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Abstract

We develop a new scheme for evaluating different molecular integrals using Gaussian

type orbitals. In this new scheme, the evaluation of integrals is performed in two

steps during runtime. The first step is a top-down procedure that maps each recur-

rence relation into a jagged array (array of arrays), where each element of a member

array represents either the final results or some intermediate integrals that are stored

in our developed data structure “coarse-grained circular buffer”. This step is the same

for all different one- and two-electron operators so that the same algorithm and

source codes can be used. In the second step, a bottom-up procedure is carried out

that computes all the intermediate and the final molecular integrals by backtracking

elements from the last member array of each jagged array. Different source codes

should in principle be used for different electron operators in the second step, but

which can be generated automatically by our developed recurrence-relation compiler.

The currently proposed general recurrence-relation generation scheme provides a

new, generic and automatic programming way for various one- and two-electron

integrals needed in computational chemistry. Users can even introduce new electron

operators and evaluate their integrals during runtime by combining the implementa-

tion of the proposed new scheme and the just-in-time compilation technique.
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1 | INTRODUCTION

One fundamental task in computational-chemistry calculations is the

evaluation of various one- and two-electron integrals and their deriva-

tives over atomic-orbital basis sets, which are usually represented by

Gaussian type orbitals for their efficiency in integral evaluation. Cur-

rently, almost all molecular integrals are calculated using recurrence

relations—one starts from a simple integral that can be computed eas-

ily, and from which the final results are calculated by recursively using

some mathematical formulas.

Even though one may program each integral in an efficient way

using the Obara–Saika,[1,2] McMurchie–Davidson,[3] or Rys quadra-

ture[4] schemes, a unified computational procedure for evaluating

these integrals and their derivatives is nevertheless valuable, espe-

cially when exploring higher-order molecular properties with the

recently proposed open-ended quasienergy derivative approach[5]

where a large number of different complicated integrals are prerequi-

site for the calculations of molecular properties.

Take one-electron integrals for example, many groups have con-

tributed to the generalization of evaluating various one-electron
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integrals—see for example, publications[2,6–12] and references therein.

We have also recently proposed a procedure for evaluating one-

electron integrals and their geometrical derivatives by using a general-

ized one-electron operator, in which an arbitrary central-potential

operator f(jr − Cj) around center C can be chosen for different one-

electron operators,[13] for instance f(jr − Cj) = jr − Cj−1, jr − Cj−2, and
Dirac delta function δ(r − C).

The aforementioned contributions have nicely illustrated the

generalization of various integrals and their derivatives, but what is

missing is the generalization of programming different recurrence

relations for different one- and two-electron operators. For instance,

one will have different recurrence relations for the potential jr
− Cj−1 and the Dirac delta function δ(r − C), and correspondingly dif-

ferent algorithms and source codes have to be written for these two

different operators. One can program different recurrence relations

manually, but such codes can be prone to error and need to be

totally rewritten whenever any change is required in the

corresponding recurrence relations—for instance, due to efficiency

or stability reason. Manual programming therefore requires much

effort for the implementation of integrals of new electron operators,

and for the maintenance and the improvement of existing integral

evaluation algorithms and codes.

Most modern programming languages provide recursive function

that allows programmers to express operations in terms of the func-

tion itself, and therefore reduces the effort of programming recur-

rence relations. However, source codes using recursive functions are

often inefficient for the integral evaluation, because it is not trivial to

reuse computed intermediate integrals during recurrence relations.[13]

Reusing intermediate results is of key importance for saving computa-

tion time in the integral evaluation, in particular for integrals with high

angular momentum basis sets and/or higher order (geometrical) deriv-

atives. Therefore, instead of using the recursive function, most effi-

cient integral codes are currently either manually programmed or

generated using the automatic programming technique. In the latter,

the actual codes (mostly using C, C++, or Fortran languages) are gen-

erated from a set of codes (named as integral code generator thereaf-

ter) written at a higher abstraction level using, for instance Python

language.

The automatic programming technique therefore reduces the pro-

gramming effort to some extent. However, we note that most integral

code generators cannot treat, for instance arbitrary angular momen-

tum and/or arbitrary order of (geometrical) derivatives. Moreover, dif-

ferent integral code generators have to be written for different forms

of electron operators. All these limitations again restrict the develop-

ment of new molecular integrals and studies of new molecular proper-

ties, or one has to dedicate much effort on such development.

