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Abstract. Tracer kinetic modelling, based on dynamic 18F-fluorodeoxyglucose
(FDG) positron emission tomography (PET) is used to quantify glucose
metabolism in humans and animals. Knowledge of the arterial input-function
(AIF) is required for such measurements. Our aim was to explore two non-
invasive machine learning-based models, for AIF prediction in a small-animal
dynamic FDG PET study.

7 tissue regions were delineated in images from 68 FDG PET/computed
tomography mouse scans. Two machine learning-based models were trained
for AIF prediction, based on Gaussian processes (GP) and a long short-term
memory (LSTM) recurrent neural network, respectively. Because blood data
were unavailable, a reference AIF was formed by fitting an established AIF
model to vena cava and left ventricle image data. The predicted and reference
AIFs were compared by the area under curve (AUC) and root mean square
error (RMSE). Net-influx rate constants, Ki, were calculated with a two-tissue
compartment model, using both predicted and reference AIFs for three tissue
regions in each mouse scan, and compared by means of error, ratio, correlation
coe�cient, P value and Bland-Altman analysis. The impact of di↵erent tissue
regions on AIF prediction was evaluated by training a GP and an LSTM model
on subsets of tissue regions, and calculating the RMSE between the reference
and the predicted AIF curve.

Both models generated AIFs with AUCs similar to reference. The LSTM
models resulted in lower AIF RMSE, compared to GP. Ki from both models
agreed well with reference values, with no significant di↵erences. Myocardium
was highlighted as important for AIF prediction, but AIFs with similar RMSE
were obtained also without myocardium in the input data.

Machine learning can be used for accurate and non-invasive prediction of an
image-derived reference AIF in FDG studies of mice. We recommend the LSTM
approach, as this model predicts AIFs with lower errors, compared to GP.

Keywords: PET, input-function, machine learning, compartment modelling
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Introduction

Positron emission tomography (PET) is a widely used method for imaging in

vivo biological processes in humans and animals. In particular, dynamic PET

imaging of 18F-fluorodeoxyglucose (FDG), combined with tracer kinetic modelling,

can be used to quantify glucose metabolism (R. N. Gunn, S. R. Gunn, and

Cunningham 2001). Compartment modelling requires accurate determination of

an arterial input-function (AIF), i.e. the FDG time-activity curve in whole blood

and plasma. The gold-standard AIF is obtained by measuring the time-dependent

FDG radioactivity concentration in arterial blood through invasive blood sampling.

In small-animal PET imaging of rodents, such a procedure is hampered by the

limited blood volume that can be withdrawn without altering animal physiology,

the complex surgery required for inserting an arterial catheter into the blood vessel,

and the terminal end-point of the procedure. Several methods have been proposed

to overcome these limitations, which we describe in the following:

A population-based AIF template, obtained from a large dataset acquired

with the same tracer, injection protocol and population, can be calibrated to the

specific subject (Takikawa et al. 1993). However, this method neglects individual

physiological di↵erences and scan-dependent variations, and requires at least one

blood sample for curve scaling.

An image-derived input-function can be extracted from a large blood pool,

visible in the images, such as the ascending or descending aorta, left ventricle (LV)

or vena cava (VC) (Weerdt et al. 2001; Wu et al. 2007; Green et al. 1998; Lanz,

Poitry-Yamate, and Gruetter 2014). This method is restricted by the limited

spatial and temporal resolution of the PET imaging system, image noise, and

cardiac and respiratory motion (Laforest et al. 2005). Specifically, the spatial

resolution limitation introduces partial-volume e↵ects, including signal spill-in and

spill-over, which must be accounted for (Frouin et al. 2002; E. Kim et al. 2013;

Y.-H. D. Fang and Muzic 2008).

Simultaneous estimation can be applied on image data to estimate both the

AIF and kinetic parameters (Feng et al. 1997; Wong et al. 2001; Bartlett et al.

2018; Roccia et al. 2019), however, the method is complex, assumes a known

mathematical AIF model and requires at least one late blood sample for parameter

estimation.

Factor analysis can separate blood and myocardial signals from whole heart

images (J. Kim et al. 2006), yet, the obtained factors may not necessarily represent

truly corrected blood and tissue signals, and the method still requires one blood
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sample for curve scaling.

In this study, we take a di↵erent approach to AIF estimation, based on

machine learning (ML) (Theodoridis and Koutroumbas 2009). These methods are

especially useful for function estimation and regression (Sapankevych and Sankar

2009), and have been actively used within medicine (Miles N. Wernick et al. 2014;

Erickson et al. 2017). Briefly, one seeks to predict an output variable y, based on an

input vector, x, composed of one or multiple variables. An underlying functional

relationship between the input and output is assumed, such that y = f(x). This

mapping is learned through available training data, for which both the input and

output is known. Once the model has been trained, the potentially non-linear

function, f(x), can be applied on unseen samples to make predictions (Miles N.

Wernick et al. 2014).

Although, ML techniques have not previously been applied for input-function

estimation, attempts to use related statistical methods, such as multiple linear

regression, and Bayesian models, have shown potential for AIF estimation in

human brain (Y. H. Fang et al. 2004) and breast cancer studies (O’Sullivan et al.

