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G E O L O G Y

Exceptions to bed-controlled ice sheet flow and retreat 
from glaciated continental margins worldwide
Sarah L. Greenwood1*†, Lauren M. Simkins2†, Monica C. M. Winsborrow3†, Lilja R. Bjarnadóttir4†

Projections of ice sheet behavior hinge on how ice flow velocity evolves and the extent to which marine-based 
grounding lines are stable. Ice flow and grounding line retreat are variably governed by the coupling between the 
ice and underlying terrain. We ask to what degree catchment-scale bed characteristics determine ice flow and 
retreat, drawing on paleo-ice sheet landform imprints from 99 sites on continental shelves worldwide. We find that 
topographic setting has broadly steered ice flow and that the bed slope favors particular styles of retreat. However, 
we find exceptions to accepted “rules” of behavior: Regional topographic highs are not always an impediment to fast 
ice flow, retreat may proceed in a controlled, steady manner on reverse slopes and, unexpectedly, the occurrence of 
ice streaming is not favored on a particular geological substrate. Furthermore, once grounding line retreat is 
under way, readvance is rarely observed regardless of regional bed characteristics.

INTRODUCTION
Basal topography and substrate conditions are widely considered 
to be important controls on ice sheet flow and retreat, modulating 
behavior across entire catchments. However, few efforts assess the 
ubiquity with which these controls govern both the style of ice flow 
and retreat across many glacial systems, despite current concerns 
over ice sheet stability and reducing the uncertainty gap in predic-
tive ice sheet models.

Thermomechanical feedbacks on ice flow lead to the self-organization 
of ice sheets into discrete, fast-flowing ice streams and wider regions 
of slow flow. Numerical modeling indicates that, on a homogeneous 
bed, a radial pattern of ice streams emerges with regular spacing, 
but this spacing is disrupted in the presence of bed topographic or 
substrate heterogeneity (1–3). Bed topography steers ice streams (4) 
and sets up marine ice sheet instability (MISI; 5) by affecting ice 
thickness, flux, and buoyancy at marine-based grounding lines (6). 
Substrate geology dictates ice-bed coupling via basal resistance and 
feedbacks with the subglacial meltwater system either in the presence 
or absence of unconsolidated sediments (7–11).

Paleostudies from glaciated continental shelves similarly recognize 
first-order roles of topography and substrate geology, with evidence that 
grounded ice in different topographic settings (e.g., troughs and banks; 
Materials and Methods) behaves differently (12, 13) and that some bed 
substrates trigger predictable responses in the style and rate of ice 
flow and retreat (14). Crucially, these arguments imply that the first- 
order evolution of ice sheets may be predicted on the basis of their 
topographic and geological setting—a particular setting will support 
a particular, potentially unique style of ice flow or grounding line retreat.

Ever-increasing coverage of bathymetric data with meter to sub-
meter resolution and overlapping data survey lines on glaciated 
continental shelves reveals detailed landform assemblages that were 
shaped under flow and retreat regimes of marine-based ice sheet 
sectors during and since the Last Glacial Maximum (15). Here, we 

collate and analyze geomorphic records of ice flow and retreat from 
99 locations around the world (Fig. 1 and table S1) to assess the extent 
to which theoretical, numerical, and conceptual models of bed-driven 
ice behavior are valid. Across geographically variable environments 
(with respect to sea level, climate, and ocean conditions), we ask to 
what degree ice flow and retreat styles correspond systematically to 
their regional-scale bed settings. An overarching goal is to be able 
to determine bed properties, if any, under which we can expect con-
sistent (i.e., predictable) ice sheet behavior and conditions under 
which either flow or margin retreat is instead unpredictable.

Predicted bed controls on marine-based ice sheet behavior
Topographic landscape
Compared to surrounding areas, the thicker ice found within con-
fined topographic settings, like troughs and fjords (Materials and 
Methods), will have a lower pressure melting point, enhanced fric-
tional heat production, and a greater insulating capacity (16). These 
conditions promote enhanced basal sliding and ice deformation, 
while mass conservation dictates that topographic funneling should 
drive along-flow ice acceleration. In contrast, banks (i.e., regional- 
scale topographic highs) are often associated with thinner and 
diverging ice; their relatively restricted catchments and weaker 
thermomechanical feedback inhibit basal melting and ice deforma-
tion compared to troughs and fjords. Broad basins may lead to flow 
convergence but lack strong topographic funneling that would lead 
to flow acceleration. We therefore predict that troughs and fjords 
are associated with streaming ice flow and warm-based conditions 
and that banks and basins more commonly house nonstreaming ice 
flow with more variable thermal regimes.