Therefore, the current contribution aims to develop a new scheme

to reduce the programming effort for the integral evaluation of differ-

ent electron operators. We name the new scheme as “general

recurrence-relation generation scheme”, which divides the integral eval-

uation into two steps: All recurrence relations are first mapped into a

series of jagged arrays in which each element of a member array repre-

sents either intermediate integrals or the final results; Secondly, all the

intermediate and the final integrals are computed by backtracking ele-

ments from the last member array of each jagged array. We have also

developed a data structure “coarse-grained circular buffer”, which

together with the jagged arrays guarantee the reuse of all intermediate

results and also efficient use of computer memory. A general

recurrence-relation compiler has also been developed for the second

step, so that the new scheme can work for almost all physically relevant

molecular integrals and their derivatives. More exactly, our recurrence-

relation compiler can for the time being handle different multi-index

recurrence relations in Equation (25) of order (t1, � � �, tk, � � �, tq) where

0 ≤ tp ≤ 2 (p ≠ k) and 1 ≤ tk ≤ 2.

The remainder of this paper is organized as follows: we first pre-

sent our notation conventions and theoretical background for the

integral evaluation in computational chemistry. The general

recurrence-relation generation scheme is described afterwards, as

well as its design and implementation. Finally, we discuss the perfor-

mance of the proposed scheme by using different examples and give

our final concluding remarks.

2 | THEORY

2.1 | Notation conventions

Let us first define our notation conventions: A bold capital letter such

as Rκ denotes the position of a nucleus (or a center) κ. The vector from

Rλ to Rκ is denoted by Rκλ = Rκ − Rλ. The capital letters Xκ, Yκ, and Zκ

represent the Cartesian coordinates of a nucleus (or a center) at the

position Rκ, whereas Rκ denotes the norm of the vector Rκ. The posi-

tion of an electron relative to a nucleus (or a center) at the position Rκ

is given by rκ = r − Rκ. Small letters xκ, yκ and zκ, and rκ denote the

three Cartesian coordinates of the electron relative to the position Rκ,

and the norm of the vector rκ, respectively.

Moreover, we use the multi-index notation extensively[14] to sim-

plify the expressions for the recurrence relations. For instance, the

jKj-th order geometrical derivatives with respect to a center at the

position Rκ will be written as

∂KRκ
=

∂

∂Xκ

� �KX ∂

∂Yκ

� �KY ∂

∂Zκ

� �KZ

=
∂jKj

∂XKX
κ ∂YKY

κ ∂ZKZ
κ

, ð1Þ

where the three-dimensional multi-index K = (KX, KY, KZ)
T is a vector

of nonnegative integers and jKj = KX + KY + KZ is the norm (length) of

the multi-index K.

For different recurrence relations, we will often use eξ for the

increment along one Cartesian direction ξ, where ξ = x, y or z.

2.2 | Integral evaluation

The integrals we consider are evaluated over either the contracted

real solid-harmonic Gaussian type orbitals (GTOs) located at one cen-

ter Rκ with the orbital quantum number lκ
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χSGTOκ rð Þ= Slκmκ
rκð Þ
X
i

wSGTO
iκ exp −aiκr

2
κ

� �
, − lκ ≤mκ ≤ lκ , ð2Þ

or the contracted Cartesian GTOs

χCGTOκ rð Þ= rlκκ
X
i

wCGTO
iκ exp −aiκr

2
κ

� �
, j lκ j = lκ , ð3Þ

where wSGTO
iκ and wCGTO

iκ are the radial contraction coefficients, and

each real solid-harmonic or Cartesian GTO in the summation is called

primitive GTO with aiκ being the orbital exponents. Slκmκ
rκð Þ is the real

solid-harmonic function, which satisfies the following transformation.[15]

Slκmκ
rκð Þexp −aiκr

2
κ

� �
=
X
jlκ j= lκ

Slκmκ

lκ
rlκκ exp −aiκr

2
κ

� �
, ð4Þ

with Slκmκ

lκ
being the transformation coefficients.