2017). Gaussian process (GP) regression is a well-known statistical ML method for

data driven function estimation (Roberts et al. 2013), and has been used to predict

time series within health care (Dürichen et al. 2015). One advantage with GP is

that it estimates not only the mean function, but also its variance, thus providing

an uncertainty measure directly from the input training data (Rasmussen and

Williams 2004). In contrast, neural networks, which have been applied within

medicine for the past 25 years (Baxt 1995), build on learning mappings of high-

dimensional input data, into a representation where linear regression can take

place. Particularly, recurrent neural networks (RNN), were designed to handle time

series data. However, while RNN models struggle to learn long-term dependencies,

so called long short-term memory (LSTM) networks were introduced to e�ciently

incorporate long-term time-dependent information (Hochreiter and Schmidhuber

1997). LSTMs, have had successful applications within medicine, for prediction of

electrocardiograms (Chauhan and Vig 2015), and blood glucose levels (Sun et al.

2018).

In this work we compare a machine learning-derived input-function (MLDIF)

with an image-derived AIF estimated from vena cava and left ventricle. Our

hypothesis is that this AIF can be accurately predicted by an MLDIF model using

multiple tissue time-activity curves, not necessarily including the myocardium wall,

as input.
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Methods

The PET/CT images, volume delineations and time-activity curves used in this

work were collected in retrospect from a completed study at our institution,

focusing on PET imaging of Tertiary Lymphoid Structures (TLS) in two di↵erent

mouse strains (Dorraji et al. 2016). Relevant details from the TLS study are given

in the following.

Animals

All animal studies were approved by the Competent Authority on Animal

Research, the Norwegian Food Safety Authority; FOTS id 6676/2015. 36 female

mice from two strains (NZBWF1, Jax stock #10008 (n=24) and BALB/ cAnNCrl

(n=12)), purchased from The Jackson Laboratory and Charles River Laboratories,

respectively, were included in the TLS study (Dorraji et al. 2016). To minimize the

e↵ect of dietary state and anaesthesia on the FDG uptake in the mice (Spangler-

Bickell et al. 2016; Fueger et al. 2006), the following strict fasting and anaesthesia

protocol was followed prior to PET imaging: The mice were fasted for 3 h 50

min ± 20 min, weighed and anesthetized for 1 h 17 min ± 19 min prior to FDG

injection, in an oxygen-isoflurane mixture (4% and 2% isoflurane for induction and

maintenance, respectively). Blood glucose was measured in venous blood to 6.9

mmol/l ± 1.6 mmol/l at 56 min ± 20 min prior to tracer administration, using

a glucose meter (FreeStyle Lite, Abott Laboratories). A catheter, made from

polyethylene tubing and a 30 gauge needle, was placed into the lateral tail-vein to

allow FDG injection.

PET/CT imaging

PET/computed tomography (CT) imaging of totally 68 mouse scans was

performed using a TriumphTM LabPET-8TM small-animal PET/CT scanner

(TriFoil Imaging Inc.). Each mouse was scanned between 1-5 times at di↵erent ages

(range 7-37 weeks), weighing 33 ± 8 g at imaging time. 20 mice were scanned one

time, 6 mice were scanned two times, 6 mice were scanned three times, two mice

were scanned four times and two mice were scanned five times. The anesthetized

mice were centered in the field-of-view of the PET/CT scanner, lying on a 35�C

heated bed inside an animal imaging cell (Equipment Veterinaire Minerve), with

sensors monitoring heart and breathing rate. 10.5 ± 1.8 MBq of FDG (MAP

Medical Technologies) in 100 µl sterile saline was injected through the tail-vein
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catheter during 30s, with an infusion pump (56 scans), or by manual injection

followed by 20 µl flush of sterile saline (12 scans). A 60 minute list-mode PET

acquisition was started at injection time.

Immediately following PET imaging, a CT scan was performed for PET

attenuation correction. The following settings were used: 80 kVp, 2x2 binning,

512 projections and 1.3x magnification.

Image reconstruction

The list-mode PET data were binned into 44 time steps (24⇥5s, 9⇥20s

and 11⇥300s) and reconstructed to 0.5 ⇥ 0.5 ⇥ 0.6 mm3 voxel size, using

a 3-dimensional maximum-likelihood estimator algorithm with 50 iterations.

Corrections for detector e�ciency, radioactive decay, random coincidences, dead

time, attenuation and scatter were applied. The voxels were normalized into

standardized uptake value (SUV) [g/ml] (Keyes 1995).

The CT data were reconstructed using filtered back projection, to images with

0.177 mm isotropic voxel size.

Image analysis

Volumes of interests (VOI) were delineated in either CT, dynamic PET or static

PET space, the latter which was formed by averaging the last 20 minutes of

the dynamic PET acquisition. The image modality in which each VOI could

be defined in a standardized and reproducible way was chosen (Table 1). From

among the tissue regions delineated in the TLS study (Dorraji et al. 2016), the

following 7 were selected, hypothesized to be relevant for this study: vena cava,

left ventricle, myocardium, brain, liver, muscle and brown fat (Figure 1). These

regions were systematically delineated using the same method for all mouse scans

by either of two experienced imaging researchers. Researcher 1 and 2 delineated

52 and 16 mouse scans, respectively. Subsequently, all delineations were quality

assured by Researcher 1. The CT VOIs were down-sampled to the resolution of

the PET images, and co-registered with these using rigid transformation. All VOIs

were applied to the dynamic PET images, and the mean time-activity curve was

extracted from each VOI.

