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Abstract

In order to efficiently and accurately calculate vibrational properties for sol-
vated systems, a theoretical framework for combining response theory with
the Polarizable Embedding model (PE) has been derived and implemented,
and is presented in this thesis. An open-ended recursive formalism is utilized
through the implementation in OpenRSP, allowing energy-derivatives to be
calculated analytically up to arbitrary order. In this way, errors associated
with numerical differentiation are avoided, and calculations of properties
of higher order can be performed without the need for additional imple-
mentation. The PE model is a focused embedding model, and includes
solvent effects through both static and instantaneous interaction energies
between a central molecular region and a surrounding environment. The
central region is modelled using quantum-mechanical methods (and there-
fore is commonly referred to as the QM region), whereas the environment
is treated through classical multipoles and polarizabilities. The multipoles
and polarizabilities are placed on so-called sites, typically located on the
atoms in the environment. This retains a discrete atomistic model while
still considerably reducing the overall computational cost compared to a
full quantum mechanical description. The method allows the user to au-
tomatically calculate the multipoles and polarizabilities, thereby avoiding
any need for using predetermined parameters. In addition to its efficiency,
the PE method is thus both accurate and flexible. In this thesis, a new
combination of the PE method with the open-ended response framework
is presented, in addition to the implementation done in order to calculate
various vibrational frequencies and intensities from the calculated energy
derivatives. The theoretical background for derivatives of the PE energy
is outlined, and software for the calculation of these has been developed



through a combination of the LSDalton, OpenRSP and FraME programs.
A new software package, SpectroscPy, has been developed in order to calcu-
late spectroscopic frequencies and intensities, for either vacuous or solvated
systems. The current version of the program allows the user to produce IR,
Raman and hyper-Raman spectra. The implementation can be extended to
better model repulsion interactions between the QM region and the environ-
ment through the Polarizable Density Embedding method. Newer versions
of the implementation should also contain the functionality necessary to
perform calculations on biomolecules, as it for the moment only allows sys-
tems where no covalent bonds need to be cut in the partition of the QM
region from the environment, and/or between the environmental fragments.
Once magnetic derivatives are available through OpenRSP, implementation
of vibrational-rotational spectroscopic properties is also a route that should
be investigated.
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Introduction

For more than 200 years, the laws of Newton were believed to hold for all
matter, but as the discovery of the building blocks of matter progressed
in the early years of the 20th century, it became clear that when the sys-
tem or particle studied was small enough, or had a high enough speed,
other rules applied.'™ The discoveries made by the pioneers of quantum
mechanics (QM) revolutionized the way we look at nature, and provided us
with ground-breaking insights such as that all matter has both wave- and
particle-like properties, and that speed and position cannot be simultane-
ously determined, through no fault of the measuring equipment. 47

When studying chemistry on a microscopic level, it is necessary to incor-
porate the insights from QM, leading us to the field of quantum chemistry,
which can be viewed as the tool for calculating chemically relevant proper-
ties of electrons, protons and neutrons in molecular environments. Although
it is possible to accurately predict the behaviour of extremely small systems,
such as the hydrogen atom, through analytic formulas, the complexity of
chemically interesting systems makes quantum chemistry primarily a field
concerned with the development of methods and approximations. This is
because even for even slightly larger systems, the number of particles and
the number of interactions between them make it impossible to solve the
equations used for the hydrogen atom.® Most of the work happening in
quantum chemistry today therefore involves making and improving approx-
imations, and approximations of approximations etc.?, that lead to meth-
ods for finding useful information about chemical systems within reasonable
time frames and requiring reasonable amounts of computer power.®

One of the earliest of such methods was the Hartree-Fock (HF)?1°
method that approximated these interactions by treating all other electrons
than the one considered as an averaged surrounding field, and (as is common



in most QM methods) all the protons in each atom as one combined nucleus
with a positive charge equal to the sum of the proton-charges. Although
useful in certain cases, for most chemical problems, this approximation is
too severe, giving results deviating from experimental results. Many dif-
ferent routes have been taken towards better models, where the Coupled
Cluster (CC)!!' is in many cases the most accurate among the computa-
tionally feasible methods, while the Density Functional theory (DFT)!? is
widely popular because of its efficiency.

For small gaseous systems these QM methods work well, but interesting
chemical systems are usually in liquid or solid bulk form, with a high num-
ber of molecules with strong interactions between them. Both the molec-
ular geometry and other properties can be strongly influenced when it is
surrounded by an environment, and including solvation effects is therefore
of high importance. 14 At the same time, the increase in the number of
particles and the number of interactions between them makes the use of
QM methods practically impossible. It has therefore become necessary to
develop methods that allow us to keep the a high degree of the accuracy
of the QM methods, while at the same time not drastically increasing the
computational burden when an environment is added, as compared to the
isolated molecule. This leads us to the area of focused embedding methods,
which exploits the fact that chemically relevant properties often are to some
degree localized, which means that we can identify which area of the system
contribute the most to the phenomenon we are studying. When studying a
solute in the presence of a solvent, the molecular property will be localized
to the solute, and is thus treated with a higher level of sophistication than
its environment.

While the solute will typically be treated with a QM method, there ex-
ist many strategies when it comes to the environment. A popular strategy
is to treat the molecule as existing inside a cavity in a continuous dielec-
tric medium, as in the Polarizable Continuum Model (PCM).'® Continuum
models have proven to be highly efficient, and in many cases accurate, how-
ever, they are not able to model specific interactions between the environ-
ment and the molecule, such as for instance hydrogen bonds.'® Discrete
atomistic models have therefore become popular, and chief among them
is the Quantum Mechanic/Molecular Mechanic (QM/MM)!® method, as
illustrated in Figure 1, which keeps the position and to some degree the



Figure 1. In QM /MM, the part of the system responsible for the chemical
property observed is treated with QM methods, while the bulk is treated
with MM methods. !®

properties of the environmental atoms, but treats them using Molecular
Mechanics (MM)!7, or classical laws.

Extensive work has been done within the field of QM /MM during the
years, and in 2013 Warshel, Levitt and Karplus were awarded the Nobel
prize in chemistry for their work on the subject!??Y. There are many dif-
ferent ways to go about setting up a QM /MM method,?! where one of the
differences between these strategies is which molecular parameters are cho-
sen to model the environmental atoms, and how these are obtained. This
determines which interactions between the core and environmental regions
are accounted for, and to what degree of accuracy. Electrostatic interactions
are found by including permanent multipoles in the environment, while po-
larization effects are modelled by induced multipoles through distributed
polarizabilites. In this work we focus on the method developed by Kong-
sted and co-workers, called the Polarizable Embedding (PE)?? model. This
method is based on both electrostatic and induced interactions between the
core and the environment, and has the ability to calculate the necessary
parameters for a given solvent through its implementations in PyFraME,?3
using the LoProp partitioning approach?®. This makes it highly flexible
with regards to choice of molecular environment, as it is independent of any
pre-calculated parameters.

25,26

The PE method has proven a useful tool for both electronic and

27,28

magnetic properties, and in the studies presented in this thesis, we

extend the approach to the vibrational domain. Combined with the formal-

2930 we explore

ism expressing response theory as quasi-energy derivatives,
harmonic and anharmonic vibrational properties of arbitrary order. There

already exist a number of studies up to fourth-order properties related to



vibrational spectroscopy calculated with PE or PE-like methods.??:2%:31-36

What is unique to our approach is that it is analytical and open-ended with
regards to order of energy derivatives, making any further implementation
when proceeding to higher orders unnecessary, in addition to avoiding any
errors introduced by numerical differentiation. This is possible through the
recursive algorithms implemented in OpenRSP and developed by Ringholm
and coworkers. 3037

As already noted, the focus of this thesis is on vibrational spectroscopy,
which requires energy- and quasi-energy derivatives with respect to distor-
tions of nuclear coordinates, called geometric derivatives, as well as deriva-
tives with respect to electric field strengths experienced in the presence of
an electric field. Through second-order geometric and up to fourth-order
mixed electric and geometric derivatives, we are able to simulate vibrational
spectroscopies such as Infrared (IR), Raman and Hyper-Raman within the
Harmonic approximation.3® Anharmonic effects are included through the
second-order vibrational perturbation theory (VPT2).3%#4* This requires
fourth-order geometric and up to sixth-order mixed electric and geometric
derivatives, properties that have not previously been calculated with the
PE model.

The aim of this doctoral thesis has been to develop the theory and
computational tools for calculating vibrational spectroscopic properties with
PE. In addition to serving as a background for the included papers, the
introductory chapters are made with the hope that they will be useful for
anyone entering the field and wishing to further develop or use the PE
method on (vibrational) molecular property calculations. These chapters
are therefore written to fit the knowledge level of someone having completed
a Master’s degree in theoretical chemistry.

The thesis includes three papers, Paper I - I11, as well as creation of or
involvement in three software programs. Paper I shows the application of
the procedure on harmonic IR and Raman spectroscopy of acetone in three
different solvents, while Paper II demonstrates the novel implementation
of analytic higher-order geometric derivatives through anharmonic correc-
tions of IR spectra, on two different molecular systems. Paper III was the
first demonstration of parts of our software, although only on harmonic IR
and Raman for vacuous benzene, as one of many contributions to the cre-
ation a Python platform created to make the Dalton %6 and LSDalton %47



programs more accessible to the general user.

The rest of the text is organized as follows. The basic formulas and ideas
of quantum mechanics are briefly described in Chapter 1. Chapter 2 covers
a detailed description of the theory necessary for vibrational spectroscopy
calculations, while Chapter 3 covers the Polarizable Embedding model, both
basic theory and with the application to vibrational spectroscopies. An
overview of the software developed and used is found in Chapter 4, followed
by a summary of the publications making up this work in Chapter 5 and
finally an outlook towards future developments and applications of this work
in Chapter 6.






Chapter 1

Quantum mechanics

This part is a recapitulation of quantum chemistry concepts that it will
be necessary to be familiar with in order to follow the more specific de-
velopments in later chapters. The more experienced quantum chemist is
welcome to skip ahead to the more in-depth parts, as this chapter is specif-
ically tailored to a beginning PhD student. For a further background in
quantum chemistry, the reader is referred to the textbooks by Atkins and

1.8 and Helgaker, Jorgensen and Olsen®®. These works have also

Friedman
been influential on this first chapter.
Central to quantum chemistry is the solution of the Schrédinger equa-

tion, !

HU = EV (1.0.1)

describing how the energy E of a system can be calculated as the eigenvalue
of the Hamiltonian operator H, with the wavefunction ¥ of the system being
the eigenfunction. As mentioned in the introduction, accurate solutions to
the Schrodinger equation is possible only for systems with very few particles,
and developing strategies to solve it for larger systems can be said to have
been the primary target of the many methods and approximations that have
been developed within the field of quantum chemistry since its inception.
Expressing the form of both H and U is key to these developments.

We start by looking at H and some of its common approximations. A
typical way of writing it is as the sum of operators for the kinetic 7' and
potential V/ energies within the molecular system,

7
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oo =T+ Vv

B 1 Ney v2 1 Nnuc 1 VQ
— T2 Vit X VA
Noi N Not Noe A 1N 2,2,
L1 1 Za 1 (1.0.2)
;; Z T‘Z'A XA: 324 TAB

where the first two terms belong to T and the last three to V. Note that
this formula is written in so-called atomic units, where the elementary con-
stants e (the elementary charge), i (the reduced Planck’s constant), ag (the
Bohr radius) and m, (the electron mass) are all defined as equal to 1. The
summation indices ¢ and j run over the number of electrons N, and A and
B over the number of nuclei Ny, in the system. Z4 is the charge of nucleus
A and r;j = |r; —r;| where r; is the position of particle 4. It should be noted
that Eq. (1.0.2) is valid only for the non-relativistic time-independent case.

This work, as is common in quantum chemistry, will keep to the Born-

Oppenheimer approximation, 147

assuming that the nuclei are so much heav-
ier than the electrons that they can by comparison be considered as station-
ary. In the electronic Hamiltonian the second term is therefore omitted and
the fifth term is viewed as a constant nuclear repulsion term, hy,,.. The

total molecular Hamiltonian, H mol " can thus be written as

Nnuc
Aol = — % > T;Avi + {79 (1.0.3)
Although nuclear motion is central to this work, it is at this point sen-
sible to look closer at the electronic Hamiltonian, H ¢l which notably also
includes the nuclear repulsion term, hp,.. Sorting the remaining terms
based on their order of dependence on electronic position gives the elec-
tronic Hamiltonian as

L= h 4§+ houe (1.0.4)

where the one-electron term h is given by



N 1 A
oy oy e 10,
2 V; (1.0.5)

(1.0.6)

The wavefunction ¥ can be a function of time, position and the
quantum-mechanical quantity of spin. The formalism presented in this
work, however, is time-independent, and ¥ will therefore also be assumed
independent of time, and consequently a function only of space and spin,
U(r,mg). It is common to choose ¥ as a combination of one-electron func-
tions gy, centered on the molecules, molecular orbitals (MOs). Like ¥, ¢ is
dependent on both position and space, and are therefore called spin-orbitals.

Each can be factored into a spatial and a spin part?®®

ok(r, ms) = Yy (r)og(my) (1.0.7)

1
—3, and

o(myg) therefore only has two states, @ and 3. For closed-shell systems,

For electrons, the spin-quantum number mg can be only % or

it is common to require that pairs of electrons share spatial orbitals ¥,
but have opposite spin-states. Instead of writing the set of spin-orbitals as
©1, 92, - PN,,» it can thus be written as 1,4, @1, s PN B

A basic rule of quantum chemistry is the Pauli principle, stating that
the total wavefunction ¥ must be anti-symmetric upon exchange of any of
its labels, or in other words, it must change sign upon permutation of two
identical fermions.® An example of this would be if two electrons switched
orbital. To ensure this antisymmetry, the total wavefunction V¥ is typically
a combination of the MOs ¢y through a Slater determinant

P1,a(r1) prp(r1) - @%Nel,g(rl)

1 V2| Prar2)  eup(r) - @1y, (ra)
\I/(I‘I,I‘27...,I'Nel) = (Nl'> . . . .
el . . . .

Praltng) ¢rarNg) 0 @1y, s(rNg)

(1.0.8)
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where Ng is the number of electrons and r; is the position of electron 3.
We will in this work keep to the restricted formulation, where two electrons
occupy each spatial orbital, and will from this point on therefore no longer
concern ourselves with the spin degree of freedom, looking only at spatial
orbitals with space for two electrons.

In many cases it is practical to further expand these MOs in terms
of orbitals centered on the atomic nuclei, atomic orbitals (AOs). This is
typically done through a linear combination

o

where the summation index p runs over the number of atomic orbitals, C\;
are the so-called MO coefficients and x,, are the atomic orbitals. The orbital
coefficients are related to the density matrix D by the following relation

Dy =2 Z CriiCli (1.0.10)

which is a quantity of high importance to be reencountered in Chapter 3.
It can be seen as the electronic density in the region of overlap between
Xy and xv.2 The factor 2 follows from the previously discussed restricted
formalism, with each of the spatial orbitals being doubly occupied. In an
unrestricted formalism, Eq. (1.0.10) would not have a factor 2, but the sum
¢ would run over the twice as many MOs. The atomic orbitals x, make up
what is called a set of basis functions centered on each atomic position. The
choice made of how to represent these functions is one that has big impact
on calculations, and care should therefore be taken in this decision®®. Any
further discussion on the topic of the wavefunction is, however, outside the
scope of this work, and we now move on to briefly discuss a few of the most
important QM methods.

Among the terms in the electronic Hamiltonian in Eq. (1.0.4), the one
that is the most problematic to calculate is g, even though it has a seemingly
simple and elegant form. The sheer number of interactions to be calculated,
as each electron interacts with every single one of the others, is in itself a big
hurdle. Additionally, this term couples different electrons, meaning that the
separation of the wavefunction into one-electron functions, or orbitals, is an
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approximation. In order to solve the Schrodinger equation for one orbital,
it is necessary to know the %Nel — 1 other ones. The first method often
introduced that presents a simplified version of the two-electron term is the
Hartree-Fock (HF)?19 method, which approaches the problem iteratively.
Considering one electron at a time, all the other electrons are modeled
as a continuous electron cloud treated averagely. The method then loops
through all of the electrons, and the procedure is repeated until convergence
is reached. Such schemes for iteratively solving the Schrodinger equation are
called Self-Consistent Field (SCF) methods,® of which HF is an example.
It is often said about HF that it disregards Coulomb electron correlation.
This points to the fact that no instantaneous interactions between individual
electrons are accounted for. Although this makes the HF method in most
cases unsuitable for accurate calculations, it is in many cases still used
for comparison or as a preparatory step before more accurate methods are
employed due to its efficient nature.

The Coulomb electron correlation is typically grouped into two contribu-
tions, nondynamical and dynamical correlation.®® Nondynamical correlation
is related to the breakdown of the single-determinant approximation, as a
consequence of the existence of several important electronic configurations.
Dynamical correlation on the other hand, is due to instantaneous electron-
electron interactions, requiring a description of cusps in the i term in order
to avoid singularities as 7;; — 0. There have been devised many different
solutions for alleviating the lack of electron correlation in HF. A typical
way to account for nondynamical correlation is by including more config-
urations than the HF configuration in the wavefunction through methods
such as the Multi-configurational SCF method (MCSCF). Dynamical cor-
relation can be included by adding excited states to the wavefunction,®°? a
philosophy that has led to well-known methods such as the Configuration
Interaction (CI) and Coupled Cluster (CC) methods, where excited states
are included linearly and exponentially, respectively. The method used in
this work, however, is called Density Functional Theory (DFT) and takes
a different approach to the correlation problem. DFT originates from a
theorem formulated by Hohenberg and Kohn in 1964,'2 proving that it is
possible to determine any ground-state electronic property as a functional
of the electron density p. Among the many ways to formulate this theory
is Kohn-Sham DFT (KS-DFT),5! where the ground-state electronic energy
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functional F, is formulated as

Eylp] = hoe + / v(r)p(r)dr + Tulp] + J[p] + Eielp) (1.0.11)

where hy. is still the nuclear repulsion, and the second term is the interac-
tion between electrons and nuclei and therefore closely related to the third
term in Eq. (1.0.2), with

— i
v(r) = ZA: P— (1.0.12)

The third term, T, is the kinetic energy of an imagined case with non-
interacting electrons, and J is the classical part of the electron-electron
potential, the Coulomb energy. These are subsets of the first and third
terms in Eq. (1.0.2).

The final term in Eq. (1.0.11), the exchange-correlation energy functional
FE.., approximates the parts of the kinetic energy T and electron-electron
interaction energy V.. that are not included in 75 and J. This is the corre-
lation energy, the contribution to the kinetic energy caused by interactions
between the electrons, and the exchange energy, a non-classical contribution
caused by the requirement for an antisymmetric wavefunction.

Many different strategies have been devised to model Ey., but common
among them is that they are all approximations, each with their strengths
and their weaknesses. In the context of DFT functionals, "Jacobs Ladder">?
is often mentioned, a hierarchy over some of the most important types of
functionals. The functionals in "Jacobs Ladder" range from the local den-
sity approximation which is an integral of a function only of the density, to
include more and more sophisticated terms such as density gradients (gen-
eralized gradient approximations), higher-order density derivatives or even
exactly computed exchange form Kohn-Sham orbitals (Hybrid orbitals).®?
As DFT functionals are not the primary focus of this thesis, this is not a
subject that will be discussed in any more detail here, except noting that
it is always important before starting a study to make an informed choice
as to which functional is best suited. The system upon which calculations
are performed as well as the property being calculated are both influenced,
possibly in different ways, by the choice of functional.
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In this Chapter, the fundamentals of quantum chemistry have been cov-
ered to such an extent as to prepare the reader for further developments
beyond calculating the ground-state energy with QM methods. The next
chapter, Chapter 2, introduces what happens when a system is exposed to
an external electromagnetic field. This links theoretical to experimental
chemistry as this is the foundation of spectroscopic techniques, and calcu-
lating the properties observed in such situations is essential for theoretically
reproducing results from these experimental techniques, such as for instance
Infrared and Raman spectroscopies.






Chapter 2

Vibrational spectroscopy

Having in Chapter 1 been concerned only with the ground-state electronic
energy, it is now time to shift the focus to properties arising when a system
is subject to an external electromagnetic field, as is for instance the case
when considering spectroscopic processes. These molecular properties in-
clude for instance the dipole moment or polarizability, and can be obtained
as derivatives of the time-averaged quasienergy as covered in detail in Thor-
valdsen et al.,?? and in a fashion more relevant to this work in Ringholm’s
thesis.?* The details of this formalism are outside the scope of this work
and we will here only focus on the the results necessary for our needs.

The books by Wilson et al.?® and Norman et al.®® are both good sources
on vibrational spectroscopy. These two works provide a large part of the
background for the theory both behind vibrational properties in general,
as well as for the spectroscopic techniques covered in this chapter, namely
Infrared, Raman and hyper-Raman. The commonly used harmonic approx-
imation is also covered here, as well as how to go beyond the harmonic

approximation by including anharmonic corrections.

2.1 Molecular properties

Almost all molecular properties necessary for vibrational spectroscopy can
be expressed as derivatives of the energy.! If our system is exposed to an

L All properties involving non-static external fields should be evaluated as derivatives of
the aforementioned time-averaged Quasi-energy, instead of simply the energy. However,
as the derivations are analogous, we will not distinguish between the two in this thesis.

15
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external field, we can identify the electric properties from a Taylor expansion
of the molecular energy E™°! = (U|H™°!|¥) in terms of the electric field
strength F',

OE™!(r R, F)
+ - o~ - 7

E™(r,R,F) =EF°(r,R) o

19°E™'(r,R,F)
2 OF2

1PE™!(r,R,F)
6 OF3

F3 4 ... (2.1.1)
F=0

where the subscript F = 0 denotes that the derivatives are evaluated at zero
field strengths. The molecular Hamiltonian in this case has been perturbed
by the electric field, and can be written as H™°! = H° 4+ [ where HI!
is the unperturbed molecular Hamiltonian, as described in Eq. (1.0.3), and
A" is the interaction operator between the field and the molecule. In
the electric dipole approximation, for example, Aint — —[F, but it can
also depend on higher-order interactions. The zeroth-order term, is thus
the molecular energy in the absence of an electric field, and is given by
Epl(r, R) = (0| Al |w).

An alternative expansion of the energy can be done in terms of polar-
ization properties, such as the dipole moment g, polarizability «, hyper
polarizability 3, etc.,

1
E™(r,R,F) =EF(r,R) — p(r,R,F)F — S R, F)F?
1
- A R,F)F3 4 ... (2.1.2)

Comparing the phenomenological expansion in Eq. (2.1.2) with the Taylor
expansion in Eq. (2.1.1), we can identify the dipole moment p as

OE™!(r, R, F)

l’l’(r7R7 F) = - 8F

(2.1.3)

and the polarizability o as
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_9*E™!(r,R,F)
OF2

a(r,R,F) = (2.1.4)
F=0

Above, we discussed the molecular energy in relation to electric fields,
providing electric molecular properties. Another class of properties central
to vibrational spectroscopy is connected to the geometry of the molecule.
A molecular vibration involves an alteration of the positions of the involved
nuclei, and we will now investigate the most important properties related
to such motions. As a consequence of the Born-Oppenheimer approxima-
tion, the nuclei can be seen to move in an effective potential field generated
by the electrons.®® The molecular energy in the absence of an electric field
is given by Eq. (1.0.3), which is separated into the nuclear kinetic term
(TN = —% YA V—%) and the electronic potential term H¢. In the presence
of an electric field, we from here on include the interaction energy into the
electronic potential, which results in a total Hamiltonian Aol = T 4+ el
As a consequence of the Born-Oppenheimer approximation, the electronic
and vibrational wavefunctions are separable, and the electronic wavefunc-
tions can be seen to be unaffected by nuclear displacements (V 4|¥®!) = 0),

resulting in

T = v (T ) (2.1.5)

where ¥ and ¥ViP are the electronic and nuclear wavefunctions, respec-
tively. Both of the wavefunctions are associated with a specific electronic
state. It is therefore possible to write the molecular energy E™°' for a
specific electronic state as

Emol :<\I]Vib\I}el‘TN + f{el‘\yelqlvib>

<‘IjVib|TN|\IJVib> <\Ijel|\pel> + <\I/Vib\1jel|f{el|\1/elqjvib>
(

(

\IJVib|TN|\IJVib> + <\I,Vib‘vel|\11vib>
TV Ty 4 Ve pviby (2.1.6)

where we have in the third equality integrated over all electronic degrees
of freedom, in order to obtain an energy-operator independent of electronic
coordinates, HP = Ty + Vel
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The vibrational electronic potential has a complex dependency on the
nuclear coordinates, but close to the equilibrium, it can be expressed as a
Taylor expansion in terms of the displacement of the nuclear coordinates
from their equilibrium position,

8‘/61
+
>y Ao

a=z,Y,z N

AanABm,
Aan’ABm =0

1

T3 Bgyz% NN,
1 o3Vl

T X Z DA nOA RO,

a»ﬁy’Y:%y»Z n,m,r Aan,Aﬁm,A’Y',«IO
X A ABm Ay, + - - (2.1.7)

where «, 8 and v here denote one of the three Cartesian coordinates, and
the summation indices n, m and r run over the number of nuclei N. The
symbol Aq,, is the the displacement of nucleus n from its equilibrium posi-
tion along Cartesian coordinate «, and subscripts such as A«,, = 0 denote
that the derivatives are evaluated at zero displacement, or in other words, at
the equilibrium geometry. The zeroth-order term, Voel, is here the electronic
potential at equilibrium geometry. The choice of symbols for Cartesian
components might seem somewhat confusing as the same symbols have also
recently been, and will in the future be, used to represent polarization prop-
erties. Fortunately, we will not have to deal with this confusion for long, as
we now introduce a new, mass-weighted set of 3V coordinates

Q1 = Vmi1Az1, g2 = Vm1Ay1, q3 = Vm1Az1, q4 = /maAx,
-~ @3N = /myAzy (2.1.8)

where m is the mass of nucleus 1 etc. The Taylor expansion of the electronic
potential in Eq. (2.1.7) can then be reformulated to
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Vel
Z

q T 5 q:4;
2 0q;0q;
= 945 4i,9;=0
1 3N 83ve1
”k 4i94; 9k 4,95 ,9,=0

Alternatively, the geometric Taylor expansion Eq. (2.1.9) can be ex-
pressed in terms of geometric properties,

3N

1
+ Zgz% + - Z Hz]QzQ] Z kaqlqjqk + - (2.1.10)
1,j=1 ,jk 1

where the i’th component of the molecular gradient g; is given by

o avel
gi = 04,

(2.1.11)

q;=0

the ij'th component of the molecular Hessian H;; by

82 Vel
Y 9qi0q;

(2.1.12)

qi,9;=0

and the 7jk’th component of the cubic force field Cjji by

83 Vel

o= o
i 0q;0q;0qy,

(2.1.13)

9i,95,9x=0

The application of these properties, and more like them, in the context
of vibrational spectroscopy, will be explored in the following sections.

2.2 The Harmonic approximation

One of the most central approximations in the theory of vibrational motion
is the Harmonic approximation. It builds on the fact that close to the
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nuclear equilibrium position, the potential energy surface created by the
electrons has close to a parabolic shape, and that Eq (2.1.9) therefore in
this region can be safely truncated after the second-order term. The zeroth-
order term, V¢, is a constant that can be set to zero, and since the molecular
gradient is evaluated at equilibrium, it is also zero. The harmonic molecular
vibrational Hamiltonian is thus given by

3N
Hharm mol —T + = 5 Z quzq]
t,j=1
13N 52 1
_ 3 Z aq Z H;jqiq; (2.2.1)
i=1 i,j=1

As explained through slightly different paths in Wilson et al.?® and Nor-
man et al.?®, the Schrédinger equation within this harmonic Hamiltonian is
most easily solved by diagonalizing the Hamiltonian. In practice, this means
that through an eigenvalue analysis of the molecular Hessian H, we obtain
the angular vibrational frequencies w; of the molecule as eigenvalues, as well
as the transformation matrix to a new set of normal coordinates Q); as the
eigenvectors. The normal coordinates diagonalize both the nuclear kinetic
operator and the molecular Hessian. Of the set of 3/N normal modes, three
belong to translational motion and three (two for linear molecules) belong
to rotation. Each of the 3N — 6 (or 3N — 5 for linear molecules) remaining
normal coordinates (); belong to a specific vibrational mode of the molecule,
with corresponding angular frequencies w;. In the discussion of molecular
vibrations, we will operate only with this set of 3N — 6 vibrational normal
coordinates @);. The new, diagonalized vibrational Hamiltonian is given by

R 13N 6 52 13N6
Hharm,mol - _ QQ _|_ Z H“Qz (222)

Just as a molecule can be electronically excited by an external electric
field in the ultraviolet or visible spectrum, it can be excited into a heightened
vibrational state by an external electric field in the infrared region of the
spectrum. Having established the vibrational Hamiltonian, we turn our
attention to the vibrational wavefunctions that for vibrationally excited
state n of normal mode i in the harmonic approximation are given by!
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Ui (Qi) = NyiHy(&)e 672 (2.2.3)

where N, ; is the normalization constant, H, is the n’th-order Hermite
polynomial (a set of polynomials that are part of the solutions to harmonic
motion) and §; is a frequency-scaled coordinate, & = |/%Q;. The normal-
ization constant is given by

w21 1/2
Nn:Kfm) Qn(n,)] (2.2.4)

For reasons that will become apparent, in the harmonic approximation, the
only allowed transitions from the ground state are to the first excited state.
The zeroth- and first-order Hermite polynomials are therefore of special
importance, and are given by

Ho(&) = 1; Hi(&) = 2&. (2.2.5)

As stated by Fermi’s golden rule,® the rate of transition to a vibrationally
excited state is dependent on the transition moment of the interaction op-
erator, (O|H™|n), where n is the collected excited state for all the normal
modes. This has a strong relation to the intensity of spectroscopic pro-
cessed, as the intensity is quadratically dependent on the rate of transition.
In the dipole approximation, this means that the intensity is proportional
to the square of the transition dipole moment (0|u|n). This is the case for
Infrared absorption, but the nonlinear terms in Eq. (2.1.2) are the deter-
mining factors in scattering processes such as Raman and Hyper-Raman.
We will now derive the transition dipole moment in the harmonic dipole ap-
proximation, but note that the derivations for other polarization properties
is identical.

We express the dipole moment as a Taylor expansion with respect to
the normal coordinates @Q;

3N—6 3N 6 62
= po+ Z QZ+ > QiQ; +--- (2.2.6)
=0 ” 1 anan Q:,Q;=0
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Truncating after the first-order term leads to the double Harmonic approxi-
mation. The zeroth-order term, g, is the dipole moment of the vibrational
ground state, and the subscript @); = 0 denotes that the derivative is eval-
uated at equilibrium geometry, or zero displacement. In practice, such as
in quantum chemistry codes, property-derivatives such as the ones of the
dipole moment seen in the Taylor expansion are typically first calculated as
derivatives of Cartesian coordinates and subsequently transformed to nor-
mal coordinate basis with the transition matrix found as the eigenvector in
the Hessian analysis.

The zeroth-order contribution the transition dipole moment is
(0|peo|n) = po(0|n), which because of orthogonality between different vibra-
tional states becomes zero for all excited states. The harmonic transition
dipole moment belonging to Cartesian coordinate « can thus be written as

its single remaining term,

Ol =01 S 2 )
=1 *1Qi=0
3N—-6
_ Opia ,

Q;=0

As there are 3N — 6 vibrational normal modes that can all be excited,
the total wavefunction for state n can be formulated as a product of the
wavefunctions belonging to each of these modes, excited or not, so that
In) = |na)|np) -+ |ng) -+ |n3n_e).*® This is possible as the nuclei are not
fermions, and therefore not subject to the Pauli antisymmetry requirement.
The subscripts here denote the normal mode. All these wavefunctions are
given by Hermite polynomials, as in Eq. (2.2.3).

As the dipole gradient is considered a constant, the task is now to solve
(0|Q;|n). Using a property of the Hermite polynomials, that

| €0 (6)dQs = 8, (2.2.8)

and that only |n;) has a dependence on @Q;, it follows that the only non-
vanishing integral for (0|Q;|n) is when all |n;) = |0;) except |n;), giving
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(0[Qi|n) =(0a]0a)(0p|0p) - - - (0:]Qilni) - - - = (04| Qilnq)
= /OO N()JHO(&')6_52'2/2QiNn’iHn(51)6_612/2in (229)

Using Eq. (2.2.5), we see that Hy(&)Q; = ,/%Hl(fi), resulting in

0 1/2 , ,
(0]Qi[n) 2/_00 No,z'( h ) Hy(&)e 52N, i Hy (&) e 5 /2dQ;

4w,
5 (i) [ w@miaie,

Noi [ h \'/?
:N? (4w> S1n (2.2.10)

Consequently, the only non-zero case is when n = 1, which means that

No; ( h\Y?  [h
(0/Qiln) NM(M) /o (2.2.11)

Inserting this into Eq. (2.2.7), we end up with the harmonic approximation
for component « of the dipole transition moment, given by

3N—6

h Opa
2.2.12
Q=0
and for a specific mode ¢ by
h O
alli) =1 — 2.2.1
Olkaln) =\ 5567 (2213)

We will now, in the next few sections, explore the application of such

polarization transition moments in vibrational spectroscopic techniques.
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2.3 Infrared absorption

With the harmonic approximation for molecular vibrations in place, we can
use this to explore the theory behind the specific spectroscopic techniques
applied in this work. The first one is infrared absorption, a method com-
monly used for determining the structural identification of a sample. It is
not within the scope of this work to delve into the experimental aspects of
this method, but very briefly, a beam of electromagnetic light of a certain
intensity Iy and with a frequency covering a given range within the infrared
spectrum is pointed at a sample. Photons in the infrared spectrum have
the ability to excite molecules out of the vibrational ground state, causing
some of the photons to be absorbed by the sample. The intensity of the
ray of light exiting the sample I will therefore be different than that of the
one entering (Ip) and vary as a function of frequency, and I is therefore
picked up by a detector and plotted over the frequency range. This pro-
vides characteristic spectra for different molecular compounds. A schematic
illustration of an IR spectrometer can be seen in Fig. 2.1.

The relationship between the incoming and outgoing intensities is given
by Beer-Lambert’s law >

I=TIpe Nol=1,.107%¢ (2.3.1)

where N is the number of molecules per volume, ¢ is the absorption cross
section, [ is path length, € is the molar decadic attenuated coefficient (a
measure of the amount of photons absorbed) and ¢ is the molar concen-
tration. Manipulating Eq. (2.3.1) and using that N = Nyc, where N4 is
Avogadro’s constant, we get

_ Nyo
°T In(10)

In computational chemistry, one of the most commonly calculated quantity

(2.3.2)

is the molar decadic attenuated coefficient.
The absorption cross section is given by

3N—-6

o) =gr— > 10kl Y flwiwy)  (2:33)

3h€06 =2,z
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Figure 2.1. Schematic illustration of an IR spectrometer.®® Light is trans-
mitted from a light source, and filtered to only contain the desired range of
wavelengths in a monochromator. The beam then passes through a sample
which at certain wavelengths will absorb some of it. The light that has not
been absorbed continues to the detector, and the difference between the
intensity of the light before and after entering the sample is registered. In
order to eliminate influence from the experimental setup, the IR spectrum
from the sample is typically compared to that of a reference. If the sample
is a water solution, a good reference would typically be pure water. The
splitter in the figure ensures that the detector recieves alternating signals
from the beam that has passed through the reference and that which has
passed through the sample.
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where w is the angular frequency as a variable over the whole spectral range,
g0 is the vacuum permittivity and f(w;w;, ;) is a lineshape function, in-
cluded in order to account for homogenous broadening effects, such as the
finite lifetime of the excited states. We use the Cauchy distribution,

flwywi,vi) = = l(%] (2.3.4)

7| (wi —w)2 + 2
to model the lineshape function, where ~; is a damping factor associated
with the life expectancy of the excited vibrational state. It is related to
the more common term, the “full width at half maximum” (FWHM) by
2v; = FWHM.
In cases where the harmonic approximation is applied, we insert
Eq. (2.2.13) into Eq. (2.3.3), giving

W | h O
O’l(w) _3h€00 a:a:z:y 2 ( 2(,0@' 8@1

W Z Ohe
_6€ocwi a=z,y,z 8QZ

for mode 7. The lineshape function causes o to sharply peak at the transition

2
) f(wswi,vi)
Q;=0

2
) f(w;wi,v:) (2.3.5)
Q;=0

frequencies, making w = w; a reasonable approximation,®® giving the most

commonly used form of the harmonic absorption cross section

2
oo Oty o
oi(w) = 6coc > (GQZ- 0) f(w; wiy i) (2.3.6)

a=x,Y,z

Qi=
Inserting this into Eq. (2.3.2) gives us the molar decadic attenuated
coefficient for mode i

_ Narm Oha
“ilw) = GIn(10)e0c 2 (8@

a=,Y,z

2
) f(w;swi, 7i) (2.3.7)
Qi=0

2.3.1 Considerations regarding IR units

Before continuing to other types of vibrational spectroscopies, some aspects
regarding the units of IR spectroscopies should be addressed, as there is
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quite a lot of ambiguity in the way values are reported. This is especially
true when it comes to the use of the word “intensity” in relation to compu-
tationally calculated quantities. From Beer-Lambert’s law in Eq. (2.3.1), it
is clear that reporting € is not the same as reporting 7, although they are
closely related. In this work, the terms intensity or intensity-related prop-
erty will be used when specific units of the values are not relevant, or as a
collective name for all the different units. When reporting specific values,
however, the exact physical quantity and its units should always be stated.