Reine et al.[16] have proven that the real solid-harmonic GTOs can

also be represented by the Hermite Gaussian functions

Hlκ
κ rð Þ= 2aiκð Þ− jlκ j∂lκRκ

exp −aiκr
2
κ

� �
, ð5Þ

with the same transformation coefficients of Equation (4)

Slκmκ
rκð Þexp −aiκr

2
κ

� �
=
X
jlκ j = lκ

Slκmκ

lκ
Hlκ

κ rð Þ: ð6Þ

This enables us to evaluate both the integrals and their geometri-

cal derivatives on a common footing by using the Hermite Gaussian

functions.[13,16]

Take a one-electron operator Ô rCαf gð Þ for example—here rCαf g
represent a set of vectors relative to centers Cα (α = 1, 2, � � �), the geo-

metrical derivatives of its integrals over contracted GTOs χκ(r) and

χλ(r) are denoted as

LκLλ Lαf glκ lλ½ �Ô = ∂LκRκ
∂LλRλ

�
α
∂LαCα

� �ð
χκ rð ÞÔ rCαf gð Þχλ rð Þdr, ð7Þ

where lκ and lλ are respectively the orbital quantum numbers of con-

tracted GTOs χκ(r) and χλ(r), �
α
∂LαCα

� �
� ∂L1C1

∂L2C2
� � � represents a set of

derivatives with respect to the centers Cα (α = 1, 2, � � �). Replacing χκ(r)

and χλ(r) with the contracted real solid-harmonic GTOs (2) or the con-

tracted Cartesian GTOs (3), we have

LκLλ Lαf glκ lλ½ �SGTOÔ =
X

jlκ j= lκ , jlλ j= lλ
Slκmκ

lκ
Slλmλ

lλ

X
ij

wSGTO
iκ wSGTO

jλ

× 2aiκð ÞjLκ j 2bjλ
� �jLλ j Lαf g,Lκ + lκ ,Lλ + lλ½ �HGTO

Ô ,

ð8Þ

LκLλ Lαf glκ lλ½ �CGTOÔ =
X
ij

wCGTO
iκ wCGTO

jλ

× ∂LκRκ
∂LλRλ

�
α
∂LαCα

� �ð
rlκκ e

−aiκ r2κ Ô rCαf gð Þrlλλ e−bjλr2λ dr,
ð9Þ

where we have introduced the basic integrals over primitive Hermite

Gaussian functions

Lαf glκ lλ½ �HGTO
Ô =

∂lκRκ

2aiκð Þjlκ j
∂lλRλ

2bjλ
� �jlλ j �

α
∂LαCα

� �ð
exp −aiκr

2
κ

� �
Ô rCαf gð Þexp −bjλr

2
λ

� �
dr:

ð10Þ

Notice that

rlκ + eξκ e−aiκ r2κ = rlκκ
∂
eξ
Rκ

2aiκ

 !
e−aiκ r2κ =

∂
eξ
Rκ

2aiκ
rlκκ e

−aiκ r2κ
� �

−
∂
eξ
Rκ

2aiκ
rlκκ

 !
e−aiκ r2κ

=
∂
eξ
Rκ

2aiκ
rlκκ e

−aiκ r2κ
� �

+
lκð Þξ
2aiκ

rlκ −eξ
κ e−aiκ r2κ ,

ð11Þ

we could further transfer lκ to Lκ for each integral over primitive

Cartesian GTOs in Equation (9), using the following recurrence

relation

∂LκRκ
∂LλRλ

�
α
∂LαCα

� �ð
rlκ + eξκ e−aiκ r2κ Ô rCαf gð Þrlλλ e−bjλr2λ dr

=
1

2aiκ
½∂Lκ + eξRκ

∂LλRλ
�
α
∂LαCα

� �ð
rlκκ e

−aiκ r2κ Ô rCαf gð Þrlλλ e−bjλr2λ dr

+ lκð Þξ∂LκRκ
∂LλRλ

�
α
∂LαCα

� �ð
rlκ -eξκ e−aiκ r2κ Ô rCαf gð Þrlλλ e−bjλr2λ dr�,

ð12Þ

and likewise for transferring lλ to Lλ.

After performing the recurrence relation (12) for each integral

over primitive Cartesian GTOs, we will also arrive at the following

basic integrals over primitive Hermite Gaussian functions

∂
L0κ
Rκ
∂
L0λ
Rλ

�
α
∂LαCα

� �ð
e−aiκ r2κ Ô rCαf gð Þe−bjλr2λ dr = 2aiκð ÞjL0κ j 2bjλ

� �jL0λ j Lαf gL0κL0λ
� 	HGTO

Ô :

ð13Þ

Therefore, the prerequisite for calculating integrals over either

the contracted real solid-harmonic GTOs or the contracted Cartesian

GTOs is the evaluation of integrals (10).

