

Faculty of Engineering Science and Technology

STUDY OF FAILURE PROFILES IN THE BRIDGE STRUCTURES

RAZIEH AMIRI Master Thesis in Technology and Safety In The High North - TEK-3901 - October 2019

<i>Title</i> : STUDY OF FAILURE PROFILES OF BRIDGES	Date: 15.10.2019
	<i>Classification</i> : Not confidential
Author: RAZIEH AMIRI	Number of Pages: 120
	<i>Number of Appendix:</i> 1
University: The University of Tromsø - The Arctic University of Norway (UiT)	
<i>Faculty:</i> Faculty of Engineering Science and Technology	
Department: Department of Technology and Safety	
Master Program: Technology and Safety In The High North	
Supervisor: Maneesh Singh	
<i>External Organization/ Company:</i> Norwegian Public Roads Administration (Statens vegvesen)	
<i>Keywords (max 10 words)</i> : Civil infrastructure, Bridge structures, Failure profile, Reliability	
Abstract (max 150 words):Bridge safety is an indispensable part of transportation safety. However, each bridge is unique with respect to its material, design and the environment which it is located in, and other relevant factors. This makes defining a unified framework for studying and categorizing failures in the bridges a difficult task. The current report aims at taking the first step to reach such a goal. This report addresses the issue of the bridge failure. First, it introduces different bridge characteristics. The emphasis is on introducing different types of bridges including differences in the design, material, structure forms, load type, condition and environment. In the second part, the report focuses on failure profile for the bridge structures. This includes discussing different failure causes, failure mechanism, and their corresponding modes and types.Finally, the findings from the first two parts are applied in a sample case study. The data is from BRUTUS, the database of Norwegian Public Roads Administration (SVV).	
information of the 152 bridge structures located in Trondheim	municipality The data provides

information of the 152 bridge structures located in Trondheim municipality. The data provides information on the bridge characteristics e.g. material type, bridge design, application and age. The bridges in Trondheim are categorized based on the characteristics and their failure status are investigated based on the risk matrices.

TABLE OF CONTENTS

PART	1 – IN	VTRODUCTION AND REVIEW	1
1 IN	TRO	DUCTION	5
1.1	BA	CKGROUND	5
1.2	AIN	M AND OBJECTIVE OF THE PROJECT	6
1.3	RE	SEARCH QUESTIONS	6
1.4	SCO	OPE OF THE PROJECT	6
1.5	MC	DTIVATIONS	7
1.6	PRO	OJECT LIMITATIONS	8
1.7	RE	PORT STRUCTURE	8
PART	$2 - L^{1}$	ITERATURE REVIEW	11
2 BH	RIDG	E CHARACTERISTICS AND ELEMENTS	15
2.1	SCO	OPE AND OBJECTIVES	15
2.2	LIT	ERATURE STUDY LIMITATIONS	16
2.3	BR	IDGE CHARACTERISTICS AND ELEMENTS	16
2.4	MA	AIN AND TYPICAL PARTS OF BRIDGES	17
2.5	BR	IDGE CHARACTERISTICS	21
2.5	5.1	MATERIAL TYPES	22
2.5	5.2	AGE	23
2.5	5.3	SPAN HEIGHT, LENGTH AND /OR HEADROOM	23
2.5	5.4	PORTABILITY	24
2.5	5.5	STRUCTURE FORMS AND DESIGNS	24
2.5	5.6	ENVIRONMENT	34
2.5	5.7	INSPECTION ASSESSMENT	37
2.5	5.8	CONDITION INDICATORS	38
2.5	5.9	APPLICATIONS AND LOAD TYPE	39

	2.5	5.10	ROUTE SUPPORTED AND OBSTACLES CROSSED	39
	2.6	SU	MMARY OF BRIDGE CHARACTERISTICS	40
3	DE	ESCR	RIPTION OF RELIABILITY AND FAILURE PROFILE IN BRIDGES	45
	3.1	LIF	ETIME PERFORMANCE CHARACTERISTICS, RELIABILITY AND	
	FAIL	URE]	45
	3.2	FA	ILURE CAUSES	49
	3.2	2.1	DESIGN FAILURE	50
	3.2	2.2	CONSTRUCTION FAILURE	50
	3.2	2.3	AGING FAILURE	50
	3.2	2.4	MISHANDLING FAILURE	50
	3.3	FA	ILURE AND DETERIORATION MECHANISMS	50
	3.3	3.1	CHEMICAL	51
	3.3	3.2	PHYSICAL	51
	3.3	3.3	THERMAL	51
	3.4	FA	ILURE MODES	54
	3.5	FA	ILURE TYPE	55
	3.5	5.1	WEAR-OUT FAILURE	55
	3.5	5.2	AGING FAILURE	55
	3.5	5.3	SUDDEN FAILURE	55
PA	ART 3	8 – C.	ASE STUDY	57
4	CA	ASE S	STUDY	61
	4.1	SC	OPE AND OBJECTIVES	61
	4.2	CA	SE STUDY LIMITATIONS, ASSUMPTIONS & POSSIBLE SOURCE OF	
	ERR	ORS		61

4.3 DATA
4.3.1 SOURCE OF DATA
4.3.2 METADATA (DATA DESCRIPTION)
4.4 RESULTS
4.4.1 OVERALL RESULTS72
4.4.2 RESULTS FOR THE BRIDGES WITH POOR AND VERY POOR
CONDITION PERFORMANCE INDICATORS
4.4.2.1 CONSEQUENCE TYPES
4.4.2.2 BRIDGE STRUCTURE FORMS
4.4.2.3 SUBCOMPONENTS FOR UNIFORM BOX/ TUBULAR CULVERT
AND SIMPLY SUPPORTED STRUCTURES81
4.4.2.4 FAILURE MODE AND EFFECTS ANALYSIS (FMEA) FOR UNIFORM
BOX/TUBULAR CULVERT 85
5 DISCUSSION
PART 4 –CONCLUSION
6 CONCLUSION AND FURTHER STUDIES
7 REFERENCES
APPENDIX A: DATA

LIST OF TABLES

Table 2-1: Elements Significant to Structural Integrity (TfL, 2011). 2011	0
Table 2-2: Type of information provided by each category regarding a bridge structure (IAN	
171/12, 2012)	1
Table 2-3: Magnitude of Failure Score, MoF (TfL, 2011)	3
Table 2-4: Pros and cons of arch bridge structures (ScienceStruck, 2018) (Bridges and	
Structures, 2009)	6
Table 2-5: Pros and cons of beam bridge structures (Leonhardt, 1984) (Kevin-F, 2018)	
(Balasubramanian, 2017)	7
Table 2-6: : Pros and cons of truss bridge structures (Balasubramanian, 2017). 29	9
Table 2-7: Pros and cons of cantilever bridge structures (Balasubramanian, 2017).	0
Table 2-8: Pros and cons of suspension bridge structures (Balasubramanian, 2017)	0
Table 2-9: Pros and cons of cable-stayed bridge structures (Balasubramanian, 2017)	2
Table 2-10: Pros and cons of uniform box or tubular culvert bridge structures (OFFICE OF	
STRUCTURES, 2011)	4
Table 2-11: Exposure desxcription and severity (TfL, 2011).	5
Table 2-12: Inspectability Score, IS (TfL, 2011). 33	8
Table 2-13: Socio-Economic Importance Score, SEIs (TfL, 2011) 40	0
Table 2-14: Risk assessment criteria (IAN 171/12, 2012).	1
Table 3-1: Variables use for probabilistic estimates of time-varying reliability (Applebury,	
2011)	7
Table 3-2 : Rate of deterioration score (TfL, 2011). 52	2
Table 3-3: Rate of Deterioration Depending on Structure Characteristics (TfL, 2011)	3
Table 3-4: Potential Failure Mode Score (TfL, 2011). 54	4
Table 4-1: Two samples of the given data by SVV. 64	4
Table 4-2: Relevant bridge failures based on the material 6	5
Table 4-3: relevant bridge form categories based in (IAN 171/12, 2012). 64	5
Table 4-4: Relation between climate zone and exposure to de-icing salts (IAN 171/12, 2012).	
	8
Table 4-5: Relation between climate zone and scour risk (IAN 171/12, 2012)	8
Table 4-6: Relation between climate zone and flooding risk (IAN 171/12, 2012)69	9
Table 4-7: Indication of the Inspection assessment data	9

Table 4-8: Risk matrix to indicate the priority value (Håndbok V440 - Bruregistrering, 2014).
Table 4-9: Colour descriptions of the risk matrix for table 4-8 (Håndbok V440 -
Bruregistrering, 2014)70
Table 4-10: Consequence type description (Håndbok V440 - Bruregistrering, 2014)71
Table 4-11: Interpretations of the worst damage degree for bridge condition indicator71
Table 4-12: Bridge groups descriptions (IAN 171/12, 2012).72
Table 4-13: Bridge data based on the material used. 72
Table 4-14: Bridge data based on the construction intervals. 73
Table 4-15: Bridge data based on the climate zone. 75
Table 4-16: Bridge data based on the application and load type. 76
Table 4-17: Bridge data based on the consequence type. 77
Table 4-18: Bridge data based on risk values. 78
Table 4-19: Percentage indication of consequence type in red and yellow zone
Table 4-20: Percentage indication of consequence type in red and yellow zone
Table 4-21: Subcomponents for uniform box or tubular culvert bridges based on BRUTUS
database
Table 4-22: Subcomponents for simply supported bridges based on BRUTUS database84
Table 4-23: FMEA for uniform box/tubular culvert. 87
Table A- 1: The actual data given by SVV107

LIST OF FIGURES

Figure 2-1: Bridge characteristics flow chart (Man-Chung, 2018)17
Figure 2-2: Components of a typical bridge (John, 2013)
Figure 2-3: Typical bridge elements (Basic Bridge Terms, 2015)19
Figure 2-4: Structure forms and the associated forces (Balasubramanian, 2017)25
Figure 2-5: Danhe bridge as an example of an arch bridge (Janberg, 2016)25
Figure 2-6: Elements and parameters used in arch bridge structure (Bridges and Structures,
2009)
Figure 2-7: Albert Memorial Bridge as an example of beam bridge (Historic Albert Memorial
Bridge, 2015)
Figure 2-8: Elements and parameters used in beam bridge structure (Bridges and Structures,
2009)
Figure 2-9: Józef Piłsudski Bridge as an example of truss bridges (Kramarczik, 2013)
Figure 2-10: Elements and parameters used in truss bridge structure (Bridges and Structures,
2009)
Figure 2-11: The forth bridge as an example of cantilever bridges (McBey, 2015)29
Figure 2-12: Golden gate bridge as an example of suspension bridges (Bierman, 2017)30
Figure 2-13: Elements and parameters used in suspension bridge structure (Bridges and
Structures, 2009)
Figure 2-14: Mohammed VI Bridge as an example of cable-stayed bridges (FEZ, 2016) 31
Figure 2-15: Elements and parameters used in cable-stayed bridge structure (Bridges and
Structures, 2009)
Figure 2-16: Example of a culvert bridge (Northwest Consultants, 2019)
Figure 2-17: Typical Sections of Different Types of Culverts (Arjun, 2018)
Figure 3-1: Plot of the "bathtub" probability curve. (Applebury, 2011)
Figure 4-1: The locations of the bridges in Trondheim based on the GPS information
provided66
Figure 4-2: Climate zone on the map of Norway (Håndbok V440 - Bruregistrering, 2014)67
Figure 4-3: Pie chart for the bridges in Trondheim based on the material used
Figure 4-4: Percentage values of the brigde built in a specific contruction interval74
Figure 4-5: Pie chart for the bridges in Trondheim based on the construction intervals74
Figure 4-6: Pie chart for the bridges in Trondheim based on the climate zone

Figure 4-7: Pie chart for the bridges in Trondheim based on the application and load type7	6
Figure 4-8: Pie chart for the bridges in Trondheim based on the consequence type	7
Figure 4-9: Pie chart for the bridges in Trondheim based on the risk values	8
Figure 4-10: Percentage indication of consequence type in red and yellow zone in bar chart.8	0
Figure 4-11: Continuous interaction between failure modes and failure effects	6

LIST OF EQUATIONS

Equation 2-1: Construction age	23
Equation 3-1: General reliability function (Rausand & Høyland, 2004)	48
Equation 3-2: Reliability function of a bridge/ structure (Rausand & Høyland, 2004)	48
Equation 4-1: Construction age for the case study	65
Equation 4-2: Priority grade (Håndbok V440 - Bruregistrering, 2014)	70

TERMINOLOGY

TERMS	DEFINITIONS
Collapse	"Development of failure mechanisms in a structure to a degree involving
	disintegration and falling (parts of) structural members" (ES ISO 2394,
	2012).
Condition Attributes	"Characteristics that relate to the current condition of a bridge or bridge
	element. These may include element ratings, component ratings, and
	specific damage modes or mechanisms that have a significant effect on the
	reliability of an element" (NCHRP, 2014).
Condition/ durability	"Well-defined and controllable limit state without direct negative
limit state	consequences, which is often an approximation to a real limit state that
	cannot be well defined or is difficult to calculate" (ES ISO 2394, 2012).
Damage	"Unfavorable change in the condition of a structure that can affect the
	structural performance unfavorably" (ES ISO 2394, 2012).
Design Attributes	"Characteristics of bridge or bridge element that are part of the element's
	design. These attributes typically do not change over time except when
	renovation, rehabilitation, or preservation activities" (NCHRP, 2014).
Design criteria	"Quantitative formulations describing the conditions to be fulfilled for each
	<i>limit state</i> " (ES ISO 2394, 2012).
Environmental	"Physical, chemical, or biological influences which may deteriorate the
influences	materials constituting a structure, which in turn may affect its serviceability
	and safety in an unfavorable way" (ES ISO 2394, 2012).
Irreversible limit states	"Limit states which will remain permanently exceeded when the actions
	which caused the exceedance are no longer present" (ES ISO 2394, 2012).
Life cycle	"Life cycle incorporates initiation, project definition, design, construction,
	commissioning, operation, maintenance, refurbishment, replacement,
	deconstruction, and ultimate disposal, recycling, or re-use of the structure
	(or parts thereof), including its components, systems, and building
	services" (ES ISO 2394, 2012).
Limit states	"State beyond which a structure no longer satisfies the design criteria" (ES
	ISO 2394, 2012).
Load	"Weight distribution throughout a structure" (Williams, 2009).

TERMS	DEFINITIONS
Loading Attributes	"Loading characteristics that affect the reliability of a bridge or bridge
	element, such as traffic or environment" (NCHRP, 2014).
Maintenance	"Activities and operations undertaken to manage and maintain an asset,
	e.g. inspection, assessment, renewal, upgrade, etc." (TfL, 2011).
Performance indicator	"Parameter describing certain characteristic of the structural behavior"
	(ES ISO 2394, 2012).
Probability of failure	"Factor describing the likelihood that an element will fail during a
(PoF)	specified time period" (NCHRP, 2014) (DNV-RP-G101, 2010).
Reversible limit states	"Limit states which will not be exceeded when the actions which caused the
	exceedance are no longer present" (ES ISO 2394, 2012).
Risk	"Combination of the probability of an event and its consequence" (NCHRP,
	2014). (TfL, 2011) (BD 54/15, Management of post-tensioned
	CONCRETE BRIDGES, 2015).
Serviceability	"Ability of a structure or structural member to perform adequately for a
	normal use under all expected actions" (ES ISO 2394, 2012).
Serviceability limit	"Limit state concerning the criteria governing the functionalities related to
states	normal use" (ES ISO 2394, 2012).
Structure	"Organized combination of connected parts including geotechnical
	structures designed to provide resistance and rigidity against various
	actions" (ES ISO 2394, 2012).
Structural element	"Physically distinguishable part of a structure, e.g. column, beam, plate,
	foundation" (ES ISO 2394, 2012).
Structural performance	"Qualitative or quantitative representation of the behavior of a structure
	(e.g. load bearing capacity, stiffness, etc.) related to its safety and
	serviceability, durability, and robustness" (ES ISO 2394, 2012).
Structural safety	Structural safety is defined as a "situation when structure demand is always
	less than the structure capacity" (Rausand & Høyland, 2004).
Structural system	"Load/bearing members of a building or civil engineering structure and the
	way in which these members function together and interact with the
	environment" (ES ISO 2394, 2012).
Ultimate limit states	"Limit states concerning the maximum load-bearing capacity" (ES ISO
	2394, 2012).

ABBREVIATIONS

ABBREVIATIONS	DEFINITIONS
BRUTUS	Bridge management and preparedness
	(Bruforvaltning og –beredskap)
DNV	DET NORSKE VERITAS
FMEA	Failure Mode and Effects Analysis
N/D	Not Defined
NORSOK	Norsk Sokkels Konkurranseposisjon
	(The Norwegian Shelf's Competitive Position/ Norwegian Technology
	Standards Institution)
PoF	Probability of failure
SVV	Norwegian Public Roads Administration
	(Statens vegvesen)
TRD	Trondheim
UiT	University of Tromsø – Norges arktiske universitet

SUMMARY

Bridge safety is an indispensable part of transportation safety. However, each bridge is unique with respect to its material, design and the environment which it is located in, and other relevant factors. This makes defining a unified framework for studying and categorizing failures in the bridges a difficult task. The current report aims at taking the first step to reach such a goal.

This report addresses the issue of the bridge failure. First, it introduces different bridge characteristics. The emphasis is on introducing different types of bridges including differences in the design, material, structure forms, load type, condition and environment.

In the second part, the report focuses on failure profile for the bridge structures. This includes discussing different failure causes, failure mechanism, and their corresponding modes and types.

Finally, the findings from the first two parts are applied in a sample case study. The data is from BRUTUS, the database of Norwegian Public Roads Administration (SVV). This data includes the information of the 152 bridge structures located in Trondheim municipality. The data provides information on the bridge characteristics e.g. material type, bridge design, application and age. The bridges in Trondheim are categorized based on the characteristics and their failure status are investigated based on the risk matrices.

Key Words: Civil infrastructure, Bridge structures, Failure profile, Reliability

PREFACE

This thesis is written towards the fulfillment of the two-year master program in Technology and Safety in the High North at University of Tromsø (UiT), at Department of Technology and Safety. The course name is "TEK-3901 - Master thesis in engineering". The project has been discussed and decided in cooperation with the supervisor, Maneesh Singh and it was initiated after an article in VG newspaper regarding the bridge status in Norway (VG, 2017). The article was published in 2017 and it attracted the interests of researchers and experts to discuss and investigate more regarding the failure profiles, maintenance, inspection, operations and the preventive measures for the bridges to be able to assure safer and more reliable structures and therefore transportations.

The primary concept of this report is regarding the failure profile in bridge structures. The specific case study is provided for a better understanding of the report concepts. The case study is about the presentation of the bridge status in Trondheim municipality based on BRUTUS database and interviews with Norwegian Public Roads administration (SVV) and further discussions regarding the results from different perspectives. Furthermore, the bridges with poor and very poor status are discussed elaborately.

The main objective of this project is to provide detailed information regarding the bridge types, bridge elements and how the failure profile can be explained in bridge structures. It can be expected that the reader will have a clear picture of detailed bridge structures and how its failure profiles can be defined.

The report involves of 4 main parts. The 1st part contains basic information about the project concepts and approaches. In the 2nd part, literature studies are explained including relevant terms and definitions. The 3rd part of the report is based on the concepts that are used for the case study. Finally, in the 4th part, conclusion and possible further studious are presented.

ACKNOWLEDGEMENT

Hereby, I would like to use this chance to show my appreciation to my dear supervisor "Maneesh Singh" for his sincere and continuous supports and inspirations which not only smoothed this project work, but also taught me valuable lessons regarding different issues which I can use in other phases of my life.

Also, I would like to declare my gratitude towards my family and Martin Buarø for their endless and kind support and motivations.