The three most common units used for infrared absorption are L -
mol~tem™!, (D/A)? - amu~' and km - mol~!. Starting with the first, we
see that it is closely related to the SI unit m?-mol™!, which are the units of
€. Moving on to the second choice of units, we note that D is a commonly
used unit for dipole moment, A is a length measure and amu is 1—12’th of
the mass of a carbon atom. The SI equivalent of (D/A)? - amu~! is thus

C? . kg™ !, and this unit is used when intensities are reported as

2

S g“é (2.3.8)
a=x,y,z Q’ Q=0

The last unit, km/mol, is less easily recognizable from the equations

above, and is in many places simply said to originate from the conversion
1(D/A)? - amu~" = 42.2561 km - mol~'. As the origin of this conversion
is non-trivial, I will here describe the steps some in detail. When looking
for the origins of this conversion, it is necessary first to note that ¢ is the
molar decadic attenuated coefficient (10-based), which is related to the the
molar Napierian (e-based)’” attenuated coefficient ey by the relation & =
en/In(10), giving

2

6606 a=z,y,z 3Ql 0i=0

The next step is integrating over the spectral range in terms of wavenumbers

5N7i(w) f(w;wivf}/i) (239)

v

A= / e i(0)d (2.3.10)

This requires a change of variables in ey, but is easily achieved as w =
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2mev = dv = %mdw. Additionally, since f(w;w;,7;) is a distribution func-

tion, ?®

/f(w;wi,%-)dw =1 (2.3.11)

Inserting this into Eq. (2.3.10) gives

TN aﬂa
4= | %
6500 a— xyz Qz 0i=

2
) f(w;wi,v;)dv
=0
P 2
_ﬂ-NA /’LOC . ' '
_6600 _z: (8Qz Q‘_O) /f(wawla'}/l)d’u

a=2,Y,%
TN 4 Ol 1 /
= — w; W, Yi ) dw
6egc a:xz’:%z 0Q; 04=0 2me f( i %)

126280 a=z,y,2 8@1

2
) (2.3.12)
Q=0

which has units m - mol™!, the SI equivalent of km - mol™'. To compare
the result in Eq. (2.3.12) with the previously mentioned factor of 42.2561,
combine the constants placed before the sum into a common prefactor and
convert the dipole gradient from D - A" amu~? to the ST units C - kgfé.

2.4 Scattering spectroscopies

The theory behind infrared spectroscopy, a technique which falls into the
category of absorption spectroscopies, was covered in the previous sections.
In these types of spectroscopies the change in intensity of a beam of light
before it enters the sample and after it exits it is monitored, but the frequen-
cies of the incoming and outgoing light are identical. The spectroscopies
described in the present section, however, fall into the category of scatter-
ing spectroscopy. Here, the photon entering the sample need not have the
same energy as the one exiting it, and these spectroscopic techniques are
thus examples of inelastic scattering processes. % In Raman spectroscopy,
a photon of angular frequency wj, within the visible spectrum is absorbed
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Figure 2.2. The various types of Raman scattering processes, as well as
IR absorption spectroscopy.

into the sample, exciting the system to a virtual electronic state. The sam-
ple then emits another photon with angular frequency weys which is close
to, but not identical to wy,. The difference between the angular frequen-
cies of the exiting and entering photons, |win, — weut| = w; corresponds to a
vibrational normal mode. Typically wiy, — woyt is positive, heightening the
vibrational state of the molecule, and being characterized as Stokes scat-
tering, but it can also be negative, which lowers the vibrational state, and
is characterized as anti-Stokes scattering. The (less interesting) case where
win = Wout 18 called Rayleigh scattering, and is an example of elastic scat-
tering. An illustration of the various types of Raman scattering processes
can be seen in Fig. 2.2.

In Raman, the number of entering and exiting photons is the same,
while for hyper-Raman, two photons enter the sample. These two photons
combined cause an excitation to a virtual electronic state, and the process
from there is identical to that of Raman, with one photon being emitted. %"
The vibrational motion observed thus has an angular frequency of 2wy, —
Wout| = w;i. An illustration of hyper-Raman compared to Raman scattering
can be seen in Fig. 2.3. Although this effect is much weaker than that of IR
or Raman, it is still useful. A molecule might for instance be hyper-Raman
active when it is not IR or Raman active.

Infrared intensity is closely related to the dipole transition moment,
which is an energy-derivative of first order in field strength. Raman and
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Figure 2.3. Hyper-Raman compared to Raman scattering. A) is Raman
Stokes scattering, while B) and C) are hyper-Raman Stokes and anti-Stokes
scattering, respectively. 6!

hyper-Raman spectroscopies, however, depend on second- and third-order
properties, namely the transition polarizability and hyperpolarizability, re-
spectively. The intensity-like quantity most commonly calculated is the
absolute differential Raman scattering cross section (9o /0f2) and is given
by 42:62

do B (win — wi)*
o 9(27c)hw; (1 — exp (— Z‘;l

)) (kaa?+kbbf) flwwi,m)  (24.0)

where () is the solid angle, £ the Boltzmann constant, 1" the temperature

in Kelvin and the Raman invariants a; and b? are given by

(2.4.2)

1 O0qa
“=3 a:;hz 0Q;

Q=0

and
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Q=0 Qi=0)

2
) (2.4.3)
Q;=0

where a,g is the af’th Cartesian component of the polarizability a. The

1 [ daga
i- T 2%

a=x,Y,z 5#&

+3 (8%5

Qi

dependence on the polarizability gradients and no higher-order terms follow
from the truncation of the Taylor expansion to first order in the harmonic
approximation, as with the dipole moment in IR. There are three different
choices for the coefficients k, and kj, and they are determined by the exper-
imental setup. The origins of the various values of these coefficients can be
studied in detail in Wilson, Decius and Cross,?® but briefly explained, the
choice k, = 0, k;, = 6 belongs to the case where the incident light is polarized
parallel to the direction of observation and perpendicular to the direction
of propagation, and k, = 45, k;, = 7 to the case where the incident light is
polarized perpendicular both to the direction of observation and the direc-
tion of propagation. The subset of the last case which has light polarized
parallel to the electric field, gives k, = 45, ks = 4. When reporting Raman
results, it is always important to specify which polarization has been used.

The unit of o /09, as in Eq. (2.4.1),is C*-J7! . kg™! -3 - m~2. Other
common units such as for instance A’ - amu~! are derived from only the
polarizability gradient part (kqa? + kpb?) of Eq. (2.4.1).

For hyper-Raman spectra, we can similarly define a measure of the in-
tensity through a scattering cross section related property, . In the same
way as with Raman scattering, the experimental setup plays influences the
outgoing intensity. Without going into details, there are two options for
hyper-Raman, the vertically and horizontally polarized cases. The verti-
cally polarized o is given by %

h(2win — w;)*
A [C " ) (2.4.4)

_2wi (1 — exp (_%» aaa,i
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and the horizontal by

oAV — h(QWin - wi)4 2o
i 2w; (1 — exp (_hﬁ)) Baa,i

Comparing these two equations with the Raman equivalent, Eq. (2.4.1),

(2.4.5)

hyper-Raman has a factor 2 in front of the incident frequency wi,, while
Raman does not. This originates from the previously stated fact that for
hyper-Raman two incoming photons combine to cause one scattering pro-
cess, while for Raman, only one incoming photon is involved.

Defining

i Bﬁaﬁv

aBy — ) ’
0Q; 01—

(2.4.6)

2

aoa,l

where 3,3+ is element a3 of the hyperpolarizability 3, the quantities b

and b3 are given by

ao,t

1 .
b?)coza,i :§ Z( ;aa)z

e
1 . ) ) ) )
+ % Z ( 4( (Zxoz,B)Q + 26310504 tzxﬂﬁ + 46%aa/3(lyaﬂ
a,870 i :
+ 4/3;()404516,804 + (B}J’a(x)Q)

1 . . , . . ,
T 105 Z (4 5&0455}577 + Béaaﬁ?@w + 45;04,3/8%6

105
o, BFoy£BFo . . .
+ 2(Bisy)? + 4Bis Bhar )
(2.4.7)
and
1
Bai =35 2_(Fraa)”
1 - A o
t10r 2 ( ABeaaBlps +8(8hap)” — 6BhaaShsa
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More details on experimental setups and thus a more thorough expla-
nation the vertical and horizontal cases are outside the scope of this work.

The reader is referred to Quinet et al.%3

2.5 Anharmonic corrections

The above discussion is all within the framework of the harmonic approxima-
tion. This is based on the truncation of the Taylor expansion of the energy
after second order of differentiation with respect to normal coordinates, us-
ing the Hessian to find vibrational frequencies. Polarization properties, such
as the dipole moment, are truncated after first order. The harmonic approx-
imation models the potential energy as a parabolic curve, while the actual
shape is in fact more similar to that of the Morse potential,! shown in Fig.
2.4. The harmonic approximation is in other words quite good close to the
equilibrium geometry, but breaks down quickly further away from the mini-
mum. In order to better approximate the Morse potential, different methods
have been developed, for instance by applying scaling factors. %455 However,
a more accurate route (and the one chosen in this work), is to through
perturbation theory include higher-order terms from the geometric Taylor
expansion of the energy and polarization properties. This makes the vibra-
tional wavefunctions slightly more complicated than those presented for the
harmonic approximation in Eq. (2.2.3), although they are still based on Her-
mite polynomials.®® To include these anharmonic terms in the vibrational
frequencies, second-order vibrational perturbation theory (VPT2)3%:40.67.68
is often employed. Over the years, a variety of extensions and refinements
to this theory have been developed*'™#*, but in the works included here, we
model the vibrational frequency with the general vibrational second-order
perturbation theory (GVPT2), and the transition moments with a the de-
perturbed vibrational second-order perturbation theory (DVPT2).4? These
three theories will be explained in more detail in the next sections, but a
short explanation of how they relate to each other is useful at this point.
VPT?2 provides the equations for the corrected frequencies and transition
moments, however, many of the terms involved in these equations have de-
nominators that in certain cases cause divergencies. This happens when
certain harmonic frequencies, or specific combinations of them, are close to

each other, a phenomenon called resonance. In VPT?2 this is not considered,
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Energy

e

Internuclear Separation (r)

Figure 2.4. Morse potential energy curve (blue) and the potential en-
ergy curve of a harmonic oscillator (green), as a function of internuclear
separation. Here, r. is the equilibrium geometry, D, is the dissociation en-
ergy, while Dy is the actual energy required to completely break the bond.
They are closely related, but not identical since the energy of the lowest
vibrational level, v = 0, is nonzero. In addition to having different shapes,
the harmonic and Morse potential curves differ in that while the harmonic

oscillator has evenly spaced energy levels, this is not the case for the Morse

potential. 69

and the values are calculated directly from the equations, but in DVPT2
and GVPT2 these resonances are identified and the corresponding terms
are then removed. This gives the DVPT2 results, but GVPT2 goes one
step further, creating a new eigenvalue problem for the resonant terms and
solving it to get further corrected results. The three methods can therefore
be seen to build on each other, with VPT2 the most basic and GVPT2 the
most refined. The following section summarizes key concepts and results,

but for detailed derivations, refer to the original works.3%42 44

2.5.1 VPT2 theory

Before studying the theories in detail, a small clarification of the names
might be helpful. VPT2 is called second-order, even though they utilize
terms of up to fourth-order geometrical energy derivatives and third-order
property derivatives. This is meaningful as these are perturbation theo-
ries made to correct the harmonic approximation, and consequently, the
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zeroth-order term in the perturbation expansion is in fact based on the geo-
metric second-order energy derivatives and first-order polarization property
derivatives. When a second-order perturbative approach is added on top
of this, fourth-order energy derivatives and third-order property derivatives
are needed.

When now proceeding to tackle the corrected terms, we start with the
corrected transition moments as expressed in the VPT2 formulation. The
transition integral of a property P from state 0 to state n is defined as

(ol Plon)

where 1) are vibrational wave functions. We now employ perturbation theory
to expand both ¢ and P as

(P)on = (2.5.1)

k) = ) + Ay + N2 + - (25.2)
P=PO ) \ph L \2p3@) 4 ... (2.5.3)

and truncate after second order. As already stated, W,io)> are the solutions
to the eigenvalue problem in the double harmonic approximation. Inserting
these expansions into Eq. (2.5.1) will give the formulation for the transition

42 note, the resulting equation involves

moment, but as Bloino and Barone
several thousand components, and we therefore here only repeat their final
result. Defining a as a Cartesian component, for instance a Cartesian co-
ordinate or an element of the polarizability tensor, and 1i as the corrected
fundamental state, we get the following VPT2 result for component « of
the corrected fundamental transition mode of property P, here represented
by the dipole moment wp, but general also for other electric polarization

properties
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The notation p;, p;; denote p differentiated with respect to Q; and with
respect to QZ and Qj, respectively. The coordinate basis Ql is dimensionless
and related to the ); basis through

~ wj
Qi =/ Qi (2.5.5)

where w; is, as before, the harmonic angular frequency of normal mode 3.
From here on, the coordinate basis Ql will be referred to as the reduced nor-
mal coordinate basis. If T is the transformation from Cartesian coordinates
to i, the double transformation matrix from Cartesian basis to reduced
coordinate basis is given by

. h
Toi = | T (2.5.6)

b i b
In a similar fashion, k;;; and k;ji; are the third- and fourth-order derivatives

of the potential energy, B, is the diagonal inertia tensor of the molecule
z'Tj
modes can couple to the molecular rotation through the Coriolis coupling,

at equilibrium geometry and are Coriolis constants. The vibrational
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Table 2.1. Conversion between the various frequency-related properties.

Angular frequency Frequency Wavenumber Energy
w [1/s] v [1/8] v [1/m] w [J]
w [1/s] 1 w=27mv w=2mrcv w=2m1w/h
v [1/s] v=uw/2m 1 v=cv v=w/h
v [1/m] v =w/2mc v=uv/c 1 v=w/hc
w [J] w = hw/27 w = hv w = hcv 1

and may lead to intensity borrowing as well as changes to the vibrational
energy levels. Such effects are expected to most prominent for small, highly
symmetrical molecules, and to be of lower importance for solvated systems,
and are neglected in the current implementation. In Eq. (2.5.4), w is the
vibrational frequencies in energy-units. An overview of how the different
frequency-related properties relate to each other can be found in Table 2.1.
Note that the equations presented here, hold only for electric polarization
properties. A general formulation that includes also magnetic polarization
properties can be found in Ref. 44, which corrects a minor mistake found
in the original work (Ref. 42).

With VPT2, in addition to the singly excited fundamental bands, doubly
excited features are also observed. These are categorized as either overtones,
where a state corresponding to one mode has been doubly excited, or combi-
nation bands, where states from two different modes each have been excited
once. The non-vanishing nature of transitions to these states when using
methods that go beyond the harmonic approximation can also be explained
through a similar line of argumentation as that given in Section 2.2, but with
the exception that the Taylor expansions is not truncated after first order.
When including the second-order term, integrals of the type (0;|Q7|2;) and
(0;]Q4[1:)(04]Q;]1;) appear and can be non-zero. A transition to overtone
state 2; is therefore allowed in the VPT2 approximation. The VPT2 ap-
proach has also been extended in order to be able to model three-quanta
transitions, ** but this phenomenon has not been included in this thesis.

The overtone transition moments (%), and combination band tran-
sition moments (u)o,1,1 ; are given by
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(2.5.7)

Having formulated the anharmonically corrected transition moments, we
will now similarly look at the corrected frequencies. Using the previously
mentioned the VPT2 approach, the corrected fundamental, overtone- and

combotone-frequencies in energy units, wy,, we, and wy,1;, respectively, are

given by
1
wi, =w; +2X + 5 > Xij, (2.5.8)
J#i
Wy, = 2w1i + 2X4u (259)
and
w1, = Wi, + Wi, + Xij (2.5.10)

where X;; and Xj; are given by

2 (4 1 1
X = Ry~ B ( 4 - ) (2.5.11)

A 32 \wg 2w; + wy, 2w; — wg

and

Ry 1 Karkin (2 Wi, wj
Xij =7 ‘4%3%*;3&1(@) w
_Z’“?jk<
— 8

- 1) (2.5.12)

wi—l—wj—wk

1 1 1
w; + w; + wg —w; + w; + wg w; — Wi + W
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2.5.2 Spectroscopic intensities for both the harmonic and
anharmonic case

In Section 2.5.1 the VPT2 formulation of anharmonic corrected transition
moments and frequencies was presented. A key point in that section was the
fact that these properties were derived in a reduced coordinate basis. The
intensity-equations outlined in Sections 2.3 and 2.4, however, are formulated
in non-reduced coordinates. A strategy to get around this difference, and
also make the equations hold both in the harmonic and anharmonic case, is
to reformulate the intensity-equations for IR, Raman and hyper-Raman in
terms of transition moments, as will be done in this section.

The harmonic IR molar decadic attenuated coefficient is given in
Eq. (2.3.7), and the harmonic transition dipole moment for mode i in
Eq. (2.2.13). When Eq. (2.2.13) is inserted into Eq. (2.3.7), we get the
molar decadic attenuated coefficient in terms of transition dipole moment,
given by

TN AW;

~3In(10)z0ch > {Olnalni) f(ws wi, ) (2.5.13)

a=x,Y,z

€

Alternatively, this could have been found by combining Eqs. (2.3.2) and
(2.3.3), and is not restricted to the harmonic approximation.

Similarly the generalized form of the integrated Napierian attenuated
coefficient for mode i in Eq. (2.3.12) becomes

A; = g 0 ; 2.5.14
" T 6eoc2h a:%y’f |ta|ni)l ( )

The harmonic Raman absolute differential scattering coefficient is given
in Eq. (2.4.1). In a similar fashion as with IR, we wish to formulate our
equations in terms of the transition polarizability moment. Therefore, we

define the transition moment equivalents of a; and b? as

(a;) = %Z(O\aaa\n» (2.5.15)

a

0= 30 3 (5 (Oloaalni) = Olazslni)? +310laasln)l?) (25,16
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Using that the harmonic polarizability transition moment is given by

| h Oagg
<0|aaﬂ|nz> = 2% 00,

this allows us to formulate a generalized Raman absolute differentiated scat-

(2.5.17)

Qi=0
tering cross section as

do h(win — wi)* 2wi (
o0 _2(2770)4% (1 — exXp (*%))
(win — Wi)4 k

(270 (1_exp( m)) ( a{ai)? + ki (b )) flwiwi,vi)  (2.5.18)

24 kb<b2>) fwswi,ys)

For hyper-Raman, we will look only at the vertically polarized (VV) form
found in Eq. (2.4.4), but the strategy will be identical for the horizontally
polarized (HV) terms. Defining

1
<b(2)¢oza z> :? Z<O|ﬁaaa‘ni>2

e 3 (A0 Baasla)? + 2000 analns) OlBusalrs)
S 4 400|Bgaalna) (0] Baasin)
+ 4(0|Bacalni) (0| Basalni)
+ (01Bsaalni)?)
1

+ 108 > ( 4(0|Baaplni)(0[BsyyIni)
a,BFa, £ BFQ
+ <0‘5ﬂaa’ni><0’ﬁﬁ77’ni>
+ 4(01Baas|1i) (01 8yplni) + 2(0] Bagy|ni)®
+4 <O’Baﬂ'y|ni><0‘ﬁﬁa7|ni>)
(2.5.19)

results in a generalized scattering cross section given by

N e el ) L Y (2.5.20)
‘ [1 — exp(—hw; /ET)] @@ o
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2.5.3 Identification and treatment of divergencies caused by
resonance

Before finishing the sections on anharmonic corrections, the subject of reso-
nances should be further explored. As previously mentioned, resonances are
caused when a combination of harmonic frequencies in a term’s denomina-
tor approach zero, causing divergence. There are terms with such possible
divergencies in the equations for both the corrected vibrational energies and
for the corrected transition moments, and their identification and treatment
are covered in this section.

For the frequencies, the possible source of divergencies exist in the X ma-
trix. For Xj; there is a source for divergence in the last term of Eq. (2.5.11)
if 2w, approaches wy, and for X;; all the three last terms in Eq. (2.5.12) can
cause divergence if the sum of two energies get too close to the last. In the
case of the last term, this would be if w; +w; got too close to wy. This type
of divergence, where the sum of two energies closely correspond to a third is
called a Fermi resonance. As we have just seen, the corrected energies can
be affected by this phenomenon, and looking at Eqgs. (2.5.4) and (2.5.7) it
is apparent that it can also affect the corrected transition moments.

In order to avoid such divergencies, it is important to identify Fermi
resonances. This is done by a double test as suggested by Martin, Bloino

and Barone, 390,42

|20; — | <200 em™;  |Ay| > 1em™!
|5 +0; — B <200 cm™; Ay > 1 em™! (2:5.21)

where the Martin parameters A;; and A;j;, are given by

k4
A, = iik 2.5.22
725600 - hic (20; — vg)? ( )
and
K
Ajr = ik (2.5.23)

6400 - h4c4(17i +v; — T)k)?’
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If these tests are positive, then a Fermi resonance has been identified. There
is a choice regarding how to proceed with the corrected energies. A common
and efficient treatment has been to simply discard the affected terms, corre-
sponding to the DVPT2 method, and is what has in this work be done for
the transition moments. The GVPT2 method, which we use for frequencies,
goes one step further. After having discarded the terms for which a reso-
nance is identified through the DVPT2 method, a matrix is built with the
DVPT2 frequencies in energy units on the diagonal, as well as scaled cubic
force-constants on the off-diagonal elements belonging to the resonances.
An eigenvalue analysis is then performed on this matrix, and the GVPT2
frequencies are found from the resulting eigenvalues.3%%? Although not ap-
plied here, a method for a similar treatment of transition moments can be
found in Vézquez and Stanton .

In addition to the Fermi resonances that can be found in all the equations
for anharmonic corrections, there is another cause for divergence, called 1-1
resonance. This is when two energies come too close to each other, w; ~ wj,
and can be seen to affect quite a few terms in the fundamental transition
moment, Eq. (2.5.4). A tree-fold test is performed, where*?

|0; — 0] <100 cm ™ (2.5.24)

has to be true, and at least one of

|K|>1cm™? (2.5.25)
and
|K|/(v; —9;)* > 1 cem (2.5.26)

has to be true in order for a 1-1 resonance to be identified. K is a measure of
the coupling in the term, for instance k;jz in the third term in Eq. (2.5.4).
In this example, K = kj;r,/(100hc). In the term containing the Coriolis
coupling, K = > B (. (100hc), and for terms with a product of cubic
terms, K = k;jxkimn/(100hc)?. Note that in this last case, the unit cm™! in
Eq. (2.5.25) and lem in Eq. (2.5.26) should be exchanged with cm ™2 and

no unit, respectively. When a 1-1 resonance is identified, the corresponding
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term is discarded. Over the years, different versions of the 1-1 resonance
tests have been developed and used*>*3, but the one laid out here, and
implemented in the SpectroscPy code is in accordance with the work by
Bloino et al. in Ref 43.

In this chapter, various types of vibrational spectroscopy as well as var-
ious levels of approximations of these have been covered. All of this theory
has been developed with the aim to reproduce experimental results. It is
therefore important that the computational cost is not so high that although
the theory is in place, no interesting systems can be studied for practical
reasons. Chapter 3 covers the Polarizable Embedding model which, as other
QM /MM models, combines the accuracy of QM methods with the efficiency
of MM methods, allowing theoretical studies to be made with systems larger
than only a few small molecules.



Chapter 3

The Polarizable Embedding
method

The subject of vibrational spectroscopy was covered in detail in Chapter 2,
and we now turn our attention to the second main subject of this thesis,
how to calculate these properties for realistic systems. If our system is a so-
lution or a large biomolecule, optimizing the geometry or calculating energy
derivatives with a QM method is far too demanding. One solution to this
problem could be to isolate the part of the total system that we deem most
important to the vibrational motion producing the spectrum, and calculate
properties for this small part alone. Although such vacuum calculations can
be highly informative, the removal of a larger part of the system often affects
the results, in a direction away from experimental values, as the solvent can
strongly impact both the structure and molecular properties of the solvent.
Most dramatically, if the isolated part previously was connected to a larger
structure through covalent bonds, as in many biomolecules, cutting these
covalent bonds and removing the environment will have a large impact. Al-
though weaker, a solvated system would experience similar effects because
of the removal of electrostatic and Van der Waals interactions.

Being able to include the environmental effects, while not dramatically
increasing the computational cost has been the subject of many develop-
ments. As mentioned in the introduction to this thesis, focused embedding
methods have been developed for this purpose. By choosing a QM/MM
strategy, we can combine the accuracy of QM methods with the low cost

45
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of classical methods, while simultaneously being able to account for spe-
cific interactions between atoms in the core and environment that are lost
in continuum models. In this work, the sole focus is on the Polarizable
Embedding®*™ (PE) method. For a broader perspective on focused em-
bedding, QM /MM and their use in spectroscopic calculations, the reader is

referred to a list of reviews. 13:21,73,74

3.1 PE ground state formalism

As Polarizable Embedding falls into the category of focused embedding
methods, the point of view is a specific part of the system, the core, in
the presence of the rest of the system, the environment. Although it is pos-
sible, the total energy of the system is therefore not calculated in a focused
embedding method, only the energy of the core and the interaction energy
between the core and the environment. The energy of the core is calcu-
lated with a QM method, typically with KS-DFT, although development
has also been done with the Coupled Cluster and Multi-Configuration SCF
methods. "7 The environment is divided into fragments (for a solvent one
per molecule) containing sites (one for each atom). In order to model both
permanent and induced electrostatic interactions, the environment is con-
structed by placing an expansion of multipoles and polarizabilities on each
atomic site. These parameters can either be taken from standard potentials
or be explicitly calculated by separate QM calculations on each environmen-
tal molecular fragment.”” This strategy ensures that PE on the one hand
is completely independent of any pre-parametrization and can therefore be
employed on any system, while it on the other hand preserves a high degree
of the molecular structure of the environment. Parts of Chapter 3 might
closely resemble parts of the articles in this work, but are included in order
for this introduction to provide a complete overview. It also relies heavily
on Olsen’s thesis™ and earlier papers from our group. 233

The combined energy E of the core, calculated with DFT, and the in-
teraction energy is expressed as

E(D) = Eprr(D) + Epg(D) (3.1.1)

where D is the density matrix of the core region in the atomic orbital
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(AO) basis, Eppr is the KS-DFT energy of the core region and Epy is
the interaction energy between the core region and the atomic sites in the
environment. Eppr is the same quantity as in Eq. (1.0.11), although the

version used in our PE approach is formulated in terms of the AO basis,?°

T 1
Eppr(D) Z hD + 5G7(D)D + Exe[p(D)] + P (3.1.2)

where 2 denotes that the trace should be taken of all the terms on the right-
hand side of the equation, hD contains the one-electron terms, G?(D)D the
two-electron terms, Fy.[p(D)] is the exchange-correlation energy and Apyc
is the nuclear repulsion energy. The reader is referred to the brief discussion
on DFT in Chapter 1, but beyond that, this subject is outside the scope of
this work.

The second term in Eq. (3.1.1), Epg(D), is a sum of the permanent and
induced electrostatic, as well as non-electrostatic, interactions between the

core region and the environment, and is written as

Epp(D) = Egy(D) + EB(D) + ELY 4 EosP (3.1.3)

where E&,;(D) is the electrostatic, Fiid(D) the induction, Epj the repul-
sion and Egiép the dispersion contributions to the embedding energy. Not
that the terms "electrostatic" and "induction" might be a bit misleading, as
they refer to permanent electrostatic and induced electrostatic interactions,
respectively, and therefore both being of an electrostatic nature. However,
this terminology has manifested itself within PE theory, and will therefore
be used throughout the remainder of this work.

The electrostatic energy contains the interactions of the electrons and

nuclei in the core region with the permanent multipoles in the environment

Ntrag S, K, a
S>> EU M S e
a=1 s€a |a|=0 ! uvee
Nivag S, K Nnuc
S[O‘] Z Tl (rs,rn)Zn
a=1 s€a \a| 0 ' nec

=hED + hiy (3.1.4)



48 Chapter 3. The Polarizable Embedding method

The summation index a runs over the number of fragments Nf.,e in the en-
vironment, and summation index s runs over the S, sites within fragment
a. The absolute value of the multi-index « runs from zero to the highest
order of multipole K present on site s. The multi-index notation is one
where both the order of the multipole and its Cartesian orientation is ex-
pressed through a = (ag, oy, a;). A charge is in this notation given by
a = (0,0,0), with |a] = 0 while the y-component of a dipole moment is
given by a = (0,1,0), with |a| = 1.7 The factorial a! = aylaylas!, and
Ms[a} is the multipole on site s of multipole multi-index «. The summation
indices p and v run over the atomic orbitals in the core region ¢, and the
summation index n runs over the Ny, nuclei in the core region. As in
Chapter 1, the charge of nucleus n is Z,, and D,,, is the pv’th element of
the density matrix. The interaction between the electrons ar[l(]i environment
(e

site s is modelled using a one-electron interaction integral ¢,

o (x,) = / XuF5 )08 [ v (e (3.1.5)

—ts
where ry is the position of site s, x is an atomic orbital, r and r,, are the
positions of the electrons and nuclei, respectively. The operator 02 is a

multi-index partial derivative operator that in general is defined as

gl
QY )% )=

The subscript r indicates that it is the electronic coordinate that is subject

ot = (3.1.6)

to differentiation. The last term in Eq. (3.1.5) is the interaction tensor

between site s and nucleus n, T (r, r,,), defined generally by

Tl (2, 1;) = 853\rjiriy (3.1.7)

The second term in Eq. (3.1.3) is the induction energy, originating from

the induced multipoles in the environment interacting with the potential

generated by the core, as well as from the other environment sites. The
induction energy is given by

. 1 -
Eind — §MTV (3.1.8)
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where the matrices M and V contain the induced multipoles and the po-

tentials as blocks of polytensors, one for each site in the environment

M, Vi

_ M, Vy
M=| | v=]| (3.1.9)

Mg Vs

80

Each of the elements V is a polytensor,® containing all the orders of |«|,

at site s

v
v
v, =| v (3.1.10)

vt

where VI contains all the combinations of multi-indices a for which la] = i.
The induced multipoles are expressed through an interaction matrix A, and
the potentials,

M=-A"1Y (3.1.11)

where A is composed of the polytensors containing localized polarizabilites
and interaction tensors, giving

P! T - Tis
Ty Pyl -0 Tag
A= 2 , (3.1.12)
: -
Tgy -+ - Pg

The polarizabilities P4 are defined as two-dimensional polytensors
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p00 pOH  pOL)
Pgl,o) Pgm) . Pgl,L)

P,=| ° ' ' (3.1.13)
pl0) pUL)

and the interaction tensors Ty are similarly

ng;o) T(071) . ( 1)LT(07L)
TSQ;O) Tgs’ LN ( 1) Tgs’ :

Tss’ = . . . (3114)
L R o Ve i

In this formulation, the two numbers in parenthesis denote which type of
polytensors interact through the polarizability or interaction tensor. For

0,1)

instance, Pg is the polarizability corresponding to a potential polytensor

with a multi-index with an absolute value of 0 interacting with one with a

(1,1)

multi-index with an absolute value of 1. The case of Py, corresponds to
the situation where a field interacts with another field through the polariz-
ability.

Defining a matrix B = A~! and using the fact that A is symmetric

(Bss = Bsy), the induction energy can be formulated as

) 1 Nfrag Sa Nfrag So Nirag Sy
Epyy =5 M ZZMTV ——fZZZZV,BSSV
a sca a Ss€a s'eb

Nfrag Sa Nfrag Sb Ks K/

X T Y S VBV

i1 q
a s€a s'eb1=0 j=0 v ‘7
Nfrag Sa Nfrag Sb K KS/

= Z YL YOS WV‘”BMVM (3.1.15)

a s€a b s'eb|a|=0|8]=0

The potential experienced a site s of a specific mulit-index «, Vs[a], is gen-
erated by the electrons and nuclei in the core as well as the multipoles in
the Npag — 1 other fragments. It can therefore be formulated in terms of its
origins,
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vid(D,r,) = vehlel(D, r,) + vruelel () 4 ymubled p) (3.1.16)

where we have adopted a dependency based notation, Vg[a] — Vlid (D,r,).
The potential generated by the electrons in the core, yeble] (D,r,) , is given
by

veblel(D, r, th rs) Dy (3.1.17)

The second term in Eq. (3.1.16), V™%l (r,), is the potential generated
by the nuclei in the core, given by

Vnuc,[a] (rs) — Z T[a}(rn,rs)Zn (3118)

and the third, V™Wle)(r,), is the potential generated by the multipoles in
the other fragments, given by

Nirag Sq Kgn

Vmul a] Z Z Z T[’YJFCV] (I' r ,,)M[?;] (3119)

d#a s"ed|y|=0

Inserting the potential expansion of the potential in Eq. (3.1.16), as well
as the equations for the fields from each source (Eqgs. (3.1.17), (3.1.18) and
(3.1.19)), into the right-hand side potential in Eq. (3.1.15), results in
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Nfrag Sa Nfrag Sb Ks KI

=Y XY S S v sl

a s€a b s'eb|al=0|8|=0

X [_ Zt/[fﬂ(rs)Duyl
Nfrag Sa Nfrag Sy Ks KI

YL YD Y S v sl

a s€a s’eb|a|=0 |8|=0

Nnuc
[Z T rna rs n]

nec

Nfrag S Nfrag Sb K s/

YN S S v

a s€a s’eb|a|=0 |8|=0
Nfrag Sd K//
[Z 3 Z T[v+al<r r//)M[Z]] (3.1.20)
d#b s"ed |y|=0

which when compared with the Eq. (3.1.4) for the electrostatic energy, shows
certain similarities in terms of dependency on the interaction integrals, den-
sity matrices, interaction tensors and nuclear charge, in the first two terms,
that were not apparent in the unexpanded forms in Eqgs. (3.1.8) and (3.1.15).
The main difference for these terms, is that while the electrostatic energy
involves permanent multipoles, the induction energy involves induced mul-
tipoles through VI#/(D, ry )Bw o

The working equations for the induction energy used in the implemented
code, however, are attained by a full expansion of the potentials both on
the left-hand and the right-hand side of B in Eq. (3.1.15), in terms of the
origin of the potential, giving
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Nfrag Sa Nfrag Sb Ks K/

B =5 X230 > Y v BLVID, )

a sc€a b s'eblal= O\,B| 0
NfIag Sa Nfrag Sb K s/

S0 900 3 o o (T

a s€a s'€b |a|=018|=0
« BBV )
+2 (vl 4 vl e ) Bl veel D, x,)
b (VmelBl(py) 4 vl () B (e el ) +Vmu1,[a](rs))]

imed( D)D + hi%dD + pind (3.1.21)

where 1 Gmd( )D is the interaction energy between the induced dipole mo-
ments caused by electrons in the core, and the potential generated by the
same electrons. Similarly h‘ndD is the interaction energy between the in-
duced dipole moments caused by the electrons in the core and the potential
generated by the nuclei in the core and the multipoles on the other environ-
mental sites, and hmd is the interaction energy between the induced dipole
moments caused by the nuclei in the core and the other multipoles, and the
potential generated by the nuclei and multipoles. The terms Gmd( )D,
hg‘gD and hmd are second, first and zeroth order in density matrix de-
pendence, respectively. The advantage of formulating the induction energy
in this way can be seen by comparing with the energy of the core region,
Eq. (3.1.2), where the terms are also formulated based on their dependence
on the density matrix (which is also the case for the electrostatic energy
in Eq. (3.1.4)). This formulation thus facilitates an analogous handling by
OpenRSP?7 of the PE terms as the one that is already implemented for
the QM terms. Another note on the implementation is that even though
the induced multipoles are here written out as a product of a potential and
an interaction matrix, these matrix multiplications are in fact solved in an
iterative fashion.

Finally, having now covered both the electrostatic and induced terms in
Eq. (3.1.3), the remaining terms are the non-electrostatic repulsion Ep{ and
dispersion Egiép terms. The non-electrostatic repulsion is included in order
to alleviate problems caused by the fact that the wavefunction of the total
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energy

1 bond
i Tength
internuclear
separation
bond
_____________ strength

E1 996 Encyclopasdia Britannica, Inc.

Figure 3.1. Potential energy as a function of intermolecular separation. 8

system (including both the QM region and the environment) has not been
antisymmetrized, and is therefore often called Pauli or exchange repulsion.
Dispersion interactions are long-range attractive interactions between two
non-permanent bodies,! as a result of the fluctuations in the electron cloud
around the nuclei. The repulsion interaction and the dispersion interaction
can be modelled together as the 1/712 and 1/r% terms of the Lennard-Jones
(LJ) potential, respectively, in the PE model given by 33

Nirag  Nnuc 1 12 1 6
Ebh=4> Y > cm [o ( ) — o8, () ] (3.1.22)
a=1 s€a nec ‘I‘ - 1‘5’ ‘rn — Iy
where the parameters g, and o4, conceptually originate from the shape
of an intermolecular potential energy curve, as can be seen in Fig.
3.1 as the bond strength and bond length, respectively. In prac-
tice, however, these parameters are typically found for a given atom or
molecule from a database, such as for instance the Compound Database
http://virtualchemistry.org/.52:83
Although for the most part a cheap and accurate enough approximation,
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the LJ potential has in certain cases proven insufficient,?? as it has no ex-
plicit dependence on the density matrix. This is in particular the case when
looking at electronic excited states that are of a diffuse nature,* where
core wavefunctions can end up extending unphysically far into the environ-
ment due to a too weak repulsion, a phenomenon commonly referred to as
electron-spillout. This is because one of the fundamental assumptions for
the PE model is that the core and environment are non-overlapping. The
core wavefunction is therefore antisymmetrized in isolation,?% breaking the
Pauli antisymmetry principle for cases where there is in fact overlap between
the two areas. Use of too diffuse basis functions is therefore problematic
with PE. A solution to this problem has been presented through the Polar-
izable Density Embedding (PDE) model,?*8 where the innermost layer of
the environment is modeled with polarizabilities and frozen densities instead
of a multipole expansion. This strategy of keeping the densities in certain
parts of the system frozen, and others "thawed", is something that PDE has
in common with other QM/QM-methods, such as the Frozen Density Em-
bedding (FDE) approach® and subsystem DFT ™. However, the modelling
of polarization of the inner region through polarizabilities, as well as keeping
the majority of the environment classical, is computationally advantageous
compared to QM /QM-strategies that require iterative freeze-and-thaw pro-
cedures, involving multiple calculations of environmental densities.?® PDE
alleviates the problem of electron-spillout by improving the description of
the overlap between the QM- and environmental wavefunctions through a
repulsion operator, following the strategy of Huzinaga and Cantu.®” An-
other strategy for improving the dispersion and repulsion interactions were
presented by Curutchet et al.®® through a density-dependent LJ-like poten-
tial. However, at the present time, no investigation has been performed on
the subject of the effect that these extensions would have in the context of
vibrational spectroscopy.

3.2 Vibrational spectroscopy with Polarizable
Embedding

Having now established the ground-state formalism of the PE model, it
is time to place it in the context of vibrational spectroscopy. In Chapter
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2, one of the main points was that vibrational frequencies and intensities
depend upon various types of energy derivatives. For instance, harmonic
IR intensities depend on the dipole moment gradient, which is an energy
derivate bilinear in electronic field strength and in nuclear displacement.
When employing the PE model, our energy is the sum of the QM energy
of the core region and the interaction energy between the core and the
environment. In addition to calculating energy derivatives of the QM energy,
it is therefore also necessary to calculate them for the PE energy. Much
work has been done in our group regarding how to accurately and efficiently
calculate the QM energy derivatives,??3%%% and the sole focus of this part
will therefore be upon the differentiated PE terms. The reader should,
however, note that the framework into which these derivatives are inserted
is the same as for the differentiated QM terms, and is referred to Ringholm
et al.? and Steindal et al.?® for details.