2.3 | Recurrence relations

The evaluation of integrals (10) however depends on the knowledge

of explicit form of the operator Ô rCαf gð Þ. For instance, integrals of the
Cartesian multipole moment operator Ô rCαf gð Þ= rmM (dipole origin M)

can be evaluated using the recurrence relations.[13,16]

lκ lλ,m+ eξ½ �HGTO
Ô = RγM

� �
ξ
lκ lλm½ �HGTO

Ô +
1
2pij

ð lκð Þξ lκ-eξ, lλm½ �HGTO
Ô

+ lλð Þξ lκ , lλ-eξ,m½ �HGTO
Ô +mξ lκ lλ,m-eξ½ �HGTO

Ô Þ,
ð14Þ

lκ , lλ + eξ,0½ �HGTO
Ô = −

aiκ
bjλ

lκ + eξ, lλ0½ �HGTO
Ô , ð15Þ
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lκ + eξ,00½ �HGTO
Ô = Rγκ

� �
ξ
lκ00½ �HGTO

Ô −
1
2pij

lκð Þξbjλ
aiκ

lκ-eξ,00½ �HGTO
Ô , ð16Þ

and starting from

000½ �HGTO
Ô = e−uijR

2
κλ

ð
e−pijr

2
γ dr = e−uijR

2
κλ

π

pij

� �3
2

, ð17Þ

where

pij = aiκ + bjλ, ð18Þ

uij =
aiκbjλ
pij

, ð19Þ

Rγ =
aiκRκ + bjλRλ

pij
: ð20Þ

While for the nuclear attraction potential Ô rCαf gð Þ= ∂LCC r−1
C , differ-

ent recurrence relations have to be used.[13]

lκ + eξ, lλLC;0½ �HGTO
Ô = Rγκ

� �
ξ
lκ lλLC;0½ �HGTO

Ô −
1
2pij

ð lκð Þξbjλ
aiκ

lκ-eξ, lλLC ;0½ �HGTO
Ô

− lλð Þξ lκ , lλ-eξ,LC;0½ �HGTO
Ô + lκ lλ,LC + eξ;0½ �HGTO

Ô Þ,
ð21Þ

0, lλ + eξ,LC;0½ �HGTO
Ô = Rγλ

� �
ξ
0lλLC;0½ �HGTO

Ô −
1
2pij

ð lλð Þξaiκ
bjλ

0, lλ-eξ,LC;0½ �HGTO
Ô

+ 0lλ ,LC + eξ;0½ �HGTO
Ô Þ,

ð22Þ

00,LC + eξ;n0½ �HGTO
Ô = RCγ

� �
ξ
00LC;n0 + 1½ �HGTO

Ô + LCð Þξ 00,LC-eξ;n0 + 1½ �HGTO
Ô ,

ð23Þ
and

000;n0½ �HGTO
Ô = e−uijR

2
κλ
2π
pij

−2pij
� �n0Fn0 pijR

2
Cγ

� �
, ð24Þ

where Fn0 pijR
2
Cγ

� �
is the n0-th order Boys function.[15]

Generally, one has to manually program different source codes or

prepare different recurrence-relation code generators for the recur-

rence relations of different electron operators. However, as will be

shown in the following section, it becomes possible to evaluate differ-

ent recurrence relations of various electron operators with our devel-

oped “general recurrence-relation generation scheme”.

3 | SCHEME, DATA STRUCTURE AND
ALGORITHM

Before presenting the new scheme, we give a more formal definition

of our interested recurrence relations—q-indexed recurrence relation

of order (t1, � � �, tk, � � �, tq) as.[17]

i1, � � �, ik + eξ, � � �, iq½ �

=
Xt1

r1 = −t1

� � �
Xtk−1

rk =0

� � �
Xtq

rq = −tq

ar1,���,rqξ i1 +
X
ζ1

e�ζ1 , � � �, ik-
X
ζk

eζk , � � �, iq +
X
ζq

e�ζq

2
4

3
5,

ð25Þ

where

e�ζp = eζp or−eζp , ð26Þ

tk ≥1,
X
ζk

eζk


 

= rk , ð27Þ

tp ≥0,
X
ζp

e�ζp




 


= rp, p= 1, � � �,k−1,k +1, � � �,qð Þ, ð28Þ

and ar1,���,rqξ are coefficients of the right-hand-side (RHS) terms, which

can be constants or variables depending on the indices. We further

name the index ik as “output index”, indices i1 to ik−1 are called “inner

indices”, and ik+1 to iq are “outer indices”.

