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Chapter 1

Introduction

A common task in the subject of mathematical statistics with many applica-
tions is distinguishing between objects belonging to some kind of predefined sets.
Several words relate to basically the same kind of problem: Detection, separa-
tion, classification, allocation, hypothesis testing. Which word is used depends
on the setting. Detection is normally used when the problem is to extract in-
formation from a signal. Separation is often used when the problem is to sort
some kind of objects or observations into some predefined sets. Classification
or allocation usually refers to the task of assigning new objects to predefined
classes. Hypothesis testing is used about the problem of testing the reliability of
a statement in comparison to alternative statements. The theory of hypothesis
testing form the basis for the other concepts.

In this text the above mentioned tasks is limited to distinguishing between
two predefined sets of objects or observations. Often hypothesis testing includes
the use of multivariate analysis, but in this text the test statistic is restricted
to a single dimensional variable. The problem is to select between either of
two hypothesis. We assume that the true value of our test statistic is either of
two possible values. So the use of hypothesis testing is simplified to a binary
hypothesis test, testing a simple hypothesis against another simple hypothesis.
The Neyman-Pearson lemma tells how such a test is done optimally by using a
likelihood ratio test.

Further the problem treated in this text is about separating objects in a
picture. By examining pictures it is found that not all configurations of the
voxel values are equally probable. It is of course not feasible to completely
define this multivariate distribution. But simplifications lead to useful approxi-
mations. The concept of a Random Markov Field defining a set of probabilities
{p(x)} for each picture element individually is used together with the use of
computer algorithms. The density functions {pi(xi|x∂i)}, i ∈ S are given as
conditionally dependent upon the set of picture elements defined as the neigh-
bourhood for each voxel. Introducing the conditionally dependent probability
functions {pi(xi|x∂i)} reduces errors by providing individual values of the prior
probabilities for the picture elements, dependent on the values of the picture
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elements in the neighbourhood.
This text concentrates on doing separation of picture elements in pictures

containing two predescribed populations. These populations are often referred
to as object and background. The applications are numerous. The problem
might be a need to remove random noise to ease further reading of the picture
by humans. Or it might be to convert the information given by the picture
to a form convenient for further automated processing. Cost savings can be
obtained by using computer programs for initial processing of pictures, sorting
out pictures for further study by humans. Another application is using cameras
to detect objects of a given shape.

In this text the ICM algorithm (Iterated Conditional Modes is used for
computer processing of the pictures combining the assumption of conditional
independence of the observed values of the picture and the assumption of a
Random Markov Field.

This text focuses on two examples of pictures for application:

• 3-dimensional fMRI (functional Magnetic Resonance Imaging) recordings
used in medicine and research

• 2-dimensional photos of moles used in medicine as the initial step in the
process of detecting melanoma.
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Chapter 2

Basic concepts for the

separation of pictures

consisting of two main parts

2.1 Hypothesis test for detecting the value of

the test statistic

Using this model the problem of detecting if a picture element shows the back-
ground or the object is a binary hypothesis test:

H0 : element shows background versus H1 : element shows object

To perform this hypothesis test, a test statistic or discriminant has to be
defined. If the expected value of d is µ0 for the background and µ1 for the
object, then our hypothesis test is

H0 : d = µ0 versus H1 : d = µ1 (2.1)

This is just a binary hypothesis test, in this case testing a simple hypothesis
against another simple alternative. In the following we briefly review some
results of interest for this kind of test.

To choose between H0 and H1 we have to select a threshold for d̂. Obviously
we want to have small probabilities for both Type I and Type II Errors (H0

incorrectly rejected or accepted respectively). For a test of a given size α we
want maximum power. There is a well known theorem which tells how to choose
the threshold to obtain maximum power for a given Type I error rate:
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(Neyman−Pearson Lemma) Consider testing H0 : θ = θ0 versus
H1 : θ = θ1, where the pdf or pmf corresponding to θi is f(x|θi), i = 0, 1, using
a test with rejection region R that satisfies

x ∈ R if f(x|θ1) > kf(x|θ0)

and (2.2)

x ∈ Rc if f(x|θ1) < kf(x|θ0)

for some k ≥ 0, and

α = Pθ0(X ∈ R) (2.3)

Then
a. Any test that satisfies (2.2) and (2.3) is a uniformly maximum power
(UMP) level α test.
b. If there exists satisfying (2.2) and (2.3) with k > 0 , then every UMP level
α test satisfies (2.2) except perhaps on a set A satisfying
Pθ0(X ∈ A) = Pθ1(X ∈ A) = 0.

2.2 Applying the Neyman-Pearson Lemma

The Neyman-Pearson Lemma tells that the ratio

l(x) =
L(θ1|x)

L(θ0|x)
=

f(x|θ1)

f(x|θ0)

gives a UMP test. If l(x) > 1 then θ = θ1 is the more likely value for θ.
Otherwise θ = θ0 is the more likely value.

Applying this to our model we substitute d̂ for x, d = µ0 for θ0, and d = µ1

for θ1:

l(d̂) =
L(d = µ1|d̂)

L(d = µ0|d̂)
=

f(d̂|H1)

f(d̂|H0)

Using a binary hypothesis test the threshold is given by

f(d̂|H1) = f(d̂|H0) (2.4)

The density functions f(d̂|H0) and f(d̂|H1) are distributions symmetric around

their mean with the same variance. l(d̂) > 1 corresponds to d̂ > µ1−µ0

2 if

µ1 > µ0 or d̂ < µ1−µ0

2 if µ0 > µ1. Thus choosing µ1−µ0

2 as the threshold value
gives equal probabilities for correctly detecting the background or the object.

Of course other choices of the parameter α, giving another value for the
threshold, can be done to optimize the test against other requirements. But in
this section we restrict our treatment to choosing the threshold to maximize the
probability of correctly classifying a picture element.
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2.3 Bayes’ theorem

The Bayesian theorem or Bayesian formula is elementary in statistics. We state
it here because of its importance in image restoration. It is based upon the
definition of conditional probability, i.e. the probability when the sample space
is restricted to the outcomes when some given event is true. If X and Y are two
events and X ∩ Y is their joint occurence

P (X |Y ) =
P (X ∩ Y )

P (Y )
P (Y |X) =

P (X ∩ Y )

P (X)

Combining these two expressions we obtain

P (X |Y ) =
P (Y |X) · P (X)

P (Y )

It is used for ”inverting” conditional probabilities. In image restoration we
want to estimate the true image. If we know the probability of the observed
image Y given the true image X , which is the case if we know the distribution
of the noise, we can obtain an expression for the probability of the true image
by ”inverting” this conditional probability. P (X) is the probability for X if no
observation is done and is referred to as the prior probability. P (Y ), in Bayesian
terms named the ”total probability”, is the probability of all observed scenes
regardless of the true picture. In image restoration it is obviously difficult to
express the latter two probabilities. But in restoration the problem is to estimate
X , most often done by finding the value of X which maximizes P (X |Y ), which
can be done without knowledge about P (Y ). The remaining problem is P (X).

2.4 Incorporating prior probability in the test

If we assume that a picture element has probabilities P (d = µ1) of showing
the object and P (d = µ0) of showing the background, then we can use Bayes’
theorem

P (d|d̂) =
f(d̂|d) · P (d)

f(d̂)

to improve the chances of correctly classifying a picture element. For the likeli-
hood ratio we obtain

P (d = µ1|d̂)

P (d = µ0|d̂)
=

f(d̂|d=µ1)·P (d=µ1)

f(d̂)

f(d̂|d=µ0)·P (d=0)

f(d̂)

=
f(d̂|H1) · P (H1)

f(d̂|H0) · P (H0)

If P (H0) = p, then P (H1) = 1− p. After inserting this parameter we obtain for
the likelihood ratio

P (H1|d̂)

P (H0|d̂)
=

f(d̂|H1) · (1 − p)

f(d̂|H0) · p
= l(d̂) · 1 − p

p
(2.5)
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To determine if a picture element is showing the object or the background the
threshold should be chosen such that the picture element is regarded as showing
the object if this ratio is greater than 1 for µ1 > µ0 or less than 1 for µ0 > µ1,
i.e. the threshold chosen by taking the prior probability into account is the
value of d̂ for which

f(d̂|H1) · (1 − p) = f(d̂|H0) · p (2.6)

2.5 Error probabilities

If the detection is done by choosing the threshold with respect to minimizing
the probability of error regardless of the contents of a picture element, i.e. by
not taking prior probabilities into account, the error probability is equal to the
size α of the hypothesis test given H0 and equal to 1 − β given H1. (β is the
power of the test). If µ1 > µ0 the error rates are

P (error|H0) =

∫ +∞

µ1−µ0
2

f(x|H0)dx = α (2.7)

P (error|H1) =

∫

µ1−µ0
2

−∞
f(x|H1)dx = 1 − β (2.8)

If µ0 > µ1 the lower and upper boundary in the first and second expression
respectively must be substituted by µ0−µ1

2 .

If the prior probability of the picture element showing the background is
taken into account, the average error probability is improved. The probability
of correctly detecting a picture element containing its most probable contents
is improved but the probability of a detection error if the picture element is not
containing its most probable contents increases. The probabilities of error given
H0 or given H1 are by definition given by α and 1 − β respectively. But now
these probabilities differ due to the choice of threshold. If d̂thres is the value of
d̂ given by (2.6), then the error probabilities are given by

P (error|H0) =

∫ +∞

d̂thres

f(x|H0)dx = α (2.9)

P (error|H1) =

∫ d̂thres

−∞
f(x|H1)dx = 1 − β (2.10)

Error rate when prior probability is taken into account:

P (error) = P (error|H0) · P (H0) + P (error|H1) · P (H1)

= αp + (1 − β)(1 − p) (2.11)
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2.6 Probability density function for our picture

model

So far no assumptions has been made about the shape of the distributions
f(x|H0) and f(x|H1). In the continuation we assume that the distributions are
gaussian or normal in shape. Due to the Central Limit Theorem it is usually
the case that noise has a normal distribution. Furthermore the test statistic
is often obtained by summing and/or subtracting independent and identically
distributed random variables. In these case the approximation to a normal
distribution will be even better. If the sum contains several terms, test statistics
showing a close approximation to a normal distribution can be obtained even
from noise distributions far from normal in shape.

The test statistic d̂ is modelled as the sum of the true value of d and an error
term ε

d̂ = d + ε (2.12)

d takes either of the values µ0 or µ1 and ε ∼ N(0, σ2) is gaussian noise.
If the variance of the test statistic depends upon whether the picture element

shows the background or the object, the model can be modified to allow for
different magnitudes of the noise:

d̂ = di + εi, given Hi, i = 0 or 1, εi ∼ N(0, σ2
i ) (2.13)

If we let X be a Bernoulli random variable, X = 0 if the picture element is
showing background with probability p, X = 1 if the picture element is showing
the object, we have

d̂|X ∼ normal(µX , σX
2)

X ∼ Bernoulli(1 − p)

This is a mixture distribution, in statistical terms a normal-Bernoulli hierarchi-
cal model with probability density function

f(d̂; σ0
2, σ1

2, µ0, µ1, p) =
p√

2πσ0
2
e
− (d̂−µ0)2

2σ0
2 +

1 − p√
2πσ1

2
e
− (d̂−µ1)2

2σ1
2 (2.14)

2.7 Estimation of parameters in the mixture dis-

tribution

If d̂i, i = 1 . . . n are n estimates of d̂, the likelihood function is

L(σ0
2, σ1

2, µ0, µ1, p; d̂) = f(d̂; σ0
2, σ1

2, µ0, µ1, p)

=

n
∏

i=1

(
p√

2πσ0
2
e
− (d̂i−µ2

0
2σ0

2 +
1 − p√
2πσ1

2
e
− (d̂i−µ0)2

2σ1
2 ) (2.15)

Even for this very simple mixture distribution it is necessary to use numerical
methods for estimating MLEs of σ0

2, σ1
2, µ0, µ1 and p. (See ”Robert and

Casella: Monte Carlo Statistical Methods”, second edition, page 4 and 11 for a
brief introduction.)
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Chapter 3

Applying our simple model

As an illustration of our model to make things clearer, we try using it on a
simulated data set.

3.1 Simulating the probability model

Simulating the normal-Bernoulli hierarchical distribution is quite easy using
any statistical program package. The Bernoulli part of the hierarchical tree can
be simulated by using a command simulating a uniformly distributed random
variable on the interval (0, 1). The normal part can be simulated using a
command simulating a standard normal distributed random variable.

3.2 Estimation of parameters

The values of all five parameters might be unknown, but here we consider a
simplified example. We assume that µ0 = 0 and σ1 = σ0. We need to estimate
the three parameters p, µ and σ. See figure 3.1.

