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Short Title of the Article

Highlights
• This study presents an approach to predict the future behavior of a vessel using historical AIS data.

Such predictions can subsequently be utilized to evaluate the potential future collision risk, support-
ing proactive collision avoidance. In this manner, enhanced situation awareness can be facilitated.

• By utilizing machine learning techniques, historical local behavior clusters can be extracted from
historical AIS data to describe the possible future 30 minute behavior of a vessel. These clusters
are discovered using the Karhunen-Loeve transform and Gaussian Mixture Models.

• The developed technique allows the vessel to be classified to a cluster of behavior, and conducts a
trajectory prediction with respect to the behavior in this cluster.

• The method is evaluated using test cases from the region surrounding Tromsø, Norway. The results
indicate that the technique has good performance in predicting future ship behavior.
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ABSTRACT
This study presents a method in which historical AIS data are used to predict the fu-
ture trajectory of a selected vessel. This is facilitated via a system intelligence-based
approach that can be subsequently utilized to provide enhanced situation awareness
to navigators and future autonomous ships, aiding proactive collision avoidance. By
evaluating the historical ship behavior in a given geographical region, the method ap-
plies machine learning techniques to extrapolate commonalities in relevant trajectory
segments. These commonalities represent historical behavior modes that correspond
to the possible future behavior of the selected vessel. Subsequently, the selected ves-
sel is classified to a behavior mode, and a trajectory with respect to this mode is pre-
dicted. This is achieved via an initial clustering technique and subsequent trajectory
extraction. The extracted trajectories are then compressed using the Karhunen-Loéve
transform, and clustered using a Gaussian Mixture Model. The approach in this study
differs from others in that trajectories are not clustered for an entire region, but rather
for relevant trajectory segments. As such, the extracted trajectories provide a much
better basis for clustering relevant historical ship behavior modes. A selected ves-
sel is then classified to one of these modes using its observed behavior. Trajectory
predictions are facilitated using an enhanced subset of data that likely correspond to
the future behavior of the selected vessel. The method yields promising results, with
high classification accuracy and low prediction error. However, vessels with abnormal
behavior degrade the results in some situations, and have also been discussed in this
study.
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Nomenclature
a Arbitrary AIS Parameter Vector
A Set of AIS Data
c Trajectory Class
C Data Cluster
d Euclidean Distance
e Eigenvector
E Eigenvector Matrix
f Trajectory Feature Vector
I Identity Matrix
J3 Class Separability Criterion
k Hyper-parameter for kNN classifier
KM Number of Free Parameters in Mixture Model
L Number of Data Points in Selected Trajectory
LL(⋅) Log-likelihood Function
M Number of Models in Mixture Model
N Number of Trajectories
p Arbitrary Vessel Position
q Selected Vessel Position
r Search Radius [m]
R Rotation Matrix
s Vessel State
Sb Between-class Scatter Matrix
Sw Within-class Scatter Matrix
t Timestamp
T Elapsed Time [s]
T� Additional Time Period [s]
Tp Desired Prediction Time Horizon [s]
v Speed over Ground [m∕s]
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x UTM x-coordinate [m]
x Reduced Feature Vector
X Set of Reduced Feature Vectors
y UTM y-coordinate [m]
z Class Membership
Z Spatial Data Matrix
ΔL Step Size [m]
� Eigenvalue Matrix
� Mean Vector
� Prior Distribution
� Covariance Matrix
� Rotation Angle [◦]
� Model Parameters
� Course over Ground [◦]
Subscripts
0 Initial State
i Sample Number
g Global
j Class Number
k ktℎ State
l Number of Eigenvectors
m Model Number in Gaussian Mixture
� Maximum Offset
Superscripts
̂ Estimated Parameter / State
Acronyms
AIS Automatic Identification System
BIC Bayesian Information Criterion
EM Expectation Maximization
GMM Gaussian Mixture Model
KL Karhunen-Loéve
LDA Linear Discriminant Analysis

1. Introduction
Technological advances are permeating almost

every industry. Artificial intelligence, increased com-
putational power and wireless communication ca-
pabilities have the potential to allow for disruptive
innovations that can change business models dras-
tically. Many argue that there is a digital revolution
underway and are calling it Industry 4.0 (Hermann
et al., 2016). If one looks to the automotive industry
for instance, significant innovations related to au-
tonomous cars are being developed at an exponen-
tial rate. Autonomous cars are already being tested
in general traffic areas and there are claims that mass
production could be possible by 2021 (Chan, 2017).

Similarly, it can be argued that shipping is cur-

rently on its way into a fourth technical revolution,
Shipping 4.0 (Rødseth et al., 2015). The first revo-
lution in shipping can be argued to be the transition
from sail to steam in at the turn of the 19tℎ cen-
tury, the second from steam to diesel around 1910,
and the third came with the introduction of auto-
mated systems, made possible through the advent of
computers around 1970. Like the car industry, the
shipping industry is looking to autonomy as a possi-
ble disruptive element. The shipping industry has,
however, historically been considered conservative,
with innovations being implemented at a slower rate
than in similar industries. As such, technologies as-
sociated with autonomous ships are not as devel-
oped as those for autonomous cars. Nonetheless,
many companies are working on the development
of autonomous ships. The first autonomous ships,
e.g. Yara Birkeland, are planned to be launched in
2020 and fully autonomous by 2022 (Yara, 2019). It
can be argued that if the required technologies are
available, autonomous ships will be safer and more
efficient than conventional vessels, and that because
of this fact they should be adopted by the industry
(Levander, 2017). For this to occur, however, au-
tonomous ships must be proven to operate at a level
of safety comparable to, or better than, conventional
manned vessels.
1.1. Maritime Situation Awareness

For autonomous ships to be introduced into com-
mercial shipping lanes, effective collision avoidance
systems (Perera et al., 2015) must be in place to
ensure that the autonomous operations have the re-
quired level of safety. Given that the vessels are un-
manned, an autonomous ship must be able to make
decisions based on its understanding of its surround-
ings, i.e. its own situation awareness. Situation
awareness is defined as "Being aware of what is hap-
pening around you and understanding what that in-
formation means to you now and in the future" (End-
sley et al., 2003), and is separated into three levels
(Endsley, 1995):

1. Perception of the elements in the current sit-
uation

2. Comprehension of the current situation
3. Projection of the future status
For an autonomous vessel, situation awareness

will primarily entail obstacle detection and predic-
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tion of close-range encounter situations. Other ves-
sels are the most common obstacle an autonomous
ship will encounter, and are referred to as target ves-
sels in an encounter situation. The autonomous ves-
sel in this case is referred to as the own ship. Such
situations will require collision avoidance maneu-
vers.
1.1.1. Perception of Elements in The Current

Situation
To effectively conduct collision avoidance ma-

neuvers with respect to target vessels, an own ship
will need to be able to first detect the target ves-
sel, and evaluate relevant parameters such as its po-
sition, course over ground and speed over ground.
This can be considered as the first level of situa-
tion awareness. An autonomous ship must, there-
fore, first define its current state, where all obsta-
cles and their current states are known. In order to
perceive the relevant obstacles, an autonomous ship
must be able to observe them. Since there is no
navigator on-board, collision avoidance technolo-
gies will rely heavily on the sensor suite available
on-board the vessel, as they must in essence replace
the eyes of the navigator. An advanced obstacle de-
tection and tracking system, which utilizes sensor
fusion to enhance detection capabilities, should be
utilized. Relevant sensorswill likely includeRADAR
(Radio Detection and Ranging) and electro-optical
sensors (Prasad et al., 2017). Some examples in-
clude, LIDAR (Light Detection andRanging), stereo
cameras and infra-red cameras.
1.1.2. Comprehension of The Current

