
 

 

 

Faculty of Science and Technology
Department of Computer Science

Object detection at the edge

Image classification on a small embedded computer
—
Truls Mathiassen
INF-3981, November 2020





“Eg har masse data”
–Lars Vaular

“Don’t push me ’cause I’m close to the edge.”
–Grandmaster Flash





Abstract

While monitoring rodents in the Arctic Tundra to evaluate if climate changes
affect the ecosystem. The camera-traps of the coat project generates image
data in large scale each year. To manually examine the data in regards to label-
ing is a tedious and time-consuming job, and a more efficient and automated
tool for the task is required.

In this thesis we presents the architecture, design and implementation of a
object classification model deployed on a small embedded computer, to be used
on the gathered image data in order to classify and label the animals at the
edge.

We conduct transfer-learning on the state-of-the-art pre-trained YOLOv4-tiny
model by introducing a labeled COAT image set. We utilize the Convolutional
Neural Network of the model to do predictions on a test image set in order to
evaluate the model. The result is an application with an embedded model able
to predict labels with an accuracy of 96.07% and inference time that classifies
it to do so in real-time.





Acknowledgements

First and foremost, I would like to thank my family for supporting me, pushing
me, and having faith, even when I was doubting.

I would like to express my gratitude to my supervisor John Markus Bjørndalen
for all help and support on my terms throughout this project. A special thanks to
Jan Fuglesteg for the flexibility regarding the ongoing pandemic. To Kai-Even
Nilssen, thanks for all the conversations and discussions.

To all my classmates, thanks for some fantastic years at UiT. I will forever
remember the good times, debugging, and late nights.





Contents

Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

Acronyms xiii

1 Introduction 1
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Object classification 5
2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . 6

2.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Transfer learning . . . . . . . . . . . . . . . . . . . . 10

3 Related work 11

4 Data-set preparation 13
4.1 COAT data-set . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Data-set preparation . . . . . . . . . . . . . . . . . . 14

5 Design And Architecture 17
5.1 Workflow Design . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Implementation 23
6.1 Google Colab implementation . . . . . . . . . . . . . . . . . 24

vii



viii contents

6.1.1 Android Application Implementation . . . . . . . . . 24

7 Evaluation 27
7.1 Experimental platforms . . . . . . . . . . . . . . . . . . . . 27

7.1.1 TensorFlow lite model platform . . . . . . . . . . . . 27
7.1.2 YOLOv4-tiny model platform . . . . . . . . . . . . . 28

7.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Classification metrics . . . . . . . . . . . . . . . . . . . . . 29

7.3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . 29
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Discussion 35
8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Data-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Training platform . . . . . . . . . . . . . . . . . . . . . . . 37
8.4 Edge computing . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Conclusion 41
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 43

A Roboflow API screenshots 47



List of Figures

2.1 CNN architecture illustration from[8] . . . . . . . . . . . . . 6
2.2 Basic flow in transfer learning[14] . . . . . . . . . . . . . . 10

4.1 Camera-trap image of a lemming . . . . . . . . . . . . . . . 14
4.2 Annotated image of a lemming . . . . . . . . . . . . . . . . 15

5.1 Performance comparison of small vs full-scale models in re-
gards to AP illustration from [27] . . . . . . . . . . . . . . . 19

5.2 Architectural workflow design . . . . . . . . . . . . . . . . . 22

6.1 On device screenshots of Android application for object clas-
sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1 Colab evaluation metrics for YOLOv4-tiny with the validation
data-set as input . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Example on failure when detecting multiple objects from the
data-set images . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 screenshot predictions form smartphone APP . . . . . . . . . 34

8.1 screenshot predictions of bird from smartphone APP . . . . . 39

1 Roboflow Dashboard . . . . . . . . . . . . . . . . . . . . . . 47
2 Dataset dashboard . . . . . . . . . . . . . . . . . . . . . . . 48
3 Roboflow data-set version dashboard . . . . . . . . . . . . . 49
4 Single image from data-set . . . . . . . . . . . . . . . . . . 50

ix





List of Tables

4.1 Data-set image distribution. Shows the image count of each
label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.1 mean Average Performance for each model and AP for each
class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi





List of Abbreviations

ai Artificial Intelligence

ap Average Precision

api Application Programming Interface

cnn Convolutional Neural Network

coat Climate-ecological Observatory for Arctic Tundra

coco Common Objects in Context

cpu Central Processing Unit

dao Distributed Arctic Observatory

dnn Deep Neural Network

fn False Negative

fp False Positive

gpu Graphical Processing Unit

ide Integrated Development Environment

iou Intersection over Union

map mean Average Precision

ssd Single Shot Detection

tp True Positive

xiii



xiv acronyms

tpu Tensor Processing Unit

vm Virtual Machine

yolo You Only Look Once



1

Introduction

The effects of global warming are changing the arctic tundra dramatically, and
the effects on the ecosystem is expected to greatly impact the various animal
species currently living there. If temperatures are rising, which impacts the
permafrost, this could lead to a whole new ecosystem, and a rapidly changing
habitat with widespread consequences.

In order to keep track of changes in the wildlife and climate on in the arctic
tundra, the coat[1] was founded as a collaborating research group with
members from various institutions of the FRAM center[2].

The COAT-team conducts adaptive long-term research in the face of climate
change. One key monitoring objective in their research is a ground-based
optical monitoring system[3]. This system uses wildlife camera-traps, which
are mounted inside of artificial tunnels used by small mammals/rodents. The
camera has motion detection and takes pictures when it gets triggered. With
multiple traps in various areas, this generates a copious amount of data each
year. Researchers spend much time conducting tedious manual labor on the
data sets to produce statistics about the type, amount, frequency, and variation
of animals passing through the traps.

In collaboration with the Department of Computer Science at UiT,multiple tools
have been developed to make the analytic procedure available on embedded
edge-computing nodes. Several image classification models have been trained
and tested by researchers at UiT[4] with impressive accuracy on annotated

1



2 chapter 1 introduction

images.

All data produced by the camera-traps still require human interaction in order
to extract the data since this is stored on a memory card in the camera module.
In this thesis, we will explore the possibility of developing a lightweight image
classification module that will enable edge computing. Such a model could be
utilized by a small embedded computer and possibly mounted in correlation to
the camera-traps to retrieve and process the data and generate statistics. The
benefactor would be less human pollution of the biodiversity-ecosystem in the
Arctic Tundra.

1.1 Problem definition

In this thesis, we investigate the possibility of developing a lightweight image
classification model to enable edge computing on data in remote locations
without the need for extensive computational power.

To find out if this is possible, we need to train a full-scale image classification
model on a data-set from the COAT camera-traps. Then convert it into a
lightweight model. Tensorflow Lite1 by Google will be our final model. This
will be deployed on a small embedded computer(smartphone) and tested on
images from the COAT camera-traps. The results verify if the model accuracy
and inference time are sufficient enough to be considered a potential candidate
for real-time edge computing in the field.