Laterally confined ice systems will experience enhanced lateral 
drag compared with ice in unconfined settings (17). Ice margin 
stabilization will therefore be particularly strong through narrow 
trough sections (18). Such confined topography will also favor the 
formation of buttressing ice shelves, which, in turn, stabilize ice 
margins by reducing grounding line ice flux (19). On the other hand, 
the relatively greater water depth in troughs drives the grounding line 
toward buoyancy and provides pathways for warm water incursion 
toward the grounding line (20, 21), while shallower bank settings 
suppress these processes and should favor more stable grounding lines. 
We predict that both lateral stresses and depth-related processes are 
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influential in (de)stabilizing ice margins; however, the response de-
pends on the relative magnitude between the two.
Bed slope
While ice surface slope is the greater driver of ice flow (16), the di-
rection of regional bed slope with respect to ice flow direction (i.e., 
aspect) should also affect ice flow regime via its influence on gravi-
tational driving stress, leading to accelerated ice flow on normal 
slopes. On reverse (i.e., retrograde) beds, driving stress is offset by 
basal resistance of ice flow onto a shallowing bed (6). We predict 
more cases of streaming flow velocities on regionally normal bed 
slopes than on reverse beds and more variable flow conditions on 
beds with mixed bed slopes.

The MISI theory states that a bed that is below sea level and that 
deepens toward the ice divide cannot have a stable ice sheet ground-
ing line (5). Ever thicker ice is required to maintain grounding during 
retreat, while the discharge flux simultaneously increases because of 
the greater ice thickness at the grounding line. Without a match in 
upstream accumulation, thinning and retreat propagate inland into 
yet deeper water. However, spatiotemporally variable bed condi-
tions, ice shelf buttressing, and lateral drag may offset the tendency 
of marine-based grounding lines to irreversibly retreat on reverse 
beds (18, 22, 23). In the absence of such modulation, we predict 
that paleo-observations demonstrate large-scale, unhindered retreat 
across reverse beds.
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Fig. 1. Distribution of sites (99) from which high-resolution bathymetric data are available and from which we have analyzed glacial landform assemblages. 
Sites in the Northern Hemisphere (A, B, and D) and Southern Hemisphere (C) are characterized by their regional topographic setting (troughs, fjords, basins, and banks). 
Numbers correspond to site numbers in table S1 and are referenced in subsequent figures. Topography and bathymetry are from ETOPO global terrain model. Last Glacial 
Maximum extent after (54, 55).
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Substrate geology
Through ice deformation alone, rates of ice flow velocity do not ex-
ceed a few tens of meters per year (24); therefore, faster ice flow of 
hundreds to thousands of meters per year requires basal sliding 
and/or subglacial sediment deformation (16). Basal motion is a fun-
damental function of basal friction and effective pressure (16, 25). 
Substrate geology plays a crucial role in determining frictional resist-
ance to flow (25), the ease of erosion, and whether subglacial sedi-
ments support pressurized meltwater at the bed (7, 10, 26). Recent 
experimental and modeling studies demonstrate that high velocities 
may, in fact, occur on both rigid- and soft-sediment substrates when 
basal water pressure is high and/or the yield strength of till is ex-
ceeded, such that the high flow speeds become insensitive to basal 
resistance (10, 11, 27, 28). Nonetheless, both modern and paleo- 
observations suggest that ice streaming is most commonly supported 
by saturated subglacial sediments (7, 9, 14, 26). We predict crystal-
line bedrock at the ice-bed interface is preferentially associated with 
nonstreaming ice flow in the absence of a deformable bed and en-
hanced frictional resistance, while unlithified sediments and lithified 
sedimentary bedrock are preferentially associated with streaming 
ice flow. Because of greater potential for basal traction and reduced 
ice flux, we predict that crystalline beds also have a stabilizing effect 
on the grounding line.

Characterizing glacial “modes” and bed settings
We test this series of predictions using geographically diverse, gla-
cial landform-based datasets from the world’s glaciated continental 
margins (Figs. 1 and 2 and table S1). On the basis of landform as-
semblages, we identify unique combinations of basal thermal regime 
and ice flow and retreat styles (Fig. 2) and refer to these combina-
tions as a “glacial mode” (table S1 and Materials and Methods). Our 
approach assumes that glacial modes manifest as discernible land-
forms and therefore favors the most recent and most geomorpho-
logically active modes of ice flow and retreat.

Basal thermal regime is classified as warm-based, mixed warm- 
and cold-based, or indiscernible (Fig. 2A). We identify warm-based 
ice by the presence of bedforms and landforms indicating ice flow 
and bed deformation such as, but not limited to, glacial lineations, 
grounding zone wedges, and basal meltwater landforms. Mixed 
thermal regimes are recognized by the interspersion of bedforms/
landforms associated with warm- and cold-based ice, such as glacio-
tectonic landforms (29, 30).