For instance, the recurrence relation (14) is a 3-indexed recur-

rence relation of order (1, 1, 2), and the output index is m, the inner

indices are lκ and lλ, and there is no outer indices.

The integral evaluation using different multi-indexed recurrence

relations of different orders can fall into two steps: a top-down proce-

dure and followed by a bottom-up procedure, which will be described

in the following two subsections respectively.

3.1 | Top-down procedure

Take the evaluation of the Cartesian multipole moment integrals

[lκlλm] = [123] for example—hereafter we abbreviate � � �½ �HGTO
Ô as [� � �],

the first step is a top-down procedure as shown in Figure 1, where

the recurrence relations (14)–(16) are used to find their RHS terms of

the target integrals on the left hand side (LHS). For instance, according

to the recurrence relation (14), the target integrals [111] connects to

the RHS terms [110], [010] and [100] by solid arrows as shown in

Figure 1.

3.1.1 | Jagged Array

From the graph theory,[18] all integral terms of a recurrence rela-

tion can be readily described by the so-called “directed acyclic

graph”. Rák et al. have proposed a method to map an integral into

a thread of a parallel architecture, where a directed graph has

been used for the computation of the integral expressed as a

summation.[19]

Different from the invention by Rák et al., we care more about the

key information that can be delivered to and guide the next step—the

practical integral computations. More exactly, we are interested in finding:
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• all integral terms [� � �] needed for the recurrence relations, and

• relationships among these integral terms as described by the recur-

rence relations.

Therefore, instead of the directed acyclic graph, we have chosen

the other simpler data structure—jagged array to represent a recur-

rence relation. The implementation of the jagged array—named as

RecurArray—has been made in our recently developed tIntegral

library,[20] and C++ programming language has been chosen for the

implementation. The tIntegral library is released under the Mozilla

Public License (version 2.0) and a development version (version 1.0.0)

is available at https://gitlab.com/tglue-chemistry/tintegral.

The rationale behind the design of the data structure Rec-

urArray can be better understood from the evolvement of recur-

rence relations in the top-down procedure:

1. As shown in Figure 2, several RecurArray's will be created during

the top-down procedure that can be readily put into a sequence

container like std::array in C++ programming language.

These jagged arrays are arranged following the top-down manner,

that is, the first jagged array represents the recurrence relation for

the final molecular integrals while the last jagged array for the

recurrence relation starting from the integrals 0� � �0½ �HGTO
Ô .

2. Each integral term of a recurrence relation is implemented by a

class RecurNode, which contains information such as orders of

indices, address of integrals in the other data structure coarse-

grained circular buffer (named as RecurBuffer and will be dis-

cussed later in the current section) and RHS RecurNode's.

As shown in Figure 1, integral terms of each recurrence relation

can be arranged into different levels—those connected by the

dashed arrows have the same order of the output index, and can

therefore be put into the same member array.

Each member array can be realized by the sequence container

std::vector in C++ programming language, which will gradually

grow whenever new integral terms are found with the

corresponding order of the output index.

3. Also as revealed in Figures 1 and 2, there are integral terms appe-

aring in both the last member array of a jagged array and the

succeeding jagged array. For instance, integral terms—from [120]

to [000] of the first jagged array also appear in the second jagged

array for the recurrence relation of lλ.

To efficiently handle the above “shared ownership” of integral

terms, we have used the C++ smart shared pointer std::

shared_ptr to manage each integral term, which has also been

used for the management of RHS RecurNode's of each

integral term.

