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Abstract: Multiple signal classification algorithm (MUSICAL) exploits temporal fluctuations
in fluorescence intensity to perform super-resolution microscopy by computing the value of a
super-resolving indicator function across a fine sample grid. A key step in the algorithm is the
separation of the measurements into signal and noise subspaces, based on a single user-specified
parameter called the threshold. The resulting image is strongly sensitive to this parameter and the
subjectivity arising from multiple practical factors makes it difficult to determine the right rule
of selection. We address this issue by proposing soft thresholding schemes derived from a new
generalized framework for indicator function design. We show that the new schemes significantly
alleviate the subjectivity and sensitivity of hard thresholding while retaining the super-resolution
ability. We also evaluate the trade-off between resolution and contrast and the out-of-focus light
rejection using the various indicator functions. Through this, we create significant new insights
into the use and further optimization of MUSICAL for a wide range of practical scenarios.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Conventional optical microscopy is limited in resolution due to diffraction of light. The need
to overcome this limit has given rise to super-resolution microscopy techniques, also called
optical nanoscopy. Among these techniques, structured illumination microscopy (SIM) [1] allows
a lateral resolution enhancement by a factor of 2 over the optical resolution limit, stimulated
emission depletion (STED) microscopy [2] and single molecule localization (SML) [3–5] can
achieve resolutions close to 20 nm, and MINFLUX [6] which combines concepts of SML and
STED to achieve even 2 nm resolution. However, these techniques require expensive and complex
setups as in SIM and STED, or a high amount of light dose and long acquisition time in SML.

A new family of purely computational nanoscopy techniques has also emerged, where statistical
analysis of spatio-temporal fluctuations of fluorescence intensity arising from the photokinetic
properties of fluorescent molecules is used for super-resolution. Examples include super-
resolution optical fluctuation imaging (SOFI) [7], super-resolution radial fluctuations (SRRF) [8],
multiple signal classification algorithm (MUSICAL) [9], entropy-based super-resolution imaging
(ESI) [10], 3B [11], spatial covariance reconstructive (SCORE) super-resolution fluorescence
microscopy [12], super-resolution with auto-correlation two-step deconvolution (SACD) [13]
and sparsity-based super-resolution correlation microscopy (SPARCOM) [14].
Most of these methods assume that the emitters are stationary and that the photokinetic

properties do not change during the image acquisition. MUSICAL, on the contrary, simply
exploits the spatio-temporal variations as acquired on a temporal stack of fluorescence microscopy
images, irrespective of whether they arise from photokinetics or movement of fluorophores. It
decomposes the stack into a set of vectors called eigenimages (details in section 2.2) and separates
them into two orthogonal spaces called the signal and the noise subspaces. These are used into
a special function called the indicator function that exploits the fact that the spatial-temporal
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distribution of fluorophores is encoded in eigenimages through the point spread function (PSF)
of the microscope. It is designed to have a high value at an emitter location and lower otherwise,
which enables super-resolution when applied to a grid finer than the original microscopy image.

MUSICAL uses three user-specified control parameters that have a bearing on the reconstructed
nanoscopy image: a parameter α determines the effective contrast, a sub-pixelation parameter
determines the size of the finer grid, and a threshold parameter determines how the eigenimages
are split between the signal and noise subspaces. While α and sub-pixelation prominently
determine the aesthetic of the nanoscopy image, the threshold parameter has a significant role in
the nature and scale of details that get reconstructed. The problem is that its selection depends on
multiple factors such as fluorophore’s density and photokinetics, sample’s geometry, out of focus
light, signal to noise ratio, etc. in a complicated and non-obvious manner. Even though some
rules of thumb for threshold selection have been reported [9,15,16], it still remains as the most
non-intuitive parameter of MUSICAL as its value is subjective and depends mostly on the user’s
experience. The problem of threshold selection is illustrated in Fig. 1, where for the same sample
(Fig. 1(a)), a single value does not produce the best possible reconstruction for the entire sample.
This figure also illustrates the process of threshold selection, which starts with a plot similar to
Fig. 1(b) from where the user selects a value such as −0.5 (point A) or −0.3 (point B). The name
of the points come from the rules used to pick them (more details in section 2.4) and as it can be
seen from the results on region 1(Fig. 1(c)) and 2 (Fig. 1(d)), the results vary between regions.
For example, if we consider the indicated ring in each case, for region 1 the ring is only recovered
for value B, while is reconstructed better for value A in region 2 as the ring appears clearer.