The density function is a sum of two normally distributed peaks having the
same variance. The position of the peak with the smallest mean, in this case the
larger, is known. A good initial estimate of the standard deviation σ and the
parameter p can be found by looking at the leftmost half of the leftmost peak
in the plot of the function. By mirroring the peak around is mean (0 in this
case), standard functions for estimating variance can be used. p is estimated by
just counting the values comprising the left half of the larger peak and the total
number of samples making the histogram. This method gives good estimates
for our model due to the known position of the peak and the size of this peak
compared to the remaining peak.

Obtaining a good estimate for the parameter µ is not quite as simple because
the second term in the mixture distribution usually is made from fewer samples.
But already having good estimates for σ and p makes it easy to use MLE
estimation after insertion into the likelihood function. A routine for finding an
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extremal value of a function of a scalar on a given interval is often included in
advanced high level programming languages. It turns out that it is better to
use the loglikelihood function to avoid numerical underflow in the computer.

After obtaining these good initial approximations for the parameters a rou-
tine for maximum likelihood estimation can be run to get better estimates of
all three parameters simultaneously.

3.3 Simulation run

The histogram from a simulation with parameter values σ = 0.5, p = 0.95 and
µ = 2 is shown. Then these parameters have been estimated from the simulated
data. The given density function for the simulation and the estimated density
function (both multiplied by total number of generated values times interval
width corresponding to each histogram column) have been plotted. The curves
resulting from both the initial course approximation of the parameters and from
the final MLE estimation have been drawn for comparison.

As can be seen from the figure the suggested procedure for reducing com-
putation while estimating the parameters performs pretty well for this density
function with the mean value for the larger peak known and equal σ’s for the two
peaks. Only small adjustments to the estimates result when using maximum
likelihood to estimate all three parameters. The deviation between the simu-
lated density function and the density function estimated from the simulated
data is mainly caused by differing σ’s.

3.4 Choosing the threshold for the test

The optimum threshold should of course be calculated from the true values of
the parameters. But in our case they are not known, so we have to calculate a
threshold value from the estimated parameters.

Figures 3.2 and 3.3 illustrate how the thresholds given by (2.4) and (2.6) are
found. Separate histograms of densities for background and object are given to
show how the probabilities of Type I and Type II Errors change by different
choices of threshold.

3.5 Detection, classification

So far we have considered our problem as separating two populations, back-
ground elements and object elements, by using a hypothesis test. We have
considered the mixture distribution as the sum of two separate normal distribu-
tions. The picture elements has been considered as elements fixed in either of
the two possible states. From this point of view we have to decide which normal
distribution a picture element exhibits for the test statistic, or discriminant, d̂.
The same mixture distribution can be used as a density model for the test statis-
tic of a fixed element which can assume either of two states. In the latter case

10
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Figure 3.1: Histogram of 20,000 values drawn from the mixture distribution or
normal-Bernoulli hierarchical model with σ = 0.500, p = 0.950 and µ = 2.000
(red curve). Working in the opposite direction σ̂ = 0.508, p̂ = 0.956 and
µ̂ = 2.027 (blue curve) is found from the proposed procedure for estimating the
parameters. Finally the MLEs for all three parameters are obtained, σ̂ = 0.505,
p̂ = 0.955 and µ̂ = 2.023 (green curve). The green and the black vertical lines
are the thresholds given by an ordinary hypothesis test for detecting picture
element state calculated from the parameters used for simulation and from the
parameters estimated from the simulated values respectively. Likewise the blue
(calculated from simulation parameters) and the red (calculated from parame-
ters estimated from simulated data) vertical lines are the thresholds given by
taking prior probability into account. The deviations of σ̂, p̂ and µ̂ all con-
tributes to d̂thres being greater than dthres. The deviation of p̂ accounts for
half of the difference while the deviations of σ̂ and µ̂ gives equal contributions
approximately.
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Figure 3.2: The estimated threshold (black vertical line) given by a hypothesis

test without prior probabilities taken into account is given by the value of d̂ for
which the density functions f(d̂|H0) (magenta) and f(d̂|H1) (blue) are equal. If
prior probabilities are given the threshold (red vertical line) is given by the value

of d̂ for which f(d̂|H0) · p (cyan) and f(d̂|H1) · (1 − p) (green) are equal. The
green and blue vertical lines are the thresholds given by the parameters used
during simulation. The histogram of the data for which the Bernoulli variable
in the simulation is 0 (background) is plotted. Test statistic values to the right
of the black or red line give Type I Errors without or with prior probability
taken into account respectively while performing the test.

the word detection is commonly used. The calculations are totally equivalent
regardless of point of view. In either case we have to work with the shape of the
histogram of the two summed normal distributions multiplied by the column
width and the total number of picture elements making the histogram.

3.6 The Bayesian theorem applied to pictures

Using Bayes’ theorem we have

P (x|d̂) =
P (d̂|x) · P (x)

P (d̂)
, P (d̂) =

∫

S

P (d̂|x) · dP (x) (3.1)

x = (x1, x2, . . . , xn) is the true but unknown scene and d̂ = (d̂1, d̂2, . . . , d̂n) is
the observed and hence known test statistic. The elements of x and d̂ are named
xi and d̂i for simplicity but they may be the elements of a picture in several
dimensions. A reasonable choice for an estimate of the true scene x is to take x

12
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Figure 3.3: The same as the previous figure, but histogram of the values from
the simulation corresponding to activated state of picture element (simulated
Bernoulli variable equals 1) is plotted. Test statistic values to the left of the
black (disregarding prior probability) or red line (prior probability taken into
account) give Type II Errors while testing.

to be the value having maximum probability given the observed scene. That is,
x is taken as the value that maximizes P (d̂|x) · P (x). P (d̂|x) is determined by
the properties of the noise and usually can be easily formulated. The problem
is to find the probability P (x). If this probability function could be given in a
tractable way, Bayesian restoration would be easy providing very good results
compared to other concepts. Since this in the vast majority of cases is far from
the truth it is necessary to use both simplification and approximation.

In practice Bayesian restoration is most often done by considering the state
of each picture element individually to greatly simplify matters. Furthermore
the function for the prior probability for the state of each picture element, P (xi),
is considered to be a function of a chosen set of nearby picture elements, named
the neighbourhood of element i, abbreaviated ∂i. x∂i is the state of the elements
in ∂i. Our test statistic is chosen such that each d̂i depends on a single xi. This
gives the following expression for Bayesian restoration of picture element i:

P (xi|d̂i) =
P (d̂i|xi) · P (xi|x∂i)

P (d̂i)
(3.2)

P (d̂i) =

∫

S

P (d̂i|xi) · dP (xi|x∂i) (3.3)

Still the main problem is to determine a good approximation for P (xi|x∂i).
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3.7 The ICM algorithm

This work has concentrated on the use of the ICM algorithm (iterated conditional
modes) to obtain a better approximation to the true scene from our recording
which includes a lot of added noise. This algorithm was developed in the early
80’s. Some of the idea behind the algorithm was to solve two problems which
other procedures used in the restoration of noisy images suffer from: The need
for vast amounts of computing power and the problem of producing false cor-
relations over long distances while restoring a picture. The latter problem is
reduced because only a few iterations is needed due to the rapid convergence of
this algorithm.

3.7.1 The two basic assumptions

The first assumption is that the observed intensity or colour of the picture
elements are conditionally independent. If S is the entire set of picture elements
and xi the true value for element i, then

f(d̂;x) =
∏

i∈S

f(d̂i|xi) (3.4)

This just means that our observed test statistic d̂ depends on the state of the
single picture element i and is independent of the state of all other picture
elements when xi is given. The function f(d̂i|xi) gives the distribution of the
noise. If it is not known it often can be estimated from the observed picture.

The second assumption is that the probability distribution of the intensity or
colour of a picture element without any observation, the prior probability, can
be calculated from the state of its defined neighbouhood ∂i. The true picture
is a realization of a locally dependent Markov random field {p(x)}.

3.8 Basic theory for ICM

The aim while doing image restoration is in the majority of cases to maximize
P (x|d̂), the maximum aposteriori probability (MAP) estimator given by expres-
sion (3.1). This is most often an overwhelmingly complex task both because it is
difficult to obtain expressions for the probabilities in the equation and because
it would require vast amounts of computing power.

We state the simplifications of the algorithm and give some equations to
gain some insight into how the ICM algorithm performs.

It is an easier task to calculate the MAP for a smaller part of the image
than for the whole scene. Trying maximizing the probability of picture element
i and its defined neighbourhood given the observed scene, the MAP estimator
obtained is

P (xi, x∂i|d̂) = P (xi|x∂i, d̂) · P (x∂i|d̂)
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This greatly simplifies the task of estimating x. Maximizing with respect to xi

reduces to maximizing

P (xi|x∂i, d̂) =
P (d̂, x∂i|xi) · P (xi)

P (x∂i, d̂)
=

P (d̂|x∂i, xi) · P (x∂i|xi) · P (xi)

P (x∂i, d̂)
(3.5)

=
P (d̂|x∂i, xi) · P (xi|x∂i) · P (x∂i)

P (x∂i, d̂)
(3.6)

=
P (d̂i|xi) · P (xi|x∂i) · P (d̂S\i)|x∂i) · P (x∂i)

P (x∂i, d̂)
(3.7)

The first three equalities are given by the Bayesian theorem and formulas for
conditional probability and the last equality is the first assumption for the algo-
rithm given by (3.4). Hence we have concerning the maximization with respect
to xi:

P (xi, x∂i|d̂) ∝ P (d̂i|xi) · P (xi|x∂i)

That P (xi|x∂i) is given is the second assumption for the algorithm. Here
P (xi|x∂i) = P (xi|x), i.e. the Markov random field is locally dependent.

To summarize the ICM algorithm: The expression that is maximized is

P (xi|x∂i, d̂) ∝ P (d̂i|xi) · P (xi|x∂i)

This is equivalent to maximizing P (xi, x∂i|d̂) which is chosen as a substitute
for maximizing P (x|d̂) and is also equivalent to maximizing

P (xi|x∂i, d̂i) =
P (d̂i|xi, x∂i) · P (xi|x∂i)

P (d̂i|x∂i)
=

P (d̂i|xi) · P (xi|x∂i)

P (d̂i)

The first equality is just the Bayesian theorem with all probabilities conditioned
on x∂i and the second equality follows from the assumption of conditional in-
dependence for ICM and P (d̂i|xS\i) = P (d̂i).

In most applications P (d̂i|xi) has a normal distribution and a Gibbs distri-
bution is defined for P (xi|x∂i).

3.8.1 Brief description of how the algorithm is carried out

The ICM is an iterative algorithm. During each iteration the observed picture
and the present estimate of the true picture are combined to get a better estimate
of the latter. This is done by just running through the entire set of picture
elements, setting the pixels individually to their most likely state calculated from
its observed value d̂i and the present estimate of its neighbourhood, x∂i. Initially
the estimate must be set to some value. A common choice is to set it equal to
the ”maximum likelihood classifier”, i.e. the most likely value when neighbours
are not taken into account. The algorithm ends after a predetermined number
of iterations.
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The picture elements in the present estimate of the true picture can either be
updated simultaneously (after they have been updated individually and stored
in a buffer) or each picture element can be updated immediately after calculation

of its most likely value based on its observed value d̂i and the present estimate
of x.

If the latter scheme of updating is used, convergence is guaranteed because

P (x|d̂) = P (xi|xS\i, d̂) · P (xS\i) = P (xi|x∂i, d̂) · P (xS\i)

P (x̂|d̂) never decreases during the update of any picture element of x̂ and con-
vergence is assured. In the case of simultaneous updating of the xi’s convergence
is not guaranteed. Instead some minor oscillations of x̂ most often occur.

3.9 Approximations for P (xi|x∂i)

As previously mentioned the main problem when using Bayesian restoration is
to obtain a simple expression for a good approximation to the prior probability
of the estimated true scene. Here two different approaches have been used: It
is common to define a potential function which has its minimum value if the
picture elements have equal values. Then the prior distribution is approximated
by using this potential as the argument to a Gibbs distribution. A common
choice for the potential function is The Geman McClure potential. This choice
of potential has shown to give good results. A useful property of this potential
function in many applications is that it allows for abrupt changes in the values
of nearby picture elements but smooths out small (often random) variations.

Secondly an alternative approach for the separation of pictures into two
main parts, easier to implement and less computing intensive, is described.
This choice also has the advantage that estimation of the parameters are easy
if a true picture or an approximation to a true picture is given.

Both concepts are based on the general observation that nearby picture
elements tend to have equal values.

