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Oil spills in the ocean reduce the small-scale surface roughness, leading to increased 
forward scattering and reduced backscatter (Figure 1.1).  

 
Figure 1.1  An oil spill causes increased forward scattering and reduced 

backscattering of the electromagnetic signal relative to nearby slick-
free seawater. 

 
This causes a slick to be darker than surrounding clean water in radar images and, 
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conversely, brighter in optical images given suitable sunglint conditions.  
Environmental monitoring of vast ocean areas to identify accidental or intentional 
spills is a challenging and costly task, especially in Arctic regions that lack sunlight 
during the polar night and commonly experience harsh weather conditions. Remote 
sensing by synthetic aperture radar (SAR) is a key solution to this problem, allowing 
imaging of the sea surface independent of sunlight and cloud coverage. SAR-based 
marine petroleum hydrocarbon spill (hereinafter referred to as oil spill) monitoring 
services support two main needs for information. First, regular surveillance of the 
seas is needed to detect the presence of accidental and illegal man-made oil spills. 
Second, during oil spill response operations, authorities need to know the 
characteristics of the spill, such as its extent, a forecast of how it will spread and be 
transported in the marine environment, and the location of the combatable thicker oil 
within the slick.  
         This chapter addresses the physical mechanisms behind SAR imaging of oil 
spills in the open ocean and proceeds with a discussion on the emerging SAR 
information retrieval techniques for detecting and characterizing these slicks. 
Section 1.1 covers oil spill information items possibly derived from SAR and 
limitations of existing methods. Challenges and trade-offs faced by operational 
service providers in retrieving these items are discussed in Section 1.2. Section 1.3 
is about SAR image interpretation: the main contrast drivers for oil spills are 
explained and surface scattering models aiding interpretation are reviewed. In 
section 1.4, the main techniques for oil spill detection and characterization are 
illustrated and current research questions are discussed. Concluding remarks and 
notes on further readings are given in section 1.5. 

 
1.1  Information items requested and gaps 

According to [1], there are six general oil spill-specific applications of remotely 
sensed data from any sensor: surveillance and detection, mapping for both tactical 
(short term) and strategic (long term) countermeasures, trajectory determination, 
direct support for oil spill countermeasures, gathering of legal evidence, and law 
enforcement regarding ship discharge of pollutants. 

Table 1.1 summarizes some of the key information items available either 
directly or indirectly from SAR measurements. The phase of oil spill operations at 
which the information is needed is indicated. In practice there is a large degree of 
latitude in acceptable latency depending on the specific situation because spills 
evolve differently depending on the meteorological and sea surface (metocean) 
conditions. 

Current satellite SAR oil spill services aim to provide near real-time delivery of 
information after a scene is acquired and downlinked. For example, the European 
Maritime Safety Agency (EMSA) requires maximum delivery times of 20-120 
minutes depending on the product (per Invitation to Tender No. EMSA/OP/6/2018), 
although specific operations depend upon the service organization, their access to 
satellite imagery, and the geographical location of the satellite downlink ground 
station. EMSA has a central role in monitoring and preventing pollution in European 
Union seas and ports. The agency uses satellite-based oil spill information from 
CleanSeaNet (CSN) to assist ship-source pollution response, as described for the 
North Sea region during 2007-2011 in [2]. During this period, three SAR satellites 
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were used (ENVISAT, Radarsat-1 and -2) to cover 1000 million km2 sea area and 
8666 possible spills were detected. Out of these, 2828 were checked on site, and 50% 
within 3 hours by aerial surveillance. Of the confirmed releases (745), 80% were 
mineral oil and 20% other substances. These statistics reveal one potential problem 
with the operational slick detection methodology: although rapid detection is 
important in the early warning phase, false alarms are a major concern. Even though 
satellite SAR provides a valuable synoptic overview of large ocean areas, natural 
slicks can trigger expensive aircraft or vessel operations. For comparison, the U.S. 
National Oceanic and Atmospheric Administration Satellite and Information Service 
(NOAA NESDIS) prepares Marine Pollution Surveillance Reports (MPSRs) [3] 
based on semi-automated surveys of remote sensing data by operational analysts. 
Potential releases are checked against the locations of known seeps, pipelines, rigs, 
well heads, and ship wrecks and local metocean conditions from buoys or models 
before reports are filed. Analysts use all available optical and SAR imagery, with 
Sentinel-1 now the dominant source. The latency between image acquisition and 
report submission ranges from 2 hours to >24 hours in exceptional cases, with typical 
delay of 8 hours for Sentinel-1 scenes [Ellen Ramirez, private communication]. 
Between 200 and 300 reports are generated per year and human intervention in the 
image screening process eliminates many false alarms. In principle the combination 
of latency and false alarms could be reduced through automation but currently there 
is no robust method to automatically differentiate accidental or intentional mineral 
oil spills from natural slicks using SAR. There is only an indication of SAR-based 
determination of relative difference between oil spill types (mineral vs. biogenic) 
reported in the literature [4] (also see section 1.4.2). This is an outstanding 
knowledge gap between information needed by the authorities and other 
stakeholders and the information provided through satellite SAR alone. 
       During the tactical clean-up stage of a major oil spill combat situation, 
responders need to know the location of thicker layers of oil in the surface slick to 
initiate clean-up procedures such as in situ burning and mechanical or chemical 
dispersal or recovery [5]. A sea surface oil spill is spatially nonuniform and typical 
contains zones of thicker and thinner oil layers, whether the oil is emulsified or not. 
It is established practice to separate areas within the slick between five distinct 
categories based on the visual appearance of the slick following the Bonn Agreement 
for Oil Appearance Code (BAOAC) [6]. The categories correspond to order-of-
magnitude ranges of thickness and volume of the oil (see Table 1.2) and the 
classification is typically done by experienced observers from low-flying aircraft. 
Emulsions, which are mixtures of oil and water, increase the viscosity, volume, and 
thickness of the material and can be very stable [7].  

A comparable SAR-based system to quantify thickness currently does not exist 
and its development is complicated by several factors. First, SAR does not measure 
the thickness directly, so a physical model must be developed relating how oil layer 
thickness affects the parameters that influence the backscatter of waves in the 
microwave region of the electromagnetic spectrum. The main parameters are the 
ocean wave spectra and the dielectric constant. In the case of the latter, 
emulsification of the oil, i.e., the creation of stable or meta-stable oil-in-water or 
water-in-oil mixtures with altered dielectric properties from oil or seawater, is 
indirectly related to thickness because some forms of emulsions clump to form thick 
layers. Second, the small-scale ocean surface roughness is strongly influenced by 
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instantaneous wind conditions and the large-scale wave structure depends on wind 
history and background swell. A valid model must account for these effects. The last 
complicating factor is a limitation of SAR instruments, namely a requirement that 
the SAR be sensitive to sufficiently low levels of backscatter to measure thickness 
variation. Because the backscatter intensity decreases as the thickness increases or 
dielectric constant decreases [8], instrument noise can dominate the measured signal 
over a slick, preventing accurate determination of thickness for the thicker oil layers.   

Table 1.1  Key information items pertaining to oil spill surveillance, response,  
remediation, and preparedness involving SAR. 

Use Information item Comment  
Detection & early 
warning 
 

Position  Latitude/longitude information obtainable 
from SAR directly. 

Source of origin  Oil spill source and trajectory prediction 
(hindcasting) models can be initialized by 
slick position in SAR.  

Drift estimate 
(surface velocity) 

Requires consecutive SAR acquisitions 
within minutes to hours to allow spatial 
feature correlation (nowcasting). 

Extent  Surface areal extent obtainable from SAR 
directly.  

Slick type 
discrimination*  

Only relative difference between oil slick 
types** (no label) obtainable from SAR. 

Tactical clean-up 
stage 
 

Volumetric oil 
fraction*   

Estimated directly from SAR for thick 
slicks, but requires assumptions on the 
dielectric constants of crude oil and sea 
water. 

Thickness* Only zones of relative larger thickness 
obtainable from SAR. Absolute thickness 
determination* requires calibration. 

Tactical clean-up 
stage and long-range 
monitoring  

3-D drift and spread 
prediction (surface 
velocity and vertical 
entrainment)  

Numerical (forecasting) models can be 
initialized by slick contours provided 
from SAR.  

Strategic planning: 
Environmental 
impact analysis  

Oil trajectory 
statistics 

Numerical (forecasting) models can be 
initialized by slick contours provided 
from SAR and run for different metocean 
conditions.  

Strategic planning:  
Statistics of spill 
occurrence  

Mapping  Position and contour obtainable from 
SAR. 

Remediation:  
Legal evidence 

Volume* Estimate from extent and thickness. 
Requires some calibration of SAR-
derived relative thickness and modelling 
to estimate the entrained volume. 

*More studies are needed on this topic. **Mineral vs. biogenic oil slicks. 
 

Nonetheless, the potential of SAR for measuring relative thickness [9] or the 
volumetric oil fraction of emulsified oil [10,11] has been demonstrated. With 
calibration using field observations of slick thickness, the SAR backscatter can be 
related to absolute thickness for a given slick and metocean conditions [12]. A 
relation between the BAOAC and a proposed oil/water mixing index (Mdex) to 
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separate sheen from emulsions is proposed in [13]. Oil spill characterization is 
discussed further in section 1.4.2. 