Fig. 1. Effect of MUSICAL’s threshold on image reconstruction. A sample consisting
of rings in the focal plane allows to see the effect of two different thresholds in the final
reconstruction (a green tick marks the best one). The sample consists of 500 frames. (a)
Mean image with 2 regions marked with rectangles. Scale bar 1µm. (b) Plot of the singular
values [15] used by the user to pick a threshold. (c),(d) MUSICAL results in regions 1 and 2,
respectively. Scale bars 200 nm. (c1),(d1) show the mean images with the actual emitters on
top in blue color.

This work addresses the problem of the subjectivity of threshold selection and the sensitivity
of MUSICAL’s reconstructions to it. This is achieved in the following manner:

• We have scrutinized the effect of threshold selection and identified the root cause of
threshold sensitivity.

• We have proposed a generalized form of indicator function design that carry two new
families of indicator functions.

• We have evaluated quantitatively and qualitatively the comparative advantages of the new
indicator functions while generating new insights into practically useful properties such as
resolution-contrast trade-offs, out-of-focus light rejection, and dynamic range utilization.
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The outline of the paper is as follows. section 2 presents the theory behind MUSICAL and the
role of the threshold in image reconstruction. The new generalized framework for the MUSICAL
indicator function design is presented in section 3 section 4 presents the results and insights on a
variety of simulated and experimental data. The conclusions are summarized in section 5.

2. Background

2.1. Imaging model

Let’s consider a sample composed of point-like blinking photon emitters, i.e. individual
fluorophore molecules. In this case, blinking means that the number of photons emitted by each
particle varies over time, owing to the photokinetics of the fluorophores [17], with no assumption
on temporal sparsity. A stack of images taken of such sample from a diffraction-limited system
over T time-steps is expressed in a matrix form as A = [a(1) . . . a(T)], where each column vector
a(t) contains the intensity measured by a set of sensing elements (i.e. camera pixels) at time step
t. For N emitters, a single image a(t) can be modelled as follows:

a(t) =
N∑

n=1
g(rn(t))sn(t). (1)

In this model, g(r) represents the PSF of the microscope and corresponds to the intensity produced
by an emitter located at r as measured on the sensor. Finally, sn(t) is the number of photons
produced by the nth emitter during the time step t, which is a random variable resulting from
the photokinetics of the fluorophore. For simplicity, we here only consider stationary emitters,
rn(t) = rn. Then, Eq. (1) can be written as the matrix equation a(t) = Gs(t) by constructing two
new matrices G = [g(r1) . . . g(rN)] and s(t) = [s1(t) . . . sN(t)]T . Therefore, every single image is
a linear combination of the columns of G, weighted by the photon emissions of emitters.

2.2. Key concept of MUSICAL

MUSICAL involves a sliding window operation, with window defined as a crop of the image
stack. Processing a single window returns a super-resolved version of it, and the final MUSICAL
reconstruction is built by overlaying and stitching all super-resolved windows together. The
size of the window corresponds to the approximate size of the main lobe of the PSF, which is
estimated from the wavelength of emission and numerical aperture of the imaging system. While
performing nanoscopy using MUSICAL on a single window, the observed data is decomposed
into two orthogonal subspaces. In this paper, we use notation associated with singular value
decomposition such as used in [9]. Accordingly, the matrix A is decomposed as A = USVT ,
where U contains the basis vectors ui. These vectors are called eigenimages and contain the
spatial information of the sample, while their corresponding singular values σi in the diagonal
of matrix S is a measure of its statistical significance. Since matrix V is not used, MUSICAL
can benefit of the relation between SVD and Eigenvalue decomposition as AAT = UΛUT (as
shown in [18] for computational efficiency), where Λ contains the eigenvalues λi instead of the
singular values. Since both values are related (λi = σ

2
i ), the discussion below can be generally

applicable irrespective of whether singular value or eigenvalue decomposition is used. The two
key concepts of MUSICAL are presented below.
Key concept 1 (KC1): MUSICAL separates the basis U into two subspaces, namely the signal

subspace S and the orthogonal complementary noise subspace N using a threshold σ0 such that:

ui ∈

{
S if σi ≥ σ0

N otherwise.
(2)