3.9.1 Using the Geman McClure potential

The use of some potential function to express the prior probability P (xi|x∂i) is
a common implementation of the fact that nearby picture elements most likely
have equal values. The potential function is defined such that it has a minimum
for equal values of the neighbours. If P (xi|x∂i) is defined as a monotone function
of the potential and otherwise satisfies the requirements for being a probability,
i.e. having positive values only and integrating to 1 on the entire real line, it
can be used as a probability density function for xi while applying an iterative
algorithm for Bayesian restoration of pictures.

If θ is a parameter vector, a potential function of the state of xi and its
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neighbourhood {xj} is given as

V (xi; θ) =
∑

xj∼xi

Vj(xj , xi; θ)

xj ∼ xi means that xj belongs to the set defined to be the neighbours of xi. The
probability P (xi|x∂i) is define as a function of the potential, usually a Gibbs
distribution:

P (xi|x∂i) =
1

Z(θ)
e−V (xi;θ)

The normalizing constant Z(θ) is usually not known. Furthermore it depends on
the choice of the parameters for the potential function. The former is not a prob-
lem while using Bayesian restoration. The latter is a problem in some contexts.
We recall that the expression to be maximized during Bayesian restoration is

P (xi|x∂i, d̂i) =
f(d̂i|xi) · P (xi|x∂i)

f(d̂i)
=

f(d̂i|xi) · 1
Z(θ)e

−V (xi;θ)

f(d̂i)
∝ f(d̂i|xi)·e−V (xi;θ)

So P (xi|x∂i, d̂i) is proportional in xi to f(d̂i|xi) · e−V (xi;θ). Neither

f(d̂i) =
∫

S
f(d̂i|xi)dP (xi|x∂i) nor 1

Z(θ) depends on the state of xi or its neigh-

bourhood, so in general Bayesian restoration reduces to maximizing the product

f(d̂i|xi) · e−V (xi;θ) (3.8)

with respect to xi for each i.
If d̂i|xi ∼ N(xi, σ

2) we obtain a simpler expression to maximize:

f(d̂i|xi) · e−V (xi;θ) =
1√
2πσ

e−
1
2 (

d̂i−xi
σ

)2 · e−V (xi;θ) ∝ e−( 1
2 (

d̂i−xi
σ

)2+V (xi;θ))

Maximizing e−( 1
2 (

d̂i−xi
σ

)2+V (xi;θ)) is equivalent to minimizing
1
2 ( d̂i−xi

σ
)2+V (xi; θ) = 1

2 ( d̂i−xi

σ
)2+

∑

xj∼xi
Vj(xj , xi; θ). So maximizing P (xi|d̂i)

when using a Gibbs distribution with a potential function to express the prior
distribution of xi and Gaussian noise is done by minimizing

1

2
(
d̂i − xi

σ
)2 +

∑

xj∼xi

Vj(xj , xi; θ)

The Geman McClure potential is given by

V (xj , xi; β, δ) = − β

1 + (
xi−xj

δ
)2

(3.9)

σ is still the variance of the noise of d̂i and is often known or can be estimated
from the picture. But the estimation of the parameters β and δ is a complicated
task because the normalizing constant Z(β, δ) depends on the parameters to
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be estimated and expressing the constant as a function of these parameters
is difficult. If the relationship between the parameters in the potential and
the normalizing constant could be easily given, β and δ could be estimated
by maximizing the likelihood of a given picture. This potential is an artificial
construct but it has proved to give good result when used during Bayesian
picture restoration.

3.9.2 Maximizing f(d̂i|xi) · P (xi|x∂i) by using the Bayesian

version of the Neyman-Pearson lemma

Our aim is to separate two populations: Background and object. The Neyman-
Pearson lemma stated on page 4 tells how to choose the threshold for sorting a
given picture element into either of two populations and the threshold by tak-
ing prior probability into account is given by (2.6). Because we have only two

populations and hence only two values for xi, f(d̂i|xi) is either the probability

density for d̂i given picture element i shows the background or the probability
density for d̂i given picture element i shows the object. P (xi|x∂i) is the prior
probability for picture element i taking the value xi given the states of its neigh-
bours. Since xi is restricted to 2 values, P (xi|x∂i) can take either of two values
summing to 1. During the maximizing of
f(d̂i|xi) · P (xi|x∂i) the value for xi giving the greater product is chosen. Maxi-

mizing f(d̂i|xi) · P (xi|x∂i) corresponds to classifying by choosing the threshold

according to (2.6) setting p = P (xi =µ0|x∂i). So P (xi|x∂i, d̂i) can be maximized
according to the Bayesian theorem by selecting the threshold as given by (2.6)

with p = P (xi =µ0|x∂i) and classifying voxel i by using this threshold for d̂i.

This method also have a nice property compared to using a potential and a
Gibbs distribution: There is no unknown normalization constant, so the maxi-
mized probability is an estimate of the reliability of the estimate of the state of
voxel i. Hence the uncertainty of the estimated state of the voxels can be in-
cluded in the restored picture, making it possible to define ”regions of doubt”.
Furthermore it is an attractive feature of this method that the link to basic
theory is more directly. The function that expresses the prior probability as
a function of the state of the elements defined as the neighbourhood does not
need the construction of a potential function used as an argument to a Gibbs
distribution.

Perhaps the greatest advantage compared to using a Gibbs distribution with
a chosen potential function is that it is much simpler to estimate the parame-
ters of the proposed approximation for P (xi =µ0|x∂i). As mentioned before the
problem of estimating the parameters of the potential function is that the nor-
malizing constant for the distribution is not only unknown, but it depends upon
the parameters for the potential function. Hence the common maximization of
the likelihood cannot be used to obtain the values of the parameters.

Figure 3.4 clarifies the use of the thresholds given by the ”Bayesian version”
of the Neyman-Pearson lemma while running ICM for classification into either

18



of two populations. The expression to maximize with respect to xi is

P (xi|x∂i, d̂i) =
f(d̂i|xi) · P (xi|x∂i)

f(d̂i)
(3.10)

f(d̂i) is not the mixture distribution estimated from our recorded data, but the
”total probability”, the distribution given by expression (3.3), in this case a
mixture distribution with the same normal distributions as our observed mix-
ture distribution, but the parameter p in the Bernoulli part of the hierarchical
distribution is substituted by P (xi = µ0|x∂i) which is a function of the elements
in the neighbourhood of i:

f(d̂i) = f(d̂i|xi = µ0)P (xi = µ0|x∂i) + f(d̂i|xi = µ1)P (xi = µ1|x∂i)

The red curves are two plots of these mixture distribution for different values
of P (xi = µ0|x∂i) scaled to fit better into the figure, i.e. they are scaled plots
of the denominator in (3.10). The blue curves with discontinuous derivatives at
two points are the corresponding plots of
maxxi

(f(d̂i|xi = 0)P (xi = 0|x∂i), f(d̂i|xi = 1)P (xi = 1|x∂i)), scaled wtih the
same factor as the red curves, i.e. they are scaled plots of the numerator of
(3.10) after maximizing with respect to either of the two possible values for xi.
Finally the black curves are the corresponding maximized expression (3.10). It
estimates the probability of picture i being correctly classified. The thresholds
for classifying either into the population of the background or into the popula-
tion of the object are given by the discontinuities of the derivatives of the blue
and black curves.

3.9.3 Estimating P (xi|x∂i) by counting neighbours in either

state

It remains to estimate P (xi|x∂i) as a function of the values of the elements in
the neighbourhood. xi can take only the two values µ0 and µ1. Because
P (xi = µ1|x∂i) = 1 - P (xi = µ0|x∂i) it suffices to obtain a function for one of
these two probabilities. P (xi = µ0|x∂i) is our choice since it coincides with p in
our expression for the mixture distribution.

The common approach for estimating parameters of probability functions
is using maximum likelihood. The values of the parameters making the whole
picture most likely is chosen as the parameters. Another approach is also tried
here: Finding the parameter values which is gives fewest changes to the scene.
The likelihood function to be used for estimating the parameter vector θ for
P (xi = µ0|x∂i) is

L(θ;x) = f(x; θ) =
∏

i∈S

P (xi|x∂i) (3.11)

We have either xi = µ0 or xi = µ1, so the likelihood function can be written

L(θ;x) =
∏

i∈S

(I(xi = µ0)P (xi = 0|x∂i) + I(xi = µ1)P (xi = 1|x∂i)) (3.12)
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Figure 3.4: Curves showing separation of picture into two populations by
maximizing expression (3.2). Maximization with P (xi = µ0|x∂i) = 0.25 and
P (xi = µ0|x∂i) = 0.75 shown. The density curves are normalized such that the
maximum of the mixture distributions equals 1. The red curve is the mixture
distributions with p equal to 0.25 and 0.75. The blue curves is the maximum of
the numerator in (3.2) with P (xi = µ0|x∂i) = 0.25 and P (xi = µ0|x∂i) = 0.75.
The black curves is the value of the entire expression maximized.
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As is commonly the case when numerically calculating the likelihood with a
large number of elements in S the likelihood function above cannot be used due
to numerical underflow in the computer. But the log likelihood function can be
used to cope with this problem:

log(L(θ;x)) =
∑

i∈S

log(P (xi|x∂i)) (3.13)

So the function to maximize with respect to θ can be evaluated by running
through the entire set of elements in the picture, calculating the prior probabil-
ity P (xi = µ0|x∂i), setting the corresponding term in the sum equal to
log(P (xi = µ0|x∂i)) if the element shows background, otherwise the correspond-
ing term is set equal to log(1 − P (xi = µ0|x∂i)).
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Chapter 4

Testing the robustness of

the separation

4.1 The observed information matrix

Observed information is given as the second derivative of the minus log likelihood
function:

I0(θ) = −d2log(L(d̂|θ))
dθ2

(4.1)

For large sample sizes, which is usually the case when estimating from all the
elements is a picture, the maximum likelihood estimator will have a distribution
close to normal:

θ̂ ∼ N(θ̂,
1

I0(θ)
)

If several parameters are to be estimated, an observed information matrix
can be calculated. The information matrix with n parameters given by the
n-dimensional parameter vector θ = [θ1 . . . θn] is

I0(θ) =

















−∂2log(L(θ;d̂))
∂θ2

1
. . . −∂2log(L(θ;d̂))

∂θ1∂θn

...
. . .

...

−∂2log(L(θ;d̂))
∂θn∂θ1

. . . −∂2log(L(θ;d̂))
∂θ2

n

















Analogous to the single-dimensional case the parameters estimated from var-
ious pictures of identical scenes will have an asymptotic multinormal distribution
with the inverted observed information matrix as the covariance matrix:

θ̂ ∼ N(θ̂, I−1
0 (θ)) (4.2)
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This can be used for simulating a set of parameters from estimations and testing
separation using the parameters in this set. This will give an indication of the
robustness of the separation of the observed image.

4.2 The information matrix for the normal-Bernoulli

density

In our special case we have 5 parameters: θ = [θ1θ2θ3θ4θ5]
′ = [p µ0 µ1 σ0 σ1]

′.
L(θ;y) = L(p, µ0, µ1, σ0, σ1; d̂) = f(d̂; p, µ0, µ1, σ0, σ1). We have

f(d̂; σ1, µ0, µ1, σ0, σ1) =
n

∏

i=1

(
p

√

2πσ2
0

e
− (d̂i−µ0)2

2σ2
0 +

1 − p
√

2πσ2
1

e
− (d̂i−µ1)2

2σ2
1 ) (4.3)

This gives the information matrix

I0(θ) =









































−∂2logf(d̂;θ)
∂p2 − ∂2logf(d̂;θ)

∂p∂µ0
− ∂2logf(d̂;θ)

∂p∂µ1
− ∂2logf(d̂;θ)

∂p∂σ0
− ∂2logf(d̂;θ)

∂p∂σ1

−∂2logf(d̂;θ)
∂µ0∂p

− ∂2logf(d̂;θ)
∂µ2

0
− ∂2logf(d̂;θ)

∂µ0∂µ1
− ∂2logf(d̂;θ)

∂µ0∂σ0
− ∂2logf(d̂;θ)

∂µ0∂σ1

−∂2logf(d̂;θ)
∂µ1∂p

− ∂2logf(d̂;θ)
∂µ1∂µ0

− ∂2logf(d̂;θ)
∂µ2

1
− ∂2logf(d̂;θ)

∂µ1∂σ0
− ∂2logf(d̂;θ)

∂µ1∂σ1

−∂2logf(d̂;θ)
∂σ0∂p

− ∂2logf(d̂;θ)
∂σ0∂µ0

− ∂2logf(d̂;θ)
∂σ0∂µ1

− ∂2logf(d̂;θ)
∂σ2

0
− ∂2logf(d̂;θ)

∂σ0∂σ1

−∂2logf(d̂;θ)
∂σ1∂p

− ∂2logf(d̂;θ)
∂σ1∂µ0

− ∂2logf(d̂;θ)
∂σ1∂µ1

− ∂2logf(d̂;θ)
∂σ1∂σ0

− ∂2logf(d̂;θ)
∂σ2

1









































The matrix is symmetric:

−∂2logf(d̂; θ)

∂θm∂θn

= −∂2logf(d̂; θ)

∂θn∂θm

(4.4)

4.3 Deriving expressions for the entries in the

observed information matrix

4.3.1 Useful differentiation rules for the normal distribu-

tion

In our case we have a normal mixture distribution. The partial differentiations
mostly involves taking the derivative of the normal pdf with respect to the
parameters µ and σ. Stating a couple of rules for doing this will save a lot of
work.