Ice flow regime is categorized as streaming, nonstreaming, and 
indiscernible (Fig. 2B), predominantly on the basis of the form and 
distribution of subglacial bedforms. Mega-scale glacial lineations are 
widely considered diagnostic of paleo-ice streams (31, 32), and, while 
understanding of their formation remains incomplete, their greater 
length and elongation appears related to low basal shear stress and/
or sustained high ice flow velocities (33–35). Conversely, drumlins 
and ribbed moraines commonly occur in regions of slower flow or 
ice stream onsets, while short lineations interspersed with longer 
varieties are interpreted as “immature” individuals (34, 36, 37). We 
therefore identify former streaming by the presence of bundles of 
mega-scale glacial lineations (31, 33) or streamlined bedrock features 
such as megagrooves and ridges (38). Nonstreaming or, qualitatively, 
“moderate” flow is denoted by ribbed moraines, drumlins, and gla-
cial lineations limited in size, extent, and/or distribution (Fig. 2B), 
while the presence of grounding line landforms alone also indicates 
that till had been mobilized by flowing ice.

Retreat style is classed as consistent, inconsistent, featuring a 
readvance where a grounding line landform overrides a prior re-
treat assemblage, and indiscernible where grounding line landforms 
are lacking (Fig. 2C). The consistency of retreat events is the most 
objective property to infer from landform data rather than a relative 
rate (e.g., slow, rapid). Consistency is arguably more instructive, as 
it informs predictability of behavior in response to forcing. We con-
sider grounding line retreat to be consistent if both the size and 
spacing of individual grounding line landforms are similar (i.e., 
within the same order of magnitude) to the preceding and following 
landforms and inconsistent if size and spacing are otherwise variable.

Our dataset comprises 99 formerly glaciated sites from both con-
temporary and Quaternary ice sheets, distributed across troughs 
(n = 51), fjords (n = 13), basins (n = 8), and banks (n = 27; Materials 
and Methods, Fig. 1, and fig. S1). In each case, the predominant trend 
in catchment-scale bed slope is characterized as normal (deepening 
in direction of ice flow and shallowing in direction of retreat) or 
reverse (shallowing in direction of ice flow and deepening in direc-
tion of retreat) (fig. S1). Where variations in slope preclude a 
straightforward characterization, we consider these bed slopes vari-
able. The geology of the substrate is broadly characterized as unlith-
ified sediment, lithified sedimentary bedrock, or crystalline (igneous/
metamorphic) bedrock (Materials and Methods). We note cases of 
transition across combinations of these broad substrate classes and, 
for the purposes of first-order analysis, group these cases represent-
ing a “hard”-“soft”substrate transition, where hard and soft refer to 
the ease with which the substrate can be eroded and mobilized. Where 
high-frequency variability in substrate precludes any of these classi-
fications, we consider these beds as otherwise variable. We recog-
nize, however, that any single classification may include occasional 
patchiness and that such local variability may be important for indi-
vidual landform generation (38).

RESULTS
Of the 99 geographic sites that we examined (Fig. 1), we recognize a 
total of 198 distinct glacial modes consisting of unique combinations 
of thermal regime and ice flow and retreat styles, representing an 
average of 2.00 unique glacial modes per site. The mean number of 
glacial modes in troughs (1.96), fjords (2.00), and banks (1.78) is 
rather consistent, while the maximum number (4) of glacial modes 
per site is the same for all settings except for a single trough with five 
glacial modes. These results indicate that regional topography does 
not dictate the diversity of thermal regime and flow and retreat be-
havior (Fig. 3A); all topographic types have the potential to host 
equally diverse glacial behavior.

Topographic controls on glacial modes
The overwhelming majority of glacial modes (94%, n = 186) across 
all topographic types show evidence of warm-based ice (Fig. 3B). 
The few examples of glacial modes with mixed warm- and cold-
based thermal regimes (n = 5) occur in troughs and on banks, and 
glacial modes with indiscernible thermal regime (n = 7) occur in all 
settings except basins.

Most of the glacial modes occurring in troughs are characterized 
by streaming ice flow (72%; Fig. 3C). Streaming cases are overrepre-
sented in troughs compared to both the proportion of trough as-
semblages (53%) and of all streaming examples (56%) in our dataset. 
Fifty-eight percent of identified glacial modes in fjords feature 
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streaming flow. These findings support our earlier prediction that 
topographic funneling should favor faster (i.e., streaming) flow. Of 
all glacial modes observed on banks, just under half (46%) are inter-
preted as nonstreaming flow, and these moderate flow cases are 