I extend my heartfelt thanks to Geir Langli and Geir Berge for their remarks, freely shared ideas and huge amount of ambitious through my learning process, Kjetil Sletten (From SVV) for his sincere assistance in this project, Shabnam Arbab, Reyhane Rezapoor, Babak Mousakhani and Anitha MSB for their kind contributions.

Razieh Amiri

XXIII

PART 1 – INTRODUCTION AND REVIEW

CHAPTER 1 – INTRODUCTION

1 INTRODUCTION

This chapter consists of background information, scope, motivations, objective and limitations. It also includes how the report has been structured to achieve the mentioned goals. Furthermore, it includes some research questions which are answered in chapter 6, "Conclusion and Further Studies".

This thesis was initiated after an article in VG newspaper regarding the bridge status in Norway (VG, 2017). The article was published in 2017 and it attracted the interests of researchers and experts to discuss and investigate more regarding the failure profiles, maintenance, inspection, operations and the preventive measures for the bridges to be able to assure safer and more reliable bridge structures and therefore transportations. To do so, historical bridge data and complementary information from Norwegian Public Roads Administration (SVV) through interviews, "BRUTUS" database and reports are used in this project.

1.1 BACKGROUND

Civil structures play an important role in our daily life transportations. As one of the most important civil structures, bridges have been built because of fulfilling the constant human needs for communication, trading and transportations (Blockley, 2010). Engineers have used different materials, designs, architectures and other different elements in the bridge structures which provide more complexity to the bridge structures (Troyano, 2003).

Bridge safety is an indispensable part of transportation safety. In order to have reliable and safe structures, it is important to have a clear understanding of their system to be able to develop efficient and cost-efficient operation, maintenance and inspection plans (Miyamoto, Kawamura, & Nakamura, 2000). Each bridge is unique with respect to its material composition, design and the environment in which it is located and other applicable factors. This makes defining a unified framework for studying the failure profiles in the bridges a difficult task.

The current report aims at taking the first step to reach such a goal. The focus of this report is to present and approach the relevant issues based on an analysis for the bridges in Trondheim municipality.

The intention of this report is to provide a clear and structured picture of these issues and how they can be studied further. Therefore, it can enable engineers to understand the current issues in the bridge structures at the moment and to develop efficient and cost-efficient operation, maintenance and inspection plans.

1.2 AIM AND OBJECTIVE OF THE PROJECT

The main aim of this project is to develop the failure profile in the bridge structures which can assimilate the development of efficient and cost-efficient operation, maintenance and inspection plans.

The report introduces information regarding the bridge characteristics, reliability and the failure profile. Furthermore, the bridge status in Trondheim municipality has been presented based on the data from Norwegian Public Roads administration (SVV). The identified bridges with poor and very poor status are discussed in more detail.

1.3 RESEARCH QUESTIONS

Research questions are listed as below:

- 1. How bridge structures can be categorized?
- 2. How to define reliability and failure profile concepts for the bridge structures? I.e. when does a bridge fail?
- Categorize the bridges in Trondheim municipality based on the output from question 1 and list their failure profile based on question 2.
- 4. What are the main failure modes in the failure profile of the bridges with poor and very poor condition performance indicator?

These research questions are answered in chapter 6, "Conclusion and Further Studies".

1.4 SCOPE OF THE PROJECT

The concept of this project is to present the bridge status in Trondheim based on the data from Norwegian Public Roads administration (SVV) and to introduce and discuss the relevant issues based on the results. Furthermore, the bridges with poor and very poor status are discussed in more detail. This understanding can lead to the development of operation, maintenance and inspection plans considering reliable, safe and cost-efficient approaches.

The scope of the work are listed below:

- 1. Categorize the bridge structures from different perspectives, including:
 - Material types
 - Age
 - Span height, length and /or headroom
 - Portability
 - Structure forms (design and construction).
 - Environment
 - Inspection assessment
 - Condition indicators
 - Applications and load type
 - Route supported and obstacles crossed
- 2. Describe the reliability and failure profile in bridge structures, including;
 - Lifetime performance characteristics, reliability and failure
 - Failure causes
 - Failure and deterioration mechanisms
 - Failure modes
 - Failure type
- 3. Case study for further discussions about the mentioned concepts and more detailed discussions regarding the bridges with poor and very poor status.

1.5 MOTIVATIONS

This report is written based on the following motivations:

- 1. Describe the definition of failure and reliability from structural perspective and their importance.
- 2. Provide an overall review regarding the bridge status in Trondheim, including the bridges with poor and very poor status.
- 3. Show how this information can be utilized not only in research studies but also in practical cases.

4. Personal interests in the field of maintenance and inspection, especially in civil and bridge engineering, made me to follow my supervisor's recommendation for the specialization project and the master thesis.

1.6 PROJECT LIMITATIONS

The limitations faced in this project could be categorized as three above groups:

- i) <u>General limitations</u>:
 - It is expected that the reader has the basic knowledge in the civil and bridge structures, inspection and maintenance.
 - In case of having more time for this project, it could be possible to discuss and analyze more concepts to broaden the research perspectives and also to study the discussions more in depth.
- ii) <u>Literature study limitations</u>: The limitations regarding the literature study is explained in chapter 2 (under title 2.3 Limitations).
- iii) <u>Case study limitations:</u> The limitations regarding the case study is explained in chapter 4 (under title 4.2 Case Study limitations, assumptions and possible source of errors).

1.7 REPORT STRUCTURE

The report has been written in four main parts in order to achieve the main objectives of the projects. The content of each part is explained below.

Part 1: INTRODUCTION

The first part contains the main basic information about the project report and an overview of the concepts and approaches.

Chapter 1. Introduction:

- Provide an introduction regarding the background, objectives, motivations and limitations of the research project.
- Explain about how the report is structured.
- Describe the main research questions.

Part 2: LITERATURE REVIEW

In the 2nd part, the literature study is explained in chapter 2 and 3 as explained below.

Chapter 2. Bridge Characteristics and Elements:

- Provide introduction regarding the literature study.
- Categorize the bridge structures from different perspectives.
- Introduce the bridge elements based on different bridge structures.
- Explain the importance of each characteristics in reliability and failure profile.

Chapter 3. Description of Reliability and Failure Profile in Bridges:

- Explain the lifetime performance characteristics, reliability and failure concepts in the bridge structures.
- Describe different failure causes, failure and deterioration mechanisms, failure modes and different failure types.

Part 3: CASE STUDY

The third part of the report is based on literature study and different mentioned concepts which are used for the case study.

Chapter 4. Case Study: Bridges in Trondheim Municipality:

- Shows how to utilize the literature study in a practical case study.
- Discussion about the overall results and the bridges with poor and very poor status.

Chapter 5. Discussion:

• Review and discuss about the case study results from different perspectives.

Part 4: CONCLUSION AND FURTHER STUDIES

The fourth part of the report is about the conclusion of this master thesis and the possibilities for further research and studies in chapter 6.

PART 2 – LITERATURE REVIEW
CHAPTER 2 – BRIDGE CHARACTERISTICS AND ELEMENTS

2 BRIDGE CHARACTERISTICS AND ELEMENTS

Chapter 2 consists of the explanations regarding the required definitions in bridge engineering. The limitation, scope and objectives of the literature study is also explained in this chapter.

In order to approach the case study, it is required to have a clear understanding regarding different bridge types and elements, and how bridge characteristics are categorized. In literature review, the essential theoretical knowledge in bridge engineering are discussed from different perspectives.

2.1 SCOPE AND OBJECTIVES

The main objective of the literature study is to categorize the bridge characteristics and elements. The scope of the literature study is to provide theoretical information about the topics mentioned below:

- 1. Introduce the relevant and important terms and definitions.
- 2. Categorize the bridge structures from different perspectives, including:
 - Material type
 - Age •
 - Span / height / headroom / length •
 - Portability

- Environment
- Inspection assessment •
- Condition indicators •
- Applications and load type
- Structure forms (design and Route supported and obstacles crossed
- 3. Describe the reliability and failure profile in bridge structures, including;
 - Lifetime performance characteristics, reliability and failure. •
 - Failure causes. •

construction)

- Failure and deterioration mechanisms. •
- Failure modes. •
- Failure type. •

2.2 LITERATURE STUDY LIMITATIONS

Besides the general and case study limitations, the literature study can also have some limitations which are listed below.

- One of the literature study limitations can be the credibility of the papers, articles and the scientific documents which are already published.
- Inability to discuss all the relevant literature study in depth due to the limited time provided for the research.
- The accessibility to all the relevant scientific literatures is one of the limitations.
- Human limitations to include only specific topics and directions. E.g. different people can take different directions in the same research.

2.3 BRIDGE CHARACTERISTICS AND ELEMENTS

In order to develop an accurate failure profile for a bridge structure, it is important to describe the main parts of the bridges, bridge characteristics and their elements clearly to some extent. Therefore, the objective of this chapter is to explain these concepts to provide a clear picture of a bridge structure from different perspectives.

In this chapter, the major and typical parts of a bridge have been described in four main groups as: i) Superstructure, ii) Substructure, iii) Foundation, and iv) Other basic parts. Other parts which are explained in the following can be considered in the main groups of superstructures, substructures and/ or foundations.

Furthermore, the bridge characteristics are categorized from 10 different perspectives, as:

- 1. Material type
- 2. Age
- 3. Span / height / headroom / length
- 4. Portability
- 5. Structure forms (design and construction)

- 6. Environment
- 7. Inspection assessment
- 8. Condition indicators
- 9. Applications and load type
- 10. Route supported and obstacles crossed

These characteristics are chosen mostly based on the (IAN 171/12, 2012). Other characteristics are added to cover different perspectives of a bridge structure which may be useful for the further researches and discussions in the project. Figure 2-1 shows how different characteristics can be involved together and it could be important for engineers in the process of construction, inspection and maintenance of a bridge (Man-Chung, 2018).

Figure 2-1: Bridge characteristics flow chart (Man-Chung, 2018).

2.4 MAIN AND TYPICAL PARTS OF BRIDGES

The objective of this part is to provide a clear picture of the main and typical parts of a bridge structure. It crucial for a better understanding of the next part which is about the bridge characteristics.

Bridge elements can be defined as the "*Identifiable portions of a bridge made of the same material, having similar role in the performance of the bridge, and expected to deteriorate in a similar fashion*" (NCHRP, 2014).

Bridge structures are divided in four main parts, i) Superstructure, ii) Substructure, iii) Foundation, and iv) Other basic elements (Balasubramanian, 2017). The 4th part, other basic elements, can be included in one of the three main parts.

i. Superstructure: "Superstructure is part of the structure which supports traffic and includes deck, slab and girders. All the parts of the bridge which is mounted on a supporting system can be classified as a Super structure" (Balasubramanian, 2017).

- ii. Substructure: "Substructure that part of the structure, i.e. piers and abutments, which supports the superstructure and which transfers the structural load to the foundations" (Balasubramanian, 2017).
- **iii. Foundation:** "Foundation is the component which transfers loads from the substructure to the bearing strata. Depending on the geotechnical properties of the bearing strata, shallow or deep foundations are adopted. Usually, piles and well foundations are adopted for bridge foundations" (Balasubramanian, 2017).

iv. Other basic parts:

- **Deck-** "Deck is the bridge floor directly carrying traffic loads. Deck transfers loads to the Girders depending on the decking material" (Balasubramanian, 2017).
- **Span-** *"The distance between two bridge supports, whether they are columns, towers or the wall of a canyon"* (Balasubramanian, 2017).
- Beam- "A rigid, usually horizontal, structural element" (Balasubramanian, 2017).
- **Beam / Girder-** "Beam or girder is that part of superstructure which is under bending along the span. It is the load bearing part which supports the deck" (Balasubramanian, 2017).
- **Bearing-** "Bearing transfers loads from the girders to the pier caps" (Balasubramanian, 2017).
- **Pier-** "A vertical supporting structure, such as a pillar" (Balasubramanian, 2017).
- Pier Cap / Headstock- "Pier Cap / Headstock is the component which transfers loads from the superstructure to the piers. Pier cap provide sufficient seating for the Bridge girders" (Balasubramanian, 2017).
- Pile cap and Piles- "Pile foundation is the most commonly used foundation system for bridges. Pile is a slender compression member driven into or formed in the ground to resist loads. A reinforced concrete mass cast around the head of a group of piles to ensure they act together and distribute the load among them it is known as pile cap" (Balasubramanian, 2017).

Figure 2-2 and 2-3 show the main and typical parts in a bridge structure. In table 2-1, some elements significant to structural integrity are mentioned. (Note that this table excludes foundations).

Figure 2-2: Components of a typical bridge (John, 2013).

Superstructure : Cross-section

Figure 2-3: Typical bridge elements (Basic Bridge Terms, 2015).

Structure Type	Elements Significant to Structural Integrity (excludes foundations)	
Bridge	Primary deck element	
Dilage	Transverse Beams	
	Secondary deck element	
	• Half joints	
	• Tie heam/rod	
	Paranet hearn or contilever	
	Deale brasing	
	• Deck blaching • Abutmonts (incl. arch springing)	
	• Spondrol well/head well	
	• Dier/oolumn	
	• Pier/column	
	• Cross-nead/capping beam	
	• Bearings	
Cat Lighting	See 'Mast' Group below	
Chamber	See 'Bridge' Group above	
Chamber	See Bridge Group above	
Culvert	See 'Bridge' Group above	
Footbridge	See 'Bridge' Group above	
Gantry	Truss/beams/cantilever	
	Transverse/horiz. bracing elements	
	Columns/supports/legs	
	Base connections	
	Support to longitudinal connection	
Mast	Mast	
	Base Connection	
Pipe subway	See 'Bridge' Group above	
Retaining Wall	Retaining wall (Primary/Secondary)	
e	• Parapet beam/plinth	
	• Anchoring system	
River walls	See 'Retaining Wall' Group above	
Subway	See 'Bridge' Group above	
Tunnel	See 'Bridge' Group above	
X71	Que (Driller? Creare de ser	
vault	See Bridge Group above	

Table 2-1: Elements Significant to Structural Integrity (TfL, 2011).

2.5 BRIDGE CHARACTERISTICS

This part explains different bridge characteristics. Bridge characteristics can be important because they can affect the failure profiles of the bridge in different ways. Table 2-2 shows the bridge characteristics explained and categorized. It is inferred from the table that each category can provide information regarding the different aspects of a bridge. For instance, material type, age, span height, length and /or headroom portability and bridge forms or design can provide information regarding the bridge structure type. More detailed information regarding each group is provided in the following.

Table 2-2: Type of information provided by each category regarding a bridge structure (IAN 171/12, 2012).

NO. AND NAME OF THE CATEGORY	TYPE OF INFORMATION
1. Material type	Structure type
 Age Span height, length and /or headroom Portability Structure forms (design and construction) 	
6. Environment(Including exposure to scour, flooding, icing, cold climate and deicing materials e.g. salts)	Environment
 Inspection assessment (including visual accessibility, latent defects and other assessments of the bridges) 	Inspection/ Assessment
 8. Condition indicators (Including inspector's condition rating and condition performance indicators) 	Condition
9. Applications and load type10. Route supported and obstacles crossed	Consequence

2.5.1 MATERIAL TYPES

Different material can deteriorate with different rates. So, basic material can affect the deterioration probability in the whole bridge structure. The data regarding the basic materials and their deterioration probability can be found in the historical data or the judgments of experts who have great deal of experiences in the area (IAN 171/12, 2012). It can also be possible to find the relevant information regarding the structure material in the inventory and structure files (IAN 171/12, 2012).

However material types can be a very detailed concept, in this project the material types are explained generally and it includes only the basic materials. It is worth mentioning here that it can be possible that different elements or group of elements in a bridge structure are made of different materials. This issue has been neglected in our study. The most common material types can be named as : i) natural material, ii) concrete, iii) steel and iv) others.

i) Natural material

Natural materials can be used often in bridge structures because of their environmental friendliness. Wood or timber can be named as the good examples of natural material which have been used many bridge structures. (Malo, 2015).

ii) Concrete

Concrete material can be used in different kinds such as *"insitu mass concrete"*, *"insitu prestressed concrete"*, *"insitu reinforced concrete"* and *"precast prestressed concrete"* (IAN 171/12, 2012).

iii) Steel

Same as concrete material, steel can also be found in different forms e.g. corrugated rolled Steel.

iv) Others

This category can include different types of material. Aluminium, plastic, advanced material, FRP (Fibre Reinforced Polymer) and combination of the materials explained earlier and some new materials such as carbon fibres, ultra-high-performance concrete, and Nano materials are the most important examples in this category (Man-Chung, 2018).

2.5.2 AGE

One of the important bridge characteristics is age. Age of the bridge can have impact on the deterioration of the bridge structures and elements. Higher age can increase the likelihood and rate of the deteriorations. Therefore, it can increase the need for more frequent maintenance and inspection. In the new bridges, initial teething can be considered as the most common problem. After initial teething, bridge is expected to start with its optimal performance. (IAN 171/12, 2012). Bridge age can be found based on equation 4.1. Information regarding the construction year of the bridge can be found on the inventory and structure files (IAN 171/12, 2012).

Bridge age = Current year
$$-$$
 Construction year (2-1)

2.5.3 SPAN HEIGHT, LENGTH AND /OR HEADROOM

Span height, length and headroom have been explained and shown in the main and typical bridge parts earlier. The statistical analysis shows that the "long-span bridges" and "retaining walls with greater retained heights" not only more severely fail, but also they are more likely to fail compared to other bridge or structure types (IAN 171/12, 2012). In other words, both the likelihood and consequence of the failure are higher for these types of structures (IAN 171/12, 2012). Table 2-3 shows how span length or height can increase the failure magnitude both in local damage and structure collapse (TfL, 2011).

Information regarding the span, height, headroom and length of the bridge can be found on the inventory and structure files (IAN 171/12, 2012).

	Span length or height			
Extent of failure	<=3	>3 to <=10	>10 to <=25	>25
Local damage	10	10	10	10
Structural collapse	40	45	65	85

Table 2-3: Magnitude of Failure Score, MoF (TfL, 2011).

2.5.4 PORTABILITY

Bridge structures can be categorized based on their portability, if they are moveable, fixed or temporary. Portability can be neglected in some of the relevant standards and assessments.

- **i. Moveable:** Moveable bridges are built with moveable decks. The decks are normally moved and controlled by electricity. (Balasubramanian, 2017).
- ii. Fixed: Fixed bridges are considered as the most common type of bridges. They are not built with moveable parts, and their design intention is to stay in the built locations (Balasubramanian, 2017).
- **iii. Temporary:** Temporary bridges can be moved to diverse locations by using different machinery types. This type of bridges can be commonly used in military (Balasubramanian, 2017).

2.5.5 STRUCTURE FORMS AND DESIGNS

Engineers have built bridges in different structural forms. Bridges and structures in different forms can deteriorate with different rates and degrees (IAN 171/12, 2012). Bridge structures are divided into different groups based on the forms of forces which are distributed on their structures. Figure 2-4 briefly shows the most common categories and the relevant forces. Based on the information in this part, the bridge elements are explained in the next part using pictures. Using pictures helps in providing a visual understanding about the different bridge forms and elements. Information regarding the structure form can be found on the inventory and structure files (IAN 171/12, 2012).

Figure 2-4: Structure forms and the associated forces (Balasubramanian, 2017).

Bridge forms can be categorized and listed below based on their design and construction forms.

• Arch: Arch bridges are popular for their strength and attractive design. The reason for the great strength is the form of arch in their design and construction. Various types of materials can be used in building arch bridges (Bridges and Structures, 2009). Figure 2-5 shows Danhe Bridge which is an example of arch bridges. In table 2-4, the main pros and cons of arch bridges are discussed and presented.

Figure 2-5: Danhe bridge as an example of an arch bridge (Janberg, 2016).

Strengths (Pros)	Weaknesses (Cons)
• Wide range of options in building	• Quite expensive.
materials.	• Design and location limitations.
• Attractive.	• Limited Span Length.
• High resistance and very strong.	• Long Construction Time.
• Strengthen with Usage.	• Maintenance is Needed Long.