The final model embedded on the smartphone should be

• Capable to detect and classify the various animals in the COAT data-set

• Classify the animals with a satisfactory accuracy to be considered a
success

• Conduct the classification with an inference time that qualifies it to
conduct real-time classifications

• As small as possible in order to be loaded into the edge device memory.

We outline the concept of object classification based on Convolutional Neural
Networks. Describe the architecture of a CNN and how transfer-learning is
conducted. We focus on the importance of data-set preparations and how this

1. https://www.tensorflow.org/lite



1.2 contributions 3

affects the model training. We present the implementation, design, architecture,
and workflow for the diversity of components in this thesis. The model metrics
and performance are evaluated and discussed before concluding and proposing
future work for our project.

1.2 Contributions

This thesis makes the following contributions:

• Introduction to object detection and a description of the architecture in
CNNs.

• An Detailed description of data-set preparation and transfer-learning
methods for object classification tailored to classify animals from data-
set collected by the COAT research group camera-traps.

• The implementation of an object classifier deployed on a small embedded
computer.

• Evaluation of the models performance metrics.

• Insights in state-of-the-art cloud environment specialized for machine
learning.

1.3 Outline

This thesis is structured into 9 chapters including the introduction.

Chapter 2 describes object classification, and a introduction to the design and
architecture Convolutional Neural Networks.

Chapter 3 presents related work in the field of object classification, in compar-
ison to the work done in this thesis

Chapter 4 describes the data-set used in this thesis, and how it is prepared for
training.

Chapter 5 describes the design and architecture for this project with regards
to data workflow.



4 chapter 1 introduction

Chapter 6 describes the implementation and dependencies in this thesis

Chapter 7 Outlines the experimental platforms in this thesis and evaluate
the object classification models in regards to experimental design and re-
sults.

Chapter 8 discusses the results, dependencies, data-set and edge computing
for this project.

Chapter 9 concludes this thesis, and suggest future work to improve our model
and application



2

Object classification

Classification of an object in a digital image or video stream is the task of
locating and processing one or more objects in order to act upon it, based on
the developers desired output. This could be validation, edge detection, color
adaption, face recognition, and many more. With more powerful technology,
this is even standard features on many day-to-day devices usedworldwide, such
as the Artificial Intelligence camera feature of Huawei smartphones[5], which
is just one of the many examples of where object detection and classification
are used as a integrated tool.

In this chapter, an introduction to Convolutional Neural Network is given, with
a thorough architecture description

5



6 chapter 2 object classification

2.1 Convolutional Neural Networks

Were first introduced in the 1980s by Yann LeCun. He developed a multi-
layer neural network, LeNet[6], which combined convolutional neural network
with backpropagation algorithms to make a computer classify hand written
numbers. Splitting the problem into multi-layered networks instead of single-
layer networks gained a severe performance profit. In 2012 AlexNet[7] won
the ILSVRC-2012 competition working with the ImageNet dataset containing
1.2million images from 1000 different classes. Which achieved an impressive
15.3% error rate, compared with the runner up had 26.2%. This revolutionized
the image classification of computer vision in regards to processing human
visual input. Since then, CNNs has been state-of-the-art in machine learning
and artificial intelligence when it comes to human visual inputs(objects, hand-
writing, facial recognition, image classification, and many more) And is widely
used in smartphones and AI tools worldwide.

2.1.1 Architecture

Convolutional Neural Network (cnn) are is a subcategory of Deep Neural
Networks(DDNs), Much like DNNs it consists of neurons with learnable weight
and biases. Instead of the hidden layers from neural networks CNNs stack
multiple extractions as layers that are all connected, at the end of the chain,
is the classification aspect, as shown in Figure 2.1. The architectural layers
consist of three main components: Convolutional, Pooling, and Fully connected
layers.

Figure 2.1: CNN architecture illustration from[8]

If we look at this from an image classification aspect, the image is submitted
as an input. It gets processed and classified by categories defined in the CNN
model specified for the given task. From a computer perspective, the image gets
processed as an array of pixels defined by�486ℎC ×,83Cℎ×�8<4=B8>=.



2.1 convolutional neural networks 7

If the input image could be a standard color picture, the array would be
640 × 480 × 3, where the dimension describes the RGB matrix.The procedure
of processing the image is by stepping through the various layers.

Convolutional layers

The first layer in the CNNs architecture. It extracts features from the image
by iterating over it while applying filters(known as kernels). This is done by
splitting the image matrix into smaller blocks while preserving the connection
between pixels. Each split is known as a feature map. The mathematical
operation is:

• Image matrix (ℎ ×F × 3)

• Filter (5ℎ × 5F × 3)

• When combined outputs (ℎ − 5ℎ + 1) × (F − 5F + 1) × 1

Each feature map contains a filter that performs operations like edge detection,
lines, intensity, sharpen, blur, shape etc. The filter size is normally of small
sizes, like 3 × 3pixels. To keep the pixels "connected", the filter shifts 1 or 2
pixels across the image matrix, causing an overlap; this is called strides.

If a filter exceeds the image matrix, we need to apply padding. This is done
either by adding zeros to the picture(zero-padding) or valid padding, which
only keeps the valid parts of the image.

A supplementary step for the convolutional operation is the Rectified Linear
Unit(ReLU) which purpose is to add non-linearity for the CNN. The input data
would consist of non-negative linear values by adding ReLU the output formula
is 5 (G) = <0G (0, G) which iterates through the matrix and sets all negative
values to 0.



8 chapter 2 object classification

Pooling layers

Between each successive convolutional layer there are pooling layers which are
set to reduce variance, reduce computational complexity and extract features.
This is known as spatial pooling. It retains the important features while reducing
dimension of the feature maps. By reducing the number of parameters, the
memory usage of the network will decrease which in turn allows for more
features to be added. Spatial pooling can be divided into three different
types:

• Max Pooling
uses a (2 × 2)pixel neighbourhood matrix to iterate over the image and
extracting the largest value within the matrix.

• Average Pooling
uses a (2×2)pixel neighbourhood matrix to iterate over the image while
calculating and keeping the average value of within the matrix

• Sum Pooling
sum of all the elements in the feature map

The most commonly used techniques are max pooling and average pooling
combined with a small pixel neighbourhood matrix as it reduces the most
amount of data.

Fully connected layers

The last layer in a CNN evaluates the results from the convolutional/pooling
layers by flattening them from a matrix into vectors and feeds them forward to
the next fully connected layer,which applies weights to conduct predictions. The
output-layer then sets the final probabilities for each label in order to classify
the image. The last step is often combined with softmax, which normalizes
the neural network output to fit between 0 and 1 in order to establish the
probabilities.