Page 6 of 54AUTHOR SUBMITTED MANUSCRIPT - BPEX-101756.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

Table 1. Delineation details of the VOIs. (a) Tissue regions used for reference AIF estimation. (b) Tissue regions used for training and testing
the MLDIF models.

Tissue region Volume [mm3] Image space Delineation method

(a) Regions used for reference AIF estimation

1 Vena cava 0.9 ± 0.1 dPET 0.6 mm radius sphere centered on peak voxel in early time step

2 Left ventricle 9.7 ± 3.1 sPET Region inside myocardium uptake

(b) Regions used for training and testing the regression models

1 Myocardium 114.5 ± 36.4 sPET Voxels > 40-60%⇤ of max voxel value above background† in whole heart

2 Brain 33.5 ± 0.2 CT 2 mm radius sphere in the dorsal region of the skull

3 Liver 32.7 ± 4.0 CT 2 mm radius sphere in upper right liver lobe

4 Muscle 33.5 ± 0.2 CT 2 mm radius sphere in skeletal muscle of right front leg

5 Brown fat 96.2 ± 42.9 sPET Voxels > 40-60%‡ of max voxel value above background† around BF

dPET/sPET = Dynamic/static positron emission tomography; VC = Vena cava; VOI = Volume of interest; CT = Computed

tomography; BF = Brown fat.
⇤The threshold was determined with manual interaction for each mouse scan, such that the myocardium VOI formed an approximate

torus.
†The maximum voxel value was subtracted from minimum before thresholding, i.e. Imax - Imin, where I is the voxel value.
‡The threshold was determined with manual interaction for each mouse scan, such that the BF VOI was confined to a single FDG active

region.

FDG compartment model

An irreversible two-tissue compartment model (2TCM) was used to calculate

the rate constants K1, k2 and k3, while k4=0 for FDG (R. N. Gunn, S. R.

Gunn, and Cunningham 2001). This model assumes FDG to be either free, or

phosphorylated (FDG-6P) and trapped in tissue, with activity concentrations C1

and C2, respectively. The two state equations are:

dC1(t)

dt
= K1 · Cp(t)� (k2 + k3) · C1(t) (1)

dC2(t)

dt
= k3 · C1(t) (2)

where Cp(t) is the arterial plasma time-activity curve, also known as the AIF.

Although it has been shown that the ratio of FDG concentration in whole blood,

Ca(t), and plasma, Cp(t), varies over time (Wu et al. 2007; Weber et al. 2002),

such a correction would require blood sampling, and was therefore not possible in

this study. Consequently, equality between Ca(t) and Cp(t) was assumed.

Ignoring the blood fraction in tissue, the tissue concentration measured with

PET, Ct(t), is the sum of the two states, Ct(t) = C1(t)+C2(t). By using Equations

1-2, Ct(t) can be expressed as (Phelps, Ho↵man, and Kuhl 1980):

Ct(t) =
K1

k2 + k3

⇥
k3 + k2 · e�(k2+k3)·t

⇤
⌦ Cp(t) (3)
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Figure 1. VOI delineations in one representative mouse. (a) Brain (yellow)
and VC (blue). (b) LV (yellow), myocardium (blue) and brown fat (green). (c)
Brain (yellow) and liver (white). (d) Skeletal muscle (red). (a)-(b) in PET/CT
space, (c)-(d) in CT space. AU = Arbitrary units; LV = Left ventricle; SUV =
Standardized uptake value; VC = Vena cava

where ⌦ denotes mathematical convolution. The net-influx rate constant, Ki, is

defined as (Y.-H. D. Fang and Muzic 2008):

Ki ⌘
K1 · k3
k2 + k3

(4)
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Reference input-function estimation

In this study, no blood samples were collected. Instead, for each mouse scan, an

AIF was formed from vena cava (VC) and left ventricle (LV) VOI data. After

tail-vein FDG injection, the tracer flows through VC before reaching the heart.

Therefore, the initial VC peak consists mostly of FDG prior to mixing with blood,

thus overestimating the true AIF peak in early time steps (Lanz, Poitry-Yamate,

and Gruetter 2014). Furthermore, the large (⇠10 mm3) LV VOI is less a↵ected by

spill-over e↵ects than the small (0.9 mm3) VC VOI. Therefore, LV yields a more

correct representation of the AIF in early time steps compared to VC. However,

LV is significantly a↵ected by spill-in from myocardium (Y.-H. D. Fang and Muzic

2008), hence in later time steps, the VC curve is more representative of the AIF.

This knowledge was implemented by forming a measured, image-derived AIF,

CV C,LV
p (t), for each time step, t, by:

CV C,LV
p,t = min(CV C,t, CLV,t) t = 1, 2, ..., 44 (5)

where CV C,t and CLV,t are the mean SUVs in each time step, t, in the VC and LV

VOIs, respectively (Vesa Oikonen, personal communication, June 12, 2018).