Table 2-4: Pros and cons of arch bridge structures (ScienceStruck, 2018) (Bridges and Structures, 2009).

Figure 2-6 shows the elements and parameters used in arch bridge structure. The parameters are explained below and the description is applicable to other bridge forms as well. Therefore, these descriptions are not repeated in the next brigde and forms.

- C: Compression (Pushing or pressing force)
- T: Tension (Pulling or stretching force)
- R: Reaction (Sum of tension or compression force)
- LL: Live load (Force of people or vehicles using bridge- variable and removable uniform load)
- DL: Dead load (Force due to self-weight of bridge materials used uniform load always there)
- w: Total uniform load

Figure 2-6: Elements and parameters used in arch bridge structure (Bridges and Structures, 2009).

• **Beam:** Beam bridges can be considered as the oldest bridge forms. It is simple and common to be built. The strength of a beam bridge is highly dependent on the strength of the roadway and additional piers. Usually beam bridges have long length and short span (Bridges and Structures, 2009). Figure 2-7 shows Albert Memorial Bridge which is an example of beam bridges. In table 2-5, the main pros and cons of beam bridges are discussed and presented. Figure 2-8 shows the elements and parameters used in beam bridge structure.

Figure 2-7: Albert Memorial Bridge as an example of beam bridge (Historic Albert Memorial Bridge, 2015).

Strengths (Pros)	Weaknesses (Cons)
Designed for Short Span	Impractical for Long Spans
• Placing Beams on the Piers	Drooping Effect
• Simple and common to make	• Low possibility of passing vehicles
• Inexpensive	from under it

Figure 2-8: Elements and parameters used in beam bridge structure (Bridges and Structures, 2009).

• **Truss:** Truss is "*a rigid frame composed of short, straight pieces joined to form a series of triangles or other stable shapes*" (Balasubramanian, 2017). Truss bridges have great strength. Therefore, there are commonly used as railway bridges (Bridges and Structures, 2009). Figure 2-9 shows Józef Piłsudski Bridge which is an example of truss bridge type. In table 2-6, the main pros and cons of beam bridges are discussed and presented. Figure 2-10 shows the elements and parameters used in truss bridge structure.

Figure 2-9: Józef Piłsudski Bridge as an example of truss bridges (Kramarczik, 2013).

Strengths (Pros)	Weaknesses (Cons)
• Great strength.	• Complex to build.
• High efficiency in material use.	• High need of maintenance.

Table 2-6: : Pros and cons of truss bridge structures (Balasubramanian, 2017).

Figure 2-10: Elements and parameters used in truss bridge structure (Bridges and Structures, 2009).

• **Cantilever:** Cantilever bridges look like a spring board. Figure 2-11 shows Albert Memorial Bridge which is an example of truss bridges. In table 2-7, the main pros and cons of cantilever bridges are discussed and presented.

Figure 2-11: The forth bridge as an example of cantilever bridges (McBey, 2015).

Strengths (Pros)						We	aknesses (Cons)	
•	Easier difficul	to t ob	be stacl	built es.	when	crossing	•	Complex Difficult maintenance
	unneu	1 00	staci	C 5.			•	Difficult maintenance

Table 2-7: Pros and cons of cantilever bridge structures (Balasubramanian, 2017).

• Suspension: Suspension forms can be considered as strong bridges and they can be used for long span. The main elements in a suspension bridge is a pair of cables over two towers (Balasubramanian, 2017). Figure 2-12 shows Golden Gate Bridge which can be one of the most famous examples of suspension bridges. In table 2-8, the main pros and cons of suspension bridges are discussed and presented. Also, Figure 2-13 shows the elements and parameters used in this kind of bridge structure.

Figure 2-12: Golden gate bridge as an example of suspension bridges (Bierman, 2017).

Table 2-8: Pros and cons of suspension bridge structures (Balasubramanian, 2017).

Strengths (Pros)	Weaknesses (Cons)
Great strength	• Expensive
• Long span	High complexity in construction
	Long building time
	• Require a large amount of material

Figure 2-13: Elements and parameters used in suspension bridge structure (Bridges and Structures, 2009).

• Cable-stayed: This type of bridges has one or more towers, each of which anchors a set of cables attached to the roadway. It can be possible to develop new materials and technique on this type of bridge (Balasubramanian, 2017). Figure below shows Mohammed VI Bridge as an example of cable-stayed bridges. Disadvantage and advantages of cable-stayed bridges are listed in table 2-9 and figure 2-15 shows the elements and parameters used in truss bridge structure.

Figure 2-14: Mohammed VI Bridge as an example of cable-stayed bridges (FEZ, 2016).

Strengths (Pros)	Weaknesses (Cons)
• Better stiffness compared to	• More costly compare to other bridge
suspension bridge.	forms, except suspension bridges.
• Economical way to span long distances	
• Reasonable for medium spans bridges.	
• Possibility of using cantilevering	
• No need for large ground anchorages.	

Table 2-9: Pros and cons of cable-stayed bridge structures (Balasubramanian, 2017).

Figure 2-15: Elements and parameters used in cable-stayed bridge structure (Bridges and Structures, 2009).

Besides the six-structure design explained earlier, there can be four design descriptions. These descriptions can be combined with the mentioned design forms, e.g. it can be possible to have an arch culvert bridge.

• **Culvert:** Culvert bridge is type of bridge which allows the traffic to pass both under and on the bridge. Figure 2-16 shows an example of a culvert bridge (Rahman, 2018). There can be different culvert bridge e.g. combing with the bridge forms. Figure 2-17 illustrates the four type of culvert bridges. Disadvantage and advantages of culvert bridges are listed in table 2-10.

Figure 2-16: Example of a culvert bridge (Northwest Consultants, 2019).

Figure 2-17: Typical Sections of Different Types of Culverts (Arjun, 2018).

Strengths (Pros)	Weaknesses (Cons)		
 "Most culverts require very little, if any, structural maintenance". "Scour is localized, more predictable and easier to control". "Usually quicker and easier to build". "Frost and ice usually do not form on the traveled way before other areas experience the same problem". 	 "Roadway susceptible to overtopping and possible breaching of embankment if culvert clogs with drift, ice or debris". "Loss of sunlight and changed flow conditions can significantly reduce viability of stream for habitat within the limits of the culvert". 		

Table 2-10: Pros and cons of uniform box or tubular culvert bridge structures (OFFICE OF STRUCTURES, 2011).

- **Framed Span:** Sometimes engineers use the different type of frame on the bridge span. This type of bridge can be called framed span bridges. E.g. it can be possible to have a framed span beam bridge structure.
- Slab Flat: This type of bridge is designed and built with straight and flat slabs. Flat slabs can be helpful in the bridges with short spans and the slab can be built in two types as: i) Solid and ii) Voided (Bridge types, 2018).
- **Simply Supported:** this type of bridge has hinged support in different part of the bridge, normally at ends. E.g. a simply supported beam bridges falls into this type.

2.5.6 ENVIRONMENT

The environmental factors can be considered as one of the bridge characteristics because they can influence the deterioration mechanism and rate in different bridge structures. There are three main exposure factors which needs to be considered.

i. Exposure to scour

Some of the bridges can be considered as susceptible structures to scour exposure. It is not proper for these structures to decrease the inspection interval. Information regarding the scour exposure of the structures can be found based on the inventory, structure files and scour assessments (IAN 171/12, 2012).

ii. Exposure to flooding

Bridge structures can also be located in places with a high possibility of flooding. Flooding can increase the failure risk which can be considered in the different assessments. Information regarding the flooding exposure on the structures can be found in the environment agency records and qualitative assessment of the flooding probability or likelihood in the area (IAN 171/12, 2012). The qualitative assessment is normally performed based on the data available in the relevant data bases.

iii. Exposure to icing, cold climate and deicing materials e.g. salts

Icing, cold climate and deicing materials like salt can increase the deterioration rates in bridge structure. Information regarding the exposure to these factors can be found in the environment agency records and qualitative assessment of the icing probability or likelihood in the area (IAN 171/12, 2012). It is also possible to find the deicing material used for the structures in the relevant data bases.

Table 2-11 shows an overall description regarding these environmental exposures and it is also described what the potential results from the exposure can be.

Exposure severity	Exposure description	Examples
	Generally exposed to mild weather conditions, i.e. may be sheltered or in an environment that results in little or no exposure to severe weather conditions; and Not exposed to any aggressive agents, e.g. no exposure to road de-icing salts or 10 m away	cladding or by a protective enclosure. Deck soffit and piers of integral bridges where the obstacle crossed is not a road, i.e. elements are not subjected to spray from salted road. Tenanted arch bridges.
	from traffic spray, not exposed to or buried in aggressive soil agents, no exposure to contaminated water, etc.; and With no ventilation or condensation problems or where poor ventilation or the level of condensation are unlikely to increase the rate of deterioration.	Half-joints or hinge joints overlaid with functional expansion joints

Table 2-11: Exposure desxcription and severity (TfL, 2011).

Exposure severity	Exposure description	Examples
Moderate	Structure and/or elements of a structure exposed to: Moderate (normal) weather conditions, e.g. direct rain, moderate humidity or condensation, some freeze-thaw action etc.; and/or Moderate de-icing salt spray and airborne chlorides; e.g. within 3 to 10m of traffic spray on routes with de-icing salts; and/or Low to moderate river flow. But elements are not exposed to or buried in aggressive soils that are contaminated with acidic water or water containing sulfates.	Top of roadside bridge pier or abutment subject to light vehicle spray from salted road. Bridge deck soffit subject to light vehicle spray from salted road. Structural elements, e.g. piers, subjected to abrasion/erosion.
Severe	Structure and/or elements of a structure exposed to: Continuous or regular severe/extreme weather conditions, e.g. hot and cold extremes, high freeze-thaw action, severe humidity or condensation, etc.; and/or Severe de-icing salt spray, e.g. within 3m of traffic spray on routes with de-icing salts; and/or Run-off and/or ponding on routes with deicing salts; and/or Aggressive soils, i.e. completely or partially buried in aggressive soils that are contaminated with acidic water or water containing sulfates. Medium to rapid river flow and flooding.	Roadside bridge abutment, Parapet upstand or deck edge beam subject to heavy vehicle spray from salted road. Section of bridge deck near a leaking expansion joint or gutter, e.g. deck end or crosshead. Half joints or hinge joints overlaid with non-functional expansion joints. Top surfaces of unwaterproofed bridge decks. Areas where corrosion or spalling of surface concrete is evident. Structural elements, e.g. piers, susceptible to scour.
Very severe	Structure and/or elements of a structure exposed to: Marine environment and/or abrasive action of sea water or completely immersed in sea water; and/or Tidal splash and spray zone; and/or Airborne salt but not in direct contact with sea water; and/or Corrosive fumes in industrial areas	Surfaces directly affected by sea water spray, e.g. surfaces adjacent to the sea Surfaces directly affected by airborne salts, e.g. deck, walls, parapet edge beams, etc. Completely/partially submerged marine structures Structures near to or on coastal areas Structures in industrial areas with high humidity and aggressive atmosphere

2.5.7 INSPECTION ASSESSMENT

Inspection assessment is crucial to show different perspectives of bridge structure characteristics and their performance. Inspection assessment are considered in 3 different categories and explained below. Each of these categories can be rated and considered independently.

i. Visual accessibility

Visual accessibility can have close relation to the reliability of the general inspection. More limitations in visual accessibility can reduce the reliability of this kind of inspection. The relevant data can be found in qualitative assessment of visual accessibility (IAN 171/12, 2012).

ii. Latent defects

Latent defects cannot be discovered in some structures during the principal inspection which can affect reliability and deterioration rate. Information regarding the latent defects of the structures can be found based on the inventory and structure files (IAN 171/12, 2012).

Table 2-12 shows the importance of visual accessibility and latent effects in further considerations in maintenance and inspection planning of the structure. The effect of having one or more not visible elements can increase the inspectability score by 20 times. Inspectability can be defined as "*if the necessary information about the condition of the structure(s) and any significant safety concerns be readily obtained without any access difficulties*" (TfL, 2011).

iii. Assessments

Different assessments can discover various load effects and degrees of freedom in a specific structure. Information regarding the assessments of the structures can be found based on *"the load management records"*, *"assessment reports"* and *"interim measures records"* (IAN 171/12, 2012).

Table 2-12: Inspectability Score, IS (TfL, 2011).

Inspectability Consideration	Score
All elements significant to structural integrity (Except foundation) are visible (not hidden) and can be adequately inspected during a general inspection.	0
One or more element(s) significant to structural integrity (Except foundation) are not visible or hidden and/or cannot be adequately inspected during a general inspection.	20

2.5.8 CONDITION INDICATORS

Condition indicators can provide more details regarding the performance of the bridge structure. These indicators can be categorized into two criteria explained below. Each of these categories can be rated and considered independently.

i. Inspector's condition rating

Inspectors can evaluate the bridge condition based on the inspection records and subjectively rate it based on different categories e.g. the categories can be qualitatively defined as "good, fair or poor". This rate can provide beneficial rates regarding the overall bridge condition (IAN 171/12, 2012).

ii. Condition performance indicators

Condition performance indicators can be included in the bridge characteristics if the relevant data are available for it. It is an objective indicator which can be scored (e.g. between 0 and 100) and can provide information regarding the physical condition of the bridge (IAN 171/12, 2012). The relevant data can be found in condition performance indicator reports and they can be classified into two groups:

- 1. Average Condition PI Score, PIAv (based on all elements).
- 2. Critical Condition PI Score, PICrit (based on the most critical elements only).

2.5.9 APPLICATIONS AND LOAD TYPE

Application and load types provide information regarding the failure consequence of a bridge structure on the whole transportation or road network system. The Information regarding the applications and load type can be found based on the *"load management records"*, *"assessment reports" and "interim measures records*". (IAN 171/12, 2012).

- Military
- Cycleway
- Pedestrian
- Railway
- Ferry ports
- Pipeline

- Aqueduct
- Commercial
- Support structure
- Double-decked (Multi-purpose).
- Motorway (including full highway and heavy Load Route)

2.5.10 ROUTE SUPPORTED AND OBSTACLES CROSSED

Route supported and obstacles crossed show the criticality of the bridge failure in relation to the whole transportation or road network system. In other words, it shows how the whole transportation or road network system can be affected in case of bridge failure e.g. collapse. The Information regarding the route supported and obstacles crossed can be found in the inventory information (IAN 171/12, 2012).

There are different types of route supported and obstacles crossed which can be listed as below:

- Road type A.
- Road type B.
- Cycleway.
- Pedestrian.
- Motorway.

• Disused places.

Access or minor routes.

- Natural grounds.
- River or water.
- Canals.

• Railway.

Table 2-13 shows the importance of both route supported and obstacles crossed in socioeconomic aspects of a bridge structure

		Route supported by or adjacent to the structure			
	Extent of failure	Disused	Unclassified, cyclist and pedestrian	B and C class roads	A class / Principal roads
	Waste ground / disused / non- navigable watercourse	090	20	30	50
Obstacle crossed	Unclassified, cyclist and pedestrian	10	30	50	70
by the structure	B and C class (local access/ distributer) roads and business premises	30	50	70	90
	Navigable watercourse and A class / Principal roads	50	70	90	110
	Railways	70	90	110	120

Table 2-13: Socio-Economic Importance Score, SEIs (TfL, 2011)

2.6 SUMMARY OF BRIDGE CHARACTERISTICS

In order to have an overall summary of the important mentioned characteristics, the risk assessment criteria recommended in (IAN 171/12, 2012) can be used. Table 2-14 shows this risk assessment criteria.

In the case study, this data sheet is used in order to standardize the gathered information from Norwegian Public Roads Administration - Statens vegvesen (SVV) into a general format which can used for further potential researches and assessments.

Table 2-14: Risk assessment criteria (IAN 171/12, 2012).

ASSESSMENT CRITERIA	COMMENTARY	SOURCE OF INFORMATION		
Structure Type				
Form	Different structural forms can be expected to experience varying degrees of deterioration and have each been rated accordingly to consider this.	(a) Inventory (b) Structure File		
Material	The primary constituent material will have an impact on the likelihood of deterioration. Historical performance has been evaluated for different construction materials and is reflected in the scoring.	(a) Inventory (b) Structure File		
Age	The age of a structure will usually affect the likelihood and rate of deterioration. In general, it would be expected that an older structure approaching the end of its design life will encounter more maintenance issues and hence be more prone to deterioration. Newer structures may encounter initial teething problems before they are considered to be performing optimally.	(a) Inventory (b) Structure File		
Span / Height / Headroom / Length	Although every structure has different design requirements, probabilistic analysis shows that bridges with longer spans and retaining walls with greater retained heights, tend to be at a higher risk of failure. Not only is the likelihood increased but also the associated consequence of failure.	(a) Inventory (b) Structure File		
Environment		•		
Scour	Scour susceptible structures are not suitable for reduced inspection intervals.	(a) Inventory (b) Structure File (c) Scour Assessment in accordance with BA 74/06 or BD 97/12		
Flooding	Structures in areas susceptible to flooding should be assessed as having increased risk.	 (a) Qualitative assessment of the available information that would inform the likelihood of flooding (b) Environment Agency records 		
Inspection / Assessment				
Visual Access	Limited visual accessibility to critical elements will reduce the reliability of the General Inspections undertaken between Principal Inspections.	 (a) Qualitative assessment of the available information on visual accessibility. 		
Latent defects	Some structure types are more susceptible to containing defects that are not evident during a Principal Inspection for example, post-tensioned concrete bridges with internal grouted tendons.	(a) Inventory (b) Structure File		

CHAPTER 2 - BRIDGE CHARACTERISTICS AND ELEMENTS

ASSESSMENT CRITERIA	COMMENTARY	SOURCE OF INFORMATION
Assessments	Where an assessment has been carried out on a structure, a greater degree of confidence can be achieved with regard to the structure's ability to carry load. The findings of the assessment report should give a clear indication of any current load restrictions and any recommended condition factors. Any current load restrictions in place indicate that the current condition of the bridge is below design standard, resulting in a higher potential risk of deterioration.	(a) Load Management Records (b) Assessment reports (c) Interim Measures Records
Condition		
Inspector's Condition Rating	Condition is to be assessed using two criteria. The first is the Inspector's subjective condition rating of the structure (ie. Good, Fair or Poor), which should give a good overview of the condition of the structure.	(a) inspection records
Condition Performance Indicators	Secondly, Condition Performance Indicators, where available, are to be taken into account. These are an objective measure of the physical condition of the highway structures stock, calculated using the Highways Agency's Severity/Extent condition rating system ⁵ . They are reported for each structure on a scale of 0 to 100, where 0 represents the worst possible condition and 100 represents the best possible condition. There are two scores to consider: 1. Average Condition PI Score, Pl _{Av} (based on all elements) 2. Critical Condition PI Score, Pl _{Citt} (based on the most critical elements only)	(a) Condition Performance Indicator Reports
Concrete Deterioration	Any deterioration of concrete including that due to Thaumasite Sulphate Attack, Alkali Aggregate Reaction, Alkali Silica Reaction and Alkali Carbonate Reaction should be scored	(a) Inventory (b) Structure File (c) inspection records
Consequences		
Load Type	Load type may not have an impact on the likelihood of deterioration or failure. However, it will have a bearing on the overall consequence of any potential collapse.	(a) Load Management Records (b) Assessment reports (c) Interim Measures Records
Route supported and obstacle crossed	These attributes are intended to reflect the importance of the structure within the overall road network in the event of a structural collapse.	Inventory
Failure Mode	Brittle failure modes can result in collapse without warning and high consequences whereas ductile modes typically give warning of structural distress.	(a) Inventory (b) Assessment reports

CHAPTER 3 – DESCRIPTION OF RELIABILITY AND FAILURE PROFILE IN BRIDGES

3 DESCRIPTION OF RELIABILITY AND FAILURE PROFILE IN BRIDGES

The main objective of this chapter is to provide necessary information to describe the failure profile for different bridges based on the characteristics and the elements explained earlier.