overrepresented on banks compared to both the proportion of bank 
assemblages (24%) and of moderate flow (28%) in our dataset. Un-
expectedly, however, a quarter of bank flow modes (25%) are classi-
fied as streaming.
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Fig. 2. Landform-based examples of glacial modes from glaciated continental shelves. (A) Thermal regime is classified as warm based, mixed warm and cold based, 
and indiscernible. For example, warm-based conditions are represented by sediment-based subglacial channels and mixed thermal regimes are indicated by rafted sediment 
blocks. (B) Ice flow regime is classified as streaming, nonstreaming, or indiscernible. For example, streaming is indicated by the presence of mega-scale glacial lineations, 
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All styles of grounding line retreat, except for readvance, are found 
in substantial proportions (19 to 50%) in all topographic landscape 
types (Fig. 3D), on which basis we find that a topographic setting 
does not uniquely host a particular style of retreat. Yet, inconsistent 
retreat occurs more commonly in troughs (42% of trough cases) than 
it does in fjords, basins, and on banks (19 to 25% of cases in these 
settings). Half of all banks, meanwhile, host consistent grounding 
line retreat, while this setting and this retreat style account for just 
24 and 32% of their respective classification groups. Nonetheless, of 
all consistent retreat cases, a greater proportion in fact occurs in 
troughs (43%) than on banks (38%), revealing ambiguous topographic 
control on the occurrence of consistent grounding line retreat be-
havior. Only 5% of the glacial modes in our dataset show evidence 
of grounding line readvance, indicating either genuine rarity of such 
behavior during deglaciation or the difficulty in recognizing it in the 
paleogeomorphic record where an earlier retreat assemblage may 
have been obscured or erased.

Bed slope controls on glacial modes
All bed slopes host all flow regimes (Fig. 4, A and B). Different flow 
styles occur more equally on normal slopes than they do on reverse 
slopes, where moderate flow is rare (only 10% of reverse slopes and 
7% of all moderate flow cases) and where stream flow is instead 
overrepresented (73% of reverse slopes; Fig. 4, A and B). This sug-
gests that reverse bed slopes—despite lower driving stresses—are 
associated with faster flow. Streaming itself is not, however, contin-
gent upon there being a reverse bed.

Bed slope is a poor predictor of retreat style: All slope settings 
show all types of retreat in similar proportions (Fig. 4C). Reverse 
bed slopes have received considerable attention in the context of 
grounding line retreat, suggested to be inherently unstable (5), 
although retreat may be modulated by local topography, bed condi-
tions, and ice shelf buttressing (22, 23). Our dataset indicates that 
75% of glacial modes reported from reverse-sloping beds are associ-
ated with either inconsistent retreat or retreat unmarked by ground-
ing line landforms, consistent with how we predict MISI-like retreat 
to manifest in the landform record. These retreat styles themselves 
are, however, not limited to reverse slope settings and are rather 
evenly distributed across different topography (Fig. 4C). Across all 
reverse-sloping sites studied here, no examples of glacial readvance 
were identified. Notably, the remaining 25% of reverse bed cases 

(n = 10) house consistent grounding line retreat in which the mag-
nitude of each backstep and sedimentation at the grounding line 
remains similar across a retreat sequence.

Normal-sloping beds host a diversity of retreat styles, but consist-
ent retreat is most common (42% of normal beds), with a slight 
overrepresentation of this retreat style compared to the whole 
dataset (32%). Both inconsistent retreat and indiscernible retreat 
are also relatively common on normal slopes, accounting for 28 and 
25% of these settings, respectively (Fig. 4C). We therefore find that, 
while certain retreat styles are favored on certain bed slopes, the 
direction of slope is not a universal determinant of grounding line 
retreat style.

Substrate controls on glacial modes
The frequency with which different flow regimes occur on different 
geological substrates very closely mirrors the occurrence of those 
substrate types across our whole dataset (Fig. 4, D and E). Stream 
flow, in particular and rather unexpectedly, shows little preferential 
occurrence or absence on any substrate type (notwithstanding the 
six cases where substrate geology is highly variable). Moderate flow 
shows some underrepresentation among unlithified substrates and 
overrepresentation on those that transition between hard and soft 
(Fig. 4E), perhaps supporting the hypothesis that acceleration can 
be facilitated by the presence of or a transition to soft sediments, but 
this is not reflected in the stream data themselves. Crystalline beds 
favor cases of indiscernible flow over moderate flow but, unexpect-
edly, exhibit streaming flow in proportions equal to both the occur-
rence of crystalline beds and the occurrence of streams in our 
complete dataset.

Consistent, inconsistent, and indiscernible retreat unmarked by 
landforms each account for just under one-third of our dataset. As 
in the case of flow style, the frequency with which different substrates 
support different modes of retreat closely mirrors the occurrence of 
those retreat styles across the entire dataset (Fig. 4F). Only crystal-
line beds (7% of our dataset) deviate from the overall distribution, 
favoring retreat in the absence of grounding line landforms (57% of 
crystalline beds) over inconsistent retreat (just 14%); consistent re-
treat is neither under- nor overrepresented on hard beds compared 
to other substrates. We find that the style of margin retreat—whether 
consistent, inconsistent, readvancing, or unmarked—is largely in-
sensitive to the type of substrate.
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DISCUSSION
Insensitivity of thermal regime
The overwhelming predominance of warm-based glacial modes in 
our dataset indicates an insensitivity of thermal regime to topographic 
or substrate setting (Fig. 3B). While our landform-based approach 
is inherently biased toward conditions that favor basal sediment 
mobility and construction of a variety of landforms, we do identify 
landforms associated with basal freeze-on (e.g., hill-hole pairs and 
rafted sediment blocks; Fig. 2A) and thus, at least, a mixed basal 
thermal regime (30). The fact that these are rarely observed suggests 
that, despite the acknowledged bias in our approach, warm-based ice 
dominates deglacial systems on continental margins, notwithstanding 
topography and bed substrate. This insensitivity of thermal regime 
is despite the variability in geothermal heat flux that we can expect 
across our geographically diverse database.

