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ABSTRACT 

The rapid embracing of machine learning in psychiatry has a flavor of being the current 

‘wild west’; a multidisciplinary approach that is very technical and complex, yet seems to 

produce findings that resonate. These studies are hard to review as the methods are 

often opaque and it is tricky to find the suitable combination of reviewers, and this issue 

will get more complex if there is an absence of a rigorous framework to evaluate such 

studies and thus nurture trustworthiness. Therefore, our manuscript discusses the 

urgency of the field developing a framework to evaluate the complex methodology such 

that the process is done honestly, fairly, scientifically and accurately. However, it is a 

complicated process and so we focus on three issues, namely explainability, 

transparency and generalizability, that are critical for establishing the viability of using AI 

in psychiatry. We discuss how defining these three issues helps towards building a 

framework for ensuring trustworthiness, but show how extremely difficult definition is as 

the terms have different meanings in medicine, computer science and law. We conclude 

that it is important to start the discussion such that there can be a call for policy on this 

and that the community takes extra care when reviewing the use of such models. 

 

INTRODUCTION 

There has been a recent surge in the popularity of researching artificial intelligence (AI), 

and more specifically machine learning (ML), in psychiatry. Automated analyses can 

provide supplementary information during clinical decision making and uncover subtle 

trends that humans have difficulty detecting. However, although results seem 

successful, there lacks understanding of the underlying mechanisms and how and when 
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it should be applied. This can engender fear that automated methods will make 

decisions contrary to human judgments1,2. Indeed, the mystery around AI does not 

nurture trustworthiness, which is critical when applying medical technology.  

 

The role of AI and ML in society is a source of highly charged debates in many 

disciplines, notably in education, policy, and medicine. Given that a growing number of 

psychiatry publications incorporate ML methods3-9, we seek to initiate a conversation on 

how best to ensure that these methods are valid, provide information that is clinically 

useful, and are implemented and used correctly. We need to start discussing what 

procedures must be in place to ensure research is of high caliber, results are evaluated 

thoroughly and fairly, and clinical usefulness is established prior to application. We 

discuss three concepts, (i) explainability, (ii) transparency and (iii) generalizability, that 

are critical for establishing the viability of using AI, focusing on methods which could in 

the near-future be employed in psychiatry to facilitate in diagnosis, monitoring, 

evaluation, and prognosis of illness3-9.  

 

How well can we trust the empirical basis that these clinical applications of AI are 

based upon? Some argue that for a ML model (see Table 1 for definition) to be 

trustworthy, it must be explainable, meaning it must be possible to obtain a 

description of the reason a model arrived at a decision. In medicine this has never been 

a logical requirement. For example, the exact mechanisms of statins to lower 

cholesterol or neuroleptic medications to reduce psychiatric symptoms are not 

necessarily understood but are nonetheless administered to patients. However, even if 
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truly explainable models are unattainable, they can be transparent in that the 

developer must be open about the model details, as well as generalizable so the model 

performs well on a diverse population.  

 
Artificial Intelligence (AI) AI is the general concept of creating expert systems to carry out various types of 

tasks. These systems exhibit intelligent behavior and are able to learn, explain, and 
advise their users. 

Machine Learning (ML) ML is a subset of AI. ML models are statistical systems that either learn features of 
the data and associated importance of each, that are highly predictive or some 
variable of interest, or just the associated importance of user-defined features of the 
data. Once the features and their weights, as well as other hyperparameters, are set, 
the model can predict some outcome or clinical classification on new, unseen data.   

Features A measurable property of the data. For example, the number of words spoken is a 
feature that can be measured from natural language data. 

Hyperparameters Parameters that are set prior to training rather than learned during the process, like 
the number of iterations through a training set to train for. 

Classification A type of ML model that is trained to predict a category (e.g., mentally ill or healthy). 
A common type of classification model is a decision tree, which is a flow chart-like 
structure that breaks an entire dataset into subsets at each level depending on some 
criteria. At the bottom of the structure, the entire dataset is broken into some number 
of subsets which represent categories of interest in a classification problem.  

Regression A type of ML model that is trained to predict a numerical, continuous valued output 
(e.g., a rating). A common type of regression model is a linear/polynomial regression 
model which simply generates a linear/polynomial line to fit values in a dataset. 
These equations can be made into classification problems by setting threshold(s) to 
bin the real valued output variables into discrete categories.  