The normal distribution has good properties for analytical treatment. Dif-
ferentiation with respect to the parameters µ and σ gives relatively simple ex-
pressions. These results will be used extensively during the derivation of the
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information matrix and may be easily verified by using standard differentiation
rules. Partial differentiation with respect to µ gives

∂

∂µ
(

1√
2πσ

e−
1
2 ( y−µ

σ
)2) = (

1√
2πσ

e−
1
2 ( y−µ

σ
)2) · 1

σ
(
y − µ

σ
) (4.5)

So the partial derivative of the normal distribution with respect to its mean
value is obtained by just multiplying the density function by the inverse of its
standard deviation and its ”standardized” argument, y−µ

σ
.

The formula for the partial derivative with respect to σ is a bit more com-
plicated but still relatively simple. Partial differentiation gives

∂

∂σ
(

1√
2πσ

e−
1
2 ( y−µ

σ
)2) = (

1√
2πσ

e−
1
2 ( y−µ

σ
)2) · 1

σ
((

y − µ

σ
)2 − 1)) (4.6)

This expression is also easy to remember: The normal density function is multi-
plied by the inverse of its standard deviation and the square of its ”standardized”
argument minus one.

4.3.2 Calculating the entries in the information matrix

The information matrix is symmetric, so it suffices to calculate either the upper
or the lower triangular matrix. For a 5x5 matrix it is necessary to calculate 15
values and the rest is given by the symmetry. The matrix is calculated from

logf(d̂; θ) = log

n
∏

i=1

(
p

√

2πσ2
0

e
− (d̂i−µ0)2

2σ2
0 +

1 − p
√

2πσ2
1

e
− (d̂i−µ1)2

2σ2
1 ) (4.7)

=

n
∑

i=1

log(
p

√

2πσ2
0

e
− (d̂i−µ0)2

2σ2
0 +

1 − p
√

2πσ2
1

e
− (d̂i−µ1)2

2σ2
1 ) (4.8)

Each element is a sum of n similar terms, each term is calculated for a particular
d̂i, i.e. the information matrix is a sum of n matrices, each matrix in the sum
having similar entries which depends on one particular calculated value of our
test statistic d̂i.

We proceed by deriving the expressions for the entries in the matrices, each
to be calculated for one of the values of d̂i and eventually summed to give
the information matrix. For clarity and brevity we use the following in the
expressions for the matrix entries

f0 = f0(d̂i; µ0, σ0) = f(d̂i; µ0, σ0|H0) =
1√

2πσ0

e
− 1

2 (
d̂i−µ0

σ0
)2

(4.9)

f1 = f1(d̂i; µ1, σ1) = f(d̂i; µ1, σ1|H1) =
1√

2πσ1

e
− 1

2 (
d̂i−µ1

σ1
)2

(4.10)

f = f(d̂i; θ) =
p√

2πσ0

e
− 1

2 (
d̂i−µ0

σ0
)2 +

1 − p√
2πσ1

e
− 1

2 (
d̂i−µ1

σ1
)2 (4.11)
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The entries Imn, i in row m, column n in matrix i in the sum are given by

Imn, i(θ, d̂i) = −∂2logf(d̂i; θ)

∂θm∂θn

, θ = [θ1 θ2 θ3 θ4 θ5]
′ = [p µ0 µ1 σ0 σ1]

′

(4.12)
Because of the symmetry,

Imn, i(θ, d̂i) = Inm, i(θ, d̂i) (4.13)

we only derive the expressions from the diagonal entries and downwards, using
the same expressions for the upper half of the matrix. We are now ready to find
the partial derivatives.

∂

∂p
logf =

f0 − f1

f
(4.14)

Proceeding by a second partial derivation with respect to each of the parameters
in turn we obtain the first column of matrix i in the sum of matrices:

− ∂2

∂p2
logf = (

f0 − f1

f
)2

− ∂2

∂µ0∂p
logf =

(p(f0 − f1) − f)f0

f2
· d̂i − µ0

σ2
0

− ∂2

∂µ1∂p
logf =

((1 − p)(f0 − f1) + f)f1

f2
· d̂i − µ1

σ2
1

− ∂2

∂σ0∂p
logf =

(p(f0 − f1) − f)f0

f2
· ( (d̂i − µ0)

2

σ3
0

− 1

σ0
)

− ∂2

∂σ1∂p
logf =

((1 − p)(f0 − f1) + f)f1

f2
· ( (d̂i − µ1)

2

σ3
1

− 1

σ1
)

We now have all the entries in the first column and also in the first row due to
the symmetry. We proceed to find the remaining entries in the second column.

∂

∂µ0
logf =

pf0

f
· d̂i − µ0

σ2
0

Next we obtain the entries in the second column from the diagonal entry and
below:

− ∂2

∂µ2
0

logf =
(pf0 − f)pf0

f2
· ( d̂i − µ0

σ2
0

)2 +
pf0

σ2
0f

− ∂2

∂µ1∂µ0
logf =

pf0(1 − p)f1

f2
· d̂i − µ0

σ2
0

· d̂i − µ1

σ2
1

− ∂2

∂σ0∂µ0
logf = (

(pf0 − f)pf0

f2
(
(d̂i − µ0)

2

σ3
0

− 1

σ0
) +

2pf0

σ0f
)
d̂i − µ0

σ2
0
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− ∂2

∂σ1∂µ0
logf =

pf0(1 − p)f1

f2
· d̂i − µ0

σ2
0

(
(d̂i − µ1)

2

σ3
1

− 1

σ1
)

We are now finished with the first two columns and the first two rows. To obtain
the remaing entries is the third column and the third row, we start with the
partial derivative with respedt to µ1:

∂

∂µ1
logf =

(1 − p)f1

f
· d̂i − µ1

σ2
1

− ∂2

∂µ2
1

logf =
((1 − p)f1 − f)(1 − p)f1

f2
· ( d̂i − µ1

σ2
1

)2 +
(1 − p)f1

σ2
1f

− ∂2

∂σ0∂µ1
logf =

pf0(1 − p)f1

f2
· ( (d̂i − µ0)

2

σ3
0

− 1

σ0
) · d̂i − µ1

σ2
1

− ∂2

∂σ1∂µ1
logf = (

((1 − p)f1 − f)(1 − p)f1

f2
(
(d̂i − µ1)

2

σ3
1

− 1

σ1
) +

2(1 − p)f1

σ1f
)
d̂i − µ1

σ2
1

The entries of the first three columns and the first three rows are now found.
We obtain for the first partial derivative with respect to σ0:

∂

∂σ0
=

pf0

f
· ( (d̂i − µ0)

2

σ3
0

− 1

σ0
)

The next entries to be found is the next last diagonal entry and the entry below:

− ∂2

∂σ2
0

logf =
(pf0 − f)pf0

f2
· ( (d̂i − µ0)

2

σ3
0

− 1

σ0
)2 +

pf0

f
· (3(

d̂i − µ0

σ2
0

)2 − 1

σ2
0

)

− ∂2

∂σ1∂σ0
logf =

pf0(1 − p)f1

f2
(
(d̂i − µ0)

2

σ3
0

− 1

σ0
)(

(d̂i − µ1)
2

σ3
1

− 1

σ1
)

Now the only remaining entry is the lower right diagonal element which can be
found from the expression for the next last diagonal element by substituting
1 − p for p, f1 for f0, µ1 for µ0 and σ1 for σ0:

− ∂2

∂σ2
1

logf =
((1 − p)f1 − f)(1 − p)f1

f2
(
(d̂i − µ1)

2

σ3
1

− 1

σ1
)2 +

(1 − p)f1

f
(3(

d̂i − µ1

σ2
1

)2 − 1

σ2
1

)

d̂i−µk

σ2
k

and (d̂i−µk)2

σ3
k

− 1
σk

, k = 1, 2 occur frequently in the matrix entries, so the

calculation of matrix terms in the sum can easily be coded by substitutions for
these expressions. The values for these two expressions, f , f0 and f1 must be
calculated for the corresponding value of d̂i for the term in the matrix sum.
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Chapter 5

Simple probability model

for fMRI recordings

5.1 Defining our simple model

The main task of fMRI is to distinguish between activated and not activated
parts of the brain while the person being tested is exposed to some kind of stim-
uli. As an elementary introduction to the problem a simple probability model
is proposed. To simplify matters in the outset, we make a few assumptions:

• The signal from a voxel1 has either of two levels corresponding to activated
or not activated state

• Noise has a normal distribution

• Noise is equally spread throughout the entire volume

The estimate of the mean d of the difference between the average of the
signal during the times a voxel may be activated by the applied stimuli and the
average strength of the signal when the stimuli is not applied is chosen.

Study of fMRI recordings shows that the assumption of gaussian noise is
met quite well as expected due to the Central Limit Theorem. But the strength
of the noise varies a lot throughout the volume. The assumption of a signal
taking either of two levels does not hold due to properties of the brain matter.
Nevertheless a study of this model is a good introduction which also applies to
similar detection and separation problems.

5.2 Format of fMRI recordings

The fMRI recording equipment measures the the oxygen content in the blood,
utilizing the BOLD2 response to indirectly image active areas of the brain. Ac-

1voxel: volume element, cf. pixel: picture element
2BOLD: blood oxygenation level dependent
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tive areas of the brain exibits increased levels of oxygen. 3-dimensional pictures
of the oxygen level in the various parts of the brain are recorded. Typically the
entire data set comprises 96·96·29 = 267, 264 voxels. Of these only about 20,000
image grey brain matter having the capability to be in an activated state. The
brain is scanned once every third second while the person tested is alternating
between rest and some kind of stimuli or activity. The periods of rest and ac-
tivity are repeated once a minute. There is no standard length of the recording,
but usually the entire recording contains data for about 5 minutes. Thus a time
series of about 100 values is obtained for each voxel.

Figure 5.1 shows the recorded time series for one of the voxels. In this
particular case the fluctuations of the signal due to alternating periods of rest
and activity can be anticipated. Half a minute of rest is followed by half a
minute of activity. This is repeated during the time of recording. The time
series shown is from the part of the brain most clearly being activated by the
stimuli. Unfortunately it is usually much harder to see from the time series
whether the voxel is in its activated state.
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Figure 5.1: Time series of signal from activated voxel.

5.3 Calculating our test statistic and the noise

level

After taking a look at figure 5.2 we decide for using the first 2 and the last 9
samples recorded during each cycle of rest and activity to calculate the signal
level during the time of activity. The remaining 9 samples, 3 to 11, is used for
calculating the signal level during the time of rest.
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Figure 5.2: Signal levels obtained by averaging the 4 1/2 periods each of length
one minute in figure 5.1.

We obtain the value for the signal level during time of activity for a particular
voxel by calculating the average in the time series of all the samples assumed
to display the signal level during time of activity. The signal level during rest
is obtained similarly. The difference between these averages is used as test
statistic.

The calculations of means and variances, in particular computer programs,
is made more complicated by the fact that the length of the recordings is not
a whole number of cycles of the stimuli, neither of fixed length. We could of
course truncate the signal to a fixed length to simplify matters. But we prefer
using all the available samples for not reducing the picture quality.

