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Abstract 

This thesis presents a research study on bioreactor design and biochemical processes for conversion of 

biomass into bioenergy and develops mathematical models that can be used for designing better reactors 

and control systems.  Good design of the bioreactors and understanding of the biochemical process is 

essential to control the process for maximizing the yield. Improving the performance efficiency of 

bioreactors is necessary for large-scale biomass deployment to energy conversion systems and their 

economic viability.    

Large scale production mostly deploys continuous stirred tank bioreactors (CSTBR) involving single, 

or polycultures.  Many micro-environmental parameters in the reactor such as system pH, dilution rate, 

inlet substrate concentration etc. simultaneously affect the process and also the production of the desired 

output.  Due to concurrent influence on many variable-limits, the process has multiple steady states, and 

the slight variation in one parameter leads to deviation from a steady-state operation and microbial 

growth is affected reactor may stall.  

Bioprocesses within these reactors can be expresses as a set of nonlinear equations. The output variables 

(e.g. bioenergy products; gaseous or liquids) depend simultaneously upon a parametric range of a 

number of input variables such as pH, dilution rate, temperature, substrate concentration etc.  It may be 

inferred that the biosystems are parametrically sensitive with respect to specific parameters. Thus, the 

sensitivity of a biosystem is studied for understanding the operation of a reactor. From the process 

engineering perspective, it is a challenge to determine a priori region of parametric sensitivity, i.e., to 

determine the set of values of system parameters beyond which the biosystem becomes highly sensitive.   

Kinetics constants for the mathematical model need to be determined experimentally.  Thus the 

experiments were performed using two types of lactic acid bacteria, namely, Pediococcus acidilactici 

and Lactobacillus casei using the batch reactor to find the optimum pH for microbial growth and other 

kinetic variables that define microbial growth characteristics.  From the experiments, the kinetic 

constants for both bacteria strains were found. The maximum specific growth rate (µmax) and substrate 

saturation constant (Ks) provide the guideline for a working range of feed stream flow rate and its 

concentration for designing continuous processes.  For Pediococcus acidilactici,  the optimum pH value, 

maximum specific growth rate (µmax) and substrate saturation constant (ks) to be 6.7, 1.0775 h−1 and 

4.5017gL-1, respectively. The kinetic constants for Lactobacillus casei,  the optimum value of pH, 

maximum specific growth rate (µmax) and substrate saturation constant (KS) were found to be 6.75, 0.6 

h−1 and 0.814gL-1, respectively. Although both the strains are LAB and their optimum pH are quite 

similar, other kinetic parameters are different.  

When the product is gaseous such as methane or hydrogen, that itself can retard the growth of bacteria 

and its own production if allowed to accumulate in the reactor headspace.  In order to study the effect 

of accumulated hydrogen on the process in a reactor, the third series of batch experiments were 

conducted by using a hydrogen-producing bacteria, Clostridium acetobutylicum. From these 

experiments, the maximum specific microbe growth rate (µmax), substrate saturation constant (ks), a 

critical hydrogen concentration at which growth ceased (H2
*) were determined,  0.976 h−1, 0.63 ± 0.01 

g/L, and 24.74 mM, respectively.  The degree of inhibition was 0.4786.   
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Two models based on a set of ordinary differential equations were developed to derive a dimensionless 

multiplicity criterion, ω, that indicates a set of values of input parameters corresponding to multiple 

steady states in a reactor. Using  the kinetic variables obtained experimentally model can quantitatively 

predicting the parametric range of operating variables for steady operation of the process and optimal 

yield for a reactor  

Parametric sensitivity of pH with respect to input variables specifically dilution rates and concentrations 

of nutrient and alkali stream for pH control in the regions of multiple and unique steady states in a 

CSTBR was determined using the mathematical model.  The parametric sensitivity of pH was observed 

over the entire region of operation under study, and the model estimation was in agreement with those 

of the experimental observations.  

The first model studied the nonlinear behaviour of a CSTBR using Lactobacillus casei. Parameter space 

was determined where the system exhibits sensitive behaviour through normalized objective sensitivity. 

Parametric range of inputs for controlling optimal pH range conducive for the microbial growth was 

determined. The influence of input parameters, which are directly intricate pH of the system, is observed 

by determining normalized objective sensitivity of pH. A generalized criterion, i.e., a specific range of 

certain input parameters, e.g., θ, R and pH0 corresponding to the system's maximum sensitivity was 

determined.  

The second mathematical model studied the reactor process for producing biohydrogen. The multiplicity 

analysis of steady states was determined using the classical theory of bifurcation analysis with the help 

of local stability analysis. It was found that in a particular range of d1 (a dimensionless form of dilution 

rate of feed stream), from 0.44 to 0.4453, the CSTBR operation becomes unstable as it comes across 

multiple steady states condition. On the other hand, CSTBR enters to instability due to another essential 

operating parameter X20 (a dimensionless form of feed substrate concentration) when the operating 

region of X20 within 9.5717 to 13.658 where steady-states of CSTBR system bifurcated to multiple 

steady states.  

The present study also endorses some scope for further research works, such as more output variables 

namely, temperature, the concentration of byproducts needing to be analysed for designing and safe 

operation of a continuous stirred tank bioreactors. In the case of biohydrogen production, there are other 

metabolites such as volatile fatty acids (VFA) produce along with the hydrogen can alter the system pH, 

which can be unfavourable for microorganisms and shift the metabolic pathway of microbial reactions. 

So, the influence of the concentration of  VFA and adopt a kinetic model is recommended to study 

further. The validation of the model-predicted data with the experimental study shows the critical value 

of input parameters for which the CSTBR becomes sensitive. The interaction between input parameters 

or the points corresponding to the limits of the region of instability is recommended to be investigated. 

Moreover, the impact of model kinetic parameters on system stability is the scope where further work 

is suggested. 

The mathematical models presented in this thesis can be used to investigate the operation of similar 

processes in CSTBRs. Using the kinetic parameters, relevant to different microbial growth, the 

developed model can be used to perform a stability analysis of a CSBTR and obtain parametric 

sensitivity regions of the process. Such quantitative analysis of CSTBRs will benefit in selecting design 

and adopting strategies for safe, controlled and economical utilization of CSTBRs.  The information 
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obtained from the present research study contributes to the general field of bioenergy conversion 

processes and the design and optimization of bioreactors, such as the production of biomethanol ethanol 

and biohydrogen.   
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List of symbols 

A, B constant of equation 2.14 

C inhibitor concentration, (gL−1)  

Ccrit  critical inhibitor concentration, (gL−1) 

D dilution rate, (h-1) 

D1 the dilution rate for the base feed stream, (h-1) 

H  cumulative value for substate degradation, (h−1) 

H2
* critical molar concentration of hydrogen at which microbial reaction ceases, (M) 

Hmax  maximum cumulative value for substate degradation, (h−1) 

K overall mass transfer coefficient  

Ka, Kb  constants of equation 2.13 

KC   constant, (gL−1) 

Kd  biomass decay constant, (h−1) 

KI inhibition constant, (gL−1) 

Ks Monod constant or substrate saturation constant, (gL−1) 

N number of bacterial cell 

P product concentration, (gL−1) 

Rmax maximum rate, (h−1) 

S substrate concentration, (gL−1) 

S0 initial substrate concentration, (gL−1) 

Scrit  critical substrate concentration, (gL−1) 

X dry cell biomass concentration (gL−1) 

Xmax   maximum biomass concentration, (gL−1) 

X0 initial biomass concentration, (gL−1) 

X20 dimensionless form of feed substrate concentration 

YP/X  product yield coefficient, (gg-1) 

YX/S  biomass yield coefficient, (gg-1) 

a, b, c  constant of the polynomial equation 2.12 

kc apparent specific growth rate, (h−1) 

m degree of substrate inhibition 

n degree of cell inhibition 

p molar concentrations lactic acid  

rc  microbial growth rate, (gL−1h−1) 

sA  molar concentrations of sodium lactate 

sb regulate the rate of neutralization of the acid 
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t time, (h) 

β  non-growth-associated product yield coefficient 

µ specific growth rate (h-1)  

µmax maximum specific growth rate of cells, (h−1) 

υ0 reaction rate in the absence of inhibitor 

υi reaction rate in the presence of inhibitor 

ϕ vector containing the m system input parameters 

ϕi  one element of the parameter vector, ϕ 

λ lag time, (h) 

obs  experimentally observed value 
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1 

1 Introduction 

Human energy consumption can be grouped under three broad categories: heat, grid electricity, and 

transportation fuels until the twentieth-century humankind have been dependant primarily on fossil fuels 

to meet all kinds of energy demands. However, by the mid 20th century, it was widely acknowledged 

that the use of fossil fuels is associated with an increased level CO2 of in the atmosphere leading to 

global warming and climate change.  Energy consumption of energy worldwide has increased 13-fold 

in the twentieth century, tripling since 1960, which is faster than the increase in population size [1].  

This increased consumption of fossil fuels has caused severe environmental pollution that is affecting 

the quality of life and health issues in urbanized worlds. Thus, alternative energy sources are needed, 

one for meeting the carbon emissions target to combat climate change and two to meet the increasing 

energy demand. Solar, wind, wave and bioenergy are alternative energy sources that are replenished on 

human time scale, unlike fossil fuels and are regarded as renewable energy sources.  

1.1 Bioenergy 

Plant sources are classified as renewable energy sources. From prehistoric times, humans burned 

biomass from plants and trees, to produce heat used for comfort, cooking, and in increasingly 

sophisticated industrial processes, such as ceramic firing to produce pottery and glass and then smelting 

to produce metals such as bronze and iron.   

Biowaste, such as municipal solid waste, agricultural waste and forest waste is also a source of biomass, 

which can be biologically and chemically processed to produce bioenergy products in gaseous and liquid 

forms. These products can be combusted to generate electricity and heat.  Thus bioenergy is an important 

renewable energy source. Still, there are two significant challenges for creating bioenergy: first, there 

must be a net energy gain during feedstock production, and second, greenhouse gas emissions from the 

green energy must be lower than those from fossil fuels.  The targets can be met by increasing the yield 

of the feedstocks such as, target crops per unit land area, better collection and sorting systems of 

biowaste and improving the conversion technologies. The technologies should be capable of proper use 

of the lignocellulosic component of biomass and development of better pretreatment, extraction, and 

fermentation technologies to retrieve the energy captured in the biomass. The conversion technologies 

for biomass into energy forms are classified as first, second and third generation. Combustion and 

fermentation of sugars are humankind’s earliest and most direct routes for obtaining bioenergy and 

biofuel from biomass. They have been classified as first-generation (1G) energy conversion technology, 

followed more complex and evolving conversion technologies, classified as second-generation (2G), 

third-generation (3G), and so forth (Table 1).  Depending on the bioenergy feedstock and the energy 

processing platform (Table 1), there are three major biofuel products: bioethanol (1G and 2G), biogas 

(1G and 2G), and biodiesel (3G). Biogas, sometimes called synthesis gas or syngas, is currently used 

for electrical generation. Use of syngas to produce transportation biofuels is possible, but thus far, this 

technology is primarily at the demonstration and precommercial scale. Both bioethanol and biodiesel 

are currently used as transportation fuels. Ethanol is also an essential raw material in the chemical 

industry, capable of replacing petroleum.  Therefore, sustainable economic production of bioethanol is 

particularly crucial for switching modern society from a petroleum-based to a biomass-based economy. 
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Table 1-1 Conversion technologies for biomass to biofuel 

Biofuel 

Generation  

Feedstock Technology Output 

1ST Generation  Nonfood plants: 

lignocellulosic plants, e.g., 

trees & weedy grasses; 

sugarcane bagasse and trash 

Conventional burning Heat for steam for 

generating 

electricity 

 Food crops: 

Starch (maize), sugar 

(sugarcane) 

Conventional fermentation Fermentation 

fuels 

(bioethanol, 

biodiesel) 

2ND Generation Nonfood crops: 

crop residues, plant stover 

sugarcane bagasse in the crop 

residues section 

Pretreatment (physical & 

biological saccharification) 

& Fermentation 

Fermentation 

fuels (bioethanol, 

biodiesel) 

  Gasification & 

Fisher-Tropsch synthesis 

Syngas, synthetic 

cellulosic fuels 

(alkanes and 

diesel), electrical 

generation 

3RD Generation Oilseed crops: 

(canola, oil palm, 

soybean), & algae 

Conventional, currently 

existing 

Biodiesel, aircraft 

fuel 

4TH Generation No biomass: 

waste CO2 in a 

photosynthetic reaction 

Solar-to-fuel, 

bioengineered 

hydrocarbons 

Liquid fuels 

 

The critical challenge for developing the next generations of biofuels is acquiring economical feedstock. 

Feedstock cost contributes 80% to 90% of the final fuel price for most processes and is a serious issue 

to the economic viability of future generations of biofuels. There is probable space in the marketplace 

for all biofuel generations, with each generation broadening the feedstock and technology options and 

improving fuel economics and performance. Potential future biofuels, will not be based only on biomass 

but utilizing microorganisms, waste CO2, sunlight, and water and therefore, will not compete with food 

production because they use nonarable land. Companies such as Amyris, LS9, Joule Unlimited, Algenol, 

and Naturally Scientific are involved in developing and deploying this 4G technology (Table 1). The 

electrofuels will also ultimately be classified as 4G. 

1.2  Bioprocesses 

Biomass conversion technologies can be broadly divided into two categories: thermochemical processes 

and biochemical processes. The thermochemical process is a method to convert biomass into biofuels 

using heat.  These processes do not primarily produce useful energy directly, but under controlled 

temperature and oxygen conditions are employed to convert the original biomass feedstock into more 

valuable forms of energy carriers, such as producer gas, oils or methanol. The thermochemical processes 

include pyrolysis, torrefaction, combustion and gasification. These conversion processes can not be 

considered as energy-efficient as they need heat. 
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Biomass biochemical conversion technologies refer to the conversion of biomass into similar products 

through certain physical, chemical, and biological pretreatments. Pretreatments in the biochemical 

conversion technologies of biomass aim to help reach ideal conversion effects, not to produce final 

products, which is the essential difference between those mentioned above physical and chemical 

conversion of biomass.    

Microbes utilize a variety of substrates (cellulose, hemicellulose, starch, glucose, xylose, etc.) to 

produce biofuels. By selecting different microorganisms in the biochemical conversions of biomass, 

different products, such as hydrogen, biogas, ethanol, acetone, butanol, organic acids (pyruvate, lactate, 

oxalic acid, levulinic acid, citric acid), 2,3-butanediol, 1,4-butanediol, isobutanol, xylitol, mannitol, and 

xanthan gum etc. can be produced [2]. Compared with other conversion technologies, biomass 

biochemical conversion technologies are clean and efficient. Moreover, biomass can be turned into 

various intermediate products by screening different enzymes or microorganisms through biochemical 

conversion technologies, thus providing many platform substances for the conversion of renewable 

materials, fuels, and chemicals. Therefore, various biochemical conversion technologies of biomass are 

being developed for bioenergy using multiple microbes. Different microbial cells require an optimal 

environment for growth within a bioreactor, which is a closed system where biological reactions take 

place, and microbial cell reproduction occur using enzymes or living cells as biocatalysts. Therefore, to 

maintain such favourable conditions for microbial growth and production of metabolites, the design and 

control bioreactors becomes critical in bioenergy production processes. 

1.3 Bioreactors 

Bioreactors are used in various biological conversion processes in a variety of fields, like food and 

agriculture, health and medicine.  Especially closed bioreactors can provide the ideal environment for 

microbial growth and metabolism as well as bio-energy production. Biogas production by anaerobic 

digestion, hydrogen production by photo-fermentation or dark-fermentation, alcohol production by 

fermentation, and fatty acid production by microalgae all employ bioreactors.   

Microbial biofuel conversion is a complex biochemical process that is much dependent on the 

configuration of a bioreactor. Microbial cells are sensitive to variations in their surroundings, and any 

instability is detrimental to their growth and product synthesis. The conversion process is mainly divided 

into an upstream treatment process that includes fermentation for microbial growth and product 

generation, and a downstream treatment process that provides for product purification, isolation, and 

collection [3].  In order to improve energy conversion efficiency, the specifications of the bioreactor 

should integrate not only the correct structural configuration but also precise operational control for 

optimized multiphase flow as well as heat and mass transfer in the reaction solution.  During the 

microbial biofuel conversion process, product yields are affected by many factors including temperature, 

pH, nutrient content, organic loading rate, type of reactor, hydraulic retention time and solids retention 

time [4–6]. Therefore, the abovementioned environmental parameters within the bioreactors need to be 

maintained at near-optimal ranges to enhance microorganism growth and product accumulation and fine 

control of operating conditions for microorganism growth, metabolism, and product synthesis is 

essential for optimal production of biofuels. 

Various methods are employed to control the operating environment within the reactor. For example, 

the pH can be maintained at suitable levels by adding buffer solutions, a thermostatic water bath can 
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control the temperature, and the hydraulic retention time (HRT) of wastewater can be controlled by 

regulating the inward feeding rate.  

Research has developed various configurations of bioreactors with optimized operating conditions to 

maximize biofuel output [7]. So far, the most commonly used configurations include (i) conventional 

anaerobic reactors, such as the anaerobic sequencing batch reactor, the continuous stirred tank reactor, 

and the anaerobic plug-flow reactor; (ii) sludge retention reactors, such as the anaerobic contact reactor, 

the up-flow anaerobic sludge bed reactor, the up-flow anaerobic solid-state reactor, the anaerobic baffled 

reactor, and the internal circulation reactor; and (iii) anaerobic membrane reactors such as the anaerobic 

filter reactor, the anaerobic fluidized bed reactor, and the expanded granular sludge blanket.  

The conventional anaerobic reactor is a single-tank system that utilizes the same tank for substrate 

treatment and fermentation [8]. All steps of microbial biofuel conversion take place in a single tank, 

which means that downstream treatment processes, as well as the intermediate byproducts, can have 

significant negative influences on the upstream treatment processes. Thus, efficient approaches to avoid 

the interactive effects of different reactions are essential to enhance bioreactor performance.  

The configuration of sludge retention reactors is relatively complicated compared to conventional 

reactors. Sludge retention reactors usually contain two main components: the liquid-phase reaction 

module and the solid-phase recycling or gathering module. For example, the anaerobic contact reactor 

includes an agitated reactor module and a solid phase setting module to recycle the microorganisms. In 

contrast, the up-flow anaerobic sludge bed reactor contains the liquid-phase reaction module at the top 

of the reactor and a dense sludge bed located at the bottom of the reactor. Sludge retention reactors 

provide good contact between wastewater and biomass, which prevents washout of microorganisms. 

Sludge retention reactors are often used to process effluents containing high concentrations of suspended 

solids.  

 Anaerobic membrane reactors are constructed with a supporting membrane to enhance contact between 

wastewater and the bacterial microorganism. The bacterial biofilm accumulates and grows on this 

supporting membrane, causing a separation between bacterial biomass and the wastewater in the reactor. 

For example, the anaerobic filter reactor contains a filter on which the bacterial biofilm grows. In the 

anaerobic fluidized bed reactor, inert particles like fine sand and alumina are provided for the thin 

bacterial biofilm to grow on. The configurations of anaerobic membrane reactors enhance the resistance 

of the microbes to inhibitors, thereby improving biofuel production. 

The function of conventional anaerobic reactors is to supply relatively stable operating conditions in an 

established temporal sequence. Owing to its simple structure, the anaerobic sequencing reactor has 

advantages of operational simplicity and low cost. However, the self-immobilization of the conventional 

anaerobic reactor is poor, and the channelling and clogging effects severe. These disadvantages limit 

reactor performance and biofuel conversion efficiency. The major function of sludge retention reactors 

is recycling of microbial biomass, thus avoiding biomass washout. These reactors rapidly achieve 

steady-state due to short hydraulic retention time [9]. In addition, some configurations of sludge 

retention reactors can have special functions. For example, in the anaerobic baffled reactor, the flow 

patterns of waste influents can be regulated by arranging the baffles, serving to separate acidogenesis 

and methanogenesis along the vertical axis of the reactor and allowing different bacterial communities 

to develop under independently suited conditions [10]. The function of the anaerobic membrane reactor 

is based on the supporting membrane material used for microbial biofilm formation, which serves to 
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separate influents from microbial biomass. By generating this microbial biofilm, biomass washout can 

be avoided, and the microbes have a longer retention time than the hydraulic retention time. As a result, 

the mechanical mixing and sludge settling that occur in sludge retention reactors can be avoided in 

anaerobic membrane reactors [11].  

1.3.1 Bioreactor design 

Bioreactor design is critical for various applications of biochemical engineering, including bioenergy. 

The design of a bioreactor includes determination of operating conditions, reactor size, mixing and mass 

transfer capabilities, temperature and sterility conditions, the means of feed introduction and product 

removal, and control of operating variables such as pH, oxygen concentration, and illumination [12]. 

Usually, watertight structure, high heat and mass transfer efficiency, good mixing performance, low 

energy investment, and high product output are essential considerations in the design of bioreactors. 

Presently,  bioreactor design is based on empirical measures. The structural configuration of a bioreactor 

closely aligns with its functional advantages. For example, the leakage resistance of a bioreactor is 

critical when applied to biogas production. 

Reactor size and shape usually influence biofuel output capacity. Increasing the size of the container 

can improve biofuel production to some extent, but can also cause biomass concentration gradients in 

the reactors, which hinders biofuel production. Bioreactors operated at low temperature are less prone 

to thermal instability and degradation. However, some thermophilic bacteria prefer high ambient 

temperatures of up to 65°C; bioreactors must maintain the standard for thermotolerance. Generated 

byproducts can dissolve and accumulate in the bioreactor over time, inhibiting microbial growth and 

metabolism. Thus, in order to maximize the efficiency of microbial biofuel conversion, bioreactor 

design must incorporate some mechanism to remove such byproducts quickly. 

1.4 Stability analysis and parametric sensitivity 

For biomass energy conversion a wide range of reactors are used depending on the requirement of 

different applications. Microorganisms play a vital role in case of bioreactors for biomass energy 

conversion. Therefore, a bioreactor needs to provide a precise environment condition to facilitate the 

growth of microorganism and produce metabolites. On the other hand, to perform a successful operation, 

different limitations occur due to complex interactions between microbe and the environment of the 

reactor system. Depending on the mode of operation, bioreactors are classified as batch, fed-batch and 

continuous type bioreactors. In the case of batch and fed-batch bioreactors, a proper operative 

environment is achieved by attaining a suitable reactor startup. Continuous type bioreactor, which are 

the most extensively used reactors designed for continuous production of products in large quantities, 

often encounters stability phenomena such as steady states multiplicity, oscillations of process variables, 

bifurcations and chaos. These phenomena unfavourably affect the productivity of industrial 

bioprocesses, and consequently, their profitability in most of the cases. Therefore, stability and 

consistency are the most crucial factor for a bioprocess in bioreactors. As the microorganisms are the 

participant for biochemical reaction in the bioreactor, sufficient knowledge of microbial growth 

dynamics and stability in needed in order to adapt the industrial requirements. These can be helpful to 

understand, optimize and control a bioprocess in a continuous type bioreactors.  

On the other hand, bioprocesses for energy conversion in bioreactors are complex and are sensitive to 

disturbance in process parameters. The biochemical reactions inside of the reactors often show drastic 

changes in the output variables with small changes in one or more of the reactor input parameters. This 
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kind of occurrence in the reaction system is called parametric sensitivity behaviour of the reactor. 

Continuous type of bioreactors follows the nonlinear dynamic response due to the mechanism of 

microbial growth and generation of secondary metabolic products. The impact of operating conditions 

on microbial growth and generation of secondary metabolic products directly affect continuous type 

bioreactors. In bioreactors, the growth of microorganisms is subjected to changes in the environment 

such as temperature, pH, the concentration of metabolic products, partial pressure and dissolved oxygen. 

In order to understand the influence of these environmental parameters, parametric sensitivity analysis 

comes into the picture. The parametric sensitivity analysis is a mathematical tool to analyze any system 

behaviour concerning changes in system parameters.  Therefore, to design, optimize bioreactor for 

bioenergy conversion, a competent knowledge on processes design through stability and parametric 

sensitivity analysis is essential.  

1.5 Research Gaps 

The above discussions infer that for an efficient bioenergy conversion process, especially in continuous 

reactors type, there is a need for having an optimal design of a reactor maintaining an optimized 

environment within the reactor. Although studies on stability and parametric sensitivity of continuous 

type chemical reactors are well advanced in this field, there is limited information available in case of 

continuous type bioreactors. As it is mentioned in the previous section above, the stability of continuous 

bioreactors is susceptible to many system parameters such as pH, temperature, hydraulic retention time, 

the concentration of metabolites, oxygen loading rate and partial pressure of the reactor. For a better 

bioreactor design,  the simultaneous influences of all these parameters on the reaction system and how 

these parameters affect the microbial growth in the bioreactors, need to be taken into account, which 

warrants a thorough investigation of these influencing factors. 

In many cases, the mechanisms behind the growth of microorganisms and generation of metabolic 

products, and their correlation with conditions of operating variables are not well understood. Also, the 

development of kinetic models, which mathematically explain the influence of system parameters on 

microbial reactions and provide essential information for designing continued type bioreactors, are 

desirable. For instance, every bioreactor for biofuel production, which involve microbial reactions is 

affected by system pH. However, according to the author’s knowledge, no such article dealing 

simultaneously with both parametric sensitivity of pH and multiplicity of steady states in continuous 

type bioreactors is currently available. Since a priori determination of both phenomena, i.e. parametric 

sensitivity and multiplicity may save the continuous type bioreactors from ‘out of control situations’, 

such studies are also required for bioreactors. The experimental verifications of parametric sensitivity 

and stability analysis also lack for continuous type bioreactors.  

Secondly,  in the case of biohydrogen production in bioreactors, one of the vital parameter other than 

pH and soluble metabolites, is partial pressure exerted by gaseous hydrogen. In this case, produced 

hydrogen itself restrict the microbial growth as well as the hydrogen production rate. Therefore, in order 

to adopt control strategies for biohydrogen production processes, development of the kinetic model is 

essential to examine the adverse influence produced hydrogen on microbial growth, which is not well 

described in the previous studies. 
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1.6 Aim 

Motivated by the research gaps discussed above, the present thesis aims to develop a mathematical 

model of a continuous stirred tank bioreactor (CSTBR) for the analysis of stability and parametric 

sensitivity for bioenergy production.  

1.7 Thesis organization 

The thesis is divided into five chapters which are included as follows: 

Chapter 1 describes the general background, statement of the problem, research gaps, significance of 

the study, aims of the research, and organization of the thesis. 

Chapter 2 deals with the state of the art review of literature related to the present research areas.  In the 

background of existing knowledge, the objectives to achieve the aim of the research are also presented 

Chapter 3 provides the research methodology adopted for the study to be carried out. This chapter 

presents the theoretical analysis, which includes the development of mathematical models and 

simulation processes. Information about the different experimental procedures, which are performed to 

fulfil the objectives of the present study, also provided in this chapter 

Chapter 4 presented the results from the theoretical research as well as the experimental observations. 