Neural Network A system of nodes, composed in layers, where each node learns some non-linear 
equation on some subset of training data and when all nodes are combined, a 
categorical or real valued output can be computed. Modern neural networks are 
deep, meaning they have hundreds to thousands of nodes and layers and are trained 
on large datasets.  

Table 1: Definition of terms used in this paper. 
 
EXPLAINABILITY 

There are many recent high-profile examples of seemingly successful outcomes with AI 

(e.g., Google AI’s lung cancer screening model that performed on par with six 

radiologists10), as well as failures (e.g., IBM Watson’s cancer treatment decision where 

the model ignored contraindication information11). Both success and failure force us to 

consider who is ultimately responsible, how to minimize errors in the future, and how 
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best to continue the path of AI assistance. These questions require that the conclusion 

arrived at by the AI be explained in terms of its decision-making process.  

 

What does it mean for a model to be explainable? This question will have different 

answers depending upon whether the person who answers is a computer scientist, 

clinician, or lawyer, for example. To a computer scientist, explainability might be where 

the feature space can be divided to create distinct classes, how the model weights 

different features or what a prototypical example from a class is. To a clinician, 

explainability might refer to whether the model produces a particular output that can be 

tied to clinical constructs (e.g., thought disorder). To a lawyer, explainability refers to a 

legal justification of a decision and the rights of citizens for an explanation of an 

algorithmic output (e.g., why a specific treatment is given)12.  

 

What constitutes a sufficient explanation? For clinicians, a model that provides a 

good explanation might relate understandable features of behavior (e.g., lack of vocal 

modulation across changing state in psychosis) to clinical constructs (an indicator of a 

worsening clinical state13). These constructs can be defined as the phenomenology or 

symptoms as determined by DSM-V14. However, ML-based modeling often does not 

work at this feature level, rather is more comparable to the fundamental and granular 

level characterization advocated by the NIMH Research Domain Criteria15 (e.g., 

frequency counts, word choice, time of task completion). In addition to the granularity of 

features, models often combine many features (sometimes hundreds or thousands) and 

learn how to weight these to best explain the clinical construct.  
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While it may sometimes not align directly with clinical constructs, it is nonetheless 

critical to understand the classes of features the model is using to make a prediction as 

models could be working for spurious reasons16 which in medicine can have terrible 

consequences, as clinical decisions could be based upon a flawed foundation. 

  

An explanation would vary by application domain and ML model type. Explanations from 

classification models could require a counterfactual example to specify what would need 

to be different about a specific case in order for the model to give an alternate label. On 

the other hand, regression models lend themselves to explanations based on specific 

features and weights, or importance, assigned to each one. With this information, one 

could say that with more or less of a specific variable, we would have received a 

different score. These variables may not be causal factors, but rather simply associated 

with one another17-18. In both cases, knowing the statistics of the data the models were 

trained on, as well as distributions and probabilities assigned to features and classes, is 

critically important.  

 

There is yet another distinction to be made in model explainability, namely that between 

highly interpretable models (e.g., decision trees or linear regression/classification 

models) and uninterpretable models (e.g., complex, deep neural networks). An 

interpretable model involves few features such that the model learns weights for each 

one. For example, a model of memory recall could learn a weight of 2.0 for the feature 

number of words recalled and 3.0 for semantic similarity of a recall to the original story, 
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indicating that the more words recalled and the greater the semantic similarity, the 

larger the recall score. These simple models can provide rich explanations, that more 

complex, deep neural networks cannot, often at the cost of accuracy. This is the well-

known tradeoff between model performance and model explainability19. The most 

successful ML models represent information with thousands to millions of features 

which do not lend themselves to explainability. While recent advances in ML do allow us 

to peer into the black box, the view may still be at a high level. While we believe in 

striving toward explainability, a more realistic goal is transparency and generalizability. 

 

TRANSPARENCY 

For a ML model to be transparent, its purpose, how its architecture was chosen, the 

statistics of the training data, how it was trained, and any underlying assumptions made 

in the process must be clear. Furthermore, there should be a level of transparency on 

how the features used in the model align to the constructs of interest being assessed.  