The aim of oil spill modelling is to describe the slick’s transport and fate in 
open seas. Upon initial detection, there is immediate need for information on the oil 
spill source location, and both tactical and strategic planning relies on reliable 
predictions of the oil slick’s future location. Therefore, both hindcasting and 
forecasting of the trajectory are important and, arguably, determining the source of 
origin can be more important in some situations. The drift velocity can be derived 
from two or more SAR images alone by feature correlation, but due to the time lag 
between two satellite SAR acquisitions, the speed is underestimated when the 
movement is not linear and the spatial shape of the spill, input to feature tracking, 
may not be recognizable if the lag is too long, hampering this method. Due to the 
limitation on the revisit time of space-borne SARs (discussed in section 1.2.2), 
source identification by SAR is usually not reliable. The slick position and extent 
can be extracted from space-borne, air-borne, or ship-borne radar and used as input 
to oil spill hindcast trajectory models [14] or forecast models to predict the future 
trajectory. Oil on the ocean surface elongates in the direction of the wind while 
horizontal transport of oil droplets entrained in the water column is to a large extent 
determined by the currents. A reliable quantitative measure of slick volume cannot 
be derived from SAR images alone as the slick evolves because detection of oil 
particles within the water column is impossible due to the high conductivity of sea 
water. However, information about particle entrainment into the water column can 
be obtained by combining SAR and numerical models. Forecasting surface velocity 
and vertical particle entrainment is addressed in section 1.4.3.  
 
Table 1.2  Oil classes and the corresponding thickness and volume ranges from the 

BAOAC [6]. Emulsified oil or ‘mousse’ are oil-water mixtures that can 
be considerably thicker than a few millimetres and are characterized by 
color in shades of orange, brown, and/or red [7]. 

Code Appearance Description Layer Thickness (𝛍m)  Layer Volume 
(liter/km2) 

1 Sheen (silvery/grey) 0.04 – 0.30 40 – 300 
2 Rainbow 0.30 – 5.0 300 – 5000 
3 Metallic 5.0 – 50 5000 – 50 000 
4 Discontinuous true color 50 – 200 50 000 – 200 000 
5 Continuous true color ≥ 200 ≥ 200 000 

 
In general, it is clear that oil spill response requires rapid imaging and processing 

because slicks can move and change quickly on the sea surface, and that the longer 
the revisit time of the satellite missions, the less efficient satellite-based SAR 
approaches will be. Airborne SAR can provide very rapid repeat imaging to track the 
trajectory and fate of oil slicks [9] to support response and remediation, but would 
still rely upon satellite surveillance programs for initial detection. Airborne SAR has 
an advantage over spaceborne SAR in characterizing the oil thickness or volume 
because of the higher instrument signal-to-noise ratio (SNR) (discussed in section 
1.3.3).   
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1.2   Challenges 

Vast ocean areas must be monitored continually by operational services to identify 
potential oil spills. Retrieving the information items discussed above involves 
several challenges and trade-offs that relate to factors both intrinsic and extrinsic to 
the methods and remote sensing instruments employed. The feasibility of executing 
oil spill clean-up operations depends to a large degree on the weather conditions, 
solar illumination, geography such as local topographic features that potentially 
influence wind fields and navigability, and tactical deployment issues like the local 
settlement and infrastructure and the accessibility of the polluted region [15]. SAR 
sensors operate at different frequencies and different polarizations, with a choice of 
operational modes that in some cases trade spatial resolution for image areal 
coverage. Oil slicks move with wind and currents and the physical and chemical 
properties evolve with time, changing not only their persistence and environmental 
impact, but also their characteristic signatures for remote sensing. The major 
challenges that relate to the use of SAR for oil spill response are discussed in this 
section. 

1.2.1 Polarization diversity 
SAR antennas are designed to transmit and receive linearly polarized 
electromagnetic waves, with the orthogonal orientations denoted ‘vertical’ (V) and 
‘horizontal’ (H). Circular polarization can be synthesized by simultaneously 
transmitting H and V pulses 90° out of phase in the time domain.  Single-polarization 
(SP) systems transmit and receive the same polarization; dual-polarization (DP) 
systems transmit one polarization and can receive both the same and the orthogonal 
polarization; and quad-polarization (QP) systems transmit and receive two 
orthogonal polarizations. Electromagnetic scattering can be completely 
characterized by QP systems. Co-polarized returns have the same transmit and 
receive polarization (e.g., HH or VV, where the first (second) letter indicates the 
transmit (receive) polarization), and cross polarized returns have orthogonal transmit 
and receive orientations (e.g., HV or VH). In rare cases, a DP product will be 
available with the two co-polarized returns (HH and VV), but typically DP modes 
are either horizonal (HH and HV) or vertical (VV and VH). A polarimetric system 
preserves and records the relative phase between and among the transmit and receive 
pulses, and systems that do not do this are called ‘incoherent.’ The term ‘compact 
polarization’ (CP) refers to systems that do not maintain the DP collinear/orthogonal 
convention of the transmit and receive channels, and hybrid polarization (HP) [16] 
is one particular variant in which circular polarization is transmitted and linear 
polarization received. HP systems typically are not QP, i.e., they transmit only right 
or only left circularly polarized waves. 

SAR-based oil spill detection services have traditionally relied on single- and 
dual-polarization SAR systems with large spatial coverage. Over the last decade or 
so, several quad-polarimetric (QP) SAR systems have been launched into orbit, with 
Radarsat-2 (Canadian) launched in 2007 and Gaofen-3 (Chinese) in 2016. QP SAR 
allows improved interpretability and information retrieval regarding the 
polarization-dependent properties of a scattering surface, however the increased 
information content usually comes at the cost of reduced spatial coverage. For 
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example, Radarsat-2 Fine QP mode covers a 25 km swath [17], whereas Sentinel-1 
extra wide (EW) SP and DP modes have 410 km swath width. Compact polarimetry 
was introduced to allow simultaneously high spatial coverage and increased 
polarimetric content [18], although compact polarimetry SAR still falls between 
conventional dual-polarization and quad-polarimetric SAR systems in terms of 
polarimetric information. The HP mode [16] has already been integrated into several 
missions, e.g., RISAT-1 (Indian), ALOS-2 (Japanese), and the Radarsat 
Constellation Mission (RCM) (Canadian). High spatial resolution is not needed in 
many cases for oil spill monitoring. However, it can be useful for nowcasting of the 
drift using pixel offset tracking, for locating a point source on the surface like a rig 
or ship, for identification of internal slick zones, and for false alarm discrimination 
when the slick’s shape or other spatial characteristics are used to differentiate natural 
phenomena from spills.   

Table 1.3  Parameters of civilian SAR instruments operating currently, in the recent 
past, or under development.  The ‘Remarks’ contain information about 
polarization modes of particular relevance to oil spill surveillance. 
RISAT-1 deactivated in 2016. [FQ: Fine Quad. SM: Stripmap. LN: Low 
Noise. PP: PingPong. EW: Extra Wide-swath mode.] [Polarization 
modes: HH: H-transmit, H-receive. VV: V-transmit, V-receive. QP: 
Quad-polarimetry. HP: Hybrid Polarity (Circular-transmit, Linear-
receive). DP: Dual-polarimetry. QQP:Quasi-quad-polarimetry (DP 
HH/HV and DP VV/VH)]. 

 
Band Mission  Launch 

(year) 
NESZ (mode/ 
channel) 

Repeat 
(day) 

Remarks 

X TerraSAR-X [20] 2007 -19 dB (SM)  11 DP HH/VV*  
COSMO-Skymed 
1-4 [21,22] 

2007-2010 -22 dB 1-8** PP HH/VV 
(incoherent) 

C Radarsat-2 [17] 2007 -39 to -31 dB 
(QP)  

24 QP  

RISAT-1 [23] 2012  -17 dB  (FRS-1)  25 HP 
RCM [24] 2019 (plan) -25 dB (LN)  4*** HP 
Sentinel 1A/B 2014/2016 -22 dB (EW) 6+ EW  
Gaofen-3 [25] 2016 -33 dB (QP++) 29 QP 

L ALOS-2 [26] 2014 -36 dB (SM++)  14 QP 
SAOCOM 1A/B 
[27] 

2018 1A, 
2019 1B 
(plan)  

-35 dB (SM)  8+ HP 

NISAR 2022 (plan) -25 dB%  12 QQP 
* The dual-co-polarization combination of HH/VV is preferred for oil spill monitoring [19]. ** For 
constellation of four satellites. *** For constellation of three satellites. + For constellation of two 
satellites. ++ For HH channel. % NISAR’s requirement is that the NESZ be less than -25 dB across the 
full spectrum. Actual average value will be known after the hardware is built and will vary by mode.  
 

Table 1.3 gives some relevant operating parameters of current, recent past, and 
near-term future SAR instruments. Almost all provide SP or DP products, so the 
table includes information about other oil-spill relevant modes available as standard 
products. The table also includes the levels of noise equivalent sigma zero (NESZ) 
for comparison across the different missions and modes, and to inform further 
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discussions in section 1.3.3. The upcoming L-band NASA-ISRO SAR (NISAR) 
(USA/India collaboration) mission is designed with a new polarimetric mode 
specifically for ocean studies, called quasi-quad-polarimetry (QQP). NISAR will be 
able to operate with an 80 MHz bandwidth in its highest resolution mode, but more 
generally will acquire data at 20 MHz bandwidth to reduce the data volume. The 
QQP mode splits the full spectrum to obtain simultaneously-acquired HH/HV and 
VV/VH DP modes. One polarization will be transmitted with 20 MHz bandwidth in 
the lower half of the spectrum and the other with 5 MHz bandwidth in the upper half. 
This allows the preferred HH/VV combination to be exploited for oil spill 
observations, but at disjoint frequencies. The small shift in frequency will have little 
impact on ocean studies, most of which do not require coherent VV and HH data. 
The use and usefulness of polarization in oil spill studies will be discussed in sections 
1.3 and 1.4, respectively. 