This chapter presents the analysis of the obtained results through discussions as well. 

Chapter 5 summarises the present investigation through concluding remarks followed by 

recommendations for future works. 
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2 Literature Review 

This chapter reviews the previous research work relevant to the topic of the thesis.  Primarily, economic 

viability bioenergy conversion and biological waste treatment processes are dependent upon the overall 

process efficiency.  

Several technical aspects influence the efficiency of the bioprocesses. They can be divided into the 

technology of the feedstocks, the fermentation, the separation processes, and technology of the use and 

treatment of waste. Complete knowledge of static and dynamic behaviour of bioreactor is required to be 

understood, in order to operate, control and optimize the bioprocess.  

Mathematical models are essential for correctly reproducing the dynamic behaviour of the process and 

analyzing the stability of the bioreactor system, and good knowledge of the system is vital to develop a 

suitable design of the operations. Several research studies already described the various features of 

bioreactor stability analysis of bioreactor used for bioprocesses.  The review of available research studies 

is presented in the following sections. 

2.1 Stability analysis of bioreactors 

The stability analysis of the conditions in the bioreactors provides insight into the control environment 

and processes for the production of metabolites and growth of microorganisms in a bioreactor. Stability 

analysis of bioreactors also offers information on the limitations for carrying out a successful process 

due to complex biological reaction mechanisms in the bioreactors.  There are various mathematical 

models such as, based on physical laws, statistical, empirical data that can describe the dynamic 

behaviour of biochemical networks. In general, a bioreactor can be modelled by a differential equations 

system. If uniformity (perfect mixture) inside the bioreactor is assumed, solely variations concerning 

the time occur, and the system can be defined by a set of first-order ordinary differential equations. 

These equations result from material balances formulation for components considered in the system 

For the stability analysis of bioreactors [13] formulated mathematical models for microbial growth in 

batch and continuous bioreactors. The models were referred to as distributed models since the microbial 

population in the reactor is observed upon as mass distributed uniformly throughout the culture. Growth 

was observed as the increase in this mass by the conversion of medium components into biological mass 

and metabolic products. Two sets of models were presented. The first arises from introducing additional 

considerations into the model proposed by Monod to account for the stationary phase and the phase of 

decline in batch culture. These were referred to as unstructured, distributed models since they do not 

recognize any form of structure in the protoplasmic mass. The models in the second set were referred to 

as structured, distributed models. The arrangement was introduced by considering the protoplasmic 

mass to be composed of two groups of substances which relate to each other and with elements in the 

environment to harvest growth. The structured models subject to the dependence of growth on cell 

growth; thus, they predict all growth phases detected in batch cultures, whereas the unstructured models 

do mot predict a lag phase. The full implications of the models are discussed for continuous propagation, 

as determined by the method of stability analysis and transient calculations. Using the observation form 

Ramkrishna et al. [13] the transient behaviour of a single-vessel continuous fermentation was studied 

theoretically by Yano et al. [14]. In this study, the microbial growth in the bioreactor inhibited by its 

products. By the stability analysis, the occurrence of diverging as well as damped oscillations was found 

when the product formation was negatively growth-associated; otherwise, no oscillation was observed, 
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the product formation was either completely growth-associated, completely non-growth associated, or 

partially growth associated. The dynamic behaviour of isothermal biological continuous type bioreactors 

modelled by idealized cell and substrate balance equations has been investigated by Agrawal et al. [15] 

adopting the model developed by Ramkrishna et al. [13]. The stability of the bioreactor model was 

analyzed theoretically in terms of multiplicity and stability of steady states and existence and stability 

character of limit cycles. Various types of dynamic behaviour have been classified in terms of a 

Damkdhler number and two other system parameters. The predicted examples of behaviour have been 

illustrated by numerical computation of cell and substrate concentration trajectories. 

Fermentation processes in Continuous type bioreactors often face the occurrence of oscillation or 

cycling of the substrate, biomass, and product concentrations under certain fermentation conditions [16–

19]. The mechanism causing oscillation in continuous ethanol fermentation by Zymomonas mobilis 

under certain operating conditions was examined by Daugulis et al. [20]. In this study, forced oscillation 

fermentation experiments were performed, in which exogenous ethanol was added at a controlled rate 

to generate oscillatory behaviour, in order to obtain estimates for the model parameters and to validate 

the proposed model. From this study, the lag in the cells’ response to a changing environment was shown 

to be the significant factor contributing to the oscillatory behaviour in continuous fermentation under 

certain operating conditions. Skupin et al. [21] studied the stability analysis of Continuous fermentation 

processes where the continuous fermentation processes involving yeast Saccharomyces cerevisiae or 

bacterium Zymomonas mobilis often exhibit oscillatory behaviour.  In this research study, two substrates 

were fed to a continuous type bioreactor, and an unstructured mathematical model described the kinetics 

of fermentation process with product inhibition on cell growth was considered. From the bifurcation 

analysis for stability, it was found that an appropriate ration of both substrates to the mixture allows for 

the induction and elimination of oscillatory behaviours.   

Several researchers studied the stability analysis of bioreactors for biofuel production, such as 

bioethanol and biohydrogen [22–26]. A mathematical model for continuous ethanol fermentation to 

study the mechanisms of the self-sustained oscillations of ethanol concentration was analyzed by Skupin 

et al. [26]. The model was considered on the assumption that microorganism cells response to the 

inhibitory effect of product (ethanol) concentration with a delay. From the stability analysis, it was 

observed that the delay time is one of the crucial factors for the occurrence of oscillations. For critical 

delay time, the fermentation process undergoes a Hopf bifurcation. The analysis showed the operating 

variables and kinetic parameters have a significant effect on the dynamical behaviour of the fermentation 

system. The oscillatory behaviour can be avoid by proper manipulation of the operating variables. On 

another study, the dynamic responses of bioethanol fermentors to sinusoidal periodic perturbations of 

the feed concentration have been investigated by Abashar et al. [25]. It was shown that the steady-state 

autonomous model of the unforced fermentor could be reduced analytically to a cubic polynomial. This 

analytical form enables to implement the global bifurcation analysis to divide the parameter space into 

regions with a different number of steady-state solutions; moreover, the discriminant of the cubic 

polynomial is used for the study of the nature of the steady-state solutions. It was shown that within the 

parameters range studied, the best policy for the production of bioethanol is to operate the forced 

fermentors in the frequency locking regions at small forcing amplitudes.  

The stability analysis becomes sometimes challenging when the microbial growth kinetics undergoes 

metabolic overflow and certain inhibition phenomena due to substrate, product, and some toxic 

chemicals. One of the often observed mechanisms of microorganisms is the so-called metabolic 
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overflow [27–31]. This term is used to describe the phenomena of excessive uptake of the substrate and 

corresponding overflow of intermediate metabolite(s) under conditions of high extracellular substrate 

concentration. In general, the substrate consumption rate and product formation rate of many 

microorganisms are dependent on the nature of growth limitation and growth rate and the extracellular 

substrate concentration in a relatively wide range [31]. In a continuous culture of Klebsiella pneumoniae 

anaerobically grown on glycerol, it has been experimentally shown that the extracellular substrate 

concentration also strongly affects cells' dynamic behaviour, leading to sustained oscillation and 

multiplicity under certain conditions [32]. On the other hand, using extended forms of the Monod model 

which separately took substrate and product inhibition into account, Yano et al. [14] showed that 

although substrate inhibition does not give rise to sustained oscillation, the product inhibition can lead 

to both damped and sustained oscillations depending on the nature of products.  

Lorencez et al. [33] considered the interactions of the substrate and product inhibition and their effects 

on the stability of the growth of Methylomonas clara. No oscillation was reported for this culture. The 

result of product inhibition on the occurrence of multiple steady states was considered by Axelsson et 

al. [34] for Saccharomyces cerevisiae. The combined influences of enhanced rates of substrate 

consumption and product formation, together with inhibition by substrate and product on the dynamic 

behaviour of culture, are not clear. In general, little is known about the multiplicity of bioreactions [35]. 

One of the most popular applications of bioreactors is in the field of wastewater treatment. The stability 

of activated sludge reactors with substrate inhibition kinetics and solid recycle studied by Bertucci et al. 

[36]. In this study, an analytical relationships were developed for the continuous stirred tank reactor; 

numerical simulation was performed for other bioreactors. The occurrence of multiple solutions and 

hysteresis behaviour is examined as a function of spacetime, recycle ratio, recycle solids concentration, 

and sludge age. The sensitivity of the outlet substrate conversion as a function of the degree of substrate 

inhibition and hydraulic mixing is calculated. Criteria were suggested to operate such bioreactors and 

to prevent washout occurrence. In another study, a continuous bioreactor with cell recycle involving the 

biodegradation of mixed wastes is analyzed by Ajbar et al. [37]. The biodegradation of the different 

substrates follows Andrew’s inhibitory kinetic models. The stability analysis revealed that the model 

exhibits a number of singularities, including hysteresis and pitchfork, that occur at clean feed conditions. 

The effect of the growth kinetic and operating parameters on its stability behaviour was also examined. 

A similar type of study on stability analysis of the biodegradation of mixed wastes in a continuous 

bioreactor with cell recycle was observed by Ajbar et al. [38].  The continuous bioreactors system 

involves a pure culture of Pseudomonas putida and media containing phenol and glucose as carbon and 

energy sources. The stability analysis carried out using the bifurcation theory's elementary principles 

shows rich dynamics characteristics of the reactor model, including steady-state multiplicity and 

hysteresis. The effect of the bioreactor operating parameters on the stability behaviour of the model was 

observed.  A practical criterion was derived for the safe operation of the unit and to prevent the 

occurrence of washout conditions. Most of the time, the kinetic model for microbial growth with or 

without inhibition are gererally adopted from Monod model by incorporating inhibition term. But Ajbar 

et al. [39] investigated the static and dynamic behaviour of a continuous flow bioreactor for the aerobic 

biodegradation of municipal and industrial waste where, the kinetic model for the bioreactor was 

described by the biomass-dependent Contois model. This kinetic model is known to explain the aerobic 

biodegradation of solid municipal organic waste well. In this investigation the analysis of the unsteady-

state model was conducted for both analytically and through numerical simulations. The results show 

the ability of the model to predict a wide range of behavior, including oscillations for some range of 
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kinetic and operating parameters. The analysis also showed that the inconsistency of the yield coefficient 

is essential for the presence of Hopf points in the model. The influences of the operating variable on the 

performance of the bioreactor were also examined. 

2.2 Influence of pH 

The microbial reactions in the bioreactors are controlled by a wide range of environmental variables, 

including pH, temperature, salinity, nutrient availability [40,41].  Among these environmental factors, 

pH appears as a primary control [42–44]. pH correlates strongly with microbial communities across a 

wide range of biochemical conditions. 

2.2.1 Bioethanol production process 

Ethanol is considered to be one of the biofuels that can be used as a fuel supplement for the internal 

combustion engine. Ther are research articles that reflect ethanol can produce biological processes using 

a different kind of organic waste material as feedstocks. For the production of ethanol from sugar cane 

molasses using Zymomonas mobilis and Saccharomyces cerevisiae strain Vuuren et al. [45] found, pH 

plays an important role. This study concludes pH had a noticeable effect on ethanol production if the 

reaction system maintains the optimum range of pH for those particular strains. In the case of continuous 

fermentation for ethanol, pH also shows an important role. The effects of temperature and inlet pH of 

the medium on the ethanol productivity and activity of the immobilized Z. mobilis cells during 

continuous fermentation of glucose was studied at various temperatures and pH by Bajpai et al. [46]. 

On changing the temperature from one steady-state level to a new one, 6-8h was required in order to 

experience the effect of a change in temperature entirely, whereas 8-20 h was needed to alter the pH. In 

order to obtain maximum ethanol productivity and ethanol yield, the optimum temperature of 37°C was 

required whereas, pH range was broad as 4.4-6.0. The fastest growth of yeast  Zymomonas mobilis for 

bioethanol production was 5.5-6.5, with an apparent optimum at 6.5 was observed by Lawford et al. 

[47]. From this study, it was observed that the specific rates of glucose utilization and ethanol production 

were relatively unaffected by pH over the range 7.0-5.5 but increased sharply as the pH was further 

decreased below 5.5 to 4.0. Under these conditions, the ethanol yield was unaffected by pH over the 

range 4.0-6.5 but decreased markedly at a pH of 7. The formation of ethanol by the polymorphic fungus 

Aureobasidium pullulans was examined by Madi et al. [48] under a range of culture pH values and 

aeration conditions. Although culture pH had a profound effect on fungal morphology, with a 

significantly increased proportion of the biomass in the unicellular form at pH 6.5, there appeared to be 

no direct link between morphological structure and ethanol formation. The levels of ethanol noted may 

have influenced the morphology. The effects of lactic and acetic acids on ethanol production by 

Saccharomyces cerevisiae in corn mash, as controlled by pH were examined by Graves et al. [49]. In 

this study pH of corn mash was adjusted by acetic acid and lactic acid, and the growth inhibition of 

Saccharomyces cerevisiae with the variation of pH range was examined. Results from this study suggest 

that the inhibitory effects of lactic acid and acetic acid on ethanol production in corn mash fermentation 

when setting at a pH of 5.0–5.5 are not as great as that reported thus far using laboratory media. Sweet 

sorghum has the potential to be used as a renewable energy crop and is a viable candidate for ethanol 

production. In this respect, the influence of temperature, pH, and yeast on in-field production of ethanol 

from unsterilized sweet sorghum juice was studied by Kundiyana et al. [50]. The main objective of this 

study was to evaluate the effects of pH and nutrients on fermentation process efficiency. Saccharomyces 

cerevisiae, an ethanol-producing yeast, was used in this study. Results indicated that both strains of 

Saccharomyces cerevisiae tested were able to perform fermentation within a wide ambient temperature 



 

12 

range, and maximum ethanol produced was 7.9% wv-1 in 12h under ambient temperature conditions. 

Other process variables, such as lowering pH, did not significantly improve the sugar to the ethanol 

conversion efficiency of yeasts. Results indicate that in-field fermentation of sweet sorghum juice to 

ethanol is possible with minimal or no process controls and is a feasible process for ethanol production. 

The influence of pH was observed for the production of ethanol and glycerol by Saccharomyces 

cerevisiae in cassava mash by Zhang et al. [51]. The pH was varied from 4.0 to 6.0. Inhibition of 

microbial growth was observed as the pH of the reaction medium declined. Complete inhibition of 

ethanol fermentation was observed in mashes at pH 4.0. Glycerol production linearly decreased with an 

increased undissociated propionic acid concentration in all mashes at all pH levels, which partly 

contributed to increased final ethanol production when the propionic acid concentration in mashes was 

low. Waste gases containing carbon monoxide (CO) can be utilized for generating valuable fuels like 

ethanol by biological conversion using acetogens.[52,53]. Several bioreactors can be used for gas 

treatment or bioconversion [54,55]. The bioconversion of carbon monoxide to ethanol and acetic acid 

by Clostridium autoethanogenum was investigated by Abubackar et al. [56] by varying pH in the range 

of 4.75-5.75. A maximum ethanol concentration of 0.65 gL-1 was obtained under the following 

conditions: pH = 4.75. Such maximum ethanol concentration is considerably higher than that achieved 

(0.06 and 0.25 gL-1) with C. autoethanogenum in previous studies [57,58]. 

2.2.2 Biohydrogen production process 

The operational pH is one of the most critical parameters that determine the ideal metabolic pathways 

for hydrogen production as well as the inhibition of the hydrogen consuming processes, which may 

coincide [59–61]. An acidic operational pH (below 6) mainly inhibits the methanogenic activity under 

both mesophilic and thermophilic conditions. Still, the inhibition of hydrogen consuming homo-

acetogenic activity can only be achieved under thermophilic conditions at the initial pH of 5.5 [62]. 

Thus, the control of the process pH plays a vital role in achieving high biohydrogen conversion rates by 

minimizing the activity of hydrogen consumers. The pH is one of the critical parameters that can 

influence the metabolic pathways as it may directly affect the hydrogenase activity, an iron-containing 

enzyme which plays a significant role in DF [63,64]. An acidic pH affects the activity of the hydrogenase 

enzyme, although it is one of the essential parameters for the inhibition of methanogenic activities in a 

mixed culture system [59,65]. The optimum pH range for biohydrogen production varies from pH 4.5 

[59] to 9 [66] in DF of sucrose. The conceivable justifications for the disagreements in optimum pH in 

the different studies can be differences in inoculum sources, inoculum enrichment methods, substrate 

types and applied oxygen loading rate [6]. The operational pH influences the metabolic by-products and 

biohydrogen yields. 

In most of the studies, for favourable hydrogen production, acetate and butyrate are the major end 

products.  However, Khanal et al. [59] concluded the independence of the acetate and butyrate levels 

from different initial pH ranges studied (4.5–7.5). Similarly, Luo et al. [67] reported butyrate as a 

significant VFA in the DF of cassava stillage in both BHP tests carried at the initial pH 5 and 7. Luo et 

al. [62] found acetate as a primary metabolic product when the operational pH was 7. In contrast, 

butyrate dominated at an initial pH 5.5 in the BHP tests carried under mesophilic (37°C) conditions 

using an acid pre-treated inoculum. Luo et al. [62] further reported the inhibition of homo-acetogenesis 

could be achieved at pH 5.5 and thermophilic temperatures (55°C). The dark fermentation of cheese 

whey from mozzarella production at different pH ranges (5.5–7.7) and a temperature of 39°C, De 

Gioannis et al.[68] reported, pH 6 as the optimal pH and acetate levels were higher in all the tests except 

at pH 6.5 where butyrate and propionate levels exceeded those of acetate. A lower pH (64.5) favours 



 

13 

the solvent production [69]. In the DF of glucose by C. pasteurianum, a pH below 5 favours the butanol 

and acetone production [63]. The selection of the operational pH is also substrate type and OLR 

dependent, which determines the VFA concentrations and thus the pH of the solution. The optimum pH 

for organic food waste varies from 4.5 to 7, for the lignocellulosic waste, it varies from 6.5 to 7, whereas 

a neutral pH is optimal for animal manure [70]. However, Tang et al. [71] reported an optimum pH of 

5.5 at 45°C for the DF of cattle wastewater. Thus, it is crucial to determine the optimum pH conditions 

for the DF of a selected substrate type at a particular loading rate and operational temperature.  

2.3 Effects of partial pressure 

High concentrations H2 in the liquid phase, which is corresponding to the high partial pressure of H2 

according to Henry's law, results in process inhibition and decreases bio-hydrogen production Bio-

hydrogen is produced from the dark fermentation process mainly through the reduction of protons by 

Fdred or NADH. At high H2 concentrations in the liquid phase, the reduction of protons to H2 is 

thermodynamically unfavourable [72]. Instead, the reduction of Fdox is favoured, resulting in the 

oxidation of H2 to proton and a decrease in H2 production. On the other hand, Dong et al. [73] reported 

that high H2 partial pressure might inhibit the conversion of long-chain fatty acids into acetate and H2 

while van Niel et al. [74] revealed that high H2 partial pressure could result in a metabolic shift to favour 

lactate, ethanol, acetone and butanol formation at the expense of H2. 

Several strategies have been employed to decrease the H2 partial pressure during dark fermentation 

processes and increase biohydrogen production. These include continuous gas release [75–77], larger 

headspace volume [78], vacuum stripping [79], or sparging with an inert gas like N2 or CO2 [80,81]. 

Logan et al. [75] compared an alternate release method with a continuous release method and reported 

higher H2 production with the continuous gas release technique. Similarly, Chang et al. [76] reported 

higher H2 production with a continuous gas release method as compared to the intermittent release 

method. The same authors also reported that the continuous release method could be further enhanced, 

bypassing the gas released through an alkaline solution of NaOH [76]. Kim et al. [82] compared N2 and 

CO2 sparging on biohydrogen production and reported increased gas production for the N2 and CO2 

sparging systems relative to the control. The authors also observed that CO2 sparging resulted in higher 

H2 production than N2 sparging [82]. Likewise, Nguyen et al. [80] reported an increase in H2 yield of 

78% (with glucose as substrate) and 56% (with xylose as substrate) for N2 sparged system as compared 

to the control setup. In the same study, Nguyen et al. [80] also studied the potential of using large volume 

headspace to decrease H2 partial pressure and reported a headspace: liquid volume ratio of 2:1 in the 

reactor as the optimum value for maximum biohydrogen production. Similarly, Oh et al. [83] compared 

the use of a high volume headspace of 81%by intermittent gas release method with that of a continuous 

release method and reported an H2 yield 14% higher for the intermittent release as opposed to the 

continuous release method. Besides, Beckers et al. [84] studied the influence of H2 partial pressure on 

biohydrogen production using Clostridium sp. and reported an increase in H2 production of 9.2% and 

22.5% when the pressure was decreased from 1.18 bar to 1 bar and 0.89 bar respectively. 

2.4 Kinetic models 

There are mathematical expressions to define the bio-reaction kinetics. The microbial growth, perhaps, 

is the process that has generated more difficulty for its modelling due to the multiple interactions 

between cells and the environment, and to the significant amount of biochemical reactions affecting the 

microbial activity.   
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Kinetic models provide useful information to adopt control strategies for any bioprocess processes. 

Kinetic models are also helpful in describing the influence of substrate overdose, temperature, pH, 

dilution rate (in case of the continuous operation), and soluble metabolites, which are produced during 

fermentation [85].  

2.4.1 Kinetic models describing the progress of the fermentation process 

Monod model is the most popular and simplest model for describing the microbial reaction of microbial 

growth within a single substrate. The reaction kinetics are expressed as: 

Substrate(S)
Cell(X)
→    more Cells(X) + Product (H2)                    (2.1) 

rc =
dX

dt
=
μmaxS

KS+S
X            (2.2) 

According to Monod: 

μ =
1

X

dX

dt
=
μmaxS

KS+S
            (2.3) 

where, 

rc  microbial growth rate, (gL−1h−1); 

X cell biomass concentration (gL−1); 

t incubation time, (h); 

µmax maximum specific growth rate of cells, (h−1); 

S substrate concentration, (gL−1); 

KS Monod constant or substrate saturation constant, (gL−1); 

Some kinetic models have been proposed to describe such changes in substrate concentrations, microbial 

growth rate, hydrogen, and some soluble metabolites. Among them, the modified Gompertz model (Eq. 

(2.4)) developed by Zwieteringet al. [86] was widely used to describe the progress of substrate 

degradation, HPB growth, hydrogen production and some soluble metabolite production in a batch 

fermentative process [87–93]. 

H = Hmaxexp {−exp [
Rmax𝑒

Hmax
(λ − t) + 1]}         (2.4) 

Where, 

H cumulative value for substate degradation, (h−1); 

Hmax maximum cumulative value for substate degradation, (h−1); 

Rmax  maximum rate, (h−1); 
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λ lag time, (h); 

t time, (h); 

When Equation (2.4) was used to describe the progress of substrate degradation in batch tests, H and 

Hmax denote the cumulative degraded substrate value and the maximum degraded substrate value, 

respectively. As shown in Figure 2-1, in a batch test, H increases very slowly with increasing cultivation 

time from 0 to λ, and then increases rapidly almost at the rate of Rmax and finally reaches an asymptotic 

value Hmax with further growing the cultivation time. 

 

Figure 2-1 A curve for modified Gompertz model 

Besides, a Logisticmodel (Eq.(2.5)) was also used by Mu et al. [94] to describe the progress of microbial 

growth in the batch tests. 

X =
X0exp(kct)

1−(
X0

Xmax
)(1−exp(kct))

           (2.5) 

Where, 

X0 initial biomass concentration, (gL−1); 

Xmax  maximum biomass concentration, (gL−1); 

kc  apparent specific growth rate, (h−1); 

2.4.2 Kinetic models describing substrate inhibitions 

A substrate is usually carbohydrates that can provide carbon and energy sources for microorganisms. 

Thus it is of great importance to microbial growth and thus for the fermentation process. Some kinetic 

models have been proposed to describe the effects of substrate concentrations on the rates of substrate 

degradation, microbial growth, and product formation. Among them, the classical Monod model (or 

Michaelis–Menten model) (Eq. (2.3)) was widely used. When a substrate inhibits a microbial growth at 

much higher concentrations, the classical Monod model becomes unsatisfactory. In this case, modified 
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Monod models with the item of substrate inhibition can be used to describe the effects of substrate 

concentrations on microbial growth and product formation. Among these models, the Andrew model 

(Eq. (2.6)) was the most widely used [95–98]. 

μ =
μmaxS

KS+S±
S2

KI

             (2.6) 

where, 

KI inhibition constant, (gL−1); 

Moreover, Wang and Wan [99] used the Han–Levenspiel model (Eq. (2.7)), an extended Monod model, 

to describe the effects of glucose concentrations on hydrogen production rate in batch tests. Besides, 

Wang and Wan [99] also compared the ability of the Andrew model and the Han–Levenspiel model to 

describe the effects of glucose concentrations on hydrogen production rate in batch tests and concluded 

that the Han–Levenspiel model was the most suitable one [95]. 

R =
RmaxS(1−

S

SCrit
)
m

S+KS(1−
S

SCrit
)
n             (2.7) 

Where, 

C inhibitor concentration, (gL−1); 

Ccrit critical inhibitor concentration, (gL−1); 

Scrit critical substrate concentration, (gL−1); 

m, n degree of inhibition; 

2.4.3 Kinetic models describing product inhibitions 

It has been found that some volatile fatty acids or salts may change the intracellular pH of bacterial 

strains, increase the maintenance energy requirement of bacteria or inhibit some specific enzymes 

related to product formation and thus, they can inhibit bacterial growth and then inhibit the product 

formation. So far, some kinetic models have been proposed to describe the inhibitory effects of some 

volatile fatty acids, salts or hydrogen on the fermentative hydrogen production. Among them, the 

modified Han–Levenspiel model (Eq. (2.8)) was widely used.  

R = Rmax (1 −
C

CCrit
)
n
            (2.8) 

R =
Rmax

1+(
C

KC
)
n             (2.9) 

R =
RmaxKC

KC+C
           (2.10) 

R = Rmax
S

KS+S
(1 −

S

SCrit
)
m
(1 −

C

CCrit
)
n

       (2.11) 
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Where, 

KC  constant, (gL−1); 

The value of R decreases from Rmax to zero with increasing inhibitor concentrations from 0 to CCrit which 

is shown in Figure 2-2. 

 

 

Figure 2-2 A curve for modified Han-Levenspiel model 

Besides, Wang et al. used Eq. (2.9) to describe the inhibitory effects of sodium acetate concentrations 

on the specific rates of sucrose degradation and hydrogen production in batch tests [100]. Moreover, 

Liu et al. used Eq. (2.10) to describe the inhibitory effects of butyrate concentrations on specific growth 

rates of wild Clostridium tyrobutyricum ack and deleted mutant of C. tyrobutyricum in fed-batch tests 

[101]. Furthermore, van Niel et al. used Eq. (2.11) to describe the combined inhibitory effects of sucrose 

and sodium acetate concentrations on the specific growth rate of Caldicellulosiruptor saccharolyticus 

in batch tests [74]. Also, van Niel et al. also developed a model incorporating cell lysis to describe the 

inhibitory effects of sodium acetate concentrations on the specific growth rate of C. saccharolyticus in 

batch tests [74]. 