Key concept 2 (KC2): If the threshold is chosen such that the subspace N indeed contains
contribution from only the noise, then the subspace S contains g(rn) for every emitter and N is
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devoid of them. Consequently, using the orthogonality of S and N , g(rn) are also orthogonal to
N . This property is used to design the indicator function f (r), discussed in detail in section 2.3.
In the ideal case, the matrix A is rank deficient (i.e., it contains some zero singular values),

which happens when the number of emitters is smaller than the number of sensor elements. In
such case, the threshold is simply σ0 = 0 and the signal subspace S is formed by the eigenimages
with non-zero singular values while the noise subspace N by the ones with value zero. However,
real samples are composed of a large number of emitters such that the matrix A is full ranked. In
addition, real microscopy data contains noise, such that none of the singular values are strictly
zero. Therefore, σ0 is chosen on a case-by-case basis. Intuitively, the eigenvectors associated with
large eigenvalues represent the more statistically prominent structures in the stack as compared to
the other eigenvectors.
The key concept 2: Since the space spanned by g(ri) and the eigenimages of the signal space

are the same, the noise space is also orthogonal to g(ri), i.e. when the PSF is evaluated at an
emitter’s location. This property is exploited in designing indicator function that indicates the
presence of emitters.

2.3. Indicator function

Let us consider an arbitrary test point rtest in the sample region. Its image is given by the
vector g(r), which can be represented as g(r) = gS(r) + gN(r), where gS(r) and gN(r) are the
projections of g(r) onto the signal and noise spaces. The magnitudes of these projections are
computed as:

| |gS(rtest)| | =

√∑
ui∈S

gi2 ; | |gN(rtest)| | =

√ ∑
ui∈N

gi2 where gi = |g(rtest) · ui |. (3)

Using KC2 and the projections in Eq. (3), MUSICAL constructs the following indicator function:

f (rtest) =

(
| |gS(rtest)| |

| |gN(rtest)| |

)α
. (4)

This indicator function generates a large value when rtest is at the location of the emitters, since
| |gN(rtest)| | is zero (KC2). For this it is important that the threshold value σ0 for defining the
signal and noise subspaces is chosen appropriately.

2.4. Threshold selection and its associated problem

The current practice of threshold selection starts with a plot of the singular values of the
microscopy image stack, such as shown in Fig. 1(b). This plot is made by computing the singular
values for each window and then plotting them as lines in logarithmic scale, with the x-axis
showing the order when sorted decreasingly. Then, the user specifies a threshold σ0 based
on observations derived from this plot with particular interest in the inflection or knee point
(indicated with a blue rectangle) observed at the second singular value of every window. The
rule of thumb reported in the original MUSICAL article [9], referred to as Rule A here, involves
choosing roughly the threshold as the smallest second singular value across all the windows, i.e.

Rule A: σ0 = min(σ2;∀windows). (5)

According to another rule reported in [16], referred here as Rule B, the threshold is roughly
selected as the center of the span of the second singular values for all the windows, i.e.

Rule B: σ0 =
min(σ2;∀windows) +max(σ2;∀windows)

2
. (6)

Both rules assume that the eigenimages can be clearly separated and therefore, they constitute
hard thresholding schemes. An illustrative example is shown in Fig. 2(a) where the classification
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and corresponding weighing is shown for Rule B in comparison to Rule A. In more practical
terms, a higher value of threshold, decreases the cardinality of the signal subspace across the
entire images as shown in the cardinality maps (c-map) of Fig. 2(b). These maps encode the
number of eigenimages in the signal subspace for each window as an intensity value, which is
reason why the the c-map B (corresponding to Rule B) looks dimmer. For even further insight,
we show in Fig. 2(c) and (d), the actual singular values and eigenimages projection respectively
for several orders. Something interesting to note, is that foreground regions generally have higher
eigenvalues than the background for any given order. However, the projections of gi shown
Fig. 2(d) follow two different trends. First, the value of gi observe an inversion in the pattern as
the order increases. The lower orders have high values of gi in the foreground relative to the
background, and vice versa for the higher orders. This reversal of trend for higher orders (low
singular values) gets exploited in the indicator function as their contribution to the denominator
is small. Second, generally speaking, eigenimages with lower eigenvalues (i.e. higher orders) are
associated with higher spatial frequency components [19], an effect that is more prominent for
the first few orders. These observations will be further discussed later in relation with the new
indicator functions.

Fig. 2. MUSICAL’s singular values and eigenimages. (a) Weighting coefficients for the
different methods. The rules are labeled on top to show how the weights change depending
on the threshold. In this example, rule A means a threshold of −0.5 while rule B means
−0.3. For soft methods, the noise and signal are used both in numerator and denominator of
the indicator function. (b) Cardinality maps that indicate the number of eigenimages picked
as signal for the two rules of selection for every windows (each pixel corresponds to one
window). (c), (d) Heatmap of singular values (c) and projection of different eigenimages (d)
sorted by increasing order. (e) Results of using different indicator functions. The scale bars
are 200 nm.
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Since Rule B decreases the cardinality of the signal space, it also discards noise much more
effectively. However, information related to the actual structure may also be relegated as noise,
which increases the value of denominator in the foreground and compromises resolution. On the
other hand, and following the example of Fig. 2, Rule A includes eigenimages up to order 11 in
the foreground. Yet, as noted in Fig. 2(d), the gi of the foreground is smaller than the background
in orders 10 and 11. Therefore, their exclusion from the noise subspace is not useful for the
foreground. Even more: the inclusion of higher gi corresponding to the background due to these
orders may increase the background artifacts. Therefore, a trade-off is involved in either rule and
the manifestation of this trade-off varies from case-to-case.
In practice, even the most experienced bioimaging user of MUSICAL may not know what to