 

The above criteria are necessary to foster trust in ML models. A model advertised as 

being a money-saver could generate distrust, while a model that is open about its 

procedures and assumptions and is advertised as accurately predicting a variable of 

interest would engender more trust. Understanding common assumptions (e.g., the data 

are independent and identically distributed, cross validation is used in training, or model 

choice [e.g., choosing a linear regression classifier implies that the data are believed to 

be linearly separable]) can give the community more insight into model behavior.  
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We, as members of the scientific community, should strive for a ML model’s output to 

support a clinician’s decision-making process rather than be a final result that is 

subsequently questioned. In addition to being transparent about the intricacies of the 

model, it is also important to include clinical guidelines for use. A clinician must be 

informed of the details of the system and how best to and when to use it. We do not 

imply that the code must be open source as this is unrealistic in many cases, but rather 

that high-level methods and details are available. 

 

GENERALIZABILITY 

Generalizability is the foundation of good science and its progress. Complex ML 

approaches require large datasets because they otherwise tend to overgeneralize. It is 

regretful that in psychiatry many studies are published with modest and inadequate 

sample sizes (e.g., less than 50 training samples and generalization sets of less than 

20), further compounded by a lack of standard cross validation practices9. It must be 

noted that the large datasets that have become standard in ML render it highly unlikely 

to achieve a “matched” dataset in the classic clinical sense. While the datasets are 

unlikely to be matched, the advantage of ML is that it is able to leverage the variability 

inherent in large data to provide valid characterizations. 

 

Since ML algorithms learn from the samples of data upon which they are trained, they 

mirror historical forms of racial, economic, and gender discrimination primarily because 

of the biases and prejudices present in the data20-23. To guard from issues in bias and 

generalizability, the scientific community must work to develop large and trusted 
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datasets that are representative of target populations in order to test algorithms. This 

would ensure less bias against particular groups, as well as a standard that every model 

must meet in order to be trusted for real world use. It is critical that databases comprise 

representative samples from the full spectrum of all intended stakeholders. This will 

increase the accuracy of assaying the appropriate measurement constructs and thereby 

increase the probability of early and accurate detection and diagnosis. Building the next 

generation of tools that leverage ML necessitates that the underlying methods are valid 

across genders, ages, ethnicity and sociodemographics as well as provide reliable 

measurements within the same individual over time. 

 

Furthermore, it is necessary to exhaustively test a ML system before it is deployed in a 

clinical setting, which is a general rule for any product of computer science. In testing, 

there exist notions of edge cases and corner cases that must be considered. The former 

is an example that occurs at the extremes of acceptable operating parameters (e.g., 

minimum and maximum values of features) and the latter is an example that occurs 

outside of expected operating parameters (e.g., the combination of features at their 

outer limits); the importance being that a model must be able to perform on the most 

extreme clinical cases. Attempting to ‘break’ a ML model is the best way to ensure it will 

perform as expected in all situations.  

 

DISCUSSION 

The aforementioned framework is needed to address common issues with the 

integration of ML into psychiatry. However, there are other long-term problems that 
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need to be accounted for. Since AI tools work most accurately with large datasets, there 

is a need to share in a consortium like fashion, but how is this possible with sensitive 

data? The use of state of the art, publicly available tools is impossible with identifiable 

patient data (and even if the Personally Identifiable Information is removed from the 

data, various sources can be triangulated to retain identification), so how do we work 

around this? Finally, who is to be held accountable for errors? Does accountability fall 

onto the engineer who created the model, the entity that reviewed and deemed it safe 

for use, or ultimately the clinician who used it in practice? These are the types of 

questions that warrant discussion across all disciplines. 

 

CONCLUSION 

We are still at the research stage of evaluating ML in psychiatry, but we need a 

principled way to translate this research to clinical application. When the accuracy gains 

of ML models inevitably plateau, it will be important to shift our focus to making these 

models as robust as possible to be applied in the real world. Rather than looking for ML 

models to become the ultimate decision-maker in medicine, we should leverage the 

things that machines do well that are distinct from what humans do well. We have 

presented a framework applicable for reviewers of research, as well as clinicians 

looking to apply ML to their practice. This framework provides a basis for the need to 

evaluate the explainability, assess the transparency, and ensure the generalizability of 

ML models.  
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