2.4.4 Kinetic models describing the effects of pH 

pH is another critical factor influencing fermentative hydrogen production because it can affect the 

activity of microorganisms considerably by changing the ionization states of the active components of 

the cells and substrates [102].  

In general terms, the addition of the pH effect in the growth rate equation can take several forms, as 

reviewed by Andreyeva and Biryukov[103]. Here a polynomial equation (Eq.(2.12) is used to describe 

the influence of pH on the growth rate of pure cultures 

μ = a(pH)2 + b(pH) + c         (2.12) 

where, 
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µ specific growth rate, (h−1); 

a, b, c constant of the polynomial equation 2.12 

Lallai et al. [104] studied the effect of pH on specific growth rate μ, yield factor Y and specific substrate 

consumption rate U for two mixed microbial populations in a batch reactor with a limiting substrate 

(phenol). In other studies, Andrew model (Eq. (2.13)) was adopted to describe the effects of H+ 

concentration on the specific hydrogen production rate [11,55]. In addition, using it to describe the 

effects of H+ concentration on the rates of substrate degradation, microbial growth and some soluble 

metabolite production is recommended. 

R =
Rmax[H

+]

Ka+[H
+] +

[H+]
2

Kb

          (2.13) 

[H+] molar hydrogen ion concentration 

Ka, Kb constants of equation 2.13 

As shown in Figure 2-2, R-value increases first and then decreases with increasing H+ concentration. 

 

Figure 2-3 A curve for the Andrew model 

In practice, it is convenient to use pH rather than H+ concentration in the model. In addition, the 

Ratkowsky model (Eq. (2.14)) may also be a good candidate to describe the effects of pH on R. 

R = [A(pH − pHmin)]
2{1 − exp[B(pH − pHmin)]

2}      (2.14) 

A, B constant of equation 2.14 

2.4.5 Kinetic models describing the effect of dilution rates  

Dilution rate is a significant factor influencing fermentation processes in a continuous type bioreactors 

because it can affect the capability of microorganisms to degrade substrate and thus can influence the 

fermentation processes. Some models have been proposed to describe the effects of dilution rates on 
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hydrogen production rate, hydrogen production, and concentrations of substrate, biomass, and some 

soluble metabolites in a continuous fermentative hydrogen production process [105,106]. Chen et al. 

[105] used the single-substrate models without biomass decay (based on Eqs. (2.15), (2.17) and (2.18)) 

to describe the effects of dilution rates on hydrogen production and concentrations of sucrose, biomass, 

acetate, propionate, butyrate and ethanol in a continuous stirred tank reactor for hydrogen production. 

S =
DKS

Rmax−D
           (2.15) 

Considering death rate, 

S =
(D+kd)KS

Rmax−D−kd
           (2.16) 

X = YX
S⁄
(S0 − S)          (2.17) 

P = YP
X⁄
X           (2.18) 

Where, 

D dilution rate, (h−1); 

P product concentration, (gL−1); 

YP/X product yield coefficient, (gg-1) 

YX/S biomass yield coefficient, (gg-1) 

Kd biomass decay constant, (h−1); 

Moreover, Chang and Lin [107] used Eq. (19) to describe the effects of dilution rates on the specific 

sucrose degradation rate in an up-flow anaerobic sludge blanket reactor for hydrogen production. 

R =
D+kd

YX
S⁄

           (2.19) 

2.4.6 Kinetic models describing the relationship among the substrate 
degradation, microbial growth and product formation rate 

Luedeking–Piret model (Eq. (20)) and its modified form (Eq. (21)) were widely used to describe the 

relationship between microbial growth rate and product formation rate [108]. 

dP

dt
= YP

X⁄

dX

dt
+ βX          (2.20) 

Where, 

β non-growth-associated product yield coefficient 

dP

dt
= YP

X⁄

dX

dt
           (2.21) 
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dP

dt
= YP

S⁄

dS

dt
           (2.22) 

to describe the relationship between the rate of substrate degradation and the rates of hydrogen 

production, acetate production and butyrate production Mu et al. [94] used Eq. (22), while van Niel et 

al. [109] used Eq. (33) to describe the relationship between substrate degradation rate and the growth 

rates of C. saccharolyticus and Thermotoga elfii. 

2.5 Gaps in existing knowledge & objectives  

From the above literature review, it is apparent that there is a need for having an improved design of a 

reactor and maintaining an optimized environment within the reactor for the efficient bioenergy 

conversion process. This requirement becomes more critical in case of continuous type reactors. The 

stability and parametric sensitivity analysis studies are well advanced in the field of chemical processes; 

however,    in the case of bioprocesses,  such analyses of bioreactors are not explicitly available in the 

literature.  

From the research studies, it is well understood that the performance of bioreactors depends upon several 

system variables such as pH, temperature, hydraulic retention time, the concentration of metabolites, 

oxygen loading rate and partial pressure of the reactor. The stability and parametric sensitivity analysis 

of these variables can help to inspect the performance of bioreactors.  The influences of operating 

parameters on the behaviour of bioreactor can also lead to better control of bioprocesses within the 

reactor. The parametric sensitivity of batch type bioreactor is adequately investigated, and the studies 

are reported in the literature. However, the continuous type bioreactors, which are mostly used in 

industry, the comprehensive studies are not available. 

A good design of a bioreactor requires the knowledge of the impact of operating parameters on the 

reaction system.  A thorough investigation of the influencing factors and how their operating parametric 

range affects the microbial growth in the reactors need to be taken into account.  In many cases, the 

mechanisms behind the growth of microorganisms and the generation of metabolic products, and their 

correlations with operating variables conditions are not well understood. The development of kinetic 

models that mathematically explain the influence of system parameters on microbial reactions is 

desirable for providing essential information for designing these bioreactors. The experimental 

verifications of parametric sensitivity and stability analysis also lack for continuous type bioreactors. 

For instance, every bioreactor for biofuel production, which involve microbial reactions is affected by 

system pH. pH is an important factor for most microorganisms as it affects cell metabolism and its 

structured integrity by a small pH variation. At the same time, the temperature is generally an essential 

factor for temperature-sensitive bacteria. Naturally, a large group of bacteria can grow at optimum room 

temperature, but there is no optimum pH value where a large number of bacteria can grow. Each type 

of bacteria responds uniquely at different pH value. According to the author’s knowledge, no such 

information dealing simultaneously with both parametric sensitivity of pH and multiplicity of steady 

states in continuous type bioreactors is currently available. Since a priori determination of both 

phenomena, i.e. parametric sensitivity and multiplicity may save the continuous type bioreactors from 

‘out of control situations’.  Therefore such studies are required for bioreactors. 

Furthermore, in the case of biohydrogen production in bioreactors, one of the vital parameter other than 

pH and soluble metabolites, is partial pressure exerted by gaseous hydrogen. In this case, produced 
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hydrogen itself restrict the microbial growth as well as the hydrogen production rate. Therefore, in order 

to adopt control strategies for biohydrogen production processes, development of the kinetic model is 

essential to examine the adverse influence produced hydrogen on microbial growth, which is not well 

described in the previous studies. In the case of the biohydrogen production process in a continuous type 

bioreactor system, one of the critical issues generally appears that the reacting system distributed in two 

phases, because of gaseous production. The design of the reaction system becomes complicated as the 

mass transfer mechanism comes into the picture, along with biochemical reactions. Although there are 

some articles which investigate the stability analysis of continuous type bioreactor in the application of 

biodegradation of mixed waste, activated sludge processes and other biofuel production processes, but 

research studies on the stability analysis of steady-state to investigate the performance of continuous 

type bioreactor involving biohydrogen production is still lacking.  In the background of the existing 

knowledge and above discussion regarding gaps in understanding, the following objectives will be 

achieved in this thesis: 

2.6 Objectives 

 To investigate the influence of pH on microbial growth experimentally in a batch reactor, and 

develop a kinetic model to determine constants which will describe the nature of microbial growth.  

 To develop a mathematical model of a continuous stirred tank bioreactor (CSTBR) system with the 

help of the kinetic parameters to derive a simple dimensionless steady-state multiplicity criterion 

for the CSTBR. The approach should be able to identify the set of values of input variables, which 

lead to multiple steady-states. 

 To derive an expression for theoretical sensitivity functions of pH concerning different input 

variables, namely dilution rates of nutrient and base streams and concentrations of substrate and 

base stream for pH control. 

 To conduct experiments to study the parametric sensitivity for sets of input parameters belonging 

to the regimes of multiple and unique steady states as determined using multiplicity criterion. The 

experimental and simulated transient behaviours of pH will be analyzed and compared to verify the 

existence of parametric sensitivity under both multiple and unique steady-state conditions. 

 To develop a generalized criterion for sensitivity with the help of normalized sensitivity analysis, 

which does not depend upon the topology of pH contour for recognizing the extent of input 

parameters where a CSTBR exhibits sensitive behaviour. 

 To explore the influence of hydrogen on microbial growth and evaluates how the produced hydrogen 

in the reactor headspace hinders the rate of production of hydrogen.  

 To examine the adverse effects of produced hydrogen on microbial growth experimentally and to 

develop kinetic models to explain how the produced hydrogen influences the bacterial growth and 

hydrogen production rate simultaneously. 

 To investigate the effects of the operating parameters on the stability behaviour of a CSTBR for 

biohydrogen production.  The stability analysis will be carried out using elementary principles of 

bifurcation theory shows the dynamics characteristics of the reactor model, including a steady-state 

multiplicity analysis.  
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3 Methodology  

The methodology followed in the research work consists of theoretical, numerical and experimental 

methods to describe, simulate microbial growth and kinetic reactions for in bioreactors.  In this chapter, 

the underpinning theoretical basis of microbial growth reactions and developing of the mathematical 

models is presented. The details of experimental that are conducted for calibrating the mathematical 

models are also described.  The developed model was then used to study various cases studies to predict 

performance variables for better design and performance of bioenergy conversion processes. 

3.1 Theoretical background  

Microbial growth mechanism, which includes different microbial population phases, is an important 

aspect in biochemical processes, and the Microbial growth rate, can be determined theoretically by 

considering the simplest population growth model defined by Monod. 

First of all, the bacterial growth curve is considered. When bacterial cultures are allowed to grow into a 

suitable liquid medium, its growth follows a specific course [1]. If bacterial counts are made at intervals 

after inoculation and plotted with time, a growth curve is obtained (Figure 3-1) 

 

Figure 3-1 Microbial growth curve 

After adding the bacterial culture in the growth medium, there is no apparent increase in number; 

however, there may be an increase in the size of the cells. This initial period is the time required by the 

cells for the adaptation to the new environment, during which the necessary enzymes and metabolic 

intermediates are built up in adequate quantities for multiplication to proceed. The period of the lag 

phase differs with the species, size of the inoculums, the composition of the growth medium and 

environmental factors such as temperature.  After the lag phase, the cells start growing, and their 

numbers rise exponentially or by geometric progression with time. If the logarithm of the cell number 

is plotted against time, a straight line will be obtained. 
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After the end of exponential growth, cell division ceases due to the reduction of nutrients and 

accumulation of toxic products. The number of progeny cells formed is just enough to replace the 

number of cells that die. The viable count remains stationary as equilibrium exists between the dying 

cells and the newly formed cells. 

The phase of decline or death Phase is the phase at which the bacterial cells decrease due to cell death. 

Besides, nutritional exhaustion and toxic accumulation, cell death may also be caused by autolytic 

enzymes. 

3.1.1 Calculation of microbial growth rate 

In the exponential phase, a typical microbial cell uptakes the nutrients from the culture media and 

converts them into complex cellular matter through cell metabolism. The growth rate is directly related 

to cell concentration, and cell reproduction is the usual outcome of this reaction. The rate of microbial 

growth is expressed as specific growth rate and is defined as follows: 

μ =
1

X

dX

dt
             (3.1) 

Where, 

X bacterial cell concentration (gL-1) 

t incubation time (h) 

µ specific growth rate (h-1) 

When the specific growth rate is expressed in terms of cell number, it is represented through the 

following equation (3.2), 

μ =
1

N

dN

dt
             (3.2) 

Where, 

N number of bacterial cell 

3.1.2 Microbial growth kinetics 

A wide range of well established kinetic models viz. unstructured and structured, non-segregated and 

segregated is available to predict the microbial growth kinetics. Among these models, the structured and 

segregated models are the most realistic ones, but they are computationally complex [110]. In the present 

study, a simple Monod model is considered to explain the process kinetics and to predict microbial 

growth. 

Monod model is an unstructured, non-segregated growth model. Monod equation describes substrate-

limited growth when the microbial growth is slow, and the population density is low. This is applicable 

in case of uninhibited growth, and it resembles Langmuir- Hinshelwood kinetics in classical chemical 

engineering system or Michaelis- Menten kinetics for enzymatic reactions in biochemical systems. 

Monod equation (3.3) can be described as follows, 
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μ =
μmaxS

KS+S
             (3.2) 

At very high substrate concentration, 

i.e. S ≫ KS  

The eq. (3.2) becomes 

μ = μmax  

Therefore, a zero-order correlation exists between µ and S. 

Where µmax is the maximum specific growth rate at saturating substrate concentration. 

At a low range of substrate concentration, 

i.e. S ≪ KS  

The eq. (3.2) becomes 

μ = (
μmax

KS
) S  

Therefore, the 1st order correlation exists between µ and S. 

3.1.2.1 Determination of Kinetic parameters 

The kinetic parameters µmax and KS for the Monod model can be determined by taking reciprocal of both 

sides of Eq. (3.2) as follows: 

1

μ
=

KS

μmax

1

S
+

1

μmax
            (3.5) 

If the Monod model is valid, the plot of 1/µ versus 1/S should be linear in nature and µmax, and KS can 

be determined from the intercept and slope of the linear plot. The kinetic parameters may also be 

determined through the regression analysis of the data on µ against different substrate concentrations. 

During the determination of µmax and KS, initial values of µ against each concentration of limiting 

substrate have been used to avoid the inhibitory effect of metabolic products on growth kinetics. 

3.1.2.2 The kinetic model describing pH influence 

In general terms, the addition of the pH effect in the growth rate equation can take several forms. Here 

is a polynomial equation (Eq. (3.6)) used to describe the influence of pH on the growth rate of pure 

cultures 

μmax,N = A + BpH + CpH
2           (3.6) 

Here, the normalized µmax, i.e. µmax,N is expressed as a function of pH in terms of a second-order 

polynomial.  

Where, 
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μmax,N = 
μmax

μmax,opt
            (3.7) 

In the above equation (Eq. (3.7) µmax,opt specify the value of µmax at optimum pH. Therefore, eq. (3.2) 

can be written as: 

μ =
μmax,opt ( A+BpH+CpH

2  )S

Ks+S
           (3.8) 

The value of µmax,opt can be experimentally determined with the varying pH. pH at which the µmax reaches 

its maximum is considered as optimum pH for particular microorganism. After the determination of 

µmax,opt a plot of µmax,N versus pH can be obtained using Eq. (3.6). From the plot, the constants of the 

second-order polynomial of Eq. (3.6) can be evaluated shown in Figure 3-2. 

 

Figure 3-2 Variation of µmax,N with respect initial pH 

3.1.2.3 The kinetic model describing the influence of partial pressure 

In the case of microbial reactions where gaseous hydrogen formed, one of the essential factor 

influencing microbial growth is the partial pressure.  For hydrogen-producing bacteria, the microbial 

reaction can be expressed as follows:  

Substrate(S)
Cell(X)
→    more Cells(X) + Product (H2)        (3.9) 

and the rate of reaction will be:  

rc =
dX

dt
=
μmaxS

KS+S
X          (3.10) 

where,  

rc  microbial growth rate, (gL−1h−1);  

X  dry cell concentration, (gL−1);  

t  time, (h);  

µmax  maximum specific growth rate of cells, (h−1);  
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S  substrate concentration, (gL−1); 

Ks  Monod constant or substrate saturation constant, (gL−1); 

A situation is considered that gaseous H2 is forming and accumulated in the reactor headspace. In order 

to investigate the influence of accumulated H2 in the reactor headspace on microbial growth; the 

headspace gas concentration is varied. Microbial growth inhibition occurs typically due to the excess 

presence of substrate, product, or other inhibitory substance in the cell growth medium. Hans and 

Levenspiel [111] express the inhibition of microbial growth model as: 

dX

dt
= μmax (1 −

H2

H2
∗)
n
(

S∙X

S+ks(1−
X

X∗
)
m)        (3.11) 

Where,  

H2
*  critical molar concentration of hydrogen at which microbial reaction ceases, (M);  

n  degree of cell inhibition;  

m  degree of substrate inhibition. 

The degree of inhibition is defined as below, 

Degree of inhibition =
𝜐0 − 𝜐𝑖
𝜐0

 

Where, 

υ0 reaction rate in the absence of inhibitor 

υi reaction rate in the presence of inhibitor 

3.1.2.4  Evaluation of the growth associated kinetic constants 

Taking inhibition of microbial growth Equation (3.11) into account, Equation (3.2) can be expressed as 

a generalized Monod model: 

μ =
μmax,obs∙S

Ks,obs+S
           (3.12) 

where, 

obs experimentally observed value. 

μ =
1

X
∙
dX

dt
           (3.13) 

μmax,obs=μmax (1 −
H2

H2
∗)
n
         (3.14) 

KS,obs = Ks (1 −
X

X∗
)
m

          (3.15) 
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By reciprocating Equation (3.12), the following equation is obtained 

1

μ
=

KS,obs

μmax,obs 
∙
1

S
+

1

μmax,obs 
         (3.16) 

1/μ and 1/S can be plotted for each initial hydrogen concentration in reactor headspace, which is shown 

in Figure 3-3. µmax,obs and Ks ,obs at each headspace H2 concentration can be calculated by evaluating the 

intercepts and abscissas on Figure 3-3. 

 

Figure 3-3 Evaluation procedure of μmax,obs and ks,obs at various concentration of inhibitor 

After determining the values of μmax,obs and KS,obs at different headspace H2 concentration, constants in 

Equation (3.11) can be evaluated. On taking logarithms of Equation (3.14), i.e., 

ln(μmax,obs=) = n ∙  ln (1 −
H2

H2
∗) + ln (μmax)       (3.17) 

The plot of ln(µmax,obs) and ln(1−H2/H2
*) provides the values of µmax and n. If the values of H2

* is not 

evaluated from the experiments, then a guessed value of H2
* has to be considered. A corrected value of 

H2
* can be calculated until a straight line is obtained, which is shown in Figure 3-4. 

 

Figure 3-4 Evaluation procedure of umax, n and H2* for product inhibition 
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3.2 Mathematical modelling of CSTBRs 

Mathematical models are an essential part of establishing a real-life case for reactor operation. In this 

section, mathematical modelling is examined, and it is seen how vital modelling is. Main features and 

process of mathematical modelling will be mentioned in this section.   

3.2.1 Modelling of CSTBR 

One of the more critical features of modelling is the frequent need to review both the basic theory 

(physical model) and the mathematical equations, representing the physical model (mathematical 

model), in order to achieve agreement, between the model prediction and actual process behaviour 

(experimental data). 

3.2.1.1 Material balance 

One of the basic principles of modelling is that of the conservation of mass or matter. For a steady-state 

flow process, this can be expressed by the statement: 

(
Rate of mass flow
 into the system

) = (
Rate of mass flow 
out the system

)                 (3.18a) 

Most real situations are, however, such that conditions change with respect to time. Under these 

circumstances, a steady-state material balance is inappropriate and must be replaced by a dynamic or 

unsteady-state material balance, expressed as, 

(
Rate of accumulation 
of mass in the system

) = (
Rate of mass flow
 into the system

) − (
Rate of mass flow 
out the system

)             (3.18b) 

Here the rate of accumulation term represents the rate of change in the total mass of the system, with 

respect to time, and at steady state, this is equal to zero. Thus, the steady-state material balance is seen 

to be a simplification of the more general dynamic balance. At steady state    

(
Rate of accumulation 
of mass in the system

) = 0 = (
Rate of mass flow
 into the system

) − (
Rate of mass flow 
out the system

)             (3.18c) 

therefore, when steady state is reached the above equation (3.18c) reduced to equation (3.18a) 

3.2.1.2 Component balance 

The previous discussion was in terms of the total mass of the system, but most processes streams, faced 

in general, comprise with more than one chemical component. If no chemical reaction occurs, the 

generalized equation for the conservation of mass can also be implemented to each chemical component 

of the system. Therefore, for any particular component 

[

Rate of accumulation 
of mass of component

in the system
] = [

Rate of mass flow 
of component
into the system

] − [

Rate of mass flow
 of component
 out of the system

]              (3.19) 

Where a biochemical reaction occurs, the change can be taken into account by adding a reaction rate 

term into the component balance equation. Thus in the case of material balance will be  
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[
 
 
 
 

Rate of 
accumulation 
of mass of 
component
in the system]

 
 
 
 

= [

Rate of mass
 flow of 

 component into
 the system

] − [

Rate of mass 
flow of

 component out 
 of the system

] ± [

Rate of production
/consumption
of the component
by the reaction

]             (3.20) 

While the principle of the material balance is straightforward, its application can often be quite tricky. 

Therefore, it is important to have a clear understanding of the nature of the system (physical model), 

which is to be modelled by the material balance equations and also of the methodology of modelling. 

In the case of a microbial reaction in a CSTBR, bacterial cell consumes nutrients (substrate) increases 

its population and yields products. The flow rate of feed into and out of the reaction mixture's reactor 

and volume are Fin, Fout and V, respectively shown in Figure 3-5. 

 
Figure 3-5 Schematic of Continuous Stirred tank bioreactor 

The general biochemical reaction is as follows: 

Substrate (S)
Cell(X)
→     more cell (X) + product (p)      (3.21) 

Therefore, the mass balance for each component can be expressed as  

For substrate: 

(

Rate of 
accumulation
of substrate
in the system

) = (

Rate of 
mass flow
of substrate
in the system

)− (

Rate of 
mass flow

of substrate out
of the system

)−

(

 
 

Rate of   
consumption
of substrate

 by biochemical
 reaction )

 
 

             (3.22) 

V
dS

dt
= FinS0 − FoutS − (−rS). V                   (3.23) 

For cell: 

(

Rate of 
accumulation
of cell 

in the system

) = (

Rate of 
mass flow
of cell

in the system

)− (

Rate of 
mass flow
of cell out
of the system

)+

(

 
 

Rate of   
formation
of cell

 by biochemical
 reaction )

 
 

             (3.24) 
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V
d𝑋

dt
= FinX0 − FoutX + (rX). V                    (3.25) 

For product: 

(

Rate of 
accumulation
of product
in the system

) = (

Rate of 
mass flow
of product
in the system

)− (

Rate of 
mass flow

of substrate out
of the system

)+

(

 
 

Rate of   
generation
of product

 by biochemical
 reaction )

 
 

             (3.26) 

V
d𝑝

dt
= 0 − Foutp + (rP). V                   (3.27) 

There are several computational tools available to solve the above equations numerically. The solution 

of these design equations can be solved by knowing the biochemical reaction kinetics.  

3.2.2 Stability analysis 

An important criterion for good modelling of bioprocesses is the ability of the model to describe the 

static and dynamic behaviour of the industrial process dependably. In this regard, it is known that 

depending on the kinetic and operating parameters continuous bioreactors can exhibit a variety of 

nonlinear behaviour, including unique steady states, the coexistence of non-trivial steady-states with 

wash-out conditions, and the hysteresis phenomenon, as well as sustained oscillations.  

Therefore, stability analysis of steady-states becomes essential to be analyzed in order to avoid the 

unfavourable situation for bioreactor operation.  In general microbial reactions inside the bioreactor 

characterize by a nonlinear equation. Considering governing equations of a CSTBR through ordinary 

differential equations. 

dx

dt
= F(x) ↔

{
  
 

  
 
dx1

dt
= F1(x1, x2, … . . xn)

dx2

dt
= F2(x1, x2, … . . xn)

.

.
dxn

dt
= Fn(x1, x2, … . . xn)

              for t ≥ 0     (3.28) 

With the initial condition: X(t = 0) = X0, and F(x) is a matrix nonlinear function of X. Then Taylor’s 

Expansion: 

F(x) ≈ F(x∗)⏟  
=0

+
∂x

∂t⏟
J(X)

|

𝑥=𝑥∗

(x − x∗) + ⋯        (3.29) 

The fixed points are: 

F(x∗) →⏟    
=0

{
 
 

 
 
F1(x1, x2, … . . xn) = 0
F2(x1, x2, … . . xn) = 0

.

.
Fn(x1, x2, … . . xn) = 0

          (3.30) 
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The Jacobian matrix will be as below: 

J(x) =

[
 
 
 
∂F1

∂x1
⋯

∂F1

∂xn

⋮ ⋱ ⋮
∂Fn

∂x1
⋯

∂Fn

∂xn]
 
 
 

          (3.31) 

Let's consider a very small perturbation from x* and it is given by δx = x − x∗. Then equation (3.28) 

will be 

d(∂x)

dt
= J(x∗)  for t ≥ 0          (3.32) 

With the initial conditions, δx(t = 0) = x0 − x
∗, and J(x*) is a constant matrix independent of x.  

The general solution of the above equation (3.30) close to the fixed points is  

x(t) = x∗ + ∑ ai𝐕𝐢
n
i=1 eλit;     

λi = eigenvalues
𝐕𝐢 = eigenvector

}  of J(x∗)     (3.33) 

the characteristics equation is 

det|J(x∗) − λ𝟏| = 0          (3.34) 

ai are the constants determined by using initial conditions. 

The procedure for stability analysis of fixed-point are as below: 

 Determine the fixed points vector, x* by solving equation (3.30), F(x∗) = 0 

 Construct the Jacobian matrix, J(x)  =
∂F(x)

∂x
  

 Compute eigenvalues of J(x*) by solving equation (3.34).  

 Determine the nature of fixed point, i.e., whether it is a stable or unstable fixed point based on 

eigenvalues' real part. 

If all eigenvalues have real parts less than zero, then the fixed point x* is stable. If at least one of the 

eigenvalues has a real part greater than zero then the fixed point x* is stable. Otherwise, there is no 

conclusion and require an investigation of higher-order terms. 
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Table 3-1 Nature of Stability 

 

3.3 Sensitivity analysis 

The concept of sensitivity has now generated a useful mathematical tool, called sensitivity analysis, 

which is widely practised in various fields in science and engineering. Systems control, process 

optimization, chemical and reactor design, cell biology, and ecology are the areas where generally it is 

used. The wide applications arise as the concept of sensitivity determines a relation between system 

behaviour and a parameter, and the sensitivity value determines this relationship.  

In general mathematical models provides an explicit or implicit relationship between the system 

behaviour and the input parameters. This behaviour is described by the state or output variables, which 

is indicated in general as dependent variables that change in time and space. The physicochemical 

parameters of the systems (such as those related to reaction kinetics, thermodynamic equilibria, and 

transport properties) as well as initial conditions, operating conditions, and geometric parameters are 

considered as the input parameters. The physicochemical parameters are measured experimentally or 

calculated theoretically. Therefore, these parameters are always subject to uncertainties. 
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On the other hand, the initial and operating conditions may change in time for a variety of reasons. Both 

of these affect system behaviour. In particular, parametric sensitivity specifies the effect of variations 

of the input parameters on the system behaviour.  

