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Abstract. Nowadays, due to the concern of environmental challenges, global 
warming and climate change, companies across the globe have increasingly fo-
cused on the sustainable operations and management of their supply chains. 
Closed-loop supply chain (CLSC) is a new concept and practice, which combines 
both traditional forward supply chain and reverse logistics in order to simultane-
ously maximize the utilization of resource and minimize the generation of waste. 
In this paper, a stochastic CLSC network optimization problem with capacity 
flexibility is investigated. The proposed optimization model is able to appropri-
ately handle the uncertainties from different sources, and the network configura-
tion and decisions are adjusted by the capacity flexibility under different scenar-
ios. The sample average approximation (SAA) method is used to solve the sto-
chastic optimization problem. The model is validated by a numerical experiment 
and the result has revealed that the quality and consistency of the decision-mak-
ing can be dramatically improved by modelling the capacity flexibility. 

Keywords: Closed-loop supply chain, Network design, Location problem, Sto-
chastic optimization, Sample Average Approximation 

1 Introduction 

In today’s global market, the competition is not only between different individual 
enterprises but also largely between different supply chains. The effectiveness and ef-
ficiency in handling material flow, information flow and capital flow within a supply 
chain will determine the profitability and success of a company. Supply Chain Man-
agement (SCM) aims, through decision-makings at both strategic level and operational 
level, at properly managing different players and flows within a supply chain in order 
to maximize the total supply chain surplus or profit [1].  

Network design is one of the most essential strategic decisions in SCM, which for-
mulates the configuration of a supply chain through facility selection and determines 
the operational strategies. Traditionally, the design of a supply chain only focuses on 
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the forward direction from raw material supplier towards end customer. However, due 
to the concern of environmental challenges, global warming and climate change from 
the whole society, increasing attention has been paid to the value and resource recovery 
through reverse logistics activities [2, 3]. Closed-loop supply chain (CLSC) is a new 
concept and practice, which combines both traditional forward supply chain and reverse 
logistics in order to simultaneously maximize the utilization of resources and minimize 
the generation of wastes. Compared with the traditional supply chain network design, 
the planning of a CLSC is more complicated due to the involvement of more players. 
Furthermore, reverse logistics involves more uncertainties compared to the forward 
supply chain [3], and this needs to be appropriately treated in a CLSC network design 
problem.  

Due to the aforementioned complexity of the CLSC network design problem, sig-
nificant efforts have been given in order to develop advanced optimization models and 
algorithm for a better decision-making. Yi et al. [4] developed a mixed integer linear 
program for minimizing the total cost of a retailer oriented CLSC for the recovery of 
construction machinery. The model was solved by an enhanced genetic algorithm and 
was validated through a case study in China. Özceylan et al. [5] proposed a linear pro-
gram for maximizing the total profit generation of an automotive CLSC. The model 
was solved by CPLEX solver and was validated by a real world case study in Turkey. 
Taking into account of the recovery options, Amin et al. [6] investigated a tire manu-
facturing CLSC network optimization problem, which was validated by a real world 
case study in Canada.  

In addition to the economic incentives from incorporating reverse logistics activities, 
some research works considered the overall environmental performance of a CLSC. 
Hasanov et al. [7] formulated a mathematical model for the optimization of a CLSC 
network design problem considering remanufacturing options. The model aims at min-
imizing the total cost and emission cost of greenhouse gas (GHG) through optimal de-
cision-making on both production planning and inventory management. Taleizadeh et 
al. [8] investigated a bi-objective optimization model for CLSC network design con-
sidering the balance between total cost and total CO2 emission. A fuzzy Torabi-Hassini 
(TH) method was used to solve the multi-objective optimization problem. 

Due to the complexity of the proposed mathematical models, significant computa-
tional efforts may be required to solve the optimization problems of CLSC network 
design. Therefore, several research works have been conducted to develop improved 
algorithm. Soleimani and Kannan [9] developed a hybrid genetic algorithm (GA) and 
particle swarm optimization (PSO) for improving the computational efficiency of a 
multi-period and multi-level CLSC network optimization model. Chen et al. [10] in-
vestigated a location-allocation problem for the CLSC network design of cartridge re-
cycling, which was solved by an enhanced two-stage GA. Hajipour et al. [11] formu-
lated a non-linear mixed integer program for maximizing the profit generation in CLSC 
network design. Two metaheuristics: PSO and greedy randomized adaptive search pro-
cedure (GRASP) were employed to solve the proposed mathematical model.  

The treatment of uncertainty within the life cycle of a CLSC is another focus of the 
recent modeling efforts. Zhen et al. [12] proposed a two-stage stochastic optimization 
model for optimizing the decision-making of facility location and capacity allocation 



in a CLSC, and an enhanced Tabu search algorithm was developed to solve the model. 
Jeihoonian et al. [13] formulated a two-stage stochastic model for CLSC network de-
sign considering uncertain quality. Mohammed et al. [14] proposed a stochastic opti-
mization model for minimizing the total cost of CLSC network design. The model was 
further incorporated with different carbon policies in order to test their effectiveness in 
carbon reduction. 

