
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Hierarchical Representation Learning in Graph
Neural Networks with Node Decimation Pooling

Filippo Maria Bianchi∗, Daniele Grattarola Student, IEEE, Lorenzo Livi Member, IEEE, Cesare
Alippi Fellow, IEEE

Abstract—In graph neural networks (GNNs), pooling operators
compute local summaries of input graphs to capture their global
properties, and they are fundamental for building deep GNNs
that learn hierarchical representations. In this work, we propose
the Node Decimation Pooling (NDP), a pooling operator for
GNNs that generates coarser graphs while preserving the overall
graph topology. During training, the GNN learns new node
representations and fits them to a pyramid of coarsened graphs,
which is computed offline in a pre-processing stage.

NDP consists of three steps. First, a node decimation procedure
selects the nodes belonging to one side of the partition identified
by a spectral algorithm that approximates the MAXCUT solution.
Afterwards, the selected nodes are connected with Kron reduction
to form the coarsened graph. Finally, since the resulting graph
is very dense, we apply a sparsification procedure that prunes
the adjacency matrix of the coarsened graph to reduce the
computational cost in the GNN. Notably, we show that it is
possible to remove many edges without significantly altering the
graph structure.

Experimental results show that NDP is more efficient com-
pared to state-of-the-art graph pooling operators while reaching,
at the same time, competitive performance on a significant variety
of graph classification tasks.

Index Terms—Graph neural networks; Graph pooling; Maxcut
optimization; Kron reduction; Graph classification.

I. INTRODUCTION

Generating hierarchical representations across the layers
of a neural network is key to deep learning methods. This
hierarchical representation is usually achieved through pooling
operations, which progressively reduce the dimensionality of
the inputs encouraging the network to learn high-level data
descriptors. Graph Neural Networks (GNNs) are machine
learning models that learn abstract representations of graph-
structured data to solve a large variety of inference tasks [1],
[2], [3], [4], [5]. Differently from neural networks that process
vectors, images, or sequences, the graphs processed by GNNs
have an arbitrary topology. As a consequence, standard pooling
operations that leverage on the regular structure of the data
and physical locality principles cannot be immediately applied
to GNNs.

*filippo.m.bianchi@uit.no
F. M. Bianchi is with the Dept. of Mathematics and Statistics, UiT the

Arctic University of Norway and with NORCE, Norwegian Research Centre
D. Grattarola is with the Faculty of Informatics, Università della Svizzera

italiana, Switzerland
L. Livi is with Dept.s. of Computer Science and Mathematics, University

of Manitoba, Canada, and Dept. of Computer Science, University of Exeter,
United Kingdom

C. Alippi is with Faculty of Informatics, Università della Svizzera italiana,
Switzerland, and Dept. of Electronics, Information, and Bioengineering,
Politecnico di Milano, Italy

Graph pooling aggregates vertex features while reducing, at
the same time, the underlying structure in order to maintain a
meaningful connectivity in the coarsened graph. By alternating
graph pooling and message-passing (MP) operations [6], a
GNN can gradually distill global properties from the graph,
which are then used in tasks such as graph classification.

In this paper, we propose Node Decimation Pooling (NDP), a
pooling operator for GNNs. NDP is based on node decimation,
a procedure developed in the field of graph signal processing
for the design of multi-scale graph filters [7]. In particular, we
build upon the multi-resolution framework [8] that consists
of removing some nodes from a graph and then building a
coarsened graph from the remaining ones. The NDP procedure
that we propose pre-computes off-line (i.e., before training) a
pyramid of coarsened graphs, which are then used as support
for the node representations computed at different levels of the
GNN architecture.

The contributions of our work are the following.
1) We introduce the NDP operator that allows to implement

deep GNNs that have a low complexity (in terms of
execution time and memory requirements) and achieve
high accuracy on several downstream tasks.

2) We propose a simple and efficient spectral algorithm that
partitions the graph nodes in two sets by maximizing a
MAXCUT objective. Such a partition is exploited to select
the nodes to be discarded when coarsening the graph.

3) We propose a graph sparsification procedure that reduces
the computational cost of MP operations applied after
pooling and has a small impact on the representations
learned by the GNN. In particular, we show both
analytically and empirically that many edges can be
removed without significantly altering the graph structure.

When compared to other methods for graph pooling, NDP
performs significantly better than other techniques that pre-
compute the topology of the coarsened graphs, while it achieves
a comparable performance with respect to state-of-the-art
feature-based pooling methods. The latter, learn both the
topology and the features of the coarsened graphs end-to-end
via gradient descent, at the cost of a larger model complexity
and higher training time. The efficiency of NDP brings a
significant advantage when GNNs are deployed in real-world
scenarios subject to computational constraints, like in embedded
devices and sensor networks.

The paper is organized as follows: in Sect. II, we formalize
the problem and introduce the nomenclature; in Sect. III, we
present the proposed method; Sect. IV provides formal analyses
and implementation details; related works are discussed in

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

Sect. V, and Sect. VI reports experimental results. Further
results and analyses are deferred to the supplementary material.

II. PRELIMINARIES

Let G = {V, E} be a graph with node set V , |V| = N ,
and edge set E described by a symmetric adjacency matrix
A ∈ RN×N . Define as graph signal X ∈ RN×F the matrix
containing the features of the nodes in the graph (the i-th row
of X corresponds with the features xi ∈ RF of the i-th node).
For simplicity, we will only consider undirected graphs without
edge annotations.

Let L = D−A be the Laplacian of the graph, where D is a
diagonal degree matrix s.t. dii is the degree of node i. We also
define the symmetric Laplacian as Ls = I−D−1/2AD−1/2.
The Laplacian characterizes the dynamics of a diffusion process
on the graph and plays a fundamental role in the proposed graph
reduction procedure. We note that in the presence of directed
edges it is still possible to obtain a symmetric and positive-
semidefinite Laplacian [9], [10] for which the derivations
presented in this paper hold.

We consider a GNN composed of a stack of MP layers,
each one followed by a graph pooling operation. The (l)-th
pooling operation reduces Nl nodes to Nl+i < Nl, producing
a pooled version of the node features X(l+1) ∈ RNl+1×Fl+1

and adjacency matrix A(l+1) ∈ RNl+1×Nl+1 (see Fig. 2). To
implement the MP layer, we consider a simple formulation
that operates on the first-order neighbourhood of each node
and accounts for the original node features through a separate
set of weights acting as a layer-wise skip connection. The
computation carried out by the (j)-th MP layer is given by

Xj+1 = MP(Xj ,A; ΘMP)

= ReLU(D−
1
2 AD−

1
2 XjW + XjV),

(1)

where ΘMP = {W ∈ RFj×Fj+1 ,V ∈ RFj×Fj+1} are the
trainable weights relative to the mixing and skip component of
the layer, respectively. Several other types of MP (e.g., those
proposed in [11], [12], [13], [14], [15], [16]) can seamlessly
be used in conjunction with NDP pooling. In the presence
of annotated edges, the MP operation can be extended by
following [17] and [18].

III. GRAPH COARSENING WITH NODE DECIMATION
POOLING

In this section, we describe the proposed NDP operation that
consists of the three steps depicted in Fig. 1: (a) decimate the
nodes by dropping one of the two sides of the MAXCUT partition;
(b) connect the remaining nodes with a link construction
procedure; (c) sparsify the adjacency matrix resulting from the
coarsened Laplacian, so that only strong connections are kept,
i.e., those edges whose weight is associated to an entry of
the adjacency matrix above a given threshold ε. The proposed
method is completely unsupervised and the coarsened graphs
are pre-computed before training the GNN.

A. Node decimation with MAXCUT spectral partitioning

Similarly to pooling operations in Convolutional Neural
Networks (CNNs) that compute local summaries of neighboring
pixels, we propose a pooling procedure that provides an
effective coverage of the whole graph and reduces the number
of nodes approximately by a factor of 2. This can be achieved
by partitioning nodes in two sets, so that nodes in one set are
strongly connected to the complement nodes of the partition,
and then dropping one of the two sets. The rationale is that
strongly connected nodes exchange a lot of information after
a MP operation and, as a result, they are highly dependent
and their features become similar. Therefore, one set alone
can represent the whole graph sufficiently well. This is similar
to pooling in CNNs, where the maximum or the average is
extracted from a small patch of neighboring pixels, which are
assumed to be highly correlated and contain similar information.
In the following, we formalize the problem of finding the
optimal subset of vertices that can be used to represent the
whole graph.

The partition of the vertices (a cut) that maximizes the
volume of edges whose endpoints are on opposite sides of
the partition is the solution of the MAXCUT problem [19]. The
MAXCUT objective is expressed by the integer quadratic problem

max
z

∑
i,j∈V

aij(1− zizj) s.t. zi ∈ {−1, 1}, (2)

where z is the vector containing the optimization variables zi
for i = 1, . . . , N indicating to which side of the bi-partition the
node i is assigned to; aij is the entry at row i and column j of
A. Problem (2) is NP-hard and heuristics must be considered
to solve it. The heuristic that gives the best-known MAXCUT

approximation in polynomial time is the Goemans-Williamson
algorithm, which is based on the Semi-Definite Programming
(SDP) relaxation [20]. Solving SDP is cumbersome and requires
specific optimization programs that scale poorly on large graphs.
Therefore, we hereby propose a simple algorithm based on the
Laplacian spectrum.

First, we rewrite the objective function in (2) as a quadratic
form of the graph Laplacian:∑

i,j

aij(1− zizj) =
∑
i,j

aij

(
z2i + z2j

2
− zizj

)

=
1

2

∑
i

[∑
j

aij

]
z2i +

1

2

∑
j

[∑
i

aij

]
z2j −

∑
i,j

aijzizj

=
1

2

∑
i

diiz
2
i +

1

2

∑
j

djjz
2
j − zTAz

= zTDz− zTAz = zTLz.