3.3.1 Local sensitivity 

Considering a chemical system for a single variable y, which changes in time according to the following 

general differential equation, 

dy

dt
= f(y, ϕ, t)           (3.35) 

With initial condition 

y(0) = yi           (3.36) 

where,  

y dependent variable,  

t  time, 

ϕ vector containing the m system input parameters 

 

The function, f is considered to be continuous and continuously differentiable in all its arguments. They 

confirm that the above equation has a unique solution called the nominal solution, which is continuous 

in t and ϕ, represented by 

y = y(t, ϕ)           (3.37) 

By changing the yth parameter in the parameter vector ϕ, from ϕj to ϕj +Δ ϕj. Then, the corresponding 

solution for y, the current solution, becomes 

y = y(t, ϕ𝑗 + Δϕ𝑗)          (3.38) 

where for shortness, only ϕj, the parameter changed only. Since y is a continuous function of ϕj, the 

solution of equation (3.38) can be expanded into a Taylor series as follows: 

y(t, ϕj + Δϕj) = y(t, ϕj) +
∂y(t,ϕj)

∂ϕj
∙ ∆ϕj +

∂2y(t,ϕj+θ∙Δϕj)

∂ϕj
2 ∙

∆ϕj
2

2
     (3.39) 

where 0 < θ < 1. If Δ ϕj is sufficiently small, i.e., Δϕj << ϕj the Taylor series can be reduced after the 

linear term, leading to 

Δy = y(t, ϕj + Δϕj) − y(t, ϕj) ≈
∂y(t,ϕj)

∂ϕj
∙ ∆ϕj       (3.40) 

where Δy represents the variation of y due to the change of the input parameter ϕj, given by Δϕj. If an 

infinitesimal variation is considered (Δϕj → 0), it follows from Equation. (3.40) that 

s(y;ϕj) =
∂y(t,ϕj)

∂ϕj
= lim
∆ϕj→0

y(t,ϕj+Δϕj)−y(t,ϕj)

∆ϕj
       (3.41) 
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This is defined as the first-order local sensitivity, of the dependent variable, y, with respect to the input 

parameter, ϕj. Although higher-order local sensitivities can be represented in a similar fashion, the 

treatment will be limited to first-order local sensitivities, since most applications are based on linear 

sensitivity analysis. The local sensitivity, s(y; ϕj), is also called the absolute sensitivity. 

Another quantity related to local sensitivity, commonly used in sensitivity analysis, is the normalized 

sensitivity. The normalized sensitivity of y with respect to ϕj, S(y; ϕj) is defined as 

S(y;ϕj) =
ϕj

y
∙
∂y

∂ϕj
=

∂ ln(y)

∂ ln(ϕj)
=
ϕj

y
∙ s(y; ϕj)       (3.42) 

which serves to normalize the magnitudes of the input parameter ϕj and the variable y. In the literature, 

the normalized sensitivity is sometimes also referred to as the relative sensitivity. Once the local 

sensitivity s(y; ϕj), is known, the calculation of S(y; ϕj) is straightforward. 

When the sensitivity of y with respect to each parameter of ϕ vector is considered, m sensitivity indices 

will be obtained which can be defined as the row sensitivity vector,  

sT(𝐲;ϕj) =
∂𝐲

∂ϕ
= [

∂y

∂ϕ1
 
∂y

∂ϕ2
 ⋯ 

∂y

∂ϕm
] = [s(y; ϕ1)s(y;ϕ2)⋯ s(y;ϕm)]    (3.43) 

In the case of a system described by n dependent variables, the dynamics are in general given by a set 

of differential equations, 

∂y

∂t
= f(𝐲, ϕ, t),       𝐲(0) = 𝐲i         (3.44) 

For a biochemical system, the n vector of the dependent variables, y, may include the involved 

biochemical species and other state variables. At the same time, ϕj is the m vector containing the system 

input parameters. For a selected input parameter, ϕj, each variable's local sensitivity, yi, can be computed, 

based on equation (3.41). Thus, there will be n sensitivity indices with respect to the same input 

parameter, which constitutes the column sensitivity vector, 

s(𝐲;ϕj) =
∂𝐲

∂ϕj
= [

∂y1

∂ϕj
  
∂y2

∂ϕj
   ⋯   

∂yn

∂ϕj
]
T

= [s(y1; ϕj)  s(y2; ϕj)  ⋯   s(yn; ϕj)]
T

   (3.45) 

Now combining all the row and column sensitivity vectors, an n×m matrix of the sensitivity indices is 

obtained, which is usually referred to as the sensitivity matrix, 

S(𝐲;ϕ) =

[
 
 
 
∂y1

∂ϕ1
⋯

∂y1

∂ϕm

⋮ ⋱ ⋮
∂yn

∂ϕ1
⋯

∂yn

∂ϕm]
 
 
 

= [
s(y1; ϕ1) ⋯ s(y1; ϕm)

⋮ ⋱ ⋮
s(yn; ϕ1) ⋯ s(yn; ϕm)

]     (3.46) 

3.3.2 Objective sensitivity 

In general, the sensitivity analysis is performed, when a specific behaviour of the system is the objective 

of interest, then it is referred to as the objective or objective function. This can be one of the system-

independent variables which can be determined from the system-independent variables, such as, the 

conversion of a reactant at a specific time or position; the magnitude of the pH minimum in time or 

space; the time required by a reactant to reach a particular conversion value; concentration maximum of 
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an intermediate product in a complex reaction network; selectivity of the desired product at the reactor 

outlet. 

The first four performance indices can be obtained from a direct solution of the relevant model 

equations. At the same time, the latter three are computed, through a proper definition, from the model 

solution. Assuming that the objective function, I, is a continuous function of a chosen jth  parameter, ϕj 

in the parameter vector, ϕ, the corresponding sensitivity with respect to ϕj, s(I; ϕj), is defined as 

s(I; ϕj) =
∂I

∂ϕj
= lim
∆ϕj→0

I(ϕj+Δϕj)−I(ϕj)

∆ϕj
        (3.47) 

which will be denoted as the objective sensitivity. Similar to Equation. (3.42), the normalized objective 

sensitivity, S(I; ϕj), is defined as 

S(I; ϕj) =
ϕj

I
∙
∂I

∂ϕj
=

∂ ln(I)

∂ ln(ϕj)
=
ϕj

I
∙ s(I;ϕj)       (3.48) 

3.3.3 Computation of sensitivities 

For the single-variable system (3.35), to compute the local sensitivity of y for the jth input parameter, ϕj, 

both sides of system equation (3.35) is first differentiated with respect to ϕj. Then, considering the 

definition (3.41) for the local sensitivity leads to 

d(∂y ∂ϕj⁄ )

dt
=
ds(y;ϕj)

dt
=
∂f

∂y
∙
∂y

∂ϕj
+

∂f

∂ϕj
=
∂f

∂y
∙ s(y; ϕj) +

∂f

∂ϕj
     (3.49) 

which represents the local sensitivity equation. The initial condition can be obtained by differentiating 

the initial condition (3.36). Depending on which input parameter in the vector ϕ is chosen, then 

s(y;ϕj)|t=0
= {
0,     ϕj ≠ y

i 

1,    ϕj = y
i
                     (3.50a) 

Or in more concise form 

s(y;ϕj)|t=0
= δ(ϕj − y

i)                   (3.50b) 

where δ is the Kronecker delta function. By simultaneously solving the model equation (3.33) and the 

sensitivity equation (3.47), along with initial conditions (3.34) and (3.48), Both of the dependent variable 

y and the corresponding local sensitivity s(y; ϕj), are functions of time. This method is called the direct 

differential method (DDM) for computing local sensitivities. 

For the model given by equation (3.42), have n dependent variables, then in order to obtain the 

sensitivity of the ith variable, yi, to the jth input parameter, ϕj; computation of the sensitivities is needed 

for all the n variables to ϕj, as they may interact with each other. Thus, in this case, n sensitivity equations 

needed to be solved together with the n model equations. The n sensitivity equations can be presented 

in the form 

ds(y;ϕj)

dt
= 𝐉(t) ∙ s(𝐲;ϕj) +

∂𝐟(t)

∂ϕj
         (3.41) 

Where, s(y; ϕj; ) is the column sensitivity vector defined by equation (3.43), and 
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𝐉(t) =
∂𝐟

∂𝐲
=

[
 
 
 
∂f1

∂y1
⋯

∂f1

∂yn

⋮ ⋱ ⋮
∂fn

∂y1
⋯

∂fn

∂yn]
 
 
 

,     
∂𝐟(t)

∂ϕj
=

[
 
 
 
 
 
 
∂f1

∂ϕj

∂f2

∂ϕj

⋮
∂fn

∂ϕj]
 
 
 
 
 
 

       (3.52) 

are usually referred to as the n × n Jacobian matrix and the n × 1 nonhomogeneous term, respectively. 

3.4 Nonlinear system analysis: Bifurcation theory 

A model for dynamical systems may contain one or more parameters. In general, the dynamics of a 

system is affected by the magnitude of the parameters. Typically, this effect is continuous, and the nature 

of dynamics is unchanged. However, in some cases, the changes are discontinuous, and the character of 

the dynamical behaviour transforms. The value of the parameter at which such a change occurs is called 

the bifurcation point. The phenomenon itself is called the bifurcation. It can be stated that bifurcation 

has happened if the topological structure of the phase plane changes. Some of the changes are listed 

below 

a. Change in the number of fixed points (steady states) 

b. Changes in the stability of fixed points 

c. Formation or destruction of closed orbits 

d. Formation or destruction of closed path joining a saddle point (homoclinic bifurcation) 

e. Formation or destruction of saddle connection (heteroclinic bifurcation)  

A variety of bifurcation phenomena have been identified and classified. They are typically classified as 

below: 

3.4.1 Saddle-node bifurcation: 

This bifurcation is characterized by the fact that at this point of bifurcation, fixed points are either 

generated or destroyed. 

 

Figure 3-6 Example of Saddle Node bifurcation, Stable (solid line), Unstable branch (dotted line) 
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3.4.2 Transcritical bifurcation (flip bifurcation): 

In this case, the number of fixed points does not change. But they exchange their characters at the critical 

value of the parameter. In another way, there is an exchange of stability at the bifurcation point in the 

case of transcritical bifurcation. 

 

Figure 3-7 Example of Transcritical bifurcation, Stable branch (solid line), Unstable branch (dotted line) 

3.4.3 Pitchfork bifurcation: 

Pitchfork bifurcation is characterized by splitting of a single fixed point into three (including the original 

fixed point). The two new fixed points are symmetrically placed about the original fixed point. The 

original fixed point also changes its stability at the critical point. This bifurcation arises in cases where 

the system has symmetry. 

 

Figure 3-8 Example of Pitchfork bifurcation, Stable branch (solid line), Unstable branch (dotted line) 

3.4.4 Fold bifurcation: 

Consider the following equation, 

ẋ = x(1 − x)2 + a          (3.53) 

The fixed points are given as solutions of 
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x(1 − x)2 + a = 0 or x3 − 2x2 + x + a = 0        (3.54) 

For a cubic equation of the form x3 + bx2 + cx + d = 0, we define, 

p =
1

3
(3c − b2), q =

1

27
(27d − 9bc + 2b3), R = (

p

3
)
3

 + (
q

2
)
3

  

If R > 0, there is only one real root. If R = 0, there are three real roots, two of which are equal. If R < 0, 

there are three real and unequal roots. For the present case, b = -2c, c = 1 and d = a. Hence, 

p = −
1

3
, q = a +

1

27
 and R =

a2

4
+
a

27
  

It can be observed that if a > 0, R > 0 and there is only one fixed point. If a = 0, and there are two fixed 

points. If  -4/27 < a < 0 , R < 0 and there are three fixed points. If a −< -4/27, and there is only one fixed 

point. 

Case 1: a = 0 : In this case, the fixed points are xf = 0 and xf = 0   

dXa
dx
|
xf

= (1 − xf)
2  − 2xf(1 − xf) = (1 − xf)(1 − 3xf) 

Note that 

dXa0=0(x)

dx
|
xf=1

= 0 

Thus a=0 is a bifurcation point 

Case 2: a > 0: There is a single fixed point, xf < 0 . In this case, bifurcation cannot occur since 

(1 − xf)(1 − 3xf) cannot become zero for negative values of xf. 

Case 3: -4/27 < a <0, there are three fixed points now. 

Case 4: a<-4/27: there is only one fixed point now. 

Therefore, the critical values of the parameters are a = 0 and a = −4/27. The fixed point at which 

bifurcation can occur are: xf =1for a = 0 and xf = 1/3 for a = −4/27. 

Xa(xf) = xf(1 − xf)
2 + a = 0         (3.55) 

The corresponding value of a is  

a = xf(1 − xf)
2 =

1

3
(1 −

1

3
)
2
= −

4

27
        (3.56) 
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Figure 3-9 Example of Fold bifurcation, Stable branch (solid line), Unstable branch (dotted line) 

From the above Figure 3-9, it can be observed there are two bifurcation points, 0=a and -4/27=μ. As the 

bifurcation diagram folds back and hence this bifurcation is called the fold bifurcation. Such a system 

shows a phenomenon called hysteresis. 

3.5 Experimental details  

General information on materials and equipment used for experiments is described below. Later the 

description of analytical methods applied for quantification of products is given. 

3.5.1 Chemicals 

Different chemicals were used for the preparation of bacterial growth, medium and solutions methods 

as listed in Tables 3-2 to 3-4 

Table 3-2 DeMan, Rogosa and Sharpe (MRS) media composition in 100mL solution 

CHEMICALS AMOUNT (g) 

Peptone 1.0 

Beef extract 0.8 

Yeast extract 0.4 

Glucose 2.0 

Sodium acetate trihydrate 0.5 

Polysorbate 80 (also known as Tween 80) 0.1 

Dipotassium hydrogen phosphate 0.2 

Triammonium citrate 0.2 

Magnesium sulfate heptahydrate 0.02 

Manganese sulfate tetrahydrate 0.005 
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Table 3-3 Cooked meat (CM) medium in 100mL solution 

CHEMICALS AMOUNT (g) 

Beef extract 4.5 

Glucose 0.2 

Peptone 2.0 

NaCl 0.5 

 

 

Table 3-4 Chemicals used for DNS methods 

Chemicals 

Sodium hydroxide 

3,5-dinitro salicylic acid 

Sodium-potassium tartrate 

Deionized water 

 

 

3.5.2 Microorganisms 

There are three microorganisms used in this research study, two of them are probiotic lactic acid bacteria 

and one hydrogen-producing bacteria. The details are given below: 

1. Pediococcus acidilactici (NCIM-2292),  

2. Lactobacillus casei (NCIM-2360), 

3. Clostridium acetobutylicum (NCIM 2337)  

All of these microorganisms were procured from NCIM, Pune, India. 

 

3.5.3 Equipment 

The list of equipment used in a different stage of experiments are presented in Table 3-5 
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Table 3-5 List of equipments used for experiments 

Equipment Manufacturer 

BOD incubator shaker  G. B. Enterprises, Kolkata, India 

Autoclave  G. B. Enterprises, Kolkata, India 

Ultracentrifuge Superspin R-V/ FM, Plasto Crafts, India) 

Hot Air Oven G. B. Enterprises, Kolkata, India 

Laminar Air Flow G. B. Enterprises, Kolkata, India 

Magnetic Stirrer Remi; 5MLH,India 

Fermenter  B. Braun Biotech International 

Peristaltic pump  Enertech electronics Pvt. Ltd, India 

UV-visible spectrophotometer  Varian. India 

Reverse Phase HPLC (YL9100) Technolab Systems 

pH meter. Sartorius, PB-11 

ORSAT apparatus G. B. Enterprises, Kolkata, India 

GC FID GC-2014, Shimadzu Analytical Pvt. Ltd 

3.5.4 Preparation of seed culture 

3.5.4.1   Seed culture for  lactic acid bacteria 

An autoclaved 250ml conical flask containing 100ml sterile MRS broth was taken. Syringe filtered 

Glucose substrate is added to the conical flask and shaken well to dissolve the glucose completely in the 

medium.  A slant test tube culture of chosen bacteria was taken, and a loopful of the bacteria was 

carefully taken out from the test tube with the help of a sterile inoculating loop. The cotton plug of the 

conical flask is removed, and the loopful of the bacterial inoculum is inserted into the flask. The sterile 

MRS broth was then inoculated with the bacterial culture by dipping the loop containing the inoculum 

and transferred it to the media by gentle shaking. The loop was taken out from the flask, and the cotton 

plug is placed to the mouth of the flask and sealed tightly with the parafilm strip. The flask is kept in 

the incubator at 37 ºC and incubated for 24h. The total procedure was performed in the laminar airflow 

bench, maintaining strictly sterile conditions. From the 24h old broth culture, several subcultures were 

prepared as required for the experiment. 

3.5.4.2 Seed culture for clostridium acetobutylicum  

An autoclaved 250ml conical flask containing 100ml sterile CM (Cooked meat) media broth was taken. 

Syringe filtered Glucose substrate is added to the conical flask and shaken well to dissolve the glucose 
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entirely in the medium.  A slant test tube culture of chosen bacteria was taken, and a loopful of the 

bacteria was carefully taken out from the test tube with the help of a sterile inoculating loop. The cotton 

plug of the conical flask is removed, and the loopful of the bacterial inoculum is inserted into the flask. 

The sterile CM broth was then inoculated with the bacterial culture by dipping the loop containing the 

inoculum and transferred it to the CM media. As this bacteria is strictly anaerobic an inert gas Argon 

was purged for 3min to remove oxygen from the headspace of the conical flask. After proper purging, 

a rubbed stopper was used to seal the whole system tightly. The neck of the flask was also sealed with 

the parafilm strip. The flask was kept in the incubator at 37ºC and incubated for 72h. The total procedure 

was performed in the laminar airflow bench, maintaining strictly sterile conditions. From the 72h old 

broth culture, several subcultures were prepared in the same manner as described above as required for 

the experiment. 

3.6 Analytical methods 

In order to determine the quality and quantity of the product, several analytical procedures were adopted. 

The adopted analytical methods are described below. 

3.6.1 Spectrophotometry 

The spectrophotometric method was used for the determination of bacterial cell concentration. For the 

generation of the standard plot, the dry cell weight method was followed. In this method, the optical 

density versus its corresponding known cell concentrations was plotted. For measuring the dry cell 

weight, 15mL of bacterial cultures of different incubation period were centrifuged at 10,000×g, at 4ºC 

for 15 minutes. The supernatant was discarded, and the cell precipitate was washed with distilled water 

and transferred to aluminium cups of known weight. The cups containing the cell mass were dried in a 

hot air oven for 24h at 80ºC. The weight of the dry biomass was calculated by subtracting the weight of 

the aluminium cup. The biomass concentration was determined using the sample volume and weight of 

the dry cell. The samples were analyzed spectrophotometrically at 600nm, and the optical densities were 

plotted against the corresponding biomass concentration determined through dry cell weight method. 

The standard plot was used for the measurement of the biomass concentration from their corresponding 

optical density. 

3.6.2 DNS method 

The amount of glucose consumed by the bacteria was determined by the used of DNS method. For this 

analysis, each liquid sample was centrifuged at 10,000 rpm, and the supernatant was collected to find 

out the reducing sugar concentration using the dinitrosalicylic (DNS) acid reagent [20]. For analysis 

1ml DNS was added to each test tubes containing supernatant. The test tubes were cotton plugged and 

were placed in a boiling water bath for exactly 15min and cooled on ice to room temperature. Finally, 

9mL of deionized water was added, mixed well by inversion and the concentration of glucose was 

determined through analyzing the optical density obtained from spectrophotometry at 540nm, against 

blank. The preparation of DNS acid reagent is described as below. 

3.6.2.1 Preparation of DNS solution 

In order to prepare DNS a colouring reagent solution (Solution 1) was prepared by dissolving 12g of 

sodium-potassium tartrate in 8mL of 2M NaOH by direct heating and constant stirring. Another solution 

was prepared (solution 2) by dissolving 0.1 M of 3,5- dinitrosalicylic acid in 20mL of deionized water 

by direct heating and continuous stirring. Solution 1 was then added slowly into solution 2 and mixed 
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well by stirring. Deionized water was added to the mixture of solution 1 and 2 to make up the volume 

to 100mL. The prepared DNS was then stored in a coloured bottle at room temperature and was stored 

in the refrigerator. 

3.6.3 GC- FID 

The gaseous products were analysed in this study by the use of Gas Chromatography Flame Ionization 

Detection Method (GC-FID). In this study, the gaseous products were mainly CO2 and Hydrogen. The 

analytical method was used only for the detection of hydrogen. Therefore each time the produced gases 

were first passed through the ORSAT instrument containing 1N (normal) potassium hydroxide to 

remove CO2. The remaining gas composition was then analyzed by gas chromatography. On a molecular 

sieve column (13×, 180 cm by 1⁄4 inch, 60–80 mesh), the gases were separated where argon was the 

carrier gas at 100 ◦C. A 406 Packard GC equipped with a thermal conductivity detector (TCD) of  100 

mA was used to measure hydrogen concentration. 

3.6.4 HPLC 

Reversed-phase HPLC analysis was done using a YL9100 HPLC system which consists of YL9101 

vacuum degasser, YL9110 quarternary pump, YL9131 column compartment, YL9120 UV/Vis detector 

with manual sample injector Rheodyne 9725i. The analytical column was a Tracer Excel 120 ODSA, 

250 mm×4.6 mm, and with particle size five μm. Chromatographic separation was carried out at the 

column oven temperature 40ºC ± 2ºC with a flow rate 1.0 mL/min of isocratic elution using two solvents: 

A – (3·10-2 mol/L H3PO4 in water) and B – acetonitrile HPLC grade in ratio 88:12 v/v. The injected 

sample volume was 20 μL. The quantitation wavelength was set at 200 nm. For optimization of 

separation of analytes, aqueous solutions of H3PO4 in three different concentrations were tested: 1st – 

1.2∙10-2 mol/L, 2nd – 2.1·10-2 mol/L and 3rd – 3.1·10-2 mol/L. 

3.7 Experimental method 

There are several batches, and continuous type experiments were conducted in order to achieve the aim 

of this study. The detailed procedure of the experiments is provided below.   

3.7.1 Batch experiments to examine pH influence on microbial growth 

There are two types of Lactic acid bacteria which were used to perform the batch experiments in order 

to investigate the influence of pH on bacterial growth. Moreover, Batch experiments were conducted to 

determine the kinetic parameters of bacterial growth. 

3.7.1.1 Growth study for pediococcus acidilactici 

The bacterial strain was maintained in MRS medium. Composition of MRS medium is provided in 

Error! Reference source not found. The growth kinetics of Pediococcus acidilactici were determined b

y conducting batch experiments in Erlenmeyer flask using 50mL modified MRS (MMRS) medium. The 

temperature was maintained at an optimum value of 37°C. Initial pH was varied in the range of 4.0-8.0. 

At each initial pH, experiments were conducted by varying the MMRS medium's initial glucose 

concentration in the range of 5.0-30.0g/L. The concentrations of all components other than glucose in 

mMRS medium were always the same as those of MRS medium. At each initial substrate concentration, 

the microbial growth pattern was studied for 24h. Samples were withdrawn at 2h interval during 

incubation. Each sample's biomass concentration was determined using the spectrophotometric method 

[112], and glucose concentration was determined using the DNS method [113]. Each sample was 



 

44 

centrifuged at 10000rpm, and the supernatant was analyzed for Lactic acid using HPLC. Each 

experimental run was repeated three times to ensure the repeatability and the statistical accuracy of the 

results. 

3.7.1.2 Growth study for lactobacillus casei 

The procedure of batch experiments was the same as for described for Pediococcus acidilactici. The 

differences were the bacteria was lactobacillus casei, the range of variation of glucose concentration 

was from 10g/L to 50g/L, and the pH was varied from 3 to 8, respectively. 

3.7.1.3 Growth study for clostridium acetobutylicum 

Batch experiments were conducted in 250 mL cork fitted Erlenmeyer flask having an outlet port at the 

bottom. A cork was fitted to a glass tube and connected to a gas measuring tube for gas sampling. The 

batch experimental setup is shown in Figure 2a, and the whole system is presented schematically in 

Figure 2b.  

 

Figure 3-10 Experimental setups for batch test (a); schematic diagram of the experimental setup (b)[114] 

An Erlenmeyer flask was half-filled with the CM medium and 1% (v/v) of inoculum into the medium 

then the remaining void was filled completely with the CM medium. The composition of CM medium 

is provided in Table 3-3. The flask was then firmly sealed with the cork, and 150 mL of argon gas was 

passed through the flask by a glass tube for displacing the CM media from the bottom of the flask. Thus, 

the flask was left with 100 mL of CM medium with bacterial culture, and a mixture of argon and 

hydrogen occupied 150 mL headspace. The whole setup was then kept in the incubator at maintaining 

the temperature of 37 ◦C and pH of 7.2, which are the ideal conditions for this bacteria. Initial hydrogen 

concentration in the reactor headspace were varied in the range of 0% (v/v) to 50% (v/v). Initially, H2 

experiments were performed by varying the modified CM medium's glucose concentration in the range 

of 2 g/L to 5 g/L. At each initial substrate concentration, microbial growth pattern was observed for 30 

h. An interval of 3h, samples were collected. The produced gas was accumulated in the reactor 

headspace and was taken out from the flask using a gas sampling tube, connected with the flask for 

examining the gas composition after each interval. Each experimental run was repeated three times to 

ensure the repeatability and the statistical accuracy of the results.  

Each sample's biomass concentration was determined in terms of optical density with a 

spectrophotometer at 600 nm wavelength. The spectrophotometry method is described above. Each 

liquid sample was centrifuged at 10,000 rpm, and the supernatant was collected in order to find out the 
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reducing sugar concentration using the dinitrosalicylic (DNS) acid reagent [20]. Next, 100 mL of gas 

was collected after every 3h interval from the batch reactor's headspace using a gas sampling tube. 

Collected gas was then passed through an ORSAT apparatus for the removal of CO2 gas present in the 

gas sample. Furthermore, the remaining gas composition was analyzed by gas chromatography which 

is described in Chapter 3.6.3. 

3.7.1 CSTBR operation 

Continuous flow reactor operations were conducted in a 2L Braun bioreactor. The total bioreactor set 

up was autoclaved to make it free from any contamination prior to adding microbial growth. 10g of the 

substrate (glucose) was sterilized and added to the reactor. The media was inoculated with the bacteria 

by adding a previously calculated amount of inoculums of the bacteria, maintaining a biomass's desired 

concentration.  A feed tank is prepared by adding 2L of fresh MRS medium in a conical flask with an 

outlet near its bottom. UV-sterilized glucose (20 g) was added to the feed tank media, and a rubber pipe 

fitted with a flow control valve was attached to the outlet.  Another feed tank was prepared by adding 

2L of fresh distilled water in a conical flask having an outlet port. Sodium hydroxide (1.6g) was added 

to this feed tank, and a rubber pipe fitted with a flow control valve was attached to the outlet. The flow 

rate of the feed stream was adjusted to the desired value as per the optimized values of the dilution rate 

(D) and the dilution rate for the base feed stream (D1).  

