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Abstract  97 

Background: Overexpression of the Receptor for Advanced Glycation End-product (RAGE) has been 98 

associated with chronic inflammation, which in turn has been associated with increased colorectal 99 

cancer (CRC) risk. Soluble RAGE (sRAGE) competes with RAGE to bind its ligands, thus potentially 100 

preventing RAGE-induced inflammation.  101 

 102 

Methods: To investigate whether sRAGE and related genetic variants are associated with CRC risk, 103 

we conducted a nested case-control study in the European Prospective Investigation into Cancer and 104 

Nutrition (EPIC). Plasma sRAGE concentrations were measured by ELISA in 1,361 CRC matched 105 

case-control sets. Twenty-four single nucleotide polymorphisms (SNPs) encoded in the genes 106 

associated with sRAGE concentrations were available for 1,985 CRC cases and 2,220 controls. 107 

Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were computed using 108 

conditional and unconditional logistic regression for CRC risk and circulating sRAGE and SNPs, 109 

respectively.  110 

 111 

Results: Higher sRAGE concentrations were inversely associated with CRC (ORQ5vs.Q1=0.77, 112 

95%CI=0.59-1.00). Sex-specific analyses revealed that the observed inverse risk association was 113 

restricted to men (ORQ5vs.Q1=0.63, 95%CI=0.42-0.94) whereas no association was observed in women 114 

(ORQ5vs.Q1=1.00, 95%CI=0.68-1.48, Pheterogeneity for sex=0.006). Participants carrying minor allele of 115 

rs653765 (promoter region of ADAM10) had lower CRC risk (C vs. T, OR=0.90; 95%CI=0.82-0.99).  116 

 117 

Conclusion: Pre-diagnostic sRAGE concentrations were inversely associated with CRC risk in men but 118 

not in women. A SNP located within ADAM10 gene pertaining to RAGE shedding, was associated with 119 

CRC risk.  120 

 121 

Impact: Further studies are needed to confirm our observed sex difference in the association and better 122 

explore the potential involvement of genetic variants of sRAGE in CRC development. 123 

 124 

 125 

 126 

  127 
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Introduction  128 

Advanced glycation end-products (AGEs) are a heterogeneous group of molecules formed by non-129 

enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids (1). AGEs are 130 

produced endogenously, but diet and lifestyle are likely the largest contributors to the overall AGEs 131 

pool particularly from high-temperature processed food products which contain high amounts of AGEs 132 

and/or their precursors (2-4). Glycated proteins tend to become dysfunctional and agglutinate with other 133 

reacting molecules to create cross-links and aggregates which can accumulate within diverse tissues in 134 

the body (5). The accumulation of AGEs throughout the life course is thought to contribute to 135 

intracellular signalling alterations, chronic low-level inflammation and a decrease in tissue functionality 136 

(6).  137 

AGEs are recognized by a multi-ligand cell-surface protein receptor, known as the Receptor 138 

for Advanced Glycation End-products (RAGE). RAGE consists of an extracellular N-terminal, a 139 

transmembrane helix, and an intracellular C-terminal tail (7). RAGE is expressed at low levels in most 140 

tissue types except the lung in which the expression is generally high (8). Overexpression of RAGE and 141 

its high activity have been demonstrated in various cancers including in the colon, breast, brain, prostate 142 

and in the ovaries (9). Binding of AGEs to their receptor triggers a signalling cascade leading to 143 

intracellular inflammation with activation of nuclear factor kappa B (NF-κB), increased secretion of 144 

cytokines and chemokines, and elevated production of reactive oxygen and nitrogen species (10).  145 

Soluble RAGE (sRAGE) is a free circulating isoform of RAGE that also binds AGEs and acts 146 

as a decoy for RAGE. In contrast to RAGE, binding of AGEs to sRAGE does not induce inflammation 147 

and oxidative stress (8). Although the concentration of sRAGE is likely insufficient to bind all 148 

circulating AGEs (11), higher sRAGE levels had been associated with low inflammation and lower risk 149 

of several chronic diseases, including cancers (12). The variability in sRAGE concentrations is 150 

considerably affected by a combination of genetic and environmental factors (13). sRAGE levels have 151 

been reported to be elevated in women vs. men, younger vs. older individuals, and individuals with 152 

normal weight vs. with overweight and obesity (14-17). Furthermore, genetic determinants of sRAGE 153 

expression have also been identified and include single nucleotide polymorphisms (SNPs) located 154 

within Advanced Glycosylation End-Product Specific Receptor (AGER), A Disintegrin And 155 

Metalloproteinase Domain 10 (ADAM10), Glyoxalase I (GLO1), and Ring Finger Protein 5 (RNF5) 156 

genes (17-21).  157 

We hypothesised that higher circulating sRAGE levels are inversely associated with colorectal 158 

cancer (CRC) development. Previously, only two prospective studies have investigated the association, 159 

and showed an inverse association of high sRAGE concentrations with CRC risk among Finnish male 160 

smokers (22) and women with overweight and obesity (23). However, there is sparse data from other 161 

prospective studies, and there is a need to carefully investigate possible differences in the association 162 

by sex or lifestyle factors. To address these gaps, we studied the association between pre-diagnostic 163 

levels of circulating sRAGE and risk of CRC in a large, multinational European prospective cohort. We 164 
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also investigated whether SNPs, reported to be related to sRAGE levels or RAGE function, are 165 

associated with CRC risk.   166 

 167 

  168 
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Materials and methods  169 

Study population and data collection  170 

We used a case-control design nested within the European Prospective Investigation into Cancer and 171 