3.1.2 | Coarse-grained circular buffer

Now let us focus on the other important data structure—coarse-

grained circular buffer, or RecurBuffer that will be used to store

(intermediate) integrals physically in computer memory. The following

requirements have to be considered for an efficient and non-

conflicting use of the computer memory:

1. The amount of the required computer memory should be as less as

possible, and whenever a RecurNode will not be involved in the

F IGURE 1 Top-down procedure: finding all necessary
intermediate integrals and mapping information between the LHS and
RHS terms for the Cartesian multipole moment integrals
[lκlλm] = [123]. Bottom-up procedure: computing all the intermediate
integrals and the final results by following the arithmetic operations
defined in the recurrence relations and starting from the integral
[000] [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Illustration of the data structure RecurArray (jagged
array) used for different recurrence relations. The example shown
here is to compute the Cartesian multipole moment integrals
[lκlλm] = [123]. Intermediate integrals are stored (physically) in another
data structure RecurBuffer (coarse-grained circular buffer) and
their addresses are recorded in the corresponding RecurNode's
[Color figure can be viewed at wileyonlinelibrary.com]
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integral evaluation, the memory that it has used before should be

released or be used by other RecurNode's;

2. No conflicting use of the computer memory during the integral

evaluation, that is, any RecurNode and its RHS RecurNode's

should use different parts of the computer memory;

3. Integral terms appearing in both the last member array of a jagged

array and the succeeding jagged array need special consideration

because their integrals can be viewed as the “input” of the former

jagged array (recurrence relation) and the “output” of the

succeeding recurrence relation; In other words, these integrals

have to stay in the computer memory during the evaluation of

both recurrence relations.

As will be discussed in the next subsection, the bottom-up proce-

dure will be performed by following the order of the output index for

each member array—starting from the first order up to a maximum

order. Such a strategy and the aforementioned memory-usage

requirements lead us to the following decisions for the design of the

class RecurBuffer:

1. RecurNode's of the same member array (i.e., with the same order

of the output index) will use a consecutive segment of the com-

puter memory;

2. RecurNode's of different member arrays will usually use different

segments to avoid conflicting usage of the memory—in particular

those to be involved together in the corresponding recurrence

relation;

3. However, a same segment of the computer memory could be used

by member arrays that are not at the same time involved in the

corresponding recurrence relation, which can reduce the amount

of required memory;

4. For output terms of a recurrence relation, their used segments of

the computer memory need to be reserved as the input of the pre-

ceding recurrence relation.

By following the above decisions and noticing the bottom-up pro-

cedure will be performed order by order, we can design the

RecurBuffer as a coarse-grained version of the known data struc-

ture “circular buffer”. That means, as illustrated in Figure 3, the

RecurBuffer divides a portion of the computer memory into several

segments (separated by solid lines), and each of them contains the

molecular integrals of RecurNode's in the same member array.

Let the maximum order of the output index ik be maxorder(ik) for a

recurrence relation (25). The number of needed segments for the

recurrence relation can be determined by

Nsegments =min maxorder ikð Þ,tk½ �+ 1, ð29Þ

which is not greater than the number of member arrays (=maxorder(ik)

+ 1) so that less computer memory is required.

Meanwhile, we can ensure each RecurNode and all its RHS

RecurNode's will use different segments by using the computer

memory in a cyclic manner, that is, only the segment used by a

member array with the least order of the output index will be released

or be used by another member array with greater order of the output

index. As illustrated in Figure 3, the segements used by integral terms

[210], [200] and [300] will be used again by the final results [123]

when the former will not be involved in the evaluation of the recur-

rence relation.

It therefore means that the RecurBuffer is well-suited as a

first-in-first-out buffer and also serves well for one of our objectives—

the first computed intermediate integrals could be firstly “kicked out”.

Last but not least, to reserve the segment of output terms of a

recurrence relation, we have implemented an important feature in the

data structure RecurBuffer—the direction of data storage in the

computer memory. Still take the evaluation of the Cartesian multipole

F IGURE 3 Coarse-grained circular buffer used for storing the
final and intermediate integrals during recurrence relations, where
integrals of RecurNode's belonging to the same member array are
stored in the same segment of the computer memory, and separated
by dashsed lines
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moment integrals [lκlλm] = [123] for example. The final integrals are

stored in the computer memory from the lowest address of the

RecurBuffer as shown in Figure 3, which should be reserved

(untouched) when performing the recurrence relation (14) on m.

A straightforward solution is to assign segments to integral terms

in an opposite way for the recurrence relation (14), i.e., starting from

the highest address of the RecurBuffer. As illustrated in Figure 3,

RecurNode's [000] to [120] therefore occupy the computer memory

with the highest address, and are also arranged from higher address

to lower one. The same procedure continues so that the direction of

data storage always takes the opposite of the preceding recurrence

relation.