Situation
Based on its current state, the own ship must

be capable of evaluating the risk of collision. If
there is a risk of collision, the own ship must con-
duct a collision avoidance maneuvers that adhere to
the COLREGS as outlined in Perera et al. (2010).
This corresponds to level two of Endsley’s situation
awareness, where the ship must now make sense of
its current state, and the immediate implications it
has for the safety of the operation. Fujii and Tanaka
(1971) and Goodwin (1975) introduced the concept
of the ship domain, where a safety region around
a relevant vessel is introduced to indicate the colli-
sion risk. A thorough review of collision avoidance
methods can be found in Tam et al. (2009). These

methods are designed with respect to ships in close-
range encounters, where the collision risk is high
enough to require collision avoidance maneuvers.
1.1.3. Projection of The Future Status

Level three situation awareness addresses the pro-
jection of the future state of the vessel. In a colli-
sion avoidance setting, this entails predicting both
the future states of the own ship, as well as the future
states of target vessels. Previous studies relating to
collision avoidance techniques entail predicting the
future state of a target vessel via calculations using
constant course and speed values. Based on this,
collision risk parameters relating to the closest point
of approach (CPA) such as the distance (DCPA) and
time (TCPA) can be determined, and necessary col-
lision avoidancemaneuvers conducted on this basis.

Ships have a slow response time when control
actions are sent to change the speed or course over
ground. Cars for instance can make changes almost
instantaneously, depending on their speed. The in-
ertia forces of a ship are, however, much higher, and
resultant collision avoidance maneuvers will take
much longer to conduct. Therefore, it is desirable
to predict the risk of collision as far as possible in
advance. This entails predicting the future trajec-
tories of both the own ship and target vessels accu-
rately. Methods such as Perera et al. (2011), where a
fuzzy logic based decision making system for colli-
sion avoidancewas introduced, andYang et al. (2019),
where parallel trajectory planning was proposed for
autonomous collision avoidance, can improve the
ability of an autonomous vessel to make decisions.
Additionally, work on more advanced prediction al-
gorithms, e.g. Perera et al. (2012), where extended
Kalman filters were utilized to estimate ship trajec-
tories, can enhance the situation awareness of au-
tonomous vessels to aid in effective collision avoid-
ance. However, predictions under such methods are
only useful up to rather short prediction horizons
(order of seconds to minutes). These methods are,
therefore, useful in the case of a close-range en-
counter situation. In such situations, the own ship
must make decisions based on input from the sensor
system, and plan effective collision avoidance ma-
neuvers. This, however, entails that there is a risk
of collision.

This study suggests an approach in which the
trajectory of a target vessel is predicted far in ad-
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vance, such that potential close-range encounter sit-
uations are prevented from occurring. With an en-
hanced level of situation awareness, an autonomous
vessel can predict its own future states, as well as
those for relevant target vessels, for a period up to
30minutes into the future. Based on this level of sit-
uation awareness, intelligent decisions can be made
to identify possible future close-range encounter sit-
uations, and optimally implement simple proactive
collision avoidance strategies. Examples of such
strategies may include minor speed or course alter-
ations, such that the future trajectory of the own ship
is altered. This is unfortunately not straight forward.
It can be assumed that the majority of vessels will
be manned in the foreseeable future. As such, the
behavior of potential target vessels is highly unpre-
dictable for an autonomous agent. Such a strategy,
therefore, requires a system intelligence based ap-
proach to maritime situation awareness.
1.2. System Intelligence Based Ship

Trajectory Prediction
Data from the Automatic Identification System

(AIS) provide a powerful data set upon which an-
alytics can be conducted. Historical AIS data pro-
vide insight into historical ship behavior that can be
used to gain insight into patterns in maritime traf-
fic. A myriad of ship parameters are recorded in the
stored ship trajectories, including positional data,
speed over ground values, and course over ground
values for various time instances. AIS data pro-
vide an ideal data set upon which machine learn-
ing techniques can be applied to yield insight into
patterns for subsequent use in maritime traffic anal-
ysis. Machine learning is a powerful tool, where
insight can be extracted from data for a variety of
purposes. Examples in the maritime field include
Xu et al. (2020), where an optimal truncated least
square support vector was utilized to estimate pa-
rameters for nonlinearmaneuveringmodels, and Shen
et al. (2019) where deep reinforcement learning was
used to facilitate automatic collision avoidance.

This study suggests to provide future vessels with
a degree of system intelligence, facilitated by his-
torical knowledge that is extrapolated via machine
learning techniques from AIS data. Using the his-
torical knowledge available, such system intelligence
will provide predictions of vessel trajectories, al-
lowing for subsequent collision risk assessment. The

purpose is to enhance the safety of both future au-
tonomous ship operations, as well as provide deci-
sion support to conventional vessels. This section
presents relevant related work and the contributions
of this study.
1.2.1. Related Work

An increasing amount of research is being con-
ducted on methods to utilize AIS data. Zhang et al.
(2017) analyzed AIS data to gain insight into the
spatial-temporal dynamics of ship traffic around ports.
Additionally, Liu et al. (2019) usedAIS data to eval-
uate regional collision risk, and Wen et al. (2020)
utilizedAIS data to automatically generate ship routes.
Tu et al. (2017) provided a comprehensive review of
methods to exploit AIS data for maritime naviga-
tion. Most work in the field has previously focused
on predicting vessel trajectory patterns and general
traffic behavior e.g. Aarsæther and Moan (2009).
Identifying anomalous behavior based on general
vessel patterns, e.g. Laxhammar et al. (2009), has
also been of focus. These methods are useful for
general behavior analysis, but are of limited usewith
respect to aiding in collision avoidance.

Of most interest in a collision avoidance setting
is the work done on utilizing AIS data to predict the
future trajectory of a vessel. The idea is to infer
the future trajectory of a vessel based on the his-
torical behavior of vessels in the same region. This
information is stored in historical AIS data. Ris-
tic et al. (2008) presented a method to predict the
future motion of a vessel utilizing a particle filter
approach, but the accuracy is limited for use in col-
lision avoidance. Pallotta et al. (2013) presented
the TREAD (Traffic Route Extraction and Anomaly
Detection) methodology to cluster all trajectories in
a defined region in an unsupervised manner, and
subsequently classify a selected vessel to one of the
clusters, each representing a traffic route for the pur-
pose of anomaly detection. Pallotta et al. (2014)
subsequently utilized the TREAD methodology to
identify traffic routes, classify a vessel to a route,
and predict the vessel position along this route us-
ing the Ornstein-Uhlenbeck stochastic process. The
TREAD technique, however, clusters way-points, en-
try points, and stationary points such that the data
for the entire region is utilized to differentiate be-
tween the vessels. As such, there can be significant
discrepancies between sub-paths for trajectories be-
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longing to the same class. This is of limited impor-
tance for long-term predictions (order of hours), and
the method using the Ornstein-Uhlenbeck stochas-
tic process is effective in such cases. The method’s
mean and variance functions do not change over time,
however, which can be considered a strict assump-
tion for real applications. Short-term predictions
(order 5-30 minutes) of high accuracy and resolu-
tion, however, are arguably of more interest for col-
lision avoidance purposes. For such predictions, the
method will not be as effective. Mazzarella et al.
(2015) also presented a prediction method using a
Bayesian network-based algorithm with a particle
filter for prediction horizons in the order of hours.
However, this method also has limited efficacy in
short-term trajectory predictions relevant for colli-
sion avoidance purposes.