To reduce noise among the discrete AIF data points, a well-known parametric

model was used to describe the AIF (Dagan Feng, Huang, and Wang 1993):

Cp(t) =

(
0 if t < ⌧

(A1(t� ⌧)� A2 � A3)eL1(t�⌧) + A2eL2(t�⌧) + A3eL3(t�⌧) otherwise

(6)

where A1 through A3 and L1 through L3 are model constants, and ⌧ is a timing

delay constant. Although this model has limitations, such as assuming bolus

tracer injections, recently improved models have not shown significantly improved

AIF fits for FDG (Tonietto et al. 2015). Therefore, the parametrized model of the

input-function (Equation 6) was fitted to the image-derived data points, CV C,LV
p (t),

and used as reference AIF for each mouse scan. Linear interpolation to 1 second

uniform time steps was performed for the AIF fit, before the obtained reference

AIFs were interpolated back to the original, non-uniform time steps of the dynamic

PET data.
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Gaussian processes

GP can be used to solve non-linear regression tasks, where the output, yn,

is approximated by a probability distribution over functions of the input, xn,

such that f(xn) ⇠ GP(m(xn), k✓(xn,x0
m)). Here, m(xn) is a mean function,

k✓(xn,x0
m) is a covariance function, parameterized by ✓, and �2 specifies the noise

power (Rasmussen and Williams 2004). Having N available input-output training

samples in a set D = {xn, yn}Nn=1, each including the time-activity curves of the

tissues from Table 1(b), with corresponding known reference AIF, the mean value

AIF of the test sample, E[y⇤], and the variance, V[y⇤], can be calculated by:

E[y⇤] = k>
⇤ (K+ �2

nI)
�1y (7)

V[y⇤] = k(x⇤,x⇤)� k>
⇤ (K+ �2

nI)
�1k⇤. (8)

Here k⇤ is the covariance between the training samples x and the test sample x⇤;

[K]ij = k✓(xi,xj) is the covariance between all training samples; �2
nI is a scalar

matrix with diagonal elements equal to the noise level; k(x⇤,x⇤) is the covariance

between the test sample and itself (Rasmussen and Williams 2004).

Long short-term memory network

RNNs are designed to process sequential data and learn time-dependencies (Lipton,

Berkowitz, and Elkan 2015). They take time series as input, processes it element-

wise, and outputs a vector, named the hidden state, that contains information

from previous time steps. For each time step, t, the prediction, yt is modelled as

yt = f(xt,ht�1), where xt is the current time step input, ht�1 is the previous time

step hidden state, and f is parametrized by a neural network. Unfortunately, as a

result of vanishing or exploding gradients during training, RNNs have di�culties

learning long-term dependencies (Hochreiter and Frasconi 2009). To overcome

this, a modified architecture was introduced, named LSTM network (Hochreiter

and Schmidhuber 1997), that could incorporate long-term dependencies into a cell

state, that passes information forward from previous time steps. Three serial gates,

an input, a forget and an output gate, modifies the information that will be added

to, removed from, or carried on by, the cell state, at each time step (Hochreiter

and Schmidhuber 1997).
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Input-function prediction

For AIF prediction, the data set (N = 68) was randomly shu✏ed, and divided into

a training set (Ntr = 56) and test set (Nte = 12). The training set was used to

calculate the parameters, while the test set was used to evaluate the performance

of the MLDIF models. Subsequent model training was repeated 1000 times for

both GP and LSTM, respectively, with a new shu✏e and split at each repeat. The

same 1000 shu✏e and splits were used for both GP and LSTM experiments. This

resulted in a varying number of predicted AIFs for each mouse scan (Nmin = 151,

Nmax = 206), depending on the frequency with which it occurred in the test set

in the 1000 experiments. Because the tissue regions in Table 1(a) were used for

reference AIF estimation, only regions from Table 1(b) were included for training

and testing the MLDIF models.

For GP, an AIF prediction, E[y⇤] was calculated for each mouse scan in the

test set, y⇤, using Equation 7. With the 44 time step tissue time-activity curves as

input vectors, the corresponding output was a 44 time step AIF curve. The Matérn

covariance function was chosen, with ⌫ = 5/2, because this choice produces smooth

function samples, as discussed in (Rasmussen and Williams 2004). To obtain an

equal number of AIFs for each mouse scan, Nmin = 151 predicted AIF models

were randomly selected for each mouse scan. The average and standard deviation

(SD) over these 151 AIFs was then calculated to represent the predicted AIF and

its variation, for each mouse scan.

For LSTM, the model training was performed by fitting the weights of the

network through a series of iterations (epochs). For this model, validation data

was required to determine when to stop iterating to avoid over-fitting. Therefore,

a validation set, Nvl, was formed by randomly selecting 12 mouse scans from the

training set, which were not used for weight fitting. The hyperparameters of the

LSTM models were empirically set to: 20 neurons in the hidden state; maximum

1000 epochs training but using early stopping with minimum delta 0.0001 and

50 epochs patience while monitoring the validation set loss; 0.001 learning rate; a

mini-batch size of 12. Training was performed using the ADAM optimizer (Kingma

and Ba 2014) and the mean squared error loss function. For LSTM, each of the 151

- 206 predicted AIFs, for each mouse scan, was associated with a validation loss,

calculated as the sum of the mean squared errors of all samples in the validation

set after LSTM training. For each mouse scan, the predicted AIF associated with

the lowest validation data set loss was chosen to represent the AIF for that mouse

scan. The average of Nmin = 151 randomly selected AIFs for each mouse scan
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and time step, including the selected AIF, as well as the corresponding SD was

calculated for each mouse scan.