Then, we consider a continuous relaxation of the integer
problem (2) by letting the discrete partition vector z assume
continuous values, contained in a vector c:

max
c

cTLc, s.t. c ∈ RN and ‖c‖2 = 1. (3)

Eq. 3 can be solved by considering the Lagrangian cTLc +
λcT c to find the maximum of cTLc under constraint ‖c‖2 = 1.
By setting the gradient of the Lagrangian to zero, we recover

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

a b

g

k

f

j

c

h i

n

p

m

o

e

c

l

−

+

ℝ
0

cut

a

g

c

h

n

l

a

g

c

h

n

l

Edges with high weight
Edges with small weight

Links constructionNodes decimation Graph sparsification

(keep)(discard)

Fig. 1. Depiction of the proposed graph coarsening procedure. First, the nodes are partitioned in two sets according to a MAXCUT objective and then are
decimated by dropping one of the two sets (V−). Then, a coarsened Laplacian is built by connecting the remaining nodes with a graph reduction procedure.
Finally, the edges with low weights in the new adjacency matrix obtained from the coarsened Laplacian are dropped to make the resulting graph sparser.

the eigenvalue equation Lc + λc = 0. All the eigenvalues of
L are non-negative and, by restricting the space of feasible
solutions to vectors of unitary norm, the trivial solution c∗ =∞
is excluded. In particular, if ‖c‖2 = 1, cTLc is a Rayleigh
quotient and reaches its maximum λmax (the largest eigenvalue
of L) when c∗ corresponds to vmax, the eigenvector associated
with λmax.

Since the components of vmax are real, we apply a rounding
procedure to find a discrete solution. Specifically, we are
looking for a partition z∗ ∈ Z , where Z = {z : z ∈ {−1, 1}N}
is the set of all feasible cuts, so that z∗ is the closest (in a
least-square sense) to c∗. This amounts to solving the problem

z∗ = arg min{‖c∗ − z‖2 : z ∈ Z}, (4)

with the optimum given by

z∗i =

{
1, c∗i ≥ 0,

−1, c∗i < 0.
(5)

By means of the rounding procedure in (5), the nodes in V
are partitioned in two sets, V+ and V− = V \ V+, such that

V+ = {i ∈ V : vmax[i] ≥ 0}. (6)

In the NDP algorithm we always drop the nodes in V−, i.e.,
the nodes associated with a negative value in vmax. However,
it would be equivalent to drop the nodes in V+. The node
decimation procedure offers two important advantages: i) it
removes approximately half of the nodes when applied, i.e.,
|V+| ≈ |V−|; ii) the eigenvector vmax can be quickly computed
with the power method [21].

There exists an analogy between the proposed spectral
algorithm for partitioning the graph nodes and spectral cluster-
ing [22]. However, spectral clustering solves a minCUT prob-
lem [23], [24], which is somehow orthogonal to the MAXCUT

problem considered here. In particular, spectral clustering
identifies K ≥ 2 clusters of densely connected nodes by cutting
the smallest volume of edges in the graph, while our algorithm
cuts the largest volume of edges yielding two sets of nodes,
V+ and V−, that cover the original graph in a similar way.
Moreover, spectral clustering partitions the nodes in K clusters
based on the values of the eigenvectors associated with the
M ≥ 1 smallest eigenvalues, while our algorithm partitions
the nodes in two sets based only on the last eigenvector vmax.

B. Links construction on the coarsened graph

After dropping nodes in V− and all their incident edges,
the resulting graph is likely to be disconnected. Therefore,
we use a link construction procedure to obtain a connected
graph supported by the nodes in V+. Specifically, we adopt the
Kron reduction [25] to generate a new Laplacian L(1), which
is computed as the Schur complement of L with respect to the
nodes in V−. In detail, the reduced Laplacian L(1) is

L(1) = L\LV−,V− = LV+,V+−LV+,V−L−1V−,V−LV−,V+ (7)

where LV+,V− identifies a sub-matrix of L with rows (columns)
corresponding to the nodes in V+ (V−).

It is possible to show that LV−,V− is always invertible if
the associated adjacency matrix A is irreducible. We note that
A is irreducible when the graph is not disconnected (i.e., has
a single component), a property that holds when the algebraic
multiplicity of the eigenvalue λmin = 0 is 1.

Let us consider the case where A has no self loops. The
Laplacian is by definition a weakly diagonally dominant matrix,
since Lii =

∑N
j=1,j 6=i |Lij | for all i ∈ V . If A is irreducible,

then L is also irreducible. This implies that the strict inequality
Lii >

∑n
j=1,j 6=i |Lij | holds for at least one vertex i ∈ V−.

It follows that the Kron-reduced Laplacian LV−,V− is also
irreducible, diagonally dominant, and has at least one row
with a strictly positive row sum. Hence, LV−,V− is invertible,
as proven by [26] in Corollary 6.2.27. When A contains self-
loops, the existence of the inverse of LV−,V− is still guaranteed
through a small work-around, which is discussed in App. A.
Finally, if the graph is disconnected then A is reducible (i.e.,
it can be expressed in an upper-triangular block form by
simultaneous row/column permutations); in this case, the Kron
reduction can be computed by means of the generalized inverse
L†V−,V− and the solution corresponds to a generalized Schur
complement of L.

L(1) in (7) is a well-defined Laplacian where two nodes
are connected if and only if there is a path between them in
L (connectivity preservation property). Also, L(1) does not
introduce self-loops and guarantees the preservation of resis-
tance distance [8]. Finally, Kron reduction guarantees spectral
interlacing between the original Laplacian L ∈ RN×N and the
new coarsened one L(1) ∈ RN1×N1 , with N1 ≤ N . Specifically,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

we have λi ≥ λ
(1)
i ≥ λN−N1+i, ∀i = 1, . . . , N1, where λi

and λ(1)i are the eigenvalues of L and L(1), respectively.
The adjacency matrix of the new coarsened graph is

recovered from the coarsened Laplacian:

A(1) =

−L(1) + diag({
N1∑

j=1,j 6=i

L
(1)
ij }

N1
i=1)

 . (8)

We note that A(1) does not contain self-loops; we refer
to App. A for a discussion on how to handle the case with
self-loops in the original adjacency matrix.

A pyramid of coarsened Laplacians is generated by recur-
sively applying node decimation followed by Kron reduc-
tion. At the end of the procedure, the adjacency matrices
A = {A(0),A(1), . . . ,A(l), . . . } of the coarsened graphs are
derived from the associated coarsened Laplacians. Note that we
interchangeably refer with A(0) or A to the original adjacency
matrix. The adjacency matrices in A are used to implement
hierarchical pooling in deep GNN architectures.

C. Graph sparsification

To implement multiple pooling operations the graph must be
coarsened several times. Due to the connectivity preservation
property, by repeatedly applying Kron reduction the graph
eventually becomes fully-connected. This implies a high
computational burden in deeper layers of the network, since
the complexity of MP operations scales with the number of
edges.

To address this issue, it is possible to apply the spectral
sparsification algorithm proposed in [27] to obtain a sparser
graph. However, we found that this procedure leads to nu-
merical instability and poor convergence during the learning
phase. Therefore, to limit the number of edges with non-zero
weights we propose a sparsification procedure that removes
from the adjacency matrix of the coarsened graph the edges
whose weight is below a small user-defined threshold ε:

Ā(i) =

{
ā
(l)
ij = 0, if |a(l)ij | ≤ ε
ā
(l)
ij = a

(l)
ij , otherwise.

(9)

D. Pooling with decimation matrices.

To pool the node features with a differentiable operation that
can be applied while training the GNN, we multiply the graph
signal X(l) with a decimation matrix S(l) ∈ NNl+1×Nl . S(l) is
obtained by selecting from the identity matrix INl

∈ NNl×Nl

the rows corresponding to the vertices in V+:

X(l+1) = S(l)X(l) = [INl
]V+,: X

(l). (10)

As discussed in Sec. III-A, NDP approximately halves the
the nodes of the current graph at each pooling stage. This is
a consequence of the MAXCUT objective that splits the nodes
in two sets so that the volume of edges crossing the partition,
i.e., the edges to be cut, is maximized. Intuitively, if one of the
two sets is much smaller than the other, more edges are cut
by moving some nodes to the smaller set. For this reason, the
application of a single decimation matrix S(l) shares similarities
with a classic pooling with stride 2 in CNNs.

It follows that a down-sampling ratio of ≈ 2k can be obtained
in NDP by applying k decimation matrices in cascade. This
enables moving from level l to level l+k (k > 1) in the pyramid
of coarsened graphs. Fig. 2 shows an example of pooling with
downsampling ratio ≈ 8, where the GNN performs message-
passing on A(3) right after A(0).

Fig. 2. This example shows how it is possible to skip some MP operations
on intermediate levels of the pyramid of coarsened graphs. Such a procedure
shares analogies with pooling with a larger stride in traditional CNNs and can
be considered as a higher-order graph pooling. After the first MP operation
on A(0), the node features are pooled by applying in cascade 3 decimation
matrices, S(0), S(1), and S(2). Afterwards, it is possible to directly perform
a MP operation on A(3), skipping the MP operations on A(1) and A(2).

IV. ANALYSIS OF THE GRAPH COARSENING PROCEDURE
AND IMPLEMENTATION DETAILS

A. Numerical precision in eigendecomposition

0.2 0.0 0.2
0

50

Histogram of vmax

0.2 0.0 0.2
0

20
Histogram of vs

max

0 100 200 300
Node i (degree sorted)

0.5

0.0

v m
ax

(i)

0 100 200 300
Node i (degree sorted)

0.2

0.0

vs m
ax

(i)

Fig. 3. (Left) distribution and values assumed by vmax. (Right) distribution
and values assumed by vmax. The entries of the eigenvectors are sorted by
node degree. A Stochastic Block Model graph was used in this example.