Hexeberg et al. (2017) presented an AIS-based
approach to predict short-term vessel trajectories.
The method utilizes a single point neighbor search
method to predict a vessel trajectory based on the
underlying AIS data. The method, however, is un-
able to handle branching, and Dalsnes et al. (2018)
expanded on this work to provide multiple predic-
tions via a prediction tree, where samples are drawn
from close neighbors in the underlying data. In this
manner, a probability estimate can be evaluated for
the future position at a given point in time, facil-
itated via Gaussian mixture models. As opposed
to previous methods, these methods do not utilize
clustering to identify traffic routes. All predictions
are based on the AIS data in the neighborhoods of
predicted states. As such, these methods do not take
into consideration the relationship between data points.
Future states are predicted iteratively from an initial
state based on the AIS data in the neighborhood of
a predicted position. These data, however, may in-
clude data points that have no relationship to the ini-
tial, or previous, predicted states, and as such may
degrade the accuracy. Rong et al. (2019) also pre-
sented an approach using a Gaussian process model,
where a probabilistic trajectory prediction method
is outlined which, in addition to predicting the fu-
ture positions of a vessel, also describes the uncer-
tainty of the predicted position. The method, how-
ever, is only evaluatedwith using regular ship routes
and offers no method to identify multiple possible
future routes the vessel may follow, and classify it
to one.

1.2.2. Contribution
In this study, a method to provide system intel-

ligence to future autonomous ships is suggested for
the purpose of enhanced situation awareness. The
method is facilitated by leveraging historical AIS
data via machine learning techniques to predict the
future trajectory of a vessel based on its initial state.
The method provides short-term trajectory predic-
tions (order 5-30 minutes) that can provide a basis
for collision risk assessments. In thismanner, possi-
ble close-range encounter situations can be avoided,
and the overall safety associated with autonomous
operations can be increased.

The method presented in this study is based on
a similar structure to that of previous techniques, in
that trajectories are first clustered, a selected vessel
is classified to a given cluster of trajectories, and a
subsequent trajectory prediction is determined. How-
ever, this method is designed to aid in short-term
trajectory predictions. As such, an alternative ap-
proach is suggested, where an initial clustering tech-
nique is utilized to extract a subset of data from a
historical AIS data set, centered about the initial
vessel state. This cluster contains AIS data that has
a high degree of similarity to the initial state of the
selected vessel. Using this initial cluster, all unique
future, i.e. forward, trajectories are extracted from
the cluster. The length of these is defined by the
desired prediction time horizon. These trajectories
represent all future paths of ships that had similar
states to the initial state of the selected vessel. This
data set will, therefore, only contain data that are re-
lated to the initial vessel state, as well as retain the
relationship between data points.

The extracted forward trajectories represent the
possible future behavior of the selected vessel for a
given prediction horizon. In this study, it is of in-
terest to identify all possible trajectory modes of the
historical ship behavior, such that a high fidelity tra-
jectory prediction can be conducted to support col-
lision avoidance. Identifying such modes can be fa-
cilitated by clustering the forward trajectories. It
is only of interest to differentiate between different
possible modes for the duration of the desired pre-
diction horizon. As such, clustering the extracted
forward trajectories will provide a better basis for
relevant route identification compared to othermeth-
ods where entire trajectories for regions are consid-
ered.
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A clustering technique is suggested based on all
relevant data in each unique extracted forward tra-
jectory. Dimensionality reduction via theKarhunen-
Loéve transform is first conducted in order to com-
press the trajectories, whilst retaining the most im-
portant information relevant for differentiating the
ship behavior. Such dimensionality reduction should
support the clustering performance. Clustering is
then facilitated via unsupervised Gaussian Mixture
Modeling. A selected vessel is then classified to a
cluster based on its past behavior. This is achieved
backward trajectory extraction, and optimally gen-
erating features for class separation using Linear Dis-
criminant Analysis. Finally, a trajectory prediction
is conducted with respect to the trajectory data in
the cluster of historical ship behavior.

The method has enhanced performance as it can
discover the cluster of most similar ship behavior.
This allows for predictions with a higher degree of
fidelity than other methods with respect to collision
avoidance. This is effective for challenging regions
with more complex traffic, i.e. multiple possible
routes with various speeds. The trajectory predic-
tion also provides an increased level of accuracy
given the relationship between data points in the un-
derlying data. Similar methods use techniques that
introduce time invariance, such as dynamic timewarp-
ing. These result in effective clustering of trajecto-
ries of similar shapes for a given region, but can not
capture the relationship between when various ma-
neuvers takes place. Furthermore, clustering ship
trajectories for entire regions will yield different re-
sults than clustering the extracted trajectories as sug-
gested in this study. Therefore, the technique in this
study provides a better basis for differentiating rel-
evant historical ship behavior, supporting ship tra-
jectory prediction. The method can also be applied
in any geographical region, as the algorithm only
requires access to raw AIS data of sufficient density
for the region of interest.

An initial version of this work was presented in
Murray and Perera (2019). Furthermore, in Mur-
ray and Perera (2020), a Dual Linear Autoencoder
approach was introduced to facilitate trajectory pre-
diction, that utilized similar clustering and classifi-
cation regimes to those in this study. The clustering
and classification techniques utilized in Murray and
Perera (2020) were, however, not the focus of the
study, and, therefore, not addressed in detail. This

study can, therefore, be considered a parallel study,
where the methods introduced inMurray and Perera
(2019) are expanded upon, and addressed in detail.

2. Methodology
This section outlines the methodology utilized

to facilitate trajectory predictions via the proposed
system intelligence approach. First, the general ap-
proach to facilitate a trajectory prediction is pre-
sented. Second, the trajectory clustering module is
outlined. Next, the trajectory classification module
is discussed. Finally, the methodology involved in
the trajectory prediction module is presented.
2.1. General Prediction Approach

The objective of the method presented in this
study is to facilitate a prediction of the future tra-
jectory of a target vessel, hereafter referred to as a
selected vessel. In this study, a prediction horizon
of 30 minutes is investigated. This, however, can
be varied based on the desires of the user. It is fur-
ther assumed that the past 10 minute behavior of the
selected vessel is available. The architecture of the
method can be split into three modules; the trajec-
tory clustering module, the trajectory classification
module and the trajectory prediction module. This
is illustrated in Fig. 1.

The trajectory clustering module first employs
an initial clustering technique. Based on the cur-
rent state of the selected vessel, the technique iden-
tifies historical AIS messages in a defined region
surrounding the current position of the selected ves-
sel. Furthermore, data are filtered such that they
have a similar speed and course over ground val-
ues to that of the selected vessel. In this manner,
ships with similar behavior in the past are identi-
fied. The forward, i.e. future, trajectories are then
extracted 30 minutes into the future from their ini-
tial data points. These represent the distribution of
possible 30 minute behavior for the selected vessel.
Next, the forward trajectories are clustered. In this
manner, each cluster represents a mode of ship be-
havior, where each is comprised of similar trajec-
tories. It is, therefore, of interest to identify the
most likely mode of future ship behavior the se-
lected vessel may belong to, such that a prediction
of enhanced fidelity can be facilitated.

In the classificationmodule, the trajectories iden-
tified in the clustering module are extended 10 min-
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Figure 1: Method architecture.

utes into the past. This is referred to as a backward
trajectory extraction. In this manner, each back-
ward trajectory is an extension of one of the for-
ward trajectories from the clustering module, and
have corresponding class labels. By comparing the
past 10 minute behavior of the selected vessel to
the backward trajectories, the behavior can be com-
pared, and used to classify the selected vessel to one
of the clusters of future behavior.