 

Figure 3-11 The flow-sheet of the reactor set up[115] 

 After adding the substrate and bacterial inoculum to the bioreactor, the connecting pipe from the feed 

tank and base dosage tank was connected with the bioreactor through the input channel. The control 

valves were used for maintaining the flow rate of the feed tank and the base tank. The feed tank and the 

base dosage tank were connected to the peristaltic pump. The product outlet was connected to the sample 

outlet channel through a peristaltic pump to continuously draw effluent from the reactor vessel. The 

effluent was collected in a 1000ml conical flask. After connecting all of the parts of the entire set up the 

feed and output flow streams are started. The flow rates of the inlet the feed stream, as well as base feed 

stream and the outlet stream, are adjusted to same values according to the dilution rate (D) and dilution 

rate for base feed stream (D1) of the system so that the working volume of the reactor must be maintained 

at a constant value. The reactor's sample is collected after every one hour from the outlet stream and 

kept in sample vials in the refrigerator for further analysis. The reactor is operated up to a specific 
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estimated time. The samples are used to obtain the growth of the Biomass as well as to check the pH of 

each of the sample.  The reactor system was maintained at 37°C, and the pH of the reactor medium was 

kept at 6.7.  The flow-sheet of the reactor set up has been represented in Figure 3-11. 

3.8 Case Studies  

Four case studies were conducted to fulfil the research objectives set at the beginning to achieve the 

overall aim of the thesis. Table  3-6 lists the Case study and the objectives that each case study address 

Table 3-6: Details of case studies and corresponding objectives   

Case Objective 

number 

Objectives 

Case 1 

Case 2 

Case 4 

1 
To investigate the influence of pH on microbial growth experimentally 

in a batch reactor, and develop a kinetic model to determine constants 

which will describe the nature of microbial growth. 

2 To develop a mathematical model of a continuous stirred tank 

bioreactor (CSTBR) system with the help of the kinetic parameters. 

Case 1 

2 
To derive a simple dimensionless steady-state multiplicity criterion for 

the CSTBR. The approach should be able to identify the set of values 

of input variables, which lead to multiple steady-states. 

3 To derive an expression for theoretical sensitivity function of pH 

concerning different input variables 

4 
To conduct experiments to study the parametric sensitivity for sets of 

input parameters belonging to the regimes of multiple and unique 

steady states as determined using multiplicity criterion. 

Case 2 5 

To develop a generalized criterion for sensitivity with the help of 

normalized sensitivity analysis which does not depend upon the 

topology of pH contour for recognizing the extent of input parameters 

where a CSTBR exhibits sensitive behaviour. 

Case 3 

6 To explore the influence of hydrogen in the reactor headspace on 

microbial growth Experimentally in a batch reactor. 

7 
To develop kinetic models to explain how the produced hydrogen 

influences the bacterial growth and hydrogen production rate 

simultaneously. 

Case 4 8 

To investigate the effects of the operating parameters on the stability 

behaviour of a CSTBR for biohydrogen production.  The stability 

analysis will be carried out using elementary principles of bifurcation 

theory shows the dynamics characteristics of the reactor model, 

including a steady-state multiplicity analysis. 
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4 Case studies results and discussions 

In this chapter, the details of the four case studies, along with the procedure of obtaining the 

mathematical results are described.  Other calculation details are given in the Appendix section. 

The results obtained and their discussions are presented in the following sections. 

4.1 Case 1: Parametric sensitivity of pH and steady-state 
multiplicity in CSTBR    

In the first case study, an anti-pathogenic bacteriocin production process called pediocin from lactic acid 

bacteria pediococcus acidilactici was considered.  Experiments were conducted in a batch reactor, and 

the experimental data is analysed to determine the kinetic parameters of microbial growth and their 

dependence on pH. Using the fundamental knowledge of microbial growth and dimensionless variables 

unstructured mathematical model for the CSTBR is derived.   

The mathematical model is then used to derive a simple dimensionless steady-state multiplicity criterion 

for the CSTBR. This criterion then identifies the set of values of input variables which lead to multiple 

steady states. Different input variables, namely dilution rates of nutrient and base streams and 

concentrations of substrate and base stream for pH control, influence the pH within the reactor.  

Theoretical expressions are derived for pH sensitivity to all these input variables. The parametric 

sensitivity for sets of input parameters belonging to the regimes of multiple and unique steady states as 

determined using multiplicity criterion. The experimental and simulated transient behaviours of pH are 

also analyzed and compared to verify the existence of parametric sensitivity under both multiple and 

unique steady-state conditions.  

4.1.1 Determination of Growth Kinetics 

The growth kinetics of Pediococcus acidilactici has been determined using classical Monod type growth 

model, which was described in chapter 3.1.2. Kinetic parameters of the Monod model, were determined 

using the initial specific growth rate at each initial glucose concentration obtained at each initial pH. Eq. 

(3.2) can be linearized in the form of Eq. (4.1) to find out the kinetic parameters (μmax and Ks) by making 

double reciprocal plots of μ versus S at each initial pH. 

1

μ
=

KS

μmaxS
+

1

μmax
            (4.1) 

Regression analysis is used to find the best fit for a straight line on a plot of 1/ μ vs 1/S and the values 

of μmax and KS are determined. The variation of μmax with initial pH would determine an optimum value 

of pH at which μmax is maximum, thus describing optimum conditions for the microbial growth. By 

plotting the values of normalized μmax, i.e. μmax,N versus initial pH, a second-order correlation was then 

obtained, as given in Eq. (4.2) 

μmax,N = (A + B ∙ pH + C ∙ pH
2)          (4.2) 

Where, 

μmax,N =
μmax

μmax,opt
            (4.3) 
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Therefore, Eq. (3.2) was written as 

μ =
μmax,opt(A+B∙pH+C∙pH

2)S

KS+S
           (4.4) 

This correlation defines the influence of pH on the specific microbial growth rate. To establish a 

mathematical model of a CSTBR,  design equations for mass or molar balance for each component are 

expressed with the help of the kinetic model (Eq. 4.4). The constants were obtained from the batch 

experiments. 

4.1.2 Biochemical reactions in the CSTBR 

The biochemical reaction occurring in the system is represented as follows: 

X  +  Glucose(S)  →  nX + CH3CH(OH)COOH (p)                     (4.5) 

The desired product is pediocin, and its formation is influenced by the system pH. To control pH, NaOH 

has been fed to the system. The acid-base neutralization reaction may be written as follows, 

CH3CH(OH)COOH (p) + NaOH(sb)  → CH3CH(OH)COONa(sA) + H20                             (4.6) 

The pH is correlated to the concentrations of salt and lactic acid according to the Henderson-Hasselbalch 

equation [116] equation as follows 

pH = pKa + log
sA

p
                        (4.7) 

Where,  

Ka Equilibrium dissociation constant for lactic acid,  

sA molar concentrations of sodium lactate 

p molar concentrations lactic acid  

4.1.3 Mathematical model for CSTBR for pH control 

The continuous bioreactor setup is schematically represented in Figure 4-1. 

The mathematical model for the CSTBR was developed using the following assumptions: 

1. The bioreactor is uniformly stirred, i.e., concentration within the reactor is spatially 

uniform. 

2. Temperature effect of the reaction is negligible. 
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Figure 4-1 Schematic of a Continuous Stirred Tank Bioreactor 

The differential mass and mole balance equations for different components, namely biomass, substrate, 

lactic acid and sodium lactate are as follows: 

Mass balance Equations: 

Biomass: 

dX

dt
= (μ − D − D1)            (4.8) 

Substrate: 

dX

dt
= D(S0 − S) − D1S −

1

YX
S⁄

μX                      (4.9) 

Mole balance equations: 

Lactic acid: 

dp

dt
= −Dp +

YP
X⁄
μX

Ma
− D1(sb + p)                    (4.10) 

Sodium Lactate: 

dSA

dt
= D1(sb − 𝑠A) − DsA                     (4.11) 

pH dynamics: 

Differentiating equation (4.7), with respect to time, 

dpH

dt
=

1

SA

dsA

dt
−
1

p

dp

dt
                      (4.12) 



 

50 

Since bacteriocin is a growth-related product [117,118], the influence of the sensitivity of pH towards 

bacteriocin formation is expected to be similar to that of biomass. For the model's simplicity, the mass 

balance of bacteriocin has been excluded from the mathematical analysis. 

4.1.4 Generalized criterion for multiplicity 

In order to obtain a generalized criterion for multiplicity the mass, molar and pH balances equations (Eq 

(4.8) to (4.12)) are suitability transform dimensionless where initial substrate concentration S0 and the 

dilution rate of feed concentration D1 are considered as scaling parameters for concentration and time, 

respectively. The detailed definition of each dimensionless variables are provided in Table 4-1.  

Table 4-1 Definitions of the dimensionless variable used in the model 

Parameter definition Parameter definition 

x 

X

S0 YX
S⁄
 

τ tD

 

y 

S

S0
 

θ 

μ

D
 

z 

pMa
S0YP

S⁄
 

θ1 

D1
D

 

R 

sb Mb
S0

 

m 

μm
D

 

L 

sAMc
S0

 

n 

𝐾𝑠
𝑆𝑜

 
 

In dimensionless form, the system equations (4.8) through (4.12) were written as follows: 

dx

dτ
= (θ − θ1 − 1)x                      (4.13) 

dy

dτ
= (1 − y) − θx − θ1y                     (4.14) 

dz

dτ
= −z + θx − θ1 [

Ma

Mb Yp
S⁄

R + z ]                         (4.15) 

dL

dτ
= [

Mc

Mb
R − L] θ1 − L                                  (4.16) 

dpH

dτ
= 

1

L

dL

dτ
−
1

z

dz

dτ
                      (4.17) 

And  

θ =
my

n+y
H                       (4.18) 
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And  

H = A + BpH + CpH2                                  (4.19) 

When a process or system has a single steady-state for a particular value or a set of input or manipulated 

variables, it is defined as uniqueness.  On the other hand, if the system offers more than one solution or 

multiple solutions for a set of input parameters, then its called multiplicity.  

Under steady-state, the left-hand sides of equations (4.13) - (4.17) become zero. After further 

mathematical operations, the following condition with respect to pH has been obtained,    

In(α + βpH + γpH2) = −
pH

2.303
                                 (4.20) 

Where, 

α = (M + n(1 +mMA) − pm)
Ka

pm
;                    (4.21) 

β = (nmMB)
Ka

pm
;                      (4.22) 

γ = (nmMC)
Ka

pm
;                      (4.23) 

The details of mathematical operations have been provided in Appendix 2. Equation (4.20) was 

represented in the following form: 

f(pH, α, β, γ) = In(α + βpH + γpH2) +
pH

2.303
= 0                  (4.24) 

The multiplicity of solutions of the transcendental equation (4.24) is dependent only on the values of α, 

β and γ. The number of solutions was obtained as the number of intersecting points of the function, f(pH 

α β and γ) with the abscissa of pH-f system of coordinate. This was obtained by setting 

∂f

∂pH
= 0                       (4.25) 

This leads to the following roots, 

pH1
2⁄
=
4.606γ+β

2γ
(−1 ± √1 − ω)                    (4.26) 

Where, 

ω =
4γ(2.303β+α)

(4.606+β)2
;                      (4.27) 

For a higher value of ω (>1), the radicand in equation (4.27) is negative. Using the same principles, as 

cited by Kauschus et al. [119], one steady state at the most is obtainable for 1ω , and more than one 

steady states are possible for 1ω . Therefore, it is understandable that the nature of steady states is 

extremely influenced by ω and hence the values of α, β and γ. 



 

52 

4.1.5 Theoretical parametric sensitivity analysis 

The parametric sensitivity analysis was done on the basis of the differential equations (4.8) - (4.12). The 

generalized form of the model equations is as follows: 

𝐝𝐲

𝐝𝐱
= F(x, y, ϕ)                      (4.28) 

Where y is a vector of dependent variables, in the present investigation, ‘y’ may be concentrations of 

biomass, substrate, product and salt, x is an independent variable namely time, and ϕ represents the 

vector of input parameters of the system. 

The first order local sensitivity or only local sensitivity with respect to vector ϕ is given by, 

sjϕi =
dyj(t,ϕi)

dϕi
                       (4.29) 

Where, 

j any output variable 

i any input vector 

by differentiating equation (4.29), the following equation, is obtained 

dsϕi
dt
= Jsϕi +

∂F(t,y,ϕi)

∂ϕi
                      (4.30) 

Where J is the jacobian matrix of the system. The initial conditions for the above equation (4.30) is sϕi= 

0 at t = 0. For the CSTBR under consideration,  

y1 = X, y2 = S, y3 = p, y4 = sA, y5 = pH 

F1 =
dX

dt
, F2 =

dS

dt
 , F3 =

dp

dt
 , F4 =

dsA
dt
 and F5 =

dpH

dt
 

and 

ϕ1 = D,ϕ2 = D1, ϕ3 = sb, ϕ4 = S0 

The dynamic equations for the parametric sensitivity in a CSTBR for any variable yi become, 

d

dt
[sjϕi] = [

∂Fj

∂X

∂Fj

∂S

∂Fj

∂p

∂Fj

∂sA

∂Fj

∂pH
] [
dX

dϕi

dS

dϕi

dp

dϕi

dsA

dϕi

dpH

dϕi
]
T
+ [

∂F1

∂ϕi

∂F2

∂ϕi

∂F3

∂ϕi

∂F4

∂ϕi

∂F5

∂ϕi
]
T
               (4.31) 

Equation (4.31) may be written with respect to D as follows: 

d

dt
[
dX

dD
] = [

∂F1

∂X

∂F1

∂S

∂F1

∂p

∂F1

∂sA

∂F1

∂pH
] [
dX

dD

dS

dD

dp

dD

dsA

dD

dpH

dD
]
T
+ [

∂F1

∂D
]                 (4.32) 

d

dt
[
dS

dD
] = [

∂F2

∂X

∂F2

∂S

∂F2

∂p

∂F2

∂sA

∂F2

∂pH
] [
dX

dD

dS

dD

dp

dD

dsA

dD

dpH

dD
]
T
+ [

∂F2

∂D
]                 (4.33) 
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d

dt
[
dp

dD
] = [

∂F3

∂X

∂F3

∂S

∂F3

∂p

∂F3

∂sA

∂F3

∂pH
] [
dX

dD

dS

dD

dp

dD

dsA

dD

dpH

dD
]
T
+ [

∂F3

∂D
]                 (4.34) 

d

dt
[
dsA

dD
] = [

∂F4

∂X

∂F4

∂S

∂F4

∂p

∂F4

∂sA

∂F4

∂pH
] [
dX

dD

dS

dD

dp

dD

dsA

dD

dpH

dD
]
T
+ [

∂F4

∂D
]                 (4.35) 

d

dt
[
dpH

dD
] = [

∂F5

∂X

∂F5

∂S

∂F5

∂p

∂F5

∂sA

∂F5

∂pH
] [
dX

dD

dS

dD

dp

dD

dsA

dD

dpH

dD
]
T
+ [

∂F5

∂D
]                 (4.36) 

The overall set of dynamic equations for the parametric sensitivities of different output variables with 

respect to all input variables are provided in the Appendix 2. 

4.1.6 Results  

4.1.6.1 Influence of pH on microbial growth 

The influence of initial pH on the microbial growth was studied by conducting batch experiments, and 

the results were presented in Figures 4-2 to 4-6. In these figures, the time history of dry cell 

concentrations was showed when pH at each batch reaction was varied initially. From these figures, it 

was observed that initially altered pH has a significant impact on microbial growth.  

 

Figure 4-2 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=4 

At first, when the batch experiments were started the initial pH of the reaction medium was 4, and the 

initial glucose concentration was varied in the range of 5.0g/L to 30 g/L. At each variation of glucose, 

the microbial growth pattern was observed for 24h. The time histories of microbial growth were 

presented in Figure 4-2. From this figure, it can be seen that the microbial growth was started 

immediately for 20g/L and 30g/L initial glucose concentration. Whereas, in the case of 5g/L and 10g/L 

initial glucose concentration, the microbial growth started after 2h of inoculation. The maximum dry 

cell concentration was observed for 30g/L glucose which was 0.625g/L.  
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As the initial pH of the batch reactor was changed to 5 there was no significant change in Lag phase of 

microbial growth observed. On the other hand, a substantial shift in the microbial growth rate was seen. 

The time histories in this initial pH=5 were shown in Figure 4-3. The trend of microbial growth, in this 

case, was the same as pH= 4 as the exponential growth was ended at 12h. The Maximum dry cell of 

1.46g/L was obtained in this case when initial glucose concentration was 30g/L.  

 

Figure 4-3 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=5 

No substantial change in microbial growth was observed when the pH of the reaction medium altered 

initially to 6. In this case, almost the same phenomenon was observed compare to pH= 5 conditions. 

The time histories of microbial growth with the variation of glucose concentration at initial pH=6 were 

presented in Figure 4-4. Here also the microbial growth was stated immediately after the inoculation, 

and the exponential phase was ended at 12h. The maximum dry cell concentration of  1.79g/L was 

observed. 
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Figure 4-4 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=6 

When the initial pH of the reaction medium of batch reactor change to 7, a monotonic increase in 

microbial growth was observed, which was shown in Figure 4-5. In this figure, the time histories of 

microbial growth with the variation of initial glucose concentration with fixed initial pH were presented. 

In this case, the same growth pattern was observed for each initial glucose concentration. The lag phase 

of microbial growth initiated immediately whereas; the exponential phase stoped at 12h after 

inoculation. The maximum dry cell concentration of 1.96g/L was found when initial glucose 

concentration was 30g/L.   

 

Figure 4-5 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=7 
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As the pH of the reaction medium of batch reactor altered initially fro 7 to 8, a different scenario in 

microbial growth pattern was observed. In Figure 4-6, the time histories of the microbial growth rate at 

pH=8 at different initial glucose concentration were presented. In this case, the microbial growth rate 

decreased compared to pH=7 condition. Although the microbial growth pattern was similar to that of 

pH=7 condition, the maximum dry cell concentration lowered to 1.55g/L.  

 

Figure 4-6 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=8 

4.1.6.2 Determination of Kinetic parameters 

In the present experiments, at each initial pH, the substrate concentration was varied from 5g/L to 30g/L. 

For each combination of initial pH and substrate, the specific growth rate of microorganisms was 

determined. By using Equation (4.1), plots of 1/µ and 1/S were obtained at each initial pH. µmax and ks 

at each initial pH were determined by evaluating the intercepts and abscissas on Figure 4-7. The values 

of µmax and ks are provided in Table 4-2.   
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Figure 4-7 Determination of μmax, and ks at different initial pH 

From Table 4-2, it can be observed that ks, does not change in any systematic manner with the change 

of pH. Therefore, one can easily state there is inhibition due to substrate concentration. By plotting µmax 

vs initial pH, it was found that µmax became maximum when the value of initial pH is 6.7, which is 

considered as the optimum pH and the corresponding µmax is optimum µmax,i.e. µmax,opt. 

 

Table 4-2 Values of observed rate constants from experiments 

Initial pH μmax ks 

pH 4 0.278 4.70 

pH 5 0.766 4.45 

pH 6 1.042 4.47 

pH 7 1.059 4.46 

pH 8 0.864 4.35 

 

Now plotting the values of µmax.N, which can be obtained from Equation (4.3) as a function of initial pH, 

a second-order correlation, as shown in Equation (4.5) was obtained. The plot of  µmax.N vs initial pH is 

shown in Figure 4-8. The values of second-order correlation constants along with other growth 

associated kinetic constants are provided in Table 4-3. 
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Figure 4-8 Variation of normalized µmax,N with initial pH 

Table 4-3 Values of kinetic parameters 

Kinetic parameters Values 

µmax,opt (h-1) 1.0775 

KS(gL-1) 4.5017 

YX/S (gg-1) 0.1 

Yp/X (gg-1) 0.065 

Yp/S (gg-1) 0.0065 

A -3.76195 

B 1.4368 

C -0.10835 

 

4.1.6.3 Sensitivity of pH through theoretical analysis 

Time-trajectories of the sensitivity of system pH with respect to input variables D, D1, S0 and sb have 

been plotted in Figure 4-9.  From the analysis of the figure, it is clear that D, D1 and sb are the most 

influencing input variable with respect to pH sensitivity. This may be due to the fact that D, the dilution 

rate, affects the concentration of Lactic acid being generated by the biochemical reaction from the 

hydrodynamic point of view and D1 and sb regulate the rate of neutralization of the acid. On the other 

hand, S0 plays a passive role regarding pH sensitivity because yield coefficient (Yp/S) of Lactic acid with 
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respect to the substrate, glucose, is only 0.0065gg-1, as reported in Table 4-3. Thus the input variables 

D, D1 and sb have been chosen for further experimental studies on parametric sensitivity. 

 

Figure 4-9 Time trajectories of Sensitivity variables, Sφi 

4.1.6.4 Critical multiplicity criterion and decision on experimental conditions 

From the definition of multiplicity criterion (ω) described in the Mathematical analysis section, the 

critical value of ω is unity, and unique states will occur if ω ≥ 1 and otherwise, multiple steady states 

will be encountered. Based on this concept, the following conditions for conduction of experiments on 

parametric sensitivity of pH are reported in Table 4-4 with respect to D, D1 and sb. 

Table 4-4 Summary of the results obtained from the present study 

Mutiplicity 

sb = 0.008M D = 0.1 h-1 D1 = 0.007h-1 to D1 = 0.008h-1 

D1 = 0.008 h-1 D = 0.1 h-1 sb = 0.007M to sb = 0.008M 

D1 = 0.008 h-1 sb = 0.008 M D = 0.1h-1 to D = 0.12h-1 

Uniqueness 

sb = 0.002M D = 0.1 h-1 D1 = 0.06h-1 to D1 = 0.065h-1 

D1 = 0.06 h-1 D = 0.1 h-1 sb = 0.002M to sb = 0.003M 

D1 = 0.06 h-1 sb = 0.002M D = 0.08h-1 to D = 0.1h-1 

 

4.1.6.5 Experiments on parametric sensitivity 

Effects of different parameters, namely D, D1 and sb on parametric sensitivity, have been studied by 

conducting experiments using the operating parameters satisfying either multiplicity (system with 

multiple steady-state) or uniqueness (system with single steady-state) criteria, as indicated in Table 4-
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4. Initial conditions for all experiments in the CSTBR have been provided in Table 4-5. The 

concentration of glucose in the inlet MMRS medium has been maintained at 10 g/dm3. 

 

Table 4-5 Initial conditions for experiments on parametric sensitivity 

Initial biomass concentration (gL-1) 0.004 

Initial substrate concentration (gL-1) 10.0 

Initial pH of the system 6.7 

Initial lactic acid concentration (mM) 0.001 

Initial concentration of sodium lactate (mM) 0.008 

 

4.1.6.6 Numerical simulation 

Model equations (4.8) to (4.12) were simultaneously solved using ODE23 of MATLAB-7 2010a for the 

conditions of input variables, either corresponding to unique or multiple steady-state regions. During 

the solution of equation (4.12), a very small value of the initial concentration of salt (sA=0.001mM) and 

lactic acid (p=0.001mM) have been used, to avoid ‘division by zero’ situation.  

4.1.6.7 Effect of D on sensitivity of system pH 

The reactor was first operated with D= 0.1h-1, D1=0.008h-1 and sb=0.008M. The system pH was recorded 

with a pH meter. The simulated and experimental patterns of the transient behaviour of pH under this 

condition have been shown in Figure 4-10. It has been observed that pH shows oscillatory behaviour 

and never stabilizes. After 50h, the pH has been observed to reach 7.23. Keeping the values of D1 and 

sb unaltered another experiment was conducted by setting D= 0.12h-1.  



 

61 

 

Figure 4-10  Simulated (lines) and experimental (Points) time histories of pH in the region of multiplicity with D as 
a parameter 

From Figure 4-10, it is evident that although the transient goes through fluctuation up to 12h, it 

ultimately reaches almost a steady value of pH=6.1. After propagation of the same reaction time, i.e., 

50h, the final pH has been observed to reach 5.97. Therefore, it is clear that the system shows parametric 

sensitivity, as evident from drastic change of behaviour of pH transient corresponding to a very small 

(16.6%) alteration in dilution rate in multiplicity region. Figure 4-11 depicts the simulated and 

experimental trends of time trajectories of pH at fixed values of D1 =0.06 h-1 and sb= 0.002M and two 

values of D=0.1h-1 and 0.08h-1, judiciously selected in the region of the unique steady state. From the 

figure, it is evident that for D=0.1h-1, the value of pH monotonically increases to 9.7 at 15h. When D's 

value was altered to 0.08h-1, the same monotonic rising trend is observed with pH = 8.8 at 15h.  

 

Figure 4-11: Simulated (lines) and experimental (Points) time histories of pH in the region of uniqueness with D as 

a parameter 
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Therefore, it may be inferred that in the unique steady states regime, there is a shooting tendency in pH. 

The experiments could not be run beyond 15h due to this abnormal overshoot in pH value. The 

occurrence of parametric sensitivity may be nullified if operating time is restricted to 13h. However, 

over a period from 13-15h, the system may be considered to show parametric sensitivity of pH with 

respect to D. Overall, the system may be considered to be moderately pH-sensitive with respect to D in 

the region of unique steady states. The agreement between the simulated and experimental values is 

satisfactory both in the regions of multiplicity and uniqueness as the coefficients of the nonlinear 

regression analysis (R2) are 0.987, 0.991, 0.981 and 0.986 for D1=0.045h-1, 0.055h-1, 0.06h-1 and 0.065h-

respectively. 

4.1.6.8 Effect of D1 on sensitivity of system pH 

Figure 4-12 shows the simulated and experimental time histories of pH when D1= 0.0045h-1 is set at 

D=0.1h-1 and sb =0.008M. From the plot, it is clear that pH transient shows initial fluctuation and 

ultimately stabilizes at a steady-state value of 6.18 at 12h. After that, the pH remains almost constant 

(pH=6.15) even up to 48h. Next, the value of D1 was changed to 0.0055h-1, keeping D and sb unaltered. 

The analysis of the time trajectory of pH reveals that it always goes through fluctuations and at 48h, it 

reaches the value of 7.3, much different from that obtained with D1= 0.0045h-1. Absolutely different 

patterns of pH transients for a slight variation of D1 from 0.0045h-1 to 0.0055h-1, particularly beyond 

12h, suggests that parametric sensitivity of pH with respect to D1 exists in the region of multiplicity. 