The entries of vmax associated with low-degree nodes assume
very small values and their signs may be flipped due to
numerical errors. The partition obtained by using vsmax, i.e., the
eigenvector of the symmetric Laplacian Ls, in (6) is analytically
the same. Indeed, since vsmax = D−1/2vmax, the values of
the two eigenvectors are rescaled by positive numbers and,
therefore, the sign of their components is the same. However,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

a positive effect of the degree normalization is that the values
in vsmax associated to nodes with a low degree are amplified.

Fig. 3 compares the values in the eigenvectors vmax and vsmax,
computed on the same graph. Since many values in vmax are
concentrated around zero, partitioning the nodes according to
the sign of the entries in vmax gives numerically unstable results.
On the other hand, since the values in vsmax are distributed
more evenly the nodes can be partitioned more precisely.

Note that, even if the indexes of V+ are identified from
the eigenvector of Ls, the Kron reduction is still performed
on the Laplacian L. In the supplementary material we report
numerical differences in the size of the cut obtained on random
graphs when using vmax or vsmax.

B. Evaluation of the approximate MAXCUT solution

Since computing the optimal MAXCUT solution is NP-hard,
it is generally not possible to evaluate the quality of the cut
found by the proposed spectral method (Sect. III-A) in terms of
discrepancy from the MAXCUT. Therefore, to assess the quality
of a solution we consider the following bounds

0.5 ≤ MAXCUT

|E|
≤ λs

max

2
≤ 1. (11)

The value λs
max/2 is an upper-bound of MAXCUT/|E|, where

λs
max is the largest eigenvalue of Ls and |E| =

∑
i,j aij . The

lower-bound 0.5 is given by the random cut, which uniformly
assigns the nodes to the two sides of the partition.1 The
derivation of the upper-bound is in App. B.

To quantify the size of a cut induced by a partition vector
z, such as the one in (5), we introduce the function

0 ≤ γ(z) =
zTLz

2
∑
i,j aij

≤ MAXCUT

|E|
, (12)

which measures the proportion of edges cut by z. Note that
γ(·) depends also on L, but we keep it implicit to simplify the
notation.

Let us now consider the best- and worst-case scenarios.
The best case is the bipartite graph, where the MAXCUT is
known and it cuts all the graph edges. The partition z found
by our spectral algorithm on bipartite graphs is optimal, i.e.,
γ(z) = MAXCUT/|E| = 1. In graphs that are close to be bipartite
or, in general, that have a very sparse and regular connectivity, a
large percentage of edges can be cut if the nodes are partitioned
correctly. Indeed, for these graphs the MAXCUT is usually large
and is closer to the upper-bound in (11). On the other hand, in
very dense graphs the MAXCUT is smaller, as well as the gap
between the upper- and lower-bound in (11). Notably, the worst-
case scenario is a complete graph where is not possible to cut
more than half of the edges, i.e., MAXCUT = 0.5. We note that
in graphs made of a sparse regular part that is weakly connected
to a large dense part, the gaps in (11) can be arbitrarily large.

The proposed spectral algorithm is not designed to handle
very dense graphs; an intuitive explanation is that vsmax can be
interpreted as the graph signal with the highest frequency, since
its sign oscillates as much as possible when transiting from

1A random cut z is, on average, at least 0.5 of the optimal cut z∗: E[|z|] =∑
(i,j)∈E E[zizj] =

∑
(i,j)∈E Pr[(i, j) ∈ z] =

|E|
2
≥ |z

∗|
2

a node to one of its neighbors. While such oscillation in the
sign is clearly possible on bipartite graphs, in complete graphs
it is not possible to find a signal that assumes an opposite
sign on neighboring nodes, because all nodes are connected
with each other. Remarkably, the solution (5) found by the
spectral algorithm on very dense graphs can be worse than
the random cut. A theoretical result found by Trevisan [28]
states that a spectral algorithm, like the one we propose, is
guaranteed to yield a cut larger than the random partition only
when λsmax ≥ 2(1− τ) = 1.891 (see App. C for details).

To illustrate how the size of the cut found by the spectral
algorithm changes between the best- and worst-case scenarios,
we randomly add edges to a bipartite graph until it becomes
complete. Fig. 4 illustrates how the size of the cut γ(z) induced
by the spectral partition z changes as more edges are added
and the original structure of the graph is corrupted (blue line).
The figure also reports the size of the random cut (orange line)
and the MAXCUT upper bound from Eq. (12) (green line). The
black line indicates the threshold from [28], i.e., the value of
λ2max/2 below which the spectral cut is no longer guaranteed
to be larger than the random cut. The graph used to generate
the figure is a regular grid; however, similar results hold also
for other families of random graphs and are reported in the
supplementary material.

0.03 0.13 0.22 0.32 0.42 0.51 0.61 0.71 0.8 0.9 1.0
Edge density

0.0

0.2

0.4

0.6

0.8

1.0

spectral cut random cut s
max /2 1

Fig. 4. Blue line: fraction of edges cut by the partition yield by the spectral
algorithm. Orange line: fraction of edges removed by a random cut. Green
line: the MAXCUT upper bound as a function of the largest eigenvalue λsmax
of the symmetric Laplacian. Black line: the threshold from [28] indicating the
value of λsmax/2 below which one should switch to the random cut to obtain a
solution guaranteed to be ≥ 0.53·MAXCUT. The x-axis indicates the density
of the graph connectivity, which increases by randomly adding edges.

Fig. 4 shows that the spectral algorithm finds a better-than-
random cut even when λsmax/2 < 1− τ (i.e., when the result
from [28] does not hold), and only approaches the size of the
random cut when the edge density is very high (70%-80%).

Importantly, when the size of the spectral partition becomes
smaller than the random partition, the upper-bound λsmax/2 ≈
0.5, meaning that the random cut is very close to the MAXCUT.
To obtain a cut that is always at least as good as the random
cut, we first compute the partition z as in (5) and evaluate its
size γ(z): if γ(z) < 0.5, we return a random partition instead.

We conclude by noticing that, due to the smoothing effect
of MP operations, the nodes belonging to densely connected
graph components are likely to have very similar representations
computed by the GNN; it is, therefore, not important which
of these nodes are dropped by a random cut. The random cut
in these cases not only is optimal in terms of the MAXCUT

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

objective, but it also introduces stochasticity that provides
robustness when training the GNN model.

C. Pseudocode

The procedure for generating the pyramid of coarsened ad-
jacency matrices and the pooling matrices used for decimation
is reported in Alg. 1. L is a list of positive integers indicating
the levels in the pyramid of coarsened Laplacians that we want
to compute. For instance, given levels L = [1, 3, 5] for a graph
of N nodes, the algorithm will return the coarsened graphs
with approximately N/2, N/8, and N/32 nodes (in general,
N/2li for each li in L). Matrix R is a buffer that accumulates
decimation matrices when one or more coarsening levels are
skipped. This happens when the GNN implements high order
pooling, as discussed in Sect III-D.

Algorithm 1 Graph coarsening
Input: adjacency matrix A, coarsening levels L, sparsification threshold ε
Output: coarsened adjacency matrices Ā, decimation matrices S
1: A(0) = A, R = IN , A = {}, S = {}, l = 0
2: while l ≤ max(L) do
3: A(l+1),S(l+1) = pool(A(l))
4: if l ∈ L then
5: A = A ∪A(l+1), S = S ∪ S(l+1)R
6: R = INl
7: else
8: R = S(l+1)R
9: l = l + 1

10: Ā = {Ā(l) : ā
(l)
ij = a

(l)
ij if a(l)ij > ε and 0 otherwise, ∀A(l) ∈ A}

Alg. 2 shows the details of the pooling function, used in
line 3 of Alg. 1.

Algorithm 2 pool(·) function
Input: adjacency matrix A(l) ∈ RNl×Nl

Output: coarsened adjacency matrix A(l+1) ∈ RNl+1×Nl+1 , decimation
matrix S(l+1) ∈ NNl+1×Nl

1: get L(l) = D(l) −A(l) and L
(l)
s = I− (D(l))−

1
2 A(l)(D(l))−

1
2

2: compute the eigenvector vs
max of L(l)

s

3: partition vector z s.t. zi = 1 if vs
max[i] ≥ 0, zi = −1 if vs

max[i] < 0
4: if γ(z) < 0.5 then
5: random sample zi ∼ {−1, 1}, ∀i = 1, . . . , Nl (random cut)
6: V+ = {i : zi = 1}, V− = {i : zi = −1}
7: L(l+1) = L(l) \ L(l)

V−,V− (Kron reduction)

8: A(l+1) = −L(l+1) + diag(
∑

j 6=i L
(l+1)
ij)

9: S(l+1) = [INl+1
]V+,:

D. Computational cost analysis

The most expensive operations in the NDP algorithm are i)
the cost of computing the eigenvector vsmax, and ii) the cost of
inverting the submatrix LV−,V− within the Kron reduction.

Computing all eigenvectors has a cost O(N3), where N is
the number of nodes. However, computing only the eigenvector
corresponding to the largest eigenvalue is fast when using the
power method [29], which requires only few iterations (usually
5-10), each one of complexity O(N2). The cost of inverting
LV−,V− is O(|V−|3), where |V−| is the number of nodes that
are dropped.

We notice that the coarsened graphs are pre-computed before
training the GNN. Therefore, the computational time of graph

coarsening is much lower compared to training the GNN for
several epochs, since each MP operation in the GNN has a
cost O(N2).