Nutrition (EPIC) cohort.  EPIC is an ongoing multicentre prospective cohort with 521,324 participants 172 

(70% women) recruited from 23 study centres located in 10 European countries (Denmark, France, 173 

Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden, and the United Kingdom). The 174 

rationale and methods of the EPIC study, including information on the recruitment of the participants 175 

as well as data collection have been described previously (24). Participants gave written informed 176 

consent before joining the EPIC study. Participant’s health history, anthropometry, socio-demographic 177 

and standardised lifestyle variables including education, smoking, and physical activity were collected 178 

by questionnaire at baseline, prior to disease onset or diagnosis. Physical activity was based on the 179 

Cambridge physical activity index: inactive (sedentary job and no recreational activity), moderately 180 

inactive (sedentary job with <0.5 h recreational activity per day/or standing job with no recreational 181 

activity), moderately active (sedentary job with 0.5 to 1 h recreational activity per day/ or standing job 182 

with 0.5 h recreational activity per day/ or physical job with no recreational activity) or active (sedentary 183 

job with >1 h recreational activity per day/or standing job with >0.5 h recreational activity per day/or 184 

physical job with at least some recreational activity/or heavy manual job) (25). Dietary intake was 185 

assessed at recruitment by validated centre-specific questionnaires. In each of the study centres, blood 186 

samples were drawn at recruitment (≈80% of participants provided blood samples) and stored in liquid 187 

nitrogen (−196°C, liquid nitrogen) at the International Agency for Research on Cancer (IARC) biobank, 188 

or in local biobanks (at -150°C in nitrogen vapour in Denmark; -80°C freezers at Malmö and Umeå 189 

centres in Sweden) (24). 190 

 191 

Follow-up for cancer incidence and vital status  192 

Vital status follow-up (98.4% complete) is collected by record linkage with regional and/or national 193 

mortality registries in all countries except Germany and Greece, and the Italian centre of Naples, where 194 

data are collected actively. Incident cancer cases were identified through record linkage with regional 195 

cancer registries or using a combination of methods, including health insurance records, cancer and 196 

pathology registries, and active follow-up through participants and their relatives. CRC cases were 197 

eligible if they were first incident and histologically-confirmed. Cases were defined using the 198 

International Classification of Diseases for Oncology (ICD-O). Colon cancers were defined as tumours 199 

that occurred in the cecum, appendix, ascending colon, hepatic flexure, transverse colon, splenic 200 

flexure, descending and sigmoid colon (C18.0-C18.7), and overlapping and or unspecified origin 201 

tumours (C18.8 and C18.9). Rectal cancers were defined as tumours that occurred at the recto-sigmoid 202 

junction (C19) or rectum (C20). Cancers of the anal canal were excluded.  203 

 204 
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Case-control design  205 

From baseline onwards, 1,413 first incident CRC cases with available blood samples were identified 206 

(until June 2003 as endpoint) among all the total 2,476 CRC cases ascertained (Figure 1).  For each 207 

identified case, one control was matched by incidence density sampling from all cohort members alive 208 

and cancer-free at the time of diagnosis of the index case. Cases and controls were matched by age (±1 209 

year), sex, centre, and blood collection details including time (±3 hours), fasting pre-venepuncture (<3, 210 

3-6, and >6 hours); and additionally among women only, by menopausal status (pre-, peri-, and 211 

postmenopausal), and hormone replacement therapy (HRT) use at the time of blood collection (yes/no).  212 

After exclusion of participants with incomplete matched case sets (n=16), those with extreme sRAGE 213 

levels (n=3 controls and 1 case with sRAGE concentrations unusually high i.e. >mean+4 standard 214 

deviation), and 32 cases and matched controls from Greece due to unforeseen data restriction issues, 215 

1,361 cases and 1,361 matched controls were included in the sRAGE analysis. Among EPIC 216 

participants, 4,487 participants (until December 2012 as endpoint, 2,148 CRC cases and matched 2,339 217 

controls) have been previously genotyped. After exclusion of 100 CRC cases and 100 matched controls 218 

from Greece, and 82 participants with missing lifestyle variable, 1,985 CRC cases and 2,220 matched 219 

controls were included in the genetic analysis. Among the participants who have been genotyped, 972 220 

CRC cases and 767 non-cases overlap with case-control sets in whom sRAGE measurements were 221 

conducted.  222 

 223 

Laboratory analyses  224 

Circulating sRAGE concentrations were measured in citrated plasma samples by ELISA (Quantikine, 225 

R&D Systems, MN, USA), following the manufacturer’s instructions. Previous studies have reported 226 

that sRAGE is stable in plasma over a long period of time (26). Analyses were run with case-control 227 

sets randomized across batches (n=40 batches, with an average of 35 case-control pairs analysed per 228 

batch). Intra- and inter-batch coefficients of variation (CV) were assessed by measuring 3 different 229 

samples used as quality controls in duplicate in each. Mean intra- and inter-batch CVs were 1.25% and 230 

6.0%, respectively. C-reactive protein (CRP) concentrations were determined using a high-sensitivity 231 

assay (Beckman-Coulter, Woerden, The Netherlands).  232 

  233 

DNA genotyping and genetic variants selection 234 

DNA was extracted from buffy coats from citrated blood samples at the Center for Inherited Disease 235 

Research (CIDR, Johns Hopkins University) using the HumanOmniExpressExome-8v1–2 array as 236 

described elsewhere (27). All SNPs met criteria for quality control for genotyping call rate (above 95%). 237 