For this recording of 90 samples, the measured samples in the time series
being yi, i = 1, 2, . . .90, the average of the signal during the period of rest is

ȳrest =
1

44
(

4
∑

j=0

10
∑

i=3

yi+20j +

3
∑

j=0

y11+20j) (5.1)

Similarly the average of the signal during the period of activity is

ȳactivity =
1

46
(

4
∑

j=0

2
∑

i=1

yi+20j +
3

∑

j=0

20
∑

i=12

yi+20j) (5.2)
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Hence we obtain the value of our test statistic:

d̂ = ȳactivity − ȳrest (5.3)

=
1

46
(

4
∑

j=0

2
∑

i=1

yi+20j +

3
∑

j=0

20
∑

i=12

yi+20j) −
1

44
(

4
∑

j=0

10
∑

i=3

yi+20j +

3
∑

j=0

y11+20j)

Assuming independence the variance of the test statistic is given by

Var(d̂) = Var(
1

46
(

4
∑

j=0

2
∑

i=1

yi+20j +

3
∑

j=0

20
∑

i=12

yi+20j)

− 1

44
(

4
∑

j=0

10
∑

i=3

yi+20j +

3
∑

j=0

y11+20j))

=
1

462
(

4
∑

j=0

2
∑

i=1

Var(yi) +

3
∑

j=0

20
∑

i=12

Var(yi))

+
1

442
(

4
∑

j=0

10
∑

i=3

Var(yi) +

3
∑

j=0

Var(yi))

=
1

46
Var(yi) +

1

44
Var(yi) =

90

2024
Var(yi) (5.4)

The values in the time series can be modeled as

yi = xi + εN , i = 1, 2, . . .90 (5.5)

xi is the true value of sample i and εN ∼ N(0, σ2
series) is noise. The fact that

the time series is periodic with 20 values in each cycle can be used to estimate
the noise of each sample. di, di + 20, . . . have equal means and distribution. 20
sample variances, i = 1, . . . 20 can be found, then they can be pooled together
to get a more precise estimate of σ2

series.
Sample variances S2

i , i = 1, . . . 10 are each found from 5 samples by inserting
the values yi+20j , j = 0, . . . 4 into the following expression

S2
i =

1

4

4
∑

j=0

(yi+20j − ȳi)
2 (5.6)

ȳi =
1

5

4
∑

j=0

yi+20j (5.7)

4S2
i

σ2
series

∼ χ2
4 (5.8)

Sample variances S2
i , i = 11, . . . 20 are each calculated from 4 samples

S2
i =

1

3

3
∑

j=0

(yi+20j − ȳi)
2 (5.9)
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ȳi =
1

4

3
∑

j=0

yi+20j (5.10)

3S2
i

σ2
series

∼ χ2
3 (5.11)

Adding all these χ2 variables gives a χ2
70 variable, so the pooled sample variance

is given by
4(S2

1 + . . . + S2
10) + 3(S2

11 + . . . + S2
20)

σ2
series

∼ χ2
70 (5.12)

70S2
p

σ2
series

∼ χ2
70 (5.13)

As an unbiased estimate for σ2
series we obtain from the 90 samples

S2
p =

1

70
(4(S2

1 + . . . + S2
10) + 3(S2

11 + . . . + S2
20)) (5.14)

5.4 Detection capabilities using our simple model

5.4.1 Detection of the time series given in figure 5.1

To give an idea of the capability of detecting activated voxels with our simple
probability model we look at the time series in figure 5.1 known to be the time
series of an activated voxel. We estimate the mean of our test statistic and the
noise of the time series to get some information on the variability of the test
statistic.

In this case we have a single time series of a voxel known to be in the
activated state. If we use it for estimation of µ and σ the calculated value of
d̂ is our estimate of µ and the single calculaton of the variability of d̂ is our
estimate of its variability. We obtain

d̂ = 2.46

To obtain information on the variability of d̂, we calculate Sp obtaining

S2
p = 1.03

If this is considered as the value of Var(yi), we obtain

Var(d̂) =
90

2024
Var(yi) =

90

2024
1.03 = 0.046

σ =
√

0.046 = 0.21

The preceding calculations give a point estimate of µ and Var(d̂). The given
estimates imply very good detection capability for time series like the series
given in figure 5.1. We now do some calculations on the precision of these
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Figure 5.3: Detection capability according to our point estimate of µ and σ. The
black vertical line is the threshold given by (2.4). The cyan and blue curves are
defined as in figures 3.2 and 3.3. The plot to the right gives a magnification of
the y axis.

estimates. We decide for deducing something about the error rate with more
than 95% confidence. Regarding the variance we have

P (
70S2

p

σ2
series

> χ2
70,1−

√
0.95

) =
√

0.95 (5.15)

P (σ2
series <

70S2
p

χ2
70,1−

√
0.95

) =
√

0.95 (5.16)

σ2
series1 =

70S2
p

χ2
70,1−

√
0.95

=
70 · 1.03

48.8
= 1.47 (5.17)

σ2
1 =

90

2024
σ2

series =
90

2024
1.47 = 0.065 (5.18)

σ1 = 0.26 (5.19)

Regarding µ we have

P (
d̂ − µ

σ
< Z√

0.95) =
√

0.95 (5.20)

P (µ > d̂ − σZ√
0.95) =

√
0.95 (5.21)

µ1 = d̂ − σ1Z√
0.95 = 2.46 − 0.26 · 1.95 = 1.96 (5.22)
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Figure 5.4: Diagram of the case σ = σ1 and µ = µ1. The black vertical line is
the threshold given by (2.4). The cyan and blue curves are defined as in figure
5.3. The threshold is chosen in the same way. With probability

√
0.95, σ < σ1

and with the same probability µ > µ1. These values of σ and µ are a subset of
the values having equal or better seperation of the two peaks. Estimates of µ

and σ are independent random variables (because means and sample variances
and functions of them are), so with probability greater than 0.95, detection
capability is better than for the values in this diagram.

From (2.7) we obtain for the error rate given σ = σ1 and µ = µ1

P (error|σ1 , µ1) =

∫ +∞

µ1
2

1
√

2πσ2
1

e
− x2

2σ2
1 dx

=

∫ +∞

µ1
2σ1

1√
2π

e−
z2

2 dz (5.23)

µ1

2σ1
= 3.83

So with more than 95% confidence:

P (error) ≤ 0.000063 (5.24)

5.4.2 Calculating variance for a specified error rate

Equation (5.23) can be used to find how much noise a time series can contain
if a given error rate is not to be exceeded. If the state of a voxel is to be clas-
sified correctly with 95% confidence, we find from statistical tables or program
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packages
µ

2σ
= 1.64

Using the estimated value from the time series in figure 5.1 as the value for µ

we get

σ =
2.46

2 · 1.64
= 0.75

By using equation (5.4) the corresponding variance for the samples in the time
series is

Var(yi) =
2024σ2

90
= 12.6

σseries =
√

Var(yi) = 3.55

A time series with this amount of noise and the value for µ estimated from the
time series in figure 5.1 has been simulated and is shown in figure 5.5. Similar
to figure 5.2 the periods have been averaged in figure 5.6.

Detection can of course be improved by recording more cycles of rest and
applied stimuli, but due to cost considerations about 5 minutes is spent for each
recording.

To get an idea of how knowledge of prior probabilities effects the error rate
we make calculations assuming a prior probability of 0.9 for a voxel not to be
in the activated state. First we have to calculate the optimum threshold from
(2.6). The threshold is increased from µ

2 = 1.23 to d̂thres = 1.73. α is calculated
from (2.9) giving α = 0.0104, i.e. Type I Errors are reduced by 79%. 1 − β

can be calculated from (2.10) giving 1 − β = 0.1643, i.e. Type II Errors are
increased by 229%. From (2.11) the average error rate is αp + (1 − β)(1 − p) =
0.0104 · 0.9 + 0.1643 · (1 − 0.9) = 0.0258, i.e. average error rate is reduced by
48%.

The shape of the histogram of voxel data with parameter values resulting in
this error rate is given in figure 5.7. To have the possibility of classifying the
voxels by using our simple model, the histogram must separate the populations
into two peaks. The probabilities of classification errors are determined by the
amount of overlap between the two peaks.
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Figure 5.5: Time series for voxel simulated with parameters µ and σseries giving
an error rate of 0.05 when using our test statistic d̂.
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Figure 5.6: Periods of simulated time series in figure 5.5 averaged.
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Figure 5.7: Shape of histogram for the test statistic d̂ with p = 0.9 and param-
eters µ and σ giving a misclassification rate of 0.05 without prior probabilities
considered. Misclassification rate is reduced to 0.026 if p is taken into account
for classification.
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Chapter 6

Data from fMRI recording

In this chapter we take a look an fMRI recording. No preprocessing except
motion correction has been applied to the data, we have been told. This sort
of correction is always applied to fMRI recordings because the brain moves in
accord with the heartbeats.

6.1 Data format

The recording is a 4-dimensional 96x96x29x117 data set. The first three coor-
dinates, which we name x, y, and z respectively, are space coordinates while the
fourth coordinate, named t, is a time coordinate. Thus we have a discrete time
series for each voxel containing 117 equally spaced samples.

The measured values have been digitized into one of 1256 digital values. This
fact is easily established by sorting the values, storing them in a 1-dimensional
array and doings searches in this array. Furthermore, for some unknown reason,
the recorded values have been multiplied by a strange constant (1001.1473...)
obviously (precise multiples of this number) in a digital circuit. For our analysis
the measured values are more tractable by our computer software if not multi-
plied by this constant. So we have initially divided all the values in our data
set by this constant to remove the scaling factor.

Together with the recording we have been supplied with a mask for sorting
out the voxels picturing gray brain matter, i.e. the part of the brain of interest
for fMRI. The mask selects 21,187 voxels of a total of 96x96x29 = 267,264 voxels
comprising the entire 3-dimensional moving picture.

The time series seems to be periodic with 18 discrete values recorded every
period of the recording time. An example of such a time series for a voxel is
shown in figure 6.1. Taking a look at the time series for several voxels shows
that the first 3 samples of the series have been recorded before the alternations
between rest and applied stimuli have begun. These 3 samples could have been
used for calculating the mean value during periods of rest. But to avoid patching
written software, the time series have been truncated to the last 114 samples.
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Figure 6.1: Example of time series in the data set. After calculating our test
statistic and sorting in ascending order, this is the time series with index 21150,
which means that only 37 time series in the recording show activation more
clearly than this one.

6.2 Noise introduced by digitizing the measured

values

The sampled values from the volume of the brain containing gray brain matter
spans from 244 to 672, i.e. 429 integers. This digitization introduces noise, but
this noise is quite small compared to the noise from other sources. If this noise
is taken into account, another noise term must be added in (5.5). If all values of
the fractional part of the rounded measured value are considered equally likely,
this additional noise term has a uniform distribution. The probability model
for the sampled values of the time series now become yi = xi + εN + εU , i =
1, 2, . . .114, εN ∼ N(0, σ2

series), εU ∼ U(−0.5, 0.5). As later pointed out, for
this particular recording we obtain our test statistic by averaging 54 values,
then averaging 48 values and calculating the difference between the averages.
The variance of a uniformly distributed random variable on a unit interval is
1
12 , so the noise term in our test statistic d̂ resulting from εU has variance
( 1
54 + 1

48 ) · 1
12 = 0.0033. Due to the Central Limit Theorem the resulting noise

term will have a distribution close to normal. Figure 6.2 shows the result of a
simulation.
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Figure 6.2: Histogram of 10,000 calculations of 1
102

∑102
i=1 εU,i compared to an

N(0, 0.033) distribution.

6.3 Calculating the test statistic

After an inspection of the time series for several evidently activated voxels we
have chosen to calculate the test statistic by averaging samples 9-17, 27-35,
... , averaging samples 1-7, 19-25, ... and subtracting the latter average from
the former. Looking at figure 6.4 we see that the level changes between samples
7 and 9 and after sample 17. The average levels of samples 8 and 18 are far less
than half the difference between the average in the nonactivated state and the
overall average of the series. Including these samples will give a less precise test
statistic due to the added noise. So the chosen expression for the test statistic
for this fMRI recording is

d̂ = ȳactivity − ȳrest (6.1)

=
1

54

5
∑

j=0

17
∑

i=9

yi+18j −
1

48
(

6
∑

j=0

6
∑

i=1

yi+18j +

5
∑

j=0

y7+18j) (6.2)

The resulting histogram for the test statistic for the 21187 voxels showing
gray brain matter with the capability of being in an activated state is shown
in figure 6.5. One reason for the bad fit between our model and the real data
is that the distribution has a long tail to the right. This is at least in part
due to the properties of the gray brain matter. The strength of the measured
signal from activated parts of the brain is not constant as assumed in our simple
model.

Figure 6.5 also shows the result of estimating the MLE’s for the density
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function

f(d̂; σ2
0, σ

2
1 , µ0, µ1, p) =

p
√

2πσ2
0

e
− (d̂−µ0)2

2σ2
0 +

1 − p
√

2πσ2
1

e
− (d̂−µ1)2

2σ2
1 (6.3)

If µ0 = 0 and σ2
0 = σ2

1 this is our simple model from (2.14). Estimation of the
parameters setting σ0 = σ1 or µ0 = 0 has been done in addition to estimation for
our proposed simple probability model (2.14) and the normal-Bernoulli model
with all applicable parameters included as given in (6.3).