Input-function validation

The predicted AIFs, ŷ, were compared with the reference AIF, Cp(t) from Equation

6, for each mouse scan, by the area under curve (AUC) and root mean square error

(RMSE):

RMSE =

qPT=44
t=1 (ŷt�Cp,t)2

T (9)

An irreversible 2TCM (Equation 3) was used to estimate the rate constants

K1, k2 and k3, using the reference AIF, and the predicted AIF from GP and

LSTM, respectively. Calculations were performed for brain, skeletal muscle and

myocardium, which were the three tissues from Table 1 expected to follow this

kinetic model. Subsequently, Ki was calculated for these three tissues using

Equation 4. The error in Ki was calculated as:

 
KModel

i

KRef
i

� 1

!
⇥ 100% (10)

where KModel
i and KRef

i represents Ki, obtained from the predicted AIF and the

reference AIF, respectively. The percent errors over mouse scans were summarized

using mean and SD. Furthermore, the correlation coe�cients between KModel
i and

KRef
i were calculated. Also, after checking for normality, a paired t test with

↵ = 0.05 was used assess statistical significance in Ki for each tissue region and

MLDIF model. Morover, Bland-Altman plots were generated to further investigate

the agreement in Ki between model-derived and reference values (Martin Bland

and Altman 1986). In these diagrams, both the mean di↵erence and the ± 2 SD

interval were used for evaluation.

One mouse scan was removed from model comparisons due to failed reference

AIF fit attributed to noisy input data. Two additional mouse scans for each

MLDIF model were defined as outliers and also excluded from model comparisons,

because their AIF RMSE was more than three scaled median absolute deviations

away from the median RMSE (Hubert and Van der Veeken 2008). Furthermore,

compartment modelling resulted in abnormal rate constants for four mouse scans

for either heart or muscle tissue regions, and for two additional mouse scans, the

brain time-activity curves were abnormally noisy due to failed normalization for
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peripheral detectors. Therefore, these mouse scans were also excluded from model

comparisons, for the a↵ected tissues.

Tissue region importance

To investigate the importance of each tissue on AIF prediction, 11 di↵erent data

sets were formed, using the following permutations of tissues from Table 1(b) for

MLDIF model training: all, all except myocardium, all except brain, all except

liver, all except muscle, all except brown fat, myocardium, brain, liver, muscle and

brown fat. Briefly, the data set was shu✏ed and split into training and test sets,

as described earlier. Subsequently, one GP and one LSTM model was trained on

each of these 11 tissue permutations, and then used to obtain a predicted AIF for

each of the 12 mouse scans in the test set of the current shu✏e. The experiment

was repeated 100 times, with a new shu✏e and split at each repeat. The same

100 shu✏e and splits were used for both GP and LSTM experiments. The mean

RMSE over the mouse scans in the test set was used to evaluate the predictive

performance of each tissue permutation.

Software and computational environments

The AIF regression models were implemented in Python 3.6.3, using GPflow

1.2.0 for the GP models (Matthews et al. 2017), and Keras 2.1.5 API for the

LSTM models (Chollet 2015). The source code for these models is available at

https://github.com/Kuttner/MLDIF.

Reference AIF estimation and compartment modelling was performed in

Matlab R2018a (Mathworks). A constrained nonlinear multivariable optimizer

(fmincon), minimizing the weighted sum-of-squared errors, was used for the

AIF model fit and a nonlinear least-squares solver (lsqcurvefit) was used for

compartment modelling.

The VOIs in Table 1 were delineated using PMOD 3.8 (PMOD Technologies

Ltd.).

Results

Reference input-function estimation

The parameterized reference AIF curve (Equation 6) and the underlying VC and

LV curves (Table 1(a), Equation 5) are shown in Figure 2(a), for one representative
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mouse scan. The parameterized curve is noiseless and smooth, compared to VC

and LV. The time-activity curves for the 5 tissue regions from Table 1(b) are

displayed in Figure 2(b).

Figure 2. Time-activity curves from the VOIs delineated in one representative
mouse scan. (a) The VC and LV tissue regions from Table 1(a), the minimum
of these, and the parameterized reference AIF, using Equations 5-6. (b) The 5
tissue regions from Table 1(b). In (a) and (b), the inserts depict the first three
minutes of the time-activity curves.

Input-function validation

Results from comparisons between the predicted and reference AIFs in terms of

AUC and RMSE are shown in Table 2. Both models generated AIFs with AUCs

similar to reference, with mean AUC errors < 5%.

The corresponding AUC values for the two mice scanned 5 times were 80.4

± 19.7 and 78.1 ± 14.2. The within-subject AUC was thus in the same range as

the AUC calculated over all subjects. This suggests similar inter- as intra-subject

variability among the AIFs. Consequently, mice that were scanned multiple times

were treated as independent samples. The predicted AIFs for the three mouse

scans with lowest, 50th percentile and 75th percentile RMSE, respectively, are

shown in Figure 3, for the GP and LSTM model. Additionally, the RMSE

histogram for each model is shown. For both the GP and LSTM models, the

regression curves with the lowest RMSE (RMSEGP = 0.23 g/ml, RMSELSTM =

0.19 g/ml) agrees well with the reference AIF (Figure 3, first column). The LSTM

model fit generally resembles the reference AIF better and with lower variations,
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compared to GP, also for the 50th percentile (RMSEGP = 0.58 g/ml, RMSELSTM

= 0.44 g/ml) and 75th percentile (RMSEGP = 0.84 g/ml, RMSELSTM = 0.54 g/ml)

scan. Furthermore, the RMSE histogram and Table 2 display lower mean RMSE

for the LSTM model (0.44 ± 0.16 g/ml), compared to GP (0.65 ± 0.29 g/ml).