2.1 convolutional neural networks 9

2.1.2 Training

When training a CNN, the same principals apply as for other feedforward
neural networks, by using the backpropagation algorithm.[9]. It utilizes in
two steps, which are executed several times each batch. In the first step, a
batch of images is fed through the entire network, where the softmax layer
outputs a probability estimate. This step is known as forward pass. In the
next step, a loss function measures the network’s accuracy by calculating the
error difference between the set training labels and the softmax estimate labels.
The goal is to train the network to obtain a low loss function(low loss = high
accuracy).

The loss function results are then examined by an optimizer(adaptive learning
method)[10] that traverses back through the network and calculates how the
network’s weights and biases need to be tweaked to reduce loss, which is known
as backward pass. A complete iteration for the whole batch (all images) with
both forward and backward pass is called an epoch.

Training problems

Training a model to produce a classifier that conducts good and correct pre-
dictions, we could encounter two scenarios with the given data-set the model
is using for training. The first is underfitting(high bias, low variance). This
problem normally happens when the model cannot create an accurate model,
normally because of a too-small or non-linear data-set, causing the model to
produce wrong predictions. The other problem is overfitting(high bias, low
variance). This means that the model trained on a too large data-set or images
taken in a static environment, making the model focus on image noise or
details not important for the given task. There are several ways to avoid this
by using annotated images to increase the data-set, bounding boxes around
the focused object, early stopping, which monitors the loss during training and
stops training when the loss is increasing. The easiest way to monitor this is
to split our data-set into two sets: training and testing(validation). Then we
can monitor when the accuracy is peaking on the test set and know when the
model is in a good fit state. For an underfitting model, the accuracy would be
bad for both training and testing data-set.

For good practical examples and detailed explanation on how to handle over/un-
derfit follow the tutorial from Tensorflow[11]



10 chapter 2 object classification

2.1.3 Transfer learning

Training a model from scratch requires enormous data-sets and is consid-
ered a high-cost operation regarding hardware requirements and actual time
spent. Instead, we make use of an existing CNN pre-trained model that al-
ready has trained on a large scale data-set like the famous ImageNet[12] or
COCO(Common Objects in Context)[13].

The standard procedure is to initiate the pre-trained model and introduce a
new and smaller data-set in order to retrain it for the new task at hand. It
utilizes the existing model’s features and weights and fine-tunes them to make
probability identifications of the new objects based on the labels submitted
with the data-set.

Figure 2.2: Basic flow in transfer learning[14]



3

Related work

Examining relevant literature show that there are many projects and systems
in the field of object classification with a focus on animal detection. The COAT
camera-trap data-set made it difficult to find similar research as the generated
images is from a static environment from within a box. We have focused on
the projects that utilize small or embedded DNNs, or have used camera-traps
as their data-set source.

Nguyen et. al presented a solution for using DNNs for automated wildlife
monitoring[15]. The research is conducted on the single-labeled data.set from
Wildlife Spotter project1, this is a data-set of grate magnitude with 107 000
images split among 15 different animal species,and images without animals. The
data-set was split at a 80/20% for training and validation. The size of the data-
set enables them to conduct CNN training from scratch, this is implemented in
Keras[16] and trained with four Nvidia Titan X GPUs. The goal was to conduct
two various types of classification: Recognizing animals vs non-animal images
, and identifying the three most common species (bird, rat and bandicoot).
For model architecture they choose to implement the lightweight simplified
version of AlexNet[17], the medium sized VGG-16[18] and the ResNet-50[19].
Training time varies from 3-5 days for each model. The result is three models
that can classify the first task with an accuracy of 92.68% for AlexNet, 95.88%
for VGG-16 and 95.65% for ResNet-50. For the second task of classifying the
three species the models performed with an accuracy of 87.80%, 88.03% and

1. https://volunteer.ala.org.au/wildlife-spotter

11



12 chapter 3 related work

87.97% on the same models. Compared to our model performance regarding
animal classification, we can conclude that taking advantage of a pre-trained
model is a good approach to solving the problem at hand as we outperformed
this approach with a training time of only 3 hours on a lightweight model. The
data-set complexity is in our favour with regards to the static environment and
gray-scale images.

H. Thom. presented an animal identifying and classification system in 2017[4].
This is based on the bait-camera data-set from COAT[1] with 8000 images of 9
different species. The system unifies three different object detection methods
using CNNs. In regards to our thesis, one of the models used is YOLOv2[20],
which is the second generation YOLO architecture. The accuracy of the model
trained on the bait-cam data-set is measured to 92.4%. In his research, he
encountered the same issues with data-set diversity and unbalanced classes as
we did in our data-set. He also experienced the necessity of data-set preparation.
There was a substantial precision increase by adding bounding boxes and
augmentations on the data-set. This research’s common goal is very similar to
our approach to reducing manual labor when working with extensive image
data classification processes.

S. Thommasen took on the same data-set as H Thom. in his master thesis[21].
The approach was to develop a small embedded computer capable of classifying
the animals using a small neural network. The Model architecture trained to
the task where several variants of small MobileNet[22], with an accuracy of
61%. Through the thesis, he explained the difficulties with data-set preparation
and model conversion regarding small embedded edge computers. Based on
this, we wanted to approach this task with a state-of-the-art object classifier
architecture from 2020, and the results show that edge computing on small
embedded devices is possible to solve the problems stated in our thesis.



4

Data-set preparation

When developing an object classification model, data-set preparation is the key
to success, and several aspects need to be considered.

We need to decide whether we want to conduct transfer learning on a pre-
trained model or if we want to develop a custom built model from scratch. The
size of the data-set often defines this, and if any existing models conduct image
classification in the area of objects we want to classify.

With a small scale data-set, it would be impossible to train a model from
scratch. The aim is to develop a lightweight model to be executed through
edge computing, a combination of the YOLOv4[23]model trained on the COCO
data set[13] is used.

13



14 chapter 4 data-set preparation

4.1 COAT data-set

In this thesis, a data-set containing 1324 images with five various labels of
animals has been used. The images come from the COAT[1] camera-traps that
were deployed in the arctic tundra.

Labels Images
Bird 71
Lemming 376
Shrew 381
Stoat 95
Vole 400
Total: 1323

Table 4.1: Data-set image distribution. Shows the image count of each label.

With such a small data-set, we need to conduct some pre-processing on the
images to utilize the data-set to the fullest. An example of the images in the
data-set is shown in figure 4.1.

Figure 4.1: Camera-trap image of a lemming

4.1.1 Data-set preparation

There are several tools and techniques that can be applied to maximize the
potential of a data-set. Since all images are taken in a static environment, the
model training would create an overfitting outcome. With little to no variance



4.1 coat data-set 15

in the environmental background, a CNN model would not be able to know
"what" to look for when training. To encounter this problem, we annotated all
the images in the data-set. This is a tedious job that had to be done manually
for each image. Annotated images have a correlating XML file connected to it,
which contains information such as total image pixel size (1280 × 720 pixels),
then the coordinates for which pixels contain the bounding box, and the label
name of what is within the box parameters.