E. Structure of the sparsified graphs

When applying the sparsification, the spectrum of the
resulting adjacency matrix Ā is preserved, up to a small factor
that depends on ε, with respect to the spectrum of A.

Theorem 1. Let Q be a matrix used to remove small values
in the adjacency matrix A, which is defined as

Q =

{
qij = −aij , if |aij | ≤ ε
qij = 0, otherwise.

(13)

Each eigenvalue ᾱi of the sparsified adjacency matrix Ā =
A + Q is bounded by

ᾱi ≤ αi + uTi Qui, (14)

where αi and ui are eigenvalue-eigenvector pairs of A.

Proof. Let P be a matrix with elements pij = sign(qij) and
consider the perturbation A+εP, which modifies the eigenvalue
problem Aui = αiui in

(A + εP)(ui + uε) = (αi + αε)(ui + uε). (15)

where αε is a small number and uε a small vector, which are
unknown and indicate a perturbation on αi and ui, respectively.
By expanding (15), then canceling the equation Aui = αiui
and the high order terms O(ε2), one obtains

Auε + εPui = αiuε + αεui. (16)

Since A is symmetric, its eigenvectors can be used as a
basis to express the small vector uε

uε =

N∑
j=1

δjuj , (17)

where δj are (small) unknown coefficients. Substituting (17)
in (16) and bringing A inside the summation, gives

N∑
j=1

δjAuj + εPui = αi

N∑
j=1

δjuj + αεui. (18)

By considering the original eigenvalue problem that gives
N∑
j=1

δjAuj =
N∑
j=1

δjαjuj and by left-multiplying each term

with uTi , (18) becomes

uTi

N∑
j=1

δjαjuj + uTi εPui = uTi αi

N∑
j=1

δjuj + uTi αεui. (19)

Since eigenvectors are orthogonal, uTi uj = 0,∀j 6= i and
uTi uj = 1, for j = i, Eq. (19) becomes

uTi δiαiui + uTi εPui = uTi αiδiui + uTi αiui,

uTi εPui = uTi αεui = αε,
(20)

which, in turn, gives

αε = uTi εPui ≥ uTi Qui, (21)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

as Q ≤ εP.

A common way to measure the similarity of two graphs
is to compare the spectrum of their Laplacians. To extend
the results of Theorem 1 to the spectra of the Laplacians L
and L̄, respectively associated with the original and sparsified
adjacency matrices A and Ā, it is necessary to consider the
relationships between the eigenvalues of A and L. For a d-
regular graph, the relationship λi = d − αi links the i-th
eigenvalue λi of L to the i-th eigenvalue αi of A [30]. However,
for a general graph it is only possible to derive a loose bound,
dmax − αn ≤ λn ≤ dmax − α1, that depends on the maximum
degree dmax of the graph [31, Lemma 2.21].

Therefore, we numerically compare the spectra of the
Laplacians associated with the matrices in A and Ā. In
particular, Fig. 5(top-left) depicts the spectrum of the Laplacian
associated to the original graph A(0) (black dotted line) and the
spectra Λ(L(1)), Λ(L(2)), Λ(L(3)) of the Laplacians associated
with A(1), A(2), and A(3). Fig. 5(top-right) depicts the spectra
of the Laplacians L̄(1), L̄(2), L̄(3) associated with the sparsified
matrices Ā(1), Ā(2), and Ā(3). It is possible to observe that
the spectra of L(l) and L̄(l) are almost identical and therefore,
to better visualize the differences, we show in Fig. 5(bottom)
the absolute differences |Λ(L(l))− Λ(L̄(l))|. The graph used
in Fig. 5 is a random sensor network and the sparsification
threshold is ε = 10−2, which is the one adopted in all our
experiments.

0 20 40 60 80 100
n

0.0

2.5

5.0

7.5

10.0

12.5 (L0)
(L1)

(L2)
(L3)

0 20 40 60 80 100
n

0.0

2.5

5.0

7.5

10.0

12.5 (L1)
(L2)

(L3)

0 20 40 60 80 100
n

0.00

0.01

0.02

0.03

0.04
| (L1) (L1)| | (L2) (L2)| | (L3) (L3)|

Fig. 5. Top-left: Spectrum of the Laplacians associated with the original
adjacency A(0) and the coarsened versions A(1), A(2), and A(3) obtained
with the NDP algorithm. Top-right: Spectrum of the Laplacians associated with
the sparsified adjacency matrices Ā(1), Ā(2), and Ā(3). Bottom: Absolute
difference between the spectra of the Laplacians.

To quantify how much the coarsened graph changes as a
function of ε, we consider the spectral distance that measures
a dissimilarity between the spectra of the Laplacians associated
with A and Ā [32]. The spectral distance is computed as

SD(L, L̄; ε) =
1

K

K+1∑
k=2

|λ̄k(ε)− λk|
λk

, (22)

where {λk}K+1
k=2 and {λ̄k(ε)}K+1

k=2 are, respectively, the K
smallest non-zero eigenvalues of L and L̄.

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

Sp
ec

tra
l d

ist
an

ce

1000

2000

3000

4000

No
n-

ze
ro

 e
dg

es

Fig. 6. In blue, the variation of spectral distance between the Laplacian L
and the Laplacian L̄, associated with the adjacency matrix A sparsified with
threshold ε. In red, the number of edges that remain in L̄.

Fig. 6 depicts in blue the variation of spectral distance
between L and L̄, as we increase the threshold ε used to
compute Ā. The red line indicates the number of edges that
remain in Ā after sparsification. It is possible to see that for
small increments of ε the spectral distance increases linearly,
while the number of edges in the graph drops exponentially.
Therefore, with a small ε it is possible to discard a large amount
of edges with minimal changes in the graph spectrum.

The graph used to generate Fig. 6 is a sensor network; results
for other types of graph are in the supplementary material.

V. RELATED WORK ON GRAPH POOLING

We discuss related work on GNN pooling by distinguishing
between topological and feature-based pooling methods.

a) Topological pooling methods: similarly to NDP, topo-
logical pooling methods pre-compute coarsened graphs before
training based on their topology. Topological pooling methods
are usually unsupervised, as they define how to coarsen the
graph outside of the learning procedure. The GNN is then
trained to fit its node representations to these pre-determined
structures. Pre-computing graph coarsening not only makes the
training much faster by avoiding to perform graph reduction
at every forward pass, but it also provides a strong inductive
bias that prevents degenerate solutions, such as entire graphs
collapsing into a single node or entire graph sections being
discarded. This is important when dealing with small datasets
or, as we show in the following section, in tasks such as graph
signal classification.

The approach that is most related to NDP and that has been
adopted in several GNN architectures to perform pooling [33],
[11], [34], [35], [36], consists of coarsening the graph with
GRACLUS, a hierarchical spectral clustering algorithm [37].
At each level l, two vertices i and j are clustered together in
a new vertex k. Then, a standard pooling operation (average
or max pool) is applied to compute the node feature x

(l+1)
k

from x
(l)
i and x

(l)
j . This approach has several drawbacks. First,

the connectivity of the original graph is not preserved in
the coarsened graphs and the spectrum of their associated
Laplacians is usually not contained in the spectrum of the
original Laplacian. Second, GRACLUS pooling adds “fake”
nodes so that they can be exactly halved at each pooling step;

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

this not only injects noisy information in the graph signal,
but also increases the computational complexity in the GNN.
Finally, clustering depends on the initial ordering of the nodes,
which hampers stability and reproducibility.

An alternative approach is to directly cluster the rows (or
the columns) of the adjacency matrix, as done by approach
proposed in [38], which decomposes A in two matrices
W ∈ RN×K and H ∈ RK×N using the Non-negative Matrix
Factorization (NMF) A ≈WH. The NMF inherently clusters
the columns of A since the minimization of the NMF objective
is equivalent to the objective in k-means clustering [39]. In
particular, W is interpreted as the cluster representatives matrix
and H as a soft-cluster assignment matrix of the columns in
A. Therefore, the pooled node features and the coarsened
graph can be obtained as X(1) = HTX and A(1) = HTAH,
respectively. The main drawback is that NMF does not scale
well to large graphs.

b) Feature-based pooling methods: these methods com-
pute a coarsened version of the graph through differentiable
functions, which are parametrized by weights that are optimized
for the task at hand. Differently from topological pooling, these
methods account for the node features, which change as the
GNN is trained. While this gives more flexibility in adapting
the coarsening on the data and the task at hand, GNNs with
feature-based pooling have more parameters; as such, training
is slower and more difficult.

DiffPool [40] is a pooling method that learns differentiable
soft assignments to cluster the nodes at each layer. DiffPool uses
two MP layers in parallel: one to update the node features, and
one to generate soft cluster assignments. The original adjacency
matrix acts as a prior when learning the cluster assignments,
while an entropy-based regularization encourages sparsity in
the cluster assignments. The application of this method to
large graphs is not practical, as the cluster assignment matrix
is dense and its size is N × K, where K is the number of
nodes of the coarsened graph.

A second approach, dubbed Top-K pooling [41], [42], learns
a projection vector that is applied to each node feature to
obtain a score. The nodes with the K highest scores are
retained, while the remaining ones are dropped. Since the
top-K selection is not differentiable, the scores are also used
as a gating for the node features, allowing gradients to flow
through the projection vector during backpropagation. Top-K
is more memory efficient than DiffPool as it avoids generating
cluster assignments. A variant proposed in [43] introduces in
Top-K pooling a soft attention mechanism for selecting the
nodes to retain. Another variant of Top-K, called SAGPool,
processes the node features with an additional MP layer before
using them to compute the scores [44].