First the life performance characteristics and reliability of the bridge are explained. Further, different concepts in failure profile are discussed. The concepts covered in this chapter can be named as below.

- Lifetime performance characteristics, reliability and failure
- Failure causes
- Failure and deterioration mechanisms
- Failure modes
- Failure type

3.1 LIFETIME PERFORMANCE CHARACTERISTICS, RELIABILITY AND FAILURE

This part is divided into three subsections. The subsections are explained based on the logical order to provide better understanding, but still they are conceptually connected together. The main three subsections are:

- Lifetime performance characteristics
- Reliability
- Failure

LIFETIME PERFORMANCE CHARACTERISTICS: There are different elements and factors which can have influence on the bridge performance and the design service life. Design service life is defined as "*the assumed period for which a structure or a structural member is to be used for its intended purpose with anticipated maintenance, but without substantial repair being necessary*" (ES ISO 2394, 2012).

In order to understand the reliability of the bridge, it is important to have a clear picture of the common and usual lifetime behavior of the bridge components. Similar to other engineering structures, the lifetime behavior of the bridge components can be expected as the bath-tube curve (Applebury, 2011). Figure 3-1 shows bath-tube curve for the expected failure rate of the bridge based on the time. As it can be seen in the figure, there are three important phases in the curve.

1. Infant Morality: This phase is also called the early life of the structure and any defects or flaws in the construction can appear during this phase. Infant mortality rate can have an adverse effect on the expected utilizable period of the structure. Therefore, the inspection and quality controls in the infant mortality phase can be very important (Applebury, 2011).

2. Useful life: After the first phase, the useful life of the structure starts. The failure rate is more stable and therefore the probability of failure is lower when compared to the first phase.

3. Wear-out: The failure and deterioration rate increase during the last phase of the structure life. Therefore, the probability of failure can be higher when compared to the second phase. Monitoring and inspection play even more an important role in this stage to detect any deterioration, and repair and maintenance required.

Figure 3-1: Plot of the "bathtub" probability curve. (Applebury, 2011)

Even though this curve can provide an expectation of the lifetime behavior of the bridge, one should keep in mind that there are many factors and elements which can affect the shape and the timeline. Different bridge characteristics and elements described in chapter 4 can be named as these influencing factors (Applebury, 2011). Table 3-1 shows some variables which can be used for probabilistic estimates.

Table 3-1: Variables use for probabilistic estimates of time-varying reliability (Applebury, 2011).

- Concrete cover
- Corrosion rate •
- Workmanship

modulus

Thickness

Dead load

Truck live load

Water-cement ratio

•

Reinforcing steel

strength and modulus

Shrinkage of concrete

- Crack width
- Concrete strength and • Critical crack width
 - Crack depth
 - Cracking density
 - Loading rate •
 - concentration
 - Critical chloride concentration

- Time to corrosion initiation
- Prestress steel strength and modulus
- Prestress losses
- Impact factor •
- Area of reinforcing steel and concrete
- Flexural forces
- Shear forces •
- Load distribution factors
- Reinforcement spacing

RELIABILITY:

"Reliability is the ability of an element or component to operate safely under designated operating conditions for a designated period of time" (NCHRP, 2014). In other words, "reliability is the ability of a structure or structural member to fulfil the specified requirements, during the working life, for which it has been designed. Reliability covers safety, serviceability, and durability of a structure" (ES ISO 2394, 2012). The importance of the reliability increases especially when the complexity rises in the system or any elements.

- Surface chloride
- •
- Chloride diffusion •

Equation 3-1 from (Rausand & Høyland, 2004) shows the general reliability definition.

$$R(t) = \Pr(T \ge t) \tag{3-1}$$

- R (t): Reliability function of an item
- T: Time to failure of the member
- t: Specific functioning time
- Pr $(T \ge t)$: Probability (Pr) or likelihood that the time to failure of the bridge goes above the specific functioning time

For the structures like bridges, the concept of physical or structural reliability is defined. This concept is dependent upon the physical perspectives of the structure. As shown in equation 3-2 from (Rausand & Høyland, 2004), physical or structural reliability is defined as "*the probability that the strength is higher than the load applied*" (Rausand & Høyland, 2004).

$$\mathbf{R} = \Pr(\mathbf{S} > \mathbf{L}) \tag{3-2}$$

- R: Reliability function of a bridge/structure member
- S: Strength of the member
- L: Applies load of the member
- Pr $(T \ge t)$: Probability (Pr) or likelihood that strength is greater than the load.

Reliability can be considered in two levels: i) System reliability, ii) element reliability.

There are the other important definitions in reliability engineering including:

Reliability target – "Specified average acceptable failure probability that is to be reached as close as possible. Reliability targets are generally model dependent and need to be set for each case considered based on the models used" (ES ISO 2394, 2012).

Reliability class – "Class of structures or structural members for which a particular specified degree of reliability is required" (ES ISO 2394, 2012).

Attributes – "Characteristics that affect the reliability of a bridge or bridge element" (NCHRP, 2014).
FAILURE AND DETERIORATION

Failure is generally defined as "the termination of the ability of a system, structure, or component to perform its intended function" (NCHRP, 2014). In the bridge structures, failure can be "the condition at which the specific element is not able perform the required function to safely and reliably carry normal loads and maintain serviceability" (NCHRP, 2014).

Failure in structural perspectives can also be defined as "insufficient load-bearing capacity or inadequate serviceability of a structure or structural member, or rupture or excessive deformation of the ground, in which the strengths of soil or rock are significant in providing resistance" (ES ISO 2394, 2012).

In order to have a simple but specific definition of failure in the bridge structures, it can be defined that a bridge fails when any one of structure elements is not fully or partially functioning. This can lead to a potential risk of damage or harm against human, environment and assets.

One of the most common failure can be due to deterioration in bridge elements. Deterioration can be defined as "the process that adversely affects the structural performance including reliability over time". "Deterioration can have different causes e.g. natural elements, chemical, physical, or biological actions, normal or extreme environmental factors and repeated actions such as those causing fatigue, wear due to use, and improper operation and maintenance of the structure" (ES ISO 2394, 2012).

3.2 FAILURE CAUSES

Different failures can occur due to different causes. Any circumstance or conditions during different life cycle stage of the bridge can result in structure failure. These stages can be included as design, operation, manufacture, installation, use or maintenance (EN 13306, 2010). There are four main failure cause categories which can be named as below. Furthermore, these categories can be considered as the most relevant causes in the bridge engineering concept, and it can be possible that a failure cause would be a combination of one or more of these failure causes

3.2.1 DESIGN FAILURE

Design failures are relevant to the design characteristics of a bridge structure. Material, bridge design and form and other similar characteristics mentioned in chapter 4 can be considered as design failure examples.

3.2.2 CONSTRUCTION FAILURE

Construction failure can be considered as the causes which can happen due to failure in the construction phase and process. E.g. any flaws in the construction phase can lead to construction failures.

3.2.3 AGING FAILURE

Failure causes relevant to aging can be due to three different reasons e.g. environment, load (/local condition) and functions.

Aging failure due to the environment can be named as icing, rain, temperature, frost and the other external environmental factors. Local condition resulting in aging failure can be the local load and condition factors including soil characteristics and abrasion. Function aging failure can be due to the normal usage of the bridge. The elements involved are structure, age and wear and tear due to normal bridge life cycle.

3.2.4 MISHANDLING FAILURE

Any mishandling during the bridge life cycle can be named as mishandling failure causes. For instance, mishandling in maintenance and deicing activities, vandalism and traffic accidents can be mentioned.

3.3 FAILURE AND DETERIORATION MECHANISMS

Failure and deterioration concepts are already explained in this chapter earlier (under the title 5.1). Failure or deterioration mechanism is the process which can cause the damage or failure in the bridge structure or elements. (NCHRP, 2014). I.e. failure mechanism can explain the process or mechanism of a failure cause (EN 13306, 2010). These processes can occur due to different initiation. There are three main failure or deterioration mechanism which can be important in bridge engineering concepts.

3.3.1 CHEMICAL

It is defined as chemical mechanism or process which can result in failure of any bridge elements. Chloride attack, carbonation, corrosion, sulphate attack or other chemical mechanism can be named as the examples of chemical failure or deterioration mechanism.

3.3.2 PHYSICAL

Any physical process or force that can result in bridge failure in any structure level can be considered as a physical failure or deterioration mechanism. For instance, erosion, soil pressure, ice effects, wind and current impact traffic loads and fatigue can be included as the physical mechanism that causes bridge deterioration.

3.3.3 THERMAL

There can be some failure or deterioration due to thermal mechanisms. Temperature cycle and relevant changes in a cycle can be considered as a relevant example of thermal mechanism results in failure.

It is also important to estimate the deterioration rate for the possible mechanisms. Deterioration rate can have a critical impact on the risk assessment, inspection scheduling and maintenance planning (TfL, 2011). Table -2 shows the scores for deterioration rates based on (TfL, 2011), and how they can be categorized into three groups based on the mechanism rapidity. The three groups are named as: i) slow rate of deterioration, ii) medium, and iii) fast rate of deterioration. This table also explains correlation between the deterioration rate, mechanism and the exposure severity. As it can be seen in the table, the fast failure mechanism can increase the severity by two times compared to the slow mechanism.

The deterioration rate can be estimated based on the relevant available engineering and structural data, expert judgments or the combination of both (TfL, 2011). Table 3-3 shows some of the deterioration rates based on the different structural characteristics.

	Exposure severity				
Rate of deterioration	Mild	Moderate	Severe	Very severe	
Slow (S)	5	15	30	40	
Medium (M)	15	30	45	60	
Fast (F)	20	45	60	80	

Table 3-2 : Rate of deterioration score (TfL, 2011).

Table 3-3: Rate of Deterioration Depending on Structure	Characteristics (TfL, 2011).
---	------------------------------

	Structure Type		Bri	dge				Culver	t		Gantry			Retaining Wall			Subway			Mast	
	Structural Form	Arch	Beam & Slab	Slab	Truss	Arch	Pipe	Box	Portal	Slab	Truss	Beam	Cantilever Truss	Cantilever Beam	Gravity	Cantilever	Embedded	Box	Walls	U-base & Slab	N/A
	Masonry	5	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	M	N/A	N/A	S	N/A	N/A
	Mass Concrete	5	N/A	N/A	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	N/A	N/A	N/A	8	N/A	N/A
	Reinforced Concrete	5	M	M	N/A	Ø	M	M	M	M	N/A	M	N/A	M	M	M	M	M	M	M	N/A
sec	Prestressed Concrete (Pre-Tensioned)	N/A	s	8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	S	N/A	5	N/A	N/A	s	N/A	N/A	N/A	N/A
srial Typ	Prestressed Concrete (Post-Tensioned)	N/A	Ø	Ø	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	N/A	N/A	N/A	N/A
Mate	Steel (regularly painted and maintained)	ß	ß	Ø	Ø	ß	ß	N/A	N/A	N/A	Ø	N/A	ß	N/A	Ø	N/A	s	N/A	N/A	N/A	F
	Weathering Steel	N/A	5	s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Cast Iron / Wrought Iron (regularly painted and maintained)	N/A	5	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

٠

•

3.4 FAILURE MODES

Failure or damage modes can be defined as *"typical damage affecting the condition of a bridge element"* (NCHRP, 2014). Failure modes can have different causes and mechanism as explained earlier. The common failure modes can be named as below:

- Thinning
- Creep
- Sagging
- Rapture
- Cracking
- Scaling

• Chipping

Fracture

Bending

- Tear
- Bucking
- Decaying

- Shear
- Yielding
- Deformation
- Wear
- Spatting
- Discoloration

There are two potential failure modes categories in bridge structures: i) Brittle and ii) Ductile.

Brittle failure modes have sudden effect of the material and they can cause great deformation in the structure. This failure mode can happen with little or no warning. There are some materials which have more potential for brittle failure mode including concrete, cast iron, stone and wood/ timber (TfL, 2011).

Ductile failure mode also happens with great deformation and it can be discussed with a measure called ductility. Materials with higher ductility can be named as steel and aluminium (TfL, 2011).

Table 3-4 shows the importance of the brittle and ductile failure modes and how they can affect the relevant score. The effect of brittle failure modes can increase by 10 compared to the ductile failure mode.

Failure mode	Score
Brittle	10
Ductile	0

Table 3-4: Potential Failure Mode Score (TfL, 2011).

3.5 FAILURE TYPE

Based on the failure modes and mechanism for the bridge structures, the failure types can be categorized in three groups:

3.5.1 WEAR-OUT FAILURE

Wear-out is a physical process that can lead to a loss, deformation or change in the structure material (EN 13306, 2010).

Therefore, failures due to wear-out is called wear-out failures and it can be explained as the "*type of failure whose probability of occurrence increases with the operating time or the number of operations of the item and the associated applied stresses*" (EN 13306, 2010). Due to the nature of wear-out failures, preventive maintenance can be a helpful measure to reduce or control this type of failure (Bradley, 2016).

3.5.2 AGING FAILURE

Ageing is a physical process that consists of different modifications of the physical and/or chemical characteristics in the structure material (EN 13306, 2010).

Aging failures can be a very important concept in reliability assessment (Li, 2002). Aging failure is described as *"failures whose probability of occurrence increases with the passage of calendar time"* (EN 13306, 2010).

3.5.3 SUDDEN FAILURE

Sudden failures, as it can be expected, happen in with very short or no warning time. This type of failures could not be predicted in advance e.g. during general inspection and monitoring (EN 13306, 2010). However, in some case, it can be possible to determine the associated risk by historical data, expert judgment and developing the distribution modeling and risk assessment (Rogovenko & Zaitseva, 2017).

PART 3 – CASE STUDY

CHAPTER 4 – CASE STUDY

4 CASE STUDY

This chapter describes the data collected from BRUTUS, the data base of Norwegian Public Roads Administration (SVV). This data includes the information of the 152 bridge structures located in Trondheim municipality. The information comprises of bridge characteristics like material type, bridge design, application and age. Appendix A shows the data base collected from SVV.

Scope, objectives, limitations, assumptions and possible source of errors are presented in this section. The information is analyzed based on different perspectives.

4.1 SCOPE AND OBJECTIVES

The main objective of this chapter is to discuss and approach a case to provide a clear understanding of the concepts discussed earlier. The scope of the case study includes the concepts below:

- 1. The source of given data with description.
- 2. Discussion and review the two groups of results from different perspectives:
 - Overall results
 - Results for the bridges with poor and very poor status

4.2 CASE STUDY LIMITATIONS, ASSUMPTIONS & POSSIBLE SOURCE OF ERRORS

This part is divided into three subsections. The main three subsections are:

- Case study limitations
- Assumptions
- Possible source of errors

CASE STUDY LIMITATIONS: Beside the general and literature study limitations, the case study also faced some limitations which can be explained as below.

- Lack of data: Some of the required information is not provided in the data base. E.g. data regarding the failure and deterioration mechanism cannot be found in the collected data.
- Sample size: The sample size in only limited to the bridges located in Trondheim municipality. Therefore, the accuracy and validity of the results cannot be used to estimate and develop a whole picture e.g. for Norway. A Larger sample size can provide more reliable trends, figures, distributions and analysis.
- Lack of reliable and/ or updated data: It can be possible that the data is not valid anymore. E.g. it can be updated or changed after the data collection.
- Failure modes and effects can be difficult to identify specifically because they affect each other and one effect can be a failure mode later on. And, the failure modes are limited. This issue has been explained more in section 4.4.2.2.
- Detailed description regarding all the subcomponents characteristics was not available in the BRUTUS database.

ASSUMPTIONS: The assumption in this case study can be listed as below.

- Even though material types can be a very detailed concept, in this project the material types are explained generally and it includes only the basic materials. It is worth mentioning that it can be possible that different elements or group of elements in a bridge structure are made of different materials. This issue has been neglected in this project.
- The risk value data is assumed to be the same for different bridge parts, structures and groups. I.e. the importance level of the elements is not included in the data and the risk values are considered for the whole bridge structure as a system.
- It is assumed that the data is reliable and it is documented, recorded and collected in suitable and acceptable conditions.
- It is assumed that human error in data registration, collection and analysis is negligible.
- The condition degree and consequence levels are assumed to be disregarded in the calculations for condition indicators.

- There are some assumptions as tables which are explained in title 4.3.2 Meta data (Data description).
- In section 4.4.2.2., the subcomponent "H19- other equipment e.g. security fence or electrical Installations" have been disregarded for the failure profile analysis for the uniform Box or tubular culvert bridges with poor and very poor condition status.
- In section 4.4.2.2., the effects of common cause failures are assumed negligible and the failures do not affect each other.
- It is assumed that the bridge users including all the traffic vehicles, people (pedestrians, cyclists, drivers etc.) and animals who use the bridge can be affected by any failure in the bridge structures.

POSSIBLE SOURCE OF ERRORS: The possible source of errors can be categorized as:

- Human errors: It can be possible to have human error in different stage of this research work e.g. in data registration, documentations, collection and analysis
- Organization errors: It can be possible to have some error in the organization (e.g. SVV in this project) which provides the data. For instance, organization errors can include some procedures and rules which may also have negative effects on this research.
- Device and sensors errors: Different types of error in the devices and sensors used in different stage of the research should be considered.
- System errors: Errors in the network systems which transfer and save the information may lead to faults in different stages of the process.

4.3 DATA

Data is described in two sections, i) Source of data, and ii) metadata (Data description).

4.3.1 SOURCE OF DATA

The data for this case study is collected from BRUTUS which is the main data base of Norwegian Public Roads Administration (SVV). This data includes the information of the 152 bridge structures in Trondheim municipality. The information compromises of the bridge characteristics e.g. material type, bridge design, application and age. Appendix A includes the

whole data sheet provided for this case study. Two samples of data are shown in table 4-1. In appendix, the whole data collected from SVV is provided.

Code	Name	App.	Form / Design	Material	Constr. year	Length	Climate zone	Accessibility	The worst damage degree	Road type	Usage load
16- 1239	Støre Driftsveg	Motor way	Simply Supported	Insitu Reinf. Concrete	1988	40.4	Inland	Full access to all parts.	4 T	В	Bk 10/50
16- 0987	Kroppøyen	Cycle/ Pedest- rian	Simply Supported	Steel	1979	14	Inland	N/D	6 V	N/D	N/D

Table 4-1: Two samples of the given data by SVV.

4.3.2 METADATA (DATA DESCRIPTION)

Besides the provided data, it can be required to add some more descriptions regarding some of the elements in the data base. The metadata provided for each element can be explained as below:

MATERIAL: There are four materials which are mostly used in the bridge structure in Trondheim municipality.

- Insitu Reinforced Concrete
- Insitu Prestressed Concrete
- Brick/ Masonry/ Stone
- Steel

Different material type can have different failure or deterioration. Table 4-2 shows the relevant bridge failures based on the material used in a bridge structure. Based on this, it can be inferred what failure are most likely to be observed based on the material.

Table 4-2: Relevant bridge	failures based on the	material
----------------------------	-----------------------	----------

Material	Failure
Concrete, timber and masonry	Brittle Failure.
Steel	Ductile Failure.
Others	Other / Not Known.

AGE: In the given data, only the data regarding the construction year is provided for each bridge. The age of the bridge can be calculated based on the equation below. It is assumed that the current year is 2019 in this calculation.

Age of the structure = Current year (2019) – Construction year of the bridge (4-1)

STRUCTURE FORMS: Due to the fact that the data is provided originally in the Norwegian language, it can be required to categorize them based on some general categories in English based on (IAN 171/12, 2012). Table 4-3 shows the relevant bridge form categories in English equivalent of the forms in Norwegian.

Table 4-3: relevant bridge form categories based in (IAN 171/12, 2012).