expect from the sample being imaged. Moreover, one could argue that more candidate rules can
be designed from analysis of the histogram of the second singular values, such as explored in [18].
However, in all these cases, a fundamental limitation is that they all imply hard thresholding:
eigenimages included in the signal subspace are considered in a hard solely as representing
the structure and the eigenimages included in the noise subspace are considered in solely as
representing the noise. In reality, the presence of noise implies that each eigenimage is corrupted.
Therefore, a perfect separation of the eigenimages into a signal or noise subspace is not possible.

3. New indicator function design

Here, we consider two solutions to the problem mentioned previously:

• Eigenvalue (EV) weighing: the magnitude of the eigenvalue is included in the indicator
function. It keeps the hard thresholding but softens the effect of first few eigenimages that
are classified as noise but may have structural information, as shown in Fig. 2(a).

• Soft-thresholding: hard thresholding is removed using a weighing function for each
eigenimage. It can be added to MUSICAL and EV, with the new methods abbreviated
MUSICAL-S and EV-S, respectively.

We begin with a generalized form of indicator function, which allows for more flexibility in
its design and that paves the path for developing the indicator functions for the above identified
solutions:

f (rtest) =
©«
√√∑N

i=1 aig2i∑N
i=1 big2i

ª®¬
α

. (7)

Here, ai and bi are the design parameters of the indicator function. This generalization can
be readily adapted to the original MUSICAL indicator function given by Eq. (4) by using the
following assignments for ai and bi, with ai + bi = 1:

ai =

{
1 if ui ∈ S

0 otherwise
bi =

{
1 if ui ∈ N

0 otherwise
. (8)

3.1. Indicator function with eigenvalue (EV) weighing

This indicator function follows ai + bi = λ
−1 and is defined as:

ai =

{
λ−1i if ui ∈ S

0 otherwise
bi =

{
λ−1i if ui ∈ N

0 otherwise
. (9)

This indicator function design retains both KC1 and KC2, but does not use the Euclidean
projections | |gS(rtest)| | and | |gN(rtest)| | on the signal and noise subspaces. It instead weighs the
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projections on individual eigenimages gi according to the inverse of its singular value. This is
graphically illustrated in Fig. 2(a) for rule B.

We present further insight into the EV indicator function using Fig. 2(c-d). Due tomultiplication
with the inverse of eigenvalues, gi for any order gets amplified for background regions and
attenuated for the foreground regions. The foreground attenuation helps the higher order
eigenimages to better support the resolution and the lower orders in reducing the dynamic range
of the nanoscopy image on the higher side. The background amplification helps the higher
order eigenimages to better suppress the background artifacts and the lower orders in reducing
the dynamic range on the lower side. Thereon, the effect of hard thresholding is still present.
Nonetheless, a significant softening is achieved as described next. Consider the orders that which
are assigned to the signal subspace using Rule A but to the noise subspace using Rule B, however
when treated using EV indicator function. When included in the signal subspace, they reduce
the dynamic range of the original version of MUSICAL. This is significant because when using
rule A, the original indicator function of MUSICAL generally supports better resolution but has
extremely high indicator function values for few foreground pixels in nanoscopy image. This
results into some pixels being highly saturated in the MUSICAL images and dynamic range of
the image is not well-utilized, as reported in the supplement of the original MUSICAL paper [9].
On the other hand, when included in the noise subspace they help in improving the resolution,
which may have been compromised in rule B as discussed before in section 2.4.

The proposed indicator function is inspired from the EV formulation reported previously
for inverse source problems, for example in [20,21]. The similarity between these previously
reported EV formulations and the one proposed here is limited to the denominator component
of Eq. (7) when combined with bi defined in Eq. (9). The use of the signal subspace in the
numerator and the application of the indicator function on one sliding window at a time are
unique to the MUSICAL architecture, first reported in [9] while incorporation of EV weighing in
ai in Eq. (9) is proposed for the first time here.