Many of the contributions to the PE energy, presented in Section 3.1,
contain products of up to four terms that depend on nuclear position. When
determining the geometric derivatives of these, the General Leibniz rule,®
a generalized formula of the product rule”’ is applied. Defining d™ as a
general differentiation operator of n’th order, the n’th-order derivative of
the product u - v is given by

d™ (u - v) Z( ) d™ Dy - dDy (3.2.1)

)

To extend to a product of three terms instead of two, replace v with s - ¢,
giving

d™(u-s-t) Z ( > A"y, . Z <Z> d=Dg. dW¢ (3.2.2)

i=0 j=o \J

and to fourth order by further replacing v with ¢ - r

d<"ust:zn:<>n§f<k>d<mkqd z::() Ns - dDt

=0 k=0
(3.2.3)
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In contrast to geometric perturbation, the only PE terms that are non-
vanishing upon electric perturbations are the density matrices. This means
that terms independent of the density matrix vanish upon differentiation
with respect to electric field strength, while those first-order in the density
matrix become

" (u- D) = u-df" Dy, (3.2.4)

where d;n) is an n’th-order electric perturbation and u is any term inde-
pendent of the density matrix. For terms second order in density matrix
dependence, Eq. (3.2.1) is used,

n .
d{"(u- Dy Dpo) = u- Yy (")d(” Dy - dY Do (3.2.5)
1=0
is employed.

3.2.1 Differentiated electrostatic terms

With the tools for handling arbitrary orders of geometric and electric per-
turbations for product-terms established, it is time to consider the effect
on the individual terms in Fpg, starting with the electrostatic terms in
Eq. (3.1.4),

Nirag Sq K
Tr -3y Z M[a > el (3.2.6)
a=1 s€a |a|=0 ! nree

which has nuclear dependence in ¢, through the atomic orbitals as well as
in D,,. Defining d';' as a |7y|'th-order geometric differentiation operator, we
get the |y|'th-order geometric derivative

Nfrag Sa Ks
dPVTr hipD =

a=1 SEa‘a| 0

el

> <W\>dm D4l () - a0 D, (3.27)

pvec |§|=0
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Being dependent on the density matrix to first order, a ¢’th-order electric

perturbation gives

Nfrfxg Sa Ks

ATy Yy Z M[a] S tdd(ey)-d¥D,,, (3.2.8)

a=1 sea‘a| 0 ' pree

and a mixed geometric and electric perturbation yields

Nﬁag Sa Ks
D = - 350 50 g
a=1 s€a |a|=0
1l
Y o
233 (l |> diP=10glel () - 40049 D, (3.2.9)
HrEC|§1=0

The second electrostatic term, hpy is given by

Nfrag S Ks Nnuc
Se= > Z M[al S 1lel(eg,r,) 2, (3.2.10)
a=1 s€a |a\ 0 nec

and contains no dependence on the density matrix. It will therefore van-
ish upon electric perturbation. Additionally, the only term depending on
nuclear coordinates is 7 (r, r,,), which is given by Eq. (3.1.7). Thus,

Nfrag Se Ks
dihgy = 3" > Z M[al Z AT (x,, ) 2, (3.2.11)
a=1 s€a |a\ 0 nec

where T[] (rs,r,) depends only on a single nucleus, and will therefore vanish
when differentiated with regards to the coordinates of two different nuclei,

giving

« (6% ]‘ (o4
d T (rg, v,) = 03 T (xy, 1) = 0 08— = T (xy, 1y,)

rn "I'n
rn — 15|

(3.2.12)

on the condition that dl,”‘ corresponds to a differentiation with respect only
to r,, and zero otherwise.
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3.2.2 Differentiated induction terms

Moving on to the induction energy, we see that it is a product of a higher
number of terms that are non-vanishing upon differentiation than the elec-
trostatic contribution. This causes a non-trivial complication of the differ-
entiated expressions, because a higher order of the product-rule has to be
employed. Starting with each of the terms in Eq. (3.1.21), and inserting
Egs. (3.1.17) and (3.1.18) (it is unnecessary to insert (3.1.19) as V™ de-
pends neither on nuclear positions nor on the density matrix), we get the
fully expanded equations

Nfrag Sa Nfrag Sb Kg s/

Tr Gmd :_7222222 '5'

a s€a s'€b |a|=0|8|=0

(Zt[ﬁl ) B Zt Do, (3.2.13)

Nfrag Sa Nfrag Sb K s/

SRS %3 3 o ol o

a sea s'eb |a|=0|8|=0

Nl’lU.C
X <Z TN vy, v5) Zy + V™15 (rs,)>

nec

x BU S el () Dy (3.2.14)
puv
and

Nfrag Sa Nfrag Sy K s

M= -3 IIPIPIPIPY > o

a sca s'eb|a|=0|8]=0

Nnuc
X (Z T8 (2, v 9) Z 4+ VLI (rs/)>

nec
x Bl <Z T, 16) Z + Vbl (1 )> (3.2.15)
mec

Using Eq. (3.2.3) for arbitrary-order derivatives of a product of four
terms, the |y|'th-order geometric derivative of Tr3GE4(D)D is
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d Nf‘ag Sa Nirag Sy Ks Ky b ‘7‘
dé|7|) Gm Z—* Z Z Z Z Z Z Oc'ﬁ' Z (W)

a s€a b s'eb|a|=0]|8]=0 [6]=0

[v|—16]
| — [9]
> ( €]
le|=0
» (Z A==l 8] (r d§e>DW>
nv
x Bl Z <5|>Zd|a| <Delol(r,) - af<D D,

¢[=0
(3.2.16)

As Tr $GId(D)D is second order in density dependence, we use Eq. (3.2.4)
in order to find electric perturbations of ¢’'th order to be

1 in 1 ' )
d}q)Tr §GP§(D)D =75 IS IS IS B!
b alf

€a b s'€blal=05|=0
(4—0)
; (thj(rs,).dfq DW>

0
x B ST el (1) .d§j>ppa (3.2.17)

Mixed geometric and electronic perturbations lead to
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Nfrag Sa Nfrag Sb Ks KI

délvl)d( Iy L Glnd =3 Z IDIDIDIDS alﬁl

a s€a b s'eb|al=0|8|=0

2 () = ("% ()

" (Z dglvl—\fil—ld)tfy](rs,)dg\s\)dgcq*i) DM”)

nv

« nga—mntgcg(rs) DD, (32.18)

The second term in Eq. (3.1.21), Tr hif}gD, is a product of three terms,
and Eq. (3.2.2) is therefore used to find its |y|'th-order geometric derivative

- Ntrag Sq Nivag Sp Ky Ky o] ’7‘
FRETEED 5D 9D 95 9 VB o ol ()

‘/3'
a s€a b s'eb|al=0]|3|=0 [6]=0

> <Z dgV'*"s‘)T[m(rn,rS/)Zn
nec

+ o1y V™ (1))

1]
x B ST <||g||> S =D () a0 D, (3.2.19)
po

I¢|=0

where 8rBiT[°‘] (ri,r;) = (=1)BITl+Bl (r; r;) ™ means that

dPOTle) (v ) = (~1)PITl (2, r ) (3.2.20)

on the condition that d_S,M) corresponds to a differentiation with respect to
ry, and zero otherwise. The Kronecker delta dg(|,—|5) denotes that prmul
vanishes if |y| — |d| is different from zero, in other words if it is differentiated
with respect to nuclear position. Since Tr hmdD is first order in dependence
on the density matrix, ¢’th-order electric perturbations will simply give
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Nfrag S Nfrag Sb K s/

i = Y S S0 N

a s€a s'eb |a]=0|B|=0

(Z TN e, v5) Zy + VB /)>

nec

x B S dlel(r,) - d9' Dy, (3.2.21)

and a mix between geometric and electronic perturbations gives

( d Nfrag Sa Nfrag Sb K s! I’Y‘ |,-)/|
délvl)d hpgD = > Y Z > > Z lﬁl 2. (\5|>

a s€a s'€b|al=0|B]=0 |6]=0
y (Z AT, 1) 2,
nec

+ 50(|v|—|5|>VmuL[B] ()
XBLQ’O‘] <5|>Zd|a| Dl (r,) - DD Dy
=0
(3.2.22)

For the last term in Eq. (3.1.21), A% as given in Eq. (3.2.15), is a
product of only two terms. Therefore, with Eq. (3.2.1), the |y|th-order

geometric derivative is given by

AT QLT e A R EO I
TALTEEED 39 5530 3 ob 5 oY )
a s€a b s'eb|a|=0]|8|=0 |=0
« (Z APV T (x,, 10) Z4, + Gy gy V) (rs,)>
nec
x B! (Z YOV (e 1) Zoy + gy VM1 <rs>>)

mec

(3.2.23)

As hiMd contains no dependence on the density matrix, it will vanish upon

any electric perturbation.
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3.2.3 Differentiated Lennard-Jones potential

The very last contribution to the PE energy is the Lennard-Jones potential
given in Eq. (3.1.22), modelling the dispersion and repulsion energies by

Epiy = 4%g§:fo Esn la ( ! )12 — a8, (1)6] (3.2.24)

a=1 s€a néec ‘I‘ - I‘s‘ ‘rn - rs‘

Using Eq. (3.1.7), this can be reformulated to

Nfrag S Nnuc

BE =130 50> cun |l (11000 r,)) = o, (210000r, )|
a=1 s€a nec
(3.2.25)

It is here necessary to employ a generalized version of the chain rule®’
namely the multivariate version of Faa di Bruno’s formula.”! It states that
if you have a function f(y) where y = g(x1,x2,...,2,), the n’th order
derivative of f is

o oIBly

— FUm( (3.2.26)
0x10xo - - 7%;1 Bl;[ﬂ [Ljep 0z;
where the variables x1, xo, ..., x, do not all have to be distinct. In the case

of geometric derivatives, the differentiation will be with regards to the z, y or
z component of the position of a specific nucleus, and each of x1,x9,..., Ty,
therefore has to be one of these. The summation index 7 here runs over all II
possible partitions of the set 1,2, ..., n, which is all the ways you can group
these values into non-empty subsets, where each value is included exactly
once.”? The summation index B runs over each block within partition ,
and j runs over all elements in block B. For a given order n, the number
of partitions is given by

A, = nf (” B 1> Ay (3.2.27)

k=0
To make this clearer, take the example of a third-order derivative. In
this case, all the possible partitions of the set 1,2, 3 is
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= ({1}, {2}, {3}), ({1, 2}, {3}), ({1, 3}, {2}), ({1}, {2, 3}), ({1, 2,3})
(3.2.28)
7 runs over each of these five partitions. For the partition 7 = ({1, 2}, {3}),
|| = 2 and B runs over each of these two blocs. For the block B = {1, 2},
|B| = 2 and j runs over each of these two elements.
If we now define the following functions

1
gLy = T[(O’O’O)](r&rn) = m (3.2.29)
1 12 19
fri(grs) = <|r—r) = (9L7) (3.2.30)
1 6 6
hra(grs) = <|r—r|> = (9L) (3.2.31)

the LJ potential can be written as

Nfrag Sa Nnuc
EIﬁi]: =4 Z Z Z Esn [UiszJ@LJ) - UgnhLJ(gLJ)} (3.2.32)

a=1 s€a nec

If we then employ Faa di Bruno’s formula, Eq. (3.2.26), and Eq. (3.2.12),
we can formulate the z123 - - - x,-component of the |y|'th order derivative
with respect to nucleus n of the LJ potential is

Nfrag Sa |B|
LJ _ 12 (I %lgry
(G EL), =AY Yo [0 S ]
12 a=1 s€a rell Ber 11jeB Y

aIBlgL
Y J
7%;1 " Bl;[w [jep 0;

(3.2.33)

where
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k 120 12—k .
Y angfLJ(gLJ) { 0, otherwise (3.2.34)

ok 6! gﬁfk kT
WL = g =q TR 3.2.35
v (3ng w9 { 0, otherwise ( )

and
o [(ka,ky k)]

a9 9. 9. . = T'\Fx,Ry,Rz s, Tn, 3.2.36
55B13:E2---83:kg“(xl’x2’ , Tk (s, Tn) ( )

where k, is the number of the variables that belong to Cartesian component
x of nucleus n, and thus, k; + k, + k. = k. The LJ potential will vanish
upon any perturbation of more than one nucleus at a time.

Finally, since Elﬁ% has no dependence on the density matrix, all terms

will vanish upon electric perturbation.

3.2.4 Application example: harmonic IR spectroscopy with
PE

In order to better understand the significance of the differentiated terms
derived to arbitrary order in the previous section, the current section is
an application example related to vibrational spectroscopy where the terms
necessary in order to produce an IR spectrum with PE are derived. The
QM terms involved will not be covered. As described in Section 2.1, the
harmonic vibrational frequencies are found through an eigenvalue analysis
of the molecular Hessian, and Section 2.3 shows how IR intensity-related
properties depend upon the dipole gradient. To calculate an IR spectrum,
it is therefore necessary to calculate the second-order geometric derivative,
as well as the first-order electric in combination with first-order geometric
derivative of the PE energy. This produces the following terms.

3.2.4.1 Second-order geometric derivative: molecular Hessian

Throughout this section, |§| =1 and |y| = 2.
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Ntrag Se Ks |a|
m=-y > > ey
a=1 S€a |a\ 0 ! purece
x (dPtlel(r,) - Dy +2d<1>t[aj(rs) < d) Dy, + 1) (x5)dP D, )

M Z d\"V1lel(ry, v,) 2, (3.2.37)

a=1 s€a |a|=0 ! nec

Ntrag Sa Ntrag Sb K K !

UAE RS 30 3D 3D VD YT

a s€a b s'e€b|al=0|8|=0

[ (Saren ) B S
po

pv

+ 2 <Z dgl)tfll(rsx)dgl)Duy> Bﬁ‘?f“} S dedr)D
po

2

(Zd 1118 (r )Bﬁi"‘] S dViel ) D
po
1 [ﬂ?a] «
+2<Zd;>tgf;< >B SIRLAL
n%
(3 tmrsodgm) B S 48 e,y

nZ po

(Z t[ﬁ] /ﬂ’> BL?;Q} Z t[poé} (rs)dgl)ng
po

continued... (3.2.38)



3.2. Vibrational spectroscopy with Polarizable Embedding 67

continued... =

nec po
+ (Z e <rs/>>
nec

x BIAS™ a@iled(v,) - D,,
po

o (Z T (rp,vy) 20 + VmulWrs’))
nec

x B ST ailed(r,) - dD D,
po

+ <Z T[B] (rTL7 rS/)Zn + lelly[ﬁ] (rs,)>

nec
x B3 lo] (rs)déz)DpU]
po

continued...
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Nfrag Sa Nfrag Sb Ks K/

continued... = — Z Z Z Z Z Z a'ﬂ'

a s€a b s'eb|a|=0|8|=0

» KZ dgwcpm(rn,rs,>zn>

nec

x BUY (Z T (xy, 15) Zpy + V1 <rs)>>

mec
(Zd LDy 6] I' y Us/ )Zn>
nec
< B0 (32 Tz, )|
mec

using the fact that the summation runs over all sites within all fragments,
which means that the equation is symmetric with respect to a and 5.

Nfrag Sa

(d(2) LJ)myn 13 Y e

a seca

1 10
X [1320’;31 <|rn—rs|> Tx[(s} (I'37 r’n)T?E‘ﬂ (r87 I'n)

+ 120 12 <1
vy — 1

1

— 30‘7271 (

vy, — 1

11
) T
4
) T (x,, rn)TZE‘ﬂ (rs,ry)

5
- 6JSn (h_ir‘) T;([;Z}(r37rn>‘| (3239)

3.2.4.2 First-order geometric and first-order electric derivative:
electronic dipole gradient

In this section, |§] = 1.
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All PE terms involved in the Hessian and dipole gradient have now
been expressed, and both harmonic vibrational frequencies and infrared
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intensities can therefore be calculated. How this is done in practice and
how to calculate a vibrational spectrum with PE will be covered in Chapter
4.



Chapter 4

From start to finish in a
vibrational PE calculation:
Software and practical
considerations

In previous chapters, the theory behind vibrational spectroscopies and the
Polarizable Embedding model have been covered in detail. This chapter
covers how such calculations are actually performed within our framework
of software applications, organized in the order of the workflow displayed in
Fig. 4.1. First aspects connected to the preparation of structures (steps 1 -
4)) are described; second, the main calculations and the programs involved
(steps 5 and 6); and third, the post processing of these results (steps 7
and END). Throughout this section, the focus will be on solvated (or other
weakly bound) systems as this is the topic of all the papers included in
this work, but note that the overall procedure will be applicable also for

biomolecules with a few minor alterations.

4.1 Preparation of molecular structures

Before getting into the real number-crunching parts of a PE calculation,
there are a number of pieces that need to be put in place. The first task is
to create geometries for the isolated solute molecule. This can be done with
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START 1) Make vacuum structure 2) Solvate

— . X 4) Define QM region and o . :
5) Optimize snapshot geometries environment parameters 3) MD configuration sampling
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6) Calculate response properties 7) Calculate frequencies and
intensities
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Combine snapshots to one spectrum

— R
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Figure 4.1. Workflow from concept idea to finished spectrum in a vibra-
tional spectroscopic calculation for a solvated system with PE. All images
are purely illustrational. The steps inside the blue box are described in
Section 4.1, those inside the red box in Section 4.2 and those inside the
green box in Section 4.3.
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a number of visualization programs, among them Avogadro.“*?* The GRO-
MACS? 97 program is then used to add solvent molecules and equilibrate
the system.

At this point, a set of coordinates have been created with one specific
configuration of the solvent molecules and the solute. There are, however,
a staggering amount of distinct and possible configurations. As the solvent
molecules interact with the solute through intermolecular interactions that
often depend on the distance between particles (see for instance Eqgs. (3.1.5),
(3.1.7) and (3.1.22)), the choice of configuration will have a direct impact on
the results of the calculations. In order to statistically sample the various
possible solvent configurations, a Molecular Dynamics (MD)!7 simulation
is run. The interactions between the particles are classically calculated and
these forces cause the molecules to alter shape and position as a function
of time. This produces a trajectory over time from which snapshots can
be extracted, giving a set of slightly different configurations that together
mimic an ever-changing realistic bulk solution. Any further description of
MD is outside the scope of this work, and the interested reader is referred
to Leach’s textbook!” for further details.

Having now obtained a set of configurations, the next step is to define
the QM part and the environment, and provide the information in a format
readable by the programs we will use for our property calculations. This is
performed by PyFraME,?? a program specifically developed for this task.
The solute molecule is identified and defined as the QM region. It is also
possible to include the innermost layer of solvent molecules in the QM re-
gion as this can improve the accuracy of the calculations.?” For the part
defined as the environment, PyFraME then defines each solvent molecule
as a fragment, and each atom as a site. Multipoles and polarizabilities are
placed on each atom, either by explicitly calculating these through a cal-
culation on each fragment using the LoProp partitioning approach?*, or by
using a set of pre-calculated averaged solvent embedding potentials™” (SEP)
parameters. While the first is accurate, the second is cheap. A compromise
between accuracy and computational cost, where the innermost environ-
ment layers have explicitly calculated parameters, while the outer layers
use SEP parameters, can therefore in many cases be a good option.

In order to decide how many molecules to include in the QM region, we
look for convergence in the results while increasing the size of the QM region.
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Similar studies should be made before deciding at what point to switch from
explicit to SEP parameters and how large the total system must be on order
to simulate a bulk liquid. For a thorough overview of PyFraME’s function-
ality, the reader is referred to Steinmann et al.3? This paper summarizes
some of these choices just mentioned for the implementation in Dalton??,
but these considerations hold also for the LSDalton/FraME implementa-
tion (to be described in the next section). A choice should also be made
regarding the number of snapshots to include in order to sample the natural
variation within a liquid. In order to do this, we look for a repetition of the
results after a certain number of snapshots, due to recurring solvent-solute
conformations. In Paper I, we performed an analysis on the basis of 250
snapshots, but the results from this investigation are somewhat inconclu-
sive, and it can be argued that the sample size was not of sufficient size.
In this paper, we also investigated the deviation of the results based on the
environmental size compared to a reference size of a 16A radius from the
center of mass of our QM region, finding relatively small errors at a radius
of 12A. Tt could, however, be pointed out that a larger reference size might
have been more appropriate. We therefore cannot at present provide any
rule of thumb as to the appropriate number of snapshots or the size of the
environment that should be included, but aim to in the future perform a
more thorough investigation in order to get a better understanding of the
effects of these, and other, parameters for vibrational spectroscopies. Addi-
tionally, these numbers may vary from system to system, and we therefore
encourage the reader to perform independent analyses for their particular

case.

4.2 (Geometry optimization and property calcula-
tion

As explained in Chapter 2, the theory employed in this work is a good ap-
proximation only for small displacements from the equilibrium geometry of
the QM region. This is in particular true for the harmonic approximation,
but as the higher-order terms added perturbatively to include anharmonic
effects are also evaluated at the equilibrium geometry, we will also encounter
problems when using second-order vibrational perturbation theories if our
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geometry is too far away from equilibrium. Both with and without anhar-
monic corrections, a large displacement will also result in the appearance
of forces on the nuclei acting to restore the equilibrium geometry of the
molecule, causing a contamination of all terms in the Taylor expansion with
contributions that are not related to vibrational motion. Any molecular
conformation evaluated at a non-zero temperature, which is the case when
they are obtained from MD, will inevitably deviate from the equilibrium
geometry. In a study of how different solvent models influence Raman Op-
tical Activity (ROA) spectra, Hopmann et al.'* show that when neglecting
to optimize the geometry of the QM region in a structure obtained from an
MD simulation, the resulting spectrum is reduced to numerical noise. An
alternative could be to employ a QM /MM-MD model, where the intramolec-
ular forces within the QM region are better represented. However, as this
is a costly strategy, we employ a cheaper method, as suggested by Kjellgren

et al.,”®

, at some expense in terms of the accuracy. This method involves
performing a geometry optimization solely on the QM region, keeping the
environment frozen. In our work, this is performed by a combination of the
PE library FraME® and the quantum chemistry package LSDalton. %47
An overview of how these are connected to each other can be seen in Fig.
4.2

Also shown in Fig. 4.2 is how, after the geometry optimization, a prop-
erty calculation is performed by a combination of LSDalton, FraME and
the general, recursive and open-ended response code OpenRSP.3%37 The
individual perturbed terms are calculated by FraME and LSDalton, while
OpenRSP monitors which ones need to be calculated and combines them
to the total output which is printed from LSDalton. OpenRSP is recursive,
in a way that makes it completely open-ended when it comes to order of
differentiation. It also keeps the amount of calculated terms to a minimum
by applying a high degree of non-redundancy and utilizing the (k,n)-rule3"
which significantly reduces the number of terms needed. Another advantage
of this approach is that all energy derivatives are calculated analytically,
avoiding introduction of errors by numerical differentiation, which can be
expected to get progressively more severe as the order of differentiation is
increased.

An illustration of the non-redundancy provided by OpenRSP can be
shown with the example of a second-order geometric perturbation. For
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Input from PyFraME Output to SpectroscPy or other
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FraME asks LSDalton LSDalton integral OpenRSP asks LSDalton
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Figure 4.2. Overview of how the software used in PE property calcula-
tions are connected. Input generated by PyFraME is sent in to LSDalton
which delegates work depending on what type of calculation is requested. If
it is 1) a geometry optimization, LSDalton performs the optimization, but
asks FraME for PE contributions to the energy and Fock matrix. FraME
uses the high-order differentiated integrals'®® (HODI) module within LS-
Dalton as well as internal integral routines in LSDalton to calculate the
integrals in the electronic electrostatic term and in the electronic poten-
tial. The PE contributions are then returned to LSDalton which finishes
the geometry optimization and writes output geometry. If the requested
calculation is 2) a property calculation, LSDalton asks OpenRSP for the
needed energy-derivatives. OpenRSP keeps track of all the terms gener-
ated and asks LSDalton to calculate the individual perturbed terms for the
QM contributions, and through the callback function in LSDalton requests
individual perturbed terms for the PE contributions. Both QM- and PE
contributions are returned to OpenRSP where they are collected and sent
back to LSDalton. A tensor file containing the energy derivative is written,
to be postprocessed by SpectroscPy. Note also that, although not illus-
trated here, perturbed density matrices are found by a procedure, managed
by OpenRSP, which includes solving the so-called response equations'®!
with LSDalton functionality.
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a molecule with N atoms, a first-order geometric perturbation generates
3N derivatives, each corresponding to moving one of the N atoms in one of
the 3 Cartesian directions. A second-order geometric perturbation therefore
generates (3N)? derivatives, but the non-redundancy lies in recognizing that
it is not necessary to calculate all of these. For instance, moving an atom
first in the z-direction and then in the y-direction gives an identical result as
first moving it in the y-direction and then in the z-direction. This symmetry
allows OpenRSP to calculate a much smaller number of derivatives, given
by

<n+m—1> :(n+m—1)! (42.1)

m m!(n—1)!

where m is the order of perturbation and n is the number of derivatives a
first-order perturbation of the current type generates. For an example of a
second-order geometric perturbation on a molecule containing four atoms,

OpenRSP calculates only

3.4+42-1)!
M:?S (4.2.2)

derivatives, as opposed to the redundant case where (3N)? = 122 = 144
derivatives would have been calculated.

4.3 Postprocessing

With the energy derivatives calculated, all the components needed to calcu-
late vibrational frequencies and intensities are in place. The Python pack-
age SpectroscPy™ reads the output from the LSDalton calculation, and
performs an eigenanalysis on the molecular Hessian, producing the har-
monic vibrational frequencies and the transformation matrix from Carte-
sian to normal coordinates. After transforming all energy derivatives to
the normal-coordinate basis, the theory presented in Chapter 2 is used to
calculate intensities, in addition to, if requested, finding the anharmonic
corrections to frequencies and intensities.

We recall from Section 4.2 that a geometry optimization and property
calculation has been performed for every single snapshot collected from the
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MD trajectory. Each of these configurations will produce slightly different
energy derivatives and consequently slightly different frequencies and inten-
sities. When presented in a table, an average of the values is given, but when
creating our spectrum we wish to preserve the variation in the values in or-
der to be as close as possible to reproducing the real spectrum. The peaks
in an experimental spectrum will for instance never be symmetric because
of the bulk nature of the sample, and the statistical sampling helps capture
key aspects of the actual shape by including different solvent conformations
through the different snapshots.

A linear combination of all the discrete frequency and intensity points
belonging to mode k of snapshot i, {w;k, Lix}, is performed to get a contin-
uous curve S(w) defined as

1 Msnap Nmod

30> LS (w, wins vir) (4.3.1)

Nsnap = &

S(w) =

where the summation index 7 runs over the ng,,p number of snapshots, the
summation index k runs over the n,,,q number of vibrational modes, I;; is
the intensity belonging to vibrational mode ¢ of snapshot k. The Cauchy
distribution f is defined as in Eq. (2.3.4), as a function of the frequency w
and parametrically of w;; and ;. The broadening factor ;. is typically
given as a single constant for all snapshots and normal modes, so that
Yik = -

When comparing with for instance Eq. (2.3.7), notice that the molar
attenuate IR coefficient already has a lineshape function at the end. The
table values I;; are in this case given by everything to the left of the lineshape
function. In cases with integrated intensity-related properties, such as the
Integrated Napierian attenuated coefficient in Eq. (2.3.12), the addition of
a lineshape function at the end becomes somewhat more artificial. This is,
however, what is done, and in order to provide comparability, also how we
do it here.

Before concluding this section on the various software packages needed
for a vibrational spectroscopic PE calculation, the recently released Dal-

102 should also be mentioned. The platform

tonProject Python platform
presents an alternative to running the programs in Sections 4.2 and 4.3 man-
ually, one after the other. Instead, the DaltonProject links all the programs

together, providing a user friendly, albeit somewhat less flexible setup.



Chapter 5

Summary of Papers

5.1 Paper I: Harmonic Infrared and Raman Spec-
tra in Molecular Environments using the Po-
larizable Embedding Model

This paper is the first study of analytically calculated second-order geomet-
ric properties with the PE model. Acetone in various solvents has been
investigated, in terms of harmonic frequencies and IR and Raman intensi-
ties, which requires energy-derivatives up to second order with regards to
both electric and geometric perturbation. This paper is the culmination
of many years of efforts, involving a number of different contributors and
pieces functionality. This includes implementation in LSDalton of integrals
necessary for PE contributions, making DFT functionality available with
OpenRSP, and developing the necessary background theory. More directly
related to this paper, a great work has been done with the implementation
of FraME, which makes PE available both directly with LSDalton and in
combination with OpenRSP. The SpectroscPy package was also first devel-
oped for this paper, and is a combination of renovated old scripts as well
as novel functionality, that has all been put together into one package. My
contribution to this paper has been in the interface between OpenRSP and
FraME, in the parts of FraME related to geometric derivatives, as well as
being the main developer of the SpectroscPy package, though not of the old
scripts. I have also, with help, run the calculations and been integral in the
writing of this paper.
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5.2 Paper II: Analytic High-order Geometric
Derivatives with Polarizable Embedding in a

Response Theory Framework

The work included in this paper is an extension of the functionality and
formulation presented in Paper I, to arbitrary order of electric and geomet-
ric properties, at the Hartree-Fock level of theory. Through our application
on IR spectroscopy with anharmonic corrections through VPT2, we demon-
strate the use of geometric derivatives up to fourth order as well as mixed
geometric and electronic, where all derivatives are calculated analytically.
Both solvated acetonitrile systems and endohedral fullerene have been in-
vestigated in this paper. In addition to implementation of arbitrary-order
derivatives in FraME, implementation of GVPT2 frequencies and DVPT?2
intensities has been done in SpectroscPy. An open-ended formulation of
the PE equations has also been developed. My contributions to this paper
have been the following. In FraME, I have been involved in the open-ended
implementation together with the other authors, and in SpectroscPy, I have
rewritten the aforementioned scripts as well as creating new functionality
and flexibility for VPT2. I have produced the entirety of the results, though
with some help, written large parts of the first draft to this article, and been
intimately involved in the further work with the text. The formulation of
the differentiated equations have been derived by myself, with guidance and
feedback.

5.3 Paper III: Dalton Project: A Python platform
for molecular- and electronic-structure simu-

lations of complex systems

The paper is the result of an effort to increase automatization, customiza-
tion and integration of different functionality, as well as user friendliness
for the Dalton program family. A Python shell is created around Dalton
and LSDalton and various other related program packages in order to in a
straight-forward manner extract the desired quantum chemical values. A va-
riety of different functionality is now available through this Python platform,
and in addition to presenting the general aspects of the new platform, the
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paper also provides six application examples. In this paper I am the main
contributor to the application example ”"D. Open-ended response theory
for electric and geometric perturbations: Infrared and Raman spectroscopy
with the OpenRSP and SpectroscPy modules“ where we demonstrate how
vibrational properties can be extracted from the platform and also for the
first time publish results provided through the Python pip-downloadable
program package SpectroscPy.






Chapter 6

Conclusions & Outlook

In this thesis and its associated articles, we have shown how vibrational
spectra can be calculated for solvated systems. Using a recursive and non-
redundant strategy for the calculation of energy derivatives, and the PE
method to include solvation effects, ensures results that are accurate, and
once further work on optimization of our code has been done, also effi-
ciently obtained. This work demonstrates the applications currently avail-
able, namely Infrared, Raman and Hyper-Raman spectroscopies, with or
without anharmonic corrections, and with or without solvent effects. Al-
though this setup is already highly useful, there are many possible extensions
that could be implemented in order to improve accuracy or to add new ap-
plications. In this chapter I will cover some of these possible routes, starting
with strategies for improving the accuracy of the methods used, and then
by discussing possible new applications.

Currently, PE models dispersion and non-electrostatic repulsion effects
through the LJ potential, which is not always sufficient. For instance when
looking at electronically excited states, a repulsion modelled by the LJ
potential, or not at all, can give unphysical results. Although electronic
absorption is outside the scope of this work, it would still be interesting
to investigate whether LJ is a sufficient model for dispersion and repul-
sion effects in the context of vibrational spectroscopy. This could be done
by implementing and comparing with Curuchet’s density-dependent LJ-like
potential®8. Another natural extension would be to implement PDE in the
current framework, and thus include repulsion through a density-dependent
repulsion operator. PDE is already available through other program pack-
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ages®®, but not yet in FraME, which is also where any implementation of
Curuchet’s potential would also be performed, if desired.

On the side of vibrational spectroscopy, a possible improvement towards
higher accuracy could be made by implementing the full GVPT2 for the
anharmonic corrections, by adding variational solutions also to the DVPT?2
transition moments. Furthermore, Eq. (2.5.4), which is used to calculate
the anharmonic corrected transition moments, is still not fully general. 03
In cases where terms are removed because of identified 1-1 resonances, some
cancellation of terms appearing in the derivation of Eq. (2.5.4) no longer
hold. The actual numerical implications from this are, however, estimated
to be small. In spite of this, the correct equation should be implemented in
SpectroscPy in the future.

It would also be interesting to look into the possibilities of exchanging
DFT with other QM methods in FraME, such as investigated by Sneskov
et al.™ with CC, or by Hedegard et al.”™® with MCSCF. As done by Hrsak
et al.'%%, it is alternatively possible to calculate the fragment parameters,
and in the case of PDE, frozen densities, with a different QM method than
is used in the subsequent calculations. Taking this one step further, one
could also consider taking the PE and PDE methods in a multilevel di-
rection, for instance having different levels of theory layered within the
QM region. This could be pursued in various directions, taking inspiration
from FDE,'% subsystem DFT7 and Wave-Function Theory-in-DFT. 1%
Another strategy, which has already been explored both for PE97:10% and
other methods,?>!%9112 is the combination of QM/MM methods with an
outer solvation layer modelled by a continuum model. This reduces the
number of specific solvent-solute interactions, while still retaining the most
important ones close to the QM region. It is therefore a strategy that lowers
the computational cost, while still being able to model key properties. An-
other benefit of including an outer PCM shell, is that while PE is modelled
with a finite system-size, PCM does not have this limitation, and is in that
respect closer to a bulk description. Within the framework of fluctuating
charges/PCM (FQ/PCM), vibrational properties have already been investi-
gated, %112 however, this is an as of yet untouched subject within PE (and
PDE), and one that should be investigated.

On the application side, a natural path given the work within our group
would be to facilitate the calculation of other vibrational or chiroptical spec-
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troscopies such as Vibrational Circular Dichroism (VCD) and Raman Op-
tical Activity with PE. This would require OpenRSP to calculate magnetic
energy derivatives, FraME to provide the necessary PE contributions and
SpectroscPy to calculate frequencies and intensities for these spectroscopies.
A slightly more general implementation of the anharmonic corrections would
also be necessary as it is now tailored for electric polarization properties
only.

This work exclusively deals with solvated systems, or on other systems
that do not involve any covalent bonds between the QM region and the
environment, or between environmental fragments. The theory of the PE
method, however, is applicable also to systems where this is not the case,
such as in many biomolecules. For such systems, how to cut these bonds
without too severely altering the vibrational motions, is a challenge that re-
quires some extra care to be taken in comparison with the case where only
weaker interactions are severed. Possible solutions might be to include more
of the environment into the core region than that which strictly contributes
to the vibrational effect (although this might in certain cases make in nec-
essary to cut more covalent bonds), or to place artificially heavy atoms
on the border between the two regions, in order to prevent too extreme
deviations away from equilibrium positions. The method of Molecular frac-
tionation with conjugate caps!''® (MFCC), where covalent cuts are capped
with appropriate atoms or atomic groups, is already in use for determining
fragment parameters in PyFraME?32, and could be implemented in FraME
for property calculations.

In summary, there are many possible and interesting developments that
could be explored both in the direction of improving the methods used and
when it comes to which applications could be made possible. As most of
them are contained to a single or few areas of the theory and software,
they should be very realistic to obtain, and could even be explored simul-
taneously. One should, however, not underestimate the power of what is
already in place, which should be able to provide interesting insights for
many different applications.
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Abstract

1



We present a fully analytic approach to calculate infrared (IR) and Raman spectra
of molecules embedded in complex molecular environments, modeled by the fragment-
based polarizable embedding (PE) model. We provide the theory for the calculation
of analytic second-order geometric derivatives of molecular energies and first-order ge-
ometric derivatives of electric dipole moments and dipole-dipole polarizabilities within
the PE model. The derivatives are implemented using a general open-ended response
theory framework, thus allowing for an extension to higher-order derivatives. The
embedding-potential parameters used to describe the environment in the PE model
are derived through first-principles calculations, allowing a wide variety of systems to
be modeled, including solvents, proteins, and other large and complex molecular en-
vironments. Here we present proof-of-principle calculations of IR and Raman spectra
of acetone in different solvents. This work is an important step towards calculating

accurate vibrational spectra in realistic molecular environments.

1 Introduction

Vibrational spectroscopy, in particular infrared (IR) absorption and Raman scattering, is one
of the most important spectroscopic methods for elucidating molecular structure.! Many
vibrational bands primarily signify the presence of certain chemical bonds and functional
groups. However, the so-called fingerprint region, located between 1500 and 500 cm ™!, has
in addition a spectral pattern that is often unique or near-unique for any given molecule,
typically containing bands whose corresponding vibrational motions involve the backbone
of the molecular structure. Whereas the use of databases of vibrational spectra of known
compounds was essential in facilitating structural characterization of molecules in earlier
days, this has in more recent years been complemented with a direct comparison to spectra
obtained from quantum-chemical calculations.?

In the harmonic approximation, vibrational normal modes and their energy levels—

determining the position of spectral peaks—are obtained from the second-order geometric



derivatives of the molecular energy with respect to nuclear displacements. Spectral inten-
sities, on the other hand, are found from the normal-mode displacement gradient of the
relevant polarization properties, which for IR absorption is the electric dipole moment and
for Raman scattering the electric dipole-dipole polarizability.® From a computational per-
spective, an added challenge in the calculation of vibrational properties compared to, for
instance, properties involving only electric-dipole perturbations,® is the dependence of the
basis functions on the position of the nuclei.?* The theory and implementations of analytic
first-7 and second-order® geometric derivatives of molecular energies were presented already
in the late 1960s and 1970s, respectively. These developments, and in particular the analyti-
cal calculation of second-order geometric derivatives at the level of density-functional theory
(DFT),%!! have today made quantum-chemical calculations an integral part of structural
characterizations of molecules using vibrational spectroscopy. At the electron-correlated lev-
els of theory, coupled-cluster methods now allow vibrational frequencies to be obtained with
an accuracy that rivals that of even highly accurate experimental studies.'?>'4 In addition,
computationally elaborate schemes have been developed that allow anharmonicities to be
efficiently calculated also at the DFT level of theory.®!%!6 More recently, IR and Raman
spectra have also been calculated from Car—Parrinello molecular dynamics simulations, in
which anharmonic effects as well as broadening of peaks due to solvent interactions are
automatically included. "1

Vibrational spectroscopy is also an important tool to understand molecular bonding and
the interaction of molecules with their surroundings. Even small inter- or intramolecular
interactions may change the strength of particular bonds and thus the corresponding vi-
brational frequencies. Hydrogen bonding may have a particularly significant effect on bond
strengths as well as on the coupling to other nuclei through its strongly directional na-
ture.?%-2! Thus, vibrational spectroscopy is well suited to study subtle interactions even in
large biomolecular aggregates.?? This calls for computational methods that can model the

effects of a surrounding environment.