Figure 4.2: Annotated image of a lemming

Then the images with correlating XML files were uploaded to Roboflow1A in
order to modify and create a data-set that would fit for the YOLOv4 pre-trained
model. The images were resized to 416 × 416pixels, and a flip augmentation
step was added to extend the data-set and improve model performance[24]. By
flipping the images, both vertical and horizontal, the data-set size expanded
from 1323 to 3175 images. The data-set was split into a training, validation,
and test set where 70% is used for training. The reason to split the set is to
monitor the model loss value in correlations with both training and validation
data-set to ensure that we do not over-fit while training.

1. www.roboflow.com





5

Design And Architecture

During the development of the model in this project, individual design choices
have been made regarding the final product. In this chapter, the architectural
design for an embedded system capable of conducting image classification on
a specifically labeled data-set is presented. The trained model is converted
into a lightweight model that can be executed on a small and efficient micro-
controller to do real-time classification and diagnostics in the Arctic Tundra.
As proof of concept, an android powered smartphone is used for testing.

17



18 chapter 5 design and architecture

5.1 Workflow Design

The overall workflow design for this system is shown in figure 5.2.

The data-set images are collected from the Distributed Arctic Observatory
(dao)-store server and exported to our local machine, then uploaded to the
Roboflow API for prepossessing. We Import the data-set from Roboflow, a
pre-trained model, and a transformation tool from Github into Google Colab,
a cloud-based virtual machine environment. The implemented solution for
training and testing described in chapter 6 and chapter 7 is conducted in this
environment. The lightweight model gets stored in Google Drive cloud storage
and is downloaded to our local machine. Android Studio is used to develop
an application with our lightweight model embedded and deployed on the
smartphone edge device.

5.1.1 Preparation

Before we could utilize a gpu enabled computer to conduct transfer learning
on a pre-trained object classifying CNN model, the data-set needs to be pre-
processed as thoroughly explained in Data-set preparation.

Roboflow tool

To process the images regarding bounding box annotations, augmentations,
and labeling, Roboflow[25] was chosen as the best tool to handle the task.
This "all in one" platform was released in January 2020 and has streamlined
the tedious process of data-set management. It supports various image and
annotation formats, pre-processing(resize, orient, contrast, grayscale), augmen-
tation(flip, rotate, crop, blur, etc.), evaluation splitting(test, validate, train), and
data-set health check in order to make improvements before model training. In
appendix A we have included some screenshots from the RoboFlow API.

5.1.2 Training

Before the training phase could be initiated, we need to choose which pre-
trained model is best suited to solve the task at hand. This is the most crucial
step in this design, which is defined by the results, establish if the model could
be utilized for production.



5.1 workflow design 19

Model selection

One of the most popular computer vision segments is object classification, and
the variety of architectures to choose from is plenty. For this specific task,
several points had to be taken into consideration and evaluated regarding
performance, accuracy, data-set structure, and device deployment.

As we strive to work with the latest and most developed architecture, the choice
fell on the cutting-edge fourth-generation You Only Look Once (yolo)[23]
released in April 2020. The performance in combination with the Common
Objects in Context (coco)[13] data-set is in the top tier. The architecture used
in this thesis is YOLOv4-tiny, which is a compressed version of YOLOv4. Like
the full version, it has Darknet[26] Deep Neural Network (dnn) backbone, it
is trained from 29 pre-trained convolutional layers with incredible inference.
When it comes to precision, it deliverers roughly 2/3 of the full-scale model
when working with the COCO data-set. (see figure 5.1).

Figure 5.1: Performance comparison of small vs full-scale models in regards to ap
illustration from [27]

We are training this on a data-set with only five various labels in a static
environment. The accuracy trade-off should not affect the end-result in any
particular way with regards to inference and probability.

As stated, we wanted to use Yolov4 since this is one of the newest and well-
developed object detectors available. There are several other good candidates,
and while researching, we examined both ShuffleNet[28] and the famous
and well tested Single Shot Detection (ssd) MobileNet-v2[22] as possible
alternatives.



20 chapter 5 design and architecture

GPU enabled training platform

The platform for training our model is Google Colab1, which is a free cloud
service from Google. This supports Python2 programming language and is
designed for developing deep learning applications that employ Graphical
Processing Unit (gpu) or Tensor Processing Unit (tpu) to conduct calcula-
tions. The environment is built on a serverless Jupyter3 notebook principal,
supporting both text and code in a document style structure for interactive
development.

The training environment is initialized, with all dependencies and modules
installed in the cloud service. The data-set is converted to Darknet[26] format
and compressed in RoboflowApplication Programming Interface (api). We
import and extract it in Google Colab and stored as training, validation, and
test subsets. The pre-trained YOLOv4-tiny model is loaded, and we introduce
the labels and our custom data-set to conduct transfer learning, as shown in
figure 2.2. The final product of the training is a YOLOv4-tiny model designed
to conduct object classifications on the five labels in the data-set.

Model conversion

Before we can deploy our model to an edge device, this needs to be converted
to TensorFlow lite⁴(.tflite) format in order to be initialized on an embedded
device. The operation consists of a two-step procedure: First, the Darknet
.weights file needs gets converted to TensorFlow .pb file format. Then we can
collapse the full-scale TensorFlow model into a lightweight .tflite model.

Device deployment

To execute the converted model on a device, we choose an Android operated
smartphone. The open-source framework for an image classification app de-
veloped by Viet Hung[29] with Android Studio⁵ got used as a template. The
custom .tflite model was united with the application framework and trans-

1. https://colab.research.google.com/
2. https://www.python.org/
3. https://jupyter.org/
4. https://www.tensorflow.org/lite
5. https://developer.android.com/studio



5.1 workflow design 21

shipped to the smartphone. The application loads the model and uses the
integrated camera on the device as an input source for images classified in
regards to the model’s labels. The output is a bounding box with a label around
the object, the model’s probability accuracy, and inference time.



22 chapter 5 design and architecture

Figure 5.2: Architectural workflow design



6

Implementation

This chapter details the implementation process for a lightweight object
classifier capable of accurately performing in-field classification of animals
in the Arctic Tundra. The system is based on several open-source frame-
works and has been developed in a cloud-based environment. We use Google
Colaboratory[30] (henceforth referred to as Colab) to prototype our machine
learning model. This platform provides interactive development, GPU, and
TPU hardware options in a Jupyter[31] notebook-style environment. This al-
lows us to implement, execute, and test on the same platform. By combining
cnn model based on Darknet[26], YOLOv4[23], with our custom data-set4
pre-processed with the Roboflow[25] API we conducted transfer learning. The
result is a Yolov4-tiny model capable of classifying the labels desired for this
task.