3.2. Indicator function with soft threshold (MUSICAL-S)

An alternative approach is to use continuous functions for ai and bi. Our proposed function is
defined in Eq. (10) and graphically illustrated in Fig. 2(a).

ai(x) =


1 if sigmai ≥ σmax

0 if sigmai ≤ σmin
log10 σi−log10 σmin

log10 σmax−log10 σmin
otherwise

; bi(x) = 1 − ai(x). (10)

We enforce that ai + bi = 1. In this equation σmax and σmin must be given. We pick those to be
the maximum and minimum of the second singular values across all the windows in the image,
since the change in the trend is strongly evident in the second singular values. We note that
the choice also obviates the need of user specification of σmin and σmax. Thus, this approach
includes both soft and automatic thresholding properties.

The design of indicator function as suggested above implies that the signal and noise subspaces
are no longer orthogonal. There are some eigenimages (ui;σi ≥ σmax) that are relegated to the
signal subspace S with full confidence (ai = 1, bi = 0). Similarly, there are some eigenimages
(ui;σi ≤ σmin) that are relegated to the noise subspace N with full confidence (ai = 0, bi = 1).
For the remaining eigenimages, it is understood that these eigenimages may have non-negligible
signal information even while being significantly affected by noise. Therefore, these eigenimages
are relegated to signal and noise space with reduced confidence ( indicated by non-extreme
values of ai and bi) while the behaviour and roles of the gi for lowest and the highest orders
are unambiguous. The role of some intermediate orders such as order 8 is not explicit. When
included in the signal space, it does not contribute resolution in foreground but may help in
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pushing the lower limit of the dynamic range up by enhancing the background. On the other hand,
when included in the noise space, they may degrade the resolution but also pull the upper limit
of the dynamic range down. By including them in reduced proportions in both denominators
and numerators, we expect to strike a balance between the positive and negative aspects of their
inclusion in the signal and noise subspaces and thereby achieve a softening effect of the threshold.

We note that this design is a significant deviation from the key concepts of MUSICAL. Since
the signal and noise spaces now share some eigenimages, the KC1 defined in section 2.2 does not
apply. Furthermore, the KC2 has to be redefined as follows:
Redefined KC2: If the signal and noise subspaces are suitably defined, then the bi weighted

projection of g(rn)∀n on the noise subspace N is small, which allows the denominator in Eq. (7)
to be small and the overall indicator function to be high at the emitter locations.

3.3. Indicator function for EV with soft-threshold (EV-S)

The concept of soft-thresholding can be integrated in EV as well, as shown below:

ai(x) =


λ−1i if sigmai ≥ σmax

0 if sigmai ≤ σmin

λ−1i

(
log10 σi − log10 σmin

log10 σmax − log10 σmin

)
otherwise

; bi(x) = λ−1i − ai(x).

(11)
As before, ai + bi = λ

−1. Its illustration in Fig. 2(a) shows that EV-S is the softest indicator
function, allowing smoother transition in ai and bi. While EV alleviates the sensitivity to the
threshold, MUSICAL-S removes the need for user-specified threshold and reduces the sensitivity
to noise in the overlapping region in Fig. 2(a). Since EV-S combines traits from both, it is
expected to demonstrate reduced sensitivity and soft thresholding.

3.4. Discussion of the proposed generalized framework

Through the generalized indicator function, we have allowed for the creation of families of
MUSICAL algorithms based on some design rules. Specifically, two families have been created.
Family based on coefficient relationship: These are defined based on the relationship

between ai and bi. The family ai + bi = 1 may be considered the original MUSICAL family
while the family ai + bi = λ

−1
i as the EV family. Other families may also be designed similarly.

Family of coefficient continuity: These are defined based on the individual characteristics of
ai and bi. For example, in the family of hard threshold, the curve corresponding to ai experiences
an abrupt jump at the threshold σ0, and the signal and noise spaces are disjoint. In the family of
soft threshold, the signal and noise subspaces are no longer orthogonal (KC1 does not apply) but
the eigenimages in the overlapping space of signal and noise subspaces are weighted log-linearly.
Other approaches may be designed for choosing the overlapping region or designing the weights,
leading to other families of algorithms.
Two final notes on the newly defined indicator functions:
No resolution enhancement expected: The aim of these new indicator functions is not

resolution enhancement. In fact, no indicator function is expected to enhance or deteriorate
resolution in particular. The only expected effect is a minor trade-off in resolution and contrast
arising from different treatments of eigenimages in the signal and noise subspaces, as seen in
Fig. 2(e).
Removing subjectivity through automatic thresholding: An important implication of the

soft automatic indicator functions is that the subjectivity in threshold selection as well as the
dependence on heuristics is removed. Outloook for further customization by an advanced user is
possible, for example through a different choice of σmin and σmax, or ai and bi.
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4. Results

We performed the following studies to compare the performances of the newly proposed indicator
functions with the original indicator functions of MUSICAL:

• Quantitative analysis: We compare resolution and contrast for the indicator functions. We
consider the effect of intensity fluctuations (determined by the photon emission on/off
time) and the signal to background ratio (SBR). 2D samples are used so that other effects
such as out-of-focus light do not affect the quantitative results.