 

Figure 4-12 Simulated (lines) and experimental (Points) time histories of pH in the region of multiplicity with D1 as 
a parameter 

On the other hand, time-trajectories of pH shown in Figure 4-13 exhibits monotonically increasing 

pattern at both D1=0.06h-1 and 0.065h-1 at fixed values of sb= 0.002M and D=0.1h-1 in the region of 

unique steady states. Over 15h pH reaches the values of 9.7 and 10.5 respectively for D1=0.06h-1 and 

0.065h-1. Thus the parametric sensitivity with respect to D1 is moderately present in the unique steady-

state region. Even in this case, the experiments could only be run up to 15h due to the problem of pH 

shooting. The analysis of Figures 4-12 and 4-13 reveals that simulated predictions agree well with the 

experimental results as the coefficients of the nonlinear regression analysis (R2) are 0.987, 0.991, 0.981 

and 0.986 for D1=0.045h-1, 0.055h-1, 0.06h-1 and 0.065h-respectively. 
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Figure 4-13 Simulated (lines) and experimental (Points) time histories of pH in the region of uniqueness with D1 

as a parameter 

4.1.6.9 Effect of sb on sensitivity of system pH 

 

Figure 4-14 Simulated (lines) and experimental (Points) time histories of pH in the region of multiplicity with sb as 

a parameter 

In Figure 4-14, the time trajectories of pH, as simulated using model equations (5.4) to (5.8) have been 

plotted along with their experimental counterparts for sb= 0.007M and sb= 0.008M and D1=0.008h-1 and 

D=0.01h-1. For both sb= 0.007M and sb= 0.008M the agreement between simulated and experimental 

results is satisfactory as the coefficients of the nonlinear regression analysis (R2) are 0.988 and 0.985, 

respectively. As evident from Table 4-5, both sets of operating parameters fall under the region of 

multiple steady states. For sb=0.007M, the pH trajectory passes through a fluctuating phase up to 12h 

after which steady state is attained, and pH remains almost constant at 6.18 to 6.15 even up to 48h. 

When the value of sb is slightly altered to 0.008M, keeping other parameters constant, the pH-transient 

shows fluctuating behaviour throughout the operating period up to 48h. The value of pH at 48h is 7.3. 
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Since a very small change in sb completely alters the pH dynamics, the system appears to exhibit strong 

parametric sensitivity with respect to sb in the region of multiplicity. 

 

Figure 4-15 Simulated (lines) and experimental (Points) time histories of pH in the region of uniqueness with sb as 

a parameter 

In Figure 4-15, time-trajectories of pH are plotted using simulated and experimental data for two sets of 

operating parameters sb= 0.002M and sb= 0.003M and D1=0.06 h-1, D=0.1h-1 in the region of unique 

steady state. The trends of the plots clearly indicate that the pH increases monotonically to 8 and 10.5 

over 15h, respectively, when sb is set at 0.002M and 0.003M. Thus the parametric sensitivity of pH with 

respect to sb is present even in the unique steady-state region. In all cases, the agreement between 

simulated and experimental results is satisfactory as the coefficients of the nonlinear regression analysis 

(R2) are 0.982 and 0.989 for sb= 0.003M and sb= 0.002M. 

In all cases, the agreement between simulated and experimental results is satisfactory. From the analysis 

of Figures 4-10 to 4–15, it may appear that the increasing trend of pH, in some cases, is due to 

overfeeding of base. However, the change of pH is not only a function of base dosage. The truth 

underlying the trend is that pH behaviour is affected by three main input parameters, namely D (dilution 

rate of nutrient stream), D1 (dilution rate of base stream) and sb (concentration of base). According to 

the multiplicity criterion ω (difined in equation derived in the present investigation, unique steady-state 

condition prevails for a set of values of input parameters (D, D1 and sb)which correspond to an increased 

pH condition. The interesting features of Figures 4-10 to 4-15 show that the system is parametrically 

sensitive in both uniqueness and multiplicity regions. 

4.1.6.10 Transient variation of sensitivity variable (Sϕi) 

In Figure 4-16 and 4-17, time course of theoretical (equations A.34 to A37 ) sensitivity of pH with 

respect to D, D1, S0 and sb have been plotted at fixed values of D= 0.1h-1 and sb=0.008M, S0= 10gL-1 for 

D1=0.0045h-1 and 0.0055h-1 respectively.  
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Figure 4-16 Time histories of all theoretical sensitivity variables in the region of multiplicity at D1 =0.0045h-1 
(D=0.1 h-1; sb = 0.008M) 

 

Figure 4-17 Time histories of all theoretical sensitivity variables in the region of multiplicity at D1 =0.0055h-1 

(D=0.1 h-1; sb = 0.008M) 

According to the multiplicity criterion, i.e., ω<1, both combinations of values of D, D1 S0 and sb used in 

these figures fall under multiplicity region. From the analysis of figures, it appears that parametric 

sensitivity of pH exists for parameters, namely D, D1 and sb. Since the order of values of sensitivities is 

different for different parameters, sensitivities of pH against individual input variables have been plotted 

in Figures 4-18, 4-19 and 4-20 respectively for D, D1 and sb for the same set of values of D, D1 and sb 

available in Table 4-4. These figures vividly establish the existence of parametric sensitivity in the 

multiplicity region. Thus the theoretical prediction seems to reconfirm the experimental findings. 
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Figure 4-18 Time histories of theoretical sensitivity variable with respect to D in the region of multiplicity at D1 
=0.0045h-1 and D1 =0.0055h-1 

 

Figure 4-19 Time histories of theoretical sensitivity variable with respect to D1 in the region of multiplicity at D1 
=0.0045h-1and D1 =0.0055h-1  
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Figure 4-20 Time histories of theoretical sensitivity variable with respect to sb in the region of multiplicity at D1 
=0.0045h-1 (D=0.1h-1; sb = 0.008M) and D1 =0.0055h-1 (D=0.1h-1; sb = 0.008M) 

In Figures 4-21 and 4-22 the dynamic variation of theoretical sensitivities (equations A18 to A37) of 

pH with respect to D, D1 and sb respectively for D1= 0.06h-1 and 0.065h-1 at fixed values of D=0.1h-1, 

sb=0.002M and S0= 10gL-1 have been plotted. Both the combination relates to unique steady-state 

condition, ensuring ω>1.  

 

Figure 4-21 Time histories of all theoretical sensitivity variables in the region of uniqueness at D1 =0.06h-1 

(D=0.1h-1; sb = 0.002M) 
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Figure 4-22 Time histories of all theoretical sensitivity variables in the region of uniqueness at D1 =0.065h-1 
(D=0.1h-1; sb = 0.002M) 

Sensitivity against individual input vector has been shown in Figure 4-23 to 4-25 to elucidate the 

transient behaviour of sensitivity of all parameters and avoid confusion arising from the difference in 

the sensitivity of sensitivities against individual variables.  

 

Figure 4-23 Time trajectories of theoretical sensitivity variable with respect to D in the region of uniqueness at D1 

=0.06h-1 (D=0.1h-1; sb = 0.002M) and D1 =0.065h-1 (D=0.1h-1; sb = 0.002M) 
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Figure 4-24 Time trajectories of theoretical sensitivity variable with respect to D1 in the region of uniqueness at D1 
=0.06h-1 (D=0.1h-1; sb = 0.002M) and D1 =0.065h-1 (D=0.1h-1; sb = 0.002M) 

 

Figure 4-25 Time trajectories of theoretical sensitivity variable with respect to sb in the region of uniqueness at D1 

=0.06h-1 (D=0.1h-1; sb = 0.002M) and D1 =0.065h-1 (D=0.1h-1;sb= 0.002M) 

All figures again confirm the occurrence of parametric sensitivity even in the region of the uniqueness 

of steady-state, although at a lower scale with respect to multiplicity region, as observed experimentally.  

4.1.7 Discussion 

The detailed analysis on multiplicity and parametric sensitivity under the present study reveals that 

similar to exothermic reactors, CSTBR handling the growth of pH-sensitive microorganisms, e.g., 

Pediococcus acidilactici understudy, is also parametrically sensitive irrespective of occurrence of the 

multiplicity of steady-state. Chemburkar et al. [118] observed that multiplicity co-occurs with 

parametric sensitivity during the studies on exothermic adiabatic CSTR. Besides the existence of strong 

parametric sensitivity in the region of multiplicity, it is also present moderately with respect to the 

dilution rate of feed stream(D) and alkaline stream (D1) and firmly with regard to the concentration of 

NaOH in the alkaline stream (sb) even in the unique steady state. Shooting tendency of pH dominates in 
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the region of uniqueness. Thus it may be inferred that the inherent bias of the system is to show 

parametric sensitivity and hence it is challenging to be operated with continuous feeding of base stream, 

for the control of pH. Although in multiple steady-state regions, a few conditions of input parameters 

correspond to stable pH values after 12h, which can be observed in Figures 4-10, 4-12 and 4-14. The 

operation at these conditions is also not recommended due to the presence of parametric sensitivity and 

multiplicity behaviour. On the other hand, due to the over-shooting tendency of pH in unique steady-

state conditions, the operation of the CSTBR with pH control using continuous input of base stream 

seems to be impractical. Therefore, fed-batch type arrangement with an intermittent dosage of the base 

stream for the adjustment of pH, as adopted by many researchers [120,121] seems to be more judicious. 

crests 
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4.2 Case 2: Parametric sensitivity of CSTBRs for lactobacillus 
casei: Normalized sensitivity analysis  

In this case, the CSTBR model of Das et al. 2016 [115] is adapted to describe the reactor's kinetics. In 

order to find out kinetic constants relating to this study, batch experiments were performed, and a 

calibrated model was used to conduct sensitivity analysis and highlight the sensitive parameter range 

and values for the considered variables. 

The effect of pH on microbial growth was studied experimentally in a series of batch experiments. A 

lactic acid bacterium (LAB), Lactobacillus casei, was selected for the batch experiments. The initial pH 

of the growth medium was varied to determine pH's influence on the microbial growth rate. The 

information obtained from the batch experiments identified the optimum range of pH for the growth of 

LAB. Furthermore, the kinetic constants of the microbial growth model were also calculated. 

A CSTBR operation model was developed by using the necessary information on the kinetic parameters 

of microbial growth, including their pH dependency. The mathematical model is able to predict time-

dependent changes in the concentration of substrate, biomass, lactic acid, salt, and pH. The reactor pH 

remains constant by the use of a continuous flow of the alkaline stream. The model is then used to study 

normalized sensitivity concerning input variables; initial system pH, the dilution rate of the alkaline 

stream, and its concentration where pH-minimum (the lowest value of pH attain for a set of input 

variable) is an objective function. The sensitivity of the pH-minimum regarding the set of input 

parameters is examined, together with the determination of critical values of input parameters where a 

“pH-runaway” condition occurs. Lastly, the sensitivity analysis identified a parameter space, at which 

pH becomes simultaneously sensitive to small changes in input parameters. The following objectives 

were achieved in order to fulfil the overall aim of this case study. 

a. To perform batch experiments using a lactic acid bacterium, Lactobacillus casei, to find out 

the optimum pH for microbial growth and other growth associated kinetic parameters; 

b. To derive a generalized criterion for sensitivity by obtaining an objective sensitivity 

function for pH with respect to input variables; 

c. To predict the critical value of input parameters and parameter space where the system 

becomes unstable and exhibits sensitive behaviour. 

A series of batch experiments were conducted using Lactobacillus casei, as mentioned in Chapter 

3.6.1.2. The detailed microbial growth kinetics and procedure of the kinetic parameter determination 

were similar to that of Case 1, which has been presented chapter 4.1.1. CSTBR process model s 

mentioned in the previous case study described in sections 4.1.2 and 4.1.3 is considered. However, the 

mass and molar balances (Eq (4.8) to (4.12)) are converted into the dimensionless form using the 

variables described in Table 4-6 

 

Table 4-6 Definition of dimensionless variables 

Parameter Definition Parameter Definition Parameter Definition Parameter Definition 
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Therefore, the model equations in the non-dimensional form are as follows: 

dα

dτ
 =  (U − θ − 1)α                        (4.37) 

 
dβ

dτ
 =  ( 1 − β) − U. α − θ. β                       (4.38) 

dz

dτ
 =   −z + U. α − θ(M1R + z)          (4.39) 

dL

dτ
= (M2R − L)θ − L                        (4.40) 

dγ

dτ
= 

1

pH0 
 [
1

L
 
dL

dτ
−
1

z 

dz

dτ
]                        (4.41) 

On the other hand, the non-dimensional expression for the specific growth rate was expressed as: 

U = 
mβ

n+ β
I                       (4.42) 

Where, 

I = A + B. γ + C. γ2          (4.43) 

The differential equations (4.37) to (4.41) were solved numerically using the 4th order Runge-Kutta 

method using the following initial conditions. At, 

τ = 0; γ = 1;  α = α0;  β = β0; z = z0 ;  L = L0       (4.44) 

4.2.1 Normalized objective sensitivity analysis 

The technique for analyzing the pH-sensitivity was selected as adopted by Morbedelli and Varma 

[122,123] and Dutta et al. [124]. In this case, the governing equations for pH and substrate concentration 

are written by dividing equation (4.41) by equation (4.38) 

dγ

dβ
 =  

R⋅θ

pH0
 [
M2
L
+
M1
z
−
U⋅α

z∙R∙θ
]

1−U.α−(1+θ)β
= g(ϕ, α, β, z, L, γ)       (4.45) 

Where, ϕ is the vector of input parameters, namely, initial system pH (pH0), the dilution rate of the 

alkaline stream (θ) and its concentration (R). Similarly, dividing equations (4.37),(4.39) and (4.40) by 

equation (4.38) the following equations are obtained as below. 

dα

dβ
 =  

U.α−(1+θ)α

1−U.α−(1+θ)β
          (4.46) 

dz

dβ
 =  

U.α−(1+θ).z−M1.θ.R

1−U.α−(1+θ)β
         (4.47) 

dL

dβ
 =  

M2.θ.R−(1+θ).L  

1−U.α−(1+θ)β
          (4.48) 

With the following initial conditions, 
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pH = pH0;  α = α0; z = z0 and L = L0 ;  β = β0      (4.49) 

By differentiating equation (4.45) with respect to parameter ϕ, the expression for first-order local 

sensitivity sϕ can be evaluated as, 

dsϕ

dβ
 =  

dg

dϕ 
+ 

dg

dγ
. sϕ          (4.50) 

Where, 

sϕ = 
dγ

dϕ
           (4.51) 

Now taking  

H = −
dg

dγ
           (4.52) 

The adjoined equation from Equation (4.50) takes the following form: 

dpβ

dβ
= H. pβ  for β ∈ (β0,β

∗)         (4.53) 

Where, 

pβ  =  
𝑠̅𝜙(β)

 𝑠�̅�(0)
           (4.54) 

And, β0 in the value of initial substrate concentration (dimensionless) whereas β* indicates the substrate 

concentration in the reactor at which γ=γmin. The initial conditions of Equation (4.53) are 

At, β = β0;  ρ = 1;   sϕ (0) =  
dγ

dϕi
= 0        (4.55) 

Where, 

ϕi is one element of the parameter vector, ϕ. 

4.2.2 Calculation of sensitivities 

The normalized objective sensitivities can be calculated as follows: 

 Equations (4.46) to (4.48) and (4.53) were solved simultaneously with the help of initial 

conditions given in equations (4.49) and (4.55) until the γ reaches its minimum value. The 

corresponding values of ρβ
* and β* have been determined. 

 s̅ϕ(0) given by equation (4.54) has been calculated using the value of ρβ* with the help of the 

following equation: 

s̅ϕ(0) =
s̅ϕ(β

∗)

ρβ∗
=

1

ρβ∗
                                     (4.56) 

 The objective sensitivity is then evaluated by solving the following equation: 

sϕi
∗ = sϕi(0). s̅ϕ(0) + ∫ σi.

β∗

β0
s̅ϕ(β)dβ                   (4.57) 
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Where, 

σi =
∂g

∂ϕi
   for       β ∈ (β0,1)        (4.58) 

The expressions for σi and corresponding to each ϕi are provided in Table 4-7. 

Table 4-7 Expressions of σi for various parameters ϕi, as defined in equation (4.57) 

ϕi σi 

pH0 
R. θ [

M2
L
+ 
M1
z
−
U ⋅ α
z ∙ R ∙ θ

]

pH0
2[U. α + (1 + θ)β − 1]

 

θ 
R. θ. β [

M2
L
+ 
M1
z
−
U ⋅ α
z ∙ R ∙ θ

]

pH0[U. α + (1 + θ)β − 1]
2
−
R [
M2
L
+ 
M1
z
−
U ⋅ α
z ∙ R ∙ θ

]

pH0[U. α + (1 + θ)β − 1]
−

U ⋅ α

θ. z. pH0[U. α + (1 + θ)β − 1]
 

R −
θ [
M2
L
+ 
M1
z
−
U ⋅ α
z ∙ R ∙ θ

]

pH0[U. α + (1 + θ)β − 1]
−

U ⋅ α

R. z. pH0[U. α + (1 + θ)β − 1]
 

4.2.3 Results 

4.2.3.1 Influence of pH on microbial growth 

In this study, the influence of initial pH on the microbial growth was studied by conducting batch 

experiments. The variation of initial pH was narrowed to 0.5 intervals compared to the previous case 

study where the interval was 1 to get a more accurate value of optimum pH. Similar kind of growth 

patterns was observed. However, there was a lag phase of 3h, and the exponential phase ended at 15h 

of incubation time. The detailed picture of the time history of dry cell concentrations was provided in 

the Appendix 3 section when pH at each batch reaction was varied initially.  

4.2.3.2 Determination of kinetic parameters of Lactobacillus casei in batch culture 

In the present experiments, at each initial pH, the substrate concentration was varied from 10g/L to 

50g/L. For each combination of initial pH and substrate, the specific growth rate of microorganisms was 

determined. By using Equation (4.1), plots of 1/µ and 1/S were obtained at each initial pH. µmax and ks 

at each initial pH were determined by evaluating the intercepts and abscissas in Figure 4-26. The values 

of µmax and ks are provided in Table 4-8. 
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Figure 4-26 Determination of μmax and ks at different initial pH 

From Table 4-8, it can be observed that ks, does not change in any systematic manner with the change 

of pH. Therefore, one can easily state there is inhibition due to substrate concentration; in other words, 

a noncompetitive inhibition was observed. By plotting µmax vs initial pH, it was found that µmax became 

maximum when the value of initial pH is 6.75, which is considered as the optimum pH and the 

corresponding µmax is optimum µmax,i.e. µmax,opt. 

Table 4-8 Values of observed rate constants from experiments 

Initial pH μmax ks 

5.0 0.400 0.812 

5.5 0.494 0.811 

6.0 0.558 0.805 

6.5 0.595 0.821 

7.0 0.592 0.812 

7.5 0.558 0.813 

8.0 0.497 0.821 

Now plotting the values of µmax.N, which can be obtained from Equation (4.3) as a function of initial pH, 

a second-order correlation, as shown in Equation (4.5) was obtained. The plot of  µmax.N vs initial pH is 

shown in Figure 4-27. The values of second-order correlation constants along with other growth 

associated kinetic constants are provided in Table 4-9. 
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Figure 4-27 Variation of µmax.N with respect to initial pH 

Table 4-9 Values of kinetic parameters 

Kinetic parameter Value 

µmax,opt  (h-1) 0.6 

KS (gL-1) 0.814 

YX/S (g g-1) 0.238 

Yp/X (gg-1) 3.36 

Yp/S (gg-1) 0.8 

A -3.8507 

B 1.434 

C -0.1062 

 

4.2.3.3 pH sensitivity of a Continuous stirred tank bioreactor  

The main objective of this analysis is to determine the parametric range of input variables at which the 

CSTBR system becomes vulnerable. The system behaviour is demonstrated in terms of normalized 

objective sensitivities coefficients as a function of input parameters. The mathematical model of the 

system consists of the Equations (4.45) – (4.48), (4.53). The equations (4.45) to (4.48) and (4.53) were 

simultaneously solved using Runga-Kutta 4th order method and equation (4.57) was solved using the 

trapezoidal numerical integration method. The results are illustrated in Figures 4-28 to 4-36. Figures 4-

28 to 4-30, show normalized objective sensitivities of the pH-minimum, S(γ*, ϕi), as a function of input 

parameters, i.e., dimensionless dilution rate of base feed stream (θ), the dimensionless concentration of 

base, (R) and initial pH (pH0) of the system.  

In Figure 4-28, S (γ*, θ), S (γ*, R), and S (γ*, pH0) are plotted against the dimensionless dilution rate of 

the base feed stream (θ). In this mathematical operation, the input parameter (θ) was varied in the range 

of 0 to 1, where the values of other input parameters pH0 and R were kept constant at 6.75 and 0.8, 

respectively. As the value of θ reached 0.095, the system started showing sensitivity behaviour, and S 
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(γ*, θ) and S (γ*, R) started increasing, whereas S (γ*, pH0) started decreasing. At θ = 0.0195, the values 

of sensitivity functions attained their maxima (for S (γ*, θ) and S (γ*, R)) and minima (S (γ*, pH0)). 

Further, for the increment of θ, the sensitivity functions S (γ*, θ) and S (γ*, R) were decreasing, and S 

(γ*, pH0) was increasing. This trend became near to 0 when θ reached a value of 0.295, and the system 

was again nonsensitive with respect to input parameter (θ). Therefore, the parameter range of θ is 

between 0.095 and 0.295, where the system becomes simultaneously sensitive. The value of θ at which 

the sensitivity functions attain their maxima and minima are defined as the critical value of θ. 

 

Figure 4-28 Normalized objective sensitivities S(γ*,ϕi) as a function of θ 

Figure 4-29 shows the plots of S(γ*,θ), S(γ*,R), and S(γ*,pH0) versus the concentration of the base 

stream, (R). In this case, the dimensionless base stream concentration was varied in the range of 1 to 4 

in order to observe the system behaviour in terms of sensitivity functions S(γ*,θ), S(γ*,R), and 

S(γ*,pH0), where the values of θ and pH0 were kept constant at 0.3 and 6.75, respectively. The system 

starts showing sensitivity behaviour, and S(γ*,θ) and S(γ*,R) started increasing, whereas S(γ*,pH0) 

started decreasing from the beginning. This trend of the increment (for S(γ*,θ) and S(γ*,R)) descent (for 

S(γ*,pH0) was observed until R reached its value of 0.48. At this R = 0.48, sensitivity functions attained 

their maxima (for S(γ*,θ) and S(γ*,R)) and minima (S(γ*,pH0)) and became near to 0 when R reached 

a value of 0.865. The system was again nonsensitive with respect to input parameter R at this stage. 

Therefore, R's parameter range is between 0 and 0.865, where the system becomes simultaneously 

sensitive. The critical value of the dimensionless base stream concentration RC is 0.48. 

 

Figure 4-29 Normalized objective sensitivities S(γ*,ϕi) as a function of R 
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The system behaviour is also investigated in terms of sensitivity functions as a function of the initial pH 

(pH0) of the system. The sensitivity functions S(γ*,θ), S(γ*,R), and S(γ*,pH0) with respect to pH0 are 

shown in Figure 4-30. Here, the pH0 was varied in the range of 4 to 6 to observe the system behaviour 

in terms of sensitivity functions S(γ*,θ), S(γ*,R), and S(γ*,pH0), where the values of θ and R were kept 

constant at 0.5 and 8, respectively. The system did not show any sensitivity for pH0 from 4 to 4.42. As 

the value of pH0 crossed 4.42, it started showing sensitivity behaviour, and S(γ*,θ) and S(γ*,R) started 

increasing, whereas S(γ*,pH0) started decreasing. This movement of the increment (for S(γ*,θ) and 

S(γ*,R)) descent (for S(γ*,pH0) was observed until pH0 reached its value of 4.6. At this pH0 = 4.6, 

sensitivity functions attained their maxima (for S(γ*,θ) and S(γ*,R)) and minima (S(γ*,pH0)) and 

became near to 0 when pH0 reached a value of 4.765. The system was again nonsensitive with respect 

to input parameter pH0 at this stage. Therefore, the parameter range of pH0 is between 4.42 and 4.765, 

where the system becomes simultaneously sensitive. The critical value of the initial system pH, pH0 is 

4.6. 

 

Figure 4-30 Normalized objective sensitivities S(γ*,ϕi) as a function of pH0 

Figures 4-31 and 4-32 show the nature of normalized objective sensitivity as a function of θ with the 

variation of R and pH0, which is the combined effects of R and pH0 on sensitivity function S(γ*, θ). The 

dimensionless input variables θ and R were varied to observe the behaviour of CSTBR in terms of the 

sensitivity coefficient, S(γ*, θ) with constant pH0, which is presented in Figures 4-31. In this case, the 

range of θ and R was varied from 0 to 1 and 0 to 4, respectively. The parametric zone where the system 

found sensitivity is provided in Table 4-10. The sensitive function, S(γ*, θ), reached a maximum with a 

magnitude of 885 and the corresponding critical value of input variables is determined. The critical 

values of θ and R are provided in Table 4-10. 

 

Figure 4-31 Normalized objective sensitivity S(γ*, θ) as a function of parameters R and θ. 
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The behaviour of CSTBR is presented in Figure 4-32 in terms of the sensitivity coefficient, S(γ*, θ). 

Figure 4-32 shows the variation of S(γ*, θ) with respect to the initial pH (pH0) and θ. With a fixed value 

of R = 0.2, the θ and pH0 were varied from 0 to 1 and 4.8 to 7.0, respectively. The sensitive zone for 

CSTBR operation for θ is 0.1 to 0.3, and for pH0 the range is between 4.8 and 6. The sensitive function, 

S(γ*, θ), reached a maximum with a value of 735, and the corresponding critical values of input variables 

pH0 and θ are determined. Table 4-10 provides the critical values of θ and pH0 for this case. 

 

Figure 4-32 Normalized objective sensitivity S(γ*, θ) as a function of parameters R and θ. 

The nature of normalized objective sensitivity as a function of R with the variation of θ and pH0 have 

shown in Figures 4-33 and 4-34 to find out the influence of θ and pH0 on the sensitivity function, S(γ*, 

R). Figure 4-33 shows the critical value of R and θ at a constant initial pH, pH0 = 6.5, when S(γ*, R) 

attains its maximum. The system does not show any sensitive behaviour when θ goes beyond 0.7 and R 

= 0.75. The details of the input range and critical values of input parameters are given in Table 4-10. 

 

Figure 4-33 Normalized objective sensitivity S(γ*, R) as a function of parameters R and θ. 

 A similar trend occurred when pH0 and R were the input variables. In this case, the range of R and pH0 

were varied from 0 to 3 and from 4 to 5, respectively. The influence of input parameters on sensitivity 

function S(γ*, R) is illustrated in Figure 4-34. The maximum value of sensitivity function S(γ*,R) is 

245, and the corresponding critical values of R and pH0 are provided in Table 4-10. The determined, 

sensitive region for CSTBR with respect to R and pH0 is 0.2 to 1.4 and 4.2 to 4.6, respectively. 
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Figure 4-34 Normalized objective sensitivity S(γ*, R) as a function of parameters R and pH0. 

The behaviour of normalized objective sensitivity as a function of pH0, S(γ*, pH0) with the variation of 

R and θ are shown in Figures 4-35 and 4-36. The influences of R and pH0 on S(γ*, pH0) at a fixed value 

of θ = 0.7 are presented in Figure 4-35. The figure shows that the sensitivity function S(γ*, pH0) exhibits 

sensitive behaviour in a negative direction. The S(γ*, pH0) reached its lowest value of −7.8 when the R 

and pH0 values are at 0.8 and 4.6, respectively. The sensitive region and critical values of input variables 

are presented in Table 4-10. 