In order to deploy this on an embedded edge computing device (smartphone
for testing), we needed to convert the Darknet based Yolo model over to a
TensorFlow lite model file, designed to run on such devices. For this procedure,
we combined a Python implemented conversion tool[29] that generates a
TensorFlow frozen graph model. This allows us to convert into a TensorFlow
lite(tflite) model.

The final part of our implementation is an application for Android-based de-
vices. This is implemented in Android Studio and based on the framework
by Viet Hung[29]. The application, loaded with our pre-trained lightweight
model, reads image data through the device camera module before classifying,

23



24 chapter 6 implementation

measuring the accuracy and performing inference in real-time.

6.1 Google Colab implementation

We start by configuring CUDA and GPU; then, we clone the Darknet repository
from GitHub1 and install all dependencies (listed in 7). Now we can clone the
pre-trained YOLOv4 weights that we will rely on to conduct transfer-learning
with our custom data-set.

The RoboFlow APIA offers the prepared data-set through several endpoints,
which we download through an integration with Colab. The imported data-set
is then divided into subsets for training and validation, and labels are linked
to their respective images.

Before we start the training phase, we need to write a configuration file which
describes how the training is to be conducted. We define the number of
iterations we want to train for, batch size, and how often the weights should be
saved to backup. With the configuration in place, we can initialize the training
phase. With the Darknet model we are using there is an included script for
monitoring the metrics for each iteration. We use this to avoid over-fitting, as
described in 2.

After the training is completed, we mount Google Drive through another Colab
integration and copy our re-trained weights before we convert them into
TensorFlow format.

We initially tried to follow the guide from TensorFlow to utilize the Python
API[32] in order to convert our model, but sadly, we were unable to make this
work. We found a Python tool developed by Viet Hung[29] that is designed to
convert from Darknet .weights into a TensorFlow frozen graph model. After
this conversion, we could follow the TensorFlow guide to convert from regular
TensorFlow into a lite model which is more suitable for our requirements.

6.1.1 Android Application Implementation

To test the converted TensorFlow lite model’s performance, we decided to use
a smartphone to stand in as a small embedded edge computer.

1. https://github.com/



6.1 google colab implementation 25

We used the Android Studio2 which is the official Integrated Development
Environment (ide) for Android3 app development. The application is built
on the foundation framework from the open-source GitHub[29] repository
with a TensorFlow back-end. We utilized this wholesale, with some minor
modifications to the visual front-end. The trained model downloaded from
Google Drive is embedded within the application. We used the Android Studio
virtual smartphone to test our implementation before deploying it to the
actual device. The result for edge computing on the Huawei[5] smartphone
is presented in figure 6.1 and shows the start screen and the application in
use.

Figure 6.1: On device screenshots of Android application for object classification

2. https://developer.android.com/studio/intro/
3. https://www.android.com/intl/no_no/what-is-android/





7

Evaluation

This chapter explains the experimental setup and detection metrics used to
evaluate the object classification system tailored to recognize and classify
animals in images from the COAT camera trap setup[3] The evaluations are
based on the YOLOv4-tiny model trained on the data-set described in 4, and
the TensorFlow lite conversion of this model. T

7.1 Experimental platforms

7.1.1 TensorFlow lite model platform

The experiments for this model were run on a HUAWEIMate 20 pro smartphone
with the following spesifications:

• HiSilicon Kirin 980 octa-core CPU @ (2x2.6 GHz Cortex-A76 & 2x1.92
GHz Cortex-A76 & 4x1.8 GHz Cortex-A55)

• ARM Mali-G76 MP10 GPU @ 720Mhz (integrated into the Central Pro-
cessing Unit (cpu))

• 6GB RAM @ 2133Mhz

• Operating system: Android v10.0

27



28 chapter 7 evaluation

7.1.2 YOLOv4-tiny model platform

The experiments for this model were run in the cloud based machine learning
environment Google Colaboratory. This is a Virtual Machine (vm) with the
following specifications:

• Nvidia Tesla T4 16GB GPU @ 1590Mhz (2560 CUDA cores)

• Operating system: Ubuntu v18.04.5 LTS with Python v3.6.9

The testing environment is built with the following dependencies:

• CUDA v10.1.243

• cuDNN v7.6.5

• OpenCV v3.2.0

• Matplotlib v3.2.2

• NumPy v1.18.5

• Tensorflow v2.3.0

7.2 Experimental design

We are talking about two different object classification models in this thesis.
The transfer learning training process is conducted for the Yolov4-tiny model
since the TensorFlow lite model is a conversion of that model. The training
parameters for the YOLOv4-tiny model is stated in the generated configura-
tion(.cfg) file.

The code snippet show how we calculate the number of iterations and is essential
to the configuration.
num_classes = file_len (’train/ _darknet . labels ’)
max_batches = num_classes *2000
steps1 = .8 * max_batches
steps2 = .9 * max_batches
steps_str = str( steps1 ) + ’,’ + str( steps2 )
num_filters = ( num_classes + 5) * 3

The number of labels in the training data-set is 5, this sets training to be done



7.3 classification metrics 29

with 10000 iterations (training steps). We used default batch size of 64 im-
ages. We used the data-set described in 4,and all input images where resized
from 1280 × 1024/720 pixels to 416 × 416 pixels to optimize training perfor-
mance. The Nvidia Tesla T4 GPU conducted all training steps in approximately
3hours.

7.3 Classification metrics

We base our evaluation methods on the most commonly used classification met-
ric measurement techniques used in challenges such as The PASCAL VOC[33],
The COCOObject detection challenge[34],andTheOpen Images Challenge[35].
In object classification, the mean Average Precision (map) is the most com-
monly used metric since this evaluates the overall precision of the model. ap
measures how good the model precision is on a specific label(class). With an
object classification model, there are almost always multiple classes(labels).
For all models where labels are # > 1 we want to calculate the mean of the
AP for each label, which is based on the precision-recall curve. The various
concepts included in the evaluation are elaborated in the subsection

7.3.1 Concepts

Confidence score Is predicted by the classifier and is the probability that there
is an object in the anchor box.

Intersection over Union (iou) is defined by the intersection area divided by
the union of a predicted bounding box and a ground-truth box. This is used to
determine whether detection is TP or FP. In the example below we use (��?)
for predicted bounding box, and (��6C for the ground-truth bounding box.
When evaluating our model, we follow the threshold standard from PASCAL
VOC[33] of 0.5(50%).

�>* =
��?

⋂
��6C

��?
⋃
��6C

True Positive (tp). For a detection to be TP it needs to satisfy three condi-
tions:

• Confidence score > threshold

• Predicted bounding box has an IoU greater then a threshold with the
ground-truth.