As expected the density function (6.3) with most parameters (5) to be esti-
mated gives the best approximation and the density function with fewest para-
mameters (3) to be estimated gives the poorest approximation to the histogram
and the other two alternatives give something in between. But the heavy devi-
ation of the histogram from the estimated functions indicates that our assump-
tions for proposing the probability moedel are not valid. As formerly seen in
figure 6.2 even probability distributions far from normal in shape as the uniform
distribution produce a distribution close to normal when independent identically
distributed samples are summed. The way our test statistic is derived should
guarantee that within the two populations the test statistic has a close to normal
distribution.

6.4 Testing the validity of our model

6.4.1 Goodness-of-Fit Test

To assess the severity of the deviation of the histogram from the density func-
tions we can do a Goodness-of-Fit Test as described in ”Larsen and Marx: An
Introduction to Mathematical Statistics and Its Applications”, third edition,
page 540. Our test statistic to be calculated for performing this test is

c1 =

k
∑

i=1

(xi − np̂i)
2

np̂i

(6.4)

It is best making the division into intervals for performing the test coincide
with our columns in the histogram in figure 6.5. Then k becomes the number
of histogram columns included in this hypothesis test (the columns should be
chosen such that np̂i ≥ 5 for all k columns), xi is the number of values of the
calculated test statistic included in column i and n is the number of samples
drawn from the distribution, in this case n = 21,187, the number of voxels
showing gray brain matter. p̂i is the estimated probability for the test statistic
making it one of the values of column i (depends on our choice of probability
model and the estimated parameters). With our choice of model p̂i is calculated
as

p̂i = p̂(Φ(
di+1 − µ̂0

σ̂0
)−Φ(

di − µ̂0

σ̂0
))+(1− p̂)(Φ(

di+1 − µ̂1

σ̂1
)−Φ(

di − µ̂1

σ̂1
)) (6.5)

42



Φ(·) is the standard normal cumulative distribution function. di is the left
border of column i of the histogram of the calculated test statistics.

c1 ∼ χ2
k−1−r

r is the number of estimated parameters. r = 3 for our simple model, r = 5 for
the normal-Bernoulli model with all applicable parameters included and r = 4
if we restrict the latter to µ0 = 0 or σ0 = σ1. The hypothesis that the data is
from the model assumed while doing the calculations in (6.5) should be rejected
with significance level α if c1 ≥ χ2

1−α,k−1−r .

6.4.2 Result while testing our probability models

The test rejects the hypothesis that the histogram is drawn from a normal-
Bernoulli distribution.

While testing our simple model using all the columns with expectation
greater than 5 (i.e. the columns with d̂ from -11.4 to 21), we obtain c1 ≈ 3, 284
for a χ2

132 test statistic. The P-value for this value of the test statisticis trun-
cated to 0 by the computer software, so it is almost quite impossible that our
model is applicable.

If the test is performed for the model allowing the main peak to be displaced
from 0, the columns from -9.72 to 23.16 can be included. We obtain c1 ≈ 1, 419
for a χ2

133 test statistic and again the P-value is truncated to 0.

If the test is performed for the model allowing for different variances for the
2 populations but not allowing for the main peak to be displaced from 0, the
columns from -10.68 to 20.28 can be included. We obtain c1 ≈ 1, 391 for a χ2

125

test statistic and again the P-value is truncated to 0.

If the test is performed for the normal-Bernoulli model with all applicable
parameters, the columns from -10.44 to 22.68 can be included. We obtain
c1 ≈ 386 for a χ2

133 test statistic and still the P-value is truncated to 0.

6.5 Looking at the noise in the fMRI time series

So far in this chapter we have estimated the parameters the way it is usually
done for pictures consisting of two main parts of interest. For the fMRI data
we have a time series available for each voxel. As shown in section 5.3 the noise
in each voxel can be estimated from its time series.
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6.5.1 Distribution of the sample variance

For this particular fMRI recording, after cutting away the first three samples of
the time series, the expression for S2

p is

S2
p =

1

6 · 6 + 5 · 12
(6(S2

1 + . . . + S2
6) + 5(S2

7 + . . . + S2
18)) =

1

96
(6

6
∑

i=1

S2
i + 5

18
∑

i=7

S2
i )

=
1

96
(6

6
∑

i=1

1

6

6
∑

j=0

(yi+18j − ȳi)
2 + 5

18
∑

i=7

1

5

5
∑

j=0

(yi+18j − ȳi)
2)

=
1

96
(

6
∑

i=1

6
∑

j=0

(yi+18j − ȳi)
2 +

18
∑

i=7

5
∑

j=0

(yi+18j − ȳi)
2) (6.6)

ȳi =
1

7

6
∑

j=0

yi+18j i = 1, . . . , 6 (6.7)

ȳi =
1

6

5
∑

j=0

yi+18j i = 7, . . . , 18 (6.8)

96S2
p

σ2
series

∼ χ2
96

S2
p ∼ 96

σ2
series

χ2
96(

96s2
p

σ2
series

) (6.9)

S2
p should have a χ2

96 distribution close to a normal distribution in shape

(again due to the CLT) with variance 2σ4

96 . Calculating the S2
p ’s and plotting

a histogram shows that this is far from true. The histogram is far from a χ2
96

distribution in shape. The parameter σ2
series in distribution (6.9) has been esti-

mated by using maximum likelihood and the resulting probability distribution
plotted. The largest value of S2

p is 7,863, i.e. the tail to the right is about
ten times as long as is shown in figure 6.6. The next largest value is S2

p ≈
5,723, there are 4 values greater than 5,000, 16 values greater than 2,000 and 71
values greater than 800 (i.e. not included in the histogram). It was necessary
to exclude the largest 19 values (1,663 the largest value of Sp included in the
MLE calculaton) while estimating σ2

series to avoid getting a zero argument for

the log function while calculating log( 96
σ2 χ2

96(
96S2

p,i

σ2 ) in the numerical maximiza-
tion of the likelihood function. The value obtained for the maximum likehood
estimator was σ̂2

series = 87.6.

6.5.2 Calculating the variance of the test statistic from

the variance of the time series

For calculating the noise of our test statistic from σ2
series we obtain an equation

similar to equation (5.4). Taking the variance of expression (6.2) gives
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Figure 6.3: Average of the time series for the 100 voxels having test statistic
from 12.01 to 12.75.
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Figure 6.4: Average of the periods in figure 6.3.

45



σ = V ar(d̂) = V ar(
1

54

5
∑

j=0

17
∑

i=9

yi+18j −
1

48
(

6
∑

j=0

6
∑

i=1

yi+18j +

5
∑

j=0

y7+18j))

=
1

542

5
∑

j=0

17
∑

i=9

V ar(yi) +
1

482
(

6
∑

j=0

6
∑

i=1

V ar(yi) +
5

∑

j=0

V ar(yi))

=
1

542
54V ar(yi) +

1

482
48V ar(yi) =

51

1296
σ2

series (6.10)

Taking our maximum likelihood estimation of σ2
series as the true value for

the variance of the time series in our model gives

σ =

√

51

1296
87.6 = 1.857 (6.11)

for the variance of our test statistic, a smaller value than the values of all of
the estimated σ’s from the histogram of the test statistic. This is reasonable
because the spread of the two populations is partly due to other causes than
random noise in the samples. But the problem this estimation also is that the
assumption of equally distributed noise does not hold.

A scatterplot of the values of the test statistic and the noise is shown in
figure 6.8 and figure 6.9

6.5.3 Looking for correlation of noise in adjacent voxels

The correlation coefficient is defined as

ρ(X, Y ) =
Cov(X, Y )

√

V ar(X)
√

V ar(Y )
=

E(XY ) − E(X)E(Y )
√

V ar(X)
√

V ar(Y )
(6.12)

Usually it is estimated by calculating the sample correlation coefficient, but
to eliminate the periodic variations of the time series we estimate it by using a
technique similar to the estimation (6.6) of the noise of the time series. Here the
variances in (6.12) is estimated as the mean of the variances of yi, i = 1, 2, . . .

(similarly for Var(X)):

ˆV ar(Y ) =
1

114
(

6
∑

i=1

6
∑

j=0

(yi+18j − ȳi)
2 +

18
∑

i=7

5
∑

j=0

(yi+18j − ȳi)
2) (6.13)

Here the covariance of the noise is estimated as

ˆCov(X, Y ) =
1

114
(

6
∑

i=1

6
∑

j=0

xi+18j yi+18j − 7

6
∑

i=1

x̄iȳi +

18
∑

i=7

5
∑

j=0

xi+18j yi+18j − 6

18
∑

i=7

x̄iȳi)

(6.14)

The correlation coefficients have been estimated between neighbours in the x, y

46



−20 −15 −10 −5 0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

value of test statistic

Figure 6.5: Histogram of our test statistic calculated from the given fMRI
recording. The red curve is the resulting density function when applying our
simple model. The estimated MLE parameters for this model are p = 0.948,
µ = 14.2 and σ = 3.78 (red curve). A better fit is obtained if the simple model
is modified, allowing for different variances for the two populations of voxels
(nonactivated and activated). Estimating the MLE parameters for this modi-
fied model gives p = 0.679, µ = 4.85, σ0 = 2.55 and σ1 = 6.30 (green curve). If
allowing for the main peak to be located away from 0, but assuming the same
variance for the two populations, we obtain p = 0.972, µ0 = 1.48, µ1 = 17.7
and σ = 3.73 for the MLE’s (blue curve). Allowing for both the main peak
being location away from 0 and for different variances for the two populations
p = 0.847, µ0 = 1.15 and µ1 = 6.24, σ0 = 2.92 and σ1 = 8.25 are obtained for
the MLE’s (magenta curve).
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Figure 6.6: Histogram of pooled sample variance from the time series for the
voxels showing gray brain matter.
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Figure 6.7: The same as figure 6.6 but vertical axis enlarged to better show the
tail.
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Figure 6.8: Scatterplot of the test statistics and their noise calculated from the
time series.
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Figure 6.9: Scatterplot enlarge along the axis for the noise value.

49



−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

500

1000

1500

2000

x direction
−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

500

1000

1500

2000

y direction
−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

500

1000

1500

2000

z direction

Figure 6.10: Histograms from estimation of correlation between noise in adjacent
voxels in the x, y and z directions respectively in gray brain matter. The same
correlation pattern applies in the other areas of the brain.

and z directions. There is some correlation between the noise of the neighbours.
For some unknown reason the correlation is highest between neighbours in the
y direction. See figure 6.10.

6.5.4 Examples of noise in the time series

6.5.5 Density distribution of the noise

The great variations in magnitude of the noise is surprising. But far from
surprisingly due to the CLT the noise for a given voxel seems to be close to
normal in shape. Histograms of the samples in the time series showing a test
statistic d̂ between -0.5 and 0.5 has been standardized by subtracting the mean
and dividing the difference by the sample standard deviation. Then they have
been added to obtain an average. The time series should contain very little or
no periodic variations because of the value of the test statistic. If the noise in a
given voxel is Gaussian the sum of the histograms should be close to a Student
t distribution with 114 degrees of freedom in shape (i.e. also very close to a
normal distribution). The result is shown in figure 6.13.
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Figure 6.11: The noise from these adjacent voxels seems a bit correlated. Time
series (blue) for voxel (53, 27, 3) with index 20000 when sorted with respect
to estimated correlation coefficients and time series (red) for one of its closest
neighbours (53, 28, 3) in the y direction. Mean value for the latter has been
shifted by -105 for ease of comparison. Sometimes there is a large change in
the mean value of the time series when moving between close neighbours. A
histogram of the changes in mean values resembles a normal distribution with
a standard deviation around 35.
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Figure 6.12: Time series for some voxels located in the gray brain matter. Time
series for the most noisy voxel (50, 37, 28), the least noisy (42, 19, 18), voxel
showing increasing average (28, 22, 10) and voxel showing decreasing average

(24, 29, 13). The values of the test statistic d̂ for these voxels are respectively
0.26, -0.27, 3.09 and -11.70. The drift of the average level falsely influences our
chosen test statistic.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

Figure 6.13: Noise appears to be close to normal in shape but differs in magni-
tude. Figure shows the average shape of the histograms of the samples in the
2640 time series exibiting d̂ between -0.5 and 0.5. The shape of the Student t
distribution with 114 degrees of freedom has been plotted for comparison.
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Figure 6.14: Voxels having different values for the test statistic. Time series for
voxel (32, 43, 24) giving d̂ = 45.9 (red), voxel (25, 45, 16) giving d̂ = 12.7 (blue)

and voxel (48, 18, 12) giving d̂ = −11.3 (green). The latter is an example of a
voxel being deactivated by the applied stimuli. (Mean of uppermost time series
shifted +100 and mean of lowermost time series shifted by -20 before plotting.)
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Chapter 7