Table 2. Comparison of the predicted and reference AIFs. The RMSE [g/ml]
was calculated with Equation 9, while the AUC error [%] was calculated as
(AUCModel/AUCRef � 1) ⇥ 100%.

AIF AUC [g·min/ml] AUC error [%] RMSE [g/ml]

Reference 80.6 ± 15.5

GP 79.0 ± 11.8 1.3 ± 22.6 0.652 ± 0.287

LSTM 83.2 ± 15.1 4.9 ± 14.4 0.444 ± 0.156

Figure 3. AIFs generated by the two evaluated MLDIF models. (a) GP. (b)
LSTM. For each model, the mouse scan with lowest, 50th and 75th percentile
RMSE is shown, respectively, as well as the RMSE histogram over all mouse
scans. In the histograms, the mean ± SD RMSE for the LSTM and GP model
is 0.44 ± 0.16 g/ml and 0.65 ± 0.29 g/ml, respectively. Red circles indicate the
reference AIF. Black line represents the mean over Nmin = 151 models in the
test set for GP in (a) and the single LSTM model in the test set with lowest
validation loss in (c). In both (a) and (b), the shaded area shows the mean AIF
± 1 SD across 151 models. The vertical red lines in the histograms indicate the
three scaled median absolute deviation threshold for outlier removal (Hubert
and Van der Veeken 2008).

As the aim of estimating the AIF is for its use in tracer kinetic modelling,

it is important to evaluate the error induced in Ki. Table 3 shows the Ki values
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obtained from the reference AIF and the two model-derived AIFs, GP and LSTM,

for brain, muscle and myocardium tissue regions. Furhtermore, Figure 4 presents

the ratio distribution of Ki obtained with the two MLDIF models, to Ki obtained

with Reference AIF for the same three tissues. Both models yielded rate constants

very similar to reference, with average errors over the three tissues of 5.5% ± 33.2%

for the GP model and -0.7% ± 35.4% for the LSTM model and with correlation

coe�cients of 0.95 and 0.94, respectively. As shown in Figure 4, the LSTM model

resulted in slightly more underestimated Ki values when compared to reference,

with median Ki ratio over the three tissues of 0.934, compared to GP, with a

corresponding median ratio of 0.999. The paired t test did not detect significant

di↵erences in Ki for either of the tissue regions, with P > 0.05 for both GP and

LSTM models, when comparing to reference (Table 3).

Table 3. Comparison of Ki calculated from Reference AIF and the respective
MLDIF model.

Model Statistics of K⇤
i Brain Muscle Myocardium

Reference Estimate (g/min/ml) 0.0146 ± 0.0044 0.0057 ± 0.0036 0.1041 ± 0.0696

GP Estimate (g/min/ml) 0.0145 ± 0.0048 0.0058 ± 0.0039 0.1049 ± 0.0720

Error (%) 6.7 ± 37.8 5.5 ± 33.4 4.2 ± 28.1

Corr. coe�cient 0.56 0.91 0.90

t test P value 0.911 0.588 0.647

LSTM Estimate (g/min/ml) 0.0138 ± 0.0047 0.0054 ± 0.0037 0.1023 ± 0.0709

Error (%) -1.4 ± 34.8 -1.8 ± 30.6 1.0 ± 40.6

Corr. coe�cient 0.68 0.91 0.86

t test P value 0.058 0.148 0.466

⇤Estimate (g/min/ml) and error (%) are expressed as mean ± SD. Correlation

coe�cient (Corr. coe�cient) and P values are calculated from (KMLDIF
i , KRef.

i )

pairs of the included mouse scans.

Figure 5 shows Bland-Altman plots of the model-derived and reference Ki

values, for brain, muscle and myocardium tissue regions. Generally, the mean

di↵erence was close to zero for both MLDIF models for the three tissue regions

(GP, mean di↵erence = 0.0007. LSTM, mean di↵erence = -0.0015), indicating

that Ki from the predicted AIFs agree well with reference for the three tissues.

Also, the 2 SD interval was similar in both models for brain (GP, 2 SD = 0.008.

LSTM 2 SD = 0.007), muscle (GP, 2 SD = 0.003. LSTM 2 SD = 0.003) and
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Figure 4. Box plot of ratios of Ki obtained with GP and LSTM MLDIF
to Ki obtained with Reference AIF for brain, muscle and myocardium tissues.
As a result of outlier removal, as described in the main text, the number of
included mouse scans varied between 62-65, for the shown models and tissues.
The horizontal line and the black box represents median and interquartile range
(25th to 75th percentile), respectively, while the whiskers indicate the maximum
and minimum data point up to 1.5 ⇥ interquartile range. Data points outside
this interval are shown with red dots. The dashed black line indicates unity
ratio. There was no significance di↵erence between the two MLDIF models and
the Reference AIF for the three tissues (Table 3).

myocardium (GP, 2 SD = 0.063. LSTM 2 SD = 0.073).