• Qualitative analysis: Structures in biological samples are simulated to study how the
different indicator functions deal with realistic 3D structures and out-of-focus light.

• Results on experimental data: We show comparative results using experimental data of a
diverse set of samples. The dynamic range coverage is also investigated.

We consider a total of six indicator functions referred to as MUSICAL A, MUSICAL B,
MUSICAL-S, EV A, EV B and EV-S. The value of α = 4 is used as recommended in [9] and 10
subpixels per pixel are considered sufficient for the investigations presented in this article.
Simulation methods for studies 1-3: The simulation involves the following steps: simulating

the geometry of the structures, the emitters distribution over the structures, and the photokinetics
of each emitter using the photoemission model of [22], applying the Gibson-Lanni PSF [23,24]
of the microscope to simulate the raw noise-free image stacks, and then simulating the noise in
raw image stack using the noise model in [9]. We have simulated images for an epifluorescence
microscope of numerical aperture 1.42, pixel size 80 nm, and 665 nm emission wavelength.
Thereby, the theoretical resolution limit is ∼285 nm using Rayleigh criterion [25]. For each
sample, 500 frames were generated with 10 ms of exposure time per frame. Duty cycle is the ratio
of the average time a fluorophore emits light (τon) to the total cycle (τon + τoff). Photobleaching
is not considered. Where not mentioned explicitly, SBR of 4 and duty cycle of 5% are utilized.

4.1. Quantitative analysis

Study of resolution: This study is performed on a sample comprising two crossing lines with
an angle of 60◦ as shown in Fig. 3(a), where the emitters are uniformly distributed at a density of
500 per µm. The results of Fig. 3(b) show the distance from the crossing point at which the 2
lines can be differentiated according to the Rayleigh criterion [25] for different values of the duty
cycle and SBR. The diffraction limited resolution is shown as a blue line for reference.

The resolution is estimated by computing the ratio between valley and peaks across a moving
vertical section (shown in the inset of Fig. 3(b)), starting from the intersection point (x = 0). Let
l(x) denote the image’s intensities across a vertical line passing by x. We compute the ratio:

r(x) =
v(l(x))

min(p1(l(x)), p2(l(x)))
. (12)

Here, v and pi are functions that return the minimum and maximum intensity value respectively
value around the expected valley and peaks i (bottom and top peaks). The reported resolution is
given as the minimum value x at which r(x) ≤ 0.835. The range considered for duty cycle goes
from 0.1 % (comparable to single molecule localization microscopy data) up to 50%. This last
case corresponds to a highly dense spatio-temporal emission situation, which is a challenging
situation for most fluctuations based techniques [26]. Further, we consider SBR from 2 to 6,
where SBR 2 is considered quite poor. From Fig. 3, the first observation is that all the methods
provide resolution enhancement by a factor between 2 and 3. When comparing rules, we find
that the best results are obtained using rule B for both MUSICAL and EV. Considering hard
thresholding and comparing the MUSICAL and EV families, MUSICAL takes the lead in general.
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Fig. 3. Resolution and contrast study. (a), (c) Studied samples with the groundtruth in
blue and green square shown magnified in panels (e), (f) for qualitative illustration. (b),
(d) Resolution and contrast, respectively, for different methods at different duty cycles and
SBR. Each data point in Fig. (b), (d) corresponds to the mean value over 100 independent
simulations. Dashed line in (b) shows the resolution limit. Scale bar is 200 nm.