30 chapter 7 evaluation

• The predicted label(class) matches the label of a ground-truth.

If either of the two last conditions is not fulfilled, we get a FP. When the
confidence score drops below the threshold, we get a FN.

Precision is the baseline that reveals how accurate our model is in a specific
class. It is defined by the number of tp divided by the sum of TP and False
Positive (fp).

%A428B8>= =
)%

)% + �%
Recall is defined by the number of TP divided by the sum of TP and False
Negative (fn) (this is known as the ground-truths).

'420;; =
)%

)% + �#
Precision and recall are inversely related. When precision increases, then recall
falls and vice-versa. It is preferred to get a balance between them. This can be
found by creating a precision-recall curve.

Precision-recall curve values are computed for subsets of detection. It starts
with the highest detected scores, and then adding the reminding, detection
scores are added in decreasing order. By plotting all the detections in a graph
creates the precision-recall curve. The precision score is between 0-1 in the
vertical line, and the recall score is between 0-1 on the horizontal line.

AP is the task of finding area under the precision-recall curve. Since precision
and recall both are within 0-1(0-100%) AP also is within the parameters. The
calculations are done by dividing the recall value from 0.0 to 1.0 into 11 points,
and the mathematical formula is:

�% =
1
11
× (�%A (0) +�%A (0.1 + .... +�%A (1))

mAP is the AP for all labels(classes) in the model and is calculated:

"�% =

∑
@ = 1&�E4% (@)

&

WhereQ is the number of total labels, and AveP(q) is the AP for one label.



7.4 results 31

7.4 Results

In table7.1 the AP for each model is listed alongside the AP for each label in
the data-set.

Model mAP Stoat Vole Bird Shrew Lemming
YOLOv4-tiny 98.19 100 98.46 93.75 100 98.72
TensorFlow lite 96.07 95.14 98.24 91.54 98.38 97,05

Table 7.1: mean Average Performance for each model and AP for each class

From the table we see that the results are satisfactory for the both models.
The testing methods are conducted differently. For the YOLOv4-tiny model
we have used the python script from[27] which does all calculations on the
validation data-set after training is done. The metric output in Colab is shown
in figure7.1.

Figure 7.1: Colab evaluation metrics for YOLOv4-tiny with the validation data-set as
input

We initially anticipated the AP for bird and stoat to be at much lower threshold
since the data-set both contained under 100 images for each class. By applying
the annotations we expanded the size by 3, but the diversity in the images are
still in the lower spectrum.

The environment is static on all images, and this is considered a major ad-
vantage for the end result, since this minimizes the interference. All images
produced by the camera-traps is gray-scale, which makes the training process
easier for the model.

When testing with various images we encountered a problem that needs to be
taken into consideration. If the model detects more than one object, the image
needs to be manually checked. Due to the fact that the data-set only contains



32 chapter 7 evaluation

images with one object in each image we know that the training is conducted
on single objects only. Output results from multiple-detection failure shown on
figure7.2.

On the Android smartphone the testing was conducted by displaying images
from the same data-set on a monitor and using the mobile application deployed
on the device to analyze each picture through the on-board camera. Then
manually calculating the average of each class. Examples are shown in figure7.3.
The inference time on each prediction conducted on the device varies from
100-300milliseconds.



7.4 results 33

(a) Detection metrics

(b) Bounding box output image

Figure 7.2: Example on failure when detecting multiple objects from the data-set
images



34 chapter 7 evaluation

Figure 7.3: screenshot predictions form smartphone APP



8

Discussion

This chapter will discuss the results of our state-of-the-art object classification
approach—how we can improve it for future integration in the COAT[3] Arctic
Tundra camera traps. We will elaborate on short-comings and what needs to
be developed to this "proof of concept" to conduct further testing. This thesis
has used several tools and to improve our data-set, conduct transfer-learning of
an existing model, and develop an application deployed and tested on a small
embedded computer. We will discuss the benefits and lessons learned.

8.1 Results

Evaluation of both models shows that performance in regards to AP is above
90% on all labels of the data-set, as shown in table7.1. As suspected, the Bird
class was our lowest performer, with 91.54%. The suspicion is due to the small
amount and low diversity of bird images in the data-set. While manually going
through the test-set with the application deployed on our smartphone, we
discovered that birds’ images taken from above are difficult for the model to
classify. An example is shown in Figure8.1. This affects the AP for this class
and indicates that the model could benefit from a more extensive training
set.

As stated in chapter 7, working with images from the COAT camera-traps is
very beneficial due to the static environment within the camera-trap boxes. We

35



36 chapter 8 discussion

suspect that the combination of bounding box annotation, gray-scale images,
and the static environment are all factors that contribute to the high precision
of the model.

The model is trained on resized images (416 × 416)pixels, as this is the
recommended input image size for the YOLOv4-tiny model. We tested the
model on the original size and resized image, which did not affect the model’s
accuracy. It performed equally on both inputs.

Classification speed is hard to define for the TensorFlow lite model, as it
is tested on a device with a contaminated environment, as multiple other
applications are running simultaneously in the background. The measured
result is 100-300milliseconds on each classification, which indicates that an
embedded device such as a modern smartphone, have computational potential
to fulfill such tasks with good performance values. It would be of great interest
to further the testing by rooting the device and installing a stripped version of
Android1, with only the necessary software installed. We tested the YOLOv4-
tiny model in a Google Colab VM with an Nvidia Tesla V4 GPU. The prediction
time for each picture varies between 5.2-5.8 milliseconds.

The model size is 23.6MB for each model, which is considered an acceptable
size regarding small embedded systems; this enables it to load the whole model
in memory.

8.2 Data-set

Our data-set is explained in Chapter4. In this section, we will discuss the
short-comings and ways to improve it.

The data-set showed in table4.1 is imbalanced on several classes and considered
a small size data-set with only 1323 images. We used RoboFlow API2 improve
our data-set by applying several features:

• Flip augmentation,which flips each image both horizontally and vertically.
Which tripled the volume of images and gave a bit of diversity for the
set.

• Bounding Box annotation helps the model to know where in the image
the object in focus is and what type of label the object holds.

1. https://www.android.com/
2. www.roboflow.com



8.3 training platform 37

• Resized all images to 416x416pixels since this is the preferred input for
our model

• Split the set into subsets: Training, Validation, and Test

• Converted the data-set to YOLO Darknet format in order to export it.

In retrospect, there are several short-comings with our model due to data-set-
related implications. First and foremost is the set’s low diversity, which gives
us edge case errors like the bird example described in the previous section
and shown in figure 8.1. The set does not contain any images with multiple
objects, making it impossible to test how the model performs when presented
with multiple object images. Because this does not exist in our set, we know
this is an error, as shown in figure 7.2. If this model is to be used for evaluating
large data-sets from the COAT camera-traps, the solution is to flag all images
with multiple detections and manually evaluate them.