1.2.2 Imaging repeat interval 
SAR satellites are usually launched in a polar orbit and image the ground with a fixed 
swath width that is mode-dependent. The satellite repeat cycle is the exact repetition 
of acquisition over the same location with the same imaging geometry. However, 
many locations can be imaged from different orbits because the spacing between the 
orbit tracks varies with latitude, and hence the revisit rate for imaging irrespective of 
geometry is much better at higher latitudes. The temporal resolution of a satellite is 
here defined as the time lag between two possible image acquisitions of the same 
area, either fully or partly overlapping and irrespective of imaging geometry. Table 
1.3 shows the satellites’ repeat cycle and Figure 1.2 illustrates the significant drift 
and evolution of the shape of various oil spills between two consecutive SAR 
acquisitions by Radarsat-2. The images were acquired 11.5 hours apart in FQ mode 
and the radiometric changes are dominated by the difference in imaging geometry. 
Given the number of currently operational space-borne SAR missions (Table 1.3), 
higher temporal resolution is obtained when multiple sensors are exploited. 
However, uniform and consistent analysis across the different systems requires a 
thorough understanding of the differences between the various sensors and modes 
[18] and of the incidence angle-dependence and wind-dependence of the backscatter.   

Airborne SAR instruments can reimage a slick from the same viewing geometry 
much more rapidly than satellite SARs, typically several times per hour. Figure 1.3 
shows an example of a mineral oil seep imaged with the Uninhabited Aerial Vehicle 
Synthetic Aperture Radar (UAVSAR) L-band instrument six times in 2 hours. The 
selected scenes shown are obtained 71 minutes apart. In this case, besides transport 
and spreading, the time evolution of the radiometry can provide information on 
weathering processes. With time series data it is possible to measure transport of the 
thicker oil within the slick using the intensity as a proxy for thickness (darker returns 
in areas of relatively thicker or more emulsified oil).  
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Figure 1.2  RADARSAT-2 VV intensity [dB] from two consecutive images of the 

same oil spills, showing both drift and change in size and shape of the 
slicks over an 11.5 hour period. The increase in intensity from 
unslicked seawater arises from the change in incidence angle. Circled 
in green: plant oil spill. Circled in red: emulsion oil spill. Not circled 
in image on right: crude oil spill. RADARSAT-2 Data and Products 
Copyright MDA LTD. (2011)—All rights reserved. 

 
Figure 1.3  UAVSAR VV intensity [dB] from two images acquired 71 minutes apart 

of a slick originating from a seep. A mat of red-brown emulsion, 
identified visually from a low-flying aircraft and identifiable by the low 
radar return, is moving to the west-southwest. 

1.2.3 The weather window 
The weather window is defined here as the wind speed range over which SAR is 
usable for imaging oil spills, and is related to the sea surface geometry at the scale 
of the radar wavelength. Much effort has been devoted to relating the normalized 
radar cross section to near-surface wind speeds, either empirically based on power 
laws [28] or theoretically based on physical models [29]. Oil spill detection by SAR 
is generally confined to wind speeds in the range of 2-3 m/s to 10-14 m/s [30, and 
references therein], but the minimum wind speed to generate Bragg waves producing 
measurable radar returns varies with frequency. Some approximate thresholds at 20° 
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incidence angle are ~2.5 m/s for X-band, ~2.2 m/s for C-band and ~2.0 m/s for L-
band [19,29]. These thresholds increase slightly with incidence angle and decrease 
with ocean temperature. At the high end of the range, the limit comes from mixing 
of the oil into the water column by breaking waves and the fact that the backscatter 
contrast between clean and slicked water decreases as the wind speed increases [31]. 

1.2.4 Transport and weathering of oil pollutants 
After release, oil from spills at sea evolve through transport and weathering [32]. 
Slicks spread through the influence of gravity and winds, and are transported both 
on and below the sea surface. Oil released into the marine environment also develops 
over time through weathering processes acting on the pollutant and transforming its 
original physical and chemical properties. Some important transforming processes 
are evaporation, emulsification, dissolution, oxidation, and biodegradation [32], 
some of which act rapidly. These processes determine the fate of an oil spill in the 
marine environment and they have implications for response and combat procedures. 
In the context of a clean-up operation, and taking the time-dependent weathering 
processes into account, the amount and type of the pollutant, the sea state, and the 
prevailing environmental and weather conditions will determine which active 
countermeasures should be made. Hence, information obtained from SAR 
measurements benefit from rapid sampling and, if possible, resampling of the radar 
images to maintain its relevance during field operations. Examples of oil spill 
development with time were shown in Figure 1.2 and Figure 1.3, with examples from 
‘rapid’ satellite SAR imaging (< 1/2 day) and much more rapid (~1 hour) airborne 
SAR repeat imaging performed in a single flight. 

Table 1.4  Description of some selected processes affecting the fate of oil from a 
spill that depend on sea-state and oil properties.  

Process Description 
Emulsification Oil (immiscible) is dispersed by droplets of sea water. 

Contributes to the persistence of the spill due to an 
increase in viscosity and thickness with water content 
[33]. Stable emulsions contain 60-85% water [32]. 

Horizontal spreading Spreading of oil on the sea surface mainly in early 
phases after release [32]. The spread is not necessarily 
uniform and observations have revealed that 90% of the 
oil can be confined to an area of less than 10% of the 
slick extent [34].  

Vertical dispersion and 
entrainment 

Movement of oil droplets (size < 100 𝜇𝑚 [32]) into the 
water column. A rule of thumb for the depth of mixing 
during entrainment says 1.5 times the wave height [32]. 
Wave breaking is required to initiate entrainment of a 
surface spill.  Diffusion can mix the oil deeper into the 
water column [35]. 

 
Table 1.4 gives a brief description of selected transport and weathering 

processes of particular relevance for this chapter. Geophysical parameters that can 
be affected by the presence of an oil slick on the ocean surface are the surface 
roughness, dielectric complex permittivity, surface tension, and surface viscosity. In 
sections 1.3 and 1.4, we discuss how emulsification of oil changes the dielectric 
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properties of the slick, which has an impact on its radar backscatter. In section 1.4.3, 
we exhibit how SAR imagery can be integrated with modelling for improved 
understanding of the horizontal spreading and vertical entrainment and mixing.  

1.2.5 False alarms 
The accuracy of both manual and automatic oil spill detection services is reduced 
due to the presence of look-alikes, i.e., other physical phenomena causing dark 
signatures in SAR imagery. There are a number of situations that give rise to radar-
dark features in the ocean that are look-alikes for oil spills and can cause false alarms 
in SAR-based surveillance. To illustrate the difficulty, we compare mineral oil slicks 
with look-alikes on the sea surface. Figure 1.4 presents three examples of SAR 
scenes containing man-made oil slicks, which appear as dark spots on a brighter 
background. The left panel shows an example of a reoccurring produced water slick 
from an oil rig. Several examples of spilled emulsified oil are shown in the middle 
and right panels, and small plant oil spills (look-alikes) are visible in the upper right 
part of the middle panel and to the left of the large slick in the right panel. Examples 
of other look-alikes are low wind areas, grease ice, and natural biogenic films caused 
by, e.g., algae, fish oil, and vegetable oil. If the interest is exclusively in detecting 
man-made oil spills or seeps, natural oil seeps also fall into the look-alike category. 
Figure 1.5 shows examples of SAR images of algae bloom and low wind, both 
naturally occurring radar dark features. In Figure 1.6, grease ice is seen as dark slicks 
in the SAR scenes.   

A variety of descriptors such as spatial, contextual, and statistical features are 
often used to label and discriminate the slicks [36]. Hence, it is obvious that the SAR 
sensor’s spatial and radiometric resolutions, along with the instrument noise floor, 
are of importance for the mineral oil slick discrimination capability. 

 
Figure 1.4  Examples of man-made oil spills. All scenes are from the North Sea. 

Intensity of VV polarization channel [dB], C-band. (Left) Produced 
water at the Brage oil production field. (Middle) Emulsion oil slicks 
from an oil-on-water exercise in 2013, with a small plant oil slick 
above the main emulsion slick. (Right) Oil slicks from an oil-on-water 
exercise in 2012. A small plant oil spill is located at upper left and 
emulsion slick is on the right. RADARSAT-2 Data and Products 
Copyright MDA LTD. (2017, 2013, 2012)—All rights reserved.  
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Figure 1.5  Examples of look-alikes. Intensity of VV polarization channel [dB]. 

(Left) RADARSAT-2 (C-band) scene of an algae bloom in the Baltic 
Sea. RADARSAT-2 Data and Products Copyright MDA LTD. (2016)—
All rights reserved. (Right) UAVSAR (L-band) scene of low wind 
condition and calm water over subaqueous vegetation within islands in 
the Wax Lake Delta, Louisiana, USA.  

 
Figure 1.6  Examples of look-alikes. Intensity of VV polarization channel [dB], C-

band. Both panels show newly frozen sea ice causing dark slicks. (Left) 
Open water and grease ice in the Barents Sea. Interpretation from 
comparing with timeseries of Sentinel-1 data. (Right) Grease ice along 
the ice margin near Hopen island. RADARSAT-2 Data and Products 
Copyright MDA LTD. (2017, 2014)—All rights reserved.  

1.3 Interpretation and modelling  

To explain the contrast between an oil spill and the ambient sea water in a SAR 
image, we introduce the properties that characterize a material and dictate the 
scattering of electromagnetic waves. Next, we revisit and discuss how surface 
scattering models may aid interpretation of real SAR measurements. Finally, we 
discuss the implications of the signal’s proximity to the noise floor, which can be 
critical to interpretation of radar-dark signals. 
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1.3.1 Contrast drivers  
In SAR imaging, there are two main drivers of contrast, i.e., a change in backscatter 
power, between an oil slick and the surrounding clean sea surface. One driver is the 
slick’s capability of damping the small-scale roughness, causing a smaller portion of 
the reflected radar energy to be scattered back to the radar antenna. A second driver 
is the change in dielectric properties within an oil spill as compared to 
uncontaminated sea water. Both are discussed below.    
    