Bridge form (in Norwegian)	Bridge form (in English)
Rør i fylling	
Tunnelportal	Uniform Box or Tubular Culvert
Kulvert	
Kassebru	Fromed Spon Dridges
Sprengverksbru	Framed Span Bridges
Platebru	Slab Flat
Bjelkebru	Simply Supported
Hvelvbru	Arched
Miljøtunnel	
Klaffebru	Not Known / Other
Svingbru	
Rullebru	

ENVIRONMENT AND CLIMATE ZONE: As it can be seen in figure 4-1, the bridges in Trondheim are located in different climate zones. This figure is provided based on the GPS information given by SVV. The climate zone data are provided in 4 main categories as below. Figure 4-2 shows the climate zone on the map of Norway.

- Inland (the green area in figure 4-2)
- Inner coastline (the dark green area in figure 4-2).
- Coastal areas (the blue area in figure 4-2)
- Heavy Coasts (red area on the island in figure 4-2).

Figure 4-1: The locations of the bridges in Trondheim based on the GPS information provided.

Figure 4-2: Climate zone on the map of Norway (Håndbok V440 - Bruregistrering, 2014)

The data regarding the climate zone can interpret information about the different external environmental factors including:

• <u>Exposure to deicing salts:</u> Table 4-4 shows how the data regarding the climate zone can be interpreted for the exposure to de-icing salts.

Table 4-4: Relation between climate zone and exposure to de-icing salts (IAN 171/12, 2012).

Climate zone	Exposure to deicing salts
Inland / Inner coastline	Moderate (Routes with de-icing salts)
Coastal areas / Heavy Coasts	Severe (Marine Environment)

• <u>Scour risk:</u> Table 4-5 explains how the climate zone data can give the information regarding the scour risk for a bridge structure.

Climate zone	Scour risk
Inland	No Risk (structure not near or adjacent to waterway)
Inner coastline	Very low risk of scour damage.
Coastal / Heavy Coasts	Scour Susceptible.
N/D (Not defined)	Not Known

Table 4-5: Relation between climate zone and scour risk (IAN 171/12, 2012).

- <u>Exposure to salt water:</u> Climate zone can also estimate the salt water exposure for the relevant structures.
 - > Inland is used for areas without salt water exposure
 - Inner coastal areas are used for saltwater-exposed areas in southwestern Norway and in southern Norway that are well protected, for example, at the Oslo Fjord and in inner fjords in the western country.
 - Coastal areas are used for weathered coastal areas with some shielding in the landscape, e.g. Coastline in southwestern and southern part.
 - Heavy coastline is used only for places with extreme coastal weather conditions, for example, outer coastal areas in northern Norway and north western Norway.

• <u>Flooding risk:</u> Table 4-6 explains how the climate zone data can indicate the flooding risk for a bridge structure.

Table 4-6: Relation between climate zone and flooding risk (IAN 171/12, 2012).

Klimasone	Flooding risk
Innland	No Risk (structure is not near or adjacent to waterway).
Inner coastline	Low Risk (structure is adjacent to / over waterway with low likelihood of flood damage).
Coastal areas /	Moderate / High Risk (structure is adjacent to / over waterway with medium /
Heavy Coasts	high likelihood of flood damage)
N/D	Not Known

INSPECTION ASSESSMENT: There some accessibility methods which are provided in the data from SVV. The accessibility methods can be named as bridge lift, climbing equipment, boat, scissor lift and others. Table 4-7 tabulates the accessibility methods and what it indicates regarding the bridge inspection assessment.

Table 4-7: Indication of the Inspection assessment data.

Level of visual accessibility during a	Inspection assessment
general Inspection	
No need.	Full access to all parts of the structure.
No need and use of 1 method.	All parts of the structure visible from a distance (including the use of binoculars).
Only one method is used. / Use of 2 or more methods.	Limited Access / View of Structure.
N/D	Not Known / Other.

PRIORITY INDICATORS: The priority indicators is referred as worst damage degree in the data. It is noteworthy that the same bridge structure might have experienced more than one priority grade. However, the worst damage degree is the worst priority grade that a bridge structure has ever experienced. The priority grade can be calculated by equation 4-2 (Håndbok V440 - Bruregistrering, 2014) and using table 4-8.

Priority P = Condition degree * Consequence level * Consequence type (4-2)

Table 4-8: Risk matrix to indicate the priority value (Håndbok V440 - Bruregistrering, 2014).

	4	4	8	12	16
	3	3	6	9	12
Consequence level	2	2	4	6	8
	1	1	2	3	4
		1	2	3	4
Priority		Condition degree			

Table 4-9 shows the interpretation of each color in the risk matrix.

Table 4-9: Colour descriptions of the risk matrix for table 4-8 (Håndbok V440 - Bruregistrering, 2014).

Color indications	Description
Red zone	Actions or assessment of necessary measures immediately or within 1 year.
Yellow zone	Actions or evaluation of necessary measures.
Green zone	Development is followed up on the next inspection.

The worst damage degree can provide two types of information:

- i. Consequence type
- ii. Risk values or condition performance indicators.

Based on table 4-1, the worst damage degree (or highest priority grade) is given as a combination of numbers and one alphabet e.g. 6V. The letter indicates the consequence type and the number shows the risk value or condition performance indicators.

Note that a bridge can have many priority values however the highest of which are chosen as the worst damage degree and it is only one for each bridge. Table 4-10 explains the defined consequence types in the data and table 4-11 describes how the worst damage degree can be used to define the condition performance indicators. For instance, the bridge with the worst damage degree of 6V is with the poor condition performance that results in increased maintenance cost.

Consequence type	Explanation
В	Carrying capacity
Т	Road safety
V	Increased maintenance costs
М	Environmental / Aesthetics

Table 4-10: Consequence type description (Håndbok V440 - Bruregistrering, 2014).

Table 4-11: Interpretations of the worst damage degree for bridge condition indicator.

Zone colour	Worst damage degree	Condition Performance Indicator		
		(Average score)		
Red zone	12 or 16	Very poor		
Vellow zone	8 or 9	noor		
Tenow Zone	6	- poor		
Green zone	3 or 4	Cood		
	1 or 2			
N/D		Not Known / Other.		

APPLICATION AND LOAD TYPE: There are two types of the bridge groups which are identified in the provided data. In table 4-12, it can be seen how the bridge groups are described.

Bridge group	Description
Α	Full Highway Loading + Heavy Load Route.
В	Full Highway Loading.
N/D	Other / Not known.

Table 4-12: Bridge groups descriptions (IAN 171/12, 2012).

4.4 RESULTS

4.4.1 OVERALL RESULTS

Based on the data collected from SVV, some inferences can be presented. These results show different perspectives of the information for the bridge structures in Trondheim municipality. The results are categorized based on the specific bridge characteristics information.

MATERIAL: Table 4-13 shows the bridge data in Trondheim municipality based on the material used. The pie chart in figure 4-3 illustrates the percentage values of the material used. As it can be seen in figure 4-13, most of the bridges in Trondheim are made of Insitu (reinforced / prestressed) concrete. Therefore, based on table 4-2, in Trondheim the brittle failure can be considered as the important concerns compared to the ductile failure in steel structures. Based on this result, it can be recommended that the brittle failure in Insitu (reinforced / prestressed) concrete can be analyzed and take more into consideration in the operation, inspection and maintenance planning.

Table 4-13: Bridge data based on the material used.

Material Type	No. of bridges	Percentage value (%)
Steel	20	13
Insitu Reinforced Concrete	118	78
Insitu Prestressed Concrete	10	7
Brick/ Masonry/ Stone	2	1
N/D (Not defined)	2	1
Sum	152	100

Figure 4-3: Pie chart for the bridges in Trondheim based on the material used.

AGE: Table 4-14 shows the bridge data based on the construction years. Construction years are divided into 5 intervals of 21 years based on the lowest (1912) and highest (2017) construction year provided in the data.

Figure 4-4 and 4-5 illustrates that there are more bridges built in recent decades compared to before. However, there is a fall for the last construction interval, the figure shows that most of the bridges are built from approximately 1954 to 2017. As it is explained earlier, the failure possibility and deterioration rates can increase with age and this can be a point that can be considered in bridges in Trondheim municipality.

Construction intervals (year)	No. of bridges	Percentage value (%)
1912-1932	2	1
1933-1953	7	5
1954-1974	18	12
1975-1995	69	45
1996-2017	56	37
Sum	152	100

Table 4-14: Bridge data based on the construction intervals.

Figure 4-4: Percentage values of the brigde built in a specific contruction interval.

Figure 4-5: Pie chart for the bridges in Trondheim based on the construction intervals.

ENVIRONMENT AND CLIMATE ZONE: Based on the provided data regarding the climate zones, the bridge data are calculated in table 4-15. Figure 4-6 also shows the percentage values of this data. As it can be seen in the table and the figure, most of the bridges in Trondheim are located in the inland areas. It can be helpful to interpret some estimations regarding the external environmental factors for the bridges. These estimations are explained in the following.

Table 4-15:	Bridge	data	based	on	the	climate	zone.
-------------	--------	------	-------	----	-----	---------	-------

Climate zone	No. of bridges	Percentage value (%)
Inland	136	89
Inner coastline	7	5
Coastal areas	4	3
Heavy Coasts	0	0
N/D (Not defined)	5	3
Sum	152	100

Figure 4-6: Pie chart for the bridges in Trondheim based on the climate zone.

- <u>Exposure to deicing salts:</u> Based on table 4-4, it can be estimated that the routes exposure to the deicing salts can be moderate because most of the bridges are located in the inland and inner coastline.
- <u>Scour risk:</u> Based on table 4-5, it can be expected that the bridges in Trondheim has no risk or very low risk of scour damage. The reason for this estimation is that most of the bridge structures are not near or adjacent to waterway.
- <u>Exposure to salt water</u>: As it is already explained, the salt-water exposure can be almost zero for the inland structure which are the majority of the bridge structures in Trondheim.

• <u>Flooding risk:</u> Because of the same reason as the other three points and table 4-6, there are no risk or very low risk of flooding for the bridge structures in Trondheim. Because structures are not near or adjacent to waterway, or they are adjacent to / over waterway with low likelihood of flood damage).

APPLICATION AND LOAD TYPE: Table 4-16 and figure 4-7 show the application and load type for the bridge structures located in Trondheim. As it can be seen, the majority of the bridges are from type A (84%). Therefore, according to table 4-12 and shown in figure 4-10, most of the bridges can be considered as the full highway loading with heavy load routes. Also, as mentioned in chapter 3, heavy loading can increase the failure and deterioration in the bridge structures.

Application and load typeNo. of bridgesPercentage value (%)A12784B215N/D (Not defined)231Sum152100

Table 4-16: Bridge data based on the application and load type.

Figure 4-7: Pie chart for the bridges in Trondheim based on the application and load type.

PRIORITY INDICATORS: Priority indicators are discussed regarding the consequence type and the risk values provided for the worst damage degree for the bridges.

Consequence type: As it can be seen based on table 4-17 and figure 4-8, majority of the consequence types is related to road safety and increased maintenance costs.

Abbreviation	Description of consequence	No. of bridges	Percentage value (%)
	type		
В	Carrying capacity	12	8
Т	Road safety	69	45
V	Increased maintenance costs	62	41
Μ	Environmental or Aesthetics	5	3
N/D	Not defined	4	3
	Sum	152	100

Table 4-17: Bridge data based on the consequence type.

Figure 4-8: Pie chart for the bridges in Trondheim based on the consequence type.

Risk values: As noticed in table 4-18 and figure 4-9, almost more than half of the bridges have good condition performance indicators and the other half of the bridges have poor and very poor.

Table 4-18: Bridge data based on risk values.

Risk zone	Condition Performance Indicator	No. of bridges	Percentage value (%)
Red zone	Very Poor	14	9
Yellow zone	Poor	49	32
Green zone	Good	83	55
N/D (Not defined)	-	6	4
Sum		152	100

Figure 4-9: Pie chart for the bridges in Trondheim based on the risk values.

4.4.2 RESULTS FOR THE BRIDGES WITH POOR AND VERY POOR CONDITION PERFORMANCE INDICATORS

As it has been shown earlier in the overall results, most of the bridges in Trondheim municipality have good condition performance indicators. Therefore, the bridges with poor and very poor condition performance indicators have been chosen for further detailed study in this section. This study can be helpful in order to improve the condition of these bridges and hence to be able to achieve good condition as the rest of 55% of the bridges with the good condition performance indicators. These bridges are discussed from 2 perspectives as listed below:

- 1. Consequence types
- 2. Bridge structure forms

4.4.2.1 CONSEQUENCE TYPES

In order to indicate the consequence types for the bridges with poor and very poor condition performance indicators, results based on the data is tabulated in table 4-19. Based on table 4-19 and Figure 4-10, traffic safety is the most important consequence type. This is followed by carrying capacity and increased maintenance costs. Consequence types relating to environmental or aesthetics is approximately 2% and hence it can be considered almost negligible.

Abbreviation	Description of consequence	Red zone	Yellow zone	Both yellow &
	type	(%)	(%)	red zone
В	Carrying capacity	21	12	14
Т	Road safety	64	55	57
V	Increased maintenance costs	14	31	27
М	Environmental or Aesthetics	0	2	2

Table 4-19: Percentage indication of consequence type in red and yellow zone

Figure 4-10: Percentage indication of consequence type in red and yellow zone in bar chart.

4.4.2.2 BRIDGE STRUCTURE FORMS

Bridges with poor and very poor condition performance indicators have also been discussed based on the bridge structure forms. Based on table 4-20, the most common bridge structure forms in red and yellow zone can be considered as:

- Uniform box or tubular culvert (30%)
- Simply supported (29%)
- Slab flat (27%).

Uniform box or tubular culvert and simply supported bridges have been selected for further studies. Note that framed span and slab flat bridges have very similar structures so they can be considered in the same group.

Bridge form	Bridge form	No. of bridges	Percentage value (%)
(in Norwegian)	(in English)		
Rør i fylling			
Tunnelportal	Uniform Box or	19	30
Kulvert	Tubular Culvert		
Kassebru			
Sprengverksbru	Framed Span Bridges	2	3
Platebru	Slab Flat	17	27
Bjelkebru	Simply Supported	18	29
Hvelvbru	Arched	2	3
Miljøtunnel			
Klaffebru		5	8
Svingbru	Not Known / Other		
Rullebru			
TOTAL		63	100

Table 4-20: Percentage indication of consequence type in red and yellow zone

4.4.2.3 SUBCOMPONENTS FOR UNIFORM BOX/ TUBULAR CULVERT AND SIMPLY SUPPORTED STRUCTURES

Based on the SVV database, BRUTUS, main components and subcomponents for all the bridges with uniform box/ tubular culvert and simply supported structures with poor and very poor condition performance are listed in table 4-21 and 4-22. Based on BRUTUS, there are 10 main units or components in the bridges however the subcomponents can be different based on the structural forms. The 10 main systems can be explained below:

- A: Shared Cost
- B: Ground
- *C: Substructure
- *D: Superstructure
- E: Deck / wear layer

- F: Construction in filling / foundation
- G: Supporting structure
- *H: Equipment
- *I: Special quay equipment
- J: Special installation

System A is not relevant in this project as it is used in the tender documents or contracts (Håndbok V440 - Bruregistrering, 2014).

The units with the code B, E, F, G, J are registered with up to 1-digit level (in addition to the letter code) and used for unit types which do not have significant impact on the static system of the structure (Håndbok V440 - Bruregistrering, 2014). The units C, D, H, I are marked with one star in the following tables and are registered with up to 2 digit levels in addition to the letter code (Håndbok V440 - Bruregistrering, 2014). 2-digit codes in addition to the letter code indicates the highest level of detail / degree of information in the item code (Håndbok V440 - Bruregistrering, 2014).

Table 4-21 and 4-22 show the list of main components and subcomponents in the uniform box or tubular culvert and simply supported bridge structures respectively. The codes mentioned in the tables are based on the SVV database, BRUTUS.

Unit/ Component	Code	Subcomponent	
A: Shared Cost	-	-	
	B4	Filling	
B : Ground	B7	Slope protection under abutments concrete stones	
	B9	Hot-dip trapping grate in front of inlet	
*O. C. Laterature	C1	Abutments	
*C: Substructure	C2	Pillar	
	D1	Plate/Sheet - main bearing	
*D: Superstructure	D22	Cross member	
	E1	Bridge deck - carrying system	
	E2	Wear layer/ moisture insulation	
E: Deck / wear layer	E3	Edge beam	
	E5	Wear layer in culvert	
	F1	Foundation/ base plate	
	F2	Walls	
F: Construction in filling / foundation	F3	Roof	
	F5	Tubular / pipe elements	
	F7	Wings	
	F8	Load distribution plate	
	F9	Other constructions	
C. Summerting structure	G2	Walls - support wall downside	
G: Supporting structure	G7	Kjeglemur - Internal walls	
	H13	Seal/ joints construction (not for waterproofing)	
	H15	Railing	
	H16	Water drain - Pumping station or drainage system	
	H17	Cables	
*II. T	H19	others e.g. security fence or el. Installation	
*H: Equipment	H21	Lights	
	H24	Noise barrier	
	H26	Hatch / door	
	H29	Marking signs	
	H32	Staircase	
*I: Special quay equipment	-	-	
	J1	Drainage system	
J: Special installation	J2	Ventilation systems	

Table 4-21: Subcomponents for uniform box or tubular culvert bridges based on BRUTUS database.

Unit/ Component	Code	Subcomponent	
A: Shared Cost	-	-	
	B2	Piles e.g. of concrete	
	B4	Filling	
B : Ground	B6	Erosion control	
	B7	Slope protection under abutments concrete stones	
	B9	Riverbed	
	C1	Abutments	
*C. S. hat materia	C2	Pillar	
*C: Substructure	C3	Tower/ tower house	
	C6	Motvekthus (counterweight house)	
	D1	Plate/Sheet -main bearing/ carrying system	
	D2	Beams	
	D21	Main beams	
	D22	Cross member	
	D3	Kasse	
*D. Comparation of the	D9	Other superstructures e.g. pavements	
*D: Superstructure	D71	Main beams	
	D72	Cross member	
	D73	Counter balance	
	D74	Toothed gear - powertrain	
	D76	Balancing system	
	D77	Machine - power supply unit	
	E1	Bridge deck - carrying system	
E: Deck / wear layer	E2	Wear layer/ moisture insulation	
	E3	Edge beam	
F: Construction in filling / foundation	F7	Wings	
r. Construction in thing / toundation	F8	Load distribution plate	
G: Supporting structure	G2	Walls - support wall downside	
	H11	Storage/stock	
	H13	Seal/ joints construction (not for waterproofing)	
	H14	Joint threshold	
	H15	Railing	
	H16	Water drain - Pumping station or drainage system	
	H17	Cables e.g. for hot-dip trapping	
*H: Equipment	H19	others e.g. security fence or el. Installation	
	H21	Lights	
	H26	Hatch / door	
	H27	Utsmykning (embellishment)	
	H29	Marking signs e.g. made of aluminum	
Unit/ Component	Code	Subcomponent	
----------------------------	------	--	
	H31	Ladder	
	H32	Staircase	
	H39	Other fixed access equipment	
	H41	Machine house	
*H: Equipment	H44	Control tower	
	H51	Instrumentation/ gauges in the control room.	
*I: Special quay equipment	I11	Containment boom	
J: Special installation	J9	Other special installation e.g. fuse box	

4.4.2.4 FAILURE MODE AND EFFECTS ANALYSIS (FMEA) FOR UNIFORM BOX/TUBULAR CULVERT

In this section, the uniform box or tubular culvert bridges (the most common structure forms for bridges with poor and very poor condition performance indicators) are discussed more regarding the failure profile.

Failure Mode and Effects Analysis (FMEA) has been chosen as the methodology to discuss the failure profile in more detail. FMEA can be helpful to achieve a better and more clear understanding regarding the specific structure and to minimize the associated risks (Stamatis, 2003). It can be used as the first step in studying the failure profile and improving the reliability, safety and quality before more detailed analysis of the structure (Stamatis, 2003).

As explained earlier, the elements with the code B, E, F, G, J are used for element types which do not have significant impact on the static system of the structure (Håndbok V440 - Bruregistrering, 2014). Therefore, the elements with codes C, D, H, I are selected for uniform box or tubular culvert bridge structure for further studious. Note that there is no element code I registered in BRUTUS for this form of bridge.