Obtaining better separation

of the voxels

7.1 Separation methods from chapter 5

7.1.1 Error expectations for our fMRI recording without

taking prior probabilities into account

Using a standard hypothesis test for determining the state of a voxel results in
error rates given by (2.7) and (2.8). Taking into account that σ0 and σ1 have

different values we obtain the threshold of d̂ by solving f(d̂|H0) = f(d̂|H1).
We obtain 5.376 for the threshold. If Φ is the standard normal cumulative
distribution, the probability for a Type I error given H0 is

P (Type I error|H0) = 1 − Φ(
5.376 − µ0

σ0
) = 1 − Φ(

5.376 − 1.152

2.924
) = 0.0743

The probability for a Type II error given H1 is

P (Type II error|H1) = Φ(
5.376− µ1

σ1
) = Φ(

5.376− 6.236

8.255
) = 0.459

The expected classification error rate is

P (error) = p · P (Type I error|H0) + (1 − p) · P (Type II error|H1)

= 0.8473 · 0.0743 + (1 − 0.8473) · 0.459 = 0.133

7.1.2 Error expectations taking the average prior proba-

bility into account

If the average prior probability of a voxel being not activated, our parameter p, is
taken into account, the error rate can be improved. Now we obtain the threshold
by solving pf(d̂|H0) = (1 − p)f(d̂|H1). We obtain 8.041 for the threshold.
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Otherwise the errors are calculated by using exactly the same expressions. Now
the probability for a Type I error given H0 is

P (Type I error|H0) = 1 − Φ(
8.041 − µ0

σ0
) = 1 − Φ(

8.041 − 1.152

2.924
) = 0.00924

In this case the probability for a Type II error given H1 is

P (Type II error|H1) = Φ(
8.041 − µ1

σ1
) = Φ(

8.041 − 6.236

8.255
) = 0.587

And the overall expected error rate by assuming a constant prior probability is

P (error) = p · P (Type I error|H0) + (1 − p) · P (Type II error|H1)

= 0.8473 · 0.00924 + (1 − 0.8473) · 0.587 = 0.0974

Taking p into account can dramatically improve the error rate for the voxels
being in the most likely state but the error rate for the voxels in the least likely
state increases. The net result is an improvement in the overall error rate.

7.2 Improved Bayesian restoration

So far we have used Bayesian restoration in a very simple manner: Assuming
that the prior probability for a voxel belonging to either of the two populations
is constant. This can be approved upon: The prior probability of a voxel being
in a given state can be chosen as a function of the state of the nearby voxels.

7.3 Use of the Geman McClure potential

The Geman McClure potential is given by expression (3.9). The ICM algorithm
for use with fMRI recordings has been implemented using this potential with
parameters β = 0.7 and δ = 1.2σ0 = 1.2 · 2.92. The initial histogram of the
test statistic and the histogram after the first iteration is shown in figure 7.1.
Figures 7.2, 7.3 and 7.4 shows the histogram after further iterations. As can be
seen the separation of the peaks needs only a few iterations.

7.4 Using ICM two sort directly into two popu-

lations

It is reasonable to assume that P (xi = µ0|x∂i) will approximate a function given
by a falling straight line starting at P (xi|no neighbours activated) = pmax and
ending at P (xi|all neighbours activated) = pmin. Maybe an S-shaped line with
bent in either direction will be a better approximation. So we try some kind of
S-shaped curve with a parameter for the bend, P (xi|no neighbours activated)
and P (xi|all neighbours activated) as its three parameters. In the proposed
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Figure 7.1: Initial histogram before running ICM and histogram after the first
iteration.
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Figure 7.2: Histograms after the second and third iteration.
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Figure 7.3: Histograms after the fourth and fifth iteration.
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Figure 7.4: Histograms after the sixth and seventh iteration.
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approximations for the true P (xi = µ0|x∂i) we name these parameters b, pmax

and pmin respectively.
A weighted sum of voxels in the nonactivated state is chosen as the argument

of this function. We define the neighbourhood to be the set of the 26 voxels
closest to voxel i. There is a first order neighbourhood of 6 voxels, one at each
side of voxel i, a second order neighbourhood of 12 voxels, one at each line where
two sides of the voxel meet, and a third order neighbourhood of 8 voxels, one
at each corner where three sides meet. The neighbourhood voxels are given a
weight inversely proportional to the distance of their centers from the center of
voxel i.

For our fMRI recordings things are a bit more complicated because the
resolution in the z direction is 4.0 mm and the resolution in the x and y direction
is 2.4 mm, i.e. the resolutionin the z direction is 5

3 times the resolution in the
other two directions. So we use two different weights for voxels in the first order
neighbourhood and also two different weights for voxels in the second order
neighbourhood dependent upon whether the displacement of the neighbour voxel
from voxel i includes displacement in the z direction. We use the weights 1
(4 voxels) or 3

5 = 0.6 (2 voxels) for voxels in the first order neighbourhood,
1√

12+12 = 1√
2
≈ 0.71 (4 voxels) or 1√

12+( 5
3 )2

= 1√
34
9

≈ 0.51 (8 voxels) for voxels

in the second order neighbourhood and 1√
12+12+( 5

3 )2
= 1√

43
9

≈ 0.46 for all the

voxels in the third order neighbourhood.
By counting the number of voxels given each of the weights above, multiply-

ing by the weights and summing, a variable used as the argument for a function
giving the probability P (xi = µ0|x∂i) is obtained. In our case it is a number
ranging from 0 to 4 ·1 + 2 · 3

5 + 4 · 1√
2

+ 8 · 3√
34

+ 8 · 3√
43

≈ 15.8. We refer to

this weighted sum of activated neighbour voxels as w and its maximum value
as wmax.

A straight line starting at pmax for w = 0 and ending at pmin for w = wmax

is given by

p(w) =
(pmin − pmax)w

wmax

+ pmax w ∈ [0, wmax]

A simple proposal for an S-shaped curve, symmetric about its midpoint, having
the same endpoints as the straight line is

p(w) =
1

2
((pmax − pmin)(1 +

1

bw
)(

1

1 + bw
− 1

1 + b(wmax − w)
) + pmin + pmax)

w ∈ [0, wmax]

A proposal for a curve having a bend in the opposite direction, still having the
same endpoints is

p(w) =







1
2 ((pmax − pmin)(1 + 2

bwmax
)

−b(w−wmax
2 )

1−b(w−wmax
2 )

+ pmin + pmax) if 0 ≤ w ≤ wmax

2

1
2 ((pmax − pmin)(1 + 2

bwmax
)

−b(w−wmax
2 )

1+b(w−wmax
2 ) + pmin + pmax) if wmax

2 < w ≤ wmax
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We note that the deactivated (or negative activated) voxels are classified
into the population of activated voxels due to the larger variance of the test
statistic for activated voxels. See figure 3.4. However it is easy to separate the
deactivated from the activated voxels by just testing the sign of the test statistic
for the activated population obtaining a classification into three populations:
Nonactivated, activated and deactivated voxels.
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Figure 7.5: fMRI picture from the University Hospital

61



Figure 7.6: The same fMRI picture obtained by ICM
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Figure 7.7: fMRI picture from the University Hospital
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Figure 7.8: The same picture obtained by ICM
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Chapter 8

Application of the ICM

algorithm to find the border

of photographed moles

The ICM algorithm has alsobeen tried as a method to draw the border of moles.
This is part of a project for improving the process of detecting melanoma. His-
togram of the test statistic is shown in figure 8.1 together with the distribution
estimated by the use of maximum likelihood.

A picture with estimate of the border is shown in figure 8.2. The black curve
is the border estimated from the use of ICM. The other lines are determined by
methods developed by another student. A straight line for the prior probability
starting at p = 0.99975 for no mole pixels in the neighbourhood and ending
at p = 0.00025 if all the neighbourhood voxels show mole has been used. The
estimated position of the border depends on the choice of endpoints of this line.

Figure 8.3 shows the result of borders estimated from simulations of param-
eters by using the information matrix. As can be seen the estimation is quite
robust. 100 sets of parameters were simulated and printed in the same picture.
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Figure 8.1: Histogram of the values of picture elements of mole. Three dimen-
sional colour elements have been converted to single dimension
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Figure 8.2: Picture of mole with estimated border
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Figure 8.3: Use of the simulation of parameter distribution for testing the ro-
bustness of the border estimation.
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Appendix A

Appendix

A.1 MATLAB programs

A.1.1 Program for calculating the test statistic

%Calculating the test statistic

period_of_stimuli = 18; start_inactivated = 1; end_inactivated = 7;

start_activated = 9; end_activated = 17;

load fmri2 img; img(:, :, :, 1: 3) = [];

[x_max y_max z_max t_max] = size(img);

complete_periods = floor(t_max / period_of_stimuli);

start_incomplete_period = complete_periods * period_of_stimuli + 1;

points_in_incomplete_period = mod(t_max, period_of_stimuli);

img(:, :, :, 1: points_in_incomplete_period) =...

img(:, :, :, 1: points_in_incomplete_period)...

+ img(:, :, :, start_incomplete_period: start_incomplete_period ...

+ points_in_incomplete_period - 1); pack;

%periods_indexed = reshape(img(:, :, :, 1: start_incomplete_period - 1), ...

[x_max y_max z_max period_of_stimuli complete_periods]);

periods_averaged = sum(reshape(img(:, :, :, 1: start_incomplete_period - 1), ...

[x_max y_max z_max period_of_stimuli complete_periods]), 5);

%periods_indexed = [];

periods_averaged(:, :, :, 1: points_in_incomplete_period) =...

periods_averaged(:, :, :, 1: points_in_incomplete_period) / ...

(complete_periods + 1);

periods_averaged(:, :, :, points_in_incomplete_period + 1: period_of_stimuli) =...

periods_averaged(:, :, :, points_in_incomplete_period + 1: period_of_stimuli) ...

/ complete_periods;

%img(:, :, :, start_incomplete_period: start_incomplete_period ...

+ points_in_incomplete_period - 1) = [];

weight_of_times = zeros(1, period_of_stimuli);

if start_inactivated <= end_inactivated
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weight_of_times(start_inactivated: end_inactivated)...

= -1 / (end_inactivated + 1 - start_inactivated);

else

weight_of_times(1: end_inactivated)...

= -1 / (end_inactivated + period_of_stimuli + 1 - start_inactivated);

weight_of_times(start_inactivated: period_of_stimuli)...

= -1 / (end_inactivated + period_of_stimuli + 1 - start_inactivated);

end

if start_activated <= end_activated

weight_of_times(start_activated: end_activated)...

= 1 / (end_activated + 1 - start_activated);

else

weight_of_times(1: end_activated)...

= 1 / (end_activated + period_of_stimuli + 1 - start_activated);

weight_of_times(start_activated: period_of_stimuli)...

= 1 / (end_activated + period_of_stimuli + 1 - start_activated);

end

test_stat = zeros(x_max, y_max, z_max);

for x = 1: x_max,

for y = 1: y_max,

for z = 1: z_max,

test_stat(x, y, z) =...

weight_of_times * squeeze(periods_averaged(x, y, z, :));

end

end

end

%test statistic calculated

%single_dim = reshape(activated_minus_inactivated, ...

%[x_max * y_max * z_max 1]);

%[sorted_differences, indices_differences] = sort(single_dim);

h_axis_left_end = -30; h_axis_right_end = 62; bin_width = 0.25;

bin_edges = [h_axis_left_end: bin_width: h_axis_right_end];

bin_centers = bin_edges + bin_width/2;

histc_test_stat = histc(test_stat(:), bin_edges);

figure; bar(bin_centers, histc_test_stat, 1, ’w’);

%plot histogram of all calculated tests statistics

position0 = round(-h_axis_left_end / bin_width);

histc_noise = histc_test_stat;

for k = position0: -1: 1, histc_noise(2*position0 + 1 - k) = histc_noise(k); end;

histc_noise(2*position0 + 1: end) = zeros(length(histc_noise) - 2*position0, 1);

figure; bar(bin_centers, histc_noise, 1, ’w’);

%plot symmetric histogram based on left slope of main peak

histc_signal = histc_test_stat - histc_noise;

figure; bar(bin_centers, histc_signal, 1, ’w’);

%plot difference between histograms
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k = 0; load maske_graa; gray_voxels = sum(maske_graa(:));

test_stat_gray = zeros(1, gray_voxels); xs = zeros(1, gray_voxels); ...

ys = zeros(1, gray_voxels); zs = zeros(1, gray_voxels);

for z = 1: z_max,

for y = 1: y_max,

for x = 1: x_max,

if maske_graa(x, y, z) > 0.5

k = k + 1;

test_stat_gray(k) = test_stat(x, y, z);

noise_gray(k) = variances(x, y, z);

xs(k) = x; ys(k) = y; zs(k) = z;

end

end

end

end

test_stat_noise_gray = test_stat_gray./sqrt(noise_gray);

%m = k;

[sorted_test_stat_gray, stat_ind] = sort(test_stat_gray);

[sorted_noise_gray, noise_ind] = sort(noise_gray);

[sorted_test_stat_noise_gray, stat_noise_ind] = sort(test_stat_noise_gray);

k = 0; load maske_ikkegraa_begrenset; nongray_voxels = ...

sum(maske_ikkegraa_begrenset(:));

test_stat_nongray = zeros(1, nongray_voxels); xsnon = zeros(1, nongray_voxels); ...

ysnon = zeros(1, nongray_voxels); zsnon = zeros(1, nongray_voxels);

for z = 1: z_max,

for y = 1: y_max,

for x = 1: x_max,

if maske_ikkegraa_begrenset(x, y, z) > 0.5

k = k + 1;

test_stat_nongray(k) = test_stat(x, y, z);

noise_nongray(k) = variances(x, y, z);

xsnon(k) = x; ysnon(k) = y; zsnon(k) = z;

end

end

end

end

test_stat_noise_nongray = test_stat_nongray./sqrt(noise_nongray);

[sorted_test_stat_nongray, stat_indnon] = sort(test_stat_nongray);

[sorted_noise_nongray, noise_indnon] = sort(noise_nongray);

[sorted_test_stat_noise_nongray, stat_noise_indnon] = ...

sort(test_stat_noise_nongray);

distrib_hist = histc(test_stat_gray, bin_edges);
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figure; bar(bin_centers, distrib_hist, 1, ’w’);

histc_noise_gray = distrib_hist;

for k = position0: -1: 1, histc_noise_gray(2*position0 + 1 - k) = ...

histc_noise_gray(k); end;

histc_noise_gray(2*position0 + 1: end) = zeros(length(histc_noise_gray) ...