1.3.1.1 Surface roughness 
All of the SAR instruments listed in Table 1.3 are side-looking and operate in a 
monostatic configuration (transmitter and receiver collocated). Therefore, they 
measure the backscattered signal, which has larger amplitude for rougher surfaces. 
If the surface was perfectly smooth, the angular pattern of the reflected scatters 
would be a delta function centered on the specular direction, and the sensor would 
detect no backscatter. When the surface is slightly rough the angular radiation pattern 
has two components, the coherent scattering component, which is the reflection 
component in the specular direction, and the diffuse scattering component, which 
represents scattering in all directions. The coherent part becomes negligible when 
the roughness increases, and the radiation pattern approaches Lambertian scattering 
for very rough surfaces [37].  

Two parameters are commonly used to characterize a naturally random surface: 
the spread of heights about the average value (vertical) and the variation of these 
heights across the surface (horizontal). The standard deviation of the surface height 
variation, 𝜎), is referred to as the root mean square (rms) height of the surface. To 
model the smoothness of a surface, i.e., the correlation of the random height 
variations in the lateral direction, an idealized surface correlation function is 
typically used together with the correlation length, l [38]. For two points on the 
surface, the surface correlation describes their statistical independence and the 
correlation length increases with the distance between two correlated points (for a 
smooth surface 𝑙 = ∞). Given a specific correlation function, the spatial roughness 
of a surface is fully described by the rms height, 𝜎), and the surface correlation 
length, l [38]. The impact of surface roughness on radar backscatter depends strongly 
on the wavelength of the radar, 𝜆.. This is accounted by scaling the roughness 
parameters by the wavelength of the radar, yielding 𝑘.𝜎) and 𝑘.𝑙, where 𝑘. = 2𝜋/𝜆. 
is the radar wavenumber [39].  

The dominant contribution to radar backscatter is from Bragg resonance 
scattering, namely resonant scattering from spatially-correlated, wind-generated 
ocean wave components that are in phase with the incident radar waves. These 
components fall within the range from small capillary ripples to short gravity waves, 
depending on the radar frequency [19]. The Bragg wavelength of ocean waves 
resulting in resonance with the radar waves is given by 𝜆2 = 𝑛𝜆./(2 sin𝜃), where 
𝜃 is the incidence angle and  𝑛 = 1,2,… is the order of resonance with 𝑛 = 1 
producing the dominant return. For a given 𝜆., the resonant waves are shorter at more 
oblique 𝜃, and at a given incidence angle 𝜆2 increases with 𝜆.. In general, the Bragg 
scattering model is incomplete to describe the backscatter from the ocean surface 
because longer waves also interact with the Bragg waves and affect the radar return 
through tilt modulation (changing the local surface orientation or slope), 
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hydrodynamic modulation (changing the spatial distribution of ocean wave spectral 
components, e.g., as short waves pile up in crests and spread out in troughs), and 
velocity bunching (nonlinear modulation caused by the SAR processing, which 
translates the surface velocity component in the look direction into a position shift 
in azimuth direction due to the Doppler shift) [40,41].  

1.3.1.2 Relative dielectric constant 
The dielectric properties of the scattering surface affect the electromagnetic 
interaction between the electromagnetic wave and the surface, and hence the 
backscattered signal.  The relative permittivity, 𝜖., of a material is a complex number 
given by 

𝜖.(𝜔) = ?𝜖@(𝜔) − 𝑖𝜖@@(𝜔)C/𝜖D, 

where 𝜖@(𝜔) is the real part of the material’s permittivity, 𝜖@′(𝜔)  is the imaginary 
part, 𝜖D is the vacuum permittivity (permittivity of free space), 𝑖 = √−1 , and 𝜔 =
2𝜋𝜈 is the angular frequency (also referred to as radian frequency) of the incident 
radar wave with frequency, 𝜈. The term dielectric constant has been used 
interchangeably with the electric permittivity and also to refer to the real part of the 
relative permittivity. The term relative dielectric constant is here used to describe 
the complex 𝜖..  

A reduction in the effective relative dielectric constant means less total energy 
being reflected by the surface, and hence, the surface will appear darker. As 
discussed in section 1.2.4, oil mixes with sea water through interaction with waves 
and weathering to form oil/water emulsification. Oil has a relative dielectric constant 
around 𝜖.I = 2.3 − 𝑖0.02 [10], much lower in both real and imaginary components 
than that of sea water, 𝜖.KL, which is a function of temperature, T,  and salinity, S, 
but exceeds 𝜖.I under almost all open water ocean conditions. For example, 
calculations based on [37] for 1.26 GHz (L-band) frequency give 𝜖.KL = 70.1 −
𝑖82.7 for typical Gulf of Mexico conditions (T=27°C, S=35ppt) and 𝜖.KL = 75.4 −
𝑖59.4 for typical North Sea conditions (8°C, S=35.25ppt). Oil/water emulsions have 
relative dielectric constant lying between 𝜖.Iand 𝜖.KL. Recent work at L-band has 
suggested that it is possible to quantify the mixing of oil and sea water from SAR, 
based on work using a simple linear mixing model for the emulsion relative dielectric 
constant [10,13] or the more accurate Bruggeman formula [11]. 

Figure 1.7 depicts the impact of oil mixing with sea water on the relative 
dielectric constant. Radar backscatter is only sensitive to the slick’s dielectric 
properties if the backscatter occurs from the oil, not the underlying sea water 
interface. This is caused by a thick layer of oil or oil emulsion on the sea surface [10, 
13]. Typically, most of a slick is not thick, with the general rule being that 90% of 
the oil is contained in 10% of the slick area [34]. Because of oil’s low loss factor 
(imaginary part of 𝜖.I), electromagnetic waves pass through very thin layers of oil 
without interacting, and so see an effective relative dielectric constant of sea water, 
same as for the clean water. This is certainly true for sheen layers (Table 1.2). 
Although studies have inferred the oil volumetric fraction from backscatter 
[10,11,13], none have yet been validated to determine the thickness threshold at 
which the oil layer’s relative dielectric constant impacts backscatter.  However, it is 
known that emulsions often form thicker layers [7] and observed that red-brown 
emulsions within slicks have much lower backscatter than the rest of the slick [9,42]. 



 SAR Oil Spill Imaging, Interpretation and Information Retrieval 
Techniques 17 

 

This is a topic of active study. Although it is known from electromagnetic scattering 
theory that the layer thickness for interaction must be comparable to the wavelength 
within the medium, determination of the thresholds for both thickness and oil 
volumetric fraction at which the backscatter becomes sensitive and experimental 
confirmation for an oil spill in the open ocean remains an outstanding issue. 

 
Figure 1.7  The impact of sheen and thicker mineral oil slicks on the relative 

dielectric constant. (Top) Clean sea water, (Middle) sheen slick, and 
(Bottom) thicker oil slick.  

1.3.2 Surface scattering models 
For the convenience of the reader, we proceed with a brief review of selected ocean 
surface scattering models adopted in the existing oil spill SAR literature, namely the 
small perturbation model (SPM), also referred to as the Bragg scattering model [43]; 
the two-scale model, also referred to as the composite model [43]; the Kudryavtsev 
model [44], which includes a depolarizing scattering mechanism; and the extended 
Bragg (X-Bragg) model, a polarimetric surface scattering model originally 
developed for soil surface retrieval [39], but also applied to marine oil spill studies 
[45]. Table 1.5 summarizes which surface properties are taken into account and 
which normalized radar cross-section (NRCS) components, 𝜎D, are represented in 
the ocean scattering models considered here.  
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Table 1.5  Overview of selected ocean surface scattering models. Co-polarization 
ratio: 𝑃𝑅 ≡ 𝜎DUU/𝜎DVV. 

Model Surface 
properties taken 
into account 

NRCS components 
represented 

PR  
function of 

SPM [43]. Ocean waves of 
wave-number 
2𝑘. sin𝜃 (Bragg 
wavenumber).  

𝜎D
WW = 𝜎D2

(X)WW, 

where 𝑝𝑝 ∈ {𝐻𝐻, 𝑉𝑉} and (1) 
indicates first order. 
Depolarization effects not 
included and 𝜎D2

(X)W_ = 0 , where 
𝑝𝑞 ∈ {𝐻𝑉, 𝑉𝐻}.   

𝜃, 𝜖. 

Two-scale 
model [43]. 

Adds tilt 
modulation by 
longer gravity 
waves to SPM. 

𝜎D
WW = 𝜎D2

WW	𝑎𝑛𝑑	 

𝜎D
W_ = 𝜎D2

W_ 

Cross-polarization term 
included.  

𝜃, 𝜖.,𝜓, ξ 

Kudryavtsev 
model [44]. 

Adds depolarized 
scattering to 2-
scale co-polarized 
NRCS, attributed 
to wave breaking 
from “steep” and 
“rough” patches. 

𝜎D
WW = 𝜎D2

WW + 𝜎g 

Nonpolarized scattering (non-
Bragg scattering) term 𝜎g 
added. [𝜎Dh

W_ not included]. 

𝜃, 𝜖.,𝜓, 𝜉,	𝜎g 

 
The scattering of electromagnetic waves from the ocean surface is often 

modelled through approximate solutions with assumptions on the dimensions of the 
scattering elements [30,39]. The SPM assumes the variation of the surface roughness 
to be small compared to 𝜆., 𝑘.𝜎) 	≪ 0.3	[39],	and has a limited range of validity in 
terms of the ocean surface. The first-order NRCS components are given by 

𝜎D2
(X)WW = 4𝜋𝑘.

m𝑐𝑜𝑠m(𝜃)q𝑔WW
(X)(𝜃, 𝜖.)q

s
𝑊(0, 2𝑘. sin𝜃), 

where 𝑊(∙) is the 2D wavenumber spectral density of the surface roughness and 
𝑔WW
(X)(𝜃, 𝜖.) are the first-order scattering coefficients, which only depend on 𝜃 and 𝜖. 