Solvent effects are nowadays routinely included, for instance, through the use of contin-
uum solvation models in calculations of vibrational spectra.??® In particular, the polarizable
continuum model (PCM)?%?® is a popular approach used in quantum-chemical studies of
solvated systems. However, specific intermolecular interactions are not described by such
models. Moreover, modeling highly heterogeneous environments, such as proteins and other
typical biomolecular systems, is problematic within a continuum approach. Quantum me-
chanics/molecular mechanics (QM/MM) methods, pioneered by Warshel and Levitt, 26 is an
appealing alternative. In QM/MM, the chemically interesting part of a system is treated
at a quantum-mechanical level of theory and the surroundings are treated using a classi-
cal molecular-mechanics force field. Unlike in the PCM, such QM/MM methods retain the
atomistic structure of the environment, which is important for describing directional and
structural effects on molecular properties. A wide range of different QM /MM methodologies
has been developed.?” 2 They can be divided into three main classes depending on the level
of approximation for the quantum-—classical interactions, namely mechanical, electrostatic,
and polarized embedding. In mechanical embedding, the interactions between the quantum
and classical parts are described purely classically. In this approximation, there are only
corrections to the energy and indirect geometric effects from the environment. The quan-
tities needed for simulating IR and Raman spectra can thus be computed using the same
approaches as for pure QM and MM. The next level of complexity is electrostatic embed-
ding, where the electronic density of the quantum part is directly polarized by the charge
distribution of the classical part, i.e. by the embedding potential. This is achieved through
an embedding-potential operator that contains the electrostatic potential from the partial
point charges (or more generally by the permanent multipoles) describing charge distribution
of the classical part. Finally, in polarized embedding, the classical part is described by a
polarizable potential that allows for mutual polarization between the quantum and classical
parts.

Second-order geometric derivatives within an electrostatic-embedding QM /MM approach



were presented by Cui and Karplus.®® They used the full Hessian to perform a vibrational
analysis of the entire system, i.e., including both the QM and MM subsystems. The full
vibrational analysis of such large systems may lead to computational bottlenecks in solving
the vibrational eigenvalue problem due to the large matrices that would need to be diago-
nalized, as well as due to the high density of vibrational states. Various approaches have
been proposed to deal with these challenges.3'3% Li and Jensen®” applied a partial Hessian
vibrational analysis (PHVA)383% to the effective fragment potential?®! method, which is a
polarized embedding approach, using numerical differentiation to determine the Hessian for
the quantum part. The PHVA approximation in a QM /MM setting usually implies that only
the QM-QM block of the full Hessian is used, thus ignoring the MM-MM, QM-MM, and
MM-QM blocks. More recently, Lipparini et al.4? presented analytic second-order deriva-

43,44 and used this to

tives for a polarized-embedding approach based on fluctuating charges
compute IR spectra and later also Raman spectra,*® in both cases within the PHVA ap-
proximation. Giovannini et al. %6 derived and implemented second-order derivatives to their
extended fluctuating charges and dipoles model.

In this work, we present the theory and implementation of fully analytic first- and second-
order geometric derivatives of energies and first-order geometric derivatives of dipole mo-
ments and dipole—dipole polarizabilities in the framework of the polarizable embedding (PE)
model and within the PHVA approximation.*™*® This work builds on our previous work on
analytic first-order geometric derivatives of the PE energy.?® The PE model can be charac-
terized as fragment-based classical embedding akin to QM/MM, with the difference that it
focuses solely on the central quantum part. In this model, the environment is represented by
fragment-based distributed multipoles and polarizabilities. It can be used to model complex
systems, such as solute—solvent systems and large biomolecules such as proteins and nucleic
acids, as well as other large molecular systems that are amenable to fragmentation.®® To
split large molecules into smaller fragments, the molecular fractionation with conjugate caps

(MFCC)5%52 procedure can be used. The environment is treated classically, however, the



parameters (multipoles and polarizabilities) are derived from first-principles calculations on
each individual fragment in the environment. This approach has been shown to yield highly
accurate embedding potentials.?3 57

The theory and implementation presented here build on earlier work that provide us
with a flexible framework for the calculation of frequency-dependent molecular properties
of arbitrary order for perturbation-dependent basis sets.??® %3 The additional contributions
arising from the PE model for the calculation of molecular Hessians as well as dipole and
polarizability gradients have been implemented so as to be used together with the general
open-ended framework of OpenRSP. 585964 The stage is thus set for extensions to higher-order
geometric derivatives. Furthermore, the theory has been formulated in terms of the atomic-
orbital (AO) density matrix, making the approach agnostic to the exact parametrization of
the self-consistent field (SCF) wave function.%

The implementation is demonstrated through proof-of-principle calculations on acetone
in various solvents. Acetone was selected as the model system because it has a rather simple
vibrational spectrum and its semi-polar nature makes it soluble in both polar and non-polar
solvents.

In the following, we first present the key quantities needed to calculate the additional
contributions from the PE model to the molecular Hessian and the dipole and polarizability
gradients in Sec. 2. In Sec. 3, we provide the computational details before we in Sec. 4

present our results for the computed IR and Raman spectra. We end the paper in Sec. 5

with some concluding remarks.

2 Theory

In this section, we first present a brief summary of the theory for IR and Raman spec-
troscopy in the double-harmonic approximation. Within this approximation, the necessary

components are the molecular Hessian and first-order derivatives of the dipole moment and



polarizability with respect to nuclear displacements. The calculation of these properties at
quantum-mechanical levels of theory is well established for molecular systems in vacuo. The
reader is referred to relevant literature for details, see e.g. Ref. 6. Here, we focus on the con-
tributions that arise when a molecule is embedded in a polarizable environment—specifically,
when this environment is described by the PE model. The theoretical foundation for the PE
model and its formulation within quantum-mechanical response theory has been extensively

covered in earlier works, 47-48,62,66-68

and we therefore only present the basic equations of the
PE model here. In the last part of this section, we present the contributions from the PE
model to the second-order geometric derivatives of the energy as well as to the first-order ge-
ometric derivatives of the dipole moment and polarizability. The equations will be expressed

in an AO SCF formulation, following earlier works. 58:59:62

2.1 Vibrational frequencies and TR & Raman intensities

The harmonic approximation is frequently employed when describing vibrational wave func-
tions and builds on a Taylor expansion of the energy E in terms of a set of mass-weighted

nuclear Cartesian displacement coordinates relative to the equilibrium geometry

3Nnue

OF 178 92F
E(q) = Ep + | @+3 | g+ (1)
iz:; i lq—o 2 12 04:94; |40

The displacement coordinates are given by

q' = (‘ /miAzy /1Ay /miAzy /meAzs ... 1/rm\fnucAzj\;m) (2)

where m,, is the mass of nucleus n and Az, Ay,, and Az, are the nuclear displacements from
the equilibrium geometry of the Cartesian coordinates of nucleus n. The sums in eq (1) thus
run over all Cartesian coordinates of the molecular geometry and the subscript q = 0 denotes

that the derivatives are evaluated at the equilibrium geometry. The first term on the right-



hand side of the equation is the energy at the equilibrium geometry that does not depend on
the displacement coordinates and is therefore not important in the further analysis in this
work. The second term contains the mass-weighted molecular gradient FE/Jq;, which is zero
at the equilibrium geometry, and the last term contains the mass-weighted molecular Hessian

5 one can obtain the normal-mode

0?FE/dq;0q;. Through an eigenanalysis of the Hessian,
frequencies from the eigenvalues, whereas the eigenvectors correspond to a transformation
matrix that defines each normal coordinate Q; in terms of Cartesian displacements. Three
of the eigenvectors correspond to the overall translation of the system and three eigenvectors
(two for linear molecules) correspond to the overall rotation of the system.

IR intensities are often reported in terms of the molar decadic attenuation coefficient,
¢, which has units m? - mol™. To facilitate comparisons to other works, we summarize the

commonly used units for reporting IR intensities in Table 1. Within the double-harmonic

approximation, € for vibrational mode I is obtained from the equation

2
N\ NA ({),U/oz — =
er(7) = 1210(10)22 Z <8Q1 Qo) @3, 71) (3)

a=x,y,2

where N, is the Avogadro constant, ¢ is the speed of light, &y is the vacuum permittivity,

and p, is a Cartesian component of the electric dipole moment. The lineshape function

f(@;01,71)) is introduced to take into account homogeneous broadening effects, such as the

finite lifetime of the excited vibrational states. In this work, we use a Cauchy distribution
with a damping factor 77, so that®

1 1

1297% == |— 4

f( ) 177]) 7T|:(D[7ﬂ)2+’y%:| ()

where 7 is the wavenumber of the incident radiation and 77 is the wavenumber associated

with vibrational mode I. The lineshape function broadens the peaks with a half width at

half maximum (HWHM) of the peak associated with mode I being 7;. The dipole moment



gradient can also be expressed as a mixed energy derivative

_ PE
a0 0F.0Q;

Opta
Q1

(5)

F=0,Q=0

where F,, is the a’th component of the electric-field strength and the derivative is evaluated

at zero field strength and at the equilibrium geometry.

Table 1: Units of Most Commonly Reported IR Intensities®%

Property Unit Origin
2
. C? kgt B =S gé';g: lao)
- D2A2 . amu~!  1.4924 .10 4
Molar decadic attenuation m? - mol ™! &= mmé\fwﬂgf(p; Uiy Vi)
coefficient
Molar decadic attenuation L-mol™-em™?t 10-¢
coeflicient
Napierian integrated molecular m - mol ™! A; = In(10) f g dv = 12]\0]?50 ,uiQ
attenuation coefficient
Napierian integrated molecular km - mol™* 1073 - A,

attenuation coefficient

Just as for IR, there are several commonly used ways to report Raman intensities, but
most are related to the absolute differential Raman scattering cross section, o', with units

Ct.s%-J7'.m2.kg™!. Some of the most commonly used Raman units are reported in Table

2. In the double-harmonic approximation and at temperature T, ¢’ is computed as”®"!

_ o (V) h(pg — 7)*

90 16790, (1 — exp (—220))

o1(?) (45a7 + 767) f(7; o1, 71) (6)

where ¢ is the total scattering cross section, €2 is the solid angle, 7y is the wavenumber of
the incident light, and £ is the Boltzmann constant. The constants 45 and 7 stem from the
fact that we evaluate ¢ for an experimental setup where the light entering the sample is
polarized perpendicular to the direction of observation and its propagation.® Other choices

of combination coefficients belong to other experimental setups. The Raman invariants ay



and b? are given by ™

1 0vga
“=3 2 g,

a=x,Y,2 Q=0
and , ,
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B2 — - aa _ B8 +3 af (8)
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respectively, where a,g is the component of the electric dipole-dipole polarizability cor-
responding to Cartesian coordinates a and . As the frequency-dependent polarizability
gradient involves a frequency-dependent electric field, it cannot directly be represented as an

energy derivative, and instead a quasienergy, F, (which reduces to the energy in the absence

of a frequency-dependent electric field) derivative is used 4677

doas| _ OB
aQI Q=0 8FaaFﬂaQ1 F=0,Q=0

(9)

where the derivative is evaluated at zero field strengths and at the equilibrium geometry.

Table 2: Units of Most Commonly Reported Raman Intensities"

Property Unit Origin®

- Ctm?-J72 kgt af = ka2 + kyb?

- g (35) of

- At amu! 1.3413-10% - ¥

Absolute differential Cts?.J - m 2 kgt o = wﬂzczuf((f:z;)(él_%))%QJ((D% Uiy i)

scattering cross section

@ Values of combination coefficients k, and k;, depend on the experimental setup.® We use
k. = 45 and k; = 7 in the present work.

2.2 Polarizable embedding

The PE model is an atomistic classical scheme for efficiently and accurately including com-
plex environments in quantum-mechanical calculations. The total system is split into a core

quantum region, which is described by a quantum-mechanical method, and its environment,

10



whose effects on the core part are described effectively through an embedding potential. The
environment is further partitioned into computationally manageable fragments. In case of
solvents typically consists of the individual solvent molecules, while a fragmentation proce-

8067 For each fragment, a quantum-mechanical

dure is used for more complex environments.
calculation is performed, producing a set of electric multipoles and polarizabilities that are
distributed to a number of sites within the fragment, usually the atomic centers. Alter-
natively, the multipoles and polarizabilities can be taken from existing pre-parametrized

57 a series of solvents,®® and a few lipids.™

potentials that have been derived for proteins,
The energy of a quantum region in the presence of an environment can be separated into
two contributions,

E(D) = Equ(D) + Epg(D) (10)

where Equ(D) is the energy of the quantum region, Epg(D) is the embedding energy that
describes the interactions between the quantum region and the environment, and D is the
AO density matrix. In this work, Kohn—Sham density-functional theory (KS-DFT) is used

for the quantum region, thus Equ(D) = Eppr(D). The KS-DFT energy is given by
v 1
Eppr(D) Z hD + 5 G (D)D + By [p(D)] + e (11)

where 2 indicates that the trace is taken of each term on the right-hand side, h contains
the one-electron terms (kinetic energy and electron—nuclear attraction), G7(D) contains the
two-electron terms (electronic Coulomb and fractional exchange interactions), Ex. [p(D)] is
the exchange—correlation contribution as a (nonlinear) functional of the density, and hyyc
is the nuclear—nuclear interaction energy. We will not go into further details about these
terms here, but we note that the dependence of the individual contributions to the energy
on the AO density matrix is either independent (hy,.), linear (hD), quadratic (G(D)D)
or nontrivial (Ex.[p(D)]), and that this separation of terms into orders of density-matrix

dependence is used by OpenRSP. The contributions from the PE model to be presented

11



in the following can also be grouped into zeroth-, first-, and second-order density-matrix
dependence. We have chosen to do so in this work to align our implementation with the
corresponding interfaces to OpenRSP.

The PE energy can be written as
EPE(D) = Ees(D) + Eind(D) + ELJ (12)

where Eq(D) is the electrostatic energy from the interaction between the permanent mul-
tipoles in the environment and the electrons and nuclei in the quantum region, Fi,q(D)
is the induction energy resulting from the polarization of the environment modeled by in-
duced multipoles, and FEpj is the energy due to non-electrostatic repulsion and dispersion
interactions modeled by a 6-12 Lennard-Jones (LJ) potential.

In the following, we will present the electrostatic, induction, and LJ energies, where we
will make use of a multi-index notation.” A multi-index is denoted by a, 3, etc., and consists
of three indices associated with the three Cartesian coordinates (i.e., o = (g, ay, ).
The addition and subtraction of multi-indices is performed component-wise, i.e., « £ 5 =
(ap £y, ay£ By, a,£B.). The absolute value of a multi-index is defined as |a| = o, + oy +a,
and the factorial as o! = a,layla,!. The multi-index power is given by R* = R* R*R*. A
partial derivative is written as 9% = %. Summing over the absolute value of a multi-
index implicitly includes a sum over all possible multi-indices for each of the absolute values
in the sum, e.g., Z‘la‘zoa =(0,0,0) + (1,0,0) + (0,1,0) + (0,0,1). A Cartesian component
of a tensor is specified with a multi-index in square brackets, e.g., T1l.

The electrostatic energy describes the interactions between the electrons and nuclei in the

quantum region and the permanent multipoles in the environment. Using the multi-index

12



notation, we can write it as

Nirag Sq K

Sy B 112 LR
a=1 s€a |oz\ 0

Nirag Sq  Ks Nnue

ZT“] (R.,R,)Z,

a=1 s€a |oz\ 0

T heD + he (13)

where Npe is the number of fragments in the environment, S, is the number of sites in
fragment a, K is the maximum order of the multipoles on site s in fragment a, M s a
component of a Cartesian multipole on site s, ;4 and v are indices of the AOs belonging
to the quantum part, £ (R,) is the uv’th element of the |a|'th-order derivative of a one-
electron electrostatic-potential integral, D,, is the uv’th element of the AO density matrix,
T[a](RS7 R,) is a component of a Cartesian interaction tensor involving the positions of site
s and nucleus n, Ny, is the number of nuclei in the quantum region, and Z,, is the charge
of nucleus n. An interaction tensor is generally defined as

1
TR, R;) = 94

e 14
[R; — Ry (14

where the subscript on the multi-index partial-derivative operator denotes the coordinate
that the derivative is taken with respect to. The f[ }(RS) integrals can be defined in terms

of interaction tensors as

HI(R,) = / 3 (5 Ro) T (R, 1) o (15 Ry )l (15)

where r is the electron coordinate and x,(r;R,) and x,(r;R,) are AOs with a parametric
dependence on the nuclear coordinates. The multipole—electron part of the interaction energy
depends linearly on the density matrix while the multipole—nuclear interaction is a scalar

that does not depend on the density matrix, as shown in the last equality of eq (13).
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The second energy term in eq (12) is the induction energy, which is the result of the
polarization of the environment. The polarization is modeled using polarizabilities that give
rise to induced multipoles describing the response of a given fragment to the fields from
the electrons and nuclei in the quantum part as well as the permanent multipoles in the
environment. The induction energy can be formulated in terms of a generalized classical
linear-response matrix of Cartesian polytensors (which are defined as a set of Cartesian

tensors in a sequence of increasing rank) ™

P! Ty -+ Tig
Ty P10 Tys

A=| 7 72 ’ (16)
Tg -+ --- Pgl

whose diagonal blocks contain inverse Cartesian polytensors that themselves consist of the
multipole-multipole polarizabilities of a given site while the off-diagonal blocks hold the
corresponding polytensors that consist of interaction tensors which describe the interaction

between polarizable sites. The induction energy can then be written as
1 -
Eing = iMV (17)

where M is a matrix containing polytensors of the induced multipoles and V is a matrix
that consists of polytensors that contain the derivatives of the electrostatic potential from the
electrons, nuclei, and permanent multipoles at the polarizable sites. The induced multipoles

can be determined by solving the matrix equation
M=-A"V=-BY (18)

In practice, the matrix equation is never solved explicitly, since the linear-response matrix

quickly becomes too large for environments with many sites, and instead an iterative solver
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is used. Using the multi-index notation, the induction energy can be written as

Nitvag Sq  Ks Niag Sy, Ky

Eina(D Z Z Z Z Z Z '6' D R, )BL(tHﬁ V[ﬁ](DvRt)

a=1 s€a |a|=0 b=1 te&b |B|=0

Nitvag So  Ks Niag Sy, K

SY Y YS Y 5 DR B VD R
aﬂ

a=1 s€a |a|=0 b=1 te&b |B|=0

+ (VIR + VEI(R,)) BE VI (D, R,)

—_

+ 5 (VR + VIR B (VIR + VI (Ry))

[i=
N —

Gind(D)D + hjpgD + hing (19)

where V[*(D,R,) is a component of the |a|’th-order derivative of the electrostatic potential
and BLCZH? lis a component of the st’th block of the inverse of the linear-response matrix
in eq (16). In the second equality, we expand the energy in terms of derivatives of the

electrostatic potentials from the electrons

VD, R,) £ —t)(R,)D (20)
nuclei
VIR ZT (R.,,R,)Z, (21)
n=1

and permanent multipoles

Nirag Sy K

VEIR) =D Z D o (Ry, Ry) M/ (22)

b#a teb |Bl=0

and collect terms that depend on the density to second, first, and zeroth order, respectively,
which are then given in matrix form in the last equality. The sum over fragments in the
multipole electrostatic potential (eq (22)) excludes the fragment that contains site s, here

assumed to be fragment a.



Finally, the last term in eq (12) is the LJ potential energy, which effectively describes

non-electrostatic repulsion and dispersion. It is given by

Nirag Sq Nnuc 1 12 1 6
_ 12 6
Ey=4 E E E Esn |:US7L (m) ~ O <m> :| (23)

a=1 s€a n=1

where Lorentz—Berthelot rules are used to combine parameters, i.e., oy, = %(05 + 0,) and
Esn = \/EsEn. Here, oy and €, are LJ parameters of atoms in the environment and o, and
€, are LJ parameters of the atoms in the quantum region. The LJ potential energy is thus
purely classical and independent of the density matrix.

The PE energy gives rise to Fock-matrix contributions that are found by minimizing the

energy with respect to variations of the electron density

Fpg = hes + Gina(D) + hing (24)

2.3 Derivatives of the PE energy

In this section, we present the additional contributions to the geometric derivatives of the
energy, dipole, and polarizability, that arise for a molecule embedded in a polarizable en-
vironment described by the PE model. These, and all other contributions, i.e., those for a
molecule in vacuum, are considered in the framework of a density-matrix-based quasienergy
formulation (see, e.g., works by Thorvaldsen et al.?® and Ringholm, Jonsson, and Ruud®
for details). In this approach, properties are determined as derivatives of the quasienergy

Lagrangian, which up to third order can be written as®®

- 1\ (25)

(T} r

La1a2 gO,maz + 8],a1Da2 _ Smagw _ Sa1 Wa2 (26)
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Lalagag {TL}TgO,alaQag + gl,alagDag + 81,a1a3Da2 + gl,a,lDagag + 527a1Da2Da3

_ Sala2a3w _ SalaZWa:S _ Sala3wa2 _ S(IIWGQG«S (27)

where {7 means that a trace and time-average of each term on the right-hand side is
taken, £ is the quasienergy, D is the density matrix, S is the overlap matrix, and W is the

energy-weighted density matrix

W = DFD (28)

The superscripts ay, as, and as denote derivatives with respect to given perturbations (either
geometric or electric dipole perturbations in this work) with associated frequencies wy,, Wa,,
and w,,, respectively. The notation employed here for quasienergy derivatives of n’th order
is defined as

gmtng

m,a1a2---an — 2
€ (ODT)m0e,, 0e,, - - - O, (29)

where €,,, €4, - - ., €4, are the strengths associated with perturbations a4, as, ..., a,, respec-
tively. The quasienergy derivatives are expressed using the n + 1 rule where only n’th-order
derivatives of the density matrix are needed to calculate a property of order n 4+ 1. Deriva-
tives of the density matrix with respect to the perturbation designated as a; are not present
as a consequence of the application of the time-averaged Hellmann—Feynman theorem in the
derivation of the quasienergy gradient (eq (25)). We again refer to Thorvaldsen et al.?® for
further details concerning the approach. Finally, we note that the quasienergy derivatives
reduce to standard energy derivatives for time-independent properties.

In the following, we use superscripts ¢g; and g, to denote a derivative with respect to an
arbitrary Cartesian component of an arbitrary nuclear coordinate, and superscripts f; and f5
to denote a derivative with respect to an arbitrary Cartesian component of the external field.
For the molecular properties treated in this work, the contributions from the interactions
between the quantum region and its environment are found by taking the relevant deriva-

tives of the interaction energies according to the forms indicated in eqgs (25)—(27). These
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expressions contain perturbed density and Fock matrices, the latter as part of the perturbed
energy-weighted density matrix. The calculation of perturbed density and Fock matrices also
entails the evaluation of contributions stemming from the derivatives of the PE Fock matrix
(eq (24)) and contributions to the electronic Hessian when solving the response equations.
We refer to previous work % for details about the general method used to obtain perturbed
density and Fock matrices. We note, however, that the additional contributions to the per-
turbed density and Fock matrices arising from the interaction between the quantum region
and its environment are included in the following presentation, although only derivatives of
the energy are explicitly addressed.

We begin with the derivatives of the electrostatic interaction energy (eq (13)). Here there
is a dependence on nuclear positions in the nuclear—multipole part and through the AOs in
the electrostatic-potential integrals (eq (15)) that appear in the electron—multipole part. The

contributions from the electrostatic interactions to the geometric gradient and Hessian are
L9 Zh9D 4 h% — $9Dh,D (30)

L9192 x h%%2D + hZ:92 + hi' D% — S992Dh,D
— S D%hD — S"Dh.D? — S"Dh?:D (31)

and the contributions to the dipole and polarizability gradients are
Lo/t Zpopft — §9DAh, D — S Dh, D’ (32)

Lg;fle Tr thlDfle — §9D/1h, D — $9D2h, D" (33)

Since we do not consider local field effects in this work, hes and hes are independent of the

external field. The first- and second-order geometric derivatives of the h.s matrix that appear
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in egs (30)-(33) are given by

Nivag Sq K

hi =% Z ) ~— Mlltllo(R,) (34)

a=1 s€a \a| 0

Nivag S, K

h?9 = Z Z Z ]\/[ elglelorez(R)) (35)

a=1 s€a |a|=0

and the derivatives of h.s are

Nirag S, K, Nnuc
hY = ZT 91 (Re, Ry,) Z,, (36)
a=1 s€a |a|=0
Nirag Sa K, Nnue
hoor — Z Tllae(R, R,)Z, (37)
a=1 s€a |a|=0 n=1

We next consider the induction energy (eq (19)) where there is a dependence on nuclear
positions through the nuclear and electronic electrostatic potentials. The geometric gradient

and Hessian of the induction energy are given by

Lf’r}d = ngl,f:l 9(D)D + hi!,D + hf!; — S"DGiya(D)D — S*Dh;qD (38)

Loy 2 Gf’,i?( )D + hild®D + hiid* + G, (D)D” + hil, D
— S92 DGiygD — $%%DhypgD — S D% Giyq (D)D — S D% hyyq D

— S"DG;q(D)D% — S'Dh;,, D — S"DG{2,(D)D — S'Dh{},D (39)
and the contributions to the dipole and polarizability gradients are given by

Lo 2 GEy(D)D/ + b D — "D Giyq(D)D — S” D' 1hyqD

— $"DGjyq(D)D’t — S%Dh;, D! (40)
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_ SQID./I hmdez _ Sngszmd(D)Dﬁ _ Sngthindel (41)

Inserting the expression for the electronic electrostatic potential (eq (20)) allows us to write

the first- and second-order geometric derivatives of the Gi,a(D) matrix as

Nitvag Sq  Ks Niag Sy, K

GILMD) =33 > > > > Oj,—; (Tr [t} (R,)D] BE 7 (R,)
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The first- and second-order derivatives of the h;,q matrix are given by

Nivag Sq  Ks Nivag Sy K
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(VIR + VI(R,)) B0 <Rt>) (45)
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The electrostatic potentials from the nuclei and multipoles that appear here are defined in
eqs (21) and (22), respectively. Geometric derivatives of the electrostatic potentials from
the multipoles disappear as they do not depend on nuclear positions, while the gradient and

Hessian of the nuclear electrostatic potential are given by

Nnuc

Vil (R,) = Z Tl (R, R,) Z, (47)
n=1

Nnue
Vn[a]yglgz (R,) = Z Tlelore: (Rn,R)Z, (48)

n=1

The last part of the geometric derivatives of the induction energy is hj,q, which depends
on nuclear positions through the nuclear electrostatic potential. The first- and second-order

derivatives of this term are

Nirag So  Ks Nirag Sy K
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+ Vi (R BV P <Rt>) (50)

where the geometric derivatives of the nuclear electrostatic potential are given in eqs (47)
and (48).

Finally, there is the LJ potential energy (eq (23)) that only contributes to the geometric
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gradient and Hessian because it neither depends on the external field nor the density matrix.

The contributions to the geometric gradient and Hessian are
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3 Computational Details

The properties needed to simulate harmonic IR and Raman spectra were calculated for ace-
tone in three different solvents, namely water, chloroform, and acetone. To simulate IR and
Raman spectra of solute—solvent systems, it is necessary to adequately sample the config-
urational space. In this work, we sampled structures for all three systems from classical
molecular dynamics (MD) simulations. The partial Hessian and first-order dipole and polar-
izability derivatives were then calculated for each structure. The final spectra were obtained
by convolution of the spectra of each structure. Spectra of acetone in vacuum and acetone
in the three solvents using the PCM were also computed for comparison. In the following,
we provide the details for each step. All input and output files, as well as scripts used to

run the calculations and to extract data, have been deposited on Zenodo.™
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3.1 Generation of structures

Classical MD simulations were performed using GROMACS 2019.3%-82 employing the OPLS-
AA force field.8 The OPLS-AA topology for acetone and chloroform were taken from the
GROMACS molecule and liquid database at virtualchemistry.org.348 The TIP3P poten-
tial®® was used for water. Initial cubic boxes of 60 x 60 x 60 A were created and the system
was then minimized with 100 steps of steepest descent and 1000 steps of conjugate gradient
(5000 in case of chloroform solvent). An equilibration protocol containing both NPT and
NVT ensembles was performed. For water and acetone solvents, an initial simulation in
the NPT ensemble was run for 0.5 ns, followed by a 2 ns simulation in the NVT ensem-
ble. Because of difficulties with the equilibration of acetone in chloroform (see ref. 79 for
details), these two steps were preceded by two additional equilibration steps, consisting of
a 0.0001 ps NVT simulation and a 0.05 ps NPT simulation, with time-steps of 0.01 and
0.1 fs, respectively. Initial velocities were taken from a Maxwell distribution at 298 K. All
simulations were performed with periodic boundary conditions, the leap-frog integrator, and
a time step of 1 fs (for all except the aforementioned additional steps for acetone in chloro-
form). Non-bonded interactions were cut off at 15 A and electrostatic interactions beyond
the cut-off were treated using the smooth particle-mesh Ewald®” method. The Berendsen
thermostat (298 K) and barostat (1 bar) were used with a coupling constant of 0.5 ps to
maintain the temperature and pressure in the NPT equilibration.®® The velocity-rescaling

t89 with a coupling constant of 0.5 ps was used to maintain the temperature at

thermosta
298 K in the NVT simulations. After the equilibration steps, a 10 ns NVT production run
was performed. We then extracted 250 snapshots at 10 ps intervals from the first 2.5 ns of

the final trajectory.

3.2 Geometry optimization and property calculations

For each structure extracted from the MD trajectory, the geometry of the central acetone

molecule was first optimized in the presence of rigid solvent molecules. The partial Hessian
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and first-order dipole and polarizability derivatives were then calculated using the optimized
structures. The 250 equidistant snapshots that were extracted from the MD trajectory were
used to perform a preliminary analysis of the convergence with respect to sample size (see
Section A.1). Based on this analysis, and taking into account the computational cost, we
found that 50 equidistant snapshots is adequate for our purposes, which is to demonstrate our
implementation through proof-of-principle calculations. We note here that with 50 snapshots,
we could produce Raman spectra that are well converged with respect to the number of
snapshots, whereas comparatively larger errors were observed for some IR-active modes, in
particular the carbonyl stretching mode (see Figure Al).

The effects from the solvent were modeled by embedding potentials produced using
PyFraME.? The solvent was extracted using a center-of-mass distance criterion, i.e., solvent
molecules with their center of mass within the cut-off distance from the center of mass of the
central acetone were included. We used a cut-off distance of 12 A which results in adequate
accuracy (see Section A.2). For each solvent molecule in the solvent shell, atom-centered mul-

tipoles and polarizabilities were derived using the LoProp scheme. 192 For this a calculation

93,94 P 9599

using the Dalton program is performed employing the B3LY exchange—correlation
functional and a recontracted version of 6-314+G*1097192 (called loprop-6-31+G* in Dalton).
LJ parameters were taken from the OPLS-AA force field.

All geometry optimizations were performed at the PBE0!%3106 /peseg-2107 level of the-
ory. The PBEO functional was chosen based on its accuracy in the modelling of molecular

105 The pcseg-2 basis set was chosen as is has shown to give good results with

geometries.
DFT for both molecular structures and vibrational properties.'% Additional support for the
choice of triple-zeta basis was found through a convergence analysis that showed it to be
a good compromise between accuracy and computational cost compared to its double- and

7.9 was used for

quadruple-zeta counterparts (see Section A.3). The LSDalton program
optimizations in vacuum and in solvent utilizing the FraME library'% for the environment

contributions. These optimizations used a fine integration grid, an initial numerical Hes-
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sian, and Baker convergence criteria.!!® A few snapshots were discarded at this stage due to
convergence issues. Therefore 49, 48, and 47 snapshots for water, acetone, and chloroform
solvents, respectively, were used in the subsequent property calculations. Geometry opti-
mizations utilizing the PCM were performed with Gaussian 16! using the pcseg-2 basis
set obtained from the Basis Set Exchange.'? The geometry optimizations using Gaussian
were performed with a tight SCF threshold (SCF=VeryTight) and a fine integration grid
(Int=SuperFine). To accompany the PCM-based structures, we also performed a geometry
optimization in vacuum using Gaussian with the same settings.

The partial Hessian and first-order dipole and polarizability derivatives of acetone in
vacuum and in environments described by the PE model were calculated using LSDalton,
FraME, and OpenRSP.%%5964 Gaussian was used for the PCM-based calculations and its
accompanying vacuum calculations. The same settings were used for the property calcula-
tions as for the geometry optimizations. The frequency-dependent polarizability derivatives
were calculated using an input wavelength of 514.5 nm. This corresponds to an argon laser
that has been used in Raman experiments on aqueous acetone.!'® The energy derivatives
and molecular geometry were used by the vibrational spectroscopy package SpectroscPy !
to perform a Hessian eigenvalue analysis to obtain the harmonic vibrational frequencies and
normal coordinates, and to calculate the IR and Raman intensities. Raman intensities were
calculated at 298 K. IR and Raman spectra were generated by combining the individual

spectra of each structure into a single spectrum. Specifically, for IR we use
N .
() = D) (53)

where N is the number of snapshots, Ny is the number of vibrational modes, and &(7) is
the molar decadic attenuation coefficient of the I’th vibrational mode in snapshot j (eq (3)).

For Raman, we similarly use

am—;zgﬁ@ (54)



where O’}j (7) is the absolute differential scattering cross section of the I'th vibrational mode
in snapshot j (eq (6)). The Cauchy distribution was used in both the IR and Raman cases
as a basis for a lineshape function with a HWHM of 3.0 cm™! for all modes (see eq (4)).
As mentioned in Section 2.1, the harmonic vibrational frequencies are found from an
eigenanalysis of the molecular Hessian in mass-weighted Cartesian coordinates. This pro-
duces 3N frequencies and the corresponding normal modes, but not all of these are vibra-
tional, as six of these (five for linear molecules) describe an overall translation and rotation
of the molecule. In order to distinguish between low-frequency vibrational modes and the
translational and rotational modes, it is common to project out translation and rotation from
the Hessian. However, this approach cannot be used here, since we use the PHVA approx-
imation. Moreover, the core molecule is embedded in a rigid solvent cage and is therefore
no longer free to move around in space. This will inevitably introduce errors in our calcu-
lations. Low-frequency modes are especially susceptible to contamination by translational
and rotational motions. Visual inspection of an arbitrarily chosen snapshot indicated that
the six modes with lowest energy do not correspond to purely translational and rotational
motion, and simultaneously that additional low-frequency modes also show some extent of
globalized motion. Simply removing the six modes of lowest frequency is therefore not a good
choice for the embedded systems. Instead, we identified from the visual inspection a cut-off
at 750 ecm~! above which the modes have only negligible contamination of translational and
rotational motion. We do not consider or discuss the normal modes with lower frequencies
due to these impurities. By comparing the frequencies obtained with and without projecting
out translation and rotation, we estimate that the error in the remaining vibrational modes
is only a few cm™! for the localized higher-frequency modes and never exceeds 10 cm™! on

average for any mode (see Figure S1 in the Supporting Information).
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4 Results and Discussion

Harmonic IR and Raman spectra of acetone in vacuum and in water, chloroform, and acetone
solutions are presented in Figures 1 and 2, respectively. Averaged vibrational wavenumbers

and associated IR and Raman intensities are tabulated in the Supporting Information.
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(a) Wavenumber range: 750-3250 cm ™ (b) Wavenumber range: 1200-1900 cm ™!

Figure 1: IR spectra of acetone in various environments modeled by the PE model. Spec-
tra are based on averages over all snapshots. Calculations were performed using PE-
PBE0/pcseg-2 with acetone embedded in a 12 A solvent shell. A half width at half maximum

value of 3.0 cm™! was used to broaden individual peaks. Only modes above 750 cm™! are

included. Panel (b) displays the part the spectrum with highest IR absorption.

The three strongest peaks in the IR spectra presented in Figure 1 can be assigned!'®
to the carbonyl stretching mode (around 1800 cm™!), the symmetric methyl deformation
(umbrella) mode (around 1390 cm™!), and the asymmetric C-C stretching mode (around
1260 cm~t). We will limit the following discussion to these three peaks. It is worth noting
that the spectra for acetone in chloroform and acetone solutions are virtually overlapping,
suggesting no significant differences in solute-solvent structure and dynamics for these two
solvents. The effect of hydrogen bonding between the acetone solute and water solvent is
evident from the —53 cm™! shift of the carbonyl stretching mode relative to vacuum, whereas
the shift is —21 cm™" in chloroform and acetone solvents. The C-C stretching mode is shifted

to higher wavenumbers by the solvents, though less in magnitude. Indeed, this shift is +29

1 1

cm ™' in water and only +6 cm ™! in chloroform and acetone. The wavenumber of the methyl
umbrella mode is only slightly shifted by the water solvent (+6 cm™!) while it is unaffected

by the chloroform and acetone solvents. These shifts correlate well with the change in the
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bond lengths that are presented in Table 3.

Table 3: Bond Lengths (in A) in Acetone in Vacuum and Different Solvents Modeled by the
PE Model and the PCM

Vacuum Chloroform Acetone Water
Bond PE® PCM PE® PCM PE® PCM
C=0 1.206 1.210 (0.001) 1.211 1.210 (0.001) 1.213 1.221 (0.005) 1.213
c-C 1.507  1.503 (0.002) 1.503 1.503 (0.002) 1.502 1.493 (0.006) 1.501
C-H 1.093  1.091 (0.003) 1.093 1.091 (0.003) 1.092 1.091 (0.003) 1.092
C-H> 1.087  1.091 (0.003) 1.087 1.091 (0.003) 1.087 1.091 (0.003) 1.087

@ average over all snapshots with standard deviations in parentheses.