Table 4-21 presents the failure modes, causes, mechanism and effects, FMEA, for each influencing components and subcomponents (C, D and H) for uniform box/tubular culvert bridges. This table is based on the information collected from literature studies. As inferred from the table, the failure modes and effects can be challenging to identify specifically because they affect each other. I.e. a failure mode for one subcomponent can lead to an effect and therefore a failure mode for another subcomponent.

Figure 4-11 shows this continuous interaction between failure modes and failure effects. Thus, the failure modes are mostly limited to the list below.

- Thinning
- Creep
 - Sagging
- Rupture

.

ChippingTear

Fracture

Bending

•

٠

•

- Cracking
- Buckling

• Yielding

•

• Deformation

Shear

- Wear
- Spalling

• Scaling

- Decaying
- Discoloration

Figure 4-11: Continuous interaction between failure modes and failure effects.

Table 4-23: FMEA for uniform box/tubular culvert.

Unit/	Code	Sub-	Item function	Failure	Failure causes	Failure	Failure effects		
Comp- onent		component		modes		mechanism	Local	System	External
	C1	Abutments	Stabilize the structure against the ground on both ends	Thinning	-Ice Formation on the surfaces -Corrosion -Deicing material -Mishandling	Formation on the acces -Freeze thaw cycle Instabile Instability acces both on the structure and from the ground. abutments the bridge structure, which can result in collapse. icing material -Chloride/ sulphate attack. collapse. collapse.			
					-Maintenance activities -Traffic accident -Waves	objects (relevant to failure causes) e.g. vehicles, wave currents etc.		composi	vehicles or bridge users.
ructure		D .11		Fracture	-Mishandling -Maintenance activities -Traffic accident -Waves	Collision with the objects (relevant to failure causes) e.g. vehicles, wave currents etc.			
*C: Subst	C2	Pillar	bridge above the ground (in the middle)	Bending	Age of structure -Excessive pressure /loads. -Mishandling -Maintenance activities -Traffic accident -Scouring	Too high applied pressure	Instable pillars	Instability in the bridge structure, which can result in collapse.	Bridge collapse can result in damage to the animals, property,
				Cracking	-Mishandling -Maintenance activities -Traffic accident -Scouring	Contact with hazardous physical or chemical factors			vehicles or bridge users.
				Discoloration	Salt deposits in water	Efflorescence			
				Creep	-Age of structure -Climate conditions	-Abrasion -Erosion -Fatigue			

	D1	Plate/Sheet - main bearing	Minimize and control the stresses in and to the structure	Thinning Rupture	-Freeze thaw cycle both on the structure and from the ground -Corrosion -Deicing material -Mishandling -Maintenance activities Traffic accident	 -Freeze thaw cycle both on the structure and from the ground. -Chloride/ sulphate attack. Collision with the objects (relevant to failure causes) e.g. 	Fragile plate or sheets that cannot distribute and control the applied stressed through the structure.	Excessive stress on the bridge structure, which can result in collapse.	Bridge collapse can result in damage to the animals, property, vehicles or bridge users.
ucture				Fracture	-Waves -Mishandling -Maintenance activities Traffic accident -Waves	vehicles, wave currents etc. Collision with the objects (relevant to failure causes) e.g. vehicles, wave currents etc			
*D: Superstr	D22	Cross member	Distribute the applied loads in and to the structure	Wear Bending	Age of structures -Excessive pressure /loads. -Mishandling -Maintenance activities -Traffic accident -Scouring	Abrasion Too high applied pressure	Instable cross members that cannot distribute and control the applied loads through the structure.	Excessive loads on the bridge structure which can result in collapse.	Bridge collapse can result in damage to the animals, property, vehicles or bridge users.
				Cracking Discoloration	-Mishandling -Maintenance activities Traffic accident -Scouring Salt deposits in water	Contact with hazardous physical or chemical factors Efflorescence			
				Creep	-Age of structure -Climate conditions	-Abrasion -Erosion -Fatigue			

			-		-	-			
	H13	Seal/ joints construction	Protect the structure edges from applied loads.	Same as unit D and C (based on the characteristics).	Same as unit D and C (based on the characteristics).	Same as unit D and C (based on the characteristics).	The load is not controlled in structure edges.	Instable joints can lead to collision.	Potential damage to the animals, property,
	H15	Railing	-Control the traffic flow. -Protect other bridge users.	Bending Fracture	-Excessive pressure /loads. -Mishandling -Maintenance activities -Traffic accident -Mishandling -Maintenance activities	Too high applied pressure. Collision with the objects (relevant to	No protection in traffic flow and for the bridge users which can result in fatal accidents.	Traffic accidents can lead to failure of critical bridge elements and collision.	vehicles or bridge users.
					Traine accident	vehicles, wave currents etc.			
H: Equipment	H16	Water drain (Pumping station/ drainage system)	Lead the water away from the structure	Clogged inlet or outlet	-Lack of maintenance and cleaning. -Ice formation on the inlet and outlet.	-Ice impact in case of ice formation on the inlet and outlet.	Water flow can be stuck in the drainage.	-Water flow can be led to the structure. -Potential damage to the structure (e.g. corrosion).	Damage to the critical bridge elements can lead to collapse.
*	H17	Cables	Support bridge structure	Sagging Ruptured	-Mishandling -Maintenance activities -Excessive ice formation -Wind -Traffic accident -Excessive applied load -Excessive Ice formation	Collision with the objects (relevant to failure causes) e.g. vehicles, wave currents etc. -Ice impact in case of ice formation	Failure in bridge support.	Instability in the bridge system.	Potential damage to the animals, property, vehicles or bridge users.
	H21	Lights	Provide better vision for the traffic and the bridge users	Sagging	-Mishandling -Maintenance activities -Excessive ice formation -Wind -Traffic accident -Mishandling	Collision with the objects (relevant to failure causes) e.g. vehicles, wave currents etc. -Ice impact in case of	Lack of sufficient light.	Lack of proper vision for the traffic and bridge users.	fatal accidents and damages to the animals, property.
				functioning	-Improper maintenance activities	ice formation.			vehicles.

	H24	Noise barrier	Control the noise pollution	Failed to reduce the noise level	-Age of structure -Excessive ice formation -Improper maintenance	-Ice Impact. -Fatigue.	Lack of noise protection.	Discomfort for the bridge users.	Discomfort in the area.
	H26	Hatch / door	Separate different areas	Creep	-Age of structure -Climate conditions	-Abrasion -Erosion -Fatigue	Lack of separation units.	Possibility of misusing the area.	Discomfort for the bridge users.
				Cracking	-Mishandling -Maintenance activities Traffic accident -Scouring	-Collision with the objects (relevant to failure causes) e.g. vehicles, wave currents etc.			
quipment	H29	Marking signs	Provide relevant traffic information for the bridge users	Sagging	-Mishandling -Maintenance activities -Excessive ice formation -Wind -Traffic accident	-Collision with the objects (relevant to failure causes) e.g. vehicles, wave currents etc. -Ice impact in case of ice formation.	Lack of proper and required signs.	-Lack of traffic information for the traffic and the bridge user. -Separated	Lack of traffic information can results in fatal accidents and damages
H: E				Discoloration	- Salt deposits in water -Vandalism	-Salt deposits due to efflorescence		signs can damage the	to the animals,
*				Bending	-Excessive pressure /loads. -Mishandling -Maintenance activities -Traffic accident -Scouring	Too high applied pressure		bridge users.	property, vehicles.
	H32	Staircase	Accessibility to two sides of the road	Creep	-Age of structure -Climate conditions	-Abrasion -Erosion -Fatigue	Lack of proper accessibility through the	Potential hazardous situations that	Discomfort for the bridge users.
				Cracking	-Mishandling -Maintenance activities Traffic accident -Scouring	Collision with the objects (relevant to failure causes) e.g. vehicles, wave currents etc.	bridge.	can result in harm and injury for the bridge users.	

CHAPTER 5 – DISCUSSION

5 DISCUSSION

The main objective of the case study is to discuss and approach a case to provide a clear understanding of the concepts discussed in chapter 2 and 3. In order to achieve this, the bridges in Trondheim municipality are categorized based on the characteristics and failure status. Moreover, bridges with the poor and very poor condition status in Trondheim were discussed in more detail.

The bridge characteristics were discussed based on the available data for the bridges located in Trondheim municipality. Based on the material type, most of the bridges in Trondheim are built from Insitu (reinforced /prestressed) Concrete. Therefore, brittle failure can be taken more into consideration compared to the ductile failure in steel structures.

Regarding the age and/or construction years, there is a fall in the last defined construction interval, it is shown that most of the bridges in Trondheim are built from approximately 1954 to 2017.

According to the environmental factors, except the exposure to deicing salts which is moderate, scour risk, exposure to salt water and flooding risk are classified as low risk or even there is no risk.

With respect to the load types, most of the bridges can be considered as the full highway loading with heavy load route.

Failure concepts are also discussed by a priority indicator (or worst damages degree) provided in the data. Priority indicator addresses two issues:

- i) Consequence types
- ii) Risk values or condition performance indicators.

Most of the consequence types are concerned with road/traffic safety and increased maintenance costs. Almost half of the bridges have good condition performance indicators (green risk area) and the other half of the bridges have poor (yellow risk area) and very poor (red risk area). Road/traffic safety is also indicated as the most important consequence type in both red and yellow zone.

Based on the overall results, the bridges with poor and very poor condition performance indicators have been chosen for further detailed study. These bridges are discussed from 2 perspectives explained as below:

- 1. Consequence types: Traffic safety is the most important consequence type identified for the bridges with poor and very poor condition performance. Moreover, carrying capacity and increased maintenance costs are the next important consequence types respectively. Consequence types relating to environmental or aesthetics can be considered almost negligible.
- 2. Bridge structure forms: The uniform box or tubular culvert bridges (30%) and simply supported (29%) structures are identified as the most common structure forms for bridges with poor and very poor condition performance indicators. The components and subcomponents for these two bridges form is presented in table 4-21 and 4-22. The most important components which have significant impact on the static system of the structure are identified for uniform box or tubular culvert bridges (the most common structure forms) according to (Håndbok V440 - Bruregistrering, 2014) and BRUTUS database. These components are selected as C (substructure), D (superstructure) and H (equipment).

The FMEA methodology has been used for these components to find the relevant failure modes, causes, mechanism and effects. For the components C and D, failure modes can be thinning, creep, rupture, bending, cracking, fracture, wear and discoloration. However, for the component H, the failure modes can vary based on different characteristics of the subcomponents.

Based on the component characteristics and the FMEA analysis done for these components and their subcomponents, there can be generally nine common failure modes identified. These failure modes are:

Thinning

Rupture

Bending Wear

- Creep
- Cracking

• Discoloration

- Fracture

•

Sagging

In case of a bridge collapse, the consequences can be fatal and it can result in damage to the animals, property, vehicles or bridge users.

PART 4 – CONCLUSION

CHAPTER 6 – CONCLUSION AND FURTHER STUDIES

6 CONCLUSION AND FURTHER STUDIES

The objective of this chapter is to provide an overall review of the whole research project and to answer the research questions mentioned in the title "1.3 RESEARCH QUESTIONS" based on the objectives. Furthermore, it includes the possible further studies in this area.

SUMMARY OF THE LITERATURE REVIEW AND THE CASE STUDY

The summary of the literature review and case study parts are reviewed in this section. The purpose of this summary is to provide an overview through the main concepts of the project. More detailed description of each topic can be found in the relevant chapters.

Literature review: it consists of chapter 2 and 3.

Chapter 2 consists of the introduction, main objectives, limitations and description of the different bridge characteristics and elements. Various research articles were analyzed and information have been extracted from them. Chapter 7 contains the list of researches referred in this study. The objective of this chapter is to explain and clarify the relevant concepts regarding the bridge structure.

Based on the introduced bridge characteristics, the concepts in bridge reliability, lifetime performance characteristics and failure profile are described in chapter 3. Different failure causes, failure and deterioration mechanisms, failure modes and different failure types are discussed in this chapter.

Case study: The case study is described in chapter 4 including limitations, assumptions and possible source of errors. The collected data is from BRUTUS, the database of Norwegian Public Roads Administration (SVV). This data includes the information of the 152 bridge structures located in Trondheim municipality. The information compromised of bridge characteristics such as material type, bridge design, application and age.

The main objective of the case study is to discuss and approach a case to provide a clear understanding of the concepts discussed earlier. The bridges in Trondheim municipality were categorized based on the characteristics introducing in the first section and their failure status was investigated based on the matrices introduced in second section. Moreover, bridges with the poor and very poor condition status in Trondheim were discussed in more detail.

> RESEARCH QUESTIONS

Research questions can be listed and answered as below.

1. How bridge structures can be categorized?

The major and typical parts of a bridge can be categorized into four main groups such as: i) Superstructure, ii) Substructure, iii) Foundation, and iv) Other basic parts. Other elements like deck, beam, span and pier can be included in one of these three main parts.

Furthermore, the bridge characteristics are categorized from 10 different perspectives, as:

1. Material type	6. Environment
2. Age	7. Inspection assessment
3. Span / height / headroom / length	8. Condition indicators
4. Portability	9. Applications and load type
5. Structure forms (design and	10. Route supported and obstacles
construction)	crossed

The importance of each category has been explained in chapter 2. It also described how these characteristics can affect the reliability and failure profile of the bridge structures.

2. How to define reliability and failure profile concepts for the bridge structures? I.e. when does a bridge fail?

Both concepts are described relying on the physical and structural definitions for reliability and failure concepts. "*Reliability is the ability of a structure or structural member to fulfil the specified requirements, during the working life, for which it has been designed*" (ES ISO 2394, 2012) and *the termination of this ability in a structure can be defined as failure* (NCHRP, 2014). I.e. a bridge fails when there is any one of structure elements are not fully or partially functioning that can lead to a potential risk of damage or harm against human, environment and assets. The failure profile includes discussing different failure causes, failure mechanism, and their corresponding modes and types.

3. Categorize the bridges in Trondheim municipality based on the output from question 1 and list their failure profile based on question 2.

Based on the first question, the available characteristics for the bridges in Trondheim are listed. Some of these characteristics are discussed further in the figures and charts.

Based on the output from question 1:

The bridge characteristics are discussed based on the available data for Trondheim bridges. Based on the material, most of the bridges in Trondheim are built from Insitu (reinforced /prestressed) Concrete. Therefore, the brittle failure can be taken more into consideration compared to the ductile failure in steel structures.

Regarding the age and/or construction years, however there is a fall in the last defined construction interval, it is shown that most of the bridges in Trondheim are built from approximately 1954 to 2017.

According to the environmental factors, except the exposure to deicing salts which is moderate, scour risk, exposure to salt water and flooding risk are low risk or even there is no risk.

Moreover, with respect to the load types, most of the bridges can be considered as the full highway loading with heavy load route.

Based on the output from question 2:

Failure concepts are discussed by a priority indicator (or worst damages degree) provided in the data. Priority value addresses two issues:

- i) Consequence types and
- ii) Risk values or condition performance indicators.

Most of the consequence types are concerned with road/traffic safety and increased maintenance costs. Only half of the bridges have good condition performance indicators (green risk area) and the other half of the bridges have poor (yellow risk area) and very poor (red risk area). Road/traffic safety is also indicated as the most important consequence type in both red and yellow zone.

4. What are the main failure modes in the failure profile of the bridges with poor and very poor condition performance indicator?

In this report, the uniform box or tubular culvert bridges is identified as the most common structure forms for bridges with poor and very poor condition performance indicator based on BRUTUS database. The most important components which have significant impact on the static system of the structure are identified for uniform box or tubular culvert bridges (the most common structure forms) according to (Håndbok V440 - Bruregistrering, 2014) and BRUTUS database. These components are selected as C (substructure), D (superstructure) and H (equipment).

The FMEA methodology has been used for these components to find the relevant failure modes, causes, mechanism and effects. For the components C and D, failure modes can be thinning, creep, rupture, bending, cracking, fracture, wear and discoloration. However, for the component H, the failure modes can vary based on the different characteristics of the subcomponents.

Based on component characteristics and the FMEA analysis done for these components and their subcomponents, there can be generally nine common failure modes identified. These failure modes are:

- Thinning
- Bending
- Wear

•

- Creep
- Rupture
- Cracking

Fracture

• Sagging

Discoloration

> FURTHER STUDIES

As some recommendations for further studies, it can be suggested to collect the relevant database for entire Norway. In that case, it might be possible to discuss the mentioned concepts more in depth. In addition, it could be possible to develop statistical models to find the corresponding relations between different involving factors.

It is also recommended to utilize the relevant database for the risk-based maintenance planning based on different standards and guidelines. Thus, it can be possible to detect the current problems and develop some improvements in the maintenance and inspection of bridges in Trondheim.

7 REFERENCES

- Applebury, C. R. (2011, December). RELIABILITY-BASED METHODOLOGY FOR BRIDGE INSPECTION PLANNING. Missouri, Columbia, United State of America: University of Missouri.
- Arjun, N. (2018). Construction of Culverts and Minor Bridges- Siting and Investigation of Catchment Area. *Construction Engineering & Management*.
- Balasubramanian, A. (2017, March). BRIDGES AND THEIR TYPES. doi:10.13140/RG.2.2.18109.46566}
- Basic Bridge Terms. (2015, March 08). *Construction, Geotechnical, Structural, Transportation*. Retrieved from https://erkrishneelram.wordpress.com/2015/03/08/basic-bridge-terms/
- BD 54/15. (2015). *DESIGN MANUAL FOR ROADS AND BRIDGES*. Retrieved from http://www.standardsforhighways.co.uk/ha/standards/dmrb/vol3/section2/bd5415.pdf

BD 54/15. (2015). DESIGN MANUAL FOR ROADS AND BRIDGES.

Bierman, E. (2017, May 20). San Francisco.

- Blockley, D. (2010). *Bridges: The Science and Art of the World's Most Inspiring Structures*. New York, United States of America (USA): Oxford University Press Inc.
- Bradley, P. (2016). Maintenance. *According to the European Standard EN 13306*. Retrieved from https://slideplayer.com/slide/6350749/

Bridge types. (2018). London, UK: Mineral Products Association.

- Bridges and Structures. (2009). New Hampshire: American Institute of Architects New Hampshire. Retrieved from https://network.aia.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey =2bff4038-d533-430b-b807-c30b84363e95
- DNV-RP-G101. (2010). *RISK BASED INSPECTION OF OFFSHORE TOPSIDES STATIC MECHANICAL EQUIPMENT*. DET NORSKE VERITAS (DNV). Retrieved from https://www.dnvgl.com/
- EN 13306. (2010, November). Maintenance Maintenance terminology. *EUROPEAN STANDARD*. EUROPEAN COMMITTEE FOR STANDARDIZATION. Retrieved from http://www.standard.no/en/PDF/FileDownload/?redir=true&filetype=Pdf&preview=true&ite m=961747&category=5
- ES ISO 2394. (2012). *General principles on reliability for structures*. Federal Democratic Republic of Ethiopia. Ethiopian standard agency.

- FEZ. (2016, July 09). Morocco. Retrieved from http://riadzany.blogspot.com/2016/07/mohammed-viopens-rabat-bypass.html
- Håndbok V440 Bruregistrering. (2014, June). Statens vegvesens (SVV). Retrieved from https://www.vegvesen.no/_attachment/111840/binary/964064
- Historic Albert Memorial Bridge. (2015, May 27). Regina , Saskatchewan, Canada. Retrieved from http://www.flickriver.com/photos/cmhpictures/19225654603/

IAN 171/12. (2012).