[43]. For an explicit expression of 𝑔WW
(X)(𝜃, 𝜖.) see [43]. The SPM model is popular 

[38], but does not include nonzero cross-polarized backscatter or depolarization 
effects. Note that in a polarimetric radar system, cross-polarization is nonnull cross-
polarized covariance matrix elements and depolarization is a nonunity normalized 
co-polarization correlation coefficient or polarimetric coherence coefficient [39,46].  
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Figure 1.8  The SPM model assumes scatter from an untilted surface with 

incidence angle, 𝜃, in the plane of incidence (the y-z plane as drawn).  
The two-scale model introduces tilted facets with in-plane tilt angle, 𝜓, 
and out-of-plane tilt angle, 𝜉, that characterize the rotation between 
the tilted surface normal, z’, and the untilted surface normal, z. 

 
Figure 1.8 illustrates the more realistic sea surface geometry introduced by the 

two-scale model, a modification of SPM that leads to a nonnull cross-polarization 
term [43]: 

 
 

𝜎D2
WW = 4𝜋𝑘.

m𝑐𝑜𝑠m(𝜃v) wx
yz{(|}~) ��y(�)

yz{(|�)
�
s
𝑔WW
(X)(𝜃v, 𝜖.) + x

yz{(�)
yz{(|�)

�
s
𝑔__
(X)(𝜃v, 𝜖.)w

s
  

×𝑊(2𝑘. cos(𝜃 + 𝜓)sin(𝜉) , 2𝑘. sin(𝜃 + 𝜓)	) 

and  

𝜎D2
W_ = 4𝜋𝑘.

s𝑐𝑜𝑠m(𝜃v)�
sin(𝜃 + 𝜓)sin(𝜉) cos(𝜉)

𝑠𝑖𝑛s(𝜃v)
�
s

�𝑔VV
(X)(𝜃v, 𝜖.) − 𝑔UU

(X)(𝜃v,𝜖.)�
s
 

×𝑊(2𝑘. cos(𝜃 + 𝜓)sin(𝜉) , 2𝑘. sin(𝜃 + 𝜓)	), 

where 𝜎D2UV = 𝜎D2VU, 𝜃 is the local incidence angle relative to the untilted horizontal 
plane, and 𝜃v = 𝑐𝑜𝑠�X[cos(𝜃 + 𝜓)cos(𝜉)] is the incidence angle for the tilted facet3. 
Now the first order scattering coefficients depend upon the facet geometry in 
                                                        
3 See «Notes on further reading» at the end of the chapter for more information about this topic. 
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addition to the dielectric properties of the scattering surface [43]. Within the two-
scale model, due to long gravity waves, the normal to the facet deviates from the 
vertical by an angle 𝜓 in the plane of incidence and by an angle 𝜉 in the plane 
perpendicular to the plane of incidence. Note that in this model 𝜎D2

W_ = 0 if 𝜉 = 0, 
i.e., if there is no out-of-plane tilt of the facet.  

Building on the two-scale model, Kudryavtsev et al. [44] represented each co-
polarized NRCS as the sum of one 𝜎D2

WW component associated with conventional two-
scale Bragg scattering and one nonpolarized scattering component, 𝜎g, due to non-
Bragg scattering. The non-Bragg component is assumed to be the same for VV and 
HH, and is interpreted as being caused by wave breaking from steep and rough 
patches on the sea surfaces and other phenomena that can cause non-Bragg scattering 
[44,30]. A cross-polarization term is not included in this model. The non-Bragg 
contribution can in theory be removed using the polarization difference PD: 

𝑃𝐷 ≡ 𝜎DVV − 𝜎DUU = 𝜎D2VV − 𝜎D2UU 

The PD has been explored in oil spill studies and is reported to have good detection 
capability [47, and references therein]. 

Considering the robustness of the SMP model within its validity range [39], the 
X-Bragg model is a polarimetric model that attempts to widen the SPM model’s 
validity range by allowing a random tilt of the facet, with the width of the distribution 
reflecting the roughness variability. It accounts for both cross-polarization and 
depolarization effects introduced through roughness-induced rotation of the Bragg 
coherency matrix (T-matrix, see, e.g., [10]) about an angle 𝛽 in the plane 
perpendicular to the scattering plane. Assuming 𝑃(𝛽) to be a uniform distribution 
about zero with half-width 𝛽X, the coherency matrix of the X-Bragg model is 
represented as [39]: 

 

𝑻 = �
𝑇XX 𝑇Xs 𝑇X�
𝑇sX 𝑇ss 𝑇s�
𝑇�X 𝑇�s 𝑇��

� = �
𝐶X 𝐶s sinc(2𝛽X) 0

𝐶s sinc(2𝛽X) 𝐶�(1+ sinc(4𝛽X)) 0
0 0 𝐶�(1− sinc(4𝛽X))

�, 

 
where 𝐶X = q𝑔UU

(X) + 𝑔VV
(X)q

s
, 𝐶s = ?𝑔UU

(X) + 𝑔VV
(X)C?𝑔UU

(X)∗ − 𝑔VV
(X)∗C, and 𝐶� = 1/2q𝑔UU

(X) − 𝑔VV
(X)q

s
.  A 

couple of interesting features could be derived from the extended Bragg model: 
 

𝑅(𝛽X) = (𝑇ss − 𝑇��)/(𝑇ss + 𝑇��)  and  𝑀(𝜃, 𝜖.) = (𝑇ss + 𝑇��)/𝑇XX, 
 
where R is a roughness indicator (depending only on the orientation angle), and M is 
a material indicator (depending on the incidence angle and the dielectric constant).  
These features have been explored in oil spill studies and varying sensitivity to 
different oil spill types has been reported [48,49]. Note that both of these features 
involve cross-polarization terms and, hence, caution should be used when applied to 
low signal-to-noise ratio (SNR) systems (see section 1.3.3). 

According to Gade et al. [31], in the Marangoni damping theory, 
monomolecular slicks4,  such as natural biogenic slicks, show a resonance damping 

                                                        
4 See «Notes on further reading» at the end of the chapter for more information about this topic.  
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behaviour that is absent for mineral oil slicks. Hence, the theory of Marangoni 
damping is left out of this discussion, as the primary focus here is on crude oil or 
emulsions with a thickness larger than monomolecular films and different damping 
mechanisms acting on the ocean surface waves.  

1.3.2.1 Interpreting the co-polarization ratio from real SAR imagery 
An appealing property of the SPM is that the roughness cancels in the co-polarization 
ratio and it only depends on the local incidence angle (relative to the untilted 
horizontal plane) and the dielectric properties of the media: 
 

𝜎DUU

𝜎DVV
=
q𝑔UU

(X)(𝜃, 𝜖.)q
s
	

q𝑔VV
(X)(𝜃, 𝜖.)q

s  

 
In the two-scale model, the co-polarization ratio depends on the large-scale 
roughness (through the tilt angles), the local incidence angle, and the dielectric 
properties of the media: 

 

𝜎DUU

𝜎DVV
=
��sin(𝜃 + 𝜓) cos(𝜉)sin(𝜃v)

�
s
𝑔UU
(X)(𝜃v, 𝜖.) + �

sin(𝜉)
sin(𝜃v)

�
s
𝑔VV
(X)(𝜃v, 𝜖.)�

s

	

��sin(𝜃 + 𝜓) cos(𝜉)sin(𝜃v)
�
s
𝑔VV
(X)(𝜃v, 𝜖.) + �

sin(𝜉)
sin(𝜃v)

�
s
𝑔UU
(X)(𝜃v, 𝜖.)�

s  

 
If the HH, VV, and HV NRCS values are known for the clean sea surface, the two 
ratios of the polarization dependent cross-section terms, 𝜎DUU/𝜎DVV and 𝜎DUV/𝜎DVV, 
measured in the clean water can be used to solve for the two tilt angles. Under the 
assumption that the longer wavelengths on the sea surface are unaffected by the 
presence of a slick, the angles derived from the clean water can be used as an estimate 
for the slick covered surface [10]. Then, assuming the two-scale model is a good 
estimate for the surface scattering for both oil and water, the co-polarization ratio 
can be used to estimate 𝜖.	for the oil slick. 

In the Kudryavtsev model, the ocean wave spectral density term does not cancel 
in the co-polarization ratio, 
 

 
 

 
so the ratio also depends on the nonpolarized scattering component. We note that the 
Kudryavtsev model explicitly assumes the added scattering mechanism is 
depolarizing in nature, mixing HH and VV. However, any added scattering 
component that is non-Bragg, e.g., incoherent surface scattering from other wave 
components, alters the co-polarization ratio from the SPM and two-scale models’ 
situation in which 𝜖.	can be calculated if only the imaging and surface geometry are 
known, i.e., no information about the wave spectra is required.  

Figure 1.9 presents the co-polarization ratios corresponding to the three scenes 
shown in Figure 1.4. The Brage oil production slick, which is produced water (left 
panel), shows negligible contrast with that of clean water, so according to the SPM, 
the small fractions of oil contained in the produced water is too low to have an impact 
on the relative dielectric constant [Oil discharge measured to be 56 kg on day of 

  

𝜎DUU

𝜎DVV
=
𝜎D2UU + 𝜎g
𝜎D2VV + 𝜎g

, 
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acquisition; Brage platform, personal communication 2018]. Considering the two-
scale model, we can also ignore large-scale tilt variation between clean water and the 
slick. The middle and right panels show the co-polarization ratio for the two thicker 
oil emulsion slicks, which show a clear contrast to the surrounding sea. (Information 
about the releases in the right panel can be found in [50]). According to the theories 
described above, this is due to a change in the dielectric properties, damping of the 
large-scale roughness, or non-Bragg scattering. The small plant oil spill located to 
the upper left of the large emulsion slick in the right panel, exhibits a clear but weaker 
contrast to the surrounding sea water. Being a monomolecular slick no change in 𝜀. 
is expected. Therefore, the SPM theory does not hold because it predicts no contrast 
should be visible in the co-polarization ratio; which indeed is the case for the plant 
oil spill in the middle panel (compare with Figure 1.4). The two-scale model predicts 
the same as SPM for the plant oil slick if the large-scale roughness (facet tilt angles) 
are not modified between oil and clean sea. Instrument noise or non-Bragg scattering 
components could account for this. Note that the scene in the right-most panel was 
acquired with slightly higher incidence angles as compared to the other two scenes. 