VI. EXPERIMENTS

We consider two tasks on graph-structured data: graph
classification and graph signal classification. The code used
in all experiments is based on the Spektral library [45], and
the code to replicate all experiments of this paper is publicly
available at GitHub.2

2github.com/danielegrattarola/decimation-pooling

A. Graph classification

In this task, the i-th sample is a graph represented by the
pair {Ai,Xi} which must be classified with a label yi. We
consider 2 synthetic datasets (Bench-easy and Bench-hard)3

and 8 datasets of real-world graphs: Proteins, Enzymes, NCI1,
MUTAG, Mutagenicity, D&D, COLLAB, and Reddit-Binary.4

When node features X are not available, we use node degrees
and clustering coefficients as a surrogate. Moreover, we also
use node labels as node features whenever they are available.

In the following, we compare NDP with GRACLUS [11],
NMF [38], DiffPool [40], and Top-K [41]. In each experiment
we adopt a fixed network architecture, MP(32)-P(2)-MP(32)-
P(2)-MP(32)-AvgPool-Softmax, where MP(32) stands for a
MP layer as described in (1) configured with 32 hidden
units and ReLU activations, P(2) is a pooling operation with
stride 2, AvgPool is a global average pooling operation on
all the remaining graph nodes, and Softmax indicates a dense
layer with Softmax activation. As training algorithm, we use
Adam [46] with initial learning rate 5e-4 and L2 regularization
with weight 5e-4. As an exception, for the Enzymes dataset
we used MP(64).

Additional baselines are the Weisfeiler-Lehman (WL) graph
kernel [47], a GNN with only MP layers (Flat), and a network
with only dense layers (Dense). The comparison with Flat
helps to understand whether pooling operations are useful for
a given task. The results obtained by Dense, instead, help
to quantify how much additional information is brought by
the graph structure compared to considering the node features
alone. While recent graph kernels [48], [49], [50] and GNN
architectures [51], [52] could be considered as further baselines
for graph classification, the focus of our analysis and discussion
is on graph pooling operators and, therefore, we point the
interested reader towards the referenced papers.

To train the GNN on mini-batches of graphs with a variable
number of nodes, we consider the disjoint union of the graphs in
each mini-batch and train the GNN on the combined Laplacians
and graph signals. See the supplementary material for an
illustration.

We evaluate the model’s performance by splitting the dataset
in 10 folds. Each fold is, in turn, selected as the test set,
while the remaining 9 folds become the training set. For each
different train/test split, we set aside 10% of the training data
as validation set, which is used for early stopping, i.e., we
interrupt the training procedure after the loss on the validation
set does not decrease for 50 epochs.

We report in Table I the test accuracy averaged over the 10
folds. We note that no architecture outperforms every other in
all tasks. The WL kernel achieves the best results on NCI1
and Mutagenicity, but it does not perform well on the other
datasets. Interestingly, the Dense architecture achieves the
best performance on MUTAG, indicating that in this case,
the connectivity of the graps does not carry useful information
for the classification task. The performance of the Flat baseline

3https://github.com/FilippoMB/Benchmark_dataset_for_graph_
classification

4http://graphlearning.io

github.com/danielegrattarola/decimation-pooling
https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
http://graphlearning.io

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

TABLE I
GRAPH CLASSIFICATION ACCURACY. SIGNIFICANTLY BETTER RESULTS (p < 0.05) ARE IN BOLD.

Dataset WL Dense Flat Diffpool Top-K GRACLUS NMF NDP

Bench-easy 92.6 29.3±0.3 98.5±0.3 98.6±0.4 82.4±8.9 97.5±0.5 97.4±0.8 97.4±0.9

Bench-hard 60.0 29.4±0.3 67.6±2.8 69.9±1.9 42.7±15.2 69.0±1.5 68.6±1.6 71.9±0.8

Proteins 71.2±2.6 68.7±3.3 72.6±4.8 72.8±3.5 69.6±3.3 70.3±2.6 71.6±4.1 73.4±3.1

Enzymes 33.6±4.1 45.7±9.9 52.0±12.3 24.6±5.3 31.4±6.8 42.0±6.7 39.9±3.6 44.5±7.4

NCI1 81.1±1.6 53.7±3.0 74.4±2.5 76.5±2.2 71.8±2.6 69.5±1.7 68.2±2.2 74.2±1.7

MUTAG 78.9±13.1 91.1±7.1 87.1±6.6 90.5±3.9 85.5±11.0 84.9±8.1 76.7±14.4 87.9±5.7

Mutagenicity 81.7±1.1 68.4±0.3 78.0±1.3 77.6±2.7 71.9±3.7 74.4±1.8 75.5±1.7 77.9±1.4

D&D 78.6±2.7 70.6±5.2 76.8±1.5 79.3±2.4 69.4±7.8 70.5±4.8 70.6±4.1 72.8±5.4

COLLAB 74.8±1.3 79.3±1.6 82.1±1.8 81.8±1.4 79.3±1.8 77.1±2.1 78.5±1.8 79.1±1.3

Reddit-Binary 68.2±1.7 48.5±2.6 80.3±2.6 86.8±2.1 74.7±4.5 79.2±0.4 52.0±2.1 88.0±1.4

indicates that in Enzymes and COLLAB pooling operations
are not necessary to improve the classification accuracy.

NDP consistently achieves a higher accuracy compared to
GRACLUS and NMF, which are also topological pooling
methods. We argue that the lower performance of GRACLUS
is due to the fake nodes, which introduce noise in the graphs.
Among the two feature-based pooling methods, DiffPool always
outperforms Top-K. The reason is arguably that Top-K drops
entire parts of the graphs, thus discarding important information
for the classification [43], [24].

In Fig. 7, we report the training time for the five different
pooling methods. As expected, GNNs configured with GRA-
CLUS, NMF, and NDP are much faster to train compared to
those based on DiffPool and TopK, with NDP being slightly
faster than the other two topological methods. In Fig. 8, we
plot the average training time per epoch against the average
accuracy obtained by each pooling method on the 10 datasets
taken into account. The scatter plot is obtained from the data
reported in Tab. I and Fig. 7. On average, NDP obtains the
highest classification accuracy, slightly outperforming even
Diffpool, while being, at the same time, the fastest among all
pooling methods.

To understand the differences between the topological
pooling methods, we randomly selected one graph from the
Proteins dataset and show in Fig. 9 the coarsened graphs
computed by GRACLUS, NMF, and NDP. From Fig. 9(b)
we notice that the graphs A(1) and A(2) in GRACLUS have
additional nodes that are disconnected. As discussed in Sect. V,
these are the fake nodes that are added to the graph so that its
size can be halved at every pooling operation. Fig. 9(c) shows
that NMF produces graphs that are very dense, as a consequence
of the multiplication with the dense soft-assignment matrix to
construct the coarsened graph. Finally, Fig. 9(d) shows that
NDP produces coarsened graphs that are sparse and preserve
well the topology of the original graph.

B. Graph signal classification

In this task, different graph signals Xi, defined on the same
adjacency matrix A, must be classified with a label yi. We
use the same architecture adopted for graph classification,
with the only difference that each pooling operation is now
implemented with stride 4: MP(32)-P(4)-MP(32)-P(4)-MP(32)-
AvgPool-Softmax. We recall that when using NDP a stride of

TABLE II
GRAPH SIGNAL CLASSIFICATION ACCURACY ON MNIST.

DiffPool Top-K GRACLUS NMF NDP

24.00 ± 0.0 11.00 ± 0.0 96.21 ± 0.18 94.15± 0.17 97.09 ± 0.01

4 is obtained by applying two decimation matrices in cascade,
S(1)S(0) and S(3)S(2) (cf. Sec. III-D). We perform two graph
signal classification experiments: image classification on
MNIST and sentiment analysis on IMDB dataset.

MNIST. For this experiment, we adopt the same settings
described in [11]. To emulate a typical convolutional network
operating on a regular 2D grid, an 8-NN graph is defined on
the 28×28 pixels of the MNIST images, using as edge weights
the following similarity score between nodes:

aij = exp

(
−‖pi − pj‖

2

σ2

)
, (23)

where pi and pj are the 2D coordinates of pixel i and j. The
graph signal Xi ∈ R784×1 is the i-th vectorized image.

Tab. II reports the average results achieved over 10 inde-
pendent runs by a GNN implemented with different pooling
operators. Contrarily to graph classification, DiffPool and TopK
fail to solve this task and achieve an accuracy comparable to
random guessing. On the contrary, the topological pooling
methods obtain an accuracy close to a classical CNN, with
NDP significantly outperforming the other two techniques.

We argue that the poor performance of the two feature-
based pooling methods is attributable to 1) the low information
content in the node features, and 2) a graph that has a regular
structure and is connected only locally. This means that the
graph has a very large diameter (maximum shortest path), where
information propagates slowly through MP layers. Therefore,
even after MP, nodes in very different parts of the graph will
end up having similar (if not identical) features, which leads
feature-based pooling methods to assign them to the same
cluster. As a result the graph collapses, becoming densely
connected and losing its original structure. On the other hand,
topological pooling methods can preserve the graph structure
by operating on the whole adjacency matrix at once to compute

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

B-easy B-hard Proteins Enzymes NCI1 MUTAG Mutag D&D COLLAB Reddit-2k

10 1

100

101
Tr

ai
ni

ng
 ti

m
e

pe
r e

po
ch

 in
 lo

g(
s)

4.
48

4.
39

2.
55

1.
36

9.
07

0.
42

9.
96

3.
38

14
.6

9

6.
00

4.
96

4.
80

2.
96

1.
61

11
.0

3

0.
51

11
.5

2

3.
46

13
.9

5

7.
03

0.
24

0.
23

0.
13

0.
07

0.
47

0.
02

0.
47

0.
26

0.
91

0.
53

0.
24

0.
22

0.
13

0.
07

0.
45

0.
02

0.
48

0.
22

0.
81

0.
33

0.
20

0.
20

0.
12

0.
07

0.
43

0.
02

0.
46

0.
19

0.
54

0.
30

Diffpool TopK GRACLUS NMF NDP

Fig. 7. Average training time per epoch (in seconds) for different pooling methods. The bars height is in logarithmic scale. Simulations were performed with
an Nvidia RTX 2080 Ti.