In the prediction module, the subset of forward
trajectories belonging to the cluster identified in the
classification model are utilized to conduct a pre-
diction. In this manner, only the specific behavior
in the cluster is used to conduct the prediction. This
should enhance the accuracy of the prediction com-
pared to cases in which the trajectories diverge.
2.2. Trajectory Clustering Module

Machine learning can be split into two groups,
supervised and unsupervised learning. Supervised
learning deals with techniques where class labels
are available, and one wishing to train an algorithm
to correctly classify an unseen data point to a given
class. Unsupervised learning, however, deals with
data where the class labels are unavailable. In such
a case, it is desirable to discover underlying group-
ings, or clusters, in the data. Clustering is, there-
fore, a form of unsupervised learning. In this study,
the class labels for the extracted trajectories are un-
available, requiring the use of unsupervised learn-
ing. As such, clustering is investigated to discover
groupings, or clusters, of historical ship trajectories
that represent represent behavior modes that a se-
lected vessel may belong to. This section covers the
methodology utilized to cluster the historical trajec-
tories.
2.2.1. Initial Clustering

The input to the algorithm is the initial state of a
selected vessel, and is defined in (1). This state can

be thought of as the current state of a target ves-
sel, whose future trajectory is of interest to predict.
Such parameters can be acquired from on board sen-
sors e.g. radar, or from external sources e.g. AIS.

s0 → [x0, y0, �0, v0, T0] (1)
It is of interest to identify similar vessels in the

historical AIS database, i.e. data points with a high
degree of similarity to s0. It can be argued that AISdata points similar to s0 will have a higher proba-
bility of having similar trajectories than dissimilar
data points. It is, therefore, assumed that ships that
were in a similar geographical location, with a sim-
ilar course and speed over ground, will likely have
behaved in a similar manner. As such, the trajecto-
ries of these vessels can be thought of as represent-
ing the distribution of the possible future behavior
of the selected vessel. It is, therefore, assumed that
these trajectories can be used to estimate the future
behavior of the selected vessel. The discovery of
such similar vessels is achieved via the initial clus-
tering technique described in this section.

A matrix Z can be defined as the subset of spa-
tial data in the AIS data set. The spatial data is con-
verted from longitude and latitude values to UTM
coordinates (x, y) prior to clustering. A rotational
affine transformation can be defined to rotate Z =
[xz, yz] by � = �0 to Z′ = [xz′ , yz′ ]. This transfor-mation is defined in (2).

Z′ = R ZT (2)
Where xz ∈ IR, yz ∈ IR, xz′ ∈ IR, yz′ ∈ IR and R
is the rotation matrix defined as:

R =
[
cos(�) − sin(�)
sin(�) cos(�)

]
(3)
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Figure 2: Initial cluster C0.

The newmatrix, Z′, will have a basis comprised
of a vector in the direction of �0, and one orthogo-
nal to �0. An initial cluster C0 is then created usingdata in the space spanned by these basis vectors in
(4). This clustering operation results in a rectangu-
lar cluster C0 with a height of 2�H and width 2�Wcentered about s0 as illustrated in Fig. 2, which is
adapted from that presented in Murray and Perera
(2019). The cluster also only contains data points
with similar � and v values that were at a similar
position to the selected vessel at some previous time
point. The rectangular shape of the cluster orthogo-
nal to �0 should capture most vessels that have sim-
ilar trajectories to that of s0.

C0 = {ai ∈ A ∶ (|xz′i−xz′0| ≤ �W ∧|yz′i−yz′0| ≤ �H )
∧ (|�i − �0| ≤ �� ∧ |vi − v0| ≤ v�)} (4)

2.2.2. Forward Trajectory Extraction
Based on the initial clusterC0, unique instancesof vessel trajectories are identified, given that mul-

tiple data points in C0 may belong to the same tra-
jectory. Once unique trajectory instances have been
identified, the nearest point of each trajectory to s0in geographical space is defined as its initial point.
The forward trajectories of all instances are then ex-
tracted from this point and a period of time into the
future corresponding to the desired prediction hori-
zon Tp. An additional time period, T� , is extractedto ensure sufficient data density for the trajectory
prediction module at the culmination of the predic-
tion. The trajectories belonging to C0 represent the

possible behavior of the selected vessel, as their ini-
tial points have a high degree of similarity to s0. Inother words, it is likely that the future trajectory of
the selected vessel will be similar to one of the tra-
jectories in C0.
2.2.3. Trajectory Feature Generation

Assuming that the trajectories in C0 represent
the distribution of the possible future behavior of
the selected vessel, it is desirable to discriminate be-
tween the various possibilities, i.e. discover group-
ings of behavior. In this sense, one wishes to cluster
the trajectories into classes of behavior. To achieve
this, each unique trajectory must be described by a
set of features. The term feature in this case refers to
an individual measurable parameter that describes
the trajectory. Each trajectory is to be clustered in
an unsupervisedmanner based on these features. As
such, a trajectory feature vector is constructed com-
prising relevant parameters.

The first step in the generation of the feature
vectors is to linearly interpolate each trajectory at
30 second intervals. This is done to generate higher
density data, as well as provide a common time in-
dex with which the trajectories can be compared.
The initial point of each trajectory is defined as T0.Subsequent data points are, therefore, 30 seconds
apart, starting at this point. In this manner, the tra-
jectories can be directly compared at the same time
instance relative to T0. Using the interpolated data,each trajectory feature vector is constructed by flat-
tening thematrix containing the positional and speed
data (x, y, v) of the trajectory. If each trajectory is
of length L, the resultant trajectory feature vector is
defined as f ∈ IR3L×1. Utilizing the positional data,
f will incorporate the shape of the trajectory and
the inherent course alterations between data points.
The speed of the vessel along the trajectory will also
be inherent in the positional data. Nonetheless, the
speed over ground values at each time instance were
deemed relevant to include to enhance the informa-
tion stored in each vector.

As mentioned, the objective of the module is to
cluster the trajectories, and as such, the respective
feature vectors should provide a basis for discrimi-
nating between the classes of behavior. In general,
including as much information as possible, i.e. in-
creasing the dimensionality of the feature vector,
should enhance the discriminatory properties of the
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data set. This is true, but in a clustering setting may
encounter issues relating to the curse of dimension-
ality (Bellman, 1961).

Clustering is based on grouping data points via
some distance measure. Points that are closer to-
gether are more likely to be considered part of the
same cluster. The curse of dimensionality in rela-
tion to clustering was discussed in Steinbach et al.
(2004), where it was pointed out that a fixed num-
ber of data points will become increasingly sparse
as the dimensionality increases. Data points can in
a sense be lost in space as the dimensionality in-
creases, as the distance between points with respect
to a given dimension can be large. As a result, clus-
tering data using standard techniques in a high di-
mensional space will degrade the results, as the al-
gorithms are unable to find groupings in the data.
One method to ameliorate this effect is to reduce
the dimensionality of the data.