Controls on ice flow
Our analysis broadly confirms the predicted role of catchment-scale 
topography, finding that ice streams are overrepresented in troughs 
and fjords, while nonstreaming, moderate flow dominates bank set-
tings. However, these relationships are not exclusive: Streaming flow 
is not limited to troughs and fjords but rather occurs in all topo-
graphic settings, and likewise, troughs and fjords are not always 
associated with streaming flow.

Contrary to our prediction, 25% of bank flow modes are charac-
terized by streaming ice flow (Fig. 3C). Closer examination of these 
cases reveals that they encompass a variety of geographic settings: 
the East Antarctic margin, Ross Sea, Norwegian margin, and 
Barents Sea (table S1). We find that banks that permit streaming are 
lower in amplitude (both in absolute terms and scaled according to 
their width) than banks on which moderate flow occurs, while these 
streams drain substantially larger catchments and are positioned a 
much greater distance from the ice divide than cases of nonstream-
ing, moderate flow on banks (Fig. 5). The larger catchment size im-
plies that streams occurring on banks may not be initiated on the 
bank itself but rather reflect ice streams with high supply exceeding 
the capacity of adjacent or upstream troughs/fjords. There appears 
to be an amplitude:width threshold of ~2.5 m/km, below which 
banks host streaming flow, indicating that the sensitivity of ice flow 
to bed routing can be overcome. A scale dependency similarly dis-
tinguishes smaller ice rumples with faster ice flow velocities in con-
temporary ice shelves compared to slower and more variable flow of 
larger ice rises (39); impedance to flow depends on the size of 
the obstacle.

Our data reject the prediction that normal bed slopes more com-
monly support streaming ice flow than do reverse slopes (Fig. 4, A and B). 
We find instead that regional-scale reverse beds primarily host 
streaming flow and that these very rarely experience moderate flow, 
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which is instead overrepresented on normal bed slopes. This indi-
cates that the driving stress relationship with bed aspect is not a 
fundamental determinant of ice flow speed. We suggest that several 
potential effects may operate here. Reverse bed slopes occur over-
whelmingly in troughs (table S2), which, in turn, favor ice streaming 
(Fig. 3C), suggesting that bed aspect is likely subordinate to wider 
topographic setting as a control on ice flow style. Second, the distri-
bution of streaming on different bed slopes deviates only minimally 
from the occurrence of different bed slope classes in our full dataset, 
whereas moderate flow clearly favors normal slopes. This would sug-
gest that the faster the ice flow, the less sensitive it may be to under-
lying bed slope; once operational, other factors sustain ice streaming 
and any sensitivity to bed aspect is overcome. Furthermore, MISI 
predicts (5, 6) and observations confirm [e.g., (40, 41)] that ground-
ing line retreat on a reverse slope can trigger dynamic thinning and 
flow acceleration: In this way, evolving flow style is not wholly inde-
pendent of retreat behavior.

Streaming landform assemblages show no preferential occurrence 
or absence on any substrate type (Fig. 4, D and E). Contrary to our 
expectations and previous findings [cf. (7, 9, 14)], therefore, we find 
that streaming flow is not dictated by substrate geology alone. That 
streaming flow can be maintained on all substrates is, in fact, con-
sistent with some observations of ice streams on hard beds (38, 42) 
and with developments in sliding law theory demonstrating that, at 
high velocities, sliding becomes insensitive to basal drag even on hard 
beds [i.e., Coulomb-like sliding behavior (11, 27)]. Above a threshold 
velocity, the bed no longer increases its resistance to sliding and 
stream flow can attain speeds independent of the substrate-determined 
basal drag. Our results not only support these theoretical develop-
ments but additionally demonstrate that the likelihood of ice stream-
ing is independent of the type of substrate geology on which it rests. 
A particular substrate geology is not more or less likely to support 
ice streaming velocities than another.