Acetone in aqueous solution forms hydrogen bonds with two water molecules on average,
which results in an elongation of the carbonyl bond and a subsequent shift of the carbonyl
stretch to lower wavenumbers. The C—-C bonds, on the other hand, are contracted, which
results in a shift of the C-C stretching frequency to higher wavenumbers. The methyl
umbrella mode can be linked to the H-C—C bond angles, which vary only slightly in the
presence of a solvent and are always between 109 and 111 degrees.

The configurational variety in the snapshots extracted from the MD simulation causes an
inhomogeneous broadening. Even though the broadening of the peaks in the spectrum is in
part determined by the chosen broadening factor, a comparison between the different solvents
can be made. The most substantial broadening in the IR spectrum (Figure 1) is observed for
the carbonyl stretch in water. Correspondingly, the standard deviations associated with the
calculated wavenumber and IR intensity are 20 cm™! and 23 km-mol ™, respectively. This is
roughly three times larger than the standard deviations in chloroform and acetone, which are
6 cm~" and 8 km - mol™! for both solvents. The broadening of the carbonyl stretching mode
in water can in part be attributed to the strong hydrogen bonding solvent. In contrast, the
weaker dipole—dipole interactions between the acetone solute and chloroform and acetone
solvent molecules result in smaller shifts and less pronounced broadening. The fine structure
of the carbonyl stretching peak is most likely due to limited sampling.

Raman spectra calculated with an input wavelength of 514.5 nm are shown in Figure 2.
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Figure 2: Raman spectra of acetone in various environments modeled by the PE model.
Spectra are based on averages over all snapshots. Calculations were performed using PE-
PBEO/pcseg-2 with acetone embedded in a 12 A solvent shell and using an input wavelength
of 514.5 nm. A half-width at half-maximum value of 3.0 cm~! was used to broaden individual
peaks. Only modes above 750 cm™! are included. Panels (b) and (c) display the parts of
spectrum with highest Raman activity.

The strongest peaks in the Raman spectrum can be assigned'!® to the symmetric and asym-
metric C-H stretching modes (above 3000 cm™), the symmetric C-C stretch (around 800
em™1), and the asymmetric methyl deformation modes (around 1450 cm™!). The spectra
for the chloroform and acetone solutions are overlapping also for Raman scattering. Sol-
vent effects are most apparent by the +23 cm™! shift and substantial broadening (standard
deviation of 16 cm™!) of the C—C symmetric stretch in water. The corresponding shift in
acetone and chloroform is only minor (+3 cm™!). This is in agreement with the shortening
of the C-C bond, which is 0.014 Ain water, 0.004 A in chloroform, and 0.005 A in acetone
(Table 3). The frequency of the methyl deformation modes are virtually unchanged when
adding a solvent. The symmetric C-H stretch is shifted by +5 cm~! in water and +2 cm™!

in acetone and chloroform. The asymmetric C-H stretches are shifted by +9 cm™! in water,
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+4 cm~! in acetone, and +1 cm™!

in chloroform. The broadening of these peaks is in part
due to larger separation of the two modes underlying each of the peaks. In the case of the
highest-frequency band in water, however, there is also a large spread of the wavenumbers

of both underlying modes, with standard deviations of 17 and 13 cm™!

, respectively.

A question that naturally arises is whether the additional computational cost of the
configurational sampling associated with the PE model is reasonable compared to using a
continuum solvation model. To answer this question we calculated IR and Raman spectra
using the PCM. Before comparing the spectra, we will briefly examine the effect on the
geometry of the acetone solute. We note that the differences in bond lengths (Table 3) are
small and may be of the same order as numerical errors, such as those introduced by the
tessellation of the molecular cavity in the PCM. Addition of a solvent through PCM also
leads to a slight elongation of the C=0 bond and a slight shortening of the C-C bond and
virtually no effect on the C—H bond length. The solvent effect on acetone bond lengths in
chloroform, acetone, and water is very similar using the PCM. In other words, the larger
solvent shift in water found in the PE calculations is not reproduced by the PCM. This
reflects the lack of specific interactions (hydrogen bonds) in the PCM.

IR and Raman spectra for acetone in vacuum and in the presence of solvents modeled by

the PCM are shown in Figures 3 and 4.
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(a) Wavenumber range: 750-3250 cm ™! (b) Wavenumber range: 1200-1900 cm ™1

Figure 3: IR spectra of acetone in various environments modeled by the PCM. Calculations
were performed using PCM-PBEO/pcseg-2. A half width at half maximum value of 3.0 cm™!
was used to broaden individual peaks. Only modes above 750 cm~! are included. Panel (b)
displays the part of the spectrum with highest IR absorption.

30



le—67

= : —— Vacuum
21.00{ — Chloroform
b osl — Acetone
TE 73— Water
:EO.SO
=025 |
© 0.00 I
750 1250 1750 2250 2750 3250

v/(cm)

(a) Wavenumber range: 750-3250 cm™!

le—68 le—67
11‘3 —— Vacuum .5‘1'25 —— Vacuum
o —— Chloroform 21.00{ — Chloroform
T2 —— Acetone D osl — Acetone
TE —— Water .TE ! —— Water
o @y 0.50
! O
i~ =025
°o JL‘ A ©0.00]

750 850 950 1050 1150 1250 1350 1450 155C 2950 3000 3050 3100 3150 3200

v/ (cm™1) v/ (cm™)
(b) Wavenumber range: 750-1550 cm™! (c) Wavenumber range: 2950-3220 cm ™!

Figure 4: Raman spectra of acetone in various environments modeled by the PCM. Calcula-
tions were performed using PCM-PBEO/pcseg-2 using an input wavelength of 514.5 nm. A
half width at half maximum value of 3.0 cm™! was used to broaden individual peaks. Only
modes above 750 cm™! are included. Panels (b) and (c) display the parts of the spectrum
with highest Raman activity.

When comparing these results with the corresponding spectra obtained using PE to
model solvent effects (Figures 1 and 2), there are two substantial qualitative differences.
First, the PCM is not able to reproduce the inhomogeneous broadening, due to lack of
explicit configurational sampling. These effects are substantial in the spectra calculated
with PE, especially for water. Second, the effect of acetone solvent is very similar to the
effect of chloroform when modeled by the PE model, but similar to the effect of water when
modeled by the PCM. The same trend is observed in the bond lengths (Table 3).

Solvents shifts of IR- and Raman-active modes modeled by the PCM are qualitatively
similar to those modeled by the PE model, though there are some differences. The carbonyl
stretching mode is shifted by —43 cm™! from vacuum to water using the PCM, which is
10 em™! less than using the PE model. The acetone solvent shift of the carbonyl stretch

is similar (—41 cm™') to the water solvent shift using the PCM, whereas it is only —21
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! using the PE model. For the C—C stretching mode, the PCM predicts comparatively

cm™
small shifts for all solvents, whereas the PE model predicts a much larger shift in water.
Indeed, the asymmetric and symmetric modes are shifted +3 and +8 cm™! with the PCM
and +29 and +23 cm™! with the PE model in water, +3 and +7 cm™! with the PCM and
+6 and +3 cm~! with the PE model in acetone, and +2 and +5 cm~! with the PCM and +6
and +3 cm™! with the PE model in chloroform. The opposite behavior is observed for the
asymmetric methyl deformation mode. None of the solvents cause a shift of this mode using

L in water and

the PE model, whereas the solvents shifts using the PCM model are —15 cm™
acetone and slightly less in chloroform.

The intensity of a peak is measured as the integral of the area under the peak and directly
comparing heights between PE and PCM spectra can therefore be misleading. It is more
sensible to compare PCM intensities to PE intensities that are averaged over the snapshots
(see the Supporting information). The most prominent change in intensity upon solution
is exhibited by the IR intensity of the carbonyl stretch in water, with an increase of 88 %
with PCM and 51 % with PE. In general, changes in intensities upon solution are more
pronounced using the PCM than using the PE model. Indeed, PCM gives larger intensities

than PE for all modes except the symmetric C-H stretch, where the intensity is lowered by

22 % with PCM and by 10 % with PE.

5 Conclusions

We have presented the theory for the calculation of harmonic IR and Raman spectra of
embedded molecules using the PE model to describe environment effects. The derived first-
and second-order geometric derivatives of the energy and first-order geometric derivative
of the dipole and polarizability are fully analytic and have been implemented in a general
open-ended framework, thus facilitating extensions to higher-order geometric derivatives.

The implementation is illustrated through proof-of-principle calculations of IR and Ra-
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man spectra for acetone in three different solvents, namely water, acetone, and chloroform.
As expected, we observe that the presence of a solvent has a substantial effect on the IR and
Raman spectra. This can be observed as frequency shifts, changes in intensities, broadening
as well as alterations of the shape of the peaks. The effects of hydrogen bonding between
the acetone solute and water as a solvent are evident especially from substantial shift and
broadening of the carbonyl stretching mode in the IR spectrum and the C-C symmetric
stretching mode in the Raman spectrum. These specific solute-solvent effects on the IR and
Raman spectra can only be modeled with an atomistic description of the molecular envi-
ronment. Apart from these specific interactions, comparison of calculations with the PCM
and the PE model show qualitatively similar solvent effects, but in general larger frequency
shifts with the PE model and larger intensity changes with the PCM.

This work is the first step towards modeling accurate vibrational spectra in realistic
molecular environments. An extension of the present work to higher-order geometric deriva-
tives is in progress. This will allow us to include second-order anharmonic effects through
the calculation of cubic and quartic force fields. Moreover, the combination of the current
implementation with higher-order electric derivatives®? will enable the calculation of, for
example, hyperpolarizability gradients and thus hyper-Raman spectroscopy. We will also
explore the incorporation of local field effects through an extension of the effective external

field model. 116117

A Convergence Analyses

We performed a series of convergence analyses with the aim of determining the basis set,
size of the environment, and number of snapshots, that give an accurate representation of
the investigated systems at a reasonable computational cost. For these analyses, we use the
acetone-in-water system, since the aqueous environment was found to give the largest solvent

effects of the solvents investigated here. To evaluate which basis set and cut-off radius to
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use, we inspect the absolute error relative to a reference value which is the largest basis set
and cut-off radius used. To determine the number of snapshots to include, we investigate
the mean and maximum absolute errors of moving averages using samples of different sizes
relative to an average value obtained using 250 snapshots. For a sample size S and a set
of properties p1, pa, ..., pn, where N is the total number of snapshots, the sample average

can be defined as
S+j

o1
Py = S sz (55)
=147
where j is the sample index, e.g., for j = 0, the sample includes properties p; to pg, for

j = 1 it includes properties py to psi1, etc. For a given S, ﬁjs can only be determined for

j < N —S. The mean absolute error (MAE) for a given sample size is then found as
1 R
(MAE)s = No z]: [P — Pasol (56)

where Ng is the number of samples of size S and posg is the global average, i.e., the average
value across all snapshots. The maximum absolute error (MAX) for a given sample size is

determined as the sample average that is furthest from the global average.

A.1 Convergence with sample size

In this section, we investigate the convergence with respect to sample size. The purpose
is to determine how many snapshots that are needed to reach an error that does not add
substantially to the errors introduced by the choice of basis set and system size. For this
analysis, we consider the mean and maximum absolute errors of moving averages calculated
for increasing sample sizes relative to a sample size of 250 snapshots. This gives an indication
of the error that can be expected from sampling a number of snapshots consecutively from an
MD trajectory. Due to the large number of snapshots, these calculations were performed at
the HF /pcseg-1 level of theory in a 12 A solvent shell of water. The results are presented in

Figure A1. We observe a rather slow but steady convergence as the sample size is increased.
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Figure Al: Convergence with respect to the sample size. Plots show mean and maximum
absolute errors (MAE & MAX) of moving averages of a given sample size for all vibrational
modes above 750 cm ™! compared to a sample size of 250. All calculations were performed
using HF /pcseg-1 with acetone embedded in a 12 A water shell.

The carbonyl stretching mode (no. 7 in Figure Al) has the largest error both in terms
of wavenumbers and IR intensity, but has a very low Raman cross section. Even with
150 snapshots, the mean absolute errors for this mode are 1.0 cm™ and 2.5 km-mol~! for
wavenumbers and IR intensity, respectively, and the maximum absolute errors are 2.0 cm™*
and 5.0 km-mol~!, which is of the same order as the basis-set error (see Section A.3). The

Raman intensities, on the other hand, are reasonably well converged with a sample size of

about 75 snapshots with mean and maximum absolute errors below 1.9x10757 and 5.0x 10757
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C*s2.J7L.m~2.kg™!, respectively, which is well below the largest basis set error (see Section
A.3). The convergence of Raman spectra with sample size have been studied previously in
the context of Raman optical activity and much more simplistic QM /MM modeling, ''® where
it was concluded that in view of the expected experimental errors in Raman intensities, 50
snapshots were required to give reliable Raman intensities. On this basis and considering
the computational cost, we will use a sample size of 50 to calculate IR and Raman spectra,
keeping in mind that this may result in comparatively large errors for wavenumbers and IR

intensities for some of the modes, and in particular for the carbonyl stretching mode.
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Figure A2: Convergence with respect to size of the molecular environment. Plots show
absolute errors of wavenumbers and associated IR and Raman intensities for all vibrational
modes above 750 ¢cm™! compared to a 16 A solvent shell. All calculations were performed
using PBEQ/peseg-2 on a single snapshot of acetone embedded in water.

A.2 Convergence with size of molecular environment

To determine a suitable size of the solvent environment, calculations were performed for a

single snapshot of aqueous acetone with a solvent shell radius ranging from 8 to 16 A. The
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PBEO functional was used together with the pcseg-2 basis set in all calculations. As can
be seen from the absolute errors presented in Figure A2, none of the properties converge
smoothly with system size. In fact, there appears to be an oscillating behavior for some of
the modes. From a visual inspection, it is found that the main reason for this oscillating
behavior is the change in the position of the acetone molecule within the solvent cavity,
whereas the geometry of acetone remains fairly similar for all environments. In our current
implementation, the computational cost grows rather steeply with increasing system size,
mandating the need to balance cost to errors due to truncation of the size of the environment.
Given this limitation, we find that a system size of 12 A has residual errors that are of
the same order as the errors due to our use of the pcseg-2 basis set (see Section A.3).
Indeed, RMSDs relative to 16 A decrease from 6.5 em™!, 6.8 km-mol™!, and 2.7x10756
C*s2.J Lm~2kg! for 10 A to 2.9 em™?, 3.3 km-mol ™!, and 5.6x10757 C%.s2.J t.m~2.kg™*
for 12 A. Increasing the system size to 14 A does not improve the overall error (RMSDs

relative to 16 A are 3.0 cm™!, 2.8 km-mol ™!, and 5.0x10757 C*.s2.J .m 2kg ).

A.3 Convergence with basis set

In order to identify the most accurate and cost-efficient basis set to be used in the calculation
of the vibrational properties, vibrational frequencies and associated IR and Raman intensi-
ties were calculated for a single snapshot of aqueous acetone using PBEQ with three different
basis sets: pcseg-1, peseg-2, and peseg-3107 that are of double-, triple-, and quadruple-zeta
quality, respectively. The frequency-dependent polarizability derivatives were evaluated at
a wavelength of 514.5 nm. The size of the environment was arbitrarily set to include sol-
vent molecules with a center of mass within a 10 A radius from the center of mass of the
acetone molecule. The results can be seen in Figure A3 as absolute errors compared to
results obtained using pcseg-3. Wavenumbers (Figure A3a) are off by up to 37 cm™! for the
1

peseg-1 basis set. In contrast, the largest errors obtained using pcseg-2 are about 3-5 cm™

and are mostly associated with the high-frequency modes, i.e., C-H and C=O stretching
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Figure A3: Convergence with respect to basis set. Plots show absolute errors of wavenumbers
and associated IR and Raman intensities for all vibrational modes above 750 cm ™! compared
to peseg-3. All calculations were performed using PBEO on a single snapshot of acetone
embedded in a 10 A water shell.

modes. % In terms of intensities, using pcseg-1 results in errors that are generally below
10 km-mol~! for IR (Figure A3b) and below 3x107%¢ C*.s%.J-1.m~2.kg™! for Raman (Fig-
ure A3c). Using peseg-2 results in errors that are generally below 4 km-mol~! for IR and
below 0.7x107% C*.s2.J-1.m~2.kg~! for Raman. A few vibrational modes dominate, showing
larger errors for both basis sets. Specifically, the IR intensities of the C=O stretch and sym-
metric CHyz deformation modes are off by about 8.1 and 5.2 km mol~!, respectively, whereas
in the Raman case the symmetric C-H and C-C stretching modes are off by 2.9x107
and 0.9x107%6 C*.s2.J-1.m~2.kg™!, respectively, for the pcseg-2 basis set. These are the
modes with the largests intensities and absorption cross sections. Overall, using pcseg-2 re-
sults in root-mean-squared deviations (RMSDs) of 2.7 cm™!, 2.4 km-mol~!, and 0.77x 107
C*s2.J71-m~2.kg™!, whereas pcseg-1 results in RMSDs of 17.6 ecm™!, 9.5 km-mol™', and

2.0x107% C*.s2.J-1.m~2.kg~!, both compared to pcseg-3. Our results clearly show that
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peseg-1 is not adequate for accurate calculations of IR and Raman intensities. Taking into
account that the relative computational cost of peseg-2 compared to peseg-3 is approximately

one fourth, we conclude that pcseg-2 is a good compromise between accuracy and cost.
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Table S1: Averaged Wavenumbers and Associated IR and Raman Intensities of Acetone in
Water Modelled by the PE Model*

Mode Wavenumber® IR® Raman (A = 0 nm)¢ Raman () = 514.5 nm)*®
1 3193(16.7)  4.561(4.4) 44.281 (5.3) 33.956 ( 3.6)
2 3176(13.0)  5.534(4.3) 38.883 (5.8 ) 30.618 (4.4 )
3 3136(8.4) 3.124(2.5) 46.876 (7.5 ) 30.472 (6.4)
4 3124(7.6) 2.363(2.2) 33.462 (8.9 ) 28.716 (7.5 )
5 3063(7.9) 4.203(3.7) 159.816 ( 29.6 ) 148.469 ( 28.0 )
6 3051(6.6) 3.958(3.1) 41,747 (29.7) 30.882 (28.1)
7 1769(19.8)  303.181(22.7) 1.307 (0.2) 18.107 ( 1.7)
8 1486(6.9)  24.907(5.5) 0.138 (0.1) 3.236 (2.3 )
9 1470(4.9)  23.022(14.1) 0.677 (0.2) 17.014 (4.8 )
10 1458(4.6)  12.528(11.7) 0.440 (0.2 ) 11.444 (5.0 )
11 1448(5.1)  22.367(14.8) 0.598 ( 0.2) 16.111 (5.4 )
12 1399(7.7)  99.709(8.6) 0.136 (0.1 ) 4582 (2.7)
13 1383(5.7)  34.325(9.1) 0.169 ( 0.1) 6.188 (2.1)
14 1276(9.9)  52.941(9.5) 0.114 (0.0) 6.129 ( 1.0)
15 1119(5.6)  10.961(2.8) 0.015 ( 0.0) 1.369 ( 0.6 )
16 1088(6.2) 2.285(2.2) 0.103 ( 0.0 ) 9.578 (1.5
17 931(16.2) 4.037(1.2) 0.015 ( 0.0) 2182 (1.0)
18 881(9.4) 1.034(0.7) 0.023 ( 0.0) 4.847 (2.8)
19 828(8.6) 0.983(0.5) 0.121 ( 0.0) 34.538 ( 5.0)
“ standard deviation in parentheses; ® given in units of cm™"; ¢ given in units of km-mol~';
¢ given in units of C*s2.J71-m~2.kg™! [x107%]; ¢ given in units of C*.s>.J"t-m~2.kg™!
[x10757].
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Table S2: Averaged Wavenumbers and Associated IR and Raman Intensities of Acetone in
Acetone Modelled by the PE Model®

Mode Wavenumber® IR¢ Raman (Mg = 0 nm)? Raman (\g = 514.5 nm)*®
1 3181(6.2) 5.338(1.5) 48.406(2.6) 37.958(2.0)
2 3173(4.1)  8.960(2.6) 43.443(2.6) 34.700(2.1)
3 3130(6.1)  5.638(1.7) 56.105(7.8) 47.970(6.9)
4 3121(3.7)  1.685(1.0) 24.196(9.5) 21.001(8.1)
5 3060(4.7) 1.623(1.1) 190.095(20.8) 176.771(19.7)
6 3053(2.9)  0.479(0.5) 19.731(20.2) 18.842(19.0)
7 1806(6.0)  247.751(8.1) 1.567(0.1) 19.581(0.8)
8 1481(3.5)  24.251(L.8) 0.059(0.0) 1.401(1.2)
9 1465(3.4)  22.735(10.2) 0.878(0.1) 92.204(3.1)
10 1455(3.0) 9.205(8.5) 0.591(0.2) 15.329(5.7)
11 1451(1.8)  8.889(7.5) 0.446(0.2) 11.818(6.4)
12 1389(2.7)  91.660(2.9) 0.043(0.0) 1.346(0.3)
13 1378(2.6)  26.580(3.2) 0.099(0.0) 3.715(0.6)
14 1254(2.9)  63.157(3.6) 0.134(0.0) 8.005(0.6)
15 1116(2.5)  5.982(0.8) 0.009(0.0) 0.881(0.2)
16 1083(3.5)  0.132(0.1) 0.094(0.0) 8.827(0.7)
17 906(6.7) 5.707(0.8) 0.024(0.0) 4.211(0.9)
18 876(4.4) 0.543(0.4) 0.015(0.0) 3.193(1.2)
19 812(4.1) 1.547(0.3) 0.151(0.0) 47.481(3.1)
“ standard deviation in parentheses; ® given in units of cm™'; ¢ given in units of km-mol~!;
¢ given in units of C*s2.J71-m~2.kg™! [x107%]; ¢ given in units of C*.s>.J"t-m~2.kg™!
[x10757].
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Table S3: Averaged Wavenumbers and Associated IR and Raman Intensities of Acetone in
Chloroform Modelled by the PE Model®

Mode Wavenumber® IR¢ Raman (Ag =0 nm)¢ Raman (g = 514.5 nm)®
1 3181(6.3) 5.420(1.7) 48.503(2.8) 38.025(2.2)
2 3173(4.2)  8.721(2.5) 43.437(2.5) 34.684(2.0)
3 3123(6.3)  5.608(1.6) 55.379(7.0) 47.352(6.2)
4 3121(3.8)  1.819(1.1) 25.008(8.8) 21.702(7.5)
5 3060(4.8) 1.654(1.1) 190.269(21.0) 176.977(19.9)
6 3053(2.9)  0.462(0.4) 19.545(20.7) 18.658(19.4)
7 1806(6.1)  247.500(8.0) 1.568(0.1) 19.591(0.8)
8 1481(3.3)  24.193(1.9) 0.061(0.0) 1.431(1.2)
9 1466(3.3)  21.915(9.7) 0.868(0.1) 92.023(3.1)
10 1456(3.1)  9.627(8.0) 0.593(0.2) 15.365(5.4)
11 1451(1.8)  9.145(7.4) 0.451(0.2) 11.959(6.2)
12 1389(2.8)  91.587(3.0) 0.043(0.0) 1.328(0.4)
13 1378(27)  26.531(3.0) 0.099(0.0) 3.712(0.6)
14 1254(3.0)  63.353(3.7) 0.134(0.0) 7.977(0.5)
15 1116(2.4)  6.007(0.7) 0.009(0.0) 0.896(0.2)
16 1082(3.1)  0.131(0.1) 0.094(0.0) 8.819(0.7)
17 906(6.8) 5.812(0.8) 0.024(0.0) 4.245(0.9)
18 876(45)  0.524(0.4) 0.016(0.0) 3.294(1.2)
19 812(3.8) 1.555(0.3) 0.151(0.0) 47.513(3.1)
“ standard deviation in parentheses; ® given in units of cm™'; ¢ given in units of km-mol~!;
¢ given in units of C*s2.J71-m~2.kg™! [x107%]; ¢ given in units of C*.s>.J"t-m~2.kg™!
[x10757].
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Table S4: Wavenumbers and Associated IR and Raman Intensities of Acetone in Vacuum

Mode Wavenumber® IR Raman (A =0 nm)¢ Raman (\g = 514.5 nm)?

1 3175 4.496 45.151 35.311
2 3173 9.558 35.165 28.219
3 3123 11.851 60.138 51.772
4 3116 0.000 6.743 6.144
5 3056 4.817 177.032 164.416
6 3050 0.556 0.646 0.813
7 1824 200.895 1.390 16.493
8 1481 23.805 0.001 0.006
9 1462 31.168 0.922 23.635
10 1455 0.000 0.737 18.653
11 1449 0.737 0.076 2.149
12 1388 80.149 0.019 0.501
13 1377 21.572 0.073 2.842
14 1248 63.346 0.117 7.148
15 1116 3.473 0.004 0.427
16 1080 0.041 0.069 6.421
17 888 5.988 0.026 5.167
18 874 0.000 0.008 1.400
19 808 1.630 0.147 47.177

@ given in units of cm™!; ® given in units of km-mol™!; ¢ given in units of

C*s2.J1m~2kg™! [x107%); ¢ given in units of C*-s2.J"L-m=2kg™! [x107°7].
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Table S5: Wavenumbers and Associated IR and Raman Intensities of Acetone in Water
Modelled by the PCM

Mode Wavenumber®  IR?®  Raman (Mg =0 nm)¢ Raman (A\g = 514.5 nm)?

1 3173 8.333 81.628 43.498
2 3171 20.217 69.652 35.484
3 3129 8.581 129.258 65.803
4 3121 0.000 10.321 7.343
5 3060 1.185 376.677 209.725
6 3052 0.653 0.490 0.846
7 1779 375.709 2.584 20.111
8 1463 33.958 0.000 0.006
9 1446 59.376 1.685 27.546
10 1440 0.000 1.157 20.731
11 1438 3.565 0.179 2.873
12 1382 121.601 0.048 1.007
13 1368 50.516 0.294 6.463
14 1248 81.062 0.192 7.728
15 1113 9.859 0.024 0.776
16 1078 0.058 0.159 9.117
17 894 7.404 0.019 2.819
18 871 0.000 0.011 1.339
19 812 2.403 0.212 49.909
® given in units of cm™'; ? given in units of km-mol~!; ¢ given in units of

Cts2.J7tm~2kg™! [x107%]; ¢ given in units of C*-s2.J~-m~2.kg™! [x107°7].
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Table S6: Wavenumbers and Associated IR and Raman Intensities of Acetone in Acetone

Modelled by the PCM

Mode Wavenumber®  IR?®  Raman (Mg =0 nm)¢ Raman (A\g = 514.5 nm)?
1 3173 7.912 79.175 44.125
2 3171 19.369 66.795 35.899
3 3129 8.750 123.709 66.988
4 3119 0.000 10.104 7.400
) 3060 1.391 359.405 212.864
6 3051 0.586 0.580 0.910
7 1781 362.994 2.512 20.651
8 1463 33.059 0.000 0.007
9 1447 57.434 1.655 28.468
10 1441 0.000 1.132 21.157
11 1438 3.497 0.169 2.903
12 1382 118.933 0.046 0.992
13 1367 47.286 0.264 6.269
14 1248 80.024 0.187 7.920
15 1113 9.163 0.023 0.797
16 1077 0.058 0.147 9.169
17 894 7.280 0.020 3.015
18 871 0.000 0.011 1.383
19 811 2.297 0.209 50.913

¢ given in units of cm™';

1.0

given in units of km-mol~!; ¢ given in units of
Cts2.J7tm~2kg™! [x107%]; ¢ given in units of C*-s2.J~-m~2.kg™! [x107°7].
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Table S7: Wavenumbers and Associated IR and Raman Intensities of Acetone in Chloroform
Modelled by the PCM

Mode Wavenumber®  IR?®  Raman (Mg =0 nm)¢ Raman (A\g = 514.5 nm)?

1 3173 6.571 69.779 46.116
2 3171 16.264 56.795 37.421
3 3127 9.443 103.910 71.013
4 3116 0.000 9.300 7.604
5 3059 2.252 299.749 223.322
6 3049 0.460 0.795 1.056
7 1792 315.271 2.212 22.504
8 1465 30.509 0.000 0.007
9 1450 48.920 1.479 31.352
10 1445 0.000 1.035 22.684
11 1439 2.602 0.137 3.109
12 1382 109.084 0.035 0.881
13 1368 38.450 0.191 5.851
14 1247 75.909 0.168 8.579
15 1112 6.796 0.015 0.857
16 1076 0.040 0.118 9.367
17 892 6.859 0.024 3.868
18 871 0.000 0.010 1.558
19 809 1.919 0.196 54.698
® given in units of cm™'; ? given in units of km-mol~!; ¢ given in units of

Cts2.J7tm~2kg™! [x107%]; ¢ given in units of C*-s2.J~-m~2.kg™! [x107°7].

S-9



Table S8: Wavenumbers and Associated IR and Raman Intensities of Acetone in Vacuum
calculated with Gaussian®!

Mode Wavenumber®  IR?®  Raman (Mg =0 nm)¢ Raman (A\g = 514.5 nm)?

1 3174 4.524 45.283 35.363
2 3173 9.559 35.149 28.147
3 3122 11.881 60.095 51.674
4 3116 0.000 6.742 6.130
5 3056 4.886 176.814 163.890
6 3049 0.562 0.649 0.814
7 1822 199.965 1.376 16.380
8 1479 23.771 0.001 0.005
9 1461 30.895 0.916 23.519
10 1455 0.000 0.737 18.627
11 1449 0.640 0.077 2.174
12 1384 82.688 0.015 0.398
13 1375 22.729 0.081 3.147
14 1245 60.844 0.117 7.169
15 1115 3.476 0.004 0.428
16 1079 0.036 0.069 6.416
17 887 5.888 0.026 5.168
18 873 0.000 0.008 1.385
19 804 1.520 0.145 47.607
® given in units of cm™'; ? given in units of km-mol~!; ¢ given in units of

Cts2.J7tm~2kg™! [x107%]; ¢ given in units of C*-s2.J~-m~2.kg™! [x107°7].
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Figure S1: Absolute differences (in cm™') between average wavenumbers calculated with and
without projecting out translation and rotation.
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Abstract

We present an approach for the analytic calculation of arbitrary-order geometric derivatives of ener-
gies and electric dipole polarization properties in the polarizable embedding (PE) framework. The
approach builds on a flexible response theory framework that can handle both frequency-dependent
perturbations and perturbation-dependent basis sets at the self-consistent field level of theory, and in
which the effects of the environment are described by the PE model. As a proof of principle, the ap-
proach is applied to calculate second-order vibrational perturbation theory corrections to vibrational
energy levels and infrared intensities of acetonitrile in solution as well as for the HoOQCyg, host-cage
system.

1 Introduction

Spectroscopic data can be analyzed in terms of response functions.! They describe the change in the
energy or an observable property of the system, such as the molecular dipole moment, when subjected
to different kinds of perturbations such as electromagnetic fields, displacements of the atomic nuclei,
or small terms in the Hamiltonian that are otherwise neglected when optimizing the electronic energy
and molecular density. By analyzing the pole structure of the response function, excitation energies
of the molecular system can be identified, and from a residue analysis of the response functions one
can extract transition probabilities between different states in the molecular system.!? The ability
to calculate response properties by evaluating response functions for a wide range of perturbations
therefore translates into a corresponding ability to calculate observable spectroscopic data, and thereby
support or predict experimental observations.

The use of response theory in quantum chemistry for the calculation of properties of spectroscopic
relevance has a long history, and historical accounts have been given in recent reviews. %3 One can base
such calculations on finite-difference schemes or analytic techniques, or a combination of both. 4%,
Our group has had a particular interest in the development of analytic approaches based on a flexible
and open-ended response theory and a recursive algorithmic approach for its implementation 7.
This framework can in principle calculate any response property at the Hartree—Fock (HF) or density
functional theory (DFT) level of theory given that necessary contributions, such as differentiated one-
and two-electron integrals, exchange—correlation contributions, and solutions of so-called response
equations, are available through external modules. Our approach is implemented in the program
library OpenRSP with much of the same generality as the underlying theory. '

Response properties only involving perturbations arising from displacements of the atomic nuclei—
so-called geometric perturbations—have several important areas of application. For example, the
molecular Hessian can be used for the analysis of vibrational energy levels and normal modes in the
harmonic approximation for the vibrational wavefunctions.!! Using third- and semi-diagonal fourth-
order geometric derivatives of the energy, anharmonic corrections to the harmonic vibrational en-



ergy levels can be calculated using vibrational perturbation theory (VPT) truncated at second order
(VPT2),!%131 which can be further refined into the generalized VPT2 (GVPT2) method %1% em-
ployed in this work. Higher-order VPT techniques which involve even higher-order geometric deriva-
tives have also been investigated.®

Properties that in addition to geometric perturbations also involve perturbations related to in-
teractions with an electromagnetic field, whose coupling is represented in the form of electric and
magnetic multipole moments, can be used to describe scattering and absorption cross sections in
spectroscopies that probe molecular vibrations. This includes infrared (IR) and Raman spectroscopy,
or their chiroptical analogues vibrational circular dichroism (VCD) and Raman optical activity (ROA)
spectroscopy respectively. L

IR and Raman spectroscopy can provide important information about molecular structure and
bonding. '%'6 The IR and Raman absorption and scattering cross sections are related to the geo-
metric derivatives of the molecular dipole moment and polarizability, respectively. ! In the commonly
employed double-harmonic approximation, '! only the first-order geometric derivatives of these proper-
ties are needed, together with harmonic oscillator wavefunctions for describing the vibrational motion.
VPT2 can be used to go beyond the double-harmonic approximation for spectral intensities,!® and
involve second- and third-order derivatives of the relevant polarization properties and third- and semi-
diagonal fourth-order geometric derivatives of the energy. In addition to providing corrections to the
single-quantum transition features described by the harmonic approximation, these expressions also
give the leading-order contributions to two-quantum transitions (overtone and combination bands)
and even three-quantum 7 features in the spectra.

We have previously presented fully analytic calculations of anharmonic IR and Raman spectra in
vacuo.'® However, most experiments are carried out in solution or on larger molecular complexes,
and in these cases the effects of the surroundings on the molecule or subsystem of interest cannot a
priori be neglected. At the same time, it is in many cases computationally intractable to treat the
entire system at a fully quantum-mechanical level of theory. A common approach that strikes a good
balance between computational cost and accuracy is to use focused models that treat the smaller
region of interest in a fully quantum-mechanical manner (this region will henceforth be referred to as
the QM region) and account for the effects of the surrounding environment by a less computationally
demanding level of theory. A large number of different embedding methods have been developed, and
we refer to a number of reviews on this subject. 19:20:21

In continuum models, the environment is described by a polarizable dielectric continuous medium
interacting with the solvated molecule, which is placed within a cavity of the surrounding medium.
The polarizable continuum model (PCM)?2° is an example of one such method that has had consider-
able success owing to its reasonable computational cost and in general reliable results. Our open-ended
response-theory formalism has been interfaced to a PCM module by Di Remigio et al.?? for electric
dipole polarization properties and their single residues, and was applied to the fully analytic calcula-
tion of multi-photon absorption (MPA) cross sections up to fifth order. The analytic calculation of
geometric derivatives with PCM has been presented for first- and second-order derivatives by Cappelli
et al.?3.

One limitation of continuum models is that they are not able to model specific interactions between
the environment and the QM region, such as hydrogen bonds, whose effects may constitute impor-
tant contributions in the description of molecular vibrations.242> Atomistic modelling provides an
improved description of such interactions, and this has led to the development of discrete embedding
methods that retain the atomic structure of the environment while reducing the computational cost
significantly compared to a full QM calculation. A well-established atomistic model is the quantum
mechanics/molecular mechanics (QM/MM)2S class of methods, where the central molecular region
is treated with QM methods, while the environment is described by classical (molecular mechanics)
force fields.

Different QM/MM approaches have been presented to model the environment and its interaction
with the QM region, 272821 differing in the types of interactions that are accounted for. With elec-



trostatic embedding methods, only the QM region is polarized by the environment typically through
partial point charges in the environment. In polarized embedding methods, also the environment
is polarized by the QM region, e.g., through the addition of atom-centered polarizabilities in the
environment.

One way to model a polarizable environment is through fluctuating charges (FQ),2%:3° which, to-
gether with its extension to fluctuating dipoles, has been used for a variety of purposes. 31:32i33;34;35;36
Electrostatic and polarization interactions are described through a set of atom-centered charges (or
dipoles) that depend on the atomic parameters of electronegativity and hardness. Despite the advan-
tages of the FQ method, such as its accuracy and efficiency,3” the parameterization of the environment
is one of its key limitations, as it is based on fitting and therefore dependent on having a parameteri-
zation of the environment prior to calculations.

In the polarizable embedding (PE) method,3%3° the parameterization problem is addressed by
defining each environmental molecule as a fragment, and performing explicit QM calculations on each
of these environmental fragments, using the LoProp partitioning approach to derive atom-centered
multipoles and polarizabilities. *° This makes the PE method able to be straightforwardly applied for
any solvent, and even biomolecular system when used in combination with molecular fractionation
with conjugate caps.*'#?2 Another advantage of the PE method over the FQ method is that it can
account for any anisotropy of the environment through higher-order multipoles and polarizabilities,
though these effects are in general found to be small after averaging when an MD sampling is used as
the basis for the calculations.3”

The PE method is by now a well-established method that has been employed to a wide range
of applications. Over the years, it has been used to calculate both electric,*® optical#44> and mag-
netic3740 properties, and recently also harmonic vibrational properties and IR/Raman spectra®” from
the molecular Hessian and dipole and polarizability gradients. In this work, we present an open-ended
formalism for the analytic calculation of arbitrary-order geometric derivatives of the energy (in the
form of a quasienergy Lagrangian) and electric dipole polarization properties within the PE model.
This allows for PE effects to be included fully analytically in properties used for the calculation of
vibrational spectra including anharmonic corrections.

We here demonstrate this functionality with the calculation of anharmonic corrections to the vibra-
tional energy levels and IR intensities of the endohedral fullerene system HoO@Cg, and of acetonitrile
in different solvents. This requires calculation of energy derivatives up to fourth order, involving both
pure geometric perturbations and a mixture of geometric and electric-dipole perturbations.!® In the
present work, the underlying level of electronic structure theory is Hartree-Fock in lieu of further
generalization of the local implementation of exchange-correlation functionality. This suffices as a
proof-of-concept demonstration of the general theory and methodology.

The rest of this paper is organized as follows: In Section 2, we present the theory underlying
our approach for the calculation of arbitrary-order geometric derivatives of PE effects. In Section
3, we present some more details of our implementation together with the computational details for
our calculations. In Section 4 we present and discuss our results, before we in Section 5 give some
concluding remarks and an outlook.