A commonmethod for dimensionality reduction
is the Karhunen-Loéve (KL) transform (Karhunen,
1946). The purpose of the transform is to attain un-
correlated features and is shown in (5). First, the set
of all feature vectors is centered such that all fea-
tures have mean zero within the set. Subsequently,
the covariance matrix � of the set of all feature vec-
tors is calculated. Matrix E consists of the eigen-
vectors of �, and � is the eigenvalue matrix, where
the relationship is shown in (6). (5) projects the fea-
ture vector f onto the space spanned by the eigen-
vectors of the covariance matrix. The covariance of
the data inherently describes the correlation among
the respective parameters. As such, the eigenvec-
tors of the covariance matrix will describe the di-
rections in which the data has the highest degree of
variation orthogonal to each other.

x = ET f (5)
Where x ∈ IR3L×1, f ∈ IR3L×1 and E ∈ IR3L×3L

� = EΛET (6)
Where � ∈ IR3L×3L and � ∈ IR3L×3L

In a high dimensional space, however, many of
the eigenvectors will describe very little variation
in the data. The KL-transform, therefore, projects

f onto the subspace spanned by the l eigenvectors
with the l largest eigenvalues in (7).

x = ETl f (7)
Where x ∈ IRl×1 and El ∈ IR3L×l

This will inherently preserve the most important co-
variance information in the data whilst reducing the
dimensionality to l. This may be abstract for the
case of the trajectory feature vector, f , as each di-
mension represents a position or speed value at a
given time instance. Take for instance the case of
a 30 minute prediction with five minutes added to
allow for sufficient data density. The dimensional-
ity of f will then be 210. The eigenvectors of � will
point in the directions within this 210-dimensional
space where there is a high degree of variation be-
tween the trajectories. As such, it is difficult to gain
a direct physical interpretation of the eigenvectors,
as the projection onto them represents a combina-
tion ofmultiple parameters. By choosing the l largest
eigenvalues, one chooses the l directions where the
variation in the data is greatest. When projecting
the feature vectors onto the subspace spanned by the
eigenvectors corresponding to the largest eigenval-
ues, one is in fact generating new features with a
high degree of variation that can be used for further
analysis.

In this study, the projection of f onto the eigen-
vectors corresponding to the three largest eigenval-
ues was chosen as a representation for each trajec-
tory. Generally, the projection should retain at least
95 % of the variance in the data. This is evaluated
by investigating the sum of the chosen eigenvalues
over the sum of all eigenvalues (Hyvärinen, 2009).
It was found that using the eigenvectors correspond-
ing to the three largest eigenvalues fulfilled this re-
quirement when evaluating the results. Addition-
ally, a three-dimensional vector can easily be visu-
alized when evaluating the performance of the clus-
tering algorithm.
2.2.4. Unsupervised Gaussian Mixture Model

Clustering
Using the reduced trajectory feature vectors gen-

erated via the KL-transform, the trajectories can be
clustered. Depending on s0, the number of true clus-
ters, i.e. classes, will vary. As such, a flexible clus-
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tering algorithm is required that can adapt to the
data in each prediction. UnsupervisedGaussianMix-
ture Model Clustering was chosen for use in this
study. AGaussianMixtureModel (GMM) (Reynolds
et al., 2000) is a flexible model that adapts to the un-
derlying data. GMMs assume that a data set X con-
sists of a mixture ofM different Gaussian distribu-
tions. Each distribution has its ownmean vector�m,covariance matrix �m and prior distribution �m. Assuch, each distribution will describe that particular
class or cluster, i.e. class m. The class membership
parameter, zi, is introduced for each data point xiwhere:

zik =
{
1 if k = m
0 otherwise

Where zi ∈ IRM×1

The class conditional probability is shown in (8).
The most likely model is estimated by maximizing
the log-likelihood with respect to the various model
parameters.

p(xi|zim = 1) ∼ N(�m,�m) (8)
The classmembership of the trajectories is, how-

ever, unknown. As such, the Expectation Maxi-
mization (EM) algorithm is utilized to conduct the
unsupervised GMM clustering. The GMM requires
that a specified number of underlying models, M ,
is input. Based on this, the EM algorithm initial-
izes all model parameters. A common method is to
initialize all �m as randomly chosen data points, the
priors as �m = 1

M and �m = I. This initializationis unlikely to model the underlying data correctly.
As such, the algorithm conducts what is known as
the expectation step. In this step, the expected class
membership ⟨zim⟩ is evaluated in (9), based on the
current model parameters, �. All data points will,
therefore, have updated classmemberships based on
the current model parameters..

⟨zim⟩ =
p(xi|zim = 1;�)�m∑M
k=1 p(xi|zik = 1;�)�k

(9)

The next step in the EM algorithm is known as
the maximization step. In this step, the model pa-
rameters are updated based on the new distribution

resulting from the expectation step. This is done
by maximizing the log-likelihood with respect to�.
The estimated parameters in the maximization step
are calculated in (10), (11) and (12).

�̂m =
∑N
i=1⟨zim⟩xi∑N
i=1⟨zim⟩

(10)

�̂m =
∑N
i=1⟨zim⟩(xi − �m)(xi − �m)T∑N

i=1⟨zim⟩
(11)

�̂m =
∑N
i=1⟨zim⟩
N

(12)

The EM algorithm now repeats, where the ex-
pected class memberships are updated, as well as
the model parameters. The algorithm is in a sense
adapting to the data, where the most likely distri-
bution of the data is discovered. This iterative pro-
cess continues in a loop until a stopping criteria is
met. One common stopping criteria is the conver-
gence of the total log-likelihood. Alternatively, one
can terminate the algorithm if there is little to no
change in the model parameters, i.e. the parameters
themselves converge. The parameter convergence
criteria was utilized in this study. Often times, the
EM algorithm can haves issues with convergence,
due to poor initialization. To avoid divergence is-
sues, a technique is employed where a number of
random initializations are run for a number of iter-
ations. The best run, i.e. the run with the great-
est log-likelihood score, is then chosen and run for
further iterations. The mixture model will, upon
convergence, consist ofM distinct Gaussian distri-
butions which describe the class conditional prob-
abilities, p(x|cm), of the data, along with an asso-
ciated prior distribution, �m. The posterior proba-
bility p(cm|x) can be found via Bayes Rule in (13)
using the resultant conditional probabilities and pri-
ors from the algorithm.

p(cm|x) =
p(x|cm)�m
p(x)

(13)

p(cm|x) > p(cj|x) ∀ j ≠ m, j = 1...M (14)
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Clustering of the dataset is then conducted via
Bayesian classification, where each feature , xi, isclassified to class m according to (14). However,
the number of underlying classes, M , is as previ-
ously mentioned unknown. In order to determine
the most likely number of clusters, the Bayesian In-
formation Criterion (BIC) (Schwarz et al., 1978) de-
fined in (15), is utilized.

BIC = −2LL(�M ) +KM ln(N) (15)
For a GMM with M underlying distributions,

LL(�M ) is the total log-likelihood function com-
puted at the optimum, KM the number of free pa-
rameters in the mixture model, and N the number
of data points. The EM algorithm can be run for
various GMMs by altering M . By calculating the
BIC for each resultant GMM, the most likely GMM
is that with the lowest BIC. This is due to it hav-
ing the highest likelihood and least complexity. In
this study, it was assumed that there will be no more
than 20 unique clusters in the trajectory data, and
the BIC was, therefore, evaluated for values of M
up to 20.