0.0 2.5 5.0
Average time per epoch (s)

68

70

72

74

76

A
ve

ra
ge

 a
cc

ur
ac

y Diffpool

TopK

GRACLUS

NMF

NDP

Fig. 8. Average training time per epoch against average accuracy, computed
for each pooling method over the 10 graph classification tasks.

the coarsened graphs and are not affected by uninformative
node features.

IMDB. We consider the IMDB sentiment analysis dataset of
movies reviews, which must be classified as positive or negative.
We use a graph that encodes the similarity of all words in the
vocabulary. Each graph signal represents a review and consists
of a binary vector with size equal to the vocabulary, which
assumes value 1 in correspondence of a word that appears at
least once in the review, and 0 otherwise.

The graph is built as follows. First, we extract a vocabulary
from the most common words in the reviews. For each review,
we consider at most 256 words, padding with a special token
the reviews that are shorter and truncating those that are
longer. Then, we train a simple classifier consisting of a word
embedding layer [53] of size 200, followed by a dense layer
with a ReLU activation, a dropout layer [54] with probability
0.5, and a dense layer with sigmoid activation. After training,
we extract the embedding vector of each word in the vocabulary
and construct a 4-NN graph, according to the Euclidean
similarity between the embedding vectors.

As baselines, we consider the network used to generate the
word embeddings (Dense) and two more advanced architectures.
The first (LSTM), is a network where the dense hidden layer
is replaced by an LSTM layer [55], which allows capturing
the temporal dependencies in the sequence of words in the
review. The other baseline (TCN) is a network where the hidden

(a) Original graph.

A1 A2 A3

(b) GRACLUS coarsening.

A1 A2 A3

(c) NMF coarsening.

A1 A2 A3

(d) NDP coarsening.

Fig. 9. Example of coarsening on one graph from the Proteins dataset. In (a),
the original adjacency matrix of the graph. In (b), (c), and (d) the edges of
the Laplacians at coarsening level 0, 1, and 2, as obtained by the 3 different
pooling methods GRACLUS, NMF, and the proposed NDP.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

TABLE III
GRAPH SIGNAL CLASSIFICATION ACCURACY ON IMDB SENTIMENT ANALYSIS DATASET.

Words Dense LSTM TCN DiffPool Top-K GRACLUS NMF NDP

1k 82.65±0.01 86.58±0.03 85.61±0.14 50.00±0.0 50.00±0.0 85.03±0.10 82.51±0.11 85.77±0.03

5k 86.26±0.03 86.59±0.06 87.42±0.09 50.00±0.0 50.00±0.0 87.55±0.15 85.66±0.11 87.79±0.02

10k 83.75±0.02 85.98±0.04 87.38±0.07 50.00±0.0 50.00±0.0 87.29±0.07 OOM 87.82±0.02

layers are 1D convolutions with different dilation rates [56]. In
particular, we used a Temporal Convolution Network [57] with
7 residual blocks with dilations [1, 2, 4, 8, 16, 32, 64], kernel
size 6, causal padding, and dropout probability 0.3. The results
averaged over 10 runs for vocabularies of different sizes (#
Words) are reported in Tab. III.

Similarly to the MNIST experiment, we notice that neither
DiffPool nor TopK are able to solve this graph signal
classification task. The reason can be once again attributed to
the low information content of the individual node features
and in the sparsity of the graph signal (most node features
are 0), which makes it difficult for the feature-based pooling
methods to infer global properties of the graph by looking at
local sub-structures.

On the other hand, NDP consistently outperforms the base-
lines, GRACLUS, and NMF. The coarsened graphs generated
by NMF when the vocabulary has 10k words are too dense to
fit in the memory of the GPU (Nvidia GeForce RTX 2080).
Interestingly, the GNNs configured with GRACLUS and NDP
always achieve better results than the Dense network, even
if the latter generates the word embeddings used to build the
graph on which the GNN operates. This can be explained by
the fact that the Dense network immediately overfits the dataset,
whereas the graph structure provides a strong regularization,
as the GNN combines only words that are neighboring on the
vocabulary graph.

The LSTM baseline generally achieves a better accuracy
than Dense, since it captures the sequential ordering of the
words in the reviews, which also helps to prevent overfitting
on training data. Finally, the TCN baseline always outperforms
LSTM, both in terms of accuracy and computational costs.
This substantiates recent findings showing that convolutional
architectures may be more suitable than recurrent ones for
tasks involving sequential data [57].

VII. CONCLUSIONS

We proposed Node Decimation Pooling (NDP), a pooling
strategy for Graph Neural Networks that reduces a graph based
on properties of its Laplacian. NDP partitions the nodes into
two disjoint sets by optimizing a MAXCUT objective. The nodes
of one set are dropped, while the others are connected with
Kron reduction to form a new smaller graph. Since Kron
reduction yields dense graphs, a sparsification procedure is
used to remove the weaker connections.

The algorithm we proposed to approximate the MAXCUT

solution is theoretically grounded on graph spectral theory
and achieves good results while being, at the same time,
simple and efficient to implement. To evaluate the MAXCUT

solution, we considered theoretical bounds and we introduced
an experimental framework to empirically assess the quality
of the solution.

We demonstrated that the graph sparsification procedure
proposed in this work preserves the spectrum of the graph
up to an arbitrarily small constant. In particular, we first
derived an analytical relationship between the eigenvalues of
the adjacency matrix of the original and sparsified graphs.
Then, we performed numerical experiments to study how much
the spectrum of the graph Laplacian varies, in practice, after
sparsification.

We compared NDP with two main families of pooling
methods for GNNs: topological (to which NDP belongs) and
feature-based methods. NDP has advantages compared to both
types of pooling. In particular, experimental results showed
that NDP is computationally cheaper (in terms of both time
and memory) than feature-based methods, while it achieves
competitive performance on all the downstream tasks taken
into account. An important finding in our results indicates that
topological methods are the only viable approach in graph
signal classification tasks.

Acknowledgments

We are grateful to the anonymous reviewers for critically
reading our manuscript and for giving us important suggestions,
which allowed us to significantly improve our work.

APPENDIX

A. Kron reduction in graph with self-loops

If A contains self loops, the existence of the strict inequality
condition Lii >

∑n
j=1,j 6=i |Lij | discussed in Sec. III-B is

no more guaranteed. However, it is sufficient to consider the
loopy-Laplacian Q = D−A+2diag(A), where diag(A) is the
diagonal of A, defined as {Aii}Ni=1. Q is now an irreducible
matrix and Qii >

∑n
j=1,j 6=i |Qij |+Aii holds for at least least

one vertex i ∈ V+. We notice that the adjacency matrix can be
univocally recovered: A = −Q + diag({

∑N
j=1,j 6=i Qij}Ni=1).

Therefore, from the Kron reduction Q(1) of Q we can first
recover A(1) and then compute the reduced Laplacian as L(1) =
D(1) −A(1).

B. Derivation of the MAXCUT upperbound

Let us consider the Rayleigh quotient

r(z,L) =
zTLz

zT z
, (24)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

which assumes its maximum value λmax when z is the largest
eigenvector of the Laplacian L. When z is the partition vector
in (5), we have r(z,L) ≤ λmax. As shown in Sect. III-A, the
numerator in (24) can be rewritten as zTLz =

∑
i,j∈E aij(zi−

zj)
2 =

∑
i,j∈V+ aij(zi − zj)

2 +
∑
i,j∈V− aij(zi − zj)

2 +∑
i∈V+,j∈V− aij(zi − zj)2 = 0 + 0 +

∑
i∈V+,j∈V− aij2

2 =
4 · cut(z), since zi = 1 if i ∈ V+ and zi = −1 if i ∈ V−
according to (5), and where cut(z) is the volume of edges
crossing the partition induced by z. From (5) also follows that
the denominator in (24) is zT z = N , since z2i = 1,∀i. By
combining the results we obtain

4 · cut(z)

N
≤ λmax,∀z ∈ RN → MAXCUT ≤ λmax

N

4
. (25)

When considering the symmetric Laplacian Ls, we multiply
(24) on both sides by D−1/2, changing the denominator into
zTDz =

∑
i,i diiz

2
i = 2|E|. Replacing in (25) N with 2|E|

and λmax with λsmax, we get the bound MAXCUT/|E| ≤ λsmax/2.

C. Relationship with Trevisan [28] spectral algorithm

The main result in [28] states that if λsmax ≥ 2(1− τ), then
there exist a set of vertices V and a partition (V1,V2) of
V so that |e(V1,V2)| ≥ 1

2 (1
√

16τ)vol(V), where vol(V) =∑
i∈V di and e(V1,V2) are the edges with one endpoint in V1

and the other in V2. In cases where an optimal solution cuts
1− τ fraction of the edges, a partition found by a recursive
spectral algorithm will remove 1 − 4

√
τ + 8τ of the edges.