In this paper, we developed a new two-stage stochastic mixed integer program for 
CLSC network optimization. Compared with the existing models, the main difference 
is the capacity flexibility is taken into account in order to improve the stability and 
consistency of the objective values under different scenarios. In addition, the sample 
average approximation (SAA) method is used to test the performance of the proposed 
mathematical model.  

2 Mathematical Model 

In this paper, we considered a network optimization problem of a single-product 
multi-echelon CLSC. As shown in Fig.1, the forward supply chain consists of manu-
facturer, wholesaler/distributor and customer. The reverse logistics activities are per-
formed at collection center, disposal center and recycling center. The material flows 
between different facilities are given in Fig.1.  

 

Fig. 1. Network structure of a CLSC.  

In this paper, the flexible network capacity is taken into account and is formulated 
in the mathematical model. The capacity limitation in a traditional facility location 
model may lead to unstable objective values and sub-optimal decisions under a stochas-
tic environment [3, 15]. For example, because of the rigid capacity constraint, one more 
facility may be opened for dealing with a small increase on the customer demand in 
some scenarios, which results in unreasonable decisions and inefficient use of capacity 
opened. Due to this reason, the flexible network capacity is formulated as a penalty in 
the objective function in order to solve the problem and generate reasonable decisions. 
In practice, the inclusion of the flexible network capacity is a more realistic represen-



tation of the decision-making problem of CLSC network design, which enables differ-
ent interpretations under different conditions, i.e., increase of facility capacity, out-
sourcing options, hire of temporary or seasonal workers, or even loss of sales. In addi-
tion, the uncertainty related to the customer demand in the forward supply chain and 
the rate of waste generation and the quality level in the reverse logistics are taken into 
consideration and are formulated as stochastic parameters.  
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Objective function (1) minimizes the total cost that is comprised of fixed facility 

cost, processing cost, transportation cost, purchasing cost, flexible network capacity 
cost and disposal cost. Besides, the model includes 14 constraints. Constraints (2) and 
(3) require the CLSC system should be capable to deal with the customer demands in 
both forward and reverse directions. Constraints (4) and (5) specify the relationship 
between the input and output amount in the forward channels. Constraints (6)-(8) bal-
ance the material flows in the reverse logistics. Constraints (9)-(13) are capacity re-
quirements of respective facilities. Constraints (14) and (15) give the upper limits of 
the flexible network capacity in both forward and reverse logistics. Besides, the deci-
sion variables fulfill their respective binary and non-negative requirements.  

3 Algorithm 

Eq. (16) defines a generic form of a two-stage stochastic optimization problem, 
which has the same structure as a CLSC network optimization problem. The first stage-
decisions should be robust to withstand the change of the external environment under 
which the system is operated, and the second-stage decisions should be flexible to adapt 
those changes and can be easily altered in order to maximize the system performance. 



Solving a stochastic programming model is a complex optimization problem that may 
require large computational efforts. In this paper, a sample average approximation 
(SAA) method is employed in order to obtain the optimal objective value of a large 
stochastic optimization problem with a great number of scenarios. 

 

Fig. 2. Algorithmic procedures of the SAA.  
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With the SAA, the optimal objective value is approximated by solving a set of ran-

domly generated small problems repeatedly instead of solving the original problem di-
rectly, as shown in Eq. (17). In such a way, the computational efforts required is man-
ageable. Fig.2 illustrates the algorithmic procedures of the SAA method. For more de-
tails of the solution method, the research works given by Verweij et al. [16] and Kley-
wegt et al. [17] can be referred.  

4 Experiment and Discussion 

In order to illustrate the application of the proposed model for CLSC network opti-
mization, this section presents a computational experiment based on a set of randomly 
generated parameters. The stochastic parameters are generated from uniform distribu-
tion of respective parameter intervals. Besides, we investigated the performance of 
three different sample sizes: 10, 30 and 50, respectively. All the optimizations were 
performed with Lingo 18.0 solver. The results are presented in Fig. 3 and Fig. 4. 

  

  

Fig. 3. CV of the total cost, facility operating cost, transportation cost and flexible network ca-
pacity cost. 

First, the in-sample stability is tested with coefficient of variation (CV) that is ob-
tained using 𝐶𝐶𝐶𝐶 = 𝜎𝜎 𝜇𝜇� . Fig. 3 illustrates the CVs of the total cost as well as different 



cost components. With the increase of sample size, the CVs of all relevant cost compo-
nents reduce, which reveals an improvement on the in-sample stability. When the sam-
ple size increases from 30 to 50, the improvement on the in-sample stability of the total 
cost is negligible. In addition, compared with the CVs of other cost components, the 
CV of flexible network capacity cost is extremely high. This can be explained that the 
flexible network capacity can be used as an adjustment factor for mitigating the nega-
tive impact on the first-stage network decisions and the objective values from uncer-
tainty. In such a way, the unsatisfied demand in some scenarios can be fulfilled by the 
flexible network capacity, i.e., outsourcing, instead of opening new facilities, which 
may dramatically reduce the in-sample stability and result in a low capacity utilization.   