2 Theory

Concerning methodology related to the main topic of the present work: The calculation of molecular
response properties for molecules in vacuum, using a density-matrix-based quasienergy formulation of
Hartree—Fock or Kohn—Sham density functional response theory and recursive programming, has been
described elsewhere.”® We also refer to earlier work for an introduction to the PE model used in this
work, 3848143 including our recent work on IR and Raman spectra calculated with this model,*” and
we will in this section only provide a brief recapitulation of the methodology in order to provide the
basic theoretical foundation for the present work. We also summarize the main elements of vibrational
perturbation theory used in this work.



2.1 Polarizable embedding

In the PE model, the system of interest is divided into a region to be treated at a quantum-mechanical
level of theory (the QM region) and a molecular environment described at a lower level of theory. The
environment is then further divided into partitions called fragments, where each fragment is typically,
but not necessarily, one molecule in the environment. Within each fragment, we define a set of sites,
positioned on the coordinates of each of the atoms.

We express the total energy E of our system as the sum of the energy of the QM region, which we
in this work will treat at the Hartree-Fock level of theory and denote by Equ, and the interaction
energy between the QM region and the environment, the embedding energy, Epg,

E(D) = Equ(D) + Epr(D), 1)

where D is the density matrix of the QM region in the atomic-orbital basis. Limiting ourselves to
Hartree-Fock theory and perturbations that do not simultaneously have an implicit dependence in
the basis set and depend on the frequency of the applied field, we can write the QM energy Eqn (D)

as7

Equ(D) & %G(D)D +hD + V'D + hoe, )

where Z indicates that the trace of all terms on the right-hand side should be taken, and where G
represents the electronic Coulomb and exchange contributions, h is the one-electron contributions
(kinetic energy and nuclear attraction), V* is the matrix representation of coupling to an external
field, and hyye is the nuclear repulsion energy.

The PE energy Fpg(D) is given by

Epp(D) = Eg(D) + EBI(D) + Ept + Epy?, (3)

where Eg5 (D) accounts for the electrostatic, Eid(D) for the polarization, Epg for the non-electrostatic
repulsion and ESsP for the dispersion contribution to the embedding energy.

The electrostatic contribution Eg}; originates from the static interactions between the electrons
and nuclei of the quantum system with the permanent multipoles of the environment

Nirag Sa K, ( 1
EgpD)==>">">" M["‘] Zt[“

a=1 s€a |a|=0

Nirag Sa K, Nnuc

Yy sy e M"]ZT (roT) Zo

a=1 s€a |a|=0
gh%SED + hpg, (4)

where the summation index a runs over the Ng,, number of environmental fragments, and where
we introduced a notation that groups the terms into first- or zeroth-order dependence on the density
matrix, as hgpD and Ay, respectively. The summation index s runs over the S, sites within fragment
a. The absolute value of the multi-index « runs to the maximum multipole order K of site s. For
a further description of these multi-indices, we refer to Refs. 44 and 47. The summation indices pu
and v run over the atomic orbitals in the QM region, with D, being the puv element of the density
matrix. The summation index n runs over the Ny, nuclei in the QM region and Z,, represents the
nuclear charge of nucleus n. Each site s has a permanent multipole moment AMP] of order |o|, and

tLV] (rs) is the one-electron electrostatic potential integral defined by
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where x,,(r;r,) is atomic orbital y, which has a parametric dependence on the nuclei. The interaction
tensor between site s and nucleus n, T (rs,ry), can be expressed in the general form

1
Tl py =% —— 6
(viwi) = 06, ©
As in our paper describing the implementation of harmonic IR and Raman spectra,4” we formulate
the induction energy in a general manner with respect to multipole order, so that

) 1 _
Ex(D) :fMTv
meg So Ntrag Sp K,

)Y IDIPY 3 5V D) VD), @)

a s€a teb |a|=0|8|=0

where the summation index b runs over the number of fragments Np.ag in the environment, ¢ over the
Sy sites in fragment b, and || runs over all the multi-indices up to the K; maximum multipole-order of
site t. The matrix M contains a list of polytensors containing all the induced multipoles, one for each
site, and V similarly contains the potentials. The induced multipoles are given by MT = —A~1V.
The interaction matrix Bt[b,'a] is an element of the matrix B = A~!, where

Pt T121 —o Tig
Tor Py oo Tag
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where P71 is the inverse of the polytensor of polarizabilities on site s, Tys is the polytensor of
interaction tensors between sites t and s, and S is the total number of sites in the environment. The
potential experienced on each site has its origin in either the electrons or the nuclei in the QM region,
or the permanent multipoles on sites in the other fragments, and can therefore be expressed as

V[a] (D, rs) — Vel,[uc] (])7 rs) + Vnuc,[a] (rs) + Vmul,[a] (1‘5)7 (9)

where the electronic potential is given by
vellel(D, r, Zt[“] (rs)Dyuws (10)
the nuclear potential by

Niuuc

e [a] Z T"] (rp,15) Zn, (11)

and the potential from the multipoles in the other fragments by
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where the summation index d runs over the number of fragments Ni.ag in the environment, except
fragment a, u runs over all the sites in fragment d and || runs over all the possible multi-indices up
to the maximum multipole-order of K, of site u. Inserting this into Eq. (7), we obtain an expression
for the induction energy arranged by order of density matrix dependence as
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where we in the last equality introduced a notation for grouping these contributions into orders of
dependence on D, where %G%‘]ﬁ:j (D)D, h‘rﬁ‘gD and hg‘g collect terms with respectively second-, first-,
and zeroth-order such dependence.

Finally, dispersion and repulsion terms will in this work be approximated by a 12-6 Lennard-Jones
potential*3 denoted by EX}, so that in this work, Ef® + ESsP = ELI where

a=1 s€a n
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where 4, = /€56, and oy, = %(as + on), where 5 and ¢, are potential well depths and o, and
o, are the distances beyond which the potential between the particles is zero, and where we note in
passing that ELj, is independent of the density matrix.

Finally, several of the PE interaction energy contributions presented above also lead to contribu-
tions to the Fock matrix F(D) = aE(D) . As for the energy in Eq. (1), we can consider the Fock matrix
as a sum F(D) = Fpp(D) + FQM(D) Where, based on Eq. (2),

Fou(D) = G(D) +h+ V', (15)
and where the PE interaction Fock matrix Fpg is given by

Fpp(D) = Gina(D) + hjng + hes. (16)

2.2 Geometric derivatives of polarizable embedding contributions

We will in this section develop expressions for the general-order geometric derivatives of the PE
interaction terms presented in the preceding section, including combination derivatives that both
involve geometric and electric dipole perturbations. Geometric derivatives are expressed in a Cartesian
basis, and for a molecule with N atoms, there are 3N Cartesian components of the nuclear positions.

We note that many of the PE interaction terms contain products of terms that depend on nuclear
positions: The highest-order dependence occurs in the Tri G‘“d(D)D term of the induction energy,



which is of fourth order in this regard. We therefore begin by considering some generalized differen-
tiation formulae for product terms which can also be applied, where relevant, for differentiation with
respect to electric dipole perturbations.

For a two-term product (u - v), a generalized differentiation of order n can be expressed through
the differentiation operator d(™, using the general Leibniz rule?, as

A0y =Y <Z> ARy d®y, (17)
k=0

By substituting v < ¢gf and u < hl, we can extend this formulation to cases with products of three
or four terms, so that

n k
A (g f) = Z( > (n—k)u.z(’;)dw—ﬂg.du)f (18)
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and
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x Z <k>d’“ Ng-dD (19)
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J
respectively.

Using Egs. (17)-(19), we now consider the differentiation of the individual terms in Epg(D).
Starting with the density-matrix first-order electrostatic term, Trh@pD in Eq. (4), we see that it is

a product of two terms that depend on the nuclear coordinates; fLV]( s), through the basis sets, and
D, Defining d!(,h‘) as a |y|-fold geometric perturbation of multi-index v and using Eq. (17), we get
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The only terms in the PE contributions that are dependent on electric perturbations are the density

matrices. Therefore, defining d;m) as an m’th order electric perturbation, an m-fold electric derivative
of Trhgy D becomes

Nirag S,

K
gD - - 3 30 35 E, M Sl - D (21)

a=1 s€a |a|=0
and a mixed geometric and electric derivative becomes
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The next term in Eq. (4), h{, is simpler because it only contains one term that depends on the
nuclear coordinates, T ](rs, r;,), and furthermore depends only on the coordinates of a single nucleus,
n, which means that it will vanish upon differentiation with respect to geometric components that do
not all belong to the same nucleus. The geometric derivative of hpy is given by
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where d_EY]T["’](r57 r,) = Tlt(r,, r,), as long as the differentiation is with respect only to nucleus n,
and zero otherwise. As this term has no dependence on density matrices, it will vanish upon electric
perturbation.

Turning now to the induction terms, the term Tr %GSE(D)D is a product of four terms that all
depend on nuclear coordinates. Using Eq. (19) gives
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upon a |y|-fold geometric perturbation, where the summation indices p and o run over the atomic
orbitals in the QM region. Due to its second-order dependence on the density matrix, it becomes
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upon an m-fold electric perturbation, and the mixed electric dipole and geometric derivatives are
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The second term of the induction energy, Trhi¥d D, is a product of three terms. Using Eq. (18)
and that the potential from the multipoles, V™ol always vanishes upon geometric differentiation,
we have that

Nirag Sq Nirag S, K

APV TrhBED = Z Z Z Z Z Z alﬁl

a s€a teb |a|=0|3|=0
[kl I
x Z < )d(hl 5]) (Vnuc,[ﬂ( t)+Vm“1’W](rt))Bt[f’a]
16]=0
x d{Dyelel(D, r,)
Nirvag So Nivag Sy K, 171 I
955 35 95 9 S oY ()
a s€a teb |a|=0 |B|=0 |§|=0
Niuc
X (Z d;lvlflé\)T[ﬂ] (Cn, 1) 2 + 50(‘7‘_‘5”‘/"‘“1’”] (h))
n

« Bl ZZ <‘5|>d(|5\ iy (,](l‘s)déj)me (27)

po 3=0

where d(gw)T["] (tp, 1) = (=D)AIT+0 (¢, v, if dgm) corresponds to a differentiation with respect
to nucelus n only, and zero otherwise.
Due to its first-order dependence on D, electric differentiation results in
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while mixed electric and geometric differentiation is given by
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All remaining contributions to the PE energy are independent of D, and will therefore vanish upon
differentiation with respect to any electric dipole perturbations.

The induction energy term h%‘g is a product of two terms that depend on the nuclear coordinates.
Using Eq. (17) and following the reasoning above, we can write the geometric derivatives of this term
as
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m

where the summation index m runs over the Ny, nuclei in the QM region.
Finally, the Lennard-Jones potential contributions can be written as functions of functions, on the

k
form (ﬁ) , where k is either 12 or 6, and it is therefore necessary to employ a multivariate version

of the Faa di Bruno formula®® which formulates the n’th order derivative of a function f(g(z1,...,2,))
with respect to x1,...,z, as
on 8‘B|U
——fly) = FI™ (y) —_— (31)
Oxy - Oxo -+ Oxyp, E;I Bl;[’r jeB 0w

where the variables z; may all be different, but need not necessarily be so. In the present case, they
are restricted to the three Cartesian coordinates, z, y or z, all belonging to the same nucleus n, as
the LJ potential vanishes upon differentiation with respect to coordinates belonging to more than one
nucleus. Note that the LJ potential also vanishes upon differentiation with respect to electric field
strengths. The summation index 7 runs over the II possible partitions of the set K = {1,2,...,n},
in other words, IT is the collection of all the distinct ways the values in K can be grouped into
non-empty subsets, where each values is included exactly once.®! The index B runs over each block
within partition 7, and the index j runs over all elements in block B. For example, for a third-order
derivative, K = {1, 2,3}, and
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1= ({1], [2], B]), ([1, 2], (3]), ([1, 3], [2), ([1, [2,3]), ([1, 2, 3)) (32)

In this case, there are five partitions, the first of which is 7 = ([1],[2], [3]). This partition has three
blocks, the first of which is B = [1], which contains only one element, j = 1.
Defining

1
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(33)

where T1(00:0)] is the zeroth-order interaction tensor, corresponding to a charge-charge interaction,
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we can formulate a general expression for the x15 - - - x|, component of the |y|'th-order derivative of
the LJ potential with respect to nucleus n as
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where k, is the number of the variables x1,xa,...,2) that belong to Cartesian coordinate z, etc.,

giving k, + k, + k. = k. Note that the LJ potential will vanish upon any perturbation with respect
to more than one nucleus at a time.

Finally, we remark that many of the expressions shown in this section for differentiated PE inter-
action contributions involve differentiated density matrices. The obtainment of these differentiated
matrices and the evaluation of the full expressions for the response properties also entail the obtain-
ment and use of differentiated Fock matrices when using the aforementioned open-ended response
property approach. We refer to Refs. 7 and 8 for more details about these aspects of the general
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response property calculation. The expressions needed to evaluate the required differentiated Fock
matrix contributions on the right-hand side of Eq. (16) can be found from an analogous development
to that presented above, and we do not show them in further detail in the present work.

Having carried out the development presented above, the open-ended expressions for derivatives of
PE interaction contributions can be combined with our general framework for open-ended calculation
of molecular response properties, ”*® and our present implementation of this is described in some further
detail in Section 3.

This extension of our earlier open-ended implementation of the PE model for electric dipole prop-
erties** to also include geometric derivatives allows us to calculate properties involving molecular vi-
brations. The necessary one- and two-electron integrals are obtained from the high-order differentiated
integrals (HODIs) available in the LSDalton program package.?? The HODIs have been implemented
utilizing the unified scheme for calculation of differentiated and undifferentiated integrals of Reine,
Tellgren and Helgaker.?3

2.3 2nd-order vibrational perturbation theory

In this work, we apply the methodology presented in this paper to the calculation, including sol-
vent/environment effects, of anharmonic IR intensities and vibrational energy levels, whose working
expressions are obtained from second-order vibrational perturbation theory (VPT2),%12:13i15:54 which
will be recapitulated in the following. VPT2 requires the calculation of second-, third- and fourth-order
geometrical derivatives of the molecular energy as well as, for corrected IR intensities, first-, second-
and third-order geometrical derivatives of the dipole moment. In the following, geometric derivatives
are expressed in a normal-coordinate basis, obtained for isolated molecules through a vibrational anal-
ysis of the molecular Hessian.'' However, in the embedded systems where the PE method has been
used to model the environment, a partial Hessian vibrational analysis (PHVA)®>%%6:57 is employed, us-
ing only the QM-QM block of the full Hessian, as done in our previous work.*?. From the vibrational
analysis we also obtain the harmonic vibrational frequencies.

The straightforward application of VPT2 may lead to problems with near-singularities related to
degeneracies and accidental near-degeneracies by Fermi resonances.'? In order to address this issue,
we choose in this work to largely follow the so-called generalized VPT2 (GVPT2) model, which has
established itself as a well-performing approach to handle singularities due to Fermi resonances, taking
terms deemed to be affected by such resonances out of the perturbation treatment and resolving the
involved Fermi state polyads in a variational manner? (as was also carried out in Ref. 12); or the
deperturbed VPT2 (DVPT?2) model'5°8, where the affected terms are removed as in GVPT2 but no
subsequent variational treatment is done.

In VPT2, using indices ¢ and j for the Np,0q vibrational modes, corrected vibrational fundamental
frequencies vy,, overtones vy,, and combination bands v1,1;, all in energy units, are given by

Nimod
J#i
vy, =211, +2Xy;, (41)
and
v, = vy, + oy + X, (42)

where w; is the harmonic frequency of mode 4, and where the anharmonicity matrices X;; and X;; are
given by

Kiiii k2 4 1 1
Xii _ ik [ % - ), 43
16 g 32 (wk, * 2w; +wr 2w; — wk> (43)
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and

2
D D D B
= 8 wi + wj + wi wi + wj + wi

1 1 )7 (44)

wi —Wwj +wr Wi +w; —wk

where kjjr and kjjr; are the frequency-reduced third- and fourth-order geometric derivatives of the
potential energy—that is, the cubic and quartic force constants. We have in the above expressions
and in our implementation and calculations not included Coriolis interactions. Such interactions are
most pronounced for small, highly symmetric molecules where it may lead to intensity borrowing and
also changes in the vibrational energies. It is assumed to be less important in the case of solvated
systems, although reports have been made of Coriolis effects in larger molecules in solution.

From Eq. (43), we note that Fermi-resonance singularities or near-singularities can occur in the
last term if 2w; = wy, and similarly in Eq. (44) in the three last terms if any of w; + wy =~ wj,
wi + Wi R wj or w; + wj & wy occur — particularly so if the associated state coupling as dictated by
the corresponding cubic force constant is appreciably large. The decision about whether to regard a
tuple of states as involved in a Fermi resonance in this context must necessarily be subject to a choice
of threshold, and an established test is to look at a dual set of criteria, where both of41%1°

|20; — 73| <200 em™;  |Aj| > 1em™?, (45)
for the diagonal case, involving the first overtone of mode i and the fundamental k, or both of
|7 4+ 7 — 0| <200 em™;  |Agg| > 1em ™ (46)

for the off-diagonal case, involving a combination state of modes i and j and a fundamental k, must
be satisfied in order for the involved states to be deemed as being involved in a Fermi resonance. In
the above expressions, the so-called Martin parameters*1? A;; and A, are given by

K
A = iik R 47
K7 25600 - hiet (20; — D)3 (47)
and
kL
A = L (48)

6400 - hic*(v; + v; — vg)3’

where 7; is the harmonic wavenumber of mode i, i.e. corresponding to w;, but in units of cm™! instead
of energy units. The near-singular terms associated with the states involved in these resonances may
be disregarded in the perturbation treatment. In GVPT2, an additional variational treatment is per-
formed (after removal of the aforementioned terms) by solving a new eigenvalue problem for a coupling
matrix containing the so-called deperturbed frequencies and cubic and quartic force constants. 412

Infrared intensities are commonly represented by the molar decadic absorption coefficient ¢, which
for an excitation from the ground state to an excited state |n) is given by

e _ mNabp Z (1Yo,

= 2 f(w; Un,, Tn 4
3Tn(10)e0he T 0n, ), (49)

a=w,y,z

where Ny is Avogadro’s constant, g¢ is the vacuum permittivity, ¢ is the speed of light and % is the
reduced Planck’s constant. The wavenumber associated with the given state is #,. The transition
dipole moment (0|44 |n) from the ground state to |n), of Cartesian coordinate element «, is represented
by (1*)o,n. The lineshape function f accounts for effects such as the finite lifetime of the excited state,
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employs a broadening factor v,,! and is modelled by the Cauchy distribution. In this work, |n) is

either a singly excited state |1;) of a mode 4, or a doubly excited combination state |1;1;) of modes 4
and j or overtone state |2;).

A formulation of anharmonic corrections to the vibrational energy levels has already been pre-
sented, and we will now show expressions for the anharmonically corrected transition dipole moment
— to be used in Eq. (49) — obtained by the perturbation-theory-based approach developed by Barone,
Bloino and co-workers. %17 The form of the working expressions for these corrections is unchanged
upon inclusion of PE effects, and are given by
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for the corrected fundamental bands, and by
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for overtone (i = j) and combination bands (i # j). In Egs. (50) and (51), the only harmonic (. e. not
anharmonic) contribution is the first term on the right-hand side of Eq. (50). These equations are here
formulated for the specific case of electric polarization properties, while the formulation in the original
works is general also for their magnetic counterparts. As there is a minor error in the expression for
the corrected fundamental transition moments in the original work (Ref. 15), we refer the reader to
the more recent work in Ref. 17, where this has been corrected. We note from Egs. (43) (44),(50),
and (51), that the expressions to be evaluated involve the full cubic force constant tensor but only
the semi-diagonal quartic force constants.

As was discussed concerning the corrections to vibrational energy levels, the IR intensity expres-
sions can likewise be affected by Fermi resonances. These are identified in the same way as shown
above for the energy levels, but are in the present work treated in the DVPT2 fashion, which en-
tails simply removing the affected terms from the perturbation treatment. We note that a GVPT2
treatment for transition moments has been developed by Vazquez and Stanton%°
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In addition to Fermi resonances, transition moments for fundamentals (not overtone and combina-
tion bands) can be subject to another source of near-singularity, namely the so-called 1-1 resonances
which occur in terms of the type 1/(w; — wj;) (due to the condensed form of our expression, they are
not all directly visible; see Ref. 17 for the factorized equations) when w; ~ w;. These resonances can
be identified by a three-fold test, whereby a 1-1 resonance is deemed to occur if®®

|7; — 7| <100 em ™, (52)
is true, and at least one of
|K|>10cm™!, (53)
and
|K|/(|7; — 7;)* > 1 cm, (54)

is true. The factor K is here a measure of coupling strength — k;ji/(100hc) for terms involving
quartic force fields and k;jikimn/ (100hc)? for terms containing a product of cubic force fields. In the
case of a product of cubic force fields, the threshold in Eq. (53) is 10 cm~2 instead of 10 cm™!, and
in Eq. (54) 1 (dimensionless) instead of 1 cm.

We remark that from personal communication with Bloino,®! we have been made aware that
in cases where 1-1 resonances have been identified, and the affected near-singular terms have been
removed, then certain term cancellations that were valid in the absence of such removal and were
applied to produce the expression underlying Eq. (50) in the present work no longer hold. In order to
achieve complete consistence in such a situation, a version of Eq. (50) which takes this into account
should be used, but this has not been done in the present work.

61

3 Implementation and computational details

Implementation

Our present implementation of the theory presented above takes place in an environment of well-
defined modules. The underlying host program is the LSDalton®%%2 program package, which also
contains the HODI®*% module for perturbed one- and two-electron integrals. The identification
of and overarching management of terms contributing to a response property is carried out by the
OpenRSP open-ended response program library.'© The calculation of PE contributions is managed
and carried out by the FraME®* library.

The general program structure for a response property calculation in this framework can be sum-
marized as follows: LSDalton will invoke OpenRSP for the calculation of a given property or collection
of properties, supplying the unperturbed Fock, density, and overlap matrices — F, D, and S, respec-
tively. Any PE contributions to these matrices are supplied by FraME. OpenRSP will then identify
and manage the calculation of the necessary perturbed QM and PE contributions needed for calcu-
lating the perturbed F and D used in subsequent stages of the calculation, and then do the same for
the contributions needed for the actual response property evaluation. OpenRSP identifies, obtains
and assembles the various differentiated contributions, making use of callback routines to the host
program, which in the present case is LSDalton, which in turn calls the appropriate modules for their
calculation. Terms with a zeroth-, first-, and second-order dependence on the density matrix are
grouped into separate callback categories, and there is also a callback category separation between
differentiated Fock matrix and energy contributions. We note that the differentiated PE contributions
to the Fock matrix and energy were similarly grouped into orders of density matrix dependence and
are considered under the same callback categorizations.

Non-PE one- and two-electron integral contributions are calculated using the HODI module or
other internal routines within the LSDalton package. PE contributions — entailing e.g. the calcula-
tion of undifferentiated or differentiated electrostatic-potential integrals, interaction tensors, Lennard-
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Jones contributions, and any subsequent contraction with perturbed or unperturbed density matrices
supplied as part of the invocation of a callback function — are obtained from FraME, which in turn
calls HODI for any necessary differentiated integrals. OpenRSP also uses callback functionality for
obtaining the nuclear repulsion contributions that are independent of the density matrix and for
obtaining solutions to the so-called response equations.%®

Both OpenRSP’s and FraME’s matrix operations, including their connection to LSDalton’s native
matrix functionality, are mediated by the use of the QcMatrix package%®, making such operations in
the two former modules agnostic to any specific implementation of matrix structure and operations
in the host program or elsewhere.

The overall structure of the programs and modules used for the calculation of energy derivatives are
illustrated in Figure 1. We also note that in addition to what has been described in this current section
and visualized in Figure 1, we use the independent Python Package for Vibrational Spectroscopy,
SpectroscPy, %7 to obtain vibrational energy levels and intensities and to plot the calculated spectra.

LSDalton (host program)
FraME contributions to D, F

OpenRSP library

Callback routines
in LSDalton

D 0th order
Fock, energy

Linear response
equation solver

D 1st order
Fock, energy

f D 2nd order
L energy

Overlap
operator

HODI, other |
integral /nuclear J

’
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

routines
Rsp. :
Internal solver
LSDalton |
functionality | ﬁ
[N | QcMatrix library
-

Figure 1: An overview of the program modules used in this work including the FraME library.
Exchange-correlation (XC) functionality is not used in this work but is included here for completeness.
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Water in fullerene

For the generation of the structure of the endohedral fullerene complex, coordinates for Cgy were
obtained from the Protein Data Bank%® and a single water molecule was inserted using Avogadro%%70.
The resulting structure was converted to a suitable format using the Molecular formats converter™!.
The PyFraME" package was then used to identify the water molecule as the QM region, and to
calculate classical parameters for each atom in the fullerene (which was identified as the environment),
using the implementation of the LoProp partitioning approach®®7 in the Dalton program%%7. The
calculations were performed using the B3LYP functional "»7677:78:79 and a recontracted version of
the 6-314+G* basis set 308182 (called loprop-6-314+G* in Dalton). LJ parameters were taken from the
OPLS-AA force field. %3

Geometry optimization was then performed on the encapsulated water molecule with a frozen
environment using LSDalton®%%2 and FraME®!. The structure was optimized with Hartree-Fock
(HF) as the underlying electronic structure level of theory and the pcseg-28 basis set. The optimized
endohedral fullerene complex is shown in Figure 2. Subsequent response calculations for properties
needed to obtain anharmonic vibrational energies and IR spectral intensities were then performed,
using the same packages in combination with the open-ended response theory framework OpenRSP. 19
Similar geometry optimizations and response calculations were also performed for water in vacuum
for comparison. The Python Package for Vibrational Spectroscopy, SpectroscPy%7, was then used
to perform the harmonic vibrational analysis and to calculate anharmonically corrected vibrational
energy levels and IR spectra. A broadening factor of v; = 3 em™! for each peak was used in the
visualization of the vibrational spectra. Concerning the vibrational analysis, for the water molecule
in isolation, the rotational and translational modes were projected out, but for water in fullerene, this
projection cannot be carried out, since we use PHVA. In order to address this, we instead define a
harmonic wavenumber cut-off above which we from visual inspection judge the modes to be reasonably
dominated by vibrational motion, and exclude all modes whose harmonic wavenumbers fall beneath
this threshold from all subsequent analysis. In the case of endohedral fullerene, this cut-off was set at
1500 cm™t.

Figure 2: Optimized geometry of the endohedral fullerene complex with water.

Acetonitrile

The study of the solvated acentonitrile system was carried out using the three solvents chloroform,
acetonitrile and water, in addition to a reference calculation for acetonitrile in vacuum. Classical MD
simulations were performed with GROMACS 2018.38%86:87 using the optimized potential for liquid
simulations all-atom (OPLS-AA) force field. 3 The OPLS-AA topology for acetonitrile and chloroform
were taken from the GROMACS molecule and liquid database at virtualchemistry.org, %% while the
TIP3P potential®® was used for water. An initial cubic box of 60A x 60A x 60A containing a
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single acetonitrile molecule was created, and solvent molecules were added. The structures were then
minimized using 200 steepest descent steps and 40 000 conjugate gradient steps. An initial NVT
equilibration was run for 0.5 ns with a time-step of 0.01 fs, followed by two NPT equilibrations, the
first for 0.2 ns with a time step of 0.05 fs, and the second for 5 ns with a time step of 0.5 fs. A second
NVT equilibration was then run for 1 ns before an NVT production simulation was run for 10 ns,
both with a time step of 0.5 fs. All equilibrations and simulations were performed using the velocity
rescaling®! (298 K) thermostat and the Berendsen barostat®? (1 bar), both with a coupling constant
of 0.5 ps. Periodic boundary conditions, the leap-frog integrator and a cut-off at 15 A were used.
Outside the cut-off, electrostatic interactions were modelled using the Ewald smooth particle mesh. %3
Snapshots from the final trajectory were extracted at 10 ps intervals.

In this proof-of principle work, only 10 snapshots, every second among the first 20 snapshots,
were selected for further calculations. In a similar procedure to what was described above for water
in fullerene, the central acetonitrile molecule was defined as the QM region, and solvent parame-
ters were calculated using PyFraME, Dalton and LoProp, for each of the selected snapshots. These
structures were then optimized with LSDalton and FraME with HF as the underlying level of elec-
tronic structure theory and the pcseg-2 basis set, before response calculations were performed with
the LSDalton/FraME/OpenRSP setup to obtain the necessary response properties for calculating
anharmonic vibrational energy levels and IR spectral intensities. Due to convergence issues related
to the geometry optimization, the analysis consists only of 9 snapshots in the case of acetonitrile
solvent. Following the procedure outlined above for the water in fullerene calculations, a harmonic
wavenumber cut-off, for the present calculations chosen at 400 cm™!, was employed, and all modes
whose harmonic wavenumbers fall beneath this threshold were excluded in all further analysis. The
IR lineshapes from each of the snapshots within a specific solvent were broadened as described for the
water in fullerene calculations, using the same broadening factor of 7; = 3 cm™!, and then linearly
combined for the spectra presented in Section 4, while the table values presented in Tables 3-6 in
the Supporting Information are the result of averaging over the snapshots. Similar geometry opti-
mizations and response calculations were also performed for acetonitrile in vacuum for comparison,
but in this case, the aforementioned harmonic wavenumber cut-off was not employed, and rotational
and translational modes were instead projected out. All relevant data associated with the water in
fullerene and acetonitrile in solvents calculations performed in this work can be found in the Dataset
associated with this manuscript. %%

4 Results and discussion

Water in fullerene

Infrared spectra for water in Cgy and in vacuum are shown in Figure 3, and the corresponding
numerical values can be found in the Supporting Information (SI). Bond lengths and bond angles
are also tabulated in the SI. Combination bands are observed to be weak, and overtone features are
so weak that they are not discernible in Figure 3. Both overtone features and combination bands are,
however, presented in separate plots in the left and right panels in Figure 4, respectively.

The inclusion of anharmonic effects leads to a lowering of the vibrational frequencies of all the
fundamental transitions, ranging from around -200 cm~! for the asymmetric stretching mode (the
most high-frequent of the fundamental modes in the region around 4000 cm~!) to -70 cm™! for
the bending mode (in the region around 1700 em~!). The effect of anharmonic corrections to the
intensities is much less dramatic, with a maximum change of 5 km - mol™*.

With the embedding of water in fullerene, we observe a negative frequency shift for all transitions
with respect to the ground state, including overtones and combination states. The most prominent
frequency shift for the (anharmonic) fundamentals is observed for the asymmetric O-H stretching
mode, with a shift of -71 cm™!. In general, the overtones display frequencies and frequency shifts
of about twice those of the fundamentals. As for the fundamentals, the most prominent frequency
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Figure 3: IR spectra for water in fullerene (left panel) and in vacuum (right panel). Double-harmonic
approximation spectra in red; spectra with anharmonic corrections plotted separately for fundamental
transitions (dark blue), overtones (green) and combination bands (cyan).
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Figure 4: Close-up of Figure 3, separated into spectra for overtones (left panel) and combination
bands (right panel).

shift (-143 em™!) is displayed for the overtone of the asymmetric O-H stretching mode (the most
high frequent in the region around 8000 cm™!). Among the combination bands, the most prominent
frequency shift takes place for the combination of the two stretching modes.

All fundamental transition features gain intensity when the water molecule is enclosed in fullerene.
The largest increase is observed for the asymmetric O-H stretching mode, which is increased by 64
km - mol ™!, while the highest relative change is observed for the symmetric stretching mode, which is
increased by 149 %. An interesting observation is that for water in fullerene, there is a 1-1 resonance
between the two stretching modes which is absent in vacuum. This affects the corrected intensities of
the fundamentals, but the actual numerical implications are not large. Most overtone and combination
band intensities are increased by less than 10 % upon embedding in fullerene. There are, however,
two exceptions, namely the overtone of the asymmetric stretching mode, whose intensity is decreased
by 57 % and the combination band of the two stretching modes, whose intensity is decreased by 18

%.

Acetonitrile

The harmonic and anharmonic IR spectra for acetonitrile in vacuum and the three different solvents
are shown in Figure 5, demonstrating the effect of anharmonic corrections. Figure 6 shows spectra
exclusively for the fundamental transitions, but with all solvents in the same plot, in order to better
illustrate solvent effects for these transitions. Similar plots are shown for overtone features and
combination bands in Figures 7 and 8, respectively. The corresponding numerical values are collected
in the Supporting Information. Bond lengths and angles are shown in Table 1, and changes in these
upon solvation are typically found to be small. In this section, all frequency shifts as a result of
embedding in solvent are based on the positions of the peaks in the spectra, while values related to

19



intensities, the inclusion of anharmonic effects, and the frequency difference between individual states,
are taken from the tables in the Supporting Information.
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Figure 5: Infrared spectra of acetonitrile in various environments. Double-harmonic approximation
spectra in red; spectra with anharmonic corrections plotted separately for fundamental transitions
(dark blue), overtones (green) and combination bands (cyan).
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Figure 6: Anharmonic fundamental IR spectra for fundamental transitions in acetonitrile in vacuous,
chloroform, acetonitrile and water environments. The lower and upper right panels are magnified
versions of the upper left.
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Figure 7: Overtone IR spectra for acetonitrile in vacuous, chloroform, acetonitrile and water environ-
ments. The lower and upper right panels are magnified versions of the upper left.
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Figure 8: Combination band IR spectra for acetonitrile in vacuous, chloroform, acetonitrile and water
environments. The lower and upper right panels are magnified versions of the upper left.

Anharmonic corrections lead in general to a lowering of the vibrational frequencies of the funda-
mental transitions in all solvents, the only exception being the C-C stretching mode in water and
acetonitrile which displays a small shift towards higher frequencies when anharmonic effects are in-
cluded. In contrast, no clear trend is seen for the anharmonic corrections to the intensities. There
are six strong fundamental bands belonging to the following modes: Three C-H stretching modes in
the region above 3000 cm ™!, the C-N stretching mode at around 2550 cm ™! and two H-C-H bending
modes at around 1550 cm~!. Two weaker CHs rocking modes can be found around 1550 cm™!, a
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Table 1: Bond lengths® and angles® for acetonitrile in various solvents® and vacuum

Feature Vacuum Chloroform  Acetonitrile Water
Bond lengths

C-C 1.464 1.464 1.465 1.462

C-N 1.126 1.126 1.127 1.127

C-H 1.080 1.079 1.079 1.079
Bond angles

C-C-N 180.0 179.6 179.4 178.8

H-C-C 109.7 109.5 109.4 109.1

@ given in units of A; ¥ given in units of degrees; ¢ values are averaged over the snapshots.

1 1

C-C stretching mode at around 950 cm™* and two weak N-C-C bending modes at around 450 cm™".
There is also a very weak CHz umbrella mode in the region around 1500 cm™!, but its intensity is so
small as not to be discernible in any of the spectra.

For the isolated acetonitrile molecule, and all solvents except water, the asymmetric and symmet-
ric C-H stretching modes are well separated in frequency in the harmonic approximation, resulting
in two distinct peaks with the former being the most intense, bearing in mind that its intensity is a
combination of those of the fundamental transitions for two asymmetric modes. However, when an-
harmonic corrections are included, the symmetric and asymmetric C-H stretching frequencies become
more similar, resulting in a single, more intense, band. When solvents are included, we observe a
different effect, where the frequency split between the symmetric stretch and the most high-frequent
of the asymmetric stretching modes is increased, ranging from 16 cm™! in chloroform to 38 cm™" in
water. This is due to the fact that whereas the frequency of the symmetric stretching mode is quite
unchanged upon addition of solvent, the frequencies of both asymmetric modes, and in particular the
most high-frequent one, are increased by up to 36 cm™!, compared to vacuum.

Among the previously mentioned dominant fundamental peaks, the most prominent belong to the
the C-H stretching modes, the C-N stretching mode and the H-C-C bending modes, which will be
discussed in the following. The most intense peak in the fundamental IR spectrum belongs to the
C-N stretching mode. The addition of a solvent leads to a negative frequency shift for this peak for
all solvents, of up to -13 cm™!. The frequency shift is most pronounced upon solvation in acetonitrile,
which is in agreement with the fact that embedding in this solvent also leads to the largest elongation
of the C-N bond. No clear trend in the solvent-induced frequency shifts is apparent for the other two
prominent fundamental bands, but the frequency shifts are in general smaller than those for the C-N
stretching mode, in line with the smaller changes observed in the corresponding bond lengths and
angles upon solvation. A qualitative difference between acetonitrile in solvents and in vacuum can,
however, be observed in the two H-C-H bending modes, whose frequencies in vacuum are very close,
but are split by up to 9 ecm~! in water. The largest solvent effect on the intensities is observed for
the C-N stretching mode fundamental transition in water, whose associated intensity is increased by
more than a factor of 5 compared to vacuum. The other solvents also leads to a marked increase in
the intensity associated with this transition — an increase by roughly a factor of 1 to 2 compared to
vacuum. The intensity of the C-H stretching modes’ fundamental transitions are on average reduced
by approximately 50 % with the addition of solvent, while those for the H-C-H bending modes on
average increase by 50 %.

Among the overtones, two peaks dominate, belonging to the two asymmetric C-H stretching over-
tones at 6300 cm™! and the two N-C-C bends at 900 cm~!. All overtone bands for the investigated
systems are weak, with intensities lower than 2 km - mol~'. Both of these features display an increase
in frequency when adding a solvent, by up to +58 cm™! for the N-C-C bending mode in water. In
contrast, only minor changes upon solvation are observed in the intensities for these two dominating
peaks, except for the N-C-C overtone band, whose intensity increases by 50 % in chloroform, but
decreases by 64 % in water, in both cases relative to vacuum. From Figure 7 it is clear that both of
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the overtone features experience a high degree of broadening upon solvation, which to a large extent is
due to the MD sampling, in particular for water. The broadening is further increased by a frequency
split within each category of vibrational motion, in particular in water, where the two asymmetric
C-H stretching modes are split by 29 cm~! and the two N-C-C bending modes are split by 27 cm ™.

There are three major combination bands, belonging to the combinations of the two methyl rocking
modes with the two N-C-C bending modes (at 1600 cm™!), the combination of the C-C stretch with the
C-N stretch (at 3500 cm~!) and the combination of each of the two H-C-H bending modes combined
with each of the two asymmetric C-H stretching modes, mixing in the spectrum with the combination
bands of the methyl umbrella and the asymmetric C-H stretch (at 4700 cm~!). The most intense
of these features, at 1600 cm™!, is due to several overlapping bands, each with individual intensities
of up to 2.5 km - mol~! in water. All these combination bands show considerable frequency shifts
upon solvation. The peaks at around 1600 and 4700 cm~! both show positive frequency shifts of up
to +63 cm™! in acetonitrile compared to in vacuum. The peak at 3500 cm~! experiences a negative
frequency shift of up to -64 cm™! with water compared to vacuum.