Among soft-threshold methods, EV-S performs comparable to MUSICAL and EV while but
MUSICAL-S displays the worst performance among all of them. The poorer resolution of
MUSICAL-S is also observed in Fig. 3(c) where the borders of the central cross appear diffused
compared to the other methods, producing a lower resolution. Lastly, we note that duty cycles
below 10% and SBR higher than 4 do not provide significant improvement in resolution.
Study of contrast: We here consider a sample containing emitters distributed uniformly

across the perimeter of two circles of diameter 200 nm (density of 500 per µm) at a distance of
150 nm between edges. The mean image and groundtruth are shown in Fig. 3(c). The contrast is
defined as c = 1 − r(l(0)), where r(x) is defined in Eq. (12) and l(0) represents the intensities
across the horizontal section between circles (see inset of Fig. 3(d)). Higher values of c indicate
better contrast. The results in Fig. 3(d) indicate that the contrast for all the indicator functions
deteriorates as the duty cycle increases, with a larger slope after 10%. The only exception is
MUSICAL-S which shows low sensitivity to duty cycle and has relatively flat contrast for all
duty cycles. In terms of SBR, similar to the line sample, the curves become flat for SBR ≥
4. When comparing rules, rule A achieves marginally better contrast both in MUSICAL and
EV, with MUSICAL performing the best. The soft-threshold methods showed all similar and
poorer results. An additional study on the effect of different noise distributions is included in
Supplement 1.

https://doi.org/10.6084/m9.figshare.13076807


Research Article Vol. 28, No. 23 / 9 November 2020 / Optics Express 34444

Summary of the quantitative study: The soft-thresholding schemes provide resolution
and contrast similar to the other hard thresholding schemes. In general, EV-S outperformed
MUSICAL-S in terms of resolution and contrast due to the weighting scheme by including
singular values. Additionally, from the results we observe that above a SBR of 4 and and duty
cycle of 10%, no improvement in resolution or contrast were achieved.

4.2. Qualitative examples

Vesicles with surface labeling (Fig. 4(a1-a8)): Four vesicles of different sizes are simulated as
spheres of diameters 150, 200, 250 and 300 nm. Membrane labeling is simulated by distributing
emitters on surface with density 800 per µm2. The vesicles are placed such that their centers
are at the focal plane. Larger vesicles result with certain portions out of focus. In MUSICAL
A (Fig. 4(a3)), the smallest and therefore dimmer structure (top-left vesicle) is almost invisible.
This is not the case for MUSICAL B (Fig. 4(a4)) which is explained by a lower cardinality of the
signal space and therefore better discarding of noise. In the case of MUSICAL-S (Fig. 4(a5))
the structure is even more visible, and the remaining vesicles looks more uniform. No clear
difference is observed across EV reconstructions (Fig. 4(a6, a7) and (a8)). It is of interest to
observe that for the largest vesicle (300 nm in diameter), the out of focus light is rejected by
all the methods, producing a hollow in the middle that is not visible for the microscopy image.
Below that size, the entire vesicle can be considered to be in focus. We observe that even if the
size of the circle reconstructed is proportional to the original radius, this does not match the
correct size when using full width at half maximum (FWHM).
Microtubules with background debris (Fig. 4(b1-b8)): Microtubules are fiber-like polymers

of tubulin monomers. Fluorescent dyes label the monomers, which may be present as freely
dispersing in addition to microtubule fiber [27]. This results in fluorescent debris, which is
generally unwelcome in reconstruction. For this sample, we simulated fibers of 30 nm in diameter,
with dyes distributed randomly across their surface at a linear density of 800 emitters per µm.
Additionally, debris is added as single emitters distributed randomly with a volumetric density
of 1000 emitters per µm3. Both, microtubule-bound and free emitters, are assumed to have the
same photo-kinetics. The geometry consists of three crossing lines forming an inverted triangle
when seen from the top (Fig. 4(b2)). In the top-left and bottom corner, the structures meet in
the focal plane, while the microtubules meeting at the top-right corner are both out of focus and
separated by 500 nm in axial direction. The spatial distribution can be seen in Fig. 4(b1).
The results show that debris is absent in reconstructions regardless of the method while

the overall structure is well reconstructed. A difference in the reconstruction of regions with
out-of-focus structures is noticeable: MUSICAL A , B and S (Fig. 4(b3, b4) and (b5) respectively)
achieve a better rejection than their EV counterparts (Fig. 4(b6, b7) and (b8)). However, the
corners of the triangle which are the brightest points do not allow a clearer reconstruction of
the strands due to the dynamic range problem of MUSICAL reported in [9] and discussed in
section 3. In this sense, a better reconstruction is obtained by EV. It shows that a desired level of
rejection of out-of-focus structures could determine the choice between MUSICAL and EV.
Mitochondrion (Fig. 4(c1-c8)): Mitochondria are tubular structures with diameters close to