Improvement of the data-set would be to expand it by gathering more photos
from the camera-traps with greater diversity and a more balanced distribution
among classes. This requires more bounding-box annotations, which is tedious
work since it has to be done manually. There are several useful tools for
this, like the Computer Vision Annotation Tool (CVAT)[36], but it is still a
time-consuming job.

8.3 Training platform

For this thesis,we choose to use a VM in the Google cloud platform, as described
in 6. The choice was made from experience from previous work with DNN and
Artificial Intelligence (ai) in the course INF-3910-6[37] and also described as a
problem in previous master thesis in the same field of research[4][21]. When
implementing DNN based system, dependencies are a significant issue. Many
of the tools needed to conduct the desired work are too version-specific, and it
requires that multiple systems interact with each other to execute the task at
hand. The upside of implementing such systems in a VM environment makes
it easier to start with "clean sheets" if we get dependency issues, and we can
try various versions until we find the combination that functions as intended,
without the tedious installation and removal of packets. We believe this will be
a prevalent tool when working with machine learning and artificial intelligence.
The design of a Jupyter notebook gives us the possibility to comment on the
code snippets in a markdown environment; this makes the implementation
documentation easy to follow for future users.



38 chapter 8 discussion

8.4 Edge computing

As an end product in this project, we developed an Android Application that
is deployed on a Huawei[38] smartphone and is used to evaluate the object
classification model. The application is built in Android Studio3 and based on
the framework developed by[29].

The result is as shown in chapter6. All experiments on our test data-set are man-
ually done with the device. The model executes with satisfactory performance.
The application’s improvements would be a back-end database solution to store
the detection metrics and generate statistics about the detection. The current
model can also conduct detections at a high frequency, so it would be of great
interest to deploy it in an environment with rodents and do real-time video
classification. This could also incite how the model handles multiple objects
in the same visual frame. With the current setup in the COAT camera-traps,
the cameras take two pictures when the Passive IR-sensor on the camera is
triggered, Then it pauses for 30 seconds to conserve battery. The leap between
images is such a rate that it would not create a useful film snippet if we were
to merge them into a video.

3. https://developer.android.com/studio



8.4 edge computing 39

Figure 8.1: screenshot predictions of bird from smartphone APP





9

Conclusion

In this thesis, we have conducted transfer-learning on a pre-trained model by
utilizing their weights in order for it to classify images of rodents from the
COAT camera-trap data-set. We implemented an Android application that was
deployed on a small embedded computer(smartphone) in order to conduct
model testing. We have given a detailed description of how we prepared the
data-set, trained the model used for classification, and the concept of CNN,
which is fundamental for our model. The tools used to conduct this work are
state-of-the-art platforms regarding DNN and object classification.

Our experiments showed that a small CNN model could classify the desired
animals with a satisfactory accuracy even on small edge devices, with an
mAP score of 96.07% for the TensorFlow lite model on the Android device
and 98.19% for the YOLOv4-tiny model with a full scale GPU virtual machine.
These metrics enable the model to be used as a tool for the COAT research
team when classifying data-collections from the camera-traps, or used as a
field testing device.

41



42 chapter 9 conclusion

9.1 Future Work

Several improvements can be made to our model and application. We expect
that the edge cases mention in chapter8 could be eliminated by expanding the
size, diversity, and balance of the data-set. This could be done by annotating
more images and single out each class to cope with the imbalance.

For the application, it is desired to implement a back-end functionality, handle
classification of large scale image sets, and store each image’s predictions
on the device. This could automate the manual classification that is done by
researchers on the COAT team today and enable the device to conduct field
testing or even deployment at the edge.

We would also like to root an Android device and customize the software
installation regarding the limitations of other software running in the back-
ground. This should generate a severe performance enhancement and measure
power consumption while conducting classification on the device. The remote
locations and no connection to a sustainable power source makes power con-
sumption a crucial point in edge computing.



Bibliography

[1] “Climate-ecological observatory for arctic tundra (coat).” https://www.
coat.no/en/.

[2] “Fram center homepage.” https://framsenteret.no/english/.

[3] Soininen,EevaM,Jensvoll, Ingrid,Killengreen,Siw T,& Ims,Rolf A. (2015).
Under the snow: A new camera trap opens the white box of subnivean
ecology. Remote Sensing in Ecology and Conservation., 1(1), 29-38.

[4] H. Thom. “Unified detection system for automatic, real-time, accurate
animal detection in camera trap images from the arctic tundra.,” Masters
Thesis, Jun 2017.

[5] “Huawei p20’s ai camera: Let artificial intelligence do the
heavy lifting.” https://consumer.huawei.com/en/press/media-
coverage/2018/huawei-p20-ai-camera-let-artificial-intelligence-
do-the-heavy-lifting/#:~:text=As%20one%20of%20the%20highly,
P20%20can%20master%20photography%20intelligently. Accessed on
2020-07-07.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” in PROCEEDINGS OF THE IEEE,
pp. 2278–2324, 1998.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[8] “Understanding of convolutional neural network (cnn) — deep learning.”
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-
neural-network-cnn-deep-learning-99760835f148. Accessed on
2020-08-20.

43

https://www.coat.no/en/
https://www.coat.no/en/
https://framsenteret.no/english/
https://consumer.huawei.com/en/press/media-coverage/2018/huawei-p20-ai-camera-let-artificial-intelligence-do-the-heavy-lifting/#:~:text=As%20one%20of%20the%20highly,P20%20can%20master%20photography%20intelligently.
https://consumer.huawei.com/en/press/media-coverage/2018/huawei-p20-ai-camera-let-artificial-intelligence-do-the-heavy-lifting/#:~:text=As%20one%20of%20the%20highly,P20%20can%20master%20photography%20intelligently.
https://consumer.huawei.com/en/press/media-coverage/2018/huawei-p20-ai-camera-let-artificial-intelligence-do-the-heavy-lifting/#:~:text=As%20one%20of%20the%20highly,P20%20can%20master%20photography%20intelligently.
https://consumer.huawei.com/en/press/media-coverage/2018/huawei-p20-ai-camera-let-artificial-intelligence-do-the-heavy-lifting/#:~:text=As%20one%20of%20the%20highly,P20%20can%20master%20photography%20intelligently.
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148


44 bibliography

[9] K. P. Murphy, “Machine learning: A probabilistic perspective,” pp. 569–572,
The MIT Press, 2012.

[10] “Cs231 stanford vl - per-parameter adaptive learning rates(adagrad, rm-
sprop).” https://cs231n.github.io/neural-networks-3/#ada. Accessed
on 2020-10-03.

[11] “Ml basics with keras - overfit and underfit.” https://www.tensorflow.
org/tutorials/keras/overfit_and_underfit. Accessed on 2020-10-20.