The optimal τ is value 0.0549 for which 1−4
√
τ+8τ

1−τ reaches
its minimum 0.5311. When the largest eigenvalue λsmax is too
small, the expected random cut is larger than the solution found
by the spectral algorithm. The analysis in [28] shows that the
spectral cut is guaranteed to be larger than the random cut
only when λsmax ≥ 2(1 − τ), i.e., when λsmax ≥ 1.891 given
the optimal value τ = 0.0549. Therefore, an algorithm that
recursively cuts a fraction of edges according to the values in
vsmax until λsmax ≥ 2(1− τ) and then performs a random cut,
finds a solution that is always ≥ 0.5311 MAXCUT.

REFERENCES

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, July 2017.

[2] Z. Zhang, D. Chen, Z. Wang, H. Li, L. Bai, and E. R. Hancock, “Depth-
based subgraph convolutional auto-encoder for network representation
learning,” Pattern Recognition, vol. 90, pp. 363–376, 2019.

[3] L. Bai, L. Cui, S. Wu, Y. Jiao, and E. R. Hancock, “Learning
vertex convolutional networks for graph classification,” arXiv preprint
arXiv:1902.09936, 2019.

[4] L. Bai, L. Cui, X. Bai, and E. R. Hancock, “Deep depth-based represen-
tations of graphs through deep learning networks,” Neurocomputing, vol.
336, pp. 3–12, 2019.

[5] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[6] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1263–1272.

[7] N. Tremblay, P. Goncalves, and P. Borgnat, “Design of graph filters and
filterbanks,” in Cooperative and Graph Signal Processing. Elsevier,
2018, pp. 299–324.

[8] D. I. Shuman, M. J. Faraji, and P. Vandergheynst, “A multiscale pyramid
transform for graph signals,” IEEE Transactions on Signal Processing,
vol. 64, no. 8, pp. 2119–2134, 2016.

[9] F. Chung, “Laplacians and the cheeger inequality for directed graphs,”
Annals of Combinatorics, vol. 9, no. 1, pp. 1–19, 2005.

[10] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE transactions on signal processing, vol. 61, no. 7, pp.
1644–1656, 2013.

[11] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances in
Neural Information Processing Systems, 2016, pp. 3844–3852.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning
Representations (ICLR), 2016.

[13] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903,
2017.

[14] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural net-
works with convolutional arma filters,” arXiv preprint arXiv:1901.01343,
2019.

[15] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[16] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Advances in Neural Information Processing Systems,
2017, pp. 1024–1034.

[17] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[18] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional networks,”
in European Semantic Web Conference. Springer, 2018, pp. 593–607.

[19] L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi, and A. Wiegele, “Computa-
tional approaches to max-cut,” in Handbook on semidefinite, conic and
polynomial optimization. Springer, 2012, pp. 821–847.

[20] M. X. Goemans and D. P. Williamson, “Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the ACM (JACM), vol. 42, no. 6, pp. 1115–
1145, 1995.

[21] F. M. Bianchi, E. Maiorino, L. Livi, A. Rizzi, and A. Sadeghian, “An
agent-based algorithm exploiting multiple local dissimilarities for clusters
mining and knowledge discovery,” Soft Computing, vol. 21, no. 5, pp.
1347–1369, 2017.

[22] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[23] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
Departmental Papers (CIS), p. 107, 2000.

[24] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with
graph neural networks for graph pooling,” in Proceedings of the 37th
International Conference on Machine Learning, 2020, pp. 2729–2738.

[25] F. Dorfler and F. Bullo, “Kron reduction of graphs with applications
to electrical networks,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 1, pp. 150–163, Jan 2013.

[26] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

[27] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng, “Spectral
sparsification of graphs: theory and algorithms,” Communications of the
ACM, vol. 56, no. 8, pp. 87–94, 2013.

[28] L. Trevisan, “Max cut and the smallest eigenvalue,” SIAM Journal on
Computing, vol. 41, no. 6, pp. 1769–1786, 2012.

[29] D. S. Watkins, Fundamentals of matrix computations. John Wiley &
Sons, 2004, vol. 64.

[30] J. Lutzeyer and A. Walden, “Comparing graph spectra of adjacency and
laplacian matrices,” arXiv preprint arXiv:1712.03769, 2017.

[31] P. Zumstein, “Comparison of spectral methods through the adjacency
matrix and the laplacian of a graph,” TH Diploma, ETH Zürich, 2005.

[32] A. Loukas, “Graph reduction with spectral and cut guarantees,” Journal
of Machine Learning Research, vol. 20, no. 116, pp. 1–42, 2019.

[33] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

[34] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, vol. 1, 2017, p. 3.

[35] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller, “Splinecnn: Fast
geometric deep learning with continuous b-spline kernels,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 869–877.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

[36] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Transactions on Signal Processing, vol. 67, no. 1, pp.
97–109, Jan 2019.

[37] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering
and normalized cuts,” in Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2004, pp. 551–556.

[38] D. Bacciu and L. Di Sotto, “A non-negative factorization approach to
node pooling in graph convolutional neural networks,” in Proceedings of
the 18th International Conference of the Italian Association for Artificial
Intelligence. AIIA, 2019.

[39] C. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative
matrix factorization and spectral clustering,” in Proceedings of the 2005
SIAM International Conference on Data Mining. SIAM, 2005, pp.
606–610.

[40] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning withdifferentiable pooling,”
arXiv preprint arXiv:1806.08804, 2018.

[41] S. J. Hongyang Gao, “Graph u-nets,” in Proceedings of the 36th
International conference on Machine learning (ICML), 2019.

[42] C. Cangea, P. Velicković, N. Jovanović, T. Kipf, and P. Liò, “Towards
sparse hierarchical graph classifiers,” in Advances in Neural Information
Processing Systems – Relational Representation Learning Workshop,
2018.

[43] B. Knyazev, G. W. Taylor, and M. Amer, “Understanding attention
and generalization in graph neural networks,” in Advances in
Neural Information Processing Systems 32. Curran Associates, Inc.,
2019, pp. 4202–4212. [Online]. Available: http://papers.nips.cc/paper/
8673-understanding-attention-and-generalization-in-graph-neural-networks.
pdf

[44] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proceedings
of the 36th International Conference on Machine Learning, 09–15 Jun
2019.

[45] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and
keras with spektral,” arXiv preprint arXiv:2006.12138, 2020.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations (ICLR), 2015.

[47] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Machine
Learning Research, vol. 12, no. Sep, pp. 2539–2561, 2011.

[48] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2015, pp. 1365–1374.

[49] A. Martino, A. Giuliani, and A. Rizzi, “(hyper) graph embedding and
classification via simplicial complexes,” Algorithms, vol. 12, no. 11, p.
223, 2019.

[50] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt,
“Wasserstein weisfeiler-lehman graph kernels,” in Advances in Neural
Information Processing Systems, 2019, pp. 6439–6449.

[51] L. Bai, L. Cui, Y. Jiao, L. Rossi, and E. Hancock, “Learning backtrackless
aligned-spatial graph convolutional networks for graph classification,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[52] J. Jiang, C. Xu, Z. Cui, T. Zhang, W. Zheng, and J. Yang, “Walk-
steered convolution for graph classification,” IEEE Transactions on Neural
Networks and Learning Systems, 2019.

[53] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in Neural Information Processing Systems, 2013, pp. 3111–
3119.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[56] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[57] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

http://papers.nips.cc/paper/8673-understanding-attention-and-generalization-in-graph-neural-networks.pdf
http://papers.nips.cc/paper/8673-understanding-attention-and-generalization-in-graph-neural-networks.pdf
http://papers.nips.cc/paper/8673-understanding-attention-and-generalization-in-graph-neural-networks.pdf

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

SUPPLEMENTARY MATERIAL

A. Cut size on regular and random graphs

In the following, we consider two different types of bipartite graphs, a regular grid and a ring graph, and four classes of
random graphs, which are the Stochastic Block Model (SBM), a sensor network, the Erdos-Renyi graph, and a community
graph. A graphical representation in the node space and the adjacency matrix of one instance of each graph type is depicted in
Fig. 10.

Regular grid Ring

Stochastic Block Model Sensor network

Erdos-Renyi Community graph

Fig. 10. Graphical representation and adjacency matrix of 2 regular graphs (Regular grid and Ring) and an instance of 4 random graphs (Stochastic Block
Model (SBM), Sensor network, Erdos-Renyi graph, and Community graph).

In Tab. IV we report the size of the cut γ(z) induced by the partition z, which is obtained with the proposed spectral
algorithm. We consider both the partitions obtained from the eigenvectors vmax and vsmax, associated with the largest eigenvalue
of the Laplacian L and the symmetric Laplacian Ls, respectively. The values in Tab. IV are the mean and standard deviation of
γ(z) obtained on 50 different instances of each class. We also report the MAXCUT upperbound, λs

max/2 and the size of the cut
induced by a random partition. Consistently better performance are obtained when the partition is based on vsmax rather than

TABLE IV
SIZE OF THE CUT OBTAINED WITH OUR SPECTRAL ALGORITHM ON DIFFERENT TYPES OF GRAPH. REPORTED IS THE MEAN AND STANDARD DEVIATION OF
THE CUT OBTAINED FROM vMAX AND vs

MAX ON 50 INSTANCES OF EACH GRAPH TYPE AND THE MAXCUT UPPERBOUND, λS
MAX/2. FOR COMPLETENESS, WE

SHOW ALSO THE RESULTS OBTAINED BY THE RANDOM CUT.