  
Fig. 4. Percentage of the optimality gap and standard deviation. 

Then, the quality of the SAA solutions are tested with the reference example. As 
shown in Fig. 4, the optimality gap reduces significantly with the increase of sample 
size. Compared with 10 scenarios, the optimality gap is decreased by 90.6% when 50 
scenarios are used. However, in this case, the combined standard deviation will be in-
creased by 2.51%. Thus, the solution quality of the stochastic optimization problem can 
be improved drastically with the increase of the sample size. It is noteworthy that the 
selection of the sample size is based upon a trade-off analysis between quality of solu-
tion and computational efforts required. 

5 Conclusions 

In this paper, a novel two-stage mixed integer programming model is formulated for 
the network optimization of a single-product multi-echelon CLSC. The model aims at 
minimizing the total cost for opening and operating the CLSC through optimal deci-
sion-makings on both facility locations and transportation strategies. Compared with 
the existing optimization models, this model takes the flexible network capacity into 
account and thus formulates a penalty in the objective function. In order to solve the 
proposed model, the SAA method is used. The result of the computational experiment 
has shown that the inclusion of the flexible network capacity can significantly improve 
the in-sample stability, and the increase on sample size will improve the quality of so-
lution of a large stochastic optimization problem. 



For further improvement of the current research, two suggestions are given. First, 
the environmental impact and policies, i.e., different carbon policies or strategies [3, 
14], may be formulated in the CLSC network optimization problem under an uncertain 
environment. Second, different alternatives may be tested in order to increase the net-
work flexibility [18]. 

Notations 

Set and Parameters 
M Index of manufacturer, m=1,...,M 
w Index of wholesaler, w=1,...,W 
v Index of customer, v=1,...,V 
C Index of collection center, c=1,...,C 
D Index of disposal center, d=1,...,D 
R Index of recycling center, r=1,...,R 
S Index of scenario, s=1,...,S 
𝐹𝐹𝑚𝑚, 𝐹𝐹𝑤𝑤, 𝐹𝐹𝑐𝑐, 𝐹𝐹𝑟𝑟 Fixed opening cost of respective plants 
𝑃𝑃𝑚𝑚, 𝑃𝑃𝑤𝑤, 𝑃𝑃𝑐𝑐, 𝑃𝑃𝑐𝑐, 𝑃𝑃𝑟𝑟 Unit processing cost at respective plants 
𝑈𝑈𝑠𝑠 Probability of occurence  
𝑃𝑃𝑃𝑃𝑚𝑚 Purchasing cost of materials 
𝑂𝑂𝑣𝑣, 𝑂𝑂𝑂𝑂𝑣𝑣 Flexible network capacity cost in both forward and reverse logistics  
𝐷𝐷𝑣𝑣𝑠𝑠  Customer demand from respective locations 
𝜗𝜗𝑠𝑠 Conversion rate to used products 
𝛼𝛼 Materials required for assembling one product 
𝑞𝑞𝑠𝑠 Quality level 
𝛽𝛽, 𝛾𝛾 Conversion fraction at respective plants 
𝐶𝐶𝐶𝐶𝐴𝐴𝑚𝑚, 𝐶𝐶𝐶𝐶𝐴𝐴𝑤𝑤, 𝐶𝐶𝐶𝐶𝐴𝐴𝑐𝑐,  
𝐶𝐶𝐶𝐶𝐴𝐴𝑐𝑐, 𝐶𝐶𝐶𝐶𝐴𝐴𝑣𝑣 

Capacity of respective plants 

𝑈𝑈𝑈𝑈, 𝑈𝑈𝑂𝑂𝑈𝑈 Upper limits on flexible network capacity in both forward and reverse 
logistics 

Variables 
𝑖𝑖𝑚𝑚, 𝑖𝑖𝑤𝑤, 𝑖𝑖𝑐𝑐, 𝑖𝑖𝑂𝑂 Binary decision variables for the location decision on respective can-

didates 
𝐴𝐴𝑚𝑚𝑤𝑤
𝑠𝑠 , 𝐴𝐴𝑤𝑤𝑣𝑣𝑠𝑠 , 𝐴𝐴𝑣𝑣𝑐𝑐𝑠𝑠 , 

𝐴𝐴𝑐𝑐𝑟𝑟𝑠𝑠 , 𝐴𝐴𝑐𝑐𝑐𝑐𝑠𝑠 , 𝐴𝐴𝑟𝑟𝑚𝑚𝑠𝑠  
Amount of products transported on respective links 

𝐴𝐴𝐴𝐴𝑚𝑚𝑠𝑠  Amount of materials purchased 
𝐴𝐴𝑣𝑣𝑠𝑠 , 𝐴𝐴𝑂𝑂𝑣𝑣𝑠𝑠 Amount of flexible network capacity used in both forward and reverse 

logistics  
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