Candidate SNPs selected for our study were those previously associated with sRAGE levels. Most of 238 

these SNPs appear to be located within the AGER gene, with rs2070600 being the most important and 239 

explaining 22% of the variability in sRAGE concentrations in Caucasians (17). In addition to AGER, 240 

four additional genes contain SNPs associated with sRAGE: RNF5, a neighbouring gene which encodes 241 
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for RAGE (28), ADAM10 encodes for metalloproteinases involved in the shedding of RAGE 242 

ectodomain to form sRAGE (29), and GLO1 encodes for glyoxalase enzyme responsible to metabolise 243 

methylglyoxal and prevent aberrant AGEs formation (30). The main SNPs are from AGER (rs2070600, 244 

rs1800625, rs1800624, rs184003, rs2854050), ADAM10 (rs653765) and RNF5 (rs9469089) (17-21,31-245 

38). We additionally considered less-studied SNPs located within AGER (rs1035798, rs1800684, 246 

rs3131300, rs3134940, rs2269422, rs2853807, rs9391855, rs17846798), ADAM10 (rs514049), RNF5 247 

(rs57409105, rs41268928, rs17493811), and GLO1 (rs4746, rs1130534, rs1049346, rs6932648, 248 

rs10484854). The choice of this supplementary group of SNPs was based on the potential influence and 249 

interactions they may have in modulating sRAGE levels directly or through AGEs (13,17,21,31,39-41).  250 

Genotype distributions were in Hardy-Weinberg equilibrium (cutoff of P-value=1x10-3) for all 251 

the SNPs considered, with the exception of rs6932648 which was consequently excluded from the 252 

analysis. The selected SNPs and their characteristics are detailed in Supplementary Table 1. To select 253 

the independent variants, Linkage Disequilibrium (LD) pruning (LD≤1%) was performed using NCI 254 

LDlink tools (https://ldlink.nci.nih.gov). We found the following independent variants (highly 255 

correlated variants are in brackets): rs2070600 (rs41268928, rs9391855, rs2854050), rs1800625 256 

(rs3131300, rs3134940), rs1800624 (rs17846798), rs4746 (rs1130534, rs10484854), rs17846798 257 

(rs57409105), rs9469089, rs1800684, rs2269422, rs2853807, rs1049346, rs17493811, and rs653765 258 

(rs514049). A flowchart outlining the selection of the independent SNPs is detailed in Supplementary 259 

Figure 1.  260 

Among the 767 control subjects who had both sRAGE and genetic data, we assessed the 261 

association between the independent genetic variants and log-transformed sRAGE levels using linear 262 

regression models (Supplementary Table 2). The SNPs in the following genes were significantly 263 

associated with sRAGE levels: AGER (rs2070600, rs1800625), RNF5 (rs9469089), and GLO1 (rs4746). 264 

Although rs653765 (ADAM10) was not associated with sRAGE levels, we decided to conserve it in our 265 

analysis for two main reasons: first, as a major variant of metalloproteinases which are involved in the 266 

shedding of the ectodomain of RAGE to produce sRAGE; second, this variant was previously 267 

associated with sRAGE levels in other populations (21). Overall, five SNPs (rs2070600, rs1800625, 268 

rs9469089, rs4746, rs653765) were examined for the association with CRC risk.    269 

 270 

Statistical analysis 271 

Case-control differences in baseline characteristics were evaluated using Student’s paired t-test and 272 

Wilcoxon’s signed-rank test for continuous variables and Kruskal–Wallis test for categorical variables. 273 

Spearman rank correlation was used to correlate sRAGE levels to anthropometry, dietary intakes and 274 

other biomarkers. We divided sRAGE concentrations into quintiles based on the distribution in the 275 

control group. Conditional logistic regression was used to compute odds ratios (ORs) and 95% 276 

confidence intervals (CIs) for the associations between circulating levels of sRAGE and CRC risk. We 277 

ran two different models by including for each successive model additional adjustment variables 278 

https://ldlink.nci.nih.gov/
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incrementally. Model 1 (crude) was conditioned on the matching factors. Model 2 was additionally 279 

adjusted for body mass index (BMI), height, education (none, primary, technical and professional, 280 

secondary, higher), physical activity (inactive, moderately inactive, moderately active, active), smoking 281 

status, duration, and intensity (never; cigarettes/day 1-<=15, 16-<=25, >26; former smokers <=10, 11-282 

<=20, >20 years, occasional), dietary energy, and intakes of alcohol, red and processed meat, dietary 283 

fibre, and dairy products. Dietary factors included as adjustment factors have been previously associated 284 

with CRC and/or sRAGE levels (42). P-values for the linear trend (P for trend) were obtained by 285 

including the median value of each quintile as a continuous variable in the model. We also examined 286 

sRAGE levels as a continuous variable, per standard deviation (SD) increment.  287 

Stratified analyses were performed by anatomical sub-sites (colon vs. rectal cancers, proximal 288 

colon vs. distal colon cancers), sex (men vs. women), age groups (<50, >=50-<55, >=55-<60, >=60-289 

<65, >=65), smoking (never, former, ever), alcohol intake (tertiles), physical activity (inactive, 290 

moderately inactive, moderately active, active), BMI (<25, >=25-<30, >=30 kg/m²); and below or above 291 

sex-specific recommended cut-offs for waist circumference (WC, men, 94 cm, women, 80 cm) and 292 

waist-to-hip ratio (WHR, men, 0.90, women, 0.85), and in women by menopausal status (pre-, post and 293 

perimenopause). The cut-offs for WC and WHR were based on the WHO’s definitions of central 294 

adiposity in European men and women (43). Additional stratified analyses were conducted for CRP 295 