Grid Ring SBM Sensor Erdos-Renyi Community

MAXCUT upperbound 1.0 1.0 0.63±0.0 0.77±0.05 0.67±0.0 0.89±0.06
Cut with vmax 1.0 1.0 0.51±0.03 0.53±0.03 0.55±0.02 0.5±0.05
Cut with vs

max 1.0 1.0 0.58±0.01 0.58±0.02 0.61±0.0 0.54±0.04
Random cut 0.5±0.03 0.5±0.05 0.5±0.01 0.51±0.02 0.5±0.0 0.5±0.01

vmax; as discussed in Sect. IV-A, this is because many entries in vmax have small values that cannot be partitioned precisely
according to the sign, due to numerical errors. The results show that on the two regular graphs, which are bipartite, the cut
obtained with the spectral algorithm coincides with the MAXCUT upper bound and, therefore, also with the optimal solution. For
every other graph, the cut yielded by the spectral algorithm is always larger than the random cut. We recall that in those cases
the MAXCUT is unknown and the gaps between the lower bound (0.5) and the upper bound (λsmax/2) can be arbitrarily large.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 15

0.03 0.13 0.22 0.32 0.42 0.51 0.61 0.71 0.8 0.9 1.0
Edge density

0.0

0.2

0.4

0.6

0.8

1.0

spectral cut random cut s
max /2 1

(a) Regular grid

0.02 0.11 0.21 0.31 0.41 0.51 0.6 0.7 0.8 0.9 1.0
Edge density

0.0

0.2

0.4

0.6

0.8

1.0

spectral cut random cut s
max /2 1

(b) Ring graph

0.29 0.36 0.43 0.5 0.57 0.64 0.71 0.78 0.85 0.92 1.0
Edge density

0.0

0.2

0.4

0.6

0.8

1.0

spectral cut random cut s
max /2 1

(c) Stochastic Block Model

0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.9 1.0
Edge density

0.0

0.2

0.4

0.6

0.8

1.0

spectral cut random cut s
max /2 1

(d) Erdos-Renyi

0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.9 1.0
Edge density

0.0

0.2

0.4

0.6

0.8

1.0

spectral cut random cut s
max /2 1

(e) Sensor network

0.06 0.16 0.25 0.34 0.44 0.53 0.62 0.72 0.81 0.9 1.0
Edge density

0.0

0.2

0.4

0.6

0.8

1.0

spectral cut random cut s
max /2 1

(f) Community graph

Fig. 11. Blue line: fraction of edges cut by the partition yielded by the spectral algorithm. Orange line: fraction of edges removed by a random cut. Green
line: the MAXCUT upper bound λsmax/2. Black line: the threshold from [28] indicating the value of λsmax/2 below which one should switch to the random cut
to obtain a solution ≥ 0.53 MAXCUT. The x-axis indicates the density of the graph connectivity, which increases by randomly adding edges.

B. Spectral and random cut as a function of edge density

We replicate for each graph type the experiment in Sect. IV-B, which illustrates how the size of the cut obtained with the
proposed algorithm changes as we randomly add edges. Fig. 11 reports in blue the size of the cut associated with the partition
yielded by the spectral algorithm; in orange the size of the cut yielded by the random partition; in green the MAXCUT upper
bound; in black the theoretical threshold that indicates when to switch to the random partition to obtain a cut with size ≥ 0.53
MAXCUT.

The examples encompass the two extreme cases where the MAXCUT solution is known: a bipartite graph where MAXCUT is 1
and the complete graph where MAXCUT is 0.5. In every example, when λsmax becomes lower than 1 − τ the solution of the
spectral algorithm is still larger than the cut induced by the random partition. In fact, the spectral cut remains larger than the
random cut until when the density is approximately 70-80%. Importantly, when the solution of the spectral algorithm become
worse than the random cut, the MAXCUT upper bound is close to 0.5. Therefore, when the spectral cut is lower than 0.5 it is
possible to return the random partition instead, which yields a nearly-optimal solution.

C. Visual examples of coarsening with NDP pooling

Fig. 12 shows for the result of the NDP coarsening procedure on the 6 types of graphs. The first column shows the subset of
nodes of the original graph that are selected (V+, in red) and discarded (V−, in blue) after each pooling step. The second
column shows the coarsened graph obtained after each pooling operation. Finally, columns 3 and 4 show the coarsened graphs
after applying sparsification with different thresholds ε.

D. Spectral similarity in sparsified graphs

In Sec. IV-E we introduced the spectral similarity distance to quantify how much the spectrum of the Laplacian associated
with the sparsified adjacency matrix changes when edges smaller than ε are dropped. In Fig. 13 we show how the graph
structure (in terms of spectral similarity) varies, when the value of ε increases and more edges are dropped. In every example,
for small values of ε the structure of the graphs changes only slightly while a large amount of edges is dropped. Notably, the
spectral similarity increases almost linearly with ε, while the edge density decreases exponentially.

E. Mini-batch training

Problems such as graph classification and graph regression are characterized by samples of graphs that, generally, have a
variable number of vertices. In order to apply MP and pooling operations when training a GNN on mini-batches, one solution
is to perform zero-padding and obtain all graphs with Nmax vertices, where Nmax is the number of vertices in the largest graph
of the dataset. However, this solution is particularly inefficient in terms of memory cost, especially when there are many graphs
with less than Nmax vertices. A more efficient solution is to build the disjoint union of the graphs in each mini-batch and
train the GNN on the combined Laplacian and graph signal. This is the solution adopted in our experiments; Fig. 14 reports a
visualization of the procedure.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 16

1st pooling A(1) A(1) (=0.01) A(1) (=0.1)

2nd pooling A(2) A(2) (=0.01) A(2) (=0.1)

3rd pooling

+

A(3) A(3) (=0.01) A(3) (=0.1)

(a) Regular grid

1st pooling A(1) A(1) (=0.01) A(1) (=0.1)

2nd pooling A(2) A(2) (=0.01) A(2) (=0.1)

3rd pooling

+

A(3) A(3) (=0.01) A(3) (=0.1)

(b) Ring graph

1st pooling A(1) A(1) (=0.01) A(1) (=0.1)

2nd pooling A(2) A(2) (=0.01) A(2) (=0.1)

3rd pooling

+

A(3) A(3) (=0.01) A(3) (=0.1)

(c) Stochastic Block Model

1st pooling A(1) A(1) (=0.01) A(1) (=0.1)

2nd pooling A(2) A(2) (=0.01) A(2) (=0.1)

3rd pooling

+

A(3) A(3) (=0.01) A(3) (=0.1)

(d) Sensor network

1st pooling A(1) A(1) (=0.01) A(1) (=0.1)

2nd pooling A(2) A(2) (=0.01) A(2) (=0.1)

3rd pooling

+

A(3) A(3) (=0.01) A(3) (=0.1)

(e) Erdos-Renyi

1st pooling A(1) A(1) (=0.01) A(1) (=0.1)

2nd pooling A(2) A(2) (=0.01) A(2) (=0.1)

3rd pooling

+

A(3) A(3) (=0.01) A(3) (=0.1)

(f) Community graph

Fig. 12. Coarsened graphs obtained with the NDP algorithm. The 3rd and 4th column show graphs sparsified with different threshold ε.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 17

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0
Sp

ec
tra

l d
ist

an
ce

0

1000

2000

3000

4000

No
n-

ze
ro

 e
dg

es
(a) Regular grid

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l d

ist
an

ce

500

1000

1500

2000

No
n-

ze
ro

 e
dg

es

(b) Community graph

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

Sp
ec

tra
l d

ist
an

ce

1000

2000

3000

4000

No
n-

ze
ro

 e
dg

es

(c) Sensor network graph

Fig. 13. In blue, the variation of spectral distance between the Laplacian L associated with A and the Laplacian L̄ associated with the adjacency matrix Ā
sparsified with a varying threshold ε. In red, the number of edges that remain in L̄.

x
(0)

3

Conv1

Pool1

x
(1)

1

Conv2

Pool2 softmax

L
(0)

1

L
(0)

2

L
(0)

3

x
(0)

1 x
(0)

2

L
(1)

1

1/n1

1/n2

1/n3

L
(1)

2

L
(1)

3

x
(1)

2 x
(1)

3

x
(2)

1 x
(2)

2 x
(2)

3

n1 n2 n3

c2

c1

c3

Average pooling
matrix

Fig. 14. Example of the implementation used in the graph classification task, where the GNN is fed with a disjoint union of the graphs in mini-batch. The
illustration shows an example for a mini-batch of size three.

F. Training curves

Fig. 15 reports the evolution of the loss during training for 4 different graph classification datasets. Notice that in our
experiments we used early stopping. However, to provide a more extended profile of the training procedure, we show the
training curves obtained when the GNN is trained for 1000 epochs on different datasets.

0 200 400 600 800 1000
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Train.
Valid.

(a) Bench Hard

0 200 400 600 800 1000
Epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Train.
Valid.

(b) NCI1

0 200 400 600 800 1000
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train.
Valid.

(c) MUTAG

0 200 400 600 800 1000
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Train.
Valid.

(d) Mutagenicity

Fig. 15. Accuracy in training and validation over 1000 epochs on 4 different datasets. The curves are averaged over 10 runs per method and per dataset.

	Introduction
	Preliminaries
	Graph coarsening with Node Decimation Pooling
	Node decimation with MAXCUT spectral partitioning
	Links construction on the coarsened graph
	Graph sparsification
	Pooling with decimation matrices.

	Analysis of the graph coarsening procedure and implementation details
	Numerical precision in eigendecomposition
	Evaluation of the approximate MAXCUT solution
	Pseudocode
	Computational cost analysis
	Structure of the sparsified graphs

	Related work on graph pooling
	Experiments
	Graph classification
	Graph signal classification

	Conclusions
	Appendix
	Kron reduction in graph with self-loops
	Derivation of the MAXCUT upperbound
	Relationship with Trevisan trevisan2012max spectral algorithm

	References
	Cut size on regular and random graphs
	Spectral and random cut as a function of edge density
	Visual examples of coarsening with NDP pooling
	Spectral similarity in sparsified graphs
	Mini-batch training
	Training curves