For the results presented in this section that involve solvation, we note that the extent of the
conformational sampling employed and the size of solvent region included in this proof-of-concept
work were quite limited, and may thus have produced results that are not fully representative of bulk
solvation behavior. We therefore remark that the findings presented above must be viewed with this in
mind, and that future applications of this methodology would likely benefit from increased attention
to these topics.

5 Conclusions and outlook

We have presented an open-ended formulation of geometric derivatives of environment interaction
contributions described by a polarizable embedding model. The strategy underlying the present
formulation and implementation is aligned with an existing open-ended formulation of response theory
and the methodology described in this paper is applicable for calculating polarizable embedding
contributions to molecular properties corresponding to freely chosen combinations of geometric and
electric dipole perturbations. We have presented proof-of-principle results that demonstrate this
functionality by calculating anharmonically corrected vibrational energy levels and infrared spectra
for water in a fullerene cage and acetonitrile in various solvents, comparing each set of calculations to
their vacuum counterparts.

We observe that the encapsulation of a water molecule in fullerene shifts the vibrational wavenum-
bers of water to lower values. The same trend is observed upon introduction of anharmonic corrections,
both for the lone and encapsulated water molecule. We also observe a change in intensity for overtone
and combination band features upon encapsulation which in many cases is small, but in two cases
were observed to decrease the intensity by 18% and 57%, respectively.

For acetonitrile, the results in solvent are based on limited MD sampling and using a rather small
solvation shell. For a more representative description of solvent behavior, a larger solvation shell
should be used and a more extensive conformational sampling should be performed, but we have
nevertheless made some observations from our results, keeping these limitations in mind. We observe
that anharmonic corrections in general lower the frequencies of the fundamental transitions, with the
exception of that of the C-C stretching mode when solvated in water and acetonitrile, but no clear
trend was observed for the anharmonic corrections to the intensities of the fundamental transitions.
We observe that the introduction of solvents sometimes produces quite strong intensity changes in
the strongest fundamental transition peaks, compared to the vacuum results. In two cases, for the
solvents chloroform and water, we also observe significant intensity changes compared to vacuum for
the N-C-C overtone band.

We have in the present work limited ourselves to anharmonic IR spectra, but the methodology
developed here allows us to calculate properties that can be used to study a wide range of vibrational
spectroscopies whose description uses geometric derivatives of electric dipole polarization properties,
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such as hyper-Raman spectra 69798 or other advanced vibrational spectroscopic processes like two-

dimensional IR spectroscopy (see e.g. Ref. 99). Extension of the present methodology to also cover
perturbations corresponding to magnetic dipoles or multipoles, or higher-order electric multipoles,
would pave the way for applications in the area of chiroptical spectroscopy. Although this would
entail additional development, much of the general framework presented here is also applicable in the
calculation of these properties.
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Table 1: Bond lengths® and angles® for water in fullerene and in vacuum.

Feature Vacuum Fullerene
O-H bond lengths
O-H1 0.9395 0.9426
0O-H2 0.9395 0.9422
H-O-H bond angles
Angle 106.4 105.5

@ given in units of A; ? given in units of degrees;




Table 2: Harmonic and anharmonic wavenumbers and IR intensities for vacuous
water; transitions from ground state.

State Wavenumbers® IR?
Harmonic Anharmonic Harmonic Anharmonic

Fundamental
1 4236 4046 86.293 81.551
2 4134 3971 17.660 15.009
3 1742 1672 90.467 93.166
Overtone
1 8472 8001 - 0.128
2 8268 7863 - 0.553
3 3484 3303 - 0.854
Combination
21 8370 7861 - 3.441
31 5978 5672 - 4.705
32 5876 5628 - 0.029

—1.b
5

¢ given in units of cm given in units of km-mol~*

Table 3: Harmonic and anharmonic wavenumbers and IR intensities for water
in fullerene; transitions from ground state.

State Wavenumbers® IR?
Harmonic Anharmonic Harmonic Anharmonic

Fundamental
1 4173 3975 145.518 145.624
2 4087 3917 39.421 37.368
3 1738 1666 118.845 123.790
Overtone
1 8345 7858 - 0.055
2 8174 7753 - 0.570
3 3475 3294 - 0.899
Combination
21 8260 7732 - 2.805
31 5910 5593 - 5.133
32 5825 5567 - 0.031
—1. 0

® given in units of cm™";

given in units of km-mol~!



Table 4: Harmonic and anharmonic wavenumbers and IR intensities for vacuous
acetonitrile; transitions from ground state. Only transitions with intensities of
0.3 km-mol~! or higher are shown.

State Wavenumbers® IR?
Harmonic Anharmonic Harmonic Anharmonic
Fundamental
1 3277 3144 3.224 3.996
2 3277 3144 3.220 3.991
3 3201 3139 4.876 5.425
4 2590 2560 17.470 18.159
5 1595 1537 10.205 7.682
6 1595 1537 10.194 7.649
8 1160 1136 1.177 1.204
9 1160 1136 1.175 1.202
10 960 957 6.333 5.153
11 428 423 1.535 1.268
12 428 423 1.534 1.267
Overtone
1 6553 6230 - 0.527
2 6553 6230 - 0.527
11 856 842 - 1.019
12 856 842 - 1.019
Combination
21 6553 6254 - 0.378
51 4871 4692 - 0.359
52 4871 4673 - 0.358
61 4871 4673 - 0.357
62 4871 4692 - 0.360
71 4811 4638 - 0.376
72 4811 4638 - 0.375
10 4 3550 3517 - 1.070
118 1588 1557 - 1.694
119 1587 1557 - 1.736
128 1587 1573 - 1.754
129 1587 1573 - 1.698
@ given in units of cm~"; ® given in units of km-mol~?



Table 5: Harmonic and anharmonic wavenumbers and IR intensities acetonitrile
in chloroform; transitions from ground state. Only transitions with intensities
of 0.3 km-mol~" or higher are shown.

State Wavenumbers® IR?
Harmonic Anharmonic Harmonic Anharmonic
Fundamental
1 3287 3156 0.890 1.288
2 3283 3151 1.401 1.957
3 3206 3140 1.716 1.965
4 2581 2551 35.564 36.971
5 1595 1540 12.548 10.454
6 1592 1538 11.625 11.108
8 1164 1140 1.732 1.825
9 1160 1136 1.772 1.843
10 955 955 8.451 6.536
11 443 438 2.518 2.139
12 436 432 2.428 2.061
Overtone
1 6575 6254 - 0.531
2 6565 6246 - 0.521
11 885 870 - 1.395
12 873 859 - 1.646
Combination
21 6570 6273 - 0.358
51 4882 4687 - 0.371
52 4878 4692 - 0.381
61 4879 4694 - 0.389
6 2 4875 4677 - 0.409
71 4824 4652 - 0.362
72 4819 4646 - 0.350
10 4 3536 3505 - 1.575
118 1606 1584 - 1.130
119 1603 1579 - 0.896
128 1600 1577 - 1.572
129 1597 1573 - 1.771
@ given in units of cm~"; ® given in units of km-mol~?



Table 6: Harmonic and anharmonic wavenumbers and IR intensities acetonitrile
in acetonitrile; transitions from ground state. Only transitions with intensities
of 0.3 km-mol~! or higher are shown.

State Wavenumbers® IR?
Harmonic Anharmonic Harmonic Anharmonic

Fundamental
1 3301 3175 1.304 1.239
3285 3156 1.690 2.017
3 3210 3146 2.536 2.902
4 2571 2541 49.365 51.144
5 1600 1547 13.966 14.057
6 1595 1541 12.966 12.711
7 1536 1503 0.674 0.976
8 1169 1145 2.410 2.620
9 1161 1137 2.188 2.295
10 949 951 9.626 8.946
11 449 446 2.606 2.330
12 443 439 2.863 2.505

Overtone

1 6601 6287 - 0.473
2 6570 6259 - 0.478
11 899 885 - 0.697
12 887 869 - 1.281

Combination
51 4900 4713 - 0.440
52 4885 4703 - 0.427
61 4896 4712 - 0.478
62 4880 4685 - 0.386
71 4837 4670 - 0.380
72 4821 4652 - 0.342
87 2705 2643 - 0.301
97 2697 2634 - 0.364
10 4 3520 3483 - 1.947
118 1618 1596 - 1.851
119 1610 1585 - 0.869
128 1612 1591 - 0.762
129 1604 1580 - 0.814

“ given in units of cm~';  given in units of km-mol~!



Table 7: Harmonic and anharmonic wavenumbers and IR intensities acetonitrile
in water; transitions from ground state. Only transitions with intensities of 0.3
km-mol~! or higher are shown.

State Wavenumbers® IR?
Harmonic Anharmonic Harmonic Anharmonic
Fundamental
1 3307 3180 2.516 2.353
2 3292 3161 1.304 1.490
3 3213 3142 2.701 2.720
4 2572 2543 114.322 117.706
5 1596 1545 15.291 13.486
6 1587 1536 13.670 12.415
7 1531 1498 1.347 1.894
8 1167 1144 4.031 4.454
9 1158 1134 4.601 5.005
10 951 960 13.734 14.810
11 467 463 8.138 8.216
12 458 454 6.532 6.087
Overtone
1 6614 6298 - 0.459
2 6583 6269 - 0.462
5 3192 3081 - 0.378
6 3174 3052 - 0.359
11 933 920 - 0.368
12 915 893 - 0.356
Combination
51 4903 4711 - 0.450
52 4888 4696 - 0.428
61 4894 4703 - 0.481
62 4879 4680 - 0.428
71 4838 4669 - 0.359
74 4104 4041 - 0.319
87 2699 2638 - 0.343
97 2689 2627 - 0.449
10 4 3523 3482 - 2.851
107 2482 2427 - 0.612
118 1634 1610 - 1.869
119 1625 1601 - 2.221
12 8 1625 1602 - 2.529
129 1616 1592 - 1.828
“ given in units of cm~!; ® given in units of km-mol~!
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ABSTRACT

The Dalton Project provides a uniform platform access to the underlying full-fledged quantum chemistry codes Dalton and LSDalton as
well as the PyFraME package for automatized fragmentation and parameterization of complex molecular environments. The platform is
written in Python and defines a means for library communication and interaction. Intermediate data such as integrals are exposed to the
platform and made accessible to the user in the form of NumPy arrays, and the resulting data are extracted, analyzed, and visualized. Complex
computational protocols that may, for instance, arise due to a need for environment fragmentation and configuration-space sampling of
biochemical systems are readily assisted by the platform. The platform is designed to host additional software libraries and will serve as a hub
for future modular software development efforts in the distributed Dalton community.
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1. INTRODUCTION

More than 20 years have passed since the first version of the
Dalton program' was released as a result of merging the sepa-
rate HERMIT, SIRIUS, ABACUS, and RESPONS codes that imple-
mented one- and two-electron integrals, wavefunctions, energy
derivatives, and response theory, respectively. Later, the adopted
monolithic code development structure turned out to be pro-
hibitively difficult to sustain, and it was interrupted with the release
of the atomic-orbital (AO) based linear-scaling initiative as a sepa-
rate executable named LSDalton.” By the time of the Dalton paper in
2014, the two codes represented a powerful general-purpose pro-
gram system and provided users with access to the most relevant
and standard electronic structure theory methods and, moreover, a
vast amount of molecular properties. In 2017, all past and present
authors of the Dalton and LSDalton codes unanimously voted in
favor of open-sourcing the codes under the GNU Lesser General
Public License version 2.1 (LGPLv2.1). In the present work, we will
briefly recapitulate the functionalities of the codes and detail some of
the developments provided in Dalton suite releases from 2015 until
today, including the Dalton2020 release. With inspiration from the
Molecular Sciences Software Institute (MolSSI) project,‘ " we also
take the opportunity to initiate a transition in the Dalton software
engineering practices and we signal this paradigm shift by referring
to the Dalton community effort as the Dalton Project (DP) initia-
tive.” From the developer’s perspective, we are taking steps to make it
easier to develop, sustain, and maintain a large general-purpose soft-
ware ecosystem for first-principles quantum molecular modeling of
complex systems, and from the user’s perspective, we are modifying
the design of the user interface to enable new access and interaction
patterns.

The general design strategy for the DP platform is that of
software modularity’ * and based on a hybrid programming lan-
guage approach, as illustrated in Fig. 1. We introduce an upper
layer written in Python with support from specialized libraries,

Dalton Project

DP platform

Setup Compute Data
« Model - Library Processing
« Molecule commun. « Electron
) « Resource density
Environ. managem. « Spectrum
Communication ybm o modu,e
CFFI Import
Libraries
Dalton LSDalton PyFraME
« HF/DFT « HF/DFT - MFCC
«CC « J-engine + LoProp
+ MCSCF + ADMM  Embeddi
« MC-stDFT + OpenRSP mbedding

FIG. 1. Overview of the Dalton Project platform structure.
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such as NumPy,"’ SciPy,"' and MPI4Py."” This layer is hardware-
aware and capable of managing computer resources, handling user
interactivity, steering computation, and performing data process-
ing of results. The lower layer contains libraries written in a lan-
guage of choice based on the programmer’s preference and the
task to be addressed, but compute-intensive tasks will typically
be performed by libraries written in Fortran, C, or C++. The
two layers interact by any one of three means of communication,
namely, conventional file input/output (I/O), Python blndlngs, e. g -
through CFFI (C Foreign Function Interface)'” or pyblndll

pure Python module import. In this scheme, we view the Dal-
ton and LSDalton executables as libraries serving the DP plat-
form, and although further modular library decomposition would
be desirable, it is hampered by code legacy and entanglement.
More important than offering this new perspective, however, the
DP platform encourages future development to be made in the
form of modules with clear and specific tasks (or subtasks) that
undergo strict unit testing. Modules, or coherent sets of mod-
ules, build up libraries that are developed, maintained, and released
independently from one another such that the DP ecosystem will
see more of a continuous evolution as compared to conventional
monolithic program releases. Regarding communication, it is our
ambition for the ecosystem to move toward libraries that provide
clear application programming interfaces (APIs) and native bind-
ings to Python. The latter allows importing such libraries directly
into Python scripts or interactive sessions, enabling fast develop-
ment, read—eval-print loop (REPL) style, without sacrificing perfor-
mance. We believe that this software development model will serve
us well as we constitute a distributed community of contributors
belonging to network nodes with different scientific objectives and
timelines.

Within the field of quantum chemistry, the adoption of more
modern software engineering strategies with APIs written in Python
is in vogue at the moment, and we have been strongly influenced
by (i) the Psi4NumPy project that exposes efficient computational
kernels from the P314 program’” to enable quick NumPy prototyp-
ing of novel science'® and (ii) the PySCF program that, primarily in
Python, implements self-consistent field (SCF) and post-Hartree—
Fock (post HF) electronic structure theory for finite and periodic
systems.'” Moreover, a source of inspiration as well as practical expe-
rience for the present work is provided by the VeloxChem project
(and program)'® that, with a hybrid Python/C++ programming
model, implements real and complex response theory'” at the SCF
level of theory for execution in high-performance computing (HPC)
cluster environments. In VeloxChem, Python is used for a split mes-
sage passing interface (MPI) communicator management of large-
scale distributed hardware resources with an anticipation of hetero-
geneous cluster nodes to become a future reality. Without noticeable
sacrifice in computational efficiency or program execution stabil-
ity, the higher-level quantum chemical methods and iterative linear
response equation solvers are implemented in Python with the use
of NumPy and underlying threaded math kernel libraries. With this
as background, we have gained sufficient confidence to steer our
project into a new direction as far as software engineering practices
are concerned.

Our presentation is organized as follows: In Sec. II, we briefly
mention some of the key features in Dalton and LSDalton that have
already been presented’ and provide a more detailed description
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of novel functionalities that have been added thereafter. Moreover,
we also present the features of the PyFraME package”’ for the han-
dling of complex chromophore environments. In Sec. III, we give
a more comprehensive view of the design of the DP platform as
well as provide a concrete illustration of new library-access patterns
and program execution practices for the user. In Sec. I'V, we present
six concrete examples of DP platform runs before closing with an
outlook into the future for the Dalton Project.

Il. CAPABILITIES OF DP PLATFORM LIBRARIES
A. Dalton and LSDalton up until 201 4

In 2014, a presentation of the Dalton program system, includ-
ing the Dalton and LSDalton codes, was published,” and function-
alities listed in this presentation are, of course, still available and
therefore only briefly mentioned here. The two codes are primar-
ily written in Fortran, but parts involving density functional the-
ory (DFT) kernels are mostly written in C. In Dalton, the rou-
tines for correlated wavefunction calculations are implemented only
for serial execution—but can be linked to standard threaded lin-
ear algebra libraries—whereas the self-consistent field (SCF), i.e.,
HF and DFT, routines are implemented for parallel execution using
MPI. LSDalton, on the other hand, comes with a native hybrid
OpenMP/MPI parallelization scheme that enables shared memory
data handling on central processing unit (CPU) sockets and/or com-
pute nodes. None of the two codes come with support for hardware
acceleration, such as general-purpose graphical processing units
(GPUs).

The common foundation for the Dalton and LSDalton quan-
tum chemistry programs is that of a nonrelativistic Hamilto-
nian, basis sets expanded in localized Gaussian AOs, and multi-
electron reference states expanded in spin-restricted determinants or
configuration-state functions. Relativistic corrections to the zeroth-
order one-electron Hamiltonian are available in Dalton in terms of
the spin-free second-order Douglas-Kroll-Hess (DKH2) Hamilto-
nian and effective-core potentials (ECPs). As a perturbative correc-
tion to the Hamiltonian, Dalton also offers an implementation of the
full Breit-Pauli spin-orbit operator.

LSDalton provides efficient acceleration techniques for SCF-
based property calculations and an implementation of the linear-
scaling divide-expand-consolidate (DEC) scheme for second-order
Moller-Plesset (MP2) and coupled cluster (CC) energy calcula-
tions. The code was initially developed to alleviate the restrictions
of the Dalton code for calculations on large systems by introducing
linear-scaling AO-based SCF and response capabilities based on an
exponential ansatz of the AO density matrix.

Dalton provides implementations of most of the standard
electronic-structure methods, including SCF, MP2, a hierarchy of
CC methods [CC2, CCSD, CCSDR(3), CC3, and CCSD(T)], config-
uration interaction (CI), and multi-configurational SCF (MCSCF)
based on the generalized active space (GAS) concept. MCSCF wave-
functions are optimized with a robust trust-region-based second-
order approach.

Molecular gradients and Hessians are determined analytically
for SCF and MCSCEF reference states, and analytic gradients are also
available at the levels of MP2, CC2, CCSD, and CCSD(T). In the
absence of analytic gradients and Hessians, Dalton can determine
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these quantities by numerical differentiation and thereby offers an
extensive functionality for exploring potential energy surfaces. The
combination of geometric and electric-field perturbations allows for
calculations of infrared (IR) and Raman intensities. Analytic linear
and nonlinear response functions describing the interactions with
external and internal (in general, time-dependent) electromagnetic
fields are implemented for the entire selection of electronic-structure
methods and enable simulations of a plethora of spectroscopies, too
rich to be listed here. At this time, Dalton also included the means
for structure-less and atomistic descriptions of chromophore envi-
ronments through the polarizable continuum model (PCM) and
polarizable embedding (PE) model, respectively.

B. Added features in Dalton

The functionalities of Dalton have been expanded in several
directions. Here, we provide a summary of selected new features.
To bring some structure and order into these developments, we
have chosen to divide them into the three categories: (i) electronic-
structure theory, (ii) spectroscopy simulations, and (iii) environ-
ment modeling. In the first one, we list general quantum-chemical
method developments providing new means to describe the elec-
tronic structure of ground and excited states. In the second, we
describe developments that are more specifically targeting and
enabling simulations of certain spectroscopies. Such simulations are
connected with certain electronic-structure theory methods and typ-
ically also environment models, but the primary objective of the
development has been the spectroscopy at hand. In the third, we
present approaches aimed at improving the effective description of
the chromophore environment. These developments are, of course,
made in combination with specific electronic-structure methods, but
the environment is at focus.

1. Electronic-structure theory

Based on a range-separated Hamiltonian as proposed by
Savin,”"”” a rigorous combination can be made of wavefunction
and density-functional theories for the treatment of the long- and
short-range electron-electron Coulomb interactions, respectively.
In Dalton, this approach has been implemented at the level of
MP2,” CL,"*” MCSCE,” " and NEVPT2"’ wavefunction theories,
and it is now made available in the Dalton2020 release. In con-
junction with MCSCF, the main idea is that static (or strong) elec-
tron correlation can be effectively accounted for by means of typ-
ically quite short determinant expansions of the wavefunction at
the same time as dynamic electron correlation can be effectively
accounted for by means of DFT with its low computational cost.
The resulting method is referred to as multi-configurational short-
range DFT (MC-srDFT), and it is available for closed-shell and
open-shell systems.” Apart from calculations of energies, linear-
response properties are available for both singlet and triplet per-
turbations.”’ "> More details are provided in Sec. IV B where an
example is provided in terms of the calculation of the ultraviolet—
visible (UV/Vis) absorption spectrum of a retinylidene Schiff base
chromophore.

Using Loéwdin’s inner projection in conjunction with a
one- and two-electron excitation operator manifold and an
MP2 reference state, the second-order polarization propagator
approximation (SOPPA) arises as a means to address the electronic
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structure of excited states. Modifications of the original form of this
approach have been implemented, including the SOPPA(SCS-MP2)
and SOPPA(SOS-MP2) models™ where spin-component-scaled”"”’
and scaled opposite-spin® versions of the Moller—Plesset correlation
coefficients are employed. Going instead toward approximations of
the SOPPA model, the random phase approximation with second-
order non-iterative doubles corrections model [RPA(D)]*” has been
extended to triplet excitations,” and a similarly derived higher RPA
with non-iterative doubles corrections model [HRPA(D)] has been
implemented. ** The RPA(D) and HRPA(D) models are enabled for
calculations of not only transition properties but also linear response
functions.”

Furthermore, with regard to CC approaches, Dalton also offers
a new and more efficient implementation of the CC3 model for
ground- and excited-state energies,”’ although it does not support
full Abelian point-group symmetry, it reduces the computational
cost.

2. Spectroscopy simulations

Applying the Liouville equation to pure states in the density-
matrix formalism of quantum mechanics has been shown to be
equivalent to applying the Ehrenfest theorem to state-transfer oper-
ators in Hilbert space, thereby leading to a means to phenomeno-
logically introduce relaxation mechanisms into wavefunction the-
ories."”""* The resulting complex polarization propagator (CPP)
theory defines frequency-dependent response functions for exact
and approximate states that are physically sound in all regions of
the spectrum, resonant as well as conventional nonresonant, and
also x-ray as well as conventional UV/Vis. These response functions
fulfill the Kramers—Kronig relations with real and imaginary parts
that are associated with separate dispersive and absorptive spectro-
scopies, such as optical rotatory dispersion (ORD)" and electronic
circular dichroism (ECD)."

Extensions of the CPP theory have been made to allow for
the description of nonlinear external-field interactions,”*” and the
latest release of the Dalton program also offers CPP/DFT simu-
lations of resonant-enhanced hyper-Rayleigh scattering (HRS),"*"
magnetic circular dichroism (MCD),"" magneto-chiral dichro-
ism (MChD) and birefringence (MChB) dispersion,:“ nuclear spin-
induced optical rotation (NSOR) and dichroism (NSCD),”" and
two-photon absorption (TPA) cross sections. 15,52

Core excitation processes are associated with large valence-
electron relaxation and polarization effects that, in a polarization
propagator or response theory approach, require multi-electron
excited configurations to be properly accounted for.”” Along this
line, Dalton provides a hierarchy of CC methods to model a vari-
ety of x-ray spectroscopies including near-edge x-ray absorption fine
structure (NEXAFS),” photo-electron spectroscopy (PES),”* ™
transient x-ray absorption spectroscopy (TRXAS),””*" and resonant
inelastic x-ray scattering (RIXS).”” The referred-to hierarchy of CC
methods includes the CCS, CC2, and CCSD levels of theory, but
core-excitation and core-ionization energies are also available for the
CCSDR(3) and CC3 approximations. Both singlet and triplet excited
states are encompassed, and the latter are obtained in a spin-adapted
formalism.”' The core-valence separation (CVS) approximation has
been made available to decouple core and valence excited states.
It can be applied either at the excited-state level only’*”” or both
during the determination of the ground state and excited states in
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a frozen-core variant (fc-CVS).”” An example illustration of a DP
platform XAS calculation using the CVS approximation is provided
in Sec. IV F.

3. Modeling of chromophore environments

The capabilities in Dalton for including effects from a molecu-
lar environment have been extended in several directions. The PCM
for efficient modeling of bulk solvent effects can now also be per-
formed at the SOPPA level.” In this PCM-SOPPA/RPA model, the
static solvent contributions are treated at the SOPPA level, while the
dynamic solvent contributions are evaluated at the time-dependent
HF level. The PCM model can also be used in combination with the
MC-srDFT method.

The PE model”* is a fragment-based (semi-)quantum-
classical scheme designed for efficient and accurate inclusion of
environment effects in calculations of spectroscopic properties of
large and complex molecular systems. The environment is included
effectively through an embedding potential whose parameters con-
sist of distributed multipoles and polarizabilities, both of which
are derived from quantum-mechanical calculations on the indi-
vidual fragments that make up the environment. The PyFraME
package, which is made available on the DP platform and is
described in Sec. II D, can be used to automatize the gener-
ation of the embedding-potential parameters. The PE model is
implemented in the Polarizable Embedding library (PELib)*’ based
on an AO density-matrix-driven formulation, which facilitates a
loose-coupling modular implementation in host programs. The
PElib was included in the Dalton2013 release, but at that time,
it was limited to PE-HF and PE-DFT.” Since then the imple-
mentation has been extended to PE-CC [specifically, PE-CC2, PE-
CCSD, and PE-CCSDR(3)]," PE-MCSCEF,” PE-MC-srDFT,”’ and
PE-SOPPA.”' The Dalton2020 release supports linear-, quadratic-
, and cubic-response properties for PE-HF/DFT,”* while PE-CC
is limited to linear- and quadratic-response properties, and only
linear-response properties are available for PE-MCSCF and PE-
MC-srDFT. For PE-HF/DFT, it is also possible to compute prop-
erties based on resonant-convergent response theory.”” London
AOs (LAOs) are supported for magnetic linear-response proper-
ties that involve a single derivative with respect to a magnetic
field.”” The capabilities have also been extended to enable ana-
Iytic quantum-mechanical molecular gradients at the PE-HF/DFT
level, thus enabling geometry optimization of the core quantum
region embedded in a fixed polarizable environment.”* Local-field
effects may also be included in PE-HF/DFT calculations where
they are termed effective external field (EEF) effects.””’® Electronic
energy transfer (EET) couplings can be calculated based on the PE
model, including both direct and environment-induced contribu-
tions, and using QFITLIB” to derive transition-density-fitted mul-
tipoles.”” Bulk solvation effects can be included through the FixSol
conductor-like solvation model using the FIXPVA2 cavity tessella-
tion scheme.””*’ An overview of the developments related to the PE
model can be found in Ref. 81, while a tutorial review is available in
Ref. 82.

The PE model, and classical models in general, does not include
Pauli repulsion between the chromophore and its environment.
Such models can therefore suffer from so-called electron spill-out,
where the electron density of the chromophore leaks out into the
environment, thus causing an over-stabilization of the ground state
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and, in particular, the excited states of the embedded chromophore.
Negatively charged chromophores or excited states of even par-
tial Rydberg-like character are especially susceptible.””*" The polar-
izable density embedding (PDE) model has been formulated to
improve the electrostatic interactions between the chromophore and
its environment and to address the electron spill-out issue.””* In
this model, the permanent charge distribution of the fragments in
the environment is described by their full electronic densities, thus
avoiding divergences of the multipole expansions, while still keeping
the distributed polarizabilities to efficiently account for polarization
effects. In addition, the PDE model contains a Huzinaga—Cantu-like
projection operator’” that models Pauli repulsion effects and thereby
effectively prevents electron spill-out. The PDE model has been
implemented in PElib using the same AO density-matrix-driven
formulation as for the PE model. It can therefore straightfor-
wardly be combined with the same DFT and wavefunction meth-
ods as the PE model both in terms of ground-state and response
calculations, with the exception of LAOs and analytic molecular
gradients.

The latest Dalton release has also received basic frozen density
embedding (FDE)*** capability. The FDE implementation enables
import of a static embedding potential that has been pre-calculated
on a numerical integration grid by another code that implements
FDE.””" A matrix representation of the embedding potential is
constructed based on the grid and added to the one-electron Fock
matrix. The implementation can thus be used with all available DFT

and wavefunction methods in Dalton.””

C. Added features in LSDalton
1. Integral evaluation

Integrals sit at the heart of any quantum chemistry program,
both when it comes to computational performance and available
methods and properties. The development of an efficient and flexible
integral-evaluation code has therefore been essential to the devel-
opment of LSDalton. Since 2014, four main integral developments
have been added: high-order derivative integrals (HODI), integrals
and differentiated integrals for embedding techniques involving
interaction with point charges and higher-order multipoles, accel-
eration of the exchange contribution through developments of the
auxiliary-density-matrix method (ADMM),”" and interface with the
XCFun library of DFT exchange-correlation (XC) functionals.””
The XCFun library is based on forward-mode automatic differentia-
tion”” and can therefore generate arbitrary-order derivatives of these
functionals.

The one- and two-electron HODI implementation employs the
solid-harmonic Hermite scheme of Ref. 98, allowing for a unified
scheme for undifferentiated and differentiated integrals by expand-
ing the solid-harmonics in Hermite rather than Cartesian Gaussians;
differentiation merely increments one of the quantum numbers of
the Hermite Gaussians, whereas differentiation of Cartesian Gaus-
sians gives linear combinations of Cartesian Gaussians. The HODI
integrals have been extended to allow interactions with general-
order point multipoles (charges, dipoles, and so on) needed for
classical embedding techniques.

The exchange contribution is the main computational bot-
tleneck in hybrid DFT calculations. The development of effi-
cient and accurate acceleration techniques for the exchange
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contribution will thus greatly improve overall DFT timings and
increase the scope and applicability of DFT in general. One such
approach is the ADMM, """ where the time-critical exchange
contribution is instead evaluated in a smaller basis, and corrected
with the difference between the local generalized-gradient approxi-
mation (GGA) exchange in the full and the small basis. The ADMM
has been implemented in LSDalton with different variants for the
projection to the smaller basis and GGA correction functional
options,” and with tailored auxiliary basis sets (admm-#) for the
peseg-n and aug-pcseg- basis sets.' "’

2. Exploiting the locality of electron correlation

04,105

The DEC'’""'"” strategy employs highly local orbitals to
recover the inherent locality of dynamical correlation for large
molecules in a linear-scaling fashion. Over the last few years,
the DEC framework has been extensively developed and now
includes resolution-of-the-identity (RI) accelerated MP2 (DEC-RI-
MP2'%"'%), Laplace-transformed RI-MP2 (DEC-LT-RI-MP2'"),
CC theory through DEC-CCSD and DEC-CCSD(T),'"” and through
the multilayer DEC framework ML-DEC,""" which allows for effi-
cient calculations by systematic treatment of the pair-fragment at
different levels of theory. In addition to energies, densities, and
electrostatic potentials, gradients are available at the DEC-MP2
and DEC-RI-MP2 levels, """ and excitation energies are avail-
able through the local framework for calculating excitation energies
(LoFEx)''“"''* and the correlated natural transition orbital frame-
work for a low-scaling excitation energy (CorNFLEx) approach.'”
Due to the embarrassingly parallel nature of the DEC scheme, excel-
lent scalability to a large number of CPU cores is possible. As
an example, a DEC-RI-MP2/cc-pVDZ gradient calculation of the
insulin molecule (787 atoms and 7604 basis functions) finished in
less than 10 h using 32 000 cores (2000 nodes, each with 16 cores, on
the Titan supercomputer).'’

3. Molecular properties

Several property developments have been undertaken since
2014, including quasi-Newton transition-state optimization, the
high-order path-expansion (HOPE)''® method for improved
geometry-optimization steps, automated counterpoise correction,
and the same-number-of-optimized-parameters (SNOOP)''"'"
scheme as an improved alternative to the counterpoise correction,
and nuclear-selected NMR shielding,'” to mention a few.

On a longer-term development line, LSDalton has been inter-
faced with OpenRSP,"”’ to allow, in principle, arbitrary-order
molecular properties. OpenRSP is an open-ended response-theory
library that manages the generation and solution of the response
equations needed for the evaluation of arbitrary-order response
properties. The current implementation in LSDalton enables the cal-
culation of a sizable selection of (mixed) electrical and geometrical
properties for HF and DFT, for the latter also involving an interface
to the XCFun and XCint'*' libraries. This includes properties related
to IR, Raman, and hyper-Raman spectral intensities, molecular gra-
dients, Hessians, and cubic force constants. The capabilities of the
LSDalton/OpenRSP/XCint/XCFun combination are illustrated for
the calculation of IR and Raman spectra of benzene through the DP
platform in Sec. IV D.
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For modeling of solvent effects, the PCMSolver'”* library for
continuum electrostatic solvation has been interfaced to LSDal-
ton. This implementation is available for SCF and electric-dipole
response properties up to fourth order.

D. PyFraME: Python framework for Fragment-based
Multiscale Embedding

PyFraME” is a Python package providing a framework for
managing fragment-based multiscale embedding calculations. The
basic principle of embedding models in quantum chemistry is the
division of a molecular system into two domains: a central core
region and its environment. The core region is described at the high-
est level of theory using DFT or a wavefunction method, while the
effects from the environment are included effectively through an
embedding potential. To manually set up embedding calculations
of large and complex molecular systems can be highly complicated,
tedious, and error-prone. This is especially true when considering
that configuration-space sampling, e.g., through molecular dynam-
ics (MD) simulations, is usually required, which, in turn, means that
the procedure has to be repeated many times.

The highly flexible PyFraME package automatizes workflows,
starting from the initial molecular structure to the final embedding
potential. It enables the user to easily set up a multilayered descrip-
tion of the environment. Each layer can be described either by a
standard embedding potential, i.e., using a predefined set of param-
eters, or by deriving the embedding-potential parameters based on
first-principles calculations. For the latter, a fragmentation method
is used to subdivide large molecular structures into smaller compu-
tationally manageable fragments. The number of layers, as well as
the composition and level of theory used for each layer, can be fully
customized.

The basic workflow consists of three main steps. First, a molec-
ular structure is given as an input. Currently, PyFraME supports
input files in the PDB format. The input file reader extracts infor-
mation about the structure and composition of the system, and
it also defines the basic units of the system, i.e., fragments. Small
molecules would typically constitute a fragment on their own, but
larger molecules are usually broken down into small computation-
ally manageable fragments. For example, for proteins, a fragment
would usually consist of an amino-acid residue, while for nucleic
acids, it could be a nucleotide. The molecular system to be used for
the embedding calculation is then built by extracting subsets from
the full list of fragments according to specified criteria, such as name,
chain ID, distance, or a combination thereof, and placed into sepa-
rate regions. As mentioned above, any number of regions may be
added, and each can be fully customized. Once the system has been
built, the final step is the derivation of the embedding potential.
Depending on the specifics, it may involve a large number of sep-
arate calculations on the individual fragments in order to compute
the embedding-potential parameters. For large molecules, where the
parameters cannot be computed directly, PyFraME uses a fragmen-
tation method based on the molecular fractionation with conjugate
caps (MFCC) approach'” to derive the parameters. The individ-
ual fragment calculations are typically performed by Dalton and
the LoProp Python package,'”"'* but this can be customized. The
fragmentation of the system, fragment calculations, and subsequent
joining of parameters to build the embedding potential are fully
automatized and can make full use of large-scale HPC resources.
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11l. DP PLATFORM DESIGN AND FEATURES

The ultimate goal of the DP platform is to establish a flexi-
ble, robust, and uniformly accessible environment that can be used
for both large-scale applications and to facilitate the development
of novel methodology. The challenges for quantum chemistry today
are far more complex than earlier, both concerning the complexity
of the chemical systems, adaptation to HPC facilities, and the num-
ber of tools and approaches needed for applications. As a result,
it becomes essential to be able to easily combine the tools and
approaches in meaningful ways. The main motivation of the Dal-
ton Project is to provide a platform that can be used to combine
the functionality of the tools and methods that are developed by the
individual research groups in the Dalton community.

For a long time, we have relied on a monolithic codebase (first
Dalton and later also LSDalton) for the development of new com-
putational methodology. These programs have served us well in the
past, and we expect this to continue into the foreseeable future.
It is clear, however, that the codebase has accumulated substantial
technical debt. The tight coupling between the software modules
is particularly problematic because it complicates optimization and
modernization of even small pieces of code. Moreover, implementa-
tion of new methodology often requires unnecessarily high efforts
and easily leads to additional technical debt. The risks of relying
on a monolithic codebase are especially high when the codebase
is maintained by a scientific community such as ours whose pri-
mary goal is to perform research. In recognition of this, and the
fact that individual groups have different research aims and pref-
erences in terms of software development, we have in later years
moved toward a more distributed codebase. This has resulted in the
development of a series of software libraries, such as GenlInt,"**"*
OpenRSP,'”’ PCMSolver,'”” PElib,”” QcMatrix, ** XCFun,””* and
XCint."”" This has, to some degree, alleviated the problem of the
monolithic codebase for some developments, but the main issues
remained.

We have now taken the next step and moved completely to a
distributed codebase with the Dalton Project, whose main task is to
integrate and provide interoperability between the individual soft-
ware libraries that are developed and maintained by the different
nodes in our community. At the same time, however, we acknowl-
edge that there is vast functionality developed in our community
during the last few decades that we do not wish to abandon, which
is primarily implemented in Dalton and LSDalton. The DP plat-
form thus has to accommodate a wide variety of software from
large monolithic programs with a wide range of features to small
libraries that provide very specific functionality. The design of the
platform has to take this into account in a sustainable manner, so
that it can act as a platform for present-day use cases and, impor-
tantly, for future developments based on modern software engineer-
ing practices. Moreover, the DP platform must be able to exploit
current HPC facilities and be prepared for the upcoming exascale
supercomputers.