(tertiles) as a marker of inflammation. P-values for heterogeneity were calculated using the Wald test. 296 

For sub-group analyses by anthropometric measures, individual models were run for BMI, WC and 297 

WHR in men and women separately (model 2 without BMI). In sensitivity analyses, we excluded cases 298 

diagnosed during the first 2 years of follow-up and rerun the analyses.  299 

We assessed the association between the genetic variants and CRC risk using data of all 300 

participants genotyped in EPIC to increase the statistical power of the analysis. The associations 301 

between the five independent genetic variants and CRC risk were assessed by unconditional logistic 302 

regression models. Two models were run, an unadjusted model and a multivariable-adjusted model, 303 

adjusted for sex, age, BMI, smoking status, alcohol, and country. Additive (major allele=0, 304 

heterozygotous=1, minor allele=2), dominant (major allele=0, heterozygotous+minor allele=1) and 305 

recessive models (major allele+ heterozygotous=0, minor allele=1) were run for the genetic variants. In 306 

sensitivity analyses, we analysed the participants with overlapping genetic and sRAGE concentrations 307 

data. All the statistical analyses were performed using Stata 14.0 (StataCorp, College Station, TX, 308 

USA). P-values <0.05 was considered statistically significant. 309 

  310 
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Results 311 

Baseline characteristics and sRAGE levels in cases and controls are presented in Table 1. Compared to 312 

controls, CRC cases have higher BMI, WC, WHR and CRP concentrations, and consume more alcohol 313 

and less dairy products and fruit and vegetables. sRAGE concentrations were slightly lower in CRC 314 

cases than controls (1086 versus 1130 pg/mL) but this was mainly observed among men (982 versus 315 

1066 pg/mL in male cases versus controls, respectively); whereas among women sRAGE was 1185 316 

pg/mL in cases and 1191 pg/mL in controls. BMI, WC, WHR, and alcohol intake were all negatively 317 

correlated with sRAGE levels whereas sugar and confectionaries, fruit and vegetable, and cereals 318 

intakes showed positive correlations (Supplementary Table 3). Women with higher sRAGE levels 319 

have lower CRP concentrations (Spearman rho=-0.156, p=0.004).    320 

 321 

sRAGE and CRC risk  322 

sRAGE concentrations were inversely associated with CRC risk in multivariable-adjusted analyses (OR 323 

comparing the highest to the lowest quintile ORQ5vs.Q1=0.75, 95%CI=0.58-0.98, Ptrend=0.035, Table 2). 324 

Sub-group analyses by sex showed an inverse risk association for men (ORQ5vs.Q1=0.63, 95%CI=0.42-325 

0.94, Ptrend=0.001) but not in women (ORQ5vs.Q1=0.94, 95%CI=0.63-1.38, Ptrend=0.754; 326 

Pheterogeneity=0.006). In men, sRAGE was associated with a lower risk of both colon cancer (OR per SD 327 

increment, OR =0.84, 95%CI=0.70-0.99) and rectal cancer (OR=0.80, 95%CI=0.64-0.99) with no 328 

heterogeneity across anatomical subsites (Pheterogeneity=0.607) (Table 3). The magnitude of the inverse 329 

association appeared stronger for distal colon cancer (OR=0.61, 95%CI=0.44-0.84) compared to 330 

proximal cancer (OR=0.94, 95%CI=0.69-1.29) but no heterogeneity was observed (Pheterogeneity=0.671). 331 

In women, no association was found between sRAGE and colon (OR=0.99, 95%CI=0.85-1.15) or rectal 332 

cancer (OR=1.06, 95%CI=0.86-1.32). Stratified analyses by age groups, BMI categories, WC and WHR 333 

cut-offs, and smoking status showed no significant differences across strata (Figure 2). Women in 334 

higher CRP tertiles tended to have higher CRC risk associated with sRAGE (Pheterogeneity across=0.011) 335 

(Figure 2).  336 

 337 

Analyses of genetic variants  338 

Table 4 presents the association of the genetic variants with CRC risk. While comparing minor allele 339 

vs. major allele, rs1800625 (AGER, G vs. A, OR=1.15, 95%CI=1.02-1.29) was associated with an 340 

increased risk of CRC whereas rs653765 (ADAM10, C vs. T, OR=0.88; 95%CI=0.80-0.97) was 341 

associated with a lower CRC risk, in univariate models. After multivariate adjustments, the association 342 

remained statistically significant for rs653765 (ADAM10, C vs. T, OR=0.90; 95%CI=0.82-0.99), but 343 

not for rs1800625 (AGER, G vs. A, OR=1.11, 95%CI=0.99-1.25).  344 

 345 

Sensitivity analysis 346 
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Exclusion of the cases that occurred within the first two years of follow-up did not change the 347 

associations between sRAGE concentrations and CRC (Table 1). The associations between SNPs and 348 

CRC in participants with overlapping genetic and sRAGE data showed similar, but no statistically 349 

significant associations for rs653765 (ADAM10, OR=0.90, 95%CI=0.78-1.05) or rs1800625 (AGER, G 350 

vs. A, OR=1.00, 95%CI=0.83-1.19) (Supplementary Table 4).  351 

 352 

  353 
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Discussion  354 

In this large, case-control study nested within a European prospective cohort, we found that pre-355 

diagnostic circulating sRAGE levels were inversely associated with CRC risk in men but not in women. 356 

The associations observed between sRAGE and CRC did not vary by age, or by lifestyle factors 357 

including obesity and smoking status, suggesting that sex is the main effect modifier in the association 358 

between sRAGE and CRC. With respect to the SNP analyses, we found that the minor allele of rs653765 359 