In our dataset, streaming on crystalline beds tends to occur in 
negative relief settings where the amplitude of the topography pref-
erentially funnels flow and drives acceleration. However, on uncon-
solidated beds, we must look beyond topographic setting to explain 
why streaming ice flow is not preferential as expected. Streaming 
can be expected when basal friction and/or effective pressure is low, 

conditions that are facilitated when the bed is saturated. Basal drag 
is reduced on impermeable (hard) beds where basal water pressure 
is sufficient to fill cavities (27). On unconsolidated (soft) beds, high 
basal water pressures weaken till resistance (shear strength) and en-
hance both slip and shear deformation of the till (10, 26, 28). Therefore, 
while the geology of the substrate determines the specific mechanism 
for driving fast flow and the requisite water volumes and time for 
saturation, a high meltwater supply facilitates, qualitatively, the same 
flow style. We hypothesize that ice stream occurrence is more con-
tingent on the supply of meltwater than the particular substrate with 
which it interacts.

Controls on ice retreat
Regional topographic setting (troughs, fjords, basins, or banks) alone 
does not define the style of grounding line retreat, with all observed 
styles (except readvance) common in all settings (Fig. 3D). We sug-
gest that both the unpredictability of retreat style across all settings 
and, in fact, the two trends that do, albeit weakly, meet our expecta-
tions point to variability in the relative importance of lateral and 
basal drag [cf. (17, 43)]. Banks are laterally unconfined but shallow 
(often systematically shallowing), giving dominance to basal drag 
and a predictable, consistent pattern of retreat. On the other hand, 
the tendency for an inconsistent pattern of retreat in troughs arises 
from the opposing and often spatiotemporally variable effects of 
lateral confinement and depth-modulated basal pressure. Common 
occurrence of other retreat styles in both settings further suggests 
that relative balance between lateral and basal effects is not straight-
forward. Notable is that indiscernible retreat, unmarked by ground-
ing line landforms— perhaps lacking pinning at all—is encountered 
in at least 25% of all cases in both bank and trough settings (Fig. 3D). 
While regional-scale topographic setting is a poor predictor of 
grounding line retreat style, local-scale topography (i.e., pinning 
points and topographic constrictions) appears important for reliable 
characterization of retreat style [cf. (18, 44)].

We can, in part, confirm our prediction of bed slope–modulated 
retreat style: 75% of modes on reverse slopes exhibit an inconsistent 
grounding line retreat pattern or do not record grounding line land-
forms. Retreat proceeds in an irregular (unstable) manner or without 
sufficient pause or sufficient sediment to generate landforms at the 
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grounding line. This is in accordance with the theory of MISI on 
bed slopes that deepen inland: Reverse slopes undergo a threshold 
response to forcing and/or are governed by sporadic pinning points 
to produce an inconsistent pattern of grounding line change. While 
we are cautious about interpreting rates of retreat from the spatial 
pattern of grounding line landforms (or lack thereof), it is possible 
that some of our documented cases represent collapse of the 
marginal zone of the catchment.

The common occurrence of inconsistent and unmarked retreat 
on reverse slopes is not, however, an exclusive occurrence: Both styles 
of retreat occur widely in other slope settings (Fig. 4C). If unmarked 
retreat can be interpreted as a consequence of decoupling from the 
bed, then a reverse bed slope is not a precondition for triggering 
such a collapse. Conversely, 25% of retreat cases on reverse slopes 
undergo regular, consistent (predictable) retreat, and these cases 
therefore exhibit an element of control or resilience in a system that 
theoretically should not be present because of slope alone (5, 6) but 
may be buffered by other factors (22, 23). There is no single factor 
in our dataset that satisfactorily explains the exhibited resilience, but 
we find that, in these cases, the mean ratio of relief amplitude to 
width (i.e., steepness and narrowness of the topography) is greater 
than cases of other retreat styles or in other slope settings, and 
catchment sizes are typically larger (Fig. 6). In other words, when 
supply of ice to the grounding line can be sustained, and where lateral 
pinning is effective and systematic, retreat may proceed steadily even 
on a deepening slope that should theoretically accelerate retreat 
[e.g., (18)]. However, if we consider a grounding line readvance to 
represent an even greater degree of system resilience, then it is 
notable that we, first, rarely detect this behavior in the landform 
record and, second, do not detect any instances of readvance on 
reverse bed slopes.

Unexpectedly, we find that the style of grounding line retreat is 
largely insensitive to the type of substrate (Fig. 4F). Model sensitivity 
testing (44, 45) has shown that soft (i.e., rheologically plastic) beds 
may, in the short term, slow retreat because thinning (melt) is 
quickly spread over a wider area, upstream of the grounding line. 
However, since a large area then thins toward flotation, this primes 

the soft-bedded system for delayed but rapid and widespread desta-
bilization. Thinning on hard (i.e., rigid) beds, in contrast, is focused 
at the grounding line, and the retreat response time is therefore short 
but smaller in magnitude. Experiments further suggest (44) that 
the pattern of grounding line retreat, revealed by the positions 
where the grounding line pauses, is governed by the distribution of 
subcatchment-scale basal highs that act as pinning points and that 
this behavior is largely independent of the basal rheology. In our 
approach, we exclusively consider patterns of grounding line retreat. 
Our finding that the regional-scale pattern of retreat is insensitive to 
catchment substrate is therefore not necessarily incompatible with 
model findings that substrate rheology may control rates of ground-
ing line change. We do, however, acknowledge that substrate rheology 
and local-scale topography may not be independent of each other 
and that, for example, a hard rheology more likely has more local 
roughness obstacles that would serve as pinning points.