To briefly summarize, the top-down procedure therefore needs

(a) to generate a series of RecurArray's for given recurrence rela-

tions and (b) to assign segments of a RecurBuffer to all member

arrays. From the point of view of recurrence-relation performing,

these tasks only require to manipulate different indices algebraically,

and there is no integral computation happened. Therefore, the top-

down procedure is general for all different recurrence relations and

the same algorithm and source codes can therefore be developed.

3.2 | Bottom-up procedure

Still taking the evaluation of the Cartesian multipole moment integrals

[lκlλm] = [123] for example, the second step of the recurrence-relation

evaluation is a bottom-up procedure. For instance, the target integrals

[111] are computed from already calculated RHS terms [110], [010]

and [100] as shown in Figure 1.

The bottom-up procedure is carried out by backtracking

RecurNode's from the last member array of each RecurArray, and

from the last RecurArray to the first one.

3.2.1 | Triangle-based recurrence relations

All integrals in the bottom-up procedure are treated following a

triangle-based scheme in our current contribution. As shown in

Figure 4, different Cartesian components—for instance, of GTOs and

different derivatives—are arranged in a triangle with the X� � �X, Y � � �Y
and Z� � �Z components in the corners. Each integral term—[111],

[110], [010] and [100]—actually contains integrals of a direct product

of the corresponding triangles. The bottom-up procedure therefore

does not manipulate a single number, but multiple components of the

direct product of triangles.

Two problems in this step are (a) the ordering of these compo-

nents, that is, how to arrange them in linear storage like the segment

of the RecurBuffer and (b) the noninjective and surjective relation-

ship between higher-order components and lower-order ones. As

shown in Figure 5(a), although each second-order component can be

calculated from at least one first-order component (“surjective”), there

is not a one-to-one relationship (“injective”) between them—from the

value of the component X, one can calculate values of components

XX, XY and XZ by performing recurrence relations along x, y and

z directions respectively.

The ordering issue and the noninjective behavior are problematic

for programming recurrence relations. All integral codes have chosen

their own ordering and one-to-one relationship for practical implemen-

tation. For instance, the following component ordering and one-to-

one recurrence relationship can be used together for programming:

Descending XY-major order where consecutive components along

the YZ
!

edge of a triangle are contiguous in memory;

4xYZ
! y

Zz recurrence relationship where recurrence relations are first

performed for all components in the lower-order triangle along the

x direction, then along the y direction for components at the YZ
!

edge

of the lower-order triangle (components Y � � �Y to Z� � �Z), and finally

along the z direction for the component Z� � �Z, as illustrated in

Figure 5(b).

In the tIntegral library,[20] we have considered several combina-

tions of the triangle-component ordering and its possible one-to-one

recurrence relationship(s) as shown in Table 1. Such a combination

can be provided as additional information to our general recurrence-

F IGURE 4 Triangle-based recurrence relations to get the
Cartesian multipole moment integrals [111], where we have
abbreviated ∂l+m+ n

∂Xl∂Ym∂Zn as ∂X
lYmZn

(a) (b)

F IGURE 5 Noninjective and surjective relationship between
components of the second- and first-order, where the solid, dashed
and dotted arrows stands for recurrence relations along x, y and
z directions respectively
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relation compiler (which will be introduced afterwards). It thus

becomes straightforward to generate integral codes for different host

computational-chemistry programs by choosing the appropriate combi-

nation or by implementing a new combination of the triangle-component

ordering and its possible one-to-one recurrence relationship.

3.2.2 | Converting to loops

After choosing a combination in Table 1, we can focus on how to per-

form the bottom-up procedure for given recurrence relations. An effi-

cient way is to convert the bottom-up procedure (of recurrence

relations) to different loops:

1. Loop over different RecurArray's starting from the last one.

2. Loop over different member arrays of a RecurArray, from one

with the first order of the output index up to that with the maxi-

mum order (that with the zeroth order contains already calculated

integrals).For instance, the loop will start from the first order to

the third order of the output index m in the RecurArray[0] of

Figure 2.

3. Loop over different RecurNode's of a member array.

4. Loop over XYZ components of different indices by following a

given triangle-component ordering and its one-to-one recurrence

relationship.