(ADAM10) was inversely associated with risk of CRC, whereas an increased risk was suggested for 360 

rs1800625 (AGER). However, we did not observe the association between rs653765 and levels of 361 

sRAGE. 362 

RAGE is a pattern recognition receptor that recognizes multiple ligands such as S100, high 363 

mobility group box 1 protein (HMGB1), amyloid-β peptide, in addition to the AGEs (44). RAGE is 364 

overexpressed in several diseases of the colon, including inflammatory bowel diseases (45). RAGE 365 

action in colon tissues may participate in CRC tumour initiation, progression and invasion (46-48). 366 

sRAGE by acting as a decoy of RAGE, binds to AGEs in the circulation and clears them by decreasing 367 

interaction with full-length cell-surface RAGE. The evidence from mouse studies shows that injection 368 

of sRAGE is associated with a reduction in the expression of inflammatory mediators such as TNF-α 369 

(49). Evidence from case-control studies also shows that elevated sRAGE levels are associated with a 370 

lower risk of several cancers including liver (50) and pancreatic cancer (51). This suggests that higher 371 

concentrations of sRAGE are protective against AGEs-induced inflammation which is involved in the 372 

aetiology of various chronic diseases such as diabetes and cancers, but the mechanisms need further 373 

exploration.  374 

The underlying reasons for the observed difference between men and women in the association 375 

between sRAGE and CRC risk are unclear. Several previously published studies that compared sRAGE 376 

levels between men and women suggest higher circulating levels in women (14,15,17), which we also 377 

observed in our study. One explanation of the sex difference in sRAGE levels may be that oestrogens 378 

stimulate sRAGE expression and production (52). Oestrogens have also been reported to reduce AGEs 379 

production and AGEs-related inflammation (53). In our study, women with higher sRAGE levels have 380 

lower CRP concentrations (Spearman rho=-0.156, p=0.004) and lower CRC risk, suggesting that 381 

sRAGE may possibly reduce CRC risk in women, by mitigating overall inflammation. However, 382 

analysis by menopausal status showed no differences across strata in our study population. Our findings 383 

suggest that additional studies are needed to understand the physiological sex differences in sRAGE 384 

levels and how they may translate into the differential CRC risk associations that we have observed in 385 

this study.  386 

Interestingly, the two previous publications on sRAGE and CRC in prospective cohorts have 387 

been conducted in men (22) and in women (23) only. The Alpha-Tocopherol, Beta-Carotene Cancer 388 

Prevention (ATBC) study reported high serum sRAGE to be associated with low CRC risk in Finnish 389 

male smokers (22). We expanded this observation by showing that such an inverse association was also 390 



14 

observed in male never smokers. We expected to observe a greater reduction in CRC risk in non-391 

smokers compared to smokers, but our findings did not differ by smoking status. Smoking may be a 392 

source of AGEs exposure (2), but the magnitude of the contribution of smoking to overall AGEs 393 

exposures remains to be explored. sRAGE levels have been reported to be higher, lower or unchanged 394 

in smokers compared to non-smokers (54-56). It is still unknown whether smoking could induce an 395 

adaptive mechanism of sRAGE synthesis to cope with sustained formation of AGEs from glycotoxins 396 

contained in cigarettes. In a previous nested case-control study on a subsample of 1,249 postmenopausal 397 

women in the Women’s Health Initiative (WHI) study, higher sRAGE levels were observed to be 398 

associated with lower CRC risk in individuals with overweight and obesity, but not among normal 399 

weight postmenopausal women (23). Overall, our findings showed that sRAGE levels were associated 400 

with an inverse risk of CRC only in men, with no difference in magnitude across smoking status or any 401 

other lifestyle factor.   402 

We found that rs653765 located within ADAM10 (C vs. T) was associated with lower risk for 403 

CRC. However, rs653765 (ADAM10) was not associated with sRAGE levels in our study, in contrast 404 

to previous studies in which the minor allele of rs653765 was associated with lower sRAGE levels (21). 405 

Another SNP, rs1800625, located in the promoter region of AGER is involved in the initiation of the  406 

production of the RAGE or its isomers (39). Xu et al. (57) reported in a meta-analysis of 18 case-control 407 

genetic studies that the recessive model of rs1800625 was associated with an increase of overall cancer 408 

risk, while analysing case-controls studies of 6246 cases of renal, lung, breast, cervical, liver, oral, 409 

breast and CRC cancers. Although our findings with genetic variants are intriguing, they may be 410 

attributed to the diversity of functions associated with the AGER and ADAM10 genes. The production 411 

of sRAGE through the shedding of RAGE is dependant of ADAM10 levels. Thus, the overexpression 412 

of AGER coupled with lower ADAM10 activity will result in higher transmembrane RAGE and lower 413 

circulating sRAGE levels. This suggests that the interactions between AGER and ADAM10 may 414 

provide a better understanding of the genetic implications of RAGE and sRAGE in CRC development. 415 

In addition, the associations observed with the genetic data could be explained by other functions of the 416 