This process discovers the best GMM to fit the
data and provides the number of possible routes, or
trajectory behaviormodes, a selected vesselmay be-
long to. By classifying all the extracted forward tra-
jectories, class labels can assigned. These labels are
used for further analysis in the subsequent modules.
2.3. Trajectory Classification Module

The trajectory clustering module has now clus-
tered all trajectories present in C0 to M classes.
Each class represents a group of trajectories that have
a high degree of similarity. As such, each class rep-
resents a possible future route, or behavior mode,
the selected vessel may belong to. It is now of inter-
est to classify the selected vessel to the most likely
class of the M possibilities. In this sense, an es-
timate of the distribution of the possible future be-
havior of the selected vessel can be made. Using the
data in the class of trajectory behavior, a trajectory
prediction can be made. This section presents the
method utilized to achieve such a classification.
2.3.1. Backward Trajectory Extraction

One possible method to conduct the aforemen-
tioned classification is to utilize the current vessel

state, s0, and compare it to the data points in C0.This, however, will have limited predictive power,
as the classification will be based solely on one time
instance of the selected vessel. An alternative ap-
proach is, therefore, suggested, where the previous
10 minutes of the selected vessel’s trajectory are be
compared to the previous 10 minutes of data for all
trajectories in C0. This in a sense is the inverse of
the forward trajectory extraction process described
in Sec. 2.2.3. Instead of extracting the trajecto-
ries from T0 and for instance 30 minutes into the
future, the past trajectories are extracted from the
same initial point, i.e. from T0, and 10 minutes into
the past from that time instance. It is assumed that
at least 10 minutes of behavior for the selected ves-
sel should be available via the on board sensors of
the own ship, or via external sources e.g. AIS. The
method is otherwise identical to that described in
Sec. 2.2.3. All the backward trajectories extracted
from C0 will have the same labels as those deter-
mined by the clustering technique in Sec. 2.2.4. As
such, a labeled data set is available that can be used
to classify the observed trajectory of selected ves-
sel.
2.3.2. Optimal Feature Generation

Each backward trajectory feature vector is rep-
resented by flattening the matrix containing all po-
sition and speed over ground data, in the same man-
ner as for the forward trajectories in Sec. 2.2.3. This
will result in a vector f ∈ IR3L×1. In the case of a
10 minute trajectory this will be a 60-dimensional
spacewithinwhich the classificationmust take place.
This can be a challenging task, as it is likely that
the features are quite similar, given that the vessels
in C0 generally will have similar trajectories for the
past 10 minutes.

To improve the classification accuracy, Linear
Discriminant Analysis (LDA) (Fischer, 1936) is uti-
lized. LDA provides a method to generate features
with optimal separation between classes in a super-
vised manner. Using the class separability measure
J3 in (16), one can optimize a transformation such
that features are generated to optimize class separa-
bility.

J3 = trace{S−1w Sm} (16)
Sm is the mixture scatter matrix defined as Sm =
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Sw + Sb, where Sw is the within-class scatter ma-
trix and Sb the between-class scatter matrix. Swand Sb are defined in (17) and (19) respectively. Swdescribes how compact the data within each class
is, whilst Sb describes how spread out each class is
with respect to the global mean, �g . In a classifi-
cation setting, one wishes to minimize the trace of
Sw, i.e. data are more compact within each class,
and maximize the trace of Sb, i.e. the classes are
more spread out. This corresponds to maximizing
the class separation criterion J3.

Sw =
M∑
m=1

�m�m (17)

�g =
M∑
m=1

�m�m (18)

Sb =
M∑
m=1

�m(�m − �0)(�m − �0)T (19)

It is desirable to find a transformation x = AT f
such that J3 is maximized in the transformed space.
The optimal transformationwith respect to class sep-
arability is found to be A = E, where E is the ma-
trix of eigenvectors of S−1w Sb in the original vector
space. This relationship is shown in (21), where� is
the corresponding diagonal eigenvalue matrix. The
transformation is shown in (20). However, Sb is ofrank M − 1, and correspondingly S−1w Sb is also of
rankM − 1. As such, there will beM − 1 nonzero
eigenvalues. (20) will, therefore, project f onto the
subspace spanned by the l largest eigenvectors in a
similar manner to the KL-transform. If l =M − 1,
optimality with respect to J3 will be preserved. Fur-ther dimensionality reduction can still be conducted
by choosing a value l < M − 1. This will, how-
ever, be a sub-optimal solution. Further details on
LDA can be found in Theodoridis and Koutroumbas
(2009).

x = ET f (20)
Where x ∈ IR3L×1, f ∈ IR3L×1 and E ∈ IR3L×l

S−1w Sb = E�E
T (21)

Where S−1w Sb ∈ IR3L×3L and � ∈ IRl×l

2.3.3. Classification
Despite utilizing the optimal features described

in Sec. 2.3.2, the classification task is highly non-
linear, and likely with significant overlap between
classes in most cases. This is due to the high de-
gree of similarity between the past trajectories. As
a result, the k-Nearest Neighbor (kNN) classifier
(Dasarathy, 1991) is utilized due to its nonlinear
predictive power.

Given a data point x0, the kNN classifier will
measure the distance to all other data points, xi, inthe datasetX using the Euclidean distance as shown
in (22).

di = ||xi − x0||2 (22)
The kNN classifier will then identify the k near-
est data points using distance measures from (22).
Based on this subset of data, the algorithm then iden-
tifies the class with the most data points in the sub-
set, and classifies x0 to the majority class.

In this study, x0 is the projection of the back-
ward trajectory feature vector f0 of the selected ves-sel onto the LDA subspace according to (20). The
kNN classification is then conducted in the LDA
subspace, where the k nearest trajectories, i.e. most
similar, are found, and the majority class is defined
as the class, j, of the selected vessel. The corre-
sponding subset for class j, Aj ⊂ A, represents theset of AIS data points that belong to the trajectories
in this class.
2.4. Trajectory Prediction Module

Once the past trajectory of the selected vessel
has been classified to one of the classes, a trajec-
tory prediction can be conductedwith respect to that
class. The input data to this module are all trajec-
tory data belonging to the class determined in Sec.
2.3.3, i.e. Aj . This approach assumes that the clas-
sification is accurate, and as such only predicts one
unique trajectory.

The algorithm utilized for the trajectory predic-
tion is adapted from that presented in Murray and
Perera (2018). The algorithm is based on themethod
outlined in Hexeberg et al. (2017), where a Single
Point Neighbor SearchMethodwas presented to pre-
dict vessel trajectories based on historical AIS data.

Given the initial state of the selected vessel, s0,the prediction algorithm estimates the future states
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of the selected vessel. This is an iterative process
where the state in the ktℎ iteration is defined in (23).

ŝk → [x̂k, ŷk, �̂k, v̂k, T̂k] (23)
The estimated future position in state k, i.e. [x̂k, ŷk],is estimated given the parameters in state ŝk−1 as adistance ΔL from [x̂k−1, ŷk−1], in the direction of
�̂k−1. The time parameter T̂k is then updated ac-
cording to (24).

T̂k = T̂k−1 +
ΔL
v̂k−1

(24)

Once the position parameters [x̂k, ŷk] are up-
dated, �̂k and v̂k are updated using a circular dis-
tance based clustering technique. A cluster Ck canbe defined according to (25) where pi is an arbi-
trary vessel position, and qk is the selected vessel
position at ŝk. The clustering is conducted on the
set of data points in the subset of AIS data that cor-
responds to the classified class, i.e. Aj . Ck will,
therefore, comprise the data points within a radius
r from the predicted position.

Ck = {ai ∈ Aj ∶ ||pi − qk|| ≤ r} (25)
�̂k and v̂k are estimated as the median values of

the data points in cluster Ck according to (26) and
(27). The median values were chosen as opposed to
the mean as that they are less sensitive to outliers.

�̂k = median(�i ∈ Ck) (26)

v̂k = median(vi ∈ Ck) (27)
This iterative process continues until the desired

prediction horizon is reached, i.e. T̂k ≥ Tp. The setof all estimated states will constitute the predicted
trajectory of the selected vessel. The predicted tra-
jectory is subsequently linearly interpolated at 30
second intervals for comparative analysis. Themethod
is illustrated in Fig. 3, adapted from that presented
in Murray and Perera (2019).

Figure 3: Illustration of trajectory prediction tech-
nique.