Tissue region importance

Training a GP and an LSTM model with each of the 11 tissue permutations

resulted in 11 AIFs for each test mouse scan and model, each with an associated

RMSE. Figure 6 shows the distribution of the mean RMSE over the 12 test

mouse scans for the 11 tissue permutations, averaged over all 100 GP and

LSTM experiments. The lowest RMSE was obtained when training an LSTM
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Figure 5. Bland-Altman plots of predicted and reference Ki using GP and
LSTM MLDIF models for brain, muscle and myocardium tissue regions. Central
and outer dashed lines indicate mean value and mean ± 1.96 SD (simply referred
to as 2 SD throughout this paper), respectively (Martin Bland and Altman
1986). GP, Brain: mean di↵erence = 0.0001, 2 SD = 0.0084. GP, Muscle:
mean di↵erence = 0.0001, 2 SD = 0.0032. GP, Myocardium: mean di↵erence
= 0.0019, 2 SD = 0.0631. LSTM, Brain: mean di↵erence = -0.0009, 2 SD =
0.0071. LSTM, Muscle: mean di↵erence = -0.0003, 2 SD = -0.0031. LSTM,
Myocardium: mean di↵erence = 0.0034, 2 SD = 0.0728.

model with all except brain tissue regions (median RMSE = 0.47 g/ml, max-

min = 0.48 g/ml), indicating that brain was least important for AIF prediction,

although this error was similar to when all regions were included for training (P

= 0.06, median RMSE = 0.48 g/ml, max-min = 0.33 g/ml). Furthermore, a

similar error with only slightly higher variability was obtained when including

only myocardium (P = 0.16, median RMSE = 0.50 g/ml, max-min = 0.44

g/ml), suggesting that myocardium is important for AIF prediction. Training

on all regions except myocardium, or on all regions except liver resulted in

significantly larger errors (P < 0.05, median RMSE = 0.65 g/ml and median

median RMSE = 0.55 g/ml, respectively), compared to when all regions were

included. Furthermore, for LSTM, single-tissue permutations resulted in larger

RMSE (overall mean RMSE = 0.70 g/ml, SD = 0.14 g/ml), compared to multi-

tissue permutations (overall mean RMSE = 0.53 g/ml, SD = 0.10 g/ml). All
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single-tissue errors, except myocardium, were significantly di↵erent from when all

regions were used for training (P < 0.05). For GP, the lowest RMSE was obtained

when training the model on myocardium exclusively (median RMSE = 0.66 g/ml,

max-min = 0.62 g/ml), while all other investigated tissue permutations resulted

in significantly larger errors (P < 0.03, 0.66 < median RMSE < 0.87 g/ml). All

LSTM tissue permutation errors (overall mean RMSE = 0.61 g/ml, SD = 0.15

g/ml) were significantly smaller (P < 0.05) compared to GP (overall mean RMSE

= 0.81 g/ml, SD = 0.14 g/ml).

Figure 6. Box plot of the mean RMSE distribution between MLDIF-derived
and reference AIFs, over the 12 test mouse scans for all 100 GP and LSTM
experiments. 7 specific tissue permutations are shown, where MLDIF model
training was based solely on the indicated tissues. See Figure 4 legend for
description of what the box height, center line, and whiskers indicate.
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Discussion

Tracer kinetic modelling from dynamic PET imaging requires accurate knowledge

of the AIF, ideally determined through arterial blood sampling. In small-animal

imaging, an image-derived AIF approximation is often preferred because of limited

blood volume, and to avoid terminal experiments and complex surgery. Our

aim was to find a non-invasive, image-derived method, for determining the AIF,

without the need for surgery, and with an inherent potential to be insensitive to

partial-volume e↵ects. In this study, we proposed two machine learning-derived

AIF models (MLDIFs) that, when properly trained, approximates the real AIF: a

statistical method based on GP, and a deep learning-based approach based on an

LSTM network. We compared the predicted AIFs with image-derived reference

AIFs, because blood input data was not available.

Our results showed that both investigated MLDIF models were well-suited

for this task, predicting AIFs with similar AUC compared to reference and with

low average errors (Table 2). The magnitude of the errors were comparable

to earlier studies (Y.-H. D. Fang and Muzic 2008). The use of AUC alone to

quantify agreement between curves may, however, be misleading, because two

AIFs with vastly di↵erent curve shape can have similar AUC. Therefore, we

applied the RMSE, which provides a better measure of the agreement between

two AIFs. Evidently, the LSTM model predicted AIFs with lower RMSE and

less variation, compared to GP (Table 2, Figure 3). Since the AIF curve itself is

not the interesting result in most dynamic PET studies, we evaluated the tracer

kinetic output, Ki, calculated from a 2TCM with the reference AIF as input, and

compared it to the corresponding Ki, when using the model-derived AIFs as input.

Compartment modelling showed that both MLDIFs resulted in similar

population averaged rate constants compared to reference, with the error being

lower for the LSTM model, compared to GP (Table 3, Figure 4 and Figure 5).

Both the absolute values ofKi and the errors agreed well with previously published

results (Y.-H. D. Fang and Muzic 2008). Correlation between model-derived and

referenceKi values was strong and positive for muscle and myocardium (correlation

coe�cient > 0.9) for both MLDIF models, while for brain, it was somewhat lower

(correlation coe�cient > 0.6) (Table 3). This may be explained by the brain

region being located close to the end slices of the scanner, where noise is high,

and thus suggests that the MLDIF methods are sensitive to noisy input data.

All P values were above the significance level of 0.05, indicating that significant

di↵erences between model-derived and reference Ki could not be detected for any
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of the tissues or MLDIF models (Table 3).