SNPs examined, particularly in the case of ADAM10 when considering its multiple actions such as the 417 

formation of amyloid inclusions and the cleavage of a range of proteins (58). We did not observe a 418 

significant association between rs2070600 (AGER) and CRC, albeit our study showed that the major 419 

allele (C allele) of this SNP associates with higher sRAGE levels. A meta-analysis of 15 case-control 420 

studies showed that homozygous minor allele of this SNP was associated with an increased risk of all 421 

cancers (59). The absence of association of this SNP with CRC may be due to low statistical power, 422 

particularly as carriers of the minor allele are rare. Additional studies, using genetic data from larger 423 

research consortia, are needed to explore the link between the expression of AGER, ADAM10, and RNF5 424 

genes, and levels of sRAGE and CRC initiation and development. 425 

The strengths of our study include the large number of cases and controls, the prospective 426 

design and the availability of dietary and lifestyle factors and genetic variants. Our study was, however, 427 
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limited by the fact that we did not differentiate between endogenous secretory RAGE (esRAGE), and 428 

proteolytically cleaved RAGE (cRAGE), the two components of sRAGE. esRAGE is formed by 429 

alternative splicing of RAGE mRNA, and cRAGE is produced by the shedding of the ectodomain of 430 

RAGE par metalloproteinases located at the surface of the cells. esRAGE is stable throughout the life 431 

course whereas cRAGE levels vary with age and with environmental factors (60). Because we have 432 

measured the total pool of plasma sRAGE we therefore cannot discern whether the different variants of 433 

sRAGE have specific and potentially opposite associations with study outcomes. Although the 434 

variability of cRAGE makes it a poor biomarker for a prospective study, cRAGE levels data would 435 

have permitted us to explore the association between SNPs from the ADAM10 gene, levels of cRAGE 436 

and CRC risk. Our study was also limited by the fact that lifestyle factors and blood samples were 437 

collected at the recruitment, and may not necessarily reflect changes over years. Moreover, we cannot 438 

rule out residual confounding or unmeasured confounders such as lifetime history of anti-inflammatory 439 

medication use.  440 

In conclusion, we observed that pre-diagnostic circulating sRAGE levels were inversely 441 

associated with CRC risk in men, but not among women. We also found that the minor allele of 442 

rs653765 (ADAM10) was inversely associated with CRC risk. Additional studies are, however, required 443 

to further investigate how genetic variation and sex may affect sRAGE levels or modify its association 444 

with CRC risk.  445 

 446 

 447 

  448 
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Table 1: Selected baseline demographic and lifestyle characteristics of study participants by 694 
colorectal cancer status, EPIC study 1992-2012 695  

Cases (n=1,361) Controls (n=1,361) P-value* 
Women, % 51.5 51.7  
Age, years, mean±SD 58.4±7.35 58.3±7.38 0.877 
Anthropometry, mean±SD  

 
 

BMI, kg/m² 26.7±4.25 26.2±3.74 0.004 
Waist circumference, cm 90.4±13.0 88.3±12.1 <0.001 
Waist-to-hip ratio 0.88±0.10 0.87±0.10 0.001 
Lifestyle variables, n (%)  

 
 

Smoking status and intensity  
 

 
Never 514 (37.9) 542 (39.8) 0.703 
Current, 1-<=15 cig/day 129 (9.51) 139 (10.2)  
Current, 16-<=25 cig/day 87 (6.40) 94 (6.91)  
Current, >26 cig/day 20 (1.47) 23 (1.69)  
Former, quit <= 10 years 139 (10.3) 129 (9.48)  
Former, quit 11-<=20 years 144 (10.6) 123 (9.04)  
Former, quit  >20 years 166 (12.2) 177 (13.0)  
Current, pipe/cigar/occasional 125 (9.22) 102 (7.49)  

Physical activity  
 

 
Inactive 343 (25.4) 307 (22.6) 0.057 
Moderately inactive 439 (32.4) 446 (32.3)  
Moderately active 307 (22.7) 282 (20.8)  
Active 264 (19.5) 321 (23.7)  

Highest education level attained  
 

 
None 68 (5.01) 66 (4.85) 0.275 
Primary school completed 453 (33.4) 490 (36.0)  
Technical/professional school 324 (23.9) 343 (25.2)  
Secondary school 217 (16.0) 184 (13.5)  
Higher education 247 (18.2) 244 (17.9)  

Dietary intake, mean (SD)  
 

 
Energy, Kcal/day 2124±620 2127±609 0.764 
Alcohol, g/day 17.0±22.1 15.4±19.7 0.040 
Red and processed meats, g/day 87.6±53.1 85.1±52.0 0.215 
Fruits and vegetables, g/day 396±233 421±248 0.007 
Cereals, g/day 216±121 216±119 0.941 
Dairy products, g/day 331±251 351±244 0.042 
Fish, g/day 28.2±28.8 29.6±30.6 0.226 
Sugar and confectionaries, g/day 48.7±66.6 48.7±68.9 0.995 
Fat, g/day 28.3±15.6 27.9±16.0 0.536 
Protein, g/day 89.3±27.9 90.3±27.5 0.337 
Biomarkers    
CRP, ng/mL† 4013±6011 3433±5607 0.026 
sRAGE levels, mean±SD, pg/mL    
All participants 1086±469 1130±470 0.015 
Men 982±431 1066±438 <0.001 
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Women 1185±483 1191±490 0.831 
Frequencies may not add up to 100% due to missing data 696 
Abbreviations: AGE, Advanced glycation end products; BMI, body mass index; sRAGE, soluble 697 
receptor for advanced glycation end-products 698 
*Student’s paired t-test and Wilcoxon’s signed-rank test for continuous variables and Kruskal–Wallis 699 
test for categorical variables 700 
†CRP was available for 1103 cases and 925 controls  701 
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Table 2: Odds ratios (OR) and 95% confidence intervals for colorectal cancer risk associated with circulating sRAGE (Quintiles and continuous), EPIC study 
1992-2012 
  Quintiles of sRAGE (cutpoints, in pg/mL) * Ptrend Continuous, per 