[12] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255, 2009.

[13] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects
in context,” 2014. cite arxiv:1405.0312Comment: 1) updated annotation
pipeline description and figures; 2) added new section describing datasets
splits; 3) updated author list.

[14] “Transfer learning (d2l4 insight@dcu machine learning workshop
2017).” https://www.slideshare.net/xavigiro/transfer-learning-
d2l4-insightdcu-machine-learning-workshop-2017. Accessed on
2020-09-20.

[15] H. Nguyen, S. J. Maclagan, T. D. Nguyen, T. Nguyen, P. Flemons, K. An-
drews, E. G. Ritchie, and D. Phung, “Animal recognition and identification
with deep convolutional neural networks for automated wildlife monitor-
ing,” in 2017 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pp. 40–49, 2017.

[16] “Keras is a deep learning api written in python, running on top of the ma-
chine learning platform tensorflow..” https://keras.io/api/. Accessed
on 2020-11-1.

[17] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolu-
tions,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–9, June 2015.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[19] “Resnet-50 convolutional neural network.” https://www.mathworks.com/

https://cs231n.github.io/neural-networks-3/#ada
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
https://www.slideshare.net/xavigiro/transfer-learning-d2l4-insightdcu-machine-learning-workshop-2017
https://www.slideshare.net/xavigiro/transfer-learning-d2l4-insightdcu-machine-learning-workshop-2017
https://keras.io/api/
https://www.mathworks.com/help/deeplearning/ref/resnet50.html
https://www.mathworks.com/help/deeplearning/ref/resnet50.html
https://www.mathworks.com/help/deeplearning/ref/resnet50.html


bibliography 45

help/deeplearning/ref/resnet50.html. Accessed on 2020-11-1.

[20] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2016.

[21] S. Thomassen. “Embedded Analytics of Animal Images,” Masters Thesis,
Dec 2017.

[22] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted
residuals and linear bottlenecks: Mobile networks for classification, de-
tection and segmentation,” CoRR, vol. abs/1801.04381, 2018.

[23] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed
and accuracy of object detection,” 2020.

[24] “How flip augmentation improves model performance.” https://blog.
roboflow.com/how-flip-augmentation-improves-model-performance/.
Accessed on 2020-06-15.

[25] “Overview.” https://docs.roboflow.com/. Accessed on 2020-06-15.

[26] “Overview.” https://github.com/roboflow-ai/darknetroboflow. Ac-
cessed on 2020-10-20.

[27] “Alexeyab github issue #6067 jun 25.” https://github.com/AlexeyAB/
darknet/issues/6067. Accessed on 2020-10-27.

[28] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” CoRR,
vol. abs/1707.01083, 2017.

[29] “Tflite application framework.” https://github.com/hunglc007/
tensorflow-yolov4-tflite. Accessed on 2020-10-28.

[30] E. Bisong, Google Colaboratory, pp. 59–64. Berkeley, CA: Apress, 2019.

[31] “The jupyter notebook.” https://jupyter-notebook.readthedocs.io/
en/stable/notebook.html. Accessed on 2020-11-3.

[32] “Tensorflow python api.” https://www.tensorflow.org/lite/convert#
python_api_. Accessed on 2020-09-8.

[33] “The pascal visual object classes challenge 2012.” http://host.robots.
ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html. Accessed on
2020-11-3.

https://www.mathworks.com/help/deeplearning/ref/resnet50.html
https://www.mathworks.com/help/deeplearning/ref/resnet50.html
https://www.mathworks.com/help/deeplearning/ref/resnet50.html
https://blog.roboflow.com/how-flip-augmentation-improves-model-performance/
https://blog.roboflow.com/how-flip-augmentation-improves-model-performance/
https://docs.roboflow.com/
https://github.com/roboflow-ai/darknetroboflow
https://github.com/AlexeyAB/darknet/issues/6067
https://github.com/AlexeyAB/darknet/issues/6067
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://www.tensorflow.org/lite/convert#python_api_
https://www.tensorflow.org/lite/convert#python_api_
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html


46 bibliography

[34] “Detection evaluation.” https://cocodataset.org/#detection-eval. Ac-
cessed on 2020-11-3.

[35] “Open images challenge 2018 - object detection track - evaluation metric.”
https://storage.googleapis.com/openimages/web/object_detection_
metric.html. Accessed on 2020-11-3.

[36] “Computer vision annotation tool (cvat).” https://github.com/
openvinotoolkit/cvat. Accessed on 2020-06-3.

[37] “Inf-3910-6 computer science seminar: Introduction to artificial intel-
ligence and applied methods.” https://sa.uit.no/utdanning/emner/
emne?p_document_id=605434&ar=2019&semester=V. Accessed on 2020-11-
6.

[38] “Huawei mate 20 pro.” https://consumer.huawei.com/no/support/
phones/mate20-pro/. Accessed on 2020-11-8.

https://cocodataset.org/#detection-eval
https://storage.googleapis.com/openimages/web/object_detection_metric.html
https://storage.googleapis.com/openimages/web/object_detection_metric.html
https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat
https://sa.uit.no/utdanning/emner/emne?p_document_id=605434&ar=2019&semester=V
https://sa.uit.no/utdanning/emner/emne?p_document_id=605434&ar=2019&semester=V
https://consumer.huawei.com/no/support/phones/mate20-pro/
https://consumer.huawei.com/no/support/phones/mate20-pro/


A

Roboflow API screenshots

The screenshots in this appendix are referred to throughout this thesis to show
how the Roboflow API dashboard and usage are visualized.

Figure 1: Roboflow Dashboard

47



48 appendix a roboflow api screenshots

Figure 2: Dataset dashboard



49

Figure 3: Roboflow data-set version dashboard



50 appendix a roboflow api screenshots

Figure 4: Single image from data-set






	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Problem definition
	1.2 Contributions
	1.3 Outline

	2 Object classification
	2.1 Convolutional Neural Networks
	2.1.1 Architecture
	2.1.2 Training
	2.1.3 Transfer learning


	3 Related work
	4 Data-set preparation
	4.1 COAT data-set
	4.1.1 Data-set preparation


	5 Design And Architecture
	5.1 Workflow Design
	5.1.1 Preparation
	5.1.2 Training


	6 Implementation
	6.1 Google Colab implementation
	6.1.1 Android Application Implementation


	7 Evaluation
	7.1 Experimental platforms
	7.1.1 TensorFlow lite model platform
	7.1.2 YOLOv4-tiny model platform

	7.2 Experimental design
	7.3 Classification metrics
	7.3.1 Concepts

	7.4 Results

	8 Discussion
	8.1 Results
	8.2 Data-set
	8.3 Training platform
	8.4 Edge computing

	9 Conclusion
	9.1 Future Work

	Bibliography
	A Roboflow API screenshots