 
Figure 1.9  (Top) Co-polarization ratios in dB corresponding to the panels in 

Figure 1.4. (Bottom) VV-intensity damping ratio (contrast) in linear 
units. These are derived from Radarsat-2 C-band quad-polarization 
data. 

 
Figure 1.10 shows the co-polarization ratio for two L-band QP scenes acquired 

with UAVSAR for which the NESZ is well below the slick intensities. In this case, 
the value for the slick in the North Sea (top), which has thickness 1.3-1.7 μm [51], 
agrees well with SPM and the two-scale model, but the value for the slick in the Gulf 
of Mexico shows good contrast with the clean water, even in areas where visual 
images show sheen. This, too, argues for another factor, either modification of the 
large-scale roughness and/or a non-Bragg scattering component. It is interesting to 
note that the North Sea image was acquired at winds of ~10 m/s and with visible 
wave breaking, but the Gulf image was acquired at wind speed 5 m/s and calm water.  
This argues for a non-Bragg scattering mechanism not driven solely by wave 
breaking.   
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Figure 1.10  (Left) Photo of sea surface conditions, (Middle) co-polarization ratios 

in dB, and (Right) VV-intensity damping ratio (contrast) in linear units 
for acquisitions in the (top row) North Sea and (bottom row) Gulf of 
Mexico (GOM). The bright object in the GOM co-polarization ratio is 
the ship seen in the photo. Wind speed was 10 m/s (North Sea) and 5 
m/s (GOM). In both cases, the oil slick is mainly sheen, but in one case 
the co-polarization ratio shows little contrast with clean water and in 
the other it shows 0.5 dB or larger contrast. Products are derived from 
UAVSAR L-band quad-polarization data. 

 

1.3.2.2   Interpreting the damping ratio from real SAR imagery 
In line with the SPM scattering theory discussed above, the damping ratio for an oil 
slick would be expressed as: 
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Within the two-scale mode, the damping ratio would be expressed as: 
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According to both scattering models, for either a monomolecular slick or a thin oil 
spill with a small thickness compared to the penetration depth of the radar [31], no 
change in 𝜀. is expected and the first factor of the damping ratio will hence be unity. 
Wave damping within the oil slick will be the only contrast driving factor. However, 
for a thicker slick, 𝜀. will change between sea and oil and hence both factors will 
contribute as contrast drivers between the oil slick and the surrounding sea water. 
Figure 1.9 and 1.10 show the damping ratios along with the co-polarization ratios for 
the five oil slick cases discussed above. In all cases, the damping ratio shows contrast 
within the slick, not just between the slick and clean water, indicative of zones of 
thicker or more emulsified oil.    
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1.3.3   Influence of instrument noise 
The noise-equivalent sigma zero (NESZ), or noise floor, is a measure of the 
sensitivity of the SAR system to areas with low radar backscatter, and is given by a 
SNR, i.e., the ratio between backscatter level and the sensor NESZ, equal to 1 on a 
linear scale [52]. The NESZ is a function of slant range [52], and the backscattered 
signal’s proximity to the noise floor has a significant influence on radar-dark 
measurements, which can lead to misinterpretation of SAR data. This is not an issue 
for spill detection (as long as the contrast between the oil slick and the surrounding 
clean sea is sufficient), where location and extent are determined, but the SNR should 
be considered carefully when slick characterization is the aim, so that the 
contribution from noise is not misinterpreted as a physical property of the scattering 
medium.  

The influence of noise on derived quantities is illustrated using the damping 
ratio, which is known to increase with increasing Bragg wavenumber [31] and 
decrease with increasing wind speed [8]. Figure 1.11 shows how the damping ratio 
is influenced by SNR using data from oil spills measured with TerraSAR-X, 
Radarsat-2, and UAVSAR. The UAVSAR provides L-band (𝜆. = 23.8	𝑐𝑚) quad-
polarimetric SAR measurements with a SNR that surpasses many spaceborne 
missions, including Radarsat-2 and TerraSAR-X [53]. The sensor covers a large 
range of incidence angles, 19.5∘ − 67.5∘, in a single scene [53], and the Bragg 
wavenumbers ranges from 17.6	𝑟𝑎𝑑/𝑚− 48.8	𝑟𝑎𝑑/𝑚, depending upon incidence 
angle, with higher values in the far range. The measurements show that as the signal 
from the slick approaches the NESZ, the damping ratio increases, but at very low 
SNR the damping ratio again decreases. A threshold of 6 dB above the noise floor 
has previously been suggested as a guard margin for any scattering analysis, where 
estimated backscatter contributions within or below this range should be ignored 
[10].  

Following [54], for a polarimetric SAR system, and assuming that the noise 
terms in the different polarization channels are uncorrelated with each other and with 
the signal, the measurement ℳ	should be related to the scattering matrix of interest 
as follows: 

ℳ = ¤𝑀UU 𝑀VU
𝑀UV 𝑀VV

¥ = ¤𝑆UU 𝑆VU
𝑆UV 𝑆VV

¥ + §
𝑛UU 𝑛VU
𝑛UV 𝑛VV¨, 

where 𝑛©. represents the additive noise in channel 𝑡𝑟 characterized by a complex 
zero-mean Gaussian distribution. Many recent oil spill studies are investigating the 
potential of slick discrimination and characterization in polarimetric SAR systems 
(see, e.g., [4, 10]). A large range of multi-polarization SAR features have been 
explored in the literature [see, e.g., Table III in 55]. Gaining less attention is the fact 
that the impact of instrument noise will vary depending on how the selected feature 
is defined. Features involving more NRCS terms are more sensitive to noise 
contamination. To demonstrate, we denote the covariance matrix 𝐶ℳ	 for a linearly 
polarized system (d=3 when assuming reciprocity), obtained from the outer product 
of the scattering vector of the measurement:  
 

 

 
𝐶ℳ = «

⟨𝑀UU ∙ 𝑀UU
∗ ⟩	 √2⟨𝑀UU ∙ 𝑀UV

∗ ⟩	 ⟨𝑀UU ∙ 𝑀VV
∗ ⟩	

√2⟨𝑀UV ∙ 𝑀UU
∗ ⟩ 2⟨|𝑀UV|s⟩	 √2⟨𝑀UV ∙ 𝑀VV

∗ ⟩
⟨𝑀VV ∙ 𝑀UU

∗ ⟩	 √2⟨𝑀VV ∙ 𝑀UV
∗ ⟩ ⟨𝑀VV ∙ 𝑀VV

∗ ⟩	
¯ 
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In a QP linearly polarized system, the H-polarization and V-polarization pulses are 
transmitted sequentially, not simultaneously. Because 𝑛UU and 𝑛VV are measured at 
different times, they are uncorrelated. A closer look at some of the matrix elements 
above shed light upon the influence of the noise term: For the co-polarization cross-
product 〈𝑀UU ∙ 𝑀VV

∗ 〉 = 〈𝑆UU ∙ 𝑆VV∗ 〉 because the additive noise components 
decorrelate, but 〈𝑀VV ∙ 𝑀VV

∗ 〉 = |𝑆VV|s + 𝜎VVg , where 𝜎VVg  is the noise power (NESZ) 
[54].  
 

 
Figure 1.11 VV polarization clean sea/slick damping ratio on linear scale (y-axis, 

linear scale) versus Bragg wavenumber (x-axis). Markers are colour 
coded to indicate the SNR within mineral oil slicks. Each data point 
represents the mean of 728 pixels, irrespective of image resolution, 
which varies across the three SAR systems. The data samples are 
collected from multiple locations within slicks in scenes with different 
acquisition dates, metocean conditions, incidence angles and mineral 
oil properties. Figure is courtesy of Martine M. Espeseth. 

1.4   Dark slick detection & characterization techniques  

Early quad-polarimetric SAR missions such as the spaceborne imaging radar-C/X-
band SAR (SIR-C/X-SAR) system, flown on the space shuttle Endeavor in 1994, 
paved the way for a new era in studies of sea surface slicks (see, e.g., [8]). However, 
the research field of oil spill observation by polarimetric SAR has had more rapid 
growth since the launch of TerraSAR-X in 2007, which first provided coherent dual-
polarization (VV and HH) SAR imagery to the scientific community, and the launch 
of Radarsat-2 with its quad-polarimetic imaging capability later that year. This 
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section mainly covers techniques emerging within the last decade, and most of them 
are as yet in a pre-operational stage. We discuss both slick detection, i.e., a binary 
identification of oil spill vs. no oil spill on the sea surface, and slick characterization, 
i.e., quantitative or semi-quantitative measurement of a property of the material 
within the slick.  