The Bland-Altman analysis (Figure 5) revealed mean di↵erences close to zero

for both MLDIF models and all three tissues. Furthermore, the 2 SD intervals were

very similar for GP and LSTM within each tissue, thus neither model outperformed

the other in terms of Ki accuracy.

The time-consuming manual delineation of all 5 tissue regions from Table

1(b) can be minimized if only one, or few of the regions can be used for AIF

prediction. Furthermore, dynamic PET acquisitions are usually restricted to a

single bed position. For larger rodents, such as rats, or for human PET imaging,

this implies that only a few of the regions from Table 1(b) is visible in the

dynamic images. Figure 6 indicated that for the LSTM model, an AIF with similar

RMSE as the AIF derived with all tissues used for training, could be predicted

solely based on myocardium data. This region inevitably contains spill-in from

the blood pool, thus inherently including a strong component that reflects the

AIF. The importance of the myocardium for the LSTM model was also shown

as an increased RMSE in the ”all except myocard” permutation, compared to all

other multi-tissue permutations. A similar e↵ect was observed for the liver tissue

region, which similarly to myocardium, has a high blood content. Interestingly,

while myocardium was the best performing tissue for GP, training on all tissues

resulted in the largest RMSE among the investigated tissue permutations. This

suggests that the GP model handles single-tissue data better than multi-tissue

data, showing increasing errors as the number of included tissues increase. In

contrast the LSTM model was generally able to predict AIFs with lower overall

errors in both single- and multi-tissue data.

Most importantly, even though the LSTM model generated AIFs with lower

RMSE, thus better agreement between predicted and reference AIF curve shapes,

compared to GP, the result from compartment modelling, in terms of Ki values,

showed similar performance between the models. It remains to show in a future

study, if this is due to Ki being robust to the AIF variations encountered in the

data set, or if it is a limitation of the image-derived reference AIFs, used in this

study.

A prerequisite for the MLDIF approach is that representative training data

have been collected for the specific mouse strain, tracer and imaging system,

including both images and reference AIFs, the latter preferably validated with

blood samples. Once an MLDIF model has been trained, it o↵ers several

advantages, relative to currently available methods for AIF estimation. Compared

to blood sampling, a trained MLDIF model is a non-invasive method, implying
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simple and convenient use, without the need for surgery, allowing non-terminal

PET experiments for mice. Similar to other image-derived methods, such as

simultaneous estimation (Y.-H. D. Fang and Muzic 2008) and Bayesian statistical

models (O’Sullivan et al. 2017), MLDIF is based on minimization of an objective

function. However, as opposed to the former-mentioned methods, MLDIF is

based on well-known ML models that do not require a predetermined function

or fine-tuning parameter initialization and limits. Furthermore, as opposed to

many image-derived methods, including factor analysis (J. Kim et al. 2006),

our experiments indicate that a trained MLDIF model is able to describe both

the shape and the amplitude of an image-derived reference AIF. The authors

hypothesize that MLDIF models, in experiments with available blood data, needs

no blood sample for AIF scaling during prediction, but solely image-derived input

data. Lastly, multiple linear regression has shown potential for predicting the AIF

in human brain studies (Y. H. Fang et al. 2004), but this method assumes identical

AIF shape in all patients, di↵ering only by magnitude. In contrast, MLDIF takes

time-dependent input data, and outputs time-dependent AIFs. The model thus

accounts for variations in both magnitude and shape, as shown in Figure 3. These

variations originate from relative magnitude and shape variations in the image

input data, as opposed to absolute AIF scaling, which is possible when blood

samples are available.

Because blood data were unavailable, the reference AIF was generated by

fitting a well-known AIF model (Dagan Feng, Huang, and Wang 1993) to image-

derived data. However, the same reference AIF was used for both reference

compartment modelling and for MLDIF model training, thus, a valid comparison

can still be made between KRef
i and KModel

i . The comparison to an image-derived

reference AIF does not fully validate the MLDIF method, but does provide an

exploratory foundation for this novel and non-invasive AIF estimation method.

Nevertheless, ML have previously been successfully applied in various regression

tasks (Sapankevych and Sankar 2009; Miles N. Wernick et al. 2014; Erickson et al.

2017), thus in future research, it remains to prove that a reference blood-AIF can

be predicted with the MLDIF approach. Moreover, although an attempt was made

to avoid the influence of signal spill-in and spill-over e↵ects in this work (Equation

5), it remains to validate that MLDIF can explicitly account for these e↵ects by

comparing it to existing partial-volume correction methods (Frouin et al. 2002; E.

Kim et al. 2013; Y.-H. D. Fang and Muzic 2008).

The MLDIF approach was verified with FDG in this study, however, based

on the robustness of the investigated ML models to variations in the input data,
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the authors suggest that these models could be adopted to other tracers by merely

retraining the models. With comprehensive validation it is also conceivable that

tracers requiring metabolite-correction may be modelled. If validated correctly,

this will give a foundation for a simplified MLDIF-based approach in research

subsequent to such a validation. In the end, the accuracy of the MLDIF models

for a particular PET application will depend on the quality, quantity and relevance

of the available training data.

Conclusion

In this study we have shown that two di↵erent machine learning-based models, GP

and LSTM, can be used for non-invasive AIF prediction in an FDG study of mice.

The resulting net-influx rate constants from compartment modelling agreed well

with reference values for both models. We recommend the deep-learning based

LSTM approach, as this model predicts AIFs with lower errors for both single-

and multi-tissue input data, compared to GP.
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