- 2*position0, 1);

histc_signal_gray = distrib_hist - histc_noise_gray;

figure; bar(bin_centers, histc_signal_gray, 1, ’w’);

%plot difference between histograms

distrib_hist = histc(test_stat_nongray, bin_edges);

figure; bar(bin_centers, distrib_hist, 1, ’w’);

img = []; load fMRI2; img(:, :, :, 1: 3) = [];

gray_size = length(stat_ind); sorted_ascending = zeros(gray_size, t_max);

sorted_ascending_test_statistic = zeros(gray_size, 1);

coordinates_sort = zeros(gray_size, 3);

for l = gray_size: -1: 1,

sorted_ascending(gray_size - l + 1, :) = reshape(img(xs(stat_ind(l)), ...

ys(stat_ind(l)), ...

zs(stat_ind(l)), :), [1 t_max]);

sorted_ascending_test_statistic(gray_size - l + 1) = sorted_test_stat_gray(l);

coordinates_sort(gray_size - l + 1, :) = ...

[xs(stat_ind(l)) ys(stat_ind(l)) zs(stat_ind(l))];

end

best_detection = test_stat_gray./(51/1296*sqrt(variances_gray));

sorted_best_detected_series = zeros(gray_size, t_max); ...

sorted_best_detected_statistic = zeros(gray_size, 1);

sorted_best_detected_coord = zeros(gray_size, 3);

[best_detection_sorted, coord_best] = sort(best_detection, ’descend’);

for l = 1: gray_size,

sorted_best_detected_series(l, :) = reshape(img(xs(coord_best(l)), ...

ys(coord_best(l)), zs(coord_best(l)), :), [1 t_max]);

sorted_best_detected_statistic(l) = test_stat(xs(coord_best(l)), ...

ys(coord_best(l)), zs(coord_best(l)));

sorted_best_detected_coord(l, :) = ...

[xs(coord_best(l)) ys(coord_best(l)) zs(coord_best(l))];

end

%calculation of average of time series

lower_lin_ind = find(sorted_test_stat_gray > 12, 1)

voxel_count = 100; series_averaged = zeros(1, t_max);

upper_lin_ind = lower_lin_ind + voxel_count - 1;

for l = lower_lin_ind: upper_lin_ind,

series_averaged = series_averaged + ...

squeeze(img(xs(stat_ind(l)), ys(stat_ind(l)),

zs(stat_ind(l)), :))’;
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end

test_statistic_lower = test_stat(xs(stat_ind(lower_lin_ind)), ...

ys(stat_ind(lower_lin_ind)),

zs(stat_ind(lower_lin_ind)))

test_statistic_upper = test_stat(xs(stat_ind(upper_lin_ind)), ...

ys(stat_ind(upper_lin_ind)), ...

zs(stat_ind(upper_lin_ind)))

series_averaged = series_averaged/voxel_count;

series_averaged_period = zeros(1, 18);

for t = 1: 6,

series_averaged_period(t) = series_averaged(t) + series_averaged(t + 18) ...

+ series_averaged(t + 36)...

+ series_averaged(t + 54) + series_averaged(t + 72) + series_averaged(t + 90) ...

+ series_averaged(t + 108);

end

for t = 7: 18,

series_averaged_period(t) = series_averaged(t) + series_averaged(t + 18) ...

+ series_averaged(t + 36) + series_averaged(t + 54) + ...

series_averaged(t + 72) + series_averaged(t + 90);

end

series_averaged_period(1: 6) = series_averaged_period(1: 6)/7;

series_averaged_period(7: 18) = series_averaged_period(7: 18)/6;

figure; plot(1: t_max, series_averaged, ’-o’); hold on; ...

plot(1: t_max, mean(series_averaged)*ones(1, t_max), ’r’); hold off;

figure; plot(1: 18, series_averaged_period, ’-o’); hold on; ...

plot(1: 18, mean(series_averaged_period)*ones(1, 18), ’r’); hold off;

%img = [];

A.1.2 Program for calculating the noise

load fmri2 img; img(:, :, :, 1: 3) = []; fMRI_recording = img; img = [];

%load fmri Y; fMRI_recording = Y; Y = [];

%fMRI_recording = sqrt(sigma2)*randn(96, 96, 29, 114);

period_of_stimuli = 18;

[x_max y_max z_max t_max] = size(fMRI_recording);

complete_periods = floor(t_max / period_of_stimuli);

%calculates number of periods

start_incomplete_period = complete_periods * period_of_stimuli + 1;

%start of incomplete sample

points_incomplete_period = mod(t_max, period_of_stimuli); ...

%number of points comprising incomplete period

fMRI_recording = single(fMRI_recording); %reduce storage space for recording

Y2 = fMRI_recording(:, :, :, start_incomplete_period: t_max); ...

Y1 = fMRI_recording(:, :, :, 1: start_incomplete_period - 1);
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%Y2 = reshape(Y2, [x_max y_max z_max 10 1]);

Y1 = reshape(Y1, [x_max y_max z_max period_of_stimuli complete_periods]);

Y3 = Y1(:, :, :, 1: points_incomplete_period, :);

Y3(:, :, :, :, complete_periods + 1) = Y2; %Y3 contains phase with extra samples

Y2 = Y1(:, :, :, points_incomplete_period + 1: period_of_stimuli, :); clear Y1; pack;

%Y2 contains phase with no extra samples

variances = single(zeros(x_max, y_max, z_max, period_of_stimuli));

%specify dimension of matrix

variances(:, :, :, 1: points_incomplete_period) = ...

var(Y3(:, :, :, :, :), 0, 5) * complete_periods; clear Y3;

%calculates sample variances for phase with extra samples

variances(:, :, :, points_incomplete_period + 1: period_of_stimuli) ...

= var(Y2(:, :, :, :, :), 0, 5) * (complete_periods - 1); clear Y2;

%calculates sample variances for phase with no extra samples

variances_series = sum(variances(:, :, :, :), 4) /...

(complete_periods * points_incomplete_period + (complete_periods - 1) ...

* (period_of_stimuli - points_incomplete_period));

%pools the variances to obtain estimate of variance for time series

variances = double((points_incomplete_period * (complete_periods + 1) + ...

(period_of_stimuli - points_incomplete_period) * complete_periods) /...

(points_incomplete_period * (complete_periods + 1) * ...

(period_of_stimuli - points_incomplete_period) * complete_periods) ...

* variances_series);

k = 0; [x_max y_max z_max] = size(variances_series); load maske_graa; ...

gray_voxels = sum(maske_graa(:));

variances_gray = zeros(1, gray_voxels); xs = zeros(1, gray_voxels); ...

ys = zeros(1, gray_voxels); zs = zeros(1, gray_voxels);

for z = 1: z_max,

for y = 1: y_max,

for x = 1: x_max,

if maske_graa(x, y, z) > 0.5

k = k + 1;

variances_gray(k) = variances_series(x, y, z);

xs(k) = x; ys(k) = y; zs(k) = z;

end

end

end

end

[sorted_variances, coord] = sort(variances_gray);

%variances_gray(k + 1: end) = [];

%xs(k + 1: end) = []; ys(k + 1: end) = []; zs(k) = [];

%figure; hist(variances_gray, 2000);

bin_edges_var = 0: 2.5: 8000; bin_centers_var = bin_edges_var + 1.25;

var_distrib = histc(variances_gray, bin_edges_var);

figure(2); bar(bin_centers_var, var_distrib, 1, ’w’);
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A.1.3 Program for restoring fMRI images

global x y z neighbours lower_x lower_y lower_z...

upper_x upper_y upper_z beta activated_minus_inactivated estimated_image...

variances twice_sigma_squared;

lower_x = 1; lower_y = 1; lower_z = 1;

upper_x = 96; upper_y = 96; upper_z = 29;

neighbours = [0 0 1 1; 0 1 0 1; 1 0 0 1; 0 0 -1 1; 0 -1 0 1; -1 0 0 1;...

0 1 1 1 / sqrt(2); 1 0 1 1 / sqrt(2); 1 1 0 1 / sqrt(2); 0 1 -1 1 / sqrt(2);...

1 0 -1 1 / sqrt(2); 1 -1 0 1 / sqrt(2); 0 -1 1 1 / sqrt(2); -1 0 1 1 / sqrt(2);...

-1 1 0 1 / sqrt(2); 0 -1 -1 1 / sqrt(2); -1 0 -1 1 / sqrt(2); ...

-1 -1 0 1 / sqrt(2); 1 1 1 1 / sqrt(3); 1 1 -1 1 / sqrt(3); ...

1 -1 1 1 / sqrt(3); -1 1 1 1 / sqrt(3); ...

1 -1 -1 1 / sqrt(3); -1 1 -1 1 / sqrt(3); ...

-1 -1 1 1 / sqrt(3); -1 -1 -1 1 / sqrt(3)];

betas = single([0.5 1 1 0.5 1 1 1 / sqrt(2) 1 / sqrt(2) 1 / sqrt(2) ...

1 / sqrt(2) 1 / sqrt(2) 1 / sqrt(2)

1 / sqrt(2) 1 / sqrt(2) 1 / sqrt(2) 1 / sqrt(2) 1 / sqrt(2) 1 / sqrt(2) ...

1 / (2 * sqrt(2)) 1 / (2 * sqrt(2)) 1 / (2 * sqrt(2)) 1 / (2 * sqrt(2)) ...

1 / (2 * sqrt(2)) 1 / (2 * sqrt(2)) 1 / (2 * sqrt(2)) 1 / (2 * sqrt(2))]);

neighbours(:, 4) = betas’;

beta = 0.7;

for iteration = 1: 10,

tic

previous_estimated_image = estimated_image;

for z = lower_z: upper_z,

intermediate_k_pl_1(:, :, 1) = estimated_image(:, :, z);

%ICM-algoritme for snitt i xy-retning for gitt z

for y = lower_y: upper_y,

for x = lower_x: upper_x,

%ICM-algoritme for enkelt voxel

sigma = sqrt(variances(x, y, z));

half_interval_width = 5 * sigma; twice_sigma_squared = 2 * sigma ^ 2;

intermediate_k_pl_1(x, y, 1)...

= fminbnd(@potential_U3, estimated_image(x, y, z) ...

- half_interval_width,

estimated_image(x, y, z) + half_interval_width);

%(slutt p ICM-algoritme for enkelt voxel, resultat i

%intermediate_k_pl_1(x, y, 1))

end

%(slutt p ICM-algoritme for gitt y og z, resultat i

%intermediate_k_pl_1(:, y, 1))
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end

if z > lower_z estimated_image(:, :, z - 1) = ...

intermediate_k_pl_1(:, :, 2); end

intermediate_k_pl_1(:, :, 2) = intermediate_k_pl_1(:, :, 1);

%(slutt p ICM-algoritme for gitt z, resultat i

%intermediate_k_pl_1(:,:, 1)

end

estimated_image(:, :, upper_z) = intermediate_k_pl_1(:, :, 2);

%(slutt p iterasjon i ICM-algoritme, oppdatert estimat etter siste

%iterasjon i estimated_image

toc

iteration

end
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