- Janberg, N. (2016). Danhe Bridge. Retrieved from https://structurae.net/structures/danhe-bridge
- John, V. (2013, September). Bridge Engineering. The Civil Engineering Website.
- Kevin-F. (2018). *What Is a Beam Bridge*. Bright Hub Engineering. Retrieved from https://www.brighthubengineering.com/structural-engineering/65074-characteristics-of-beambridges/
- Kramarczik, B. (2013, July 6). Józef Piłsudski Bridge. Torun, Poland: International Database and Gallery of Structures.
- Leonhardt, F. (1984). Bridges: Aesthetics and Design. Massachusetts : The MIT Press.
- Li, W. (2002, November). Incorporating aging failures in reliability evaluation. IEEE Transactions on Power Systems. doi:10.1109/TPWRS.2002.800989
- Malo, K. A. (2015). *Timber Bridges*. Norwegian University of Science & Technology (NTNU), Department of Structural Engineering. Statens vegvesen. Retrieved from https://www.vegvesen.no/_attachment/552585/binary/889490?fast_title=Timber+bridges.pdf
- Man-Chung, T. (2018, April). Forms and Aesthetics of Bridges. doi:https://doi.org/10.1016/j.eng.2017.12.013

McBey, M. (2015, June 27). Iconic Forth Bridge. Edinburgh, Scotland: Flickr community.

- Miyamoto, A., Kawamura, K., & Nakamura, H. (2000). *Bridge Management System and Maintenance Optimization for Existing Bridges*. Ube 755, Malden, USA: Blackwell Publishers. doi:http://onlinelibrary.wiley.com/doi/10.1111/0885-9507.00170/epdf
- NCHRP. (2014). Proposed Guideline for Reliability-Based Bridge Inspection Practices. WASHINGTON, D.C.: TRANSPORTATION RESEARCH BOARD.
- Northwest Consultants. (2019). Bridge, Culvert & Structural Design. Retrieved from https://www.ncieng.com/

OFFICE OF STRUCTURES. (2011, April). CULVERTS. MANUAL FOR HYDROLOGIC AND HYDRAULIC DESIGN.

- Rahman, M. (2018). Culvert Types of Culvert Details & Advantages. Civiltoday.com.
- Rausand, M. (2014). *Reliability of Safety-Critical Systems Theory and Applications*. Wiley. Retrieved from https://www.ntnu.edu/ross/books/sis
- Rausand, M., & Høyland, A. (2004). *System Reliability Theory: Models, Statistical Methods, and Applications.* John Wiley & Sons, Inc.
- Rogovenko, T., & Zaitseva, M. (2017). Statistical modeling for risk assessment at sudden failures of construction equipment. Rostov-on-Don, Russia: Don State Technical University. doi:10.1051/matecconf/201712905014
- ScienceStruck. (2018, March 21). ignificant Pros and Cons of Arch Bridges. Retrieved from https://sciencestruck.com/pros-cons-of-arch-bridges
- Stamatis, D. H. (2003, January 1). Failure Mode and Effect Analysis: FMEA from Theory to Execution. ASQ Quality Press. https://books.google.no/books?id=TTxI8jbTkVwC&printsec=frontcover#v=onepage&q&f=fa lse.
- TfL. (2011). *TfL Good Practice Guide: Risk Based Inspections for Highway Structures*. Transport for London TfL. London: Surface Transport.
- Troyano, L. F. (2003). *Bridge Engineering: A Global Perspective*. London, United kingdom: Thomas Telford Publishing. Retrieved from www.thomastelford.com
- VG. (2017). *Bridges are facing critical damage for years*. Norway. Retrieved November 13, 2017, from https://www.vg.no/spesial/2017/de-forsomte-broene/alvorlige-skader/
- Williams, A. (2009, March 13). Structural Analysis: In Theory and Practice. *Technology & Engineering*. Oxford, UK: Butterworth-Heinemann.

APPENDIX A: DATA

Table A- 1: The actual data given by SVV.

					Cons.		Climate		The worst	Road	Usage
Code	Name	Category	Form	Material	year	Length	zone	Accessibility	damage	type	load
									degree		
16-							Inner	No need,			Bk
0172	Brattørbrua	Vegbru	Rullebru, bjelker	Steel	1939	32	coastline	Other	6 V	IKKE	6/28
16-								Boat, No need,			Bk
0439	Sluppenbrua	Veghru	Bielkebru valsede bielker	Steel	1954	82	Inland	Other	16 B	IKKE	10/50
16-	Shippeneruu	Vegora	Hvelvbru med hel	Steel	1751	02	Innund		10 D		Bk
0051	Tillerbrua	Vegbru	overmur, alt murt i mørtel	Stone	1912	26.7	Inland		12 V	В	10/50
				Insitu							
16-			Bjelke-platebru, massiv,	Reinforced							Bk
1239	Støre Driftsvegbru	Vegbru	m/vinger	Concrete	1988	40.4	Inland	No need	4 T	В	10/50
				Insitu							
16-			Kulvert, plassprodusert,	Reinforced							Bk
0016	Trolla	Bru i fylling	m/sålefundament	Concrete	1979	4	Inland	Other	6 B	А	10/60
			Platebru, massiv,	Insitu							
16-			m/overliggende	Reinforced							Bk
0032	Sagelv Østre	Vegbru	kantforsterkning	Concrete	1973	4.7	Inland	No need	6 B	A	10/60
16-			Hvelvbru med hel	~		• •					Bk
0041	Osen Tappeløp	Vegbru	overmur, andre	Stone	1967	2.8	Inland	No need	2 V	A	10/60
			Platebru, massiv,	Insitu							-
16-		** 1	m/overliggende	Reinforced	1050						Bk
0042	Sagelv Vestre	Vegbru	kantforsterkning	Concrete	1973	4.3	Inland	No need	1 V	A	10/60
16-		** 1	Bj.bru, plateb., vari.h.,		1000		Inner		10.11		Bk
0052	Bakke bru	Vegbru	klinkede m/nagleskjøter	Steel	1929	81	coastline	No need	12 V	A	10/50
16-	D °	X7 1	Bjelkebru, valsede bjelker,	0, 1	1022	52.5	T 1 1	1 . 1 1. 6	10 5		Bk
0082	Bra	vegbru	HE-B u/samvirke	Steel	1933	55.5	Inland	bridge lift	12.1	А	10/60

16				Insitu Reinforced							Bŀ
0087	Osen	Vegbru	Kulvert, plassprodusert	Concrete	1991	5	Inland	No need	4 V	А	10/60
				Insitu							
16-			Platebru, massiv,	Reinforced							Bk
0259	Kroppøyen	Vegbru	rektangulært tverrsnitt	Concrete	1941	6.2	Inland	No need	12 T	А	10/60
				Insitu							
16-				Reinforced							Bk
0298	Støre Bru O/Krøtterv	Vegbru	Platebru, massiv	Concrete	1941	3	Inland	No need	9 T	А	10/60
				Insitu							
16-	-	** 1		Reinforced	10.10		.		10 5		Bk
0347	Espăs	Vegbru	Platebru, massiv	Concrete	1948	4.75	Inland	No need	12 T	A	10/60
1.6							Ŧ	Boat, Other,			D1
16-	Transformation	XZ 1		C(1	1050	50.00	Inner	Climbing	16 T		BK
0394	Jernbanebrua	vegbru	Klaffebru, enarmet, bjelker	Steel	1950	56.86	coastline	equipment	16.1	A	10/50
16			Bjelkebru, plassprodusert,	Insitu				No need,			Dle
10-	Floosator	Vachm	konstant nøyde	Concrete	1051	200.0	Inland	Orlage IIIt,	0.0		BK 10/50
0400	Eigeseter	vegoru	III/ Sallivirke	Lucitu	1931	200.9	Innano	Other	9.6	A	10/30
16				Dainforcad							R1/2
0/88	Gråstua 1	Vegbru	Platebru massiv andre	Concrete	1958	73	Inland	No need		Δ	DK 10/60
0400		vegoru	Platebru massiv, andre	Insitu	1750	1.5	Intand	Nonecu			10/00
16-			m/underliggende	Reinforced							Bk
0514	Gråstua	Vegbru	kantforsterkning	Concrete	1959	8.2	Inland	No need	3 T	А	10/60
16-			Bielkebru, valsede bielker.								Bk
0520	Leirelva	Vegbru	HE-A u/samvirke	Steel	1959	35.8	Inland	No need	9 T	А	10/60
				Insitu							
16-			Kulvert, plassprodusert,	Reinforced							Bk
0701	Fotgj.U.G. V/Åsvegen	Bru i fylling	m/sålefundament	Concrete	1967	5.57	Inland	No need	6 T	А	10/60
16-			Rør i fylling, korrugert,								Bk
0704	Fjøsvollan	Bru i fylling	flatbunnet (lavprofil)	Steel	1967	3.2	Inland	No need	4 V	А	10/60
				Insitu							
16-			Ribbeplatebru (massiv	Reinforced							Bk
0707	Ladedalen	Vegbru	over støtte)	Concrete	1967	24.5	Inland	No need	12 T	А	10/60
16-			Rør i fylling, korrugert,								Bk
0745	Bråli	Bru i fylling	sirkulært	Steel	1968	3.65	Inland	No need	2 V	А	10/60

				Insitu							
16-			Kulvert, prefabrikert,	Reinforced							Bk
0772	Tonstad Bru O/G/Sykk	Bru i fylling	elementkulvert nr. 2	Concrete	1969	4.03	Inland	No need	4 T	A	10/60
				Insitu							
16-			Kulvert, plassprodusert,	Reinforced							Bk
0806	Havstad o/GSV	Bru i fylling	m/sålefundament	Concrete	1971	5.6	Inland	No need	4 T	А	10/60
				Insitu							
16-			Kulvert, plassprodusert,	Reinforced							Bk
0811	Moholt Bru O/Gang/S.	Bru i fylling	m/sålefundament	Concrete	1972	12.8	Inland		4 V	А	10/60
				Insitu							
16-			Bjelke-platebru, massiv,	Reinforced				No need,			Bk
0817	Sluppen Viadukt	Vegbru	m/vinger	Concrete	1972	171	Inland	Other	9 V	А	10/60
16-			Rør i fylling, korrugert,								Bk
0819	Hammer	Bru i fylling	stående ellipse	Steel	1972	3.75	Inland	No need	12 B	А	10/60
			•	Insitu							
16-			Kulvert, plassprodusert,	Reinforced							Bk
0821	Leirelva Kulvert	Bru i fylling	m/bunnplate	Concrete	1972	5.1	Inland	No need	4 T	А	10/60
			Kulvert, plassprodusert,	Insitu							
16-			m/sålefundament og	Reinforced							Bk
0868	Simensbrua O/Bedrift	Bru i fylling	trykkbielk	Concrete	1975	7.6	Inland		4 V	А	10/60
		8		Insitu							
16-			Kulvert, plassprodusert.	Reinforced							Bk
0871	Sluppen Kulvert	Bru i fylling	m/bunnplate	Concrete	1975	14.85	Inland		9 T	А	10/60
00/1		21411911119		Insitu	1770	1.100			/ 1		10,00
16-			Kulvert, plassprodusert.	Reinforced							Bk
0874	Eggan	Bru i fylling	m/bunnplate	Concrete	1975	10.25	Inland		6 T	А	10/60
	288	21411711118		Insitu	1770	10.20			• 1		10,00
16-			Kassebru konstant høyde	Reinforced				Boat No need			Bk
0886	Kronnan Østre	Veghru	vertikale vegger	Concrete	1975	402.5	Inland	bridge lift	12 т	Δ	10/60
0000		vegoru		Insitu	1775	402.5	mana		121		10/00
16-			Kulvert plassprodusert	Reinforced							Bk
0889	Rampe 7 Kuly O. Leir	Bru i fylling	m/bunnplate	Concrete	1975	82	Inland	No need	4 T	Δ	10/60
0009	Kunpe / Kurv.O. Lell	Diu Trynnig		Insitu	1975	0.2	manu	1 to liccu	71	Λ	10/00
16			Kulvert plassprodusort	Reinforced							Bŀ
0910	Kroppanskogen Over P	Bru i fylling	m/bunnplate	Concrete	1976	25 31	Inland		6 V	Δ	10/60
0910	IN Oppanskogen Over K	Dru i rynnig	in/oumplate	Concicic	1970	25.51	imanu		0 0	Л	10/00

16				Insitu			Innor	bridge lift			Dlr
0913	Nidely bru	Veghru	Bielkebru NOB/NOT	Concrete	1976	203	coastline	Other	9 B	Δ	DК 10/60
0715		vegoru	Kulvert, plassprodusert.	Insitu	1770	203	coustime	Oulei			10/00
16-			m/sålefundament og	Reinforced							Bk
0920	Kolstad O/GSV	Bru i fylling	trykkbjelk	Concrete	1976	5	Inland		6 T	А	10/60
16-			Bj.bru, plateb., kon.h.,					No need,			Bk
0921	Bjørndalsbrua	Vegbru	sveiset m/frik.skj. u/samv.	Steel	1976	274	Inland	bridge lift	9 T	А	10/60
				Insitu							
16-			Bjelkebru, NOB,	Prestressed							Bk
0985	Flakk Vest	Vegbru	massivtverrsnitt	Concrete	1979	32.5	Inland		4 B	A	10/60
1.6				Insitu							D1
16-		D (11)	Kulvert, prefabrikert,	Reinforced	1070	5.26	T 1 1		4.00		Bk
0995	Leirbrua o/GSV	Bru i fylling	elementkulvert nr. 2	Concrete	1979	5.36	Inland		4 1	A	10/60
16-	Lairbrua	Dm i fulling	Rør i fylling, korrugert,	Steel	1070	5 50	Inland		4 17		BK 10/60
0990	Leirorua	Dru i Tynnig		Jucitu	19/9	5.59	Infano		4 V	A	10/00
16			Kulvert plassprodusert	Reinforced							Bŀ
1015	Buran kulvert	Bru i fylling	m/bunnplate	Concrete	1980	5.8	Inland	No need	4 T	Δ	10/60
1015		Diu Tynnig		Insitu	1700	5.0	Innanci	110 need		11	10/00
16-			Kulvert plassprodusert	Reinforced							Bk
1043	Ringvålvegen Skiund.	Bru i fylling	m/bunnplate	Concrete	1981	5.63	Inland		4 T	А	10/60
			I	Insitu							
16-			Kulvert, prefabrikert,	Reinforced							Bk
1046	Jakobsli o/GSV	Bru i fylling	elementkulvert nr. 2	Concrete	1980	3.3	Inland		6 B	А	10/60
				Insitu							
16-			Kulvert, prefabrikert,	Reinforced							Bk
1047	Teslimyr kulvert	Bru i fylling	elementkulvert nr. 1	Concrete	1990	3.3	Inland		2 V	А	10/60
				Insitu							
16-				Prestressed							Bk
1057	Formo O/E6	Vegbru	Bjelkebru, NIB	Concrete	1982	63.5	Inland	bridge lift	4 V	A	10/50
16				Insitu							DI
16-		D (11)	Kulvert, prefabrikert,	Reinforced	1002	4.7	T 1 1		4.00		Bk
1094	Stoneberget o/GSV	Bru i fylling	elementkulvert nr. 2	Concrete	1983	4.5	Inland	No need	41	А	10/60

16			IZ 1 and an of the '1 and	Insitu Daio (m. 1							DI
10-	Vtre Ringveg o/GSV	Bru i fylling	kulvert, prefabrikert,	Concrete	1983	4 46	Inland	No need	6 Т	Δ	ВК 10/60
16-		Diu Tynnig	Rør i fylling korrugert	Concrete	1705	1.10	Innana	110 need	01		Bk
1100	Prøven	Bru i fylling	flatbunnet (lavprofil)	Steel	1983	8.45	Inland	No need	4 T	Α	10/60
16-		, , ,	Rør i fylling, korrugert,								Bk
1103	Kroppan	Bru i fylling	flatbunnet (lavprofil)	Steel	1983	8.2	Inland	No need	6 T	А	10/60
16-			Rør i fylling, korrugert,								Bk
1106	Okstad Jordbruksund.	Bru i fylling	flatbunnet (lavprofil)	Steel	1973	4.55	Inland	No need	6 T	А	10/60
				Insitu							
16-			Kulvert, prefabrikert,	Reinforced							Bk
1109	Østre Rosten Kulvert	Bru i fylling	elementkulvert nr. 2	Concrete	1983	4.45	Inland	No need	4 T	A	10/60
1.6				Insitu							D1
16-	Tanata d O (Vitra Dia an	V h	Diellechers NUD	Prestressed	1092	54.0	Tuland	hu: day 1:64	(T		Bk
1144	Tonstad O/Ytre Ringv	vegbru	Bjelkebru, NIB	Lusita	1983	54.2	Inland	bridge lift	61	A	10/60
16			Kulvert prefabrikert	Reinforced							Rŀ
1150	Værebrua o/GSV	Bru i fylling	elementkulvert nr. 2	Concrete	1983	33	Inland	No need	6 V	А	10/60
1150		Diu Tynnig		Insitu	1705	5.5	Innana	110 need	0 1		10/00
16-			Kulvert, plassprodusert.	Reinforced							Bk
1181	Ringvålvegen Jordbru	Bru i fylling	m/bunnplate	Concrete	1985	5.6	Inland	No need	4 T	Α	10/60
				Insitu							
16-			Platebru, massiv, skrå	Reinforced							Bk
1184	Lerkendal Søndre o/GSV	Vegbru	platekanter	Concrete	1985	16.1	Inland	No need	6 T	А	10/60
				Insitu							
16-			Platebru, massiv, skrå	Reinforced							Bk
1185	Lerkendal Nordre o/GSV	Vegbru	platekanter	Concrete	1985	16.1	Inland	No need	9 T	A	10/60
16				Insitu							DI
16-	Deters 11h an ab man in and	V h	Distaine encoding and this see	Reinforced	1096	(2)	Tuland	Nemed	C VI		Bk
1203	Kotvolinaugbrua nord	vegoru	Platebru, massiv, m/vinger	Loncrete	1980	03.2	Inland	No need	0 V	A	10/60
16				Reinforced							Rŀ
1206	Madsiøbrua øst	Veghru	Platebru massiv m/vinger	Concrete	1986	55	Inland		6 V	А	10/60
1200	musjooruu ost	, egoiti		Insitu	1700	55	munu		0,	11	10/00
16-			Kulvert, prefabrikert.	Reinforced							Bk
1220	Løkkegt kulvert o/g-s vei	Bru i fylling	elementkulvert nr. 2	Concrete	1984	3.63	Inland		6 T	А	10/60

				Insitu							
16-	~ ~ ~ ~ ~ ~	-	Kulvert, prefabrikert,	Reinforced							Bk
1224	Sør-Nypan Kulvert	Bru i fylling	elementkulvert nr. 2	Concrete	1987	4.62	Inland		4 V	A	10/60
				Insitu							
16-			Bjelkebru, NIB, forspente	Prestressed				No need,			Bk
1228	City syd vegbrua til E6	Vegbru	u/samvirke	Concrete	1987	50.21	Inland	bridge lift	4 T	A	10/60
				Insitu							
16-				Reinforced							Bk
1234	Reppebrua	Vegbru	Platebru, massiv, m/vinger	Concrete	1988	68.3	Inland	No need	9 T	Α	10/60
				Insitu							
16-			Kulvert, plassprodusert,	Reinforced			Inner				Bk
1236	Vikelva Kulvert	Bru i fylling	m/sålefundament	Concrete	1988	3.6	coastline	Other	4 V	А	10/60
				Insitu							
16-			Kulvert, prefabrikert,	Reinforced							Bk
1237	Govatsmark Kulvert	Bru i fylling	elementkulvert nr. 2	Concrete	1988	4	Inland		12 T	А	10/60
16-			Rør i fylling, korrugert,								Bk
1238	Være Krøtterundergan	Bru i fylling	sirkulært	Steel	1988	2.8	Inland		4 V	А	10/60
				Insitu							
16-			Kulvert, prefabrikert,	Reinforced							Bk
1240	Giervan Jordbrukskul	Bru i fylling	elementkulvert nr. 2	Concrete	1988	4.6	Inland		9 T	А	10/60
-				Insitu							
16-			Kulvert, plassprodusert.	Reinforced							Bk
1253	Presthusvegen Øst o/GSV	Bru i fylling	m/bunnplate	Concrete	1988	4.6	Inland	No need	2 V	А	10/60
				Insitu							
16-	Sverre Svendsensveg		Kulvert, plassprodusert.	Reinforced							Bk
1255	o/GSV	Bru i fylling	m/bunnplate	Concrete	1988	4.39	Inland		4 V	А	10/60
1200		2101191118		Insitu	1700						10,00
16-			Kulvert plassprodusert	Reinforced							Bk
1258	Fossen O/Gang og Syk	Bru i fylling	m/bunnplate	Concrete	1988	4 39	Inland	No need	4 V	Δ	10/60
1250	1 03301 0/ Oang 0g Dyk	Dia Tynng		Insitu	1700	7.57	Intana	110 lieed		11	10/00
16-			Kulvert plassprodusert	Reinforced							Bk
1259	Ranheim Vestre O/GSV	Bru i fylling	m/bunnplate	Concrete	1988	1.1	Inland	No need	4 T	Δ	10/60
1257		Diurrynnig		Insitu	1700	7.4	mana	1 to need	7 1	Π	10/00
16			Bielkebru NIB forsporte	Prostrassad							Bŀ
1262	Sandmoen	Veghru	m/samvirke	Concrete	1988	77	Inland	bridge lift	6 V	А	10/60
1202	Sununioon	10501u	III/ Sulliviike	Concrete	1700	//	mana	onuge mit	0 1	11	10/00