Independent of either setting or substrate we find that, among 
ice streams, inconsistent (41% of stream cases) and unmarked (34%) 
retreat are overrepresented, while consistent retreat is overrepresented 
among cases of moderate flow. These relationships suggest that the 
style of ice flow can predispose a system to a certain mode of retreat 
or vice versa. A concerning outcome from this study is that, irre-
spective of bed characteristics and geographically controlled condi-
tions (e.g., climate), grounding line readvance over decadal to 
millennial time scales is not a behavior that the paleorecord sup-
ports as a savior for contemporary glacial systems.

Predictability of marine ice sheet behavior
As expected, on the basis of theoretical, numerical, and conceptual 
approaches, empirical observations demonstrate a systematic cor-
respondence between topographic funneling and streaming ice flow, 
reverse bed slopes and inconsistent or unmarked retreat, and normal/
variable bed slopes and consistent retreat, indicating a high degree 
of predictability in flow and retreat style associated with these specific 
bed properties. However, important exceptions to these rules make 
a prediction of marine ice sheet evolution based on consideration of 
catchment-scale bed characteristics alone too simplistic.
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We find notable exceptions where primary catchment-scale con-
trols on ice flow have been overcome: Banks can host ice streams, 
bed slope becomes less important the faster the flow, and the resist-
ance of hard beds can be muted. Our dataset suggests that, once ice 
streams are initiated, they can be maintained in topographic and 
geological settings other than those that act as an initial driver. In 
other words, we hypothesize that fast flow can be “inherited” from 
settings or time periods that were more favorable for triggering flow 
acceleration and that, once operational, ice stream flow becomes less 
sensitive to the bed. This is in keeping with observations and recent 
advances in sliding law theory showing that, at high flow velocities, 
basal motion becomes decoupled from basal shear stress (11, 28). 
On this basis, there may be a commitment of some ice sheet sectors 
to fast flow and high discharges even as they retreat into different 
landscape settings, which has implications for the temporal setup of 
numerical ice sheet models (e.g., spin-up time or prior flow/retreat 
behavior as boundary conditions); flow history is important.

A particular example of inherited behavior that we find in the 
landform record is coupling between flow and retreat dynamics that 
occurs independent of bed conditions: Styles of flow can predispose 
a system to a style of retreat, and vice versa. This is consistent with 
contemporary observations of grounding line change, where ground-
ing line retreat into deeper water has been accompanied by flow 
acceleration [e.g., (40, 41)]. Conversely, faster flowing catchments 
are capable of more rapidly transmitting a forcing signal through 
the catchment (41), which may furthermore feedback into a ground-
ing line response. Where streaming flow exists, our dataset suggests 
a high chance of inconsistent or unmarked retreat irrespective of 
regional topographic setting and substrate properties.

While the style of ice flow appears to, in some particular cases, 
overcome expected catchment-scale controls, our dataset indicates 
that retreat style can deviate from expected patterns because of sen-
sitivity to local topography and the challenges of untangling the rela-
tive importance of lateral and basal drag at a subcatchment scale. 
Retreat behavior on banks is relatively predictable because of a lack 
of (topographically driven) lateral drag and therefore predominance 
of basal effects. In settings where both lateral and basal drag vary 
(e.g., troughs), predicting retreat behavior is more difficult; our re-
cords of past retreat behavior demonstrate great inconsistency. The 
effect of bed slope is similarly equivocal at catchment scale. Predicting 
the consistency or inconsistency of grounding line retreat requires 
adequate representation of local topography (lateral and basal pin-
ning, and slope variability and magnitude, at subcatchment scale) in 
models (18, 44, 45).

One unexpected finding is a weak association between ice flow 
and retreat styles with bed substrate, seemingly contrary to theoret-
ical and modeling predictions (45, 46) and behaviors inferred from 
the observational record (9, 12, 14). Coulomb-type sliding relation-
ships describe comparable flow behavior on both hard (11, 27) and 
soft (10, 28) beds, with the bed providing (near) finite resistance to 
high flow velocities; the magnitude of drag and mechanisms of slid-
ing differ according to the substrate, but the behavior is, qualitatively, 
the same. Our findings are in keeping with this body of work, while 
they also show that cases of streaming flow occur on different geo-
logical substrates with equal likelihood. We suggest that this reflects 
the importance of meltwater in regulating ice-bed coupling and the 
pervasiveness of Coulomb-style sliding. Supply of meltwater to the 
bed and resultant high basal water pressure facilitates fast ice flow in 
both hard (8, 27, 47) and soft bed (26) systems. Depending on the 

geology, a substrate will require different water volumes and time to 
reach saturation. That we do not see a correspondence between fast 
flow and substrate geology in our post–Last Glacial Maximum data-
set suggests that none of these geographically and climatologically 
diverse systems have been persistently meltwater-limited.