or larger than the diffraction limit. Even if such structures are in focus, the sometimes large
diameters combined with the dynamic nature of these organelles in living samples, causes large
portions of the samples to be out of focus in realistic microscopy experiments. Here, we consider
an example of three mitochondria with diameter 300 nm and a density of emitters of 3000 per
µm2 on the outer membrane. Each mitochondrion is in a different plane, with the left most
mitochondrion in the focal plane. The top one is in the plane 300 nm above (closer to the
coverslip) and the last one is 300 nm below the focal plane (further from the coverslip). As in the
case of microtubules, the out of focus rejection is prominent for all methods with MUSICAL
obtaining the strongest rejection of out of focus signal. Only the portions in the focal plane are
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Fig. 4. Qualitative study on synthetic samples. Three different samples are shown. (a)
4 vesicles of different size. (b) Three crossing microtubules with debris. (c) The crossing
mithondria. All scale bars are 300 nm.
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Fig. 5. Results on experimental data. The results are displayed in two scales: linear (a)
and (c) and logarithmic with base 10 (b) and (d). Blue and green boxes show regions of
interest. The scale bar is 2 µm in every image. (a), (b). Results for actin (invitro). (c), (d)
Results on microtubules. (e) Comparative plot of the intensities obtained from the histogram
of each normalized image by its maximum.
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reconstructed with good contrast. Further, the structure away from the coverslip is rejected less
effectively than the structure above, which can be explained by the asymmetry of the PSF.
Summary of this study: The MUSICAL indicator functions were found to perform stronger

out-of-focus rejection than the EV indicator functions.

4.3. Results on experimental data

The methods were here tested on real microscopy data of filamentous actin and microtubules in
fixed cells. The samples used for testing the methods correspond to invitro actin filaments [9]
and microtubules in fixed cells [28]. 500 frames were used for each reconstruction.
Invitro actin filaments (Fig. 5(a,b)): This sample is thin in the sense that that all the structures

can be considered in focus. We marked two regions of interest (blue and green boxes) where
super-resolution can give better insight of the structure than conventional microscopy. In the blue
box (close to bottom), the bifurcation is clearly visible using the different indicator functions,
and almost no difference is observed in terms of structure. However, the region in the green box
is reconstructed better in EV as they show a better distribution of the intensities. This allows
to observe the entire network of strands without saturating the colors in other regions and is
mainly attributed to the contrast enhancement due to the softening effect of EV. On the other
hand in the images in logarithmic scale (Fig. 5(b)), we observe how EV introduces artifacts in the
background, which is reduced when using a larger threshold such as the one used with rule B. In
the case of the soft thresholding methods, EV-S looks crisper and more defined that MUSICAL-S,
while providing better contrast between foreground and background. The pixel distribution is
plotted in log scale in Fig. 5(a8), where it can be clearly observed how EV produces an intensity
distribution that is higher in the middle tones, making better use of the dynamic range.
Microtubules in fixed cells (Fig. 5(c,d)): This sample of fixed cell is different from the actin

sample in the sense that some structures are expected to be out-of-focus. For images in linear
scale (Fig. 5(c1-c7)), the methods display similar performance, except for EV A. In particular,
the blue region (left box) presents a high degree of artifacts, where it is difficult to visualize
individual strands due to high saturation. The same occurs in the green region, where EV A
recovers just one single structure, while all the remaining methods manage to recover 2 strands.
This illustrates an example of the minor trade-off between resolution and contrast. The better
contrast and visibility, as well as poorer rejection of out-of-focus structures is strongly evident in
the log scale (Fig. 5(d)). Between MUSICAL-S and EV-S, the latter produces a better result
by achieving better contrast and definition. Both methods recover the dim structures in the
right-most box.

5. Conclusion

Through a generalized framework for MUSICAL indicator function design, we have proposed
new indicator function families and specific indicator function designs to address problem of
hard threshold in MUSICAL. The EV family of indicator functions soften the effect of threshold
and provide better utilization of the dynamic range of MUSICAL. This is generally achieved at
no cost of resolution but poorer rejection of out-of-focus light as compared to the MUSICAL
family of indicator functions. Further, a soft threshold family is proposed that does not define
signal and noise subspaces of MUSICAL as strictly orthogonal, and allows an overlap between
them. Therefore, it removes the concept of hard thresholding, however, altering the key concepts
of MUSICAL. While MUSICAL-S indicate poorer resolution, the EV-S indicator function which
combines the traits of both EV and soft-threshold families shows consistently good results across
a wide variety of quantitative, qualitative, and experimental studies. Through this work, we
widen the horizon for MUSICAL in two important aspects. First, the sensitivity and subjective
choice of threshold is removed which makes it easier to use. Second, it opens exciting avenues for
further development of fluctuations based super-resolution algorithms in general, and MUSICAL
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in particular. In the future, it will be interesting to design customized indicator functions for
challenging scenarios such as dynamic samples where the different methods can be tested.
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