16-			Bielkebru plassprodusert	Insitu Reinforced							Bk
1265	Solbakkenbrua	Vegbru	overliggende bjelker	Concrete	1988	35	Inland		2 V	А	10/60
16- 1267	Stavset	Bru i fylling	Kulvert, plassprodusert, m/bunnplate	Insitu Reinforced Concrete	1988	5.6	Inland		4 V	A	Bk 10/60
16- 1303	Jotunvegen o/GSV i Utleirvegen	Bru i fylling	Kulvert, plassprodusert, m/bunnplate	Insitu Reinforced Concrete	1991	4.6	Inland		4 T	A	Bk 10/60
16- 1304	Klæbuvegen Kulvert	Bru i fylling	Kulvert, plassprodusert, andre	Insitu Reinforced Concrete	1990	10.18	Inland		12 B	A	Bk 10/60
16- 1305	Nardo Skole O/G- S vei	Bru i fylling	Kulvert, prefabrikert, elementkulvert nr. 2	Insitu Reinforced Concrete	1990	4.65	Inland		9 M	A	Bk 10/60
16- 1306	Stoneaunet o/GSV	Bru i fylling	Kulvert, prefabrikert	Insitu Reinforced Concrete	1992	3.4	Inland		1 B	A	Bk 10/60
16- 1350	Kroppan Vestre	Vegbru	Kassebru, konstant høyde, vertikale vegger	Insitu Reinforced Concrete	1990	384.5	Inland	Boat, bridge lift	6 V	А	Bk 10/60
16- 1354	Lerkendal G/S bru	G/S-bru	Bjelkebru, ikke normerte elementer, andre	Insitu Reinforced Concrete	1991	27	Inland	No need, Scissor lift	9 B	A	Bk 10/50
16- 1357	Nardo Vestre	Vegbru	Platebru, massiv, m/vinger	Insitu Reinforced Concrete	1991	23.9	Inland	No need	6 T	А	Bk 10/60
16- 1358	Nardo Østre	Vegbru	Platebru, massiv, m/vinger	Insitu Reinforced Concrete	1991	25	Inland	No need	4 T	A	Bk 10/60
16- 1360	Røllikvegen	Bru i fylling	Kulvert, prefabrikert, elementkulvert nr. 2	Insitu Reinforced Concrete	1991	4.7	Inland		4 T	А	Bk 10/60
16- 1362	Klefstad	Bru i fylling	Kulvert, plassprodusert, m/bunnplate	Insitu Reinforced Concrete	1991	3.66	Inner coastline	No need	1 T	A	Bk 10/60

				Insitu							51
16-		D . C 11:	Kulvert, plassprodusert,	Reinforced	1001	17	T 1 1		4.5		Bk
1363	Spongdal	Bru i fylling	m/bunnplate	Concrete	1991	17	Inland		4 B	A	10/60
16				Insitu							DI
10-		X7 1		Reinforced	1000	47 1	.				BK
1369	Moholtbrua	Vegbru	Platebru, massiv, m/vinger	Concrete	1992	47.1	Inland		61	A	10/60
				Insitu							
16-	Valøyvegen g/s-veg	D	Kulvert, prefabrikert,	Reinforced	1000	1.0.6			4.55		Bk
1374	kulvert	Bru i fylling	elementkulvert nr. 2	Concrete	1992	4.36	Inland	No need	4 T	A	10/60
	~			Insitu							
16-	Grillstadtunnel portal sør,	Tunnel/	Tunnelportal, sirkulært	Reinforced				No need,			Bk
1403	nordgående	Vegoverbygg	tverrsnitt	Concrete	1988	0	Inland	bridge lift	1 V	A	10/50
			Bj.bru, plateb., kon.h.,	Insitu							
16-			sveiset m/doble steg	Reinforced				No need,			Bk
1422	Ravnkloløpbrua (ny)	Vegbru	m/samv.	Concrete	2010	51.8	Coastal	Other	1 M	A	10/60
				Insitu							
16-			Hvelv i fylling,	Reinforced							Bk
1432	Angeltrøa Kulvert	Bru i fylling	prefabrikert, Matiere	Concrete	1999	5.68	Inland	No need	4 T	Α	10/60
				Insitu							
16-			Hvelv i fylling,	Reinforced							Bk
1434	Reitgjerdet kulvert	Bru i fylling	prefabrikert, Matiere	Concrete	1999	8	Inland		6 T	А	10/60
				Insitu							
16-			Hvelv i fylling,	Reinforced							Bk
1436	Tunga kulvert	Bru i fylling	prefabrikert, Matiere	Concrete	1999	11.8	Inland		4 T	А	10/60
				Insitu							
16-				Reinforced							Bk
1444	Bratsbergveibrua	Vegbru	Platebru, massiv, m/vinger	Concrete	1996	41.23	Inland		6 T	А	10/60
				Insitu							
16-				Reinforced							Bk
1445	Bratsbergveien Rampe	Vegbru	Platebru, massiv, m/vinger	Concrete	1996	28	Inland		6 T	А	10/60
16-			Bj.bru, plateb., kon.h.,								Bk
1507	Dalgårdbrua	Vegbru	sveiset m/frik.skj. m/samv.	Steel	1996	180	Inland	bridge lift	6 V	А	10/60
16-			Bj.bru, plateb., kon.h.,					Ŭ			Bk
1508	Kystadbrua	Vegbru	sveiset m/frik.skj. m/samv.	Steel	1996	96	Inland	bridge lift	9 V	А	10/60

16			Kulvert prefabrikert	Insitu Reinforced							Bŀ
1515	Voldsminde kulvert	Vegbru	elementkulvert nr. 1	Concrete	1994	5.8	Inland	No need	4 T	А	10/60
16- 1530	Løvåsmyrbrua	Bru i fylling	Kulvert, plassprodusert, m/bunnplate	Insitu Reinforced Concrete	1999	5.8	Inland	No need	4 T	А	Bk 10/60
16- 1563	Kystadbrinken fotgj.underg.	Bru i fylling	Kulvert, plassprodusert, m/sålefundament og trykkbjelk	Insitu Reinforced Concrete	1997	4.92	Inland		4 V	А	Bk 10/60
16- 1565	Byåsen skole Kulvert	Bru i fylling	Kulvert, plassprodusert, m/sålefundament og trykkbjelk	Insitu Reinforced Concrete	1997	5.92	Inland		4 T	А	Bk 10/60
16- 1566	Smistad kulvert	Bru i fylling	Kulvert, plassprodusert, m/sålefundament og trykkbjelk	Insitu Reinforced Concrete	1997	4.62	Inland	No need	4 V	А	Bk 10/60
16- 1567	Dalgård kulvert	Bru i fylling	Kulvert, plassprodusert, m/sålefundament og trykkbjelk	Insitu Reinforced Concrete	1997	4.62	Inland	No need	4 T	A	Bk 10/60
16- 1581	Bergheimbrua g/s-veg kulvert	Bru i fylling	Kulvert, plassprodusert, m/bunnplate	Insitu Reinforced Concrete	2006	6.3	Inland	No need	1 V	А	Bk 10/60
16- 1582	Stokkanbrua	Vegbru	Bjelkebru	Insitu Reinforced Concrete	1985	31	Inland	No need	6 T	A	Bk 10/60
16- 1642	Skansenløpet tunnel	Bru i fylling	Kulvert, plassprodusert, m/bunnplate	Insitu Reinforced Concrete	2009		Coastal	No need, Other	4 T	А	Bk 10/60
16- 1644	Trolla o/gsv	Bru i fylling	Kulvert, prefabrikert, elementkulvert nr. 2	Insitu Reinforced Concrete	2002	4.4	Inland		4 T	А	Bk 10/60
16- 1653	Ilsvikøra g/s-veg kulvert	Bru i fylling	Kulvert, plassprodusert, m/bunnplate	Insitu Reinforced Concrete	2006	6.51	Inland		4 V	А	Bk 10/60
16- 1666	Rødde jordbruksundergang	Bru i fylling	Kulvert, prefabrikert, elementkulvert nr. 2	Insitu Reinforced Concrete	2005	4	Inland		4 V	А	Bk 10/60

16- 1672	Pirbrua	Vegbru	Klaffebru, toarmet, bjelker	Steel	2009	131.84	Coastal	No need	6 V	А	Bk 10/60
		<u> </u>		Insitu							
16-	Strandveiparken g/s-		Kulvert, plassprodusert,	Reinforced							Bk
1675	vegkulvert	Bru i fylling	m/bunnplate	Concrete	2013		Inland	No need	6 V	A	10/60
				Insitu							DI
16-		X7 1	Ribbeplatebru (massiv	Reinforced	2012		x 1 1	NY 1	4.3.7		Bk
16/6	Strindheimkryssbrua	Vegbru	over støtte)	Concrete	2012		Inland	No need	4 V	A	10/60
16			Distabel massiv	Insitu							D1-
10-	Loonghrup	Vogbru	raktangulært tvorranitt	Concrete	2014	40.6	Inland	No pood	12 T		ВК 10/60
1077		vegoru		Insitu	2014	49.0	manu	No lieeu	12.1	A	10/00
16-			Kulvert plassprodusert	Reinforced							Bk
1679	Falkenborg g/s-vegkulvert	Bru i fylling	m/bunnplate	Concrete	2010	473	Inland	No need	4 V	А	10/60
10/ 2		Dia rijinig		Insitu	2010	1.75	Innund				10,00
16-	Falkenborgvegen g/s-veg		Kulvert, plassprodusert,	Reinforced							Bk
1680	kulvert	Bru i fylling	m/bunnplate	Concrete	2009	5.8	Inland	No need	6 T	А	10/60
				Insitu							
16-	Strindheimskolen g/s-veg		Kulvert, plassprodusert,	Reinforced							Bk
1681	kulvert	Bru i fylling	m/bunnplate	Concrete	2012	3.6	Inland	No need	4 V	А	10/60
				Insitu							
16-	Klett kulvert Nypansletta		Kulvert, prefabrikert,	Reinforced							Bk
1689	boligfelt	Bru i fylling	elementkulvert nr. 2	Concrete	2008	3.4	Inland	No need	4 V	A	10/60
				Insitu							
16-	Bromstadvegen g/s-	TT T	Kulvert, plassprodusert,	Reinforced	2011	10 7	.		4.55		Bk
1693	vegkulvert	Vegbru	m/bunnplate	Concrete	2011	10.5	Inland	Other	1 V	A	10/60
10			V 1	Insitu							DI
10-	Cecilienborg gs-	Dmi fulling	Kulvert, plassprodusert,	Reinforced	2010	5	Inland	No mood	4 M	•	BK
1701	vegundergang	Bruityning	m/bunnplate	Loncrete	2010	3	Inland	No need	4 M	A	10/60
16				Reinforced							Bŀ
1720	Sentervegen sørgående	Veghru	Platebru massiy m/yinger	Concrete	2013	56	Inland	No need	2 V	А	10/60
1720	senter vegen sørgaende	, 05014		Insitu	2015	50	munu	1 to need	2 1	11	10/00
16-	Rostenbrua (over ringveg			Reinforced							Bk
1723	nord)	Vegbru	Platebru, massiv, m/vinger	Concrete	2013	72	Inland	No need	1 V	А	10/60

16			Diallas mlatalama magaine	Insitu Deinfensed							DI
10-	Rotvollhaugbrua sør	Vegbru	m/vinger	Concrete	2013	63.9	Inland	No need	4 V	А	вк 10/60
16			D:-11	Insitu Dainfanad							Dl
1735	Rotvollkryssbrua sør	Vegbru	m/sålefundament	Concrete	2013	23.85	Inland	No need		А	ык 10/60
				Insitu							
16-	D.(111	X7 l	Bjelkeramme,	Reinforced	2012	20 64	T. 1 1	N 1	4 T		Bk
1/36	Rotvollkryssbrua nord	Vegbru	m/salefundament	Concrete	2013	29.64	Inland	No need	4 1	A	10/60
16-				Reinforced							Bk
1738	Madsjøbrua vest	Vegbru	Bjelke-platebru, massiv	Concrete	2013	73.5	Inland	No need	9 T	А	10/60
16				Insitu							DI
16- 1750	Sentervegbrua nordgående	Veghru	Platebru massiv m/vinger	Concrete	2013	56	Inland	No need	2 V	А	Bk 10/60
1750	Sentervegoruu noruguende	Vegora		Insitu	2013	50	Innund		2 1		10/00
16-				Reinforced							Bk
1753	Rostenbrua nordgående	Vegbru	Platebru, massiv, m/vinger	Concrete	2013	72	Inland	No need	1 V	А	10/60
				Insitu							
16- 1766	Rotvoll g/s-veg undergang	Den i fulling	Kulvert, plassprodusert,	Reinforced	2012	6	Inland	No pood	2 M	٨	Bk
1700	lioid	Bluitynnig		Insitu	2015	0	Iniana	No need	5 IVI	A	10/00
16-	Rotvoll g/s-veg undergang		Kulvert, plassprodusert.	Reinforced							Bk
1791	sør	Bru i fylling	m/bunnplate	Concrete	2013	9.47	Inland	No need	4 T	А	10/60
				Insitu							
16-		D	W 1 and and C 1 all and	Reinforced	2002		T. 1 1	NT	4.37		Bk
1/98	Madsjø g/s-vegkulvert	Bru i fylling	Kulvert, prefabrikert	Logity	2002		Inland	No need	4 V	A	10/60
16-	Trolla g/s-vegkulvert		Kulvert prefabrikert	Reinforced			Inner				Bk
1801	under Bynesv	Bru i fylling	elementkulvert nr. 2	Concrete	2017	4.6	coastline	No need	4 V	А	10/60
				Insitu							
16-		** 1	Bjelkebru, NOB,	Reinforced	1000	0	.		165		Bk
1900	Ristanbrua	Vegbru	massivtverrsnitt	Concrete	1990	9	Inland	No need	16 T	A	10/60
16-			Bielkebru plassprodusert	Reinforced							
0177	Nidareid halvbru	G/S-bru	overliggende bjelker	Concrete	1983	50	Inland	Other	6 T		

16-	The second se		Bjelkebru, platebærere,	G. 1	1070	14	X 1 1			
0987	Kroppøyen G/S Bru	G/S-bru	konstant høyde	Steel	1979	14	Inland		6 V	
1.6		T 1/	T 1 1 1 1	Insitu						
16-	Marienborgtunnelen,	Tunnel/	Tunnelportal, rektangulert	Reinforced	2007	0	T 1 1		1.14	
1622	portal. Nord	Vegoverbygg	tverrsnitt	Concrete	2007	0	Inland		I M	
16-	Stoneberget tunnellen,	Tunnel/	Tunnelportal, sirkulært							
1654	portal	Vegoverbygg	tverrsnitt		2007	0	Inland		4 V	
				Insitu						
16-		Tunnel/	Kulvert, plassprodusert,	Reinforced						
1657	Ilsvik løsmassetunnel vest	Vegoverbygg	m/bunnplate	Concrete	2007	0	Inland	Other		
				Insitu						
16-	Rv706 Strindheim	Tunnel/	Kulvert, plassprodusert,	Reinforced						
1670	tunnelportal vest	Vegoverbygg	m/bunnplate	Concrete	2014	0	Inland		4 V	
				Insitu						
16-	Rv706 Strindheim	Tunnel/	Kulvert, plassprodusert,	Reinforced						
1671	tunnellportal øst	Vegoverbygg	m/bunnplate	Concrete	2011	0	Inland			
			Tunnelkonstruksjon,	Insitu						
16-	Portalbygg tunnelrampe	Tunnel/	rektangulært tverrsnitt	Reinforced						
1685	Strindheimskrysse	Vegoverbygg	u/bunnpl.	Concrete	2011	0	Inland	Other	1 T	
	<u> </u>	0,000		Insitu						
16-			Platebru, massiv, skrå	Reinforced						
1711	Strindvegen g/s-vegbru	G/S-bru	platekanter	Concrete	2011	16.1	Inland		4 V	
			1	Insitu						
16-	Stavne Insitu Reinforced	Tunnel/		Reinforced						
1713	Concretetunnel	Vegoverbygg	Miliøtunnel	Concrete	2011	0			2 T	
			J	Insitu						
16-				Reinforced						
1715	Thaulow g/s-yegbru	G/S-bru	Sprengverksbru	Concrete	2012	31.8	Inland		4 V	
1/15		0/5 010	Sprengverksoru	Insitu	2012	51.0	Innund			
16-			Bielke-platebru massiy	Reinforced						
1719	Vinterveien g/s-vegbru	G/S-bru	m/vinger	Concrete	2013	152 14	Inland	No need	9 Т	
1/1/	vinterveren g/s-vegoru	0/0-01u		Insitu	2013	152.14	manu	110 liceu	71	
16			Rialka platabru massiy	Drostrossod						
10-	Sentemuscen a/a weat-	C/C have	m/vin con	Comparate	2015	120	Inland	No need	4 17	
1/21	semervegen g/s-vegoru	U/S-DIU	m/vinger	Concrete	2013	150	manu	No need	4 V	

				Insitu						
16-			Bjelke-platebru, massiv,	Prestressed						
1724	City Syd g/s-vegbru	G/S-bru	m/vinger	Concrete	2015	56	Inland	No need		
				Insitu						
16-			Bjelke-platebru, massiv,	Prestressed						
1725	John Aases g/s-vegbru	G/S-bru	m/vinger	Concrete	2015	30	Inland	No need	4 V	
				Insitu						
16-				Prestressed						
1737	Rotvollbrua g/s-vegbru	G/S-bru	Platebru, massiv, andre	Concrete	2013	92.2	Inland	No need	9 V	
16-										
1739	Svingbrua	G/S-bru	Svingbru, ulikearmet	Steel	2014		Coastal		6 T	
				Insitu						
16-	Grillstadtunnel portal nord,	Tunnel/	Tunnelportal, sirkulært	Reinforced						
1930	nordgående	Vegoverbygg	tverrsnitt	Concrete	1988	0		No need	4 T	
				Insitu						
16-	Grillstadtunnel portal sør,	Tunnel/	Tunnelportal, sirkulært	Reinforced				No need,		
1931	sørgående	Vegoverbygg	tverrsnitt	Concrete	1988	0		bridge lift	6 V	
				Insitu						
16-	Grillstadtunnel portal nord,	Tunnel/	Tunnelportal, sirkulært	Reinforced						
1932	sørgående	Vegoverbygg	tverrsnitt	Concrete	1988	0		No need	4 V	
50-		Annen								
0014	Prinsensgt g/s-vegkulvert	byggv.kategori			2006					