To meet our goals and requirements, we devised a platform
structure that is illustrated in Fig. 1. At the top, we have the DP plat-
form itself, written in pure Python (3.6+), that interfaces to external
libraries through different communication mechanisms. Python was
chosen as the platform language because of its extensibility, empha-
sis on code readability, and comprehensive standard library, as well
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as a large number of specialized libraries. We note here that the
term library is used liberally to signify any type of software that can
be interfaced to the platform, including libraries in the traditional
sense, program executables, and Python modules and packages. The
libraries thus require very different means of communication, and
to accommodate this, we provide three different mechanisms: file
1/0, Python bindings, and pure Python imports. The file I/O com-
munication mechanism is provided to make the vast functionality
implemented in Dalton and LSDalton more accessible. In fact, most
of the functionality provided on the DP platform currently involves
Dalton and LSDalton, but we will gradually move toward using
loosely coupled libraries written in pure Python or hybrid Python
and Fortran, C, or C++, with the hybrid approach being used for the
more compute-intensive numerical tasks. Initially, the DP platform
will interface Dalton and LSDalton as well as PyFraME, all of which
have been described in Sec. II. In the immediate future, we expect
that many of the aforementioned libraries that are currently inter-
faced to Dalton and LSDalton will be interfaced directly to the DP
platform.

The DP platform is a Python package with an API that con-
sists of a set of classes and functions used to set up molecular sys-
tems, perform numerical calculations, and process data. Usage of
the platform would typically consist of three stages used in succes-
sion, namely, setup, compute, and data processing. By separating the
compute and data processing stage, the DP platform may be easily
employed in large-scale application workflows in which a number of
calculations are typically run first, by submitting them to a queuing
system on a supercomputer, and subsequently data manipulation,
analysis, and visualization are performed.

The setup stage consists of instantiation of one or more of
the five base classes: Molecule, Basis, QCMethod, Property, and
Environment, which are used in the compute and data process-
ing stages. The classes have been designed to be library-agnostic
so that they can be used and reused for all libraries. However, not
all classes are necessarily needed. It depends on the specific type
of calculation that is performed. For example, the first four (or
all five if an environment model is used) are needed to run, e.g.,
a TPA calculation employing Dalton or LSDalton, whereas other
functionality may only need some of them (e.g., more fine-grained
functionality can be obtained from LSDalton, as illustrated in
Sec. IV A).

The Molecule class contains information about the molecu-
lar structure, which can be a single atom, a molecule, a fragment of
a molecule, or a set of molecules. It requires, as a minimum, that
atomic elements and coordinates are defined. Reasonable defaults
are used for other attributes, such as the total charge, spin multi-
plicity, atomic masses, atomic labels, and, if enabled, information
related to point-group symmetry. The atomic elements, coordinates,
and, optionally, labels, can be given either as a file, e.g., in XYZ for-
mat (optionally with atom labels in the fifth column), or as a string.
The DP platform also provides a function that can read the stan-
dard molecule file format used by Dalton and LSDalton and return
instances of the Molecule and Basis classes. The atomic labels are
used in the Basis class as described below, but also to specify, e.g.,
ghost atoms and point charges.

The Basis class holds all basis-set information, which includes
the main basis set and, optionally, auxiliary basis sets used for, e.g.,
RI and ADMM approximations. The basis set can be given either as
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a string, in which case the specified basis set is used for all atoms,
or as a dictionary using atom labels as the keys and basis sets as the
corresponding values. The basis sets are obtained from the basis set
exchange (BSE) Python package.'”’

The QCMethod class specifies the method, for example, HF,
DFT, MCSCEF, and CC, together with any associated attributes, such
as XC functional or definition of active space. Approximations used
to compute Coulomb and exchange contributions are also given here
(and also require that the corresponding basis sets are defined in
a Basis instance). In addition, this class is used to specify addi-
tional settings, such as convergence thresholds, maximum number
of iterations, and so on.

The Property class is used to define which properties to
compute. This includes single-point energy, geometry optimization,
excitation energies, and so on, as well as additional specifications
related to the property, which could be, e.g., the algorithm to use
in the geometry optimization or the number of states to include in
the calculation of excitation energies. Currently, the DP platform
supports only a limited set of properties out of the great number
that are available in Dalton and LSDalton, but this will be contin-
uously extended. A selection of some of the current capabilities is
demonstrated in the illustrations presented in Sec. IV.

The Environment class defines the environment, if present,
surrounding a molecule or fragment, which is defined in aMolecule
instance. It contains information about the type of environment
model, e.g., PCM, PE, or PDE, as well as all the parameters and
settings belonging to the specific model. For example, for the PE
model, this class contains the coordinates of the classical sites and
the associated multipoles and polarizabilities.

The libraries are used in the compute and/or data processing
stages. For each library, there is an interface provided as a subpack-
age of the main DP package. The interface API consists of functions
that allow the user to interact directly with the libraries. The exact
implementation of the interface varies depending on the nature of
the library, e.g., what functionality it provides and how the API of
the library itself is defined. However, the interface API functions
that are exposed to the user must conform to the standards laid
out by the DP platform to ensure that there is uniform access to all
libraries as well as interoperability between them. This means, for
example, that libraries with similar functionality must also provide
API functions with identical names and signatures. Moreover, apart
from the classes defined by the DP platform, the types and data struc-
tures must be either Python built-ins, e.g., integers, floats, lists, and
dictionaries, or NumPy arrays.

The default ordering of AO integrals on the DP platform is
the Dalton ordering: atoms are ordered according to the user input,
and for each atom it is angular-momentum components first and
contracted functions second. Other AO orderings may be used on
the platform, but the interface API must provide transformation
functions to and from the default Dalton ordering. Transformations
can then be made on the platform in the cheapest way possible,
e.g., on the MO coefficients rather than on the four-center integrals
for MP2.

Numerical compute-intensive tasks are performed at the com-
pute stage. This can include anything from the calculation of integral
components, all the way to a complete calculation of a molecular
property, as well as more complex workflow protocols. In the first
development release of the DP platform, users will be able to directly
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calculate one- and two-electron integrals using LSDalton through
CFFI-based Python bindings and have seamless access to a selection
of wavefunctions and properties computed by Dalton and LSDal-
ton using the file I/O communication mechanism. To deal with
complex molecular systems that are too large for a full quantum-
chemical treatment, we provide an interface to PyFraME that
enables workflows involving fragmentation and quantum-classical
embedding.

The results obtained at the compute stage can be used directly at
the data processing stage, which includes data extraction, manipula-
tion, analysis, and visualization. The feature set that will be available
in the first development release includes the ability to perform vibra-
tional analysis to obtain vibrational frequencies and normal modes,
natural orbital occupation analysis to assist in the selection of active
spaces, and partitioning of properties into atomic and interatomic
contributions using the LoProp approach. In addition, the DP plat-
form has capabilities for plotting spectra and visualizing orbitals,
electrostatic potentials, and electronic densities.

The DP platform can automatically detect and manage avail-
able hardware resources. Manual specification is also possible and
allows fine-grained control. In auto-detection mode, the DP plat-
form will first check for resources reserved through a standard HPC
job scheduler and, if no scheduler is found, fall back to use resources
on the local computer. Resource usage is optimized according to
the capabilities of the used libraries, exploiting OpenMP, MPI, or
hybrid OpenMP/MPI parallelism when available. Moreover, a task-
farming functionality is provided for use cases where many separate
calculations are to be performed.

We conclude this section with a brief walk-through example
that illustrates how the DP platform can be used to streamline a
workflow going from initial molecular structures to TPA spectra,
employing both Dalton and LSDalton. In Sec. 1V, additional illus-
trations are presented to demonstrate the fine-grained access to
integrals and show some of the new features available on the DP
platform.

Assuming that the DP platform has been imported as import
daltonproject as dp and a list of XYZ filenames is available in
xyz_filenames, we start by creating a list of Molecule instances

molecules = []

for filename in xyz_filenames:
molecule = dp.Molecule(input_file=filename)
molecules.append(molecule)

Then, we create the Basis, QCMethod, and Property instances
that will be used for a geometry optimization of the molecules
using LSDalton. The order in which the classes are instantiated is
unimportant. We here start with QCMethod

b3lyp = dp.QCMethod(qc_method='DFT',
xc_functional="'B3LYP',
coulomb="'DF',
exchange="'ADMM')
specifying that we want to use the BALYP XC functional together
with density-fitting (DF) and ADMM to accelerate the calculation
of Coulomb and exchange contributions, respectively. Both accel-

eration techniques require an auxiliary basis set, which is specified
when instantiating the Basis class
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small_basis = dp.Basis(basis='pcseg-1',
ri='def2-universal-JKFIT',
admm="'admm-1")

large_basis = dp.Basis(basis='pcseg-2',
ri='def2-universal-JKFIT',
admm="'admm-2")

Finally, we create a Property instance

geo_opt = dp.Property(geometry_optimization=True)

using the default optimization algorithm. With these instances we
can proceed to the compute stage.

For Dalton and LSDalton, when used through the file
I/O mechanism, we use the compute() function. It returns an
OutputParser instance that contains methods for transparently
fetching relevant results from the output files, as shown further
below. The compute () function creates a unique filename based on
the specific input, which is stored in the OutputParser instance.
The filename can also be specified through an optional argument in
which case it is up to the user to ensure its uniqueness.

We can iterate through the list of molecules, one by one, and
perform both the pre-optimization and final optimization in the
same loop (updating the molecule coordinates after each step)

for molecule in molecules:
pre = dp.lsdalton.compute(molecule=molecule,
basis=small_basis,
qc_method=b3lyp,
properties=geo_opt)
molecule.coordinates = pre.final_geometry
final = dp.lsdalton.compute(molecule=molecule,
basis=large_basis,
qc_method=b31lyp,
properties=geo_opt)
molecule.coordinates = final.final_geometry

LSDalton can exploit the available CPU resources using a hybrid
OpenMP/MPI scheme. The optimal use for LSDalton is typically one
MPI process per CPU and one OpenMP thread per CPU core, up to
a maximum of 20 threads. For example, on a supercomputer with
two CPUs per node and 12 cores per CPU, LSDalton will use two
MPI processes per node and 12 OpenMP threads per MPI process.

The optimized molecular structures are passed to Dalton for
the calculation of TPA cross sections employing the CAM-B3LYP
functional

camb3lyp = dp.QCMethod(qc_method='DFT',
xc_functional='CAM-B3LYP')

and a mixed basis set which is defined through a dictionary

basis_dict = {'H': 'pcseg-2',

'C': 'aug-pcseg-2',

'0': 'aug-pcseg-2'}
mixed_basis = dp.Basis(basis=basis_dict)
It is here assumed that the molecules only contain hydrogens, car-

bons, and oxygens, and that the XYZ files do not contain atomic
labels in the fifth column in which case the atomic labels default to
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the element symbols. Finally, we create a new Property instance for
the TPA cross section

tpa = dp.Property(two_photon_absorption=True)
tpa.two_photon_absorption(states=4)

where we have additionally specified that we want to include four
states. We then proceed with the calculation of the TPA cross sec-
tions using Dalton, collecting the results for each molecule in the
tpa_results list

tpa_results = []
for molecule in molecules:
result = dp.dalton.compute(molecule=molecule,
basis=mixed_basis,
qc_method=camb3lyp,
properties=tpa)
tpa_results.append(result)

By default, Dalton will here adopt a purely MPI-parallel execution,
corresponding to one MPI process per CPU core. Alternatively,
the task farming functionality can be used by supplying the list of
molecules to the compute () function

tpa_results = dp.dalton.compute(molecule=molecules,
basis=mixed_basis,
qc_method=camb3lyp,
properties=tpa)

In this scenario, a separate calculation will run for each molecule
concurrently, dividing the available CPU resources among them.

Finally, we can plot the TPA spectra using the spectrum module
of the DP platform

axs = []

for result in tpa_results
ax = dp.spectrum.plot_two_photon_spectrum(result)
axs.append (ax)

where ax is an instance of the Matplotlib'"’ Axes class. Further
customization can then be performed to produce publication-ready
figures, which can be plotted as normally done with Matplotlib.

IV. DP PLATFORM ILLUSTRATIONS

In this section, we provide six use cases of the DP plat-
form with the intent to demonstrate novel platform functional-
ities in terms of data exposure, processing, and visualization as
well as to illustrate some of the added features of the platform
libraries. The Python scripts used for these DP platform illustra-
tions, along with the corresponding input/output files, are deposited
at https://doi.org/10.5281/zenodo.3710462.

A. NumPy-exposure of one- and two-electron
integrals

We here demonstrate how to access primitive and con-
tracted integrals on the DP platform. This functionality is made
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available by LSDalton through CFFI-based Python bindings and
enables access to a variety of one- and two-electron integrals
including Coulomb and exchange integral matrices. We will soon
add exposure of geometrically differentiated integrals (in principle,
to arbitrary order), integrals for embedding techniques involving
interaction with classical charges and higher-order multipoles,
Gaussian-geminal type integrals needed for F12-type theories, atten-
uated two-electron integrals, multipole-moment integrals, and mag-
netically differentiated London integrals (to first order for the two-
electron integrals).

Integrals and integral components are available on the DP plat-
form in the form of NumPy arrays and currently require instances
of Molecule, Basis, and QCMethod classes, as outlined in Sec. I11.
For example,

h20 = dp.Molecule('0 0.000000 0.000000 0.000000;
'H 0.758602 0.000000 0.504284;'
'H 0.758602 0.000000 -0.504284')

pcsl = dp.Basis('pcseg-1"')

dft = dp.QCMethod ('DFT', 'B3LYP')

where import daltonproject as dp is assumed. In the follow-
ing, we also import the LSDalton module: import daltonpro
ject.lsdalton as lsd. Weare then ready to compute basic DFT
integral components, such as one-electron matrices

1sd.overlap_matrix(h2o, pcsi, dft)
1sd.kinetic_matrix(h2o, pcsi, dft) \

+ 1lsd.nuclear_electron_attraction_matrix(h2o, pcsl, dft)
D = 1sd.diagonal_density(h, S, h2o0, pcsl, dft)

S
h
two-electron matrices

J = 1sd.coulomb_matrix(D, h2o, pcsl, dft)

K = 1sd.exchange_matrix(D, h2o0, pcsil, dft)

E_xc, V_xc = 1sd.exchange_correlation(D, h20, pcsi, dft)
g

F_

=2.0x%x J - K+ V_xc
ks =h + g

Molecular-orbital energies and coefficients can then be obtained, e.g,
using SciPy

E_mo, C_mo = scipy.linalg.eigh(a=F_ks, b=S)
Two-electron four-center integrals can be obtained through

eri = 1sd.eri4(h2o0, pcsl, dft)

and, for example, two- and three-center RI integrals, by specifying
an auxiliary RI basis, through

basis = dp.Basis('pcseg-1', 'def2-universal-JKFIT')
ab_alpha = 1sd.ri3(h2o0, basis, dft)
alpha_beta = 1lsd.ri2(h2o, basis, dft)

With these integrals, we can easily construct the resolution-of-the-
identity (RI) Coulomb matrix
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matrix in Eq. (1) (see, for instance, Ref. 131 and references
therein).

We end this illustration with a concrete example of a CAM-
B3LYP/pcseg-2 single-point energy calculation of a tetrameric
model of the P700 pigment of photosystem I,'"* depicted in Fig. 2,
to illustrate the computational performance of the LSDalton library.
This triple-zeta quality P700 tetramer model consists of 198 atoms
and 4744 contracted basis functions. The wall time, with 32 Intel
E5-2683v4 dual socket nodes (1024 cores), was 15 min. The cal-
culation used J-engine accelerated density-fitting of the Coulomb
contribution and the ADMM?2 variant of ADMM for the exchange
contribution, and employed one MPI process per CPU and 16
OpenMP threads per process. For more details about the accel-
eration techniques, consult Ref. 100, where these techniques were
studied more extensively.

FIG. 2. The structure of the tetrameric model consisting of units of the P700
pigment of photosystem I.

B. Combined treatment of static and dynamic
Fo_ -1 Do 1 electron correlatipn: The multi-configurational
Jas %.: %(ub\a)(odﬁ) (Bled)Dea W short-range density functional theory method

The calculation of UV/Vis spectra with the MC-srDFT method

through the sequence is here illustrated with the retinylidene Schiff base chromophore, as

originally addressed in previous works.””’ Spectra for this system

8= Z(.B|Cd)Dcd> are shown in Fig. 3 together with the 7-orbitals that constitute the

od active space, denoted by m1-ms. We first note that range-separated

Ca = 2:(0%)7l 2> @) calculations introduce a range-separation parameter y that affects

B the results as long as one remains short of the full-CI limit. From

T = 3 (abla)c a Practical point.of view, the optimal y-value is Fhat which delivers

@ reliable results with the least amount of computational effort. Bench-

mark studies have shown that a value around y = 0.4 ay" is close to

according to optimal for ground and excited states.””' """ We have adopted this
value for the present illustration.

g_beta = np.einsum('cdB,cd', ab_alpha, density) The following workflow was employed in the spectrum calcula-

AB_inv = np.linalg.inv(alpha_beta) tions: First, the natural orbitals were calculated from the MP2-srPBE

c_alpha = np.einsum('AB,B', AB_inv, g_beta) ground-state wavefunction and the occupation numbers were used

J_ab = np.einsum('A,abA', c_alpha, ab_alpha) to select a suitable active space. The DP platform provides seam-

less processing of the MP2-srPBE results, and, based on a user-

We note that this example is only meant to illustrate the ease defined selection criterion, an automatic selection of strongly and

with which algorithms can be implemented on the platform and weakly occupied orbitals is made. Our adopted CAS(6,6) active space

that there are better ways to construct the density-fitted Coulomb came as a result of including orbitals with occupation numbers
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FIG. 3. UV/Vis spectrum of the retinylidene Schiff base chromophore. Results are obtained at the level of CAS(6,6)-srPBE/6-31+G* with ¢« = 0.4 ;. Both CAS and MP2
(in parentheses) occupation numbers are given. The experimental spectrum presented in arbitrary units is taken from Ref. 135.
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below 1.99 (occupied space) and above 0.01 (virtual space). Sec-
ond, the CAS(6,6)-srPBE calculation is performed. Third, the DP
platform processes data by extracting excitation energies and oscilla-
tor strengths and generates the requested absorption spectrum. The
following definition of the frequency-dependent molar absorption
coefficient &(w) was used:

eznzNA

In(10)27eonme.c

> w—ﬁg(w,wi, ¥i)s 3)

7 Wi

e(w) =

where Ny is Avogadro’s constant, e is the elementary charge, m, is
the electron mass, ¢ is the speed of light, € is the vacuum permit-
tivity, n is the refractive index (here set to unity), f; is the calculated
oscillator strength of the ith transition, and w; is the corresponding
transition angular frequency. Equation (3) also introduces the line-
broadening function g with the phenomenological parameter y; cor-
responding to the half-width at half-maximum (HWHM). The DP
platform offers spectral broadenings based on normalized Gaussian
or Lorentzian line profiles.

With the basis of the results in Fig. 3, we briefly discuss some
key features of the MC-srDFT method. We note that the CAS-
srPBE spectrum shows two distinct peaks in good agreement with
the experimentally observed S; and S, bands' ' ** —transition ener-
gies and oscillator strengths are provided in Table I. It is here
essential to employ a multi-configurational wavefunction as can be
seen by the comparison to the single-determinant (HF-srPBE) spec-
trum, which essentially corresponds to the range-separated LC-PBE
model. Without account of static correlation, peak positions are
strongly blue-shifted and the intensity of the second band is severely
underestimated. It is noted that occupation numbers from a reg-
ular MP2 calculation suggest significantly larger active spaces.”
However, the use of CAS(6,6)-srPBE provides the same accuracy as
literature CASPT?2 results based on a much larger CAS(12,12) active
space.””” This demonstrated opportunity to employ relatively small
active spaces with MC-srDFT is not limited to the retinylidene Schiff
base chromophore, but has also been shown in other contexts, e.g.,
to describe the mechanism of [NiFe]-hydrogenase. 19

The reason behind the failure of single-reference DFT
approaches to properly describe the electronic transition underlying

TABLE |. Vertical excitation energies (eV) and oscillator strengths (in parentheses)
for the two lowest singlet states in the retinylidene Schiff base chromophore.

Method S1 Sz
HF-srPBE 2.62 (1.980) 4.29 (0.060)
CAS(6,6)-stPBE 2.28 (1.592) 3.62 (0.525)
Expt." "> 2.03 3.22
Assignment” CI coeff. CI coeff.
m(1) = ma(1) 0.30 —0.53
m3(1) = ma(h) 0.78 0.46
m3(1) > ma(1) —0.25 0.42

“Largest CI coefficients in the CAS(6,6)-srPBE response vectors. Iso-density orbital plots
are shown in Fig. 3.
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the S, band in the retinylidene Schiff base chromophore becomes
apparent from an analysis of the MC-srDFT response vectors. For
S1, the dominant element of the response vector refers to the con-
figuration associated with a single-electron excitation from 73 to 74
(CI coefficient of 0.78 in Table I). For S, on the other hand, there
are three almost equally important configurations appearing in the
response vector, one of which is associated with a double-electron
excitation from 73 to 74 (CI coefficient of 0.42 in Table I) that is
unaccounted for in standard time-dependent DFT.

C. Modeling complex systems through
fragment-based quantum-classical approaches

We here provide an illustration that demonstrates not only
the ability of the DP libraries to perform spectrum simulations
of complex systems but also the ability and potential of the host-
ing DP platform to manage the workflow of complex computa-
tional protocols associated with environment fragmentation and
configuration-space sampling. It is an indisputable fact that first-
principles methods in quantum chemistry come with a computa-
tional cost that hampers applications to relevant chemical and bio-
chemical systems such as solutions and protein-embedded chro-
mophores. Methods that allow for low-cost approximate yet accu-
rate modeling of environments are therefore scientifically enabling,
and one such approach is the PE model briefly described in Sec. I1
B 3. In the PE scheme, the environment is represented by atom-
centered multipoles (typically up to and including quadrupoles) and
atom-centered anisotropic dipole-dipole polarizabilities that allow
for a mutual polarization between the quantum part and the classical
environment.

As further described in Sec. I1 B 3, the adopted multipole expan-
sion in the standard PE formulation is in the PDE model replaced
with an exact Coulomb interaction as well as a description of non-
electrostatic exchange repulsion. The total embedding operator in
PDE consists of terms that describe the electrostatic, induction,
and exchange-repulsion effects from the environment onto the core
quantum region. The electrostatic operator contains the Coulomb
interaction with the electrons and nuclei of the environment. For
the construction of the electrostatic operator, density-matrix ele-
ments of the environment and intermolecular (core-fragment) two-
electron integrals are required. The repulsion operator models the
effects of exchange repulsion between the quantum core and envi-
ronment fragment wavefunctions through a projection operator that
scales as the square of the intermolecular overlap. The PDE model
shows clear advantages over the standard PE model. It effectively
avoids artificial stabilization of diffuse excited states and electron
spill-out.

Both the PE and PDE models are applicable to large and
complex (bio-)molecular systems. Since the parameters describing
the environment are derived based on a fully ab initio descrip-
tion, the setup of the spectrum calculation involves a large num-
ber of preliminary calculations on the separate fragments of the
environment. Figure 4 illustrates this situation in terms of TPA
spectrum calculations of the Nile red chromophore embedded in
the B-lactoglobulin protein. Including the solvent, this system con-
tains 32 582 classical sites. The entire protein and water molecules
within 15 A of the Nile red chromophore were treated with either
PE or PDE, while water molecules beyond this distance were
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FIG. 4. The left panel shows the Nile
red chromophore embedded in the f-
lactoglobulin (BLG) protein. The right
panel shows the simulated TPA spectra
of the Nile red in vacuum and embedded
in the protein (described using the PE
or PDE models). Results are obtained
at the CAM-B3LYP/6-31+G* level of
theory.

1.0 1.2 14 1.6

described using the TIP3P water model (in total 10000 water
molecules).

Configuration sampling of the environment was performed by
averaging over 150 snapshots sampled from a quantum mechan-
ics/molecular mechanics (QM/MM) MD simulation.'*” The calcula-
tion of embedding-potential parameters for each snapshot took circa
1 h and 4 h for PE and PDE, respectively, on 20 nodes (dual socket
E5-2680v3, 12 cores). The TPA spectrum calculations (five lowest
singlet states) included EEF effects and took circa 4.5 h and 5.0 h per
snapshot for PE and PDE, respectively, on eight nodes.

Assuming a monochromatic laser source, the TPA cross section
(in units of GM) is computed as'"’

8’ aay
M w) = f" széiTPg(Zw, Wi Yi)s (4)

where « is the fine-structure constant, ao is the Bohr radius, and
g is here chosen to be a Lorentzian with a HWHM of y = 0.1 eV
[see also Eq. (3)]. The two-photon (TP) transition strength of the ith
transition is computed assuming linearly polarized light as

1 . .
0 = 12 2 (28uSin + SaaSis ), ©)
ab

where S, are the associated TP transition matrix elements.

The gas-phase TPA spectrum of Nile red shows three distinct
peaks at 1.5 eV, 1.9 eV, and 2.2 eV. Embedded in the protein, the
lowest band becomes red-shifted by 0.1 eV, and it also becomes both
broader and lower in intensity. At higher energies, the PDE model
preserves the structure from the gas phase partially, with an intense
peak at 2.1 eV, and a shoulder at 1.7 eV. In contrast, the PE model
predicts a large peak at 2.1 eV with a broad shoulder toward lower
energies. This occurs due to the lack of non-electrostatic repulsion,
which leads to a high density of states in this region due to artificial
stabilization of higher-lying excited states.

D. Open-ended response theory for electric and
geometric perturbations: Infrared and Raman
spectroscopy with the OpenRSP and SpectroscPy
modules

Spectroscopic techniques involving molecular vibrations are
useful for characterizing molecular systems, and with the DP plat-
form, an option for the calculation of vibrational spectra is available

T

2.0 2.2 2.4

Photon energy (eV)

120

through the combined use of LSDalton, OpenRSP, ** and Spec-
troscPy.'"” We here illustrate this functionality through a calculation
of IR and Raman spectra of benzene, including a brief outline of the
key aspects of the LSDalton/OpenRSP/SpectroscPy combination,
and its use on the platform.

From the DP platform, energy-derivative tensors generated by
LSDalton/OpenRSP are passed on to SpectroscPy that processes
them to generate spectroscopic properties. OpenRSP manages the
calculation of response properties by an open-ended quasienergy-
based formulation of response theory,"”’ employing a recursive for-
malism.'** OpenRSP has an API through which it can be con-
nected to different host programs. OpenRSP is currently called
through LSDalton, which provides the necessary integral deriva-
tives (briefly outlined in Sec. II C 1), XC contributions through
modules XCFun”” and XCint,"”' and response equation solver capa-
bility.'"” The use of QcMatrix'* allows OpenRSP to be agnos-
tic to the details of the matrix operations, ie., independent of
their specific implementation when passing matrices from/to a
host program and when carrying out matrix operations inside
the OpenRSP core functionality. SpectroscPy is used to produce
spectroscopic properties involving molecular vibrations by per-
forming vibrational analysis generating vibrational frequencies and
absorption properties. Presently, SpectroscPy offers functionality
for IR and Raman spectroscopy in the harmonic approximation
and can also combine data from calculations on a series of molec-
ular configurations, which is useful, for example, in applications
dealing with flexible molecular systems that require configuration-
space sampling. Future extensions will include anharmonic cor-
rections, hyper-Raman spectroscopy, and other spectroscopic
processes.

The IR molar decadic absorption coefficient for normal mode i
can, in the double harmonic approximation, be expressed as'’

N, )2 a a 2 o
&i(v) = = Z(L) g(¥ Vi i), (6)

12 In(10)e0c? 5\ 9Q;

where p is the molecular dipole moment, Q; is the normal mode
coordinate i, and g is here chosen as a Lorentzian [see also Eq. (3)].
The molar absorption coefficient is a function of the wavenumber ¥
and depends parametrically on the vibrational wavenumbers ¥; and
the HWHM broadening y; of mode i. Derivatives are evaluated at
the equilibrium geometry.
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Similarly, the harmonic differential Raman scattering cross
section o} is given by'*

soy_ doi(®) h(vo - )*
(%) dQ 167131:2\7,-(1 - exp[f%])
x (4507 + 7)) g3 i), @)

where h is Planck’s constant, ¥, is the wavenumber of the incident
light, k is the Boltzmann constant, and T is the temperature. We have
here introduced

, lx,y,z aazxa 2 X2 X )2 1 aalm aaﬁﬂ 2 0atxﬁ 2
“T32 g0 Y ’2%[5(8@ ") e ) |

®)

where « is the molecular dipole-dipole polarizability.

The spectra shown in Fig. 5 were generated by SpectroscPy
using the molecular Hessian and the first-order geometrical deriva-
tives of the molecular dipole moment and polarizability calculated
by LSDalton/OpenRSP. SpectroscPy first calculated harmonic vibra-
tional frequencies by carrying out an eigenanalysis of the molecular
Hessian'"" and projecting out translational and rotational degrees
of freedom.'"* The requested intensity-related quantities were then
calculated and plotted as a function of the frequency. The DP plat-
form allows for the whole pipeline to be run in an automated fashion.
The libraries are seamlessly connected through the platform, which
thus allows for running the calculations, processing the data, and
visualizing the results through a simple Python script.

E. Open-shell properties free from
spin-contamination: The restricted-unrestricted
response theory formalism

One of the unique capabilities of Dalton is the ability to com-
pute various linear and nonlinear response properties of open-shell
systems at the spin-restricted open-shell Kohn-Sham (ROKS) level
of theory,""”"*" and the DP platform provides the means for seamless
and immediate visualization of spin densities to facilitate the inter-
pretation of the results. The spin-restricted formalism ensures that

the ground-state electron density is free from spin-contamination,
and, as such, it provides a better starting point for molecular prop-
erty calculations compared to the more widely used unrestricted
Kohn-Sham (UKS) approach. The advantages of ROKS over UKS
are most apparent in calculations of electron paramagnetic res-
onance (EPR) spin Hamiltonian parameters, which are explicitly
dependent on an effective expectation value of the electronic spin
operator, and benchmark studies on organic radicals show that the
ROKS approach is able to better predict electronic g-tensors and
hyperfine coupling constants.”” '

The main strength of the ROKS approach is the ability to
produce a spin-contamination free electron density for the high-
spin ground state. This is achieved by imposing spin-symmetry
restrictions during the SCF optimization."”’ The side effect of
these restrictions is that the hereby obtained KS orbitals have
a non-vanishing gradient with respect to orbital rotations of
triplet spin-symmetry,”>'*" and this side effect manifests itself
in the computation of electronic spin-dependent properties, such
as hyperfine coupling constants. For example, the expectation
value of the one-electron spin-dependent operator A in the ROKS
approach is given by the direct spin-density and spin-polarization
contributions,

(A) = Tr(ADgin) + Tr(A Dyt ); - Aj = ($ilAlgy),  (9)

where the first contribution is computed in the same way as in the
UKS approach by contracting the electron spin-density Dgyin with
operator matrix A in the AO basis and the second contribution is
computed similarly to the first contribution by replacing Dgpin with
the spin-polarization density Dyl

The spin-polarization density, Dy, is determined by solv-
ing restricted-unrestricted response equations that account for the
relaxation of KS orbitals in the presence of the spin-dependent
perturbation. The relative importance of the spin-polarization den-
sity contribution varies greatly between different molecular prop-
erties: from being prominent for isotropic hyperfine coupling con-
stants' """ to being negligible for electronic g-tensors." ™

The use of the spin and spin-polarization densities as obtained
from the restricted-unrestricted response formalism is not lim-
ited to the calculation of spin-dependent molecular properties, but
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FIG. 6. Spin-density and spin-polarization densities for the 2B;4 ground-state of
the copper acetylacetonate complex, Cu(AcAc),. Isodensity surfaces are based
on volumetric data files generated on the DP platform by performing restricted—
unrestricted response theory calculations of the isotropic hyperfine coupling con-
stant. At the ROKS/B3LYP/Wachtersa+f/Huz-Ill level of theory, the isotropic hyper-
fine coupling constant of the copper atom, A(®®Cu), amounts to 539 MHz and only
the spin-polarization contributes to its value.

can also be employed for topological analyses of open-shell sys-
tem responses to spin-dependent perturbations. To illustrate this
point, we depict the isodensity surfaces of the spin and spin-
polarization in Fig. 6 for the *Bi4 ground state of the copper acety-
lacetonate complex, Cu(AcAc),. The spin-density contribution for
Cu(II) complexes is expected to primarily stem from the 3dy-
orbital of the copper atom,"” but it is here seen to also acquire
significant contributions from the coordinating oxygen atoms. The
spin-polarization density is also delocalized across the copper and
oxygen atoms, and based on the localization of these two densi-
ties, one can predict the behavior of spin-dependent properties and
qualitatively estimate the importance of the spin-density and the
spin-polarization contributions. We emphasize that the presented
disentangled visualization of spin-density and spin-polarization
contributions to molecular properties is uniquely accessible in the

ARTICLE scitation.org/journalljcp

restricted—unrestricted response formalism and not available in the
UKS approach.

F. Coupled cluster methods for inner-shell
spectroscopy

As an illustration of the use of the DP platform for the sim-
ulation of x-ray spectroscopies, we present in Fig. 7 the NEXAFS
spectrum of acrolein. We here adopt the CCSD level of theory in
conjunction with the CVS approximation, as implemented in Dalton
(see Sec. I1 B 2). Based on transition energies and oscillator strengths
from CVS-CCSD response theory, the absorption spectrum is deter-
mined from Eq. (3) with the use of a Lorentzian line shape function
and an HWHM broadening of 0.27 eV for all transitions.

The three lowest excitations at the near carbon edge corre-
spond to the first two bands in the experimental spectrum, These
excitations are assigned to 1s — 7" transitions from the three car-
bon atoms by means of a natural transition orbital (NTO) anal-
ysis. The transition associated with the carbonyl group is chemi-
cally blue shifted by some 1.5 eV from the other two (see Fig. 7).
There is an overall excellent spectrum agreement between the-
ory and experiment, and, although simple, this example illus-
trates well the value of spectrum simulations for the character-
ization and interpretation of experiments. The most prominent
added value of the DP platform for ground-state x-ray spec-
troscopy simulations using Dalton comes at this stage of analysis and
visualization.

In the example above, the CVS approximation is employed
only during the determination of the core-excited states. It is imple-
mented as a projector that, during the iterative solution of the CC
eigenvalue problem,”*”” AR = wfRf , only retains elements Rﬁ,, 4

aL,bj
R

i) and R’;I b (CCSD case), where I and ] refer to core orbitals and
a and b refer to virtual orbitals. A schematic representation of the
CVS approximation is shown in Fig. 8, where only the green matrix
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D §' FIG. 7. Near carbon K-edge x-ray absorption spec-
f‘ 2 trum of acrolein, C3H,;0, obtained at the CVS-CCSD/6-
[ 2000 0.06 & 311++G(d,p) level of theory. The theoretical spectrum is red
= ’ % shifted by 1.53 eV, and the experimental spectrum is taken
3 T from Ref. 156 and presented in arbitrary units. Natural tran-
w 1500 3 sition orbitals for the first three excitations, all of 1s — 7*
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FIG. 8. Schematic representation of the CC Jacobian in the CVS approximation
where only the green matrix sub-blocks are considered in solving the eigenvalue
equation. The illustration refers to the case where single and double excitations
are present. Labels ¢ and v refer to occupied core and valence orbital indices,
respectively.

sub-blocks are effectively kept after applying the projector during
the iterative procedure of the response solver. Core and valence
excitations become decoupled and x-ray spectra are obtained at
basically the same computational cost as UV/Vis spectra with the
use of identical bottom-up iterative techniques. The ability of a spe-
cific CC method to reproduce specific core-excitation spectral sig-
natures depends on the amount of relaxation as well as of single,
double, or higher excitation character of the transition. CCSD gener-
ally yields core spectra in rather good (semi-quantitative) agreement
with experiment, with rigid blue-shifts ranging in between 0.5 eV
and 3 eV, depending on the K-edge considered and the basis set
adopted.

In addition to facilitating data analysis and visualization, the
DP platform greatly simplifies the more complicated setup involved
with simulations of transient (excited-state) x-ray absorption and
emission spectra. Due to design legacies in Dalton, such simulations
without the use of the DP platform will require a substantial amount
of manual file handling as the necessary valence and core excitation
vectors must be obtained from separate code executions and then
later recombined. On the platform, all of these steps are handled in
an automated way.

V. OUTLOOK

We have given a presentation of the Dalton Project that marks
a paradigm shift in the software engineering practices for the Dalton
community. At the heart of the Dalton Project, we find a hardware-
aware platform written in Python with support from NumPy, SciPy,
and MPI4Py, which provides a modern user interface and defines a
communication standard for seamless library access and interoper-
ability. At present, the DP platform supports three libraries, namely,
Dalton, LSDalton, and PyFraME, but further modular extensions
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are underway. Libraries are written in any of the programming
languages Python, Fortran, C, or C++, and they communicate with
the platform by means of file I/O, Python bindings through CFFI or
pybindl11, or pure Python module import. Modular programming
with enforced unit testing will become the standard for newly started
developments, and it is to be anticipated that the existing few mono-
lithic codes will gradually be phased out and replaced by a larger
number of libraries with more specific tasks. The DP platform is
open source and distributed under the GNU General Public License
version 3.0 or later (GPLv3+).

The DP platform is developed for execution on personal com-
puters as well as more powerful supercomputers in HPC environ-
ments, and, although without guarantees, the user should expect
it to run under Windows, MacOS, and Linux operating systems
equipped with Python 3.6 (or later) installations (see the DP web-
site https://daltonproject.org for instructions). Installation of the DP
libraries is a separate issue, and the platform will gracefully signal
to the user when it encounters called for but missing libraries. It is,
of course, fully possible to use the DP platform alone on a personal
computer to analyze the results available in output files produced
on a remote HPC system. As our model to reach a sustainable soft-
ware ecosystem adopts the notion of separate and quite independent
release and distribution policies for the libraries, the main burden of
work and the most dependency issues in the installation process are
expected to be found in the phase of library installation. Driven by
the stimulus of becoming recognized and used, it is anticipated and
expected that newly started library developments will care to offer a
smooth installation process on a widespread selection of platforms
and operating systems.

For developers, the DP platform can lead to rapid prototyping
of novel scientific ideas, as illustrated in Sec. IV A with an examina-
tion of the RI approximation. However, this example also points out
something else of great importance, namely, the educational aspect
of the DP platform. Our experience tells us that the process of imple-
menting methods to solve fundamental equations is supremely effi-
cient to reach a deeper understanding of the topic at hand, but only
few students are granted this opportunity as core program modules
of scientific software were written a long time ago and often made
obscure by code optimization and entanglement. What is here illus-
trated is the access to the needed building blocks to explore quan-
tum chemistry in very much the same manner that we can use the
Python NumPy package to explore linear algebra. At the early stage
of a Ph.D. education, we believe that this can be of high value and
help overcome some of the initial hurdles faced during a career in
quantum chemical theory and program development.
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