 

Figure 4-35 Normalized objective sensitivity S(γ*, pH0) as a function of parameters R and pH0. 

Similar behaviour of sensitivity function, S(γ*, pH0), was observed when pH0 and θ were varied from 4 

to 5.4 and 0 to 3, respectively, keeping R constant at 0.8. From the observation, it is found that the S(γ*, 

pH0) reached its lowest value of −13.8 when the θ and pH0 are at 0.5 and 4.6, respectively. The plot of 

normalized objective sensitivity S(γ*, pH0) as a function of parameters R and θ are presented in Figure 

4-36. The sensitive zone and the critical values of pH0 and θ corresponding to S(γ*,pH0) are provided 

in Table 4-10. 
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Figure 4-36 Normalized objective sensitivity S(γ*, pH0) as a function of parameters pH0 and θ 

4.2.4 Discussions 

The influence of initial pH on microbial growth is observed in the present case through batch 

experiments. It was found from the results, that initially when the experiments conducted within the 

initial pH range of 5.5 to 7.5, the microbial growth is not significantly affected. Therefore, the optimum 

value of pH is found to be within that range of 5.5 to 7.5, which is 6.75. However, as the initial pH went 

below or above that particular range, a considerable change in the microbial growth rate is observed. 

Therefore, the effects of pH on microbial growth are pragmatically observed. 

On the other hand, from the sensitivity analysis of CSTBRs, it is found that the selected input parameters 

have a significant influence on the reactor operation. This analytical study provides a good insight into 

what extend these selected parameters can hinder the CSTBR operation. From Figures 4-28 to 4-36, it 

is observed that there is a zone where the system showed its undesirable behaviour in terms of sensitivity 

coefficients. The magnitude of the input parameters pH0, θ, and R at which the normalized objective 

sensitivity attains maxima or minima are termed critical values. The critical values of pH0C, θC, and RC 

provide the boundary separating the stable pH system from an unstable pH system sometimes defined 

as the pH-runaway condition [115]. The magnitude of S(γ*,θ), S(γ*,R), and S(γ*,pH0) at critical points 

show that the influence of initial pH (pH0) has less impact on the sensitivity behaviour compared to 

other input parameters, namely, R and θ. 

Table 4-10 Different Critical values of input Parameters (From Figure 4-31 to 4-36) 

Sensitivity 

Coefficients S(γ*, 

ϕi) 

Figure 
Variable Parameters 

(Critical Values) 
Sensitive Zone of Input Variables 

Fixed 

Parameters 

S(γ*,θ) = 885 4-31 θC = 0.2 RC = 0.4 θ → 0.1–0.3 R → 0–2.4 pH0 = 6.75 

S(γ*,θ) = 735 4-32 θC = 0.2 pH0C = 4.8 θ → 0.1–0.3 pH0 → 4.8–6.0 R = 0.2 

S(γ*,R) = 285 4-33 RC = 0.2 θC = 0.5 R → 0.1–0.75 θ → 0.05–0.7 pH0 = 6.5 

S(γ*,R) = 245 4-34 RC = 0.4 pH0C = 4.6 R → 0.2–1.4 pH0 → 4.2–4.6 θ = 0.3 

S(γ*,pH0) = –7.8 4-35 pH0 = 4.6 RC = 0.8 pH0 → 4.5–4.8 R → 0.4–2.0 θ = 0.7 

S(γ*,pH0) = –13.8 4-36 pH0C = 4.6 θC = 0.5 pH0 → 4.45–4.85 θ → 0.25–0.75 R = 0.8 
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Positive values of the objective normalized sensitivity of the pH-minimum with respect to input 

parameters θ and R indicate that the pH-minimum increases as the magnitude of these parameter 

increase. The negative value of objective normalized sensitivity of the pH-minimum with respect to pH0 

indicates that the pH-minimum increases as pH0 decreases. Thus, if the sensitivity is positive, the 

transition from a stable pH system to pH-runaway behaviour occurs as this parameter is increased. In 

contrast, if the sensitivity is negative, the same transformation occurs when the corresponding parameter 

is decreased. 
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4.3 Case 3: Kinetic modelling for determining inhibitory effects 
of products in the biohydrogen production process 

In this case study, the inhibitory effects of hydrogen concentration in reactor headspace on fermentative 

hydrogen production from the acidogenesis of glucose by a bacterium, Clostridium acetobutylicum, 

were investigated experimentally in a batch reactor. A mathematical model to simulate and predict 

biological hydrogen production process was developed. The Monod model was modified to take 

inhibition kinetics on microbial growth into account. The modified model was then used to investigate 

the effect of hydrogen concentration on the microbial growth and hydrogen production rate.  

In order to observe the effects of accumulated hydrogen in a batch reactor, a series of experiments were 

conducted by varying the initial hydrogen concentration in the reactor headspace. The details of the 

modelling and experimental procedure using a batch reactor for studying microbial growth kinetics of  

Clostridium acetobutylicum are provided in Chapter 3. 

Kinetic modelling for defining inhibitory effects of accumulated hydrogen in the reactor headspace and 

the evaluation of growth associated kinetic constant of were described in sections 3.1.2.2 and 3.1.2.3 

respectively.   

The scheme of batch reactor operation and materials and equipment used for the reactor operation was 

described in detail in Section 3.4.1, and 3.4.3 provide the details of materials and equipment respectively 

4.3.1.1 Effects of added H2 in the reactor headspace 

Effects of hydrogen concentration accumulated in the reactor headspace on microbial growth and 

hydrogen production were studied by conducting experiments in batch reactors. The results were shown 

in Figure 4-37 to 4-48. In these figures, the time history of biomass concentration and produced 

hydrogen concentration were showed when initial hydrogen concentration in the reactor headspace was 

varied. From these figures, it is clear that microbial growth, as well as hydrogen productivity, were 

greatly influenced by the presence of hydrogen in the reactor headspace.  

 

Figure 4-37 Experimental time histories of dry cell concentration with initial 0% H2 in reactor headspace at 
different substrate concentration. 
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Figure 4-38 Experimental time histories of hydrogen concentration with an initial 0% H2 in reactor headspace at 
different substrate concentration. 

Initially, experiments were started when only argon gas was present in the reactor headspace, and initial 

glucose concentration in the liquid medium was varied in the range of 2g/L to 5g/L. At each variation 

of glucose, the microbial growth pattern and hydrogen production rate were observed for 30h. The time 

histories of microbial growth and hydrogen production rate were presented in Figure 4-37 and 4-38, 

respectively. From this figure, it is observed that microbial growth, as well as hydrogen production, was 

started immediately after 3h of reaction time. There was no significant lag phase of microbial growth 

detected. A stationary phase was started at 21h for every initial glucose concentration. The maximum 

productivity of hydrogen was 7.81 mML-1h-1 when initial glucose concentration in the liquid medium 

was 5g/L.   

 

Figure 4-39 Experimental time histories of dry cell concentration with an initial 10% H2 in reactor headspace at 
different substrate concentrations 
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Figure 4-40 Experimental time histories of hydrogen concentration with an initial 10% H2 in reactor headspace at 
different substrate concentrations 

On the other hand, when 10% (v/v) of H2 added to reactor headspace, microbial growth and hydrogen 

production started after 6h of incubation time, shown in Figures 4-39 and 4-40. Although there was no 

such difference in specific growth and hydrogen production observed for different initial substrate 

concentrations, the maximum hydrogen productivity decreased to 5.17 mML-1h-1, comparable to the 

0% (v/v) added H2 condition. The exponential phase of microbial growth ended at 21h, which was same 

as the previous condition.   

 

Figure 4-41 Experimental time histories of dry cell concentration with an initial 20% H2 in reactor headspace at 
different substrate concentrations 
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Figure 4-42 Experimental time histories of hydrogen concentration with an initial 20% H2 in reactor headspace at 
different substrate concentrations 

In the case of 20% (v/v) added H2 in the reactor headspace, the hydrogen production rate as well as 

biomass production rate further decreased, which can be observed from Figure 4-41 and 4-42. In this 

condition, propagation of hydrogen production and bacterial growth was quite similar to that of 10% 

(v/v) added H2 condition, where microbial growth reached its exponential phase at 6h and extended up 

to 21h. But in this condition, maximum hydrogen productivity decreased to 4.33 mML-1h-1.   

 

Figure 4-43 Experimental time histories of dry cell concentration with an initial 30% (v/v) H2 in reactor headspace 
at different substrate concentrations 
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Figure 4-44 Experimental time histories of produced hydrogen concentration with an initial 30% (v/v) H2 in reactor 

headspace at different substrate concentrations 

A different phenomenon was observed when 30% (v/v) H2 was added to the reactor headspace. In this 

case, the exponential phase of bacterial growth started after 6h of incubation time, but it extended to 24h 

where the stationary phase started. The time histories of dry cell concentration and produced hydrogen 

were presented in Figure 4-43 and 4-44. Monotonic decreases of microbial growth rate, and hydrogen 

production were observed where hydrogen productivity reduced to 3.075 mML-1h-1 when initial 

substrate concentration in liquid medium was 5g/L. Although, there was no such significant change in 

growth pattern observed for different substrate concentration in the liquid medium.   

 

Figure 4-45 Experimental time histories of dry cell concentration with an initial 40% H2 in reactor headspace at 
different substrate concentrations 
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Figure 4-46 Experimental time histories of hydrogen concentration with an initial 40% H2 in reactor headspace at 
different substrate concentrations 

An extended lag phase in microbial growth was noticed as the quantity initially added H2 increased from 

30% (v/v) to 40% (v/v). At this condition, the exponential phase commenced at 12h of incubation time 

whereas, it extended until 27h. A sharp degradation in microbial growth, as well as biohydrogen 

production, were observed, which is demonstrated in Figure 4-45 and 4-46. There were no such effects 

of substrate concentration in liquid medium experience. The hydrogen productivity in this condition was 

estimated as 1.54 mML-1h-1 which is a sharp alteration compared to 30% (v/v) added H2 condition. 

 

Figure 4-47 Experimental time histories of dry cell concentration with an initial 50% H2 in reactor headspace at 
different substrate concentrations 
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Figure 4-48 Experimental time histories of hydrogen concentration with an initial 50% H2 in reactor headspace at 
different substrate concentrations 

Furthermore, when 50%(v/v) H2 was added to the reactor headspace, almost no growth condition was 

observed, shown in Figures 4-47 and 4-48. In this case, an extended lag phase with no microbial growth 

and hydrogen production was seen for 18h. A short period of exponential phase ended at 27h was 

noticed. Almost no hydrogen production condition with productivity of 0.19mML-1h-1 was estimated.     

4.3.1.2 Inhibition kinetics 

 

Figure 4-49 Determination of μmax,obs and ks,obs at different initial concentrations of H2 

In the present investigation, a total of 24 experimental runs were conducted at different initial H2 and 

substrate concentration. From each initially added H2 concentration substrate concentration was varied 

from 2g/L to 5g/L. For each combination of initially H2 concentration and substrate concentrations, 

specific growth rate microorganisms were determined. By using Equation (3.16), plots of 1/μ and 1/S 

were obtained at each initially added hydrogen in reactor headspace, which is demonstrated in Figure 

4-49. µmax,obs and ks,obs at each headspace H2 concentration were determined by evaluating the intercepts 

and abscissas on Figure 4-49. The values of µmax,obs and ks,obs are provided in Table 4-11. 
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Table 4-11 Values of observed rate constants from experiments 

Initial H2 concentration 

in reactor headspace (v/v) 
μmax,obs ks,obs 

0% 0.6209 0.6318 

10% 0.5523 0.6395 

20% 0.4792 0.6285 

30% 0.4643 0.6141 

40% 0.3695 0.6343 

50% 0.2613 0.6521 

 

From Table 4-11, it can be observed that ks,obs does not change in any systematic manner with the change 

of added hydrogen in the reactor headspace. Therefore, m=0 in Equation. (3.11) and 3.15), which infers 

the adopted model is a noncompetitive inhibition model and ks,obs= ks which will be constant. 

After determining values of µmax,obs and ks,obs at different headspace H2 concentration, constants in 

Equation. (3.11) can be evaluated by plotting ln(µmax,obs) vs ln(1-H2/ H2*) from Equation. (3.17) which 

is shown in Figure 4-50. Figure 4-50 gives the values of µmax and n. As H2* was not identified from the 

experiments, a guessed value of 61.5 (v/v) H2* (24.74mM) was considered, which gives a straight line 

with R2=0.9823. From Figure 4-47, the intercept and slope give the value of µmax= 0.976 h-1and 

n=0.4786.     

 

Figure 4-50 Determination of umax, n and H2* for product inhibition 

4.3.2 Discussion 

Initially, in the absence of H2 in reactor headspace, the feed stream substrate concentration was varied 

from 2g/L to 5g/L. The production rates are high, and it significantly starts decreasing as the hydrogen 



 

91 

concentration start increasing gradually. When no hydrogen was initially added to the reactor, the 

growth phase started after 3h of reaction time and reached the stationary phase at 21h. For 10% added 

hydrogen condition, the exponential phase starts at 6h, and it went off until 21h. However, when 20% 

and 30% hydrogen added initially, the exponential phase started at 6h, and it goes until 24h. Further, on 

increasing hydrogen concentration by 40% of total headspace, lag phage elongated by 12h and growth 

phage started at 15h until 27h. No growth of microorganisms was observed pragmatically when 50% of 

reactor headspace filled with hydrogen initially. The specific growth rate of biomass decreases as the 

hydrogen concentration increases in the reactor headspace. 

This increased hydrogen concentration reduces the glucose degradation efficiency of bacteria that results 

in lower hydrogen yield. Hydrogen yield gradually decreased along with specific growth rate from 1.11 

to 0.56 mol/mol.glucose and 0.621±0.019h-1 to 0.261±0.021 h-1, respectively. As the initial hydrogen 

concentration increases from 0.0 to 0.0161M, the hydrogen productivity reduction becomes faster when 

the initial hydrogen concentration altered from 0.0161M to 0.0201M. Therefore, the final partial 

pressure of hydrogen in the product gas declined and initially added hydrogen concentration increased. 

The effect of accumulated H2 in reactor headspace on the specific growth rate, final hydrogen 

concentration and hydrogen yield was calculated by dividing the total amount hydrogen produced by 

the amount of glucose consumed are summarized in Table 4-12.  

Table 4-12 Effects of added hydrogen on the specific growth rate, hydrogen production 

Added hydrogen 

(M)/(v/v) 

Specific growth rate 

(h-1) 

Hydrogen yield (mol-

H2/mol-glucose) 

Final H2 partial 

pressure (atm) 

0.0/(0%) 0.621±0.019 1.11±0.0026 0.280±0.015 

4.023*10-3(10%) 0.552±0.028 1.01±0.0020 0.229±0.005 

8.045*10-3(20%) 0.479±0.029 0.92±0.0022 0.214±0.008 

1.207*10-2(30%) 0.464±0.032 0.88±0.0016 0.165±0.013 

1.610*10-2(40%) 0.369±0.015 0.56±0.0010 0.094±0.005 

2.012*10-2(50%) 0.261±0.021 0.21±0.0010 0.0127±0.003 

 

From the current analysis, it is inferred that as hydrogen concentration increases in the reactor 

headspace, it limits the mass transfer from the liquid to the gaseous phase. Therefore, liquid to gas 

transfer becomes a rate-limiting stage that controls microbial reactions. Subsequently, low microbial 

growth and less hydrogen production take place. On the other hand, high concentration of hydrogen 

affects hydrogenase, which activates the reversible oxidation of molecular hydrogen and the process 

become thermodynamically unfavourable for H2 generation. 

From this investigation, it is clear that the initial addition of hydrogen has an important influence on 

microbial growth, hydrogen yield and hydrogen production rate. Regarding non-competitive inhibition, 

substrate concentration does not affect the specific growth rate or rate of substrate utilization. In order 
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to sustain the hydrogen production at an optimal level, the accumulated hydrogen in reactor headspace 

should not be more than 8mM. The present study concludes that when 24.85mM hydrogen accumulated 

in the reactor headspace, reaction stops and no hydrogen is produced.  
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4.4 Case 4: Stability analysis of  the biohydrogen production in 
a continuous bioreactor 

The effect of process parameters in biological hydrogen production in a continuous stirred tank 

bioreactor (CSTBR) and how these parameters influence the stable bioreactor operation, was 

investigated in this case study. The substrate and/or product inhibits typically microbial growth in the 

process of biohydrogen production.  An effort is made in order to examine the dynamic behaviour of a 

CSTBR subject to growth inhibition by the substrate and/or product. By the use of elementary principle 

bifurcation theory, the stability analysis was performed to demonstrate the dynamics of CSTBR model 

comprising steady-state multiplicity and hysteresis. A particular range of operating conditions where 

the non-washout steady-state solution is possible needed to be determined from this study. The results 

from this investigation can be used as strategies for selecting suitable operating conditions of similar 

bioreactor systems to avoid undesired instability and multiplicity. 

4.4.1 Process model 

A microbial population of hydrogen-producing bacteria is growing by consuming glucose in an ideal 

continuous stirred tank bioreactor. The schematic of the reactor setup is given in Figure 4-51.  

 

Figure 4-51 Schematic of reactor setup 

The bacterial culture is assumed to increase its number and produce hydrogen during this metabolism 

period. The feed stream enters the reactor at a flow rate of qin Lh-1, and the concentrations of the substrate 

and bacterial cell in the feed stream are  S0 and X0 gL-1. The liquid phase and gaseous phase working 

volume of the reactor are VL litre and VG litre, respectively. The microbial reaction occurs in the liquid 

phase. The main products from the metabolism are hydrogen and several volatile fatty acids (VFA). A 

part of hydrogen produced in the liquid phase transfers to the gaseous phase, and the rest is leaving out 

with the effluent. The effluent contains glucose, produced bacterial cells, VFA, and hydrogen flow at a 

rate, qliq Lh-1. The fraction of hydrogen converting into the gaseous phase exits the reactor at a flow rate 

of qgas Lh-1. The material balance equations for different components, excluding  VFAs are as below: 

Biomass 

dX

dt
= D(X0 − X) + μX          (4.59) 
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Substrate 

dS

dt
= D(S0 − S) −

1

Yx
s⁄
μX         (4.60) 

Liquid phase H2 

dH2.L

dt
= −D.H2.L + YH2.L

x⁄
μX − kLa(H2.L − H. R. T.H2.G)     (4.61) 

Gas phase H2 

dH2.G

dt
= kLa(H2.L −H. R. T.H2.G) − D2H2.G       (4.62) 

This produced hydrogen exerts feedback inhibition on the growth of cells. For generality, the substrate 

itself, at high concentration is assumed toxic to growth. To understand the dynamic behaviour of this 

bioreactor system, kinetic expressions for microbial growth are needed.  For that, the microbial growth 

kinetics from the previous case study, (Case 3) is considered, incorporating the substrate inhibition 

established by van Niel et al. [74]. Therefore, the specific growth rate for this case is described as follow: 

μ =
μmaxS

KS+S
∙ (1 −

S

S∗
)
n
(1 −

H2.G

H2.G
∗ )

m

        (4.63) 

The values of kinetic constant also are used as in Case study 3.  The kinetic constant and other operating 

constants are provided in Table 4-13. 

Table 4-13 Values of kinetic and operating constants 

Constants Value Constants Value 

Yx/s 1.42 (g/g) µmax 0.976 h-1 

YH2.L/x 3.95 ( mmol/g) KS 0.63 g/L 

H 7.4×10-6
  (mmol.L-1.pa-1) H2.G

* 24.76 mmol.L-1 

R 8.314 (pa.L.mmol-1.K-1) kla 0.09 h-1 

T 303 K n 0.4786 

S* 8.19, (g/L) m 1.39 

 

For the convenience of further study of stability and bifurcation analysis, the above equations 4.59 to 

4.63 are converted into dimensionless forms as below; 

dx1

dτ
= d1(x10 − x1) + Ux1         (4.64) 

dx2

dτ
= d1(x20 − x2) − Ux1         (4.65) 
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dx3

dτ
= −d1x3 + Ux1 − K(x3 − α. x4)        (4.66) 

dx4

dτ
= K(x3 − α. x4) − d2x4         (4.67) 

The dimentionless form of specific growth rate is expressed as, 

U =
x2

1+x2
(1 −

x2

x2
∗)
m
(1 −

x4

x4
∗)
n
         (4.68) 

The definitions of different dimentionless variable are provided in the Table 4-14. 

Table 4-14 Definition of dimensionless variables 

Variable Definition Variable Definition 

x1 
X

KSYx s⁄
 x2

* 
S∗

KS
 

x2 
S

KS
 τ t. μmax 

x3 
H2.L

KSYx s⁄ YH2.L x⁄
 U 

μ

μmax
 

x4 
H2.G

KSYx s⁄ YH2.L x⁄
 d1 

D

μmax
 

x10 

X0
KSYx s⁄

 d2 
D2
μmax

 

x20 

s0
KS

 K 
kLa

μmax
 

 x*
4  

H2.G
∗

KSYx s⁄ YH2.L x⁄
 α H. R. T 

 

A steady-state is supposed to be locally stable if the continuous system returns to the suitable steady 

state after a sufficiently small, but otherwise, arbitrary perturbation from the steady-state. Stability 

analysis of a nonlinear system is performed by examining a system's dynamic behaviour close to 

equilibrium.  Thus, local stability of a steady-state for the reactor was analyzed by linearizing the 

differential equations (4.64 to 4.67) of the system around the steady-state in question and calculating 

the eigenvalues of the stability matrix (Jacobian matrix). The stability matrix of the linearized forms of 

the differential Equations (4.64 to 4.67) at the steady-state x1S, x2S, x3S and x4S are as follows: 

A = [

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

]         (4.69) 
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The eigenvalues of the matrix A, are the roots of the characteristic equation: 

λ4 + C1λ
3 + C2λ

2 + C3λ + C4 = 0        (4.70) 

These four eigenvalues can be all real, or one real and a complex conjugated pair with the following 

form: 

λ = n ± pi           (4.71) 

where, n and p are real numbers, and i is imaginary, defined as the square root of −1. If the real parts of 

all the eigenvalues are negative, the steady-state is said to be locally asymptotically stable. In case one 

or some of the real parts of the eigenvalues are positive, the steady-state is unstable. If p≠0, the system 

will display oscillations after a perturbation. Depending on the sign of n, the oscillations may be damped 

or exponentially increasing. It is true for the linearized system, and the result is valid for the nonlinear 

system [Eqs. (4.64)– (4.67)] if the perturbation is sufficiently small. 

4.4.2 Results and discussions 

4.4.2.1 Multiplicity and stability analysis 

The equations (Equations 4.64–4.67) model the process described in Figure 4.51 and are used to 

examine the possibility of occurrence of multiple steady states. 

The model (Equations 4.64–4.67), were solved numerically by Runga-Kutta method using the initial 

value and particular operating condition, provided in Table 4-15 to obtain a steady-state solution. The 

obtained solution was used to examine the stability of the steady-state of bioreactor through bifurcation 

analysis. Bifurcation analysis can determine the region of the stable and unstable steady state of the 

dynamical system for operating parameters. The behaviour of the bioreactor system is suitably presented 

in continuity diagrams (Figures 4-52 to 4-55 and 4-57 to 4-60) demonstrating the progression of the 

steady-state solutions of the model with operating parameters. Among the operating parameters, feed 

dilution rate (d1) and constant feed substrate concentration (x20) were selected as bifurcation parameters 

in this case. The continuity diagrams are obtained using MATCONT, a numerical bifurcation package 

of MATLAB. High accuracy steps in the order of 10-8 were used to generate the continuity curves.  

Table 4-15 Initial conditions and model parameters of equations 4.64 to 4.68 

Initial conditions 

x1 x2 x3 x4 

0.1 6.0 0.0 0.0 

Operating parameters Other model parameters 

d1 d2 x10 x20 K α x2
* x4

* 

0.2 0.1 0.1 6.0 0.1 0.01864 13 7.007 
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Figures 4-52 to 4-55 show the steady-state dimensionless bacterial cell, substrate and product 

concentration in the reactor as functions of the feed dilution rate (d1) keeping feed substrate 

concentration (x20), initial bacterial cell concentration (x10), dilution rate of gaseous effluent (d2) and 

overall mass transfer coefficient (K) at constant. 

 

Figure 4-52 Steady-state dimensionless cell concentration (x1) in CSTBR as function of feed stream dilution rate 
(d1) at x20=6 

 

Figure 4-53 Steady-state dimensionless substrate concentration (x2) in CSTBR as function of feed stream dilution 

rate (d1) at x20=6. 
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Figure 4-54 Steady-state dimensionless liquid phase H2 concentration (x3) in CSTBR as functions of feed stream 
dilution rate (d1) at X20=6 

 

 

Figure 4-55 Steady-state dimensionless gas phase H2 concentration (x4) in CSTBR as functions of the dilution 
rate (d1) at x20=6 

From these figures, it can be observed that the continuation diagram have three branches. Among these 

three branches, two branches are the stable-static branch (solid lines), connected by an unstable branch 

in the middle, which is demarcated by a dotted line. The points at which the stable changed to unstable 

steady states is demarcated as limit points (LP) in these figures.  The two stable branches in these figures 

are connected to the unstable branch by two limit points (LP) where the feed stream dilution rates are  
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d1=0.445 (x1= 2.379, x2= 3.72, x3= 1.868, x4= 1.833)  and d1=0.440 (x1= 1217, x2=4.833, x3= 0.913, x4= 

0.8965)   respectively. From the theory of stability analysis, in the region of unstable steady states, at 

least one eigenvalues of the characteristic equation of the Jacobian matrix must have a positive real part. 

In the present case, 4th eigenvalue becomes positive between d1=0.445 and d1=0.440, which is shown in 

Figure 4-56. 

 

Figure 4-56 Eigenvalues of the stability matrix [Eq. (4.69)] for the steady-state solutions 

The multiplicity of steady states occurs between these two limit points. In this region, there exist three 

steady-state solutions, and this kind of phenomenon is called hysteresis. If a sudden change in operating 

parameters, such as feed substrate concentration (x20) or dilution rate of gas stream (d2) occurs within 

this multiplicity region, irreversible effects on the system in terms of conversion can shift from high 

conversion (lower branch) to a low conversion (higher branch).  