3. Results and Discussion
In this section, the results of a case study to pre-

dict the future trajectory of a selected vessel are pre-
sented and discussed using the method in this study.
First, the historical AIS data set utilized in the study
is presented. Next, the results of the trajectory clus-
tering module are outlined. Subsequently, the re-
sults from the trajectory classification module are
presented. Then, the results of the trajectory predic-
tion module are discussed. Finally, the prediction
accuracy of the approach is presented, where the
classification and position accuracy are discussed.
3.1. Historical AIS Data Set

In this study, a data set corresponding to one
year of historical AIS data from January 1st 2017
to January 1st 2018 for the region around the city
of Tromsø, Norway was investigated. This data set
corresponded to approximately 15millionAISmes-
sages, made available by theNorwegianCoastal Ad-
ministration. The ship behavior in the region relates
to that of inland waterways and around ports. As
such, the region can be considered to represent more
complex ship traffic that that of the open ocean, where
more linear behavior is likely observed. As a result,
the region is considered to be relevant to test the
methodology outlined in this study.

AIS messages contain a variety of information
including static, dynamic and voyage related infor-
mation. The included information is summarized in
Tab. 1. However, not all parameters are utilized in
the study. The only parameters used were the po-
sition converted to UTM coordinates, (x, y) speed
over ground, v, course over ground, � , timestamp,
t and MMSI number.

To evaluate the performance of the method, 100
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Static Dynamic Voyage Related
MMSI Navigational Draught

status
Call-sign Latitude Hazardous cargo

position
Name Longitude Destination

position
IMO number Timestamp Estimated time

of arrival
Length Course over

ground
Beam Speed over

ground
Ship type Heading
Location of antenna Rate of turn

Table 1
AIS data.

different trajectories were used as a test set. To fa-
cilitate this, 100 data points were randomly selected
to represent the initial state of 100 selected vessels.
The case study predicted the future 30 minute tra-
jectory for each selected vessel, where the predic-
tionswere validated using the true trajectories stored
in the historical AIS data. The performance of each
module was investigated, as well as the overall per-
formance of the method in predicting future ship
trajectories.

3.1.1. Reproducibility
In order to reproduce the results of this study,

one must have access to a historical AIS database
that contains the data for the region surrounding Tromsø,
Norway for the year of 2017. Once this is attained,
test trajectories can be extracted, and the method
applied to predict these trajectories. As such, the
method can be validated by any interested partywith
access to the historical AIS data for the region.
3.2. Trajectory Clustering Module

In this subsection, the results of the trajectory
clustering module are presented. The results pre-
sented are for a specific test case to illustrate the
performance of the method.
3.2.1. Extracted Trajectories

As outlined in Sec. 2.2.2, all trajectories present
in the initial cluster C0 centered about the initial

Figure 4: Illustration of extracted forward trajectories.

vessel state, s0 were extracted. An example of the
interpolated extracted trajectories is visualized in
Fig. 4. The illustrated position data are definedwith
respect to s0 (i.e. [x0, y0] = [0, 0]) to more easily vi-
sualize the distances involved. To the human eye, it
is evident that there are two main routes the vessel
may follow, with a few outliers. This information
may also be what a navigator on the bridge might
be aware of, and base his future decisions upon.
3.2.2. Clustering Results

The first phase of the clustering technique is to
reduce the dimensionality according to (7). Subse-
quently, a GMM is fit to the projection of the trajec-
tory data in the subspace spanned by the three eigen-
vectors with the largest eigenvalues, as outlined in
Sec. 2.2.4. This technique was found to be quite
effective in generating new features with a high de-
gree of variation between data points. The result of
the clustering of the extracted forward trajectories in
Fig. 4 is visualized in Fig. 5. This figure illustrates
the clusters in the reduced subspace. Using the dis-
covered classes, the labeled trajectories are visual-
ized in Fig. 6. The method in this example has dis-
covered eight unique clusters. This implies that the
vessel may have one of eight behavior modes. It is
evident that the algorithm has primarily focused on
differences in the spatial aspects of the trajectories,
i.e. the upper and lower routes. However, the results
indicate that the algorithm also discovers sub-routes
within the main routes. These indicate vessels trav-
eling along the prevailing route at various speeds.
As such, the algorithm is in fact discovering behav-
ior modes within the data. The method, therefore,
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Figure 5: Clustering results in KL-subspace.

Figure 6: Labeled forward trajectories.

is effective in regions with more complex traffic. In
regions where vessels have a high degree of regu-
larity, such advanced clustering will likely not be as
necessary.

The results indicate that KL-transform effectively
stores the most important information from the tra-
jectories by projecting a 210-dimensional vector to
a 3-dimensional vector. This data compression sub-
sequently allows for effective clustering in the lower-
dimensional subspace, wheremultiple trajectory group-
ings can be discovered, providing a more accurate
dataset upon which a trajectory prediction can be
conducted. Given that the true future trajectory of
the selected vessel is also available in the historical
data, it can be classified to one of the clusters via the
GMM. This provides the true class of the selected
vessel for subsequent accuracy analysis.

Figure 7: Backward trajectories with labels from the
corresponding forward trajectories.

3.3. Trajectory Classification Module
In this subsection, the results of the trajectory

classificationmodule are presented. The results pre-
sented are for a specific test case to illustrate the per-
formance of the method.
3.3.1. Optimal Feature Representation

In this phase of the method, the backward tra-
jectories of all vessels present in the initial cluster,
C0, are extracted. These trajectories are visualizedfor the example in Fig. 7 with labels from the corre-
sponding forward trajectories. The motivation now
is to classify the past trajectory of the selected vessel
to one of the classes. Using (20), the trajectory fea-
tures are projected onto the LDA-subspace. In this
subspace, the trajectories are optimally separated,
making it easier for classification. The projection
onto the three largest components for the previous
example is visualized in Fig. 8.
3.3.2. Classification

The clusters in this study have a significant over-
lap in many cases, as seen in the case presented in
Fig. 8. The data points in this figure are represen-
tations of the trajectories in Fig. 7, generated via
LDA. As evident from Figure 7, many of the back-
ward trajectories are quite similar across classes. Dis-
criminating between classes is, therefore, challeng-
ing, even when applying LDA to generate more op-
timal representations.

As a result, it was found during the study that
other classifiers e.g. Support Vector Machines had
degraded performance. For the case of kNN clas-
sifiers, however, a local estimate in the region of
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Figure 8: LDA projection of backward trajectory data.

Figure 9: Forward trajectories in the cluster corre-
sponding to the class prediction.

interest is utilized for the classification. Decision
boundaries are, therefore, not utilized. Such deci-
sion boundaries will result in many misclassifica-
tions due to the degree of overlap between classes.
By applying a kNN classifier, however, the most
likely class can be found based on the neighborhood
surrounding the data point, even in cases with high
overlap.

Using a sensitivity analysis with respect to the
k-parameter, it was found that the best results were
attained for a value of k=7 in this study. As a re-
sult, a kNN classifier with k = 7, was used to clas-
sify the projection of the backward trajectory of the
selected vessel to one of the clusters. This resulted
in the selected vessel being classified to the purple
class previously illustrated. The extracted forward
trajectory data corresponding to this class is illus-
trated in Fig. 9.

Figure 10: Trajectory prediction.