SD 
Continuous, per 

SD† Quintile 1 
(<754) 

Quintile 2 (754-
<941) 

Quintile 3 (941- 
<1157) 

Quintile 4 
(1157- <1440) 

Quintile 5 
(≥1440) 

All 
participants 

       
 

Cases/controls 344/273 258/272 272/271 239/272 248/273 
 

1361/1361 1101/1101 
Model 1‡ 1.00 (Ref.) 0.74 (0.58-0.94) 0.77 (0.61-0.98) 0.64 (0.50-0.83) 0.69 (0.54-0.89) 0.002 0.90 (0.83-0.97) 0.91 (0.82-1.00) 
Model 2§ 1.00 (Ref.) 0.75 (0.60-0.96) 0.83 (0.65-1.07) 0.69 (0.53-0.90) 0.75 (0.58-0.98) 0.035 0.93 (0.85-1.01) 0.92 (0.83-1.02)         

 
Men 

       
 

Cases/controls 222/156 146/138 121/140 85/124 83/99 
 

657/657 521/521 
Model 1‡| 1.00 (Ref.) 0.77 (0.56-1.05) 0.62 (0.46-0.87) 0.46 (0.32-0.65) 0.57 (0.39-0.82) <0.001 0.81 (0.72-091) 0.77 (0.65-0.91) 
Model 2§| 1.00 (Ref.) 0.79 (0.57-1.09) 0.62 (0.44-0.87) 0.49 (0.33-0.72) 0.63 (0.42-0.94) 0.001 0.84 (0.74-0.96) 0.75 (0.63-0.90)         

 
Women 

       
 

Cases/controls 122/117 115/134 151/131 152/148 164/174 
 

704/704 580/580 
Model 1‡| 1.00 (Ref.) 0.77 (0.53-1.12) 1.04 (0.73-1.50) 0.93 (0.65-1.35) 0.90 (0.63-1.35) 0.967 0.99 (0.88-1.10) 1.00 (0.88-1.13) 
Model 2§| 1.00 (Ref.) 0.77 (0.52-1.15) 1.16 (0.79-1.70) 1.03 (0.70-1.53) 0.94 (0.63-1.38) 0.754 1.00 (0.89-1.13) 1.02 (0.89-1.16) 

Abbreviations: BMI, body mass index; sRAGE, soluble receptor for advanced glycation end-products    
*Quintiles (in pg/mL) were created based on the distribution of sRAGE in the control group. All the models were run using conditional logistic regression  
†Analysis excluding cases that occurred within two years of follow-up  
‡Model 1 was conditioned on the matching factors      
§Model 2 is Model 1 further  adjusted for body mass index (BMI, continuous), height (continuous), education (none, primary, technical and professional, 
secondary, higher education), physical activity (inactive, moderately inactive, moderately active, active), smoking status, duration, and intensity (never, 1-
<=15 cigarettes/day, 16-<=25 cigarettes/day, >26 cigarettes/day, former smokers who quit <=10 years, former smokers who quit 11-<=20 years, former 
smokers who quit>20 years, current pipe-cigar and occasional smokers), dietary energy (continuous) and intakes of alcohol, red and processed meat, dietary 
fibre, and dairy products (all as continuous variables) 
|Heterogeneity by sex for sRAGE and colorectal cancer risk association was statistically significant for the two models (P for heterogeneity=0.005, and 0.006 
for the models 1 and 2, respectively)    
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Table 3: Odds ratios (OR) and 95% confidence intervals (CI) for risk of colorectal cancer anatomical subsites associated with circulating sRAGE (Continuous, 
per SD), EPIC study 1992-2012 
 Colon cancer   

Rectal cancer 
 

All colon Proximal colon Distal colon  
All participants      
Cases/Controls* 854/854 372/372 414/414  502/502 
OR (95% CI) † 0.94 (0.84 - 1.04) 0.92 (0.77 - 1.10) 0.88 (0.75 - 1.03)  0.90 (0.78 - 1.05) 
      
Men      
Cases/Controls* 388/388 160/160 191/191  270/270 
OR (95% CI) †‡ 0.84 (0.70 – 0.99) 0.94 (0.69 - 1.29) 0.61 (0.44 - 0.84)  0.80 (0.64 - 0.99) 
      
Women       
Cases/Controls* 466/466 212/212 223/223  232/232 
OR (95% CI) †‡ 0.99 (0.85-1.15) 0.85 (0.64 - 1.13) 1.05 (0.83 - 1.31)  1.06 (0.86 - 1.32) 

*Some colorectal cancers cases were not included in the analysis as they were overlapping (5 were neither colon nor rectal tumours, 68 were neither proximal 
nor distal colon tumours) 
†Conditional logistic regression models conditioned on matching factors and adjusted for body mass index (BMI, continuous), height (continuous), education 
(none, primary, technical and professional, secondary, higher education), physical activity (inactive, moderately inactive, moderately active, active), smoking 
status, duration, and intensity (never, 1-<=15 cigarettes/day, 16-<=25 cigarettes/day, >26 cigarettes/day, former smokers who quit <=10 years, former 
smokers who quit 11-<=20 years, former smokers who quit>20 years, current pipe-cigar and occasional smokers), dietary energy (continuous) and intakes of 
alcohol, red and processed meat, dietary fibre, and dairy products (all as continuous variables) 
‡P for heterogeneity colon cancer vs. rectal cancer were 0.607, 0.091, and 0.291 for all the participants, men and women, respectively 
P for heterogeneity proximal colon cancer vs. distal colon cancer were 0.307, 0.671, and 0.870 for all the participants, men and women, respectively 
P for heterogeneity by sex were 0.042, 0.832, 0.004, 0.063 for all colon cancer, proximal colon cancer, distal colon cancer, and rectal cancer, respectively 
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Table 4: Odds ratios (OR) and 95% confidence intervals (CI) for colorectal cancer risk associated with SNPs associated with sRAGE levels, EPIC study 
1992-2012 
SNP Cases  Controls  OR (95% CI) * P-value‡ OR (95% CI) † P-value‡ 
rs2070600 (AGER)  

     

     CC 1836 2048 1.00 (ref.) 
 