 

Figure 4-57 Steady-state dimensionless cell concentration (x1) in CSTBR as functions of feed substrate 
concentration(x20)at d1=0.2 
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Figure 4-58 Steady-state dimensionless substrate concentration (x2) in CSTBR as functions of feed substrate 
concentration(x20)at d1=0.2 

 

Figure 4-59 Steady-state dimensionless liquid phase H2 concentration (x3) in CSTBR as functions of feed 
substrate concentration(x20)at d1=0.2 
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Figure 4-60 Steady-state dimensionless gas phase H2 concentration (x4) in CSTBR as functions of feed substrate 

concentration(x20)at d1=0.2 

The multiplicity of the steady-state solution of Equations (4.64)–(4.67) were also examined for cultures 

operated at a constant dilution rate (d1=0.2) ), initial bacterial cell concentration (x10), dilution rate of 

gaseous effluent (d2) and overall mass transfer coefficient (K) but with varied feed substrate 

concentration (x20). The results are shown in Figures 4-54 to 4-57. Steady-state behaviour of the bacterial 

culture with respect to x20 is quite similar to that concerning the variation of dilution rate (d1).  In this 

case, also, multiplicity was observed in a specific range of feed substrate concentration (x20). The branch 

between two limit points (LP) in Figures 4-54 to 4-57 represents a hysteresis loop similar to that in 

Figures 4-49 to 4-52. The feed substrate concentration at first limit point was x20 =9.572 (x1= 0.637, x2= 

9.034, x3= 0.36, x4= 0.353) when the stable, steady-state (lower branch) bifurcated to unstable steady 

state. Likewise, at x20 =13.658 (x1= 7.896, x2= 5.862, x3= 5.23, x4= 5.133) the unstable steady-state 

transform its nature and the system became stable steady state (upper branch).  

4.4.2.2 Effect of operating condition 

In order to find out the range of these operating conditions for which the stability of steady-state changes 

its nature, the simulation was performed over the multiplicity or hysteresis zone. From the analysis, it 

is found that among all operating conditions, dimensionless dilution rate of feed stream (d1) and gas 

stream (d2) and dimensionless feed stream substrate concentration (x20) influence bioreactor's steady-

state behaviour.  
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Figure 4-61 Two parameter continuation diagrams showing the effects of initial substrate concentration (x20) on 

the limits of the hysteresis region 

Figures 4-58 and 4-59 show the effects of operating conditions on the hysteresis region. Figure 4-58 

shows the area of stability relating to operating parameters x20 and d1. The two branches are representing 

the two limit points for different values of x20 and d1. It can be observed that the thickness of the region 

between the two branches corresponds to instability. As feed substrate concentration (x20) increases the 

thickness of instability increases. For an instant, at a constant value of d1=0.2, the thickness of instability 

with respect to x20 is 4.086 (x20=13.658- x20=9.572), which is presented in Figure 4-58 and can be 

observed in Figures 4-54 to 4-57. Furthermore, Figure 4-58 shows (Inset plot) that at a constant value 

of x20=6.0, the width of instability with respect to d1 is 0.0053 (d1 = 0.4453- d1 = 0.44) and can be seen 

in Figures 4-49 to 4-52. The width of instability for both the cases representing the length of the unstable 

branch between two Limit points as presented in Figures 4-49 to 4-57. However, the instability is only 

possible if the values of x20 > 5.65 and d1 < 0.467, at which the two branches collapse.  
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Figure 4-62 Two parameter continuation diagrams showing the effects of gaseous phase dilution rate (d2) on the 
limits of the hysteresis region. 

Similarly, the area of stability relating to operating parameters d1 and d2 represented in Figure 4-59. Here 

also, the two branches are representing the two limit points for different values of d1, and d2 and the 

region between the two branches corresponds to instability. As the dilution rate of the gaseous stream 

(d2) increases the thickness of the instability region increases. Moreover, the range of instability 

increases with the increase of d2. The region of instability collapse at d1 = 0.417 and d2=0.0612. 

Observed results surmise the nonlinear phenomenon and parametrically sensitive behaviour of CSTBRs 

through bifurcation analysis. From this study, it can be stated that the model is capable of predicting the 

nonlinear phenomenon for a wide range of reactor kinetics and operating parameters, offering the model 

with a good deal of flexibility. 
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5 Conclusions 

The present research study developed a mathematical model of continuous stirred tank bioreactors used 

for bioenergy conversion from biomass. It is expected that the investigation would contribute to 

bioreactor design and understanding factors that commonly influence productivity and reactors 

reliability. The reaction medium's pH and the partial pressure of gaseous product (H2) are considered 

influencing factors for bioreactor operation to demonstrate the methodology. Whether it is a liquid or 

gaseous biofuel, acid is produced as one of the byproducts of microbial reactions.  From this study, it is 

obtained that if the byproduct is acid, the pH of the reaction medium becomes acidic, which is not a 

favourable condition for microorganisms to growth at a specific limit. In the search for optimum pH 

condition for selected microbes, the experiments were conducted to find out the optimum pH and the 

other growth associated constants that characterize microbial growth. On the other hand, it is also 

observed that, if the main product of a bioprocess is a gas, then the pressure exerted by gaseous products 

inhibits the microbial reaction directly or indirectly. A series of experiments are conducted to investigate 

the effect of hydrogen concentration on microbial growth and hydrogen production rate. The 

methodology developed in this research is generic and can be implemented to find out other growth 

influencing parameters. A suitable bioreactor model can be established after finding out the objective 

variables that needed to be controlled.  

The mathematical models for continuous stirred tank bioreactor (CSTBR) coupled with microbial 

growth reflecting influencing parameters are developed. Using the model, sensitivity analysis 

determines the parameter space of input variables for which the objective output variable will be 

uncontrollable. Multiplicity analysis can derive a dimensionless multiplicity criterion, to indicate a set 

of values of input parameters corresponding to multiple steady states. Furthermore, stability analysis 

was performed to demonstrate the dynamics of CSTBR model comprising steady-state multiplicity and 

hysteresis by using elementary principle bifurcation theory. A particular range of operating conditions 

where the non-washout steady-state solution is possible needed to be determined from this study. This 

methodology of finding out stability is suitable for predicting stable reactor operation in terms of the 

input variables.   

Based on the research conducted in this thesis, the following specific conclusions are made. 

5.1 Microbial growth kinetics 

 It is established that microorganisms are the leading member of the bioreactor system, and it is 

essential to accrue information on microbial growth mechanisms and how the microbial activity is 

affected by the microenvironment of the growth medium. The experimental studies with two types 

of bacteria, pediococcus acidilactic and lactobacillus casei confirmed that for lactic acid type 

bacteria, the optimum value of pH for maximum microbial growth is at 6.7 - 6.75.   

 However, the study found that despite the optimum pH value being similar for the two bacterias of 

the same type, the values of other kinetic parameters may be different for each strain of bacteria.   

Therefore, kinetic parameters defining the growth of certain bacteria should be determined prior to 

use the mathematical model for predicting control parameters for a reactor. These kinetic parameters 

can be determined by incorporating the influence of pH on microbial growth rate in the classical 

growth models such as the Monod model.  
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 Growth inhibition caused by hydrogen was examined through the acidogenesis of glucose by a 

bacterium, clostridium acetobutylicum. From the experiment, it was observed that hydrogen is an 

acute inhibitor if allowed to accumulate in reactor headspace. Initially, from 10% to 30% (v/v) 

hydrogen concentration, the microbial growth decreases linearly. As more hydrogen-filled the 

headspace, microbial activity was inhibited exponentially, particularly after 30% (v/v); the 

microbial growth critically affects the hydrogen production rate. When 50% of the reactor headspace 

was occupied by hydrogen, an extended lag phase in microbial growth observed and a much lower 

microbial growth and hydrogen production rate was also noticed. After 61.5% (v/v) of hydrogen 

accumulated in the reactor, no microbial growth was recorded, and thus the production of hydrogen 

ceased. Therefore, for optimal continuous production, the removal rate must be controlled in such a 

way that the reactor headspace does not accumulate gaseous produce more than 30% (v/v).  

 Results also found that maximum specific growth rate (µmax), substrate saturation constant (kS), the 

critical concentration of hydrogen when microbial growth ceases (H2
*) and degree of inhibition are 

0.976 h−1, 0.63 ± 0.01 g/L, 24.74 mM, and 0.4786, respectively.  

 These results may be extended to similar bioenergy industries producing such as biobutanol where 

these kinds of phenomenon occur and employed for reactor safety and adaptation of control 

strategies  

5.2 Mathematical modelling and stability analysis 

 Unstructured mathematical models were developed using the fundamental knowledge about 

microbial and the related kinetic parameters. The steady-state stability analysis can provide the 

information on the favourable and avoidable condition for CSTBR operation, which can be 

incorporated in control strategies of reactors.  

 The influences of process variables in a continuous stirred tank bioreactor (CSTBR) and how these 

parameters influence the stable bioreactor operation for biological hydrogen production are 

investigated in case study 4 using elementary principles bifurcation theory.  The stability analysis 

was performed to demonstrate the dynamics of CSTBR model comprising steady-state multiplicity 

and hysteresis. 

 The results establish that among all operating conditions, d1, d2, and x20 influence bioreactor's steady-

state behaviour. In a particular range of d1 (a dimensionless form of dilution rate of feed stream), 

from 0.44 to 0.4453, the CSTBR operation becomes unstable as it comes across multiple steady 

states condition.  On the other hand, CSTBR enters to instability due to another essential operating 

parameter X20 (a dimensionless form of feed substrate concentration) when the operating region of 

X20 is 9.5717 to 13.658 steady-states of CSTBR system bifurcated to multiple steady states. The 

results also provide information on the limit of the hysteresis region in terms of operating variable 

that must be avoided for stable reactor operation.     

 The developed kinetic model in case 3 is useful to determine the influences of products on bacterial 

growth and product formation rate for mesophilic bacteria. In the case of hydrogen-producing 

bacteria, other by-products, which form during metabolism are volatile fatty acid and influences the 

system pH and metabolic pathway. Therefore, the kinetic model should consider these factors along 

with the product inhibition. Stability analysis of steady states was analyzed in case 4 of a CSTBR 

used for biohydrogen production 

5.3 Parametric sensitivity analysis 

 It was observed that the system is parametrically sensitive to both regions of multiplicity and 

uniqueness of steady states. The theoretical trends of parametric sensitivity variables are also in 
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agreement with experimental findings. Since the overall system is parametrically sensitive for 

almost all input variables, namely D, D1 and Sb, it is suggested to run the reactor in fed-batch mode 

with periodic adjustment of pH rather than control of system pH with a continuous base stream. 

 The sensitivity analysis also examined a generalized criterion of parametric sensitivity through 

Normalized objective sensitivity. A generalized criterion of sensitivity, i.e., a precise domain of 

input parameters at which the CSTBR becomes sensitive can be determined from such analysis.  

 pH was chosen as the objective function in the current study, for determining the generalized 

criteria. The sensitivity analysis was performed taking as a function of three dimensionless input 

variables, θ, R and pH0. The sensitive region for CSTBR operation was determined in terms of 

sensitivity function, S(γ*,ϕi) with respect to three selected input parameters. From the investigation, 

the identified sensitive zone of input parameters is; from 0.095 to 0.295 for θ, from 0 to 0.865 for 

R and from 4.42 to 4.765 for pH0. On the other hand, the critical values of input parameters θ, R 

and pH0 are 0.0195, 0.48 and 4.6, respectively.  

 This investigation concludes, the approach implemented in the present study for defining a 

generalized criterion to find out a parametrically sensitive regime can be implemented for any other 

operating parameters, such as temperature, the concentration of metabolites and other by-products. 

Thus, in order to predict CSTBR performance and to develop control systems for the bio or 

biochemical processes, this mathematical model can be used as a design tool. The model can 

perform the stability analysis of a CSBTR and obtain parametric sensitivity regions of the process. 

Such quantitative analysis of CSTBRs will benefit in the selection of strategies for safe, controlled 

and economical utilization of CSTBRs. 

5.4 General conclusions 

 In order to design a continuous type of bioreactor, the maximum specific growth rate (µmax) 

provides the guideline regarding the flow rate of the feed stream to restrict the washout condition. 

Knowledge of substrate saturation constant KS values is required for modelling continuous cultures 

where KS largely determines the steady-state concentration of unused growth rate-limiting nutrient. 

The value of KS is an essential factor in the efficiency of conversion of substrate to biomass.   

 In the field of bioenergy conversion, the information obtained from the present research study can 

contribute to the design and optimization of bioreactors such as bioethanol, and biomethanol 

production from biowaste. The methodology used here can also be implemented to find out 

additional growth influencing parameters such as temperature. The methods of parametric 

sensitivity and multiplicity analysis are useful in evaluating the design and control aspects of the 

bioreactors. 

5.5 Recommendations for further work 

The study identified some pathways for further work. There are more output variables other than pH 

and partial pressure need to be controlled for designing a continuous stirred tank bioreactors. These are 

temperature, the concentration of byproducts. The influence of the parameters on the microbial growth 

rate recommended studying further for designing a bioreactor through suitable kinetic modelling. In this 

research study influence of pH was investigated for lactic acid bacteria to get a general overview for pH 

influence of microbial growth rate. There are other kinds of bacterial such as thermophilic, 

hyperthermophile and mesophilic or anaerobic and aerobic used in industrial bioprocesses for bioenergy 

conversion.  Therefore, it is recommended to compare the methods used in the present study for this 

type of bacteria. In the case of biohydrogen production, there are other metabolites such as volatile fatty 

acids (VFA) produce along with the hydrogen. These acids can alter the system pH, which can be 
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unfavourable for microorganisms and shift the metabolic pathway of microbial reactions. So, the 

influence of the concentration of  VFA and adopt a kinetic model is recommended to study further. The 

validation of the model-predicted data with the experimental study where the model shows the critical 

value of input parameters for which the CSTBR becomes sensitive. The interaction between input 

parameters or the points corresponding to the limits of the region of instability is recommended to be 

investigated. Moreover, the impact of model kinetic parameters on system stability is the scope where 

further work is suggested. 
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Appendix 2 

Following the mathematical analysis provided under steady state, 

dx

dτ
= 0             (A1) 

Therefore eq.(4.13) 

θ = θ1 + 1            (A2) 

Using eq. (4.18) 

θ1 + 1 =
mys

n+ys
H           (A3) 

Hence, 

ys =
n(θ1 +1)

mH−(θ1 +1)
           (A4) 

And, 

xs = [
1

θ1 +1
−

n(θ1 +1)

mH−(θ1 +1)
]          (A5) 

Under steady state eq. (4.15) 

0 = −z + θx − θ1 (
Ma

MbYp
s⁄

R + z)          (A6) 

Defining 

pm =
θ1

(θ1 +1)

Ma

MbYp
s⁄

R            (A7) 

θx = (θ1 + 1)(z + pm)           (A8) 

pH = −logKa + log
Ls

Zs

Ma

Mc

1

Yp
s⁄

                       (A9) 

Under steady state, 

zs =
LsMa

McKaYp
s⁄

e−
pH

2.303                      (A10) 

From eq. (4.16). 

Ls =
θ1

θ1+1

Mc

Mb
R =

Mc

Ma
Yp

s⁄
pm                     (A11) 

zs =
pm

Ka
e−

pH

2.303                                   (A12) 
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On replacement of xS, yS and zS in eq. (A.8), using equations (A.4), (A.5) and (A.12) respectively, and 

the following correlation is obtained  

m∗
n(θ1 +1)

mH−(θ1 +1)

n+
n(θ1 +1)

mH−(θ1 +1)

∗ H ∗ (
1

(θ1 +1)
−

n(θ1 +1)

mH−(θ1 +1)
) = (θ1 + 1)(zs + pm)                             (A13) 

On simplification, the above equation reduces to 

(
1

(θ1 +1)
+

n

1−
mH

(θ1 +1)

) = zs + pm                                 (A14) 

By Taylor series expansion of (1 −
mH

θ1+1
)
−1

and neglecting higher terms,               

1

(θ1 +1)
+ n(1 +

mH

(θ1 +1)
) = pm (1 +

1

Ka
e−

pH

2.303)                               (A15) 

Incorporating, M =
1

θ1+1
 and substituting H = A + BpH + CpH2 in equation (A.15)    

(M + n(1 + Mm(A + BpH + CpH2) − pm)
Ka

pm
) = e−

pH

2.303                 (A16) 

Defining the constants, 

α = (M + n(1 +mMA) − pm)
Ka

pm
 , β = (nmMB)

Ka

pm
 and γ = (nmMC)

Ka

pm
   

e−
pH

2.303 = α + βpH + γpH2                     (A17) 

 

Sensitivity trajectories 

d

dt
(
∂X

∂D
) = (

μmS(A+BpH+CpH
2)

Ks+S
− D − D1) × (

∂X

∂D
) + [

μmX.Ks(A+BpH+CpH
2)

(Ks+S)
2 ] × (

∂S

∂D
) +

[
μmS.X(B+2CpH)

Ks+S
] × (

∂pH

∂D
) − X         (A18) 

d

dt
(
∂X

∂D1
) = (

μmS(A+BpH+CpH
2)

Ks+S
− D − D1) × (

∂X

∂D1
) + [

μmX.Ks(A+BpH+CpH
2)

(Ks+S)
2 ] × (

∂S

∂D1
) +

[
μmS.X(B+2CpH)

Ks+S
] × (

∂pH

∂D1
) − X         (A19) 

d

dt
(
∂X

∂S0
) = (

μmS(A+BpH+CpH
2)

Ks+S
− D − D1) × (

∂X

∂S0
) + [

μmX.Ks(A+BpH+CpH
2)

(Ks+S)
2 ] × (

∂S

∂S0
) +

[
μmS.X(B+2CpH)

Ks+S
] × (

∂pH

∂S0
)          (A20) 

d

dt
(
∂X

∂Sb
) = (

μmS(A+BpH+CpH
2)

Ks+S
− D − D1) × (

∂X

∂Sb
) + [

μmX.Ks(A+BpH+CpH
2)

(Ks+S)
2 ] × (

∂S

∂Sb
) +

[
μmS.X(B+2CpH)

Ks+S
] × (

∂pH

∂Sb
)         (A21) 
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d

dt
(
∂S

∂D
) = −(

μmSKs(A+BpH+CpH
2)

(Ks+S)
2YX

S⁄

) × (
∂X

∂D
) − [D + D1 +

μmX.Ks(A+BpH+CpH
2)

(Ks+S)
2 ] × (

∂S

∂D
) −

[
μmSX(B+2CpH)

(Ks+S)YX
S⁄

] × (
∂pH

∂D
) + (S0 + S)        (A22) 

d

dt
(
∂S

∂D1
) = −(

μmSKs(A+BpH+CpH
2)

(Ks+S)
2YX

S⁄

) × (
∂X

∂D1
) − [D + D1 +

μmX.Ks(A+BpH+CpH
2)

(Ks+S)
2 ] × (

∂S

∂D1
) −

[
μmSX(B+2CpH)

(Ks+S)YX
S⁄

] × (
∂pH

∂D1
) − S         (A23) 

d

dt
(
∂S

∂S0
) = −(

μmSKs(A+BpH+CpH
2)

(Ks+S)
2YX

S⁄

) × (
∂X

∂S0
) − [D + D1 +

μmX.Ks(A+BpH+CpH
2)

(Ks+S)
2 ] × (

∂S

∂S0
) −

[
μmSX(B+2CpH

2)

(Ks+S)YX
S⁄

] × (
∂pH

∂S0
) + D         (A24) 

d

dt
(
∂S

∂Sb
) = −(

μmSKs(A+BpH+CpH
2)

(Ks+S)
2YX

S⁄

) × (
∂X

∂Sb
) − [D + D1 +

μmX.Ks(A+BpH+CpH
2)

(Ks+S)
2 ] × (

∂S

∂Sb
) −

[
μmSX(B+2CpH

2)

(Ks+S)YX
S⁄

] × (
∂pH

∂Sb
)         (A25) 

d

dt
(
∂p

∂D
) = (

YP
X⁄
μmS(A+BpH+CpH

2)

Ma×(Ks+S)
) × (

∂X

∂D
) + [

YP
X⁄
μmX.Ks(A+BpH+CpH

2)

Ma( Ks+S)
] × (

∂S

∂D
) − [D + D1] × (

∂p

∂D
) +

[
Yp

X ⁄
μmSX(B+2CpH)

Ma(Ks+S)
] × (

∂pH

∂D
) − p        (A26) 

d

dt
(
∂p

∂D1
) = (

YP
X⁄
μmS(A+BpH+CpH

2)

Ma×(Ks+S)
) × (

∂X

∂D1
) + [

YP
X⁄
μmX.Ks(A+BpH+CpH

2)

Ma( Ks+S)
] × (

∂S

∂D1
) − [D + D1] ×

(
∂p

∂D1
) + [

Yp
X ⁄
μmSX(B+2CpH)

Ma(Ks+S)
] × (

∂pH

∂D1
) − (sb + p)       (A27) 

d

dt
(
∂p

∂S0
) = (

YP
X⁄
μmS(A+BpH+CpH

2)

Ma×(Ks+S)
) × (

∂X

∂S0
) + [

YP
X⁄
μmX.Ks(A+BpH+CpH

2)

Ma( Ks+S)
] × (

∂S

∂S0
) − [D + D1] ×

(
∂p

∂S0
) + [

Yp
X ⁄
μmSX(B+2C×p)

Ma(Ks+S)
] × (

∂pH

∂S0
)         (A28) 

d

dt
(
∂p

∂Sb
) = (

YP
X⁄
μmS(A+BpH+CpH

2)

Ma×(Ks+S)
) × (

∂X

∂Sb
) + [

YP
X⁄
μmX.Ks(A+BpH+CpH

2)

Ma( Ks+S)
] × (

∂S

∂Sb
) − [D + D1] ×

(
∂p

∂S0
) + [

Yp
X ⁄
μmSX(B+2C×p)

Ma(Ks+S)
] × (

∂pH

∂S0
) − D1       (A29) 

d

dt
(
∂sA

∂D
) = −[D + D1] × (

∂sA

∂D
) − sA        (A30) 

d

dt
(
∂sA

∂D1
) = −[D + D1] × (

∂sA

∂D1
) − (sb − sA)       (A31) 
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d

dt
(
∂sA

∂S0
) = −[D + D1] × (

∂sA

∂S0
)         (A32) 

d

dt
(
∂sA

∂Sb
) = −[D + D1] × (

∂sA

∂Sb
)          (A33) 

d

dt
(
∂pH

∂D
) = (

YP
X⁄
μmS(A+BpH+CpH

2)

Ma×(Ks+S)p
) × (

∂X

∂D
) − [

YP
X⁄
μmX.Ks(A+BpH+CpH

2)

Ma( Ks+S)
2p

] × (
∂S

∂D
) + [

1

p2
dp

dt
+
1

p
(D +

D1)] × (
∂p

∂D
) − [

1

sA
2

dsA

dt
+

1

sA
(D + D1)] × (

∂sA

∂D
) − [

Yp
X ⁄
μmSX(B+2CpH)

Ma(Ks+S)p
] × (

∂pH

∂D
)    (A34) 

d

dt
(
∂pH

∂D1
) = (

YP
X⁄
μmS(A+BpH+CpH

2)

Ma×(Ks+S)p
) × (

∂X

∂D1
) − [

YP
X⁄
μmX.Ks(A+BpH+CpH

2)

Ma( Ks+S)
2p

] × (
∂S

∂D1
) + [

1

p2
dp

dt
+
1

p
(D +

D1)] × (
∂p

∂D1
) − [

1

sA
2

dsA

dt
+

1

sA
(D + D1)] × (

∂sA

∂D1
) − [

Yp
X ⁄
μmSX(B+2CpH)

Ma(Ks+S)p
] × (

∂pH

∂D1
) +

1

p
(sb + p) (A35) 

d

dt
(
∂pH

∂S0
) = (

YP
X⁄
μmS(A+BpH+CpH

2)

Ma×(Ks+S)p
) × (

∂X

∂S0
) − [

YP
X⁄
μmX.Ks(A+BpH+CpH

2)

Ma( Ks+S)
2p

] × (
∂S

∂S0
) + [

1

p2
dp

dt
+
1

p
(D +

D1)] × (
∂p

∂S0
) − [

1

sA
2

dsA

dt
+

1

sA
(D + D1)] × (

∂sA

∂S0
) − [

Yp
X ⁄
μmSX(B+2CpH)

Ma(Ks+S)p
] × (

∂pH

∂S0
)    (A36) 

d

dt
(
∂pH

∂Sb
) = (

YP
X⁄
μmS(A+BpH+CpH

2)

Ma×(Ks+S)p
) × (

∂X

∂Sb
) − [

YP
X⁄
μmX.Ks(A+BpH+CpH

2)

Ma( Ks+S)
2p

] × (
∂S

∂Sb
) + [

1

p2
dp

dt
+
1

p
(D +

D1)] × (
∂p

∂Sb
) − [

1

sA
2

dsA

dt
+

1

sA
(D + D1)] × (

∂sA

∂Sb
) − [

Yp
X ⁄
μmSX(B+2CpH)

Ma(Ks+S)p
] × (

∂p

∂Sb
)   (A37) 

The components of matrix A in equation 4.69 

a11 =
x2(1−

x4
x4
∗)
n

(1−
x2
x2
∗)
m

X2+1
− d1  

a12 =
x1(1−

x2
x2
∗)
m

(1−
x4
x4
∗)
n

x2+1
−
x1x2(1−

x2
x2
∗)
m

(1−
x4
x4
∗)
n

(x2+1)
2 −

m∙x1x2(1−
x4
x4
∗)
n

(1−
x2
x2
∗)
m−1

x2
∗ (x2+1)

  

a13 = 0 

a14 = −
n.x1.x2(1−

x4

x4
∗)

(n−1)

(1−
x2

x2
∗)

m

x4
∗(x2+1)

  

a21 = −
X2(1−

X4

x4
∗)

n

(1−
X2

x2
∗)

m

X2+1
  

a22 =
X1X2(1−

X2
x2
∗ )
m

(1−
X4
x4
∗ )
n

(X2+1)
2 −

X1(1−
X2
x2
∗ )
m

(1−
X4
x4
∗ )
n

X2+1
− d1 +

m∙X1X2(1−
X4
x4
∗ )
n

(1−
X2
x2
∗ )
m−1

x2
∗ (X2+1)
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a23 = 0  

a24 =
n.X1.X2(1−

X4

x4
∗)

(n−1)

(1−
X2

x2
∗)

m

x4
∗(X2+1)

  

a31 =
X2(1−

X4

x4
∗)

n

(1−
X2

x2
∗)

m

X2+1
  

a32 =
X1(1−

X2

x2
∗)

m

(1−
X4

x4
∗)

n

X2+1
−
X1X2(1−

X2

x2
∗)

m

(1−
X4

x4
∗)

n

(X2+1)
2 −

m∙X1X2(1−
X4

x4
∗)

n

(1−
X2

x2
∗)

m−1

x2
∗(X2+1)

  

 

a33 = −d1 − K 

a34 = K. α −
n.X1.X2(1−

X4

x4
∗)

(n−1)

(1−
X2

x2
∗)

m

x4
∗(X2+1)

   

a41 = 0  

a42 = 0  

a43 = K  

a41 = −d2 − K. 
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Appendix 3 

The time history of dry cell concentrations of Lactobacillus casei when pH at each batch reaction was 

varied initially. 

 

Figure A-1 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=5 

 

Figure A-2 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=5.5 
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Figure A-3 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=6.0 

 

 

Figure A-4 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=6.5 
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Figure A-5 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=7.0 

 

Figure A-6 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=7.5 
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Figure A-7 Experimental time histories of dry cell concentration (g/L) at an initial value of pH=8.0 

  



 

 

 