1.4.1 Slick detection and segmentation  
Screening of traditional single-polarization SAR imagery for oil spill detection has 
commonly been framed into three fundamental steps: dark patch segmentation, 
feature extraction, and oil spill versus look-alike classification. Traditional methods 
rely on features extracted from the segmented patches (see, e.g, [56]). The features 
can be divided into the following categories: geometry and shape of the segmented 
patch, physical characteristics of the backscatter level of the segmented patch, 
contextual features, and texture [36]. The features are input into a classifier to 
separate potential oil spills from other types of look-alike dark patches. Commonly, 
the segmentation stage involves histogram thresholding or unsupervised 
segmentation procedures applied to the intensity levels of either the VV or HH 
polarization SAR channels only [56, 57]. More recently, application-generic 
segmentation approaches taking as input quad-polarimetric SAR data have emerged. 
Examples are methods involving modelling of the multi-looked sample complex 
covariance matrix [58] or multi-polarization SAR feature-based clustering [59]. 
Figure 1.12 shows a segmentation result of an oil spill derived from an unsupervised 
K-Wishart mixture model clustering approach incorporating Markov Random Field 
smoothing [58] to which the user inputs only the number of classes to be found. 
Before adopting this kind of method operationally, one should consider how sheen 
regions, which are often diffuse transitions from the oil spill to the ambient sea water, 
are handled by the various segmentation algorithms available. It is worth noting that 
any feature describing, e.g., the geometry of the segmented patch or the contrast 
between the average numerical feature values from the interior of the patch and the 
average numerical feature values from the nearby surrounding clean sea, will be 
sensitive to the level of constraint placed on the segment perimeter. 
 

 
Figure 1.12 (Left) Emulsion oil slick shown in left panel of Figure 1.2. (Right) 

Segmentation example from a 3 class K-Wishart clustering algorithm. 
Based on auxiliary information, classes are 1) vessels, 2) oil spill, and 
3) sea water. Segmentation algorithm is courtesy of Anthony P. 
Doulgeris. Figure produced by authors. 
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1.4.2 Slick type discrimination 
In recent years, a large number of studies have been devoted to multipolarization 
SAR feature selection for sea surface slick detection or characterization. Table 1.6 
gives an overview of a subset of the descriptors discussed in the literature. The 
features are often computed based on HH and VV polarization channels only, with 
the cross-polarization channels discarded due to additive noise contamination in low 
SNR measurements. We follow this approach to emphasize features that are 
applicable to both airborne (in general high SNR) and spaceborne (in general lower 
SNR) sensors. A categorization based on each feature’s relation to the two-scale 
Bragg model equations (see section 1.3.2) has been proposed [55] and is adopted in 
Table 1.6. Category I contains features that depend on large- and small-scale 
roughness, incidence angle, and the relative dielectric constant, whereas the features 
in category II only depend on large-scale roughness, incidence angle, and the relative 
dielectric constant. These category II features are parameters for which the wave 
spectrum cancels in a ratio. Note that this categorization is based on the two-scale 
Bragg model, so the classification of features is not valid outside its validity range. 

Table 1.6  Selected multi-polarization SAR features discussed in the oil spill 
literature. The categorization follows [55]. 𝑑𝑒𝑡(∙) denotes the 
determinant, T2 denote the coherency matrix for the dual-polarization 
(VV and HH) case (see [4] eq. (6)), 𝑝v = 	𝜆v/(𝜆X + 𝜆s)	𝑎𝑛𝑑	𝜆v(𝜆X >
𝜆s)	are the eigenvalues of T2 , and ℜ denotes the real part. The 
superscript ‘ is used to distinguish the co-polarization version of a 
parameter from the conventional version. The list of references is not 
exhaustive. 

Cate-
gory 

# Feature name Definition Reference 

I F1 Damping ratio 𝐷𝑃 =
〈|𝑆VV|s〉���
〈|𝑆VV|s〉�v�

 [10,55,67] 

F2 Pol. difference 𝑃𝐷 = 〈|𝑆VV|s〉− 〈|𝑆UU|s〉 [44,47,55] 
F3 Real part of co-pol. 

cross-product 
𝑟µ� = |ℜ(〈𝑆UU ∙ 𝑆VV∗ 〉)| [4,47,55,61] 

F4  Span 𝑠𝑝𝑎𝑛@ = 〈|𝑆UU|s〉+ 〈|𝑆VV|s〉 [63,47,55,65] 
F5 Largest eigenvalue 𝜆X@  [10,47,55] 
F6 Geometric intensity 𝜇@ = ?𝑑𝑒𝑡(𝑻𝟐)C

X/s [4,47,61] 
II F7 Co-pol. ratio 𝑃𝑅 =

〈|𝑆UU|s〉
〈|𝑆VV|s〉

 [4,10,44,47,55]* 

F8  Entropy 
𝐻@ = −·𝑝v𝑙𝑜𝑔s

s

v¸X

𝑝v 
[4,10,47,55,61, 
62,63,64] 

F9  Anistropy 𝐴@ =
𝜆X@ − 𝜆s@

𝜆X@ + 𝜆s@
 [4,10,47,55, 

61,62,63,64,65] 
F10 Std. dev. of co-pol. 

phase difference 
𝜎º»I
= ¼〈(𝜙UU − 𝜙VV)s〉 − (〈𝜙UU − 𝜙VV〉)s 

[4,10,47,55,61,63,
64] 

* In the literature, PR is either defined as VV/HH or HH/VV. 
 

A feature selection analysis was done in [4], involving features from both 
category I and II. Out of eight multi-polarization SAR features that were investigated 
and extracted from Radarsat-2 quad-polarimetric measurements, the study concludes 
that the real part of the co-polarization cross product (F3) and the geometric intensity 
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(F6) are the most powerful features for biogenic vs. mineral oil spill discrimination. 
Both F3 and F6 belong to category I. In theory and from discussions in section 1.3, 
category I features should be more useful than category II features for capturing the 
difference in damping of surface roughness between biogenic and mineral oil slicks. 
Figure 1.13 shows the result from a clustering algorithm taking as input this 
particular feature vector {𝐹3, 𝐹6}, and a clear separation between the upper left slick 
(plant oil) and the two lower slicks (emulsion and crude oil) is observed. For the 
mineral oil slicks, the boundary areas are assigned to the same class (green) as the 
monomolecular plant oil slick and are interpreted as thin sheen layers. In addition to 
this study, the potential of SAR for discriminating oil spills from low wind fields is 
reported in [44]. 
   
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 1.13 Top row, left to right: Intensity of SAR VV polarization channel [dB] 
containing oil slicks (plant oil (upper left), emulsion (middle) and crude 
oil (lower right)) from an oil-on-water exercise in 2011; F6; and F3. 
Bottom row, left to right: Classification of slick areas after ships and sea 
pixels are masked out; histogram of selected regions from the F6; and 
histogram of selected regions from F3. RADARSAT-2 Data and Products 
MDA LTD. (2011)—All Rights Reserved. Figure is courtesy of Stine 
Skrunes. Figure modified from [4]. 

More recent studies using high SNR airborne L-band SAR instruments have 
identified the most sensitive features for oil slick detection from QP data [55,68].  In 
both studies, the VV-intensity damping ratio (F1) and the polarization difference 
(F2) outperformed other investigated features, when considering those only using 
the co-polarized channel data. When including cross-polarization data also, both 
found the HV-intensity damping ratio to be a good discriminator, and [55], who 
considered more features, included the QP geometric intensity (F6) in the well-
performing set. HP features was synthesized from QP UAVSAR data by [55], and 
the co-polarized and cross-polarized data’s damping ratios were the highest 
performance features. It is interesting to note that most of the best features do not 
require polarimetric data, but use only the intensities. Oil thickness and concentration 
are key information needed to effectively target countermeasures during a major oil 
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spill incident. However, thickness has proven to be challenging to obtain by any 
remote sensor [69] and there are few operational methods available [1]. In infra-red 
(IR) remote sensing, an oil slick that is solar heated emits IR radiation as oil shows 
greater emissivity than water; thick oil appears “hot”, intermediate thicknesses 
“cool”, and thinner layers like sheen is not detectable [1]. In theory, the contrast 
drivers of oil spills in SAR measurements discussed in section 1.3.1 should be 
affected by thicker regions of oil. In Figure 1.14, airborne IR imagery from a 
surveillance aircraft is used to spatially identify the thicker regions within the oil 
slick imaged by space-borne SAR. The positions of the thick oil are estimated from 
the position of the aircraft and camera angles, and plotted as black markers (left 
panel). The damping ratio of the C-band SAR VV polarization channel exhibits the 
highest contrast between oil and water at locations where there is spatial overlap with 
thick oil observed by the IR camera, suggesting there is a potential in detecting 
thickness variations with SAR [60].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 1.14 (Left) Damping ratio of a RISAT-1 FRS-2 scene (VV polarization 

channel) containing an oil slick in the North Sea. Positions of thicker 
oil estimated from aircraft data are indicated by ‘x’. (Right) Aircraft 
data (infra-red images) provided by the Air Patrol Squadron 
Finland/SYKE. Figure is courtesy of Stine Skrunes. Figure adapted 
from [60]. 

 
At this point, relative, not quantitative, thickness determination has been 

accomplished [9,12,13]. Using data from a high SNR instrument, simple thresholds 
applied to the VV-damping ratio can be used to distinguish relative thickness.  Figure 
1.15 shows a slick separated into six relative thickness classes, with the evolution of 
transport and weathering shown in three images acquired at 1-hour intervals.  
Accumulation of oil along fronts is indicated for oil in the thickest two classes. In 
situ measurements taken in the area and overlapping with the first two acquisitions 
showed the area to be covered with sheen and patches of true color oil (thickness 
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from a few μm up to ~250 μm). Thickness classification using a neural network and 
based upon the entropy has also been done [12], but users of this parameter should 
be cognizant that the entropy is more sensitive to noise than the damping ratio [55].  