3.4. Trajectory prediction module
Using the data visualized in Fig. 9, a prediction

can be conducted utilizing themethodology outlined
in Sec. 2.4. Fig. 10 illustrates the resultant pre-
diction for the previous example. For this case, the
prediction appears to closely correspond to the true
vessel trajectory.
3.5. Prediction Accuracy

In order to evaluate the overall performance of
the method, 100 random data points were chosen
from the AIS data set. Each data point was defined
as the initial state of a selected vessel, i.e. s0. Themethod outlined in Sec. 2 was then run on each se-
lected vessel to predict its future trajectory. In this
section, the accuracy of the classification module
and the position error of the resultant trajectory pre-
dictions are evaluated.
3.5.1. Classification Accuracy

The true class label of the selected vessel, i.e.
the ground truth, was evaluated using the fittedGMM
for each tested vessel. The predicted classes for all
vessels were then compared with the ground truth,
and an overall classification accuracy calculated. It
was found that for the 100 cases tested in this study,
the classification accuracy was of 70 %. This indi-
cates that the features generated via LDA from the
backward trajectories provided a basis to correctly
classify 70 of the 100 tested vessels.
3.5.2. Position Accuracy

The position accuracy of the trajectory predic-
tions was also investigated. The accuracy was eval-
uated as a function of time, where the distance be-
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tween the true and predicted position of the selected
vessel define the error. The position error was cal-
culated for three cases; the overall error for all ves-
sels, the error for incorrectly classified vessels, and
the error for correctly classified vessels. Given that
the true trajectories of the selected vessels are of
various lengths, the position error is evaluated as
a percentage of the true distance traveled for each
time instance. The distance traveled for each se-
lected vessel was estimated as the sum of trajectory
segments extracted from the true trajectory.

The median position errors for all cases are il-
lustrated in Fig. 11. The median error was chosen
for presentation as opposed to the rootmean squared
error due to the sensitivity of the root mean squared
error to outliers. It is clear that the error is signif-
icantly higher for the incorrectly classified vessels.
However, for those vessels which are classified to
the correct class, the median error is quite reason-
able with a value of approximately 4 % of the true
distance traveled for a 30 minute prediction. The er-
ror appears to increase rather linearly. This is to be
expected, as errors will accumulate as a function of
time.

The position error of the incorrectly classified
vessels is also investigated, as themethod incorrectly
classifies 30 % of the vessels, and as such, will have
a corresponding performance in these cases. Fig.
12 illustrates an example of a trajectory prediction
when the selected vessel was incorrectly classified.
It is evident that the subsequent error can grow to
be quite high for the case of a 30 minute predic-
tion. For the case of the incorrectly classified ves-
sels in Fig. 11, a sudden dip is observed around
a prediction horizon of 15 minutes. This effect is
not observed for the correctly classified vessels. It
is likely due to the nonlinear nature of many of the
ship trajectories. At this point, certain ships that are
predicted to travel along an incorrect route, turn and
approach the true route, causing the position error
to decrease for a short period of time, before once
again linearly increasing.

In order to reduce the error associated with the
incorrect classifications, one needs to improve the
classification module to provide either a better rep-
resentation to conduct classification on, or utilize
another classifier. Additionally, anomalies can be
filtered out as they will have a degrading effect on
the classification. The error with respect to the cor-

Figure 11: Median position error of trajectory predic-
tions evaluated as a percent of the distance traveled.

Figure 12: Incorrectly classified trajectory prediction.

rectly classified predictions is, therefore, of greater
interest for further investigation. Fig. 13 illustrates
the box plots for the position error at five minute in-
tervals. The horizontal green line illustrates the me-
dian error. It appears that the lower 50 % of the pre-
dictions are rather tightly bounded, whilst the up-
per 50 % have a higher variance. The variance of
the error also increases significantly as a function
of time. This is to be expected, as the predictions
are dependent on both the speed estimates, as well
as the degree of variation within the cluster.

Nonetheless, the degree of variance observed
for the 30minute predictions is quite high for the up-
per quartiles. The correctly classified vessels with
poor predictions were, therefore, investigated. Fig.
14 visualizes one such case. It appears that the ves-
sel has been classified correctly, as the predicted
and true trajectories are similar at first. However,
approximately half way along the predicted trajec-
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Figure 13: Prediction error for correctly classified ves-
sels evaluated as a percent of the distance traveled.

Figure 14: Correctly classified trajectory with high
position error.

tory, the true trajectory of the vessel stops and turns
around. Such irregular ship trajectories are difficult
to predict, and the algorithm is unable to identify
and recreate such patterns. These irregularities are
the source of much of the high positional error illus-
trated in Fig. 13. The algorithm is, nonetheless, ef-
fective in predicting what can be considered regular
ship trajectories, represented by the lower quartiles
in Fig. 13. In general, it appears that the approach
yields successful results with respect to predicting
the future trajectory of a selected vessel.

4. Conclusion and Further Work
This study presents a method to provide system

intelligence to future autonomous ships such that
they can attain a high level of maritime situation
awareness. This is facilitated through the use of
historical AIS data and machine learning. Relevant

trajectories are extracted from historical AIS data,
and commonalities in the data are discovered via
Gaussian Mixture Model clustering. These clusters
represent modes of historical ship behavior. When
predicting the future trajectory of a target vessel, it
is likely that its future behavior will belong to one
of these modes. Therefore, the observed behavior
of a selected vessel is classified to one the modes to
improve the fidelity of a trajectory prediction. Such
high fidelity predictions can then be used to aid in
collision avoidance.

Assuming that the previous behavior of the se-
lected vessel is known, the method has a high clas-
sification accuracy. The results indicate that the use
of Linear Discriminant Analysis provides a more
optimal basis for classification. However, if the pre-
vious behavior is unknown, the classification accu-
racy will likely be degraded.

The results for the trajectory predictions indi-
cate that the methodwas able to successfully predict
the future trajectory of a selected vessel, with low
error. For incorrectly vessels, however, the perfor-
mance was degraded. This is to be expected, given
that predictions are conducted with respect to incor-
rect behavior modes in these cases.

For the cases investigated in this study, correctly
classified vessels had low prediction error for time
horizons up to 30 minutes. The median error value
was approximately 4 % of the true distance trav-
eled after 30 minutes. This is likely aided by the
direct relationship between data points in the clus-
ters utilized in the predictions, as well as the ability
to discover ship behavior modes that match the se-
lected vessel. Certain vessels, however, had anoma-
lous behavior, which the method was unable to ac-
curately predict.

The method presented in this study is generic,
and can be applied to any geographical region, given
sufficient density of the historical AIS data. As a re-
sult, the algorithm can be implemented in a generic
form on any vessel, and will run on the raw AIS
data for that region. Seeing as the method is data-
driven, the amount of data available will enhance
the results. The accuracy of the predictions will also
be location specific, as the number of possible be-
havior modes that exist will vary. The method will
likely have better performance in open waterways
with fewer possible routes, and a generally high de-
gree of regularity in ship behavior compared tomore
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complexwaterways such as coastal regions and ports.
The sensitivity of location has, however, not been
investigated. Nonetheless, the ability of the method
to discover behavior modes in the historical data
will improve the performance in complexwaterways
compared to other methods. The predictions are
also conducted without considering the prevailing
weather conditions. These will likely have a signif-
icant effect of the behavior of a vessel, and should
be included in the prediction method.

Further work will include enhancing the classi-
fication accuracy of themethod, as well as including
weather parameters into the data set. The classifica-
tion accuracy can likely be further increased by us-
ing more advanced architectures e.g. kernel support
vector machines (Murty and Raghava, 2016). Alter-
native trajectory predictionmethodologies applying
additional machine learning techniques, e.g. deep
leaning, will also be investigated to further enhance
the predictions. It is also vital to connect the tra-
jectory predictions to existing collision avoidance
frameworks and regulations. This will be addressed
in the future, where such predictions will be applied
in a collision avoidance setting.
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