61, 3912–3936 (2015).
14. Larsen, A.H.: Matroider og lineære koder, Master’s thesis, Univ. Bergen, Norway, (2005). http://bora.uib.

no/bitstream/handle/1956/10780/Ann-Hege-totaloppgave.pdf?sequence=1
15. Martínez-Peñas U., Matsumoto R.: Relative generalized matrix weights of matrix codes for universal

security on wire-tap network. IEEE Trans. Inform. Theory 64, 2529–2548 (2018).
16. Oggier, F., Sboui, A.: On the existence of generalized rank weights. In: Proc. Int. Symp. Inf. Theory

Appl., pp. 406–410, (2012).
17. Ravagnani A.: Rank-metric codes and their duality theory. Des. Codes Cryptogr. 80, 197–216 (2016).
18. Ravagnani A.: Generalized weights: an anticode approach. J. Pure Appl. Algeb. 220, 1946–1962 (2016).
19. Shiromoto K.: Codes with the rank metric and matroids. Des. Codes Cryptogr. 87, 1765–1776 (2019).
20. Wei V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 37, 1412–1418

(1991).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.3934/amc.2020083
http://arxiv.org/abs/1902.02650
http://bora.uib.no/bitstream/handle/1956/10780/Ann-Hege-totaloppgave.pdf?sequence=1
http://bora.uib.no/bitstream/handle/1956/10780/Ann-Hege-totaloppgave.pdf?sequence=1

	A polymatroid approach to generalized weights of rank metric codes
	Abstract
	1 Introduction
	2 Demi-polymatroids: definitions and basic facts
	3 Wei duality of (q,m)-demi-polymatroids
	4 Generalized weights of flags of Delsarte rank metric codes
	4.1 Demi-polymatroids associated to flags of Delsarte codes
	4.2 Generalized weights of flags of Delsarte codes
	4.3 Duality of Delsarte rank metric codes
	4.4 Duality for flags of Delsarte rank metric codes
	4.5 Another definition of generalized weights

	Acknowledgements
	References