Research efforts are currently directed towards developing methods for 
identifying zones of high oil concentration and estimating the volumetric fraction of 
oil from quad-polarimetric SAR imagery [10,11]. A method based upon the two-
scale model and using the co-polarization ratio (see section 1.3.2.1) was pioneered 
in 2012 using data from the Deepwater Horizon [10]. The analysis indicated that the 
material in the slick had between 0.75 and 0.9 oil volumetric fraction. One issue with 
the method is that the model upon which it is based assumes that there is no contrast 
between the co-polarization ratio for sheen and clean water, which is not always the 
case (Figure 1.10). A recent refinement to the method using the Universal Weighted 
Curvature Approximation scattering model [66] obtained 0.49-0.52 oil volumetric 
fraction for a slick composed of emulsion of 40:60 oil-to-water ratio upon release in 
the North Sea [10]. While promising, the method needs validation and refinement to 
better agree with data for sheen slicks and to estimate the uncertainty in the derived 
oil volumetric fraction.     

 
Figure 1.15 Relative thickness classification based upon thresholding the VV-

intensity damping ratio of a slick from a seep in the MC20 block of the 
Gulf of Mexico. The series of images were separated in time by one 
hour each, with the earliest image on the left. In situ observations and 
measurements indicated that this area was mainly covered with sheen 
from silver to rainbow, with patches of discontinuous true color oil. 

1.4.3 Slick transport and evolution 
There are demands on both short and long timescales for information about the 
position of a slick from an oil spill (Table 1.1). In the short-term, the location and 
extent are most-immediately requested, while on longer timescales an estimate of the 
probable trajectory is wanted. With respect to nowcasts derived from SAR, a case 
study is reported in [70] in which a combination of a SAR image pair with 72 hours 
temporal baseline and auxiliary information on sea state and currents were used to 
determine possible oil spill drift. In general, with this temporal resolution, the spatial 
shape of the oil spill can be expected to have changed beyond recognition. As pointed 
out in section 1.1, drift estimations derived from spatial feature correlation requires 
two or more consecutive SAR images close in time (minutes to few hours). At this 
timescale, the derived velocity vector can be used as a nowcast product.  
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Figure 1.16 Comparison of the OpenOil drift model [https://github. 

com/knutfrode/opendrift] to measured slick transport using a rapid 
repeat time series of SAR images. An 0.5 m3 release of 80:20 oil:water 
emulsion was measured (left) and modeled (middle, right).  Results 
from modelling based on currents from co-released drifters (middle) 
are more accurate than that using currents obtained from an ocean 
model (right). Figure modified from [74]. 

 
In remote areas and harsh environmental conditions, e.g., at high latitudes in the 

Arctic, the response will be slower compared to that at more temperate latitudes, and 
longer and more accurate forecasts are requested [71]. Numerous oil spill models 
have been developed over the years to provide forecasts, and it is beyond the scope 
of this chapter to give a comprehensive review. Three types of methods have been 
proposed for simulation of oil spill transport in water, all partitioning the oil volume 
into discrete pieces to be modelled numerically: (1) particle-tracking, (2) tracers, and 
(3) spillets [71]5. An example of a pollutant particle (‘splot’) tracking model is the 
General NOAA Operational Modeling Environment (GNOME), which is initialized 
and compared to SAR imagery in [72,73]. In brief, to better understand marine oil 
spill transport, numerical models are used to simulate both vertical and horizontal 
transport mechanisms. Recent efforts to integrate numerical models with time-series 
of SAR measurements have led to several advancements within the field. First, a 
deeper understanding of the vertical exchange between the submerged oil droplets 
and the surface slick and how it impacts the slick signature in the SAR imagery has 
been gained. Second, improved models and prediction capabilities of the oil spill’s 
horizontal transport have been developed [74,75]. Jones et al. [74] found that the 
agreement between theory and measurement (Figure 1.16) is improved significantly 
by local current measurements and that modeled wind fields are sufficient. The 
measurements shown were made at wind speeds from 9-12 m/s and used to calibrate 
the OpenOil [https://github.com/knutfrode/opendrift] model’s droplet radii and 
entrainment length.   

1.5   Concluding remarks and outlook 

In this chapter, we have briefly explained the physical mechanisms behind radar 

                                                        
5 See «Notes on further reading» at the end of the chapter for more information about this topic. 
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imaging of oil slicks at sea, discussed how scattering models can aid interpretation 
of SAR imagery, and visited emerging information retrieval techniques for providing 
some of the information items requested by the community. We discussed the 
available instruments and the limitations on their use for oil spill observations.  C-
band SAR has traditionally been used for ocean monitoring from space, e.g., ERS-
1/-2, ENVISAT, Radarsat-1/-2, Sentinel-1, but there is increasing utilization of  L-
band and X-band missions, e.g., ALOS-PALSAR, ALOS-2, and TerraSAR-X, soon 
to be augmented by RCM, SAOCOM-1/2, and NISAR. The most important space-
borne missions for operational environmental monitoring of the oceans are currently 
Radarsat-2, Sentinel-1, and the upcoming RCM, based on coverage, access to the 
data, operational modes and noise characteristics. 

In section 1.1, we gave an overview of key information items involving SAR 
remote sensing.  Those items can be split between those requiring detection of the 
spill and those requiring characterization of the released material.  Information based 
on slick detection, such as position, extent, and drift forecasting, can be derived 
utilizing data from any of space-borne SAR missions and do not in general require a 
particular polarization mode, although the VV mode is preferable because of the 
higher backscatter levels. Efforts are now being made towards integration of remote 
sensing information with numerical oil transport models for hind-, now-, and fore-
casting, and rapid repeat SAR time series images from airborne SAR have 
contributed to constraining model parameters [74,75]. The aim is to better predict 
the transport of the oil to serve coastal monitoring agencies. This work is found 
valuable and important to continue.   

Oil characterization with SAR is not as far advanced insofar as operationalizing 
the methods, and much of the recent advancement has been made with airborne SAR 
specifically because the signals proximity to the noise floor is an issue for space-
borne SAR sensors. For oil slick characterization purposes in particular, attention 
has to be payed to this problem. Three important usages of SAR-based 
characterization were discussed: look-alike discrimination, thickness measurement, 
and identification/measurement of emulsified oil. An important advancement in 
utilization of SAR for oil spill response will be in characterizing oil within the slick 
into categories that match recoverable or non-recoverable oil.  At this point, relative 
thickness, potentially calibrated with in situ or ancillary data, has been demonstrated 
but not operationalized. Interestingly, contrast features (damping ratio) and the 
polarization difference are the features most sensitive to variations within slicks, and 
these require only intensity measurements. Quantifying emulsification via 
measurement of the oil volumetric fraction (oil:water ratio) requires multi-
polarization data to extract information about the dielectric properties of the 
scattering medium.  If we restrict the choice of transmit and receive electromagnetic 
wave polarization to only linear polarization, i.e., combinations of horizontal and 
vertical, information about the electrical characteristics of the slicks can only be 
obtained if both VV and HH products are available for the scene. A quad-
polarimetric SAR system meets this requirement by alternating between transmitting 
H and V polarized pulses while receiving both. However, this requires twice the 
pulse-repetition frequency of a single- or dual-polarized system [76], which could 
cause interference between the received echoes. The upcoming NISAR mission can 
avoid this problem using for ocean imaging a quasi-quad-polarimetric split-spectrum 
mode in which V- and H-polarization pulses are transmitted simultaneously at 



 SAR Oil Spill Imaging, Interpretation and Information Retrieval 
Techniques 33 

 

slightly different frequencies. The frequency diversity applied in the quasi-quad-
polarimetric mode of NISAR and the multi-frequency opportunities from the range 
of space-borne platforms suggest more spectral investigative and frequency 
comparison studies in the future.  

Progress has clearly been made in the field of oil spill characterization over the 
last decade or so, but there is still a need for more validation campaigns collecting in 
situ and auxiliary data, e.g., optical remote sensing measurements that could be used 
to assess the validity range and sensitivity of the algorithms and methods developed. 
This plus more advanced models with validation across a range of metocean 
conditions are key advancements needed for operationalization of SAR-based oil 
spill characterization. Airborne SAR, with its high SNR and rapid repeat capability 
could play an important role in response to major spills in the future. However, 
space-borne SAR will continue to be the main instrument for operational 
surveillance, particularly as more SAR missions are launched. 
 
Notes on further reading 
The two-scale model: See [45] for notes on a small refinement of the model. 
Monomolecular slicks: Natural slicks of biogenic origin are common in coastal waters and 
open ocean, produced by, e.g., algae and bacteria. Unlike mineral oil slicks, biogenic surface 
films consist of surface-active organic compounds that have both a hydrophobic and a 
hydrophilic component. This combination causes the molecules to spontaneously arrange in 
a monomolecular layer at the air/water interface, with the hydrophobic part at the air 
interface and the hydrophilic part at the water interface. This forms a film one molecule 
thick (∼ 2.4 to 2.7 nm) [77,78]. Crude oil spills consist mainly of alkanes, cycloalkanes, and 
aromatic compounds, chemicals that are exclusively hydrophobic. Without the combination 
of hydrophilic and hydrophobic parts, crude oil slicks do not form monomolecular films.  
Over time crude oil spills spread out into layers of different thickness depending on the 
amount and viscosity of the oil and on the environmental conditions, with the final thickness 
on the scale of micrometres to millimetres, and even centimetres for freshly spilled oil 
[77,78], much thicker than the monomolecular biogenic films. 
Numerical drift modelling: In the particle-tracking approach, the distribution of particles 
represents the whole oil spill in a statistical fashion. The oil is parameterized as a finite 
number of particles that are assigned an initial location and mass and tracked numerically by 
a trajectory model. For the tracers, the tracking area of the oil spill is represented by a fine-
resolution grid and the spill occupies the cells that represent its physical extent. The spillet 
method is close to the particle method but adds more degrees of freedom, such as the area or 
thickness represented by each spillet. This method can be seen as a compromise between the 
particle and tracer methods. More information about the advantages and drawbacks of the 
different methods can be found in [71]. 
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