1.00 (ref.) 
 

     CT 148 164 1.01 (0.80-1.27) 0.955 1.06 (0.84-1.35) 0.608 
     TT 1 8 0.14 (0.02-1.12) 0.063 0.17 (0.02-1.36) 0.095 
     T vs. C 1985 2220 0.93 (0.75-1.16) 0.519 0.99 (0.79-1.24) 0.906 
     CT+TT vs. CC 1985 2220 0.97 (0.77-1.21) 0.768 1.03 (0.81-1.30) 0.835 
     TT vs. CT+CC 1985 2220 0.14 (0.02-1.12) 0.063 0.17 (0.02-1.35) 0.094 
rs1800625 (AGER)  

     

      AA 1350 1584 1.00 (ref.) 
 

1.00 (ref.) 
 

     AG 574 578 1.17 (1.02-1.34) 0.028 1.13 (0.98-1.3) 0.084 
     GG 61 58 1.23 (0.86-1.78) 0.261 1.17 (0.81-1.7) 0.397 
     G vs. A 2135 2331 1.15 (1.02-1.29) 0.020 1.11 (0.99-1.25) 0.071 
     AG+GG vs. AA 2135 2331 1.17 (1.03-1.34) 0.019 1.13 (0.99-1.3) 0.067 
     GG vs. AG+AA 2135 2331 1.18 (0.82-1.7) 0.369 1.13 (0.78-1.64) 0.513 
rs9469089 (RNF5)       
     GG 1408 1619 1.00 (ref.)  1.00 (ref.)  
     GC 532 548 1.12 (0.97-1.28) 0.121 1.14 (0.99-1.31) 0.070 
     CC 45 53 0.98 (0.65-1.46) 0.907 0.99 (0.65-1.49) 0.948 
     C vs. G 1985 2220 1.08 (0.95-1.21) 0.231 1.09 (0.97-1.23) 0.152 
     GC+CC vs. GG 1985 2220 1.10 (0.96-1.26) 0.150 1.13 (0.98-1.29) 0.089 
     CC vs. GC+GG 1985 2220 0.95 (0.63-1.42) 0.796 0.95 (0.63-1.43) 0.813 
rs4746 (GLO1)       
     TT 651 724 1.00 (ref.)  1.00 (ref.)  
     TG 965 1034 1.04 (0.90-1.19) 0.596 1.03 (0.9-1.19) 0.645 
     GG 369 462 0.89 (0.75-1.06) 0.179 0.89 (0.75-1.06) 0.192 
     G vs. T 1985 2220 0.95 (0.88-1.04) 0.275 0.95 (0.88-1.04) 0.282 
     TG+GG vs. TT 1985 2220 0.99 (0.87-1.13) 0.899 0.99 (0.87-1.13) 0.870 
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      GG vs. TG+ TT 1985 2220 0.87 (0.75-1.01) 0.071 0.87 (0.75-1.02) 0.084 
rs653765 (ADAM10)       
     TT 1076 1125 1.00 (ref.) 

 
1.00 (ref.) 

 

     TC 757 887 0.89 (0.79-1.01) 0.081 0.90 (0.79-1.02) 0.098 
     CC 152 208 0.76 (0.61-0.96) 0.019 0.83 (0.66-1.04) 0.109 
     C vs. T  1985 2220 0.88 (0.80-0.97) 0.008 0.90 (0.82-0.99) 0.038 
    TC+CC vs. TT 1985 2220 0.87 (0.77-0.98) 0.022 0.88 (0.78-1.00) 0.051 
    CC vs. TC+TT 1985 2220 0.80 (0.64-1.00) 0.048 0.87 (0.70-1.09) 0.219 

*Crude model (unadjusted) 
†Adjusted for sex, country, age (1-year categories), BMI (continuous), smoking status (never, former, current) and alcohol intake (continuous) 
‡P-values were calculated by considering genetic variant as continuous 
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Figure legends:  
Figure 1: sRAGE and genetic data available within EPIC 
Two endpoints were used for our data; the first ended in June 2003 and included 1361 colorectal cancer 
cases and 1361 matched controls for the analysis of sRAGE concentrations. December 2012 was 
considered for the second endpoint, with 1985 samples of colorectal cancer cases, and 2220 controls 
analysed for genetic data. The overlapping between the two samples was used for sensitivity analysis. 
 
Figure 2: Multivariable-adjusted odds ratio and 95%CI of the associations between RAGE and 
colorectal cancer, stratified by lifestyle, obesity, CRP and menopause status 
Multivariable-adjusted OR and 95% CI were computed for the stratified analysis. All the analyses were 
conditional logistic regression models conditioned on matching factors and adjusted for BMI, 
education, physical activity, smoking status, dietary energy and intakes of alcohol, red and processed 
meat, dietary fibre, and dairy products. The analyses stratified by BMI, physical activity, smoking, and 
alcohol were not adjusted for their respective variables.  
 
 
 