Given the high potential for spatiotemporal variability of subgla-
cial hydrology (relative to the underlying geology) and the first-order 
insensitivity of marine-based flow and retreat to substrate geology, 
we suggest that effective prediction of ice sheet behavior preferen-
tially requires knowledge of meltwater supply. This is particularly true 
for marine-based catchments, where the uptake of overburden by the 
water column brings the system much closer to thresholds necessary 
for meltwater supply to overwhelm subglacial drainage pathways.

Examination of an extensive dataset of geomorphic archives of 
ice flow and retreat indicates that the evolution of marine-based ice 
sheets cannot be reliably predicted on the basis of catchment-scale 
basal topography and substrate conditions alone. We hypothesize 
that local topographic variation, inheritance of ice flow style, cou-
pling between ice flow and retreat style, and meltwater supply are all 
important influences that complicate predictions of ice sheet behavior 
based on first-order theoretical considerations of the interaction of 
an ice sheet with its bed. Compared with catchment-scale bed prop-
erties, these factors have a high degree of spatial and temporal vari-
ability and complexity that must be better characterized to improve 
the predictability of ice flow and retreat behavior.

MATERIALS AND METHODS
We analyze high-resolution acoustic bathymetric datasets from the 
margins of Antarctica, Greenland, the northwest European margin 
(Britain and Ireland, the North Sea, and Norwegian Sea to the Barents 
Sea), Iceland, eastern Canada, Patagonia, and sub-Antarctic islands. 
From each marine ice sheet system, we catalog observed glacial 
landforms, systematically interpret their paleoglaciological context, 
and report data sources. To analyze the topographic and substrate 
settings of these glacial landform assemblages, we draw on regional 
to global bathymetric datasets including the International Bathymetric 
Chart of the Arctic Ocean (48), the International Bathymetric Chart 
of the Southern Ocean (49), and the General Bathymetric Chart of 
the Oceans (50); available regional geological maps, often from 
national surveys or reported literature [e.g., (51)]; and interpretations 
of continental shelf seismic stratigraphy and drill/sediment core infor-
mation [e.g., (13, 52)]. The vast majority of sites record ice behavior 
during deglaciation from (and in some cases at) the Last Glacial 
Maximum. However, we do not draw on absolute chronologies of 
ice flow and retreat in our analysis, since these are notoriously chal-
lenging to determine (53). This precludes an examination of time- 
dependent changes in paleotopography resulting from glacial isostatic 
adjustment as well as relative and eustatic sea level change.

For all sites, we record the occurrence of subglacial bedforms 
(glacial lineations, drumlins, crag-and-tails, streamlined bedrock, 
glaciotectonic rafts, and ribbed moraine), glaciofluvial landforms 
(eskers and channels), and ice-marginal landforms (grounding zone 
wedges, moraines, ice-marginal deltas, and crevasse-squeeze ridges). 
We use the occurrence of landforms indicative of the former basal 
thermal regime (Fig. 2A), ice flow style (Fig. 2B), and retreat style 
(Fig. 2C) to define a glacial mode: a unique combination of these 
three facets of former ice sheet behavior in any given site. Any site 
may express multiple glacial modes or multiple examples of a single 
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mode, reflecting spatiotemporal change or consistency in flow and 
retreat style. Our interpretations hinge on the assumption that spe-
cific modes of ice flow and retreat create a geomorphological imprint, 
which inherently biases us toward the most recent and most geo-
morphologically active modes of ice flow and retreat. All indiscernible 
cases do not host indicative landforms and could represent (i) truly 
cold-based ice, (ii) “lift-off” retreat, (iii) masking by postglacial sedi-
ments, or (iv) insufficient data coverage and/or resolution to distinguish 
between “no landforms exist” and “no landforms seen” scenarios.

We consider bed characteristics at a glacial catchment scale. 
Troughs are defined as elongate topographic lows bounded by higher 
relief on the lateral margins, extending tens to hundreds of kilometers 
in any orientation with respect to the continental shelf or surrounding 
land. Fjords are laterally constrained by subaerial land extending tens 
to hundreds of kilometers. Basins are topographic lows surrounded 
by higher relief with closed elevation contours and diameters tens to 
hundreds of kilometers, while banks are similarly sized topographic 
highs with closed contours surrounded by lower relief (fig. S1). Bed 
substrate geology is classified broadly as crystalline (igneous or 
metamorphic lithologies), sedimentary bedrock, unlithified sediments, 
or encompassing a transition from a hard to soft bed. Where data 
permit, we refer wherever possible to the substrate geology encoun-
tered by ice flow at the Last Glacial Maximum, removing the post-
glacial marine sediment cover.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/3/eabb6291/DC1
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