The first three loops are much more straightforward to program

than the last one, because the last loop usually depends on the exact

form of the corresponding recurrence relation. Instead of manually

programming, we will in the current contribution develop a general

recurrence-relation compiler—RecurCompiler to automatically gen-

erate source codes of the above four loops for different multi-index

recurrence relations given in the form of (25), and with the order (t1,

� � �, tk, � � �, tq) where 0 ≤ tp ≤ 2 (p ≠ k) and 1 ≤ tk ≤ 2.

The restriction on the order (t1, � � �, tq) should not affect the use

of our recurrence-relation compiler, because most one- and two-

electron integrals needed in computational-chemistry calculations can

be evaluated with recurrence relations of order ≤2.[13,16] Furthermore,

such a restriction can be simply extended as will be shown in the fol-

lowing discussion of loops of different indices.

The input of the RecurCompiler is recurrence relation(s), or

more exactly the right hand side that is given in the form of (25). We

have implemented an abstract symbolic class RecurSymbol and a

few derived classes in the tIntegral library[20] as shown in Table 2.

These derived classes can be used to (rapidly) construct the right hand

side of a recurrence relation (25).

3.2.3 | Loops of different indices

Now let us look into the most challenging part of the

RecurCompiler—the generation of loops over XYZ components of

different indices i1, � � �, ik, � � �, iq with ik the output index, and the order

(t1, � � �, tk, � � �, tq). As discussed in the triangle-based recurrence rela-

tions, the generation of such loops over XYZ components are mostly

decided by the chosen triangle-component ordering and the one-to-

one recurrence relationship. The order (t1, � � �, tk, � � �, tq) can also affect

how the loops over XYZ components will be carried out.

Apparently, the generated loops over XYZ components should

ensure:

1. Each component on the left hand side of a recurrence relation will

be visited once so that its value can be computed from the recur-

rence relaiton;

2. Only contributing components on the right hand side will be vis-

ited, which will be used to compute the corresponding LHS com-

ponent along either x, y or z direction;

TABLE 1 Triangle-component ordering and possible one-to-one
recurrence relationship(s) implemented in the tIntegral library (version
1.0.0)[20]

Component
ordering

Contiguous
components in
memory

One-to-one recurrence
relationship(s)

Descending XY-

major order

Components along

the YZ
!

edge

4xYZ
! y

Zz

Descending XZ-

major order

Components along

the ZY
!

edge

4xZY
! z

Yy

Descending Y X-

major order

Components along

the XZ
!

edge

4yXZ
! x

Zz

Descending Y Z-

major order

Components along

the ZX
!

edge

4yZX
! z

Xx

Descending ZX-

major order

Components along

the XY
!

edge

4zXY
! x

Yy

Descending ZY-

major order

Components along

the YX
!

edge

4zYX
! y

Xx

TABLE 2 Derived classes of RecurSymbol implemented in the
tIntegral library (version 1.0.0)[20]

Derived classes Description

RecurTerm A RHS term

i1 +
P
ζ1

e�ζ1 , � � �, ik-
P
ζk

eζk , � � �, iq +
P
ζq

e�ζq

" #

of (25).

RecurNumber A constant.

RecurScalarVar A scalar variable.

RecurCartesianVar A Cartesian variable.

RecurScalarVec A vector of scalars.

RecurCartesianVec A vector of Cartesian variables.

RecurIdxOrder Order of an index.

RecurAddition An addition.

RecurSubtraction A subtraction.

RecurMultiplication A multiplication.

RecurDivision A division.

RecurParentheses An expression in parentheses.
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3. Noncontributing RHS components will be skipped in an appropri-

ate manner.

Let us first consider the output index ik. Take the descending XY-

major order and the 4xYZ
! y

Zz recurrence relationship for example, the

loops over XYZ components of the output index ik can be performed

as described in Figure 6, where we have considered the cases of the

order tk = 1 and tk = 2. In the former, RHS terms of a recurrence rela-

tion can only take the form [� � �, ik, � � �], while in the latter we need to

consider both the form [� � �, ik, � � �] and � � �, ik−eζk , � � �
� 	

.

For other combinations of the triangle-component ordering and

the one-to-one recurrence relationship in Table 1, the generation of

loops over XYZ components of the output index can be performed by

following similar procedures to that of Figure 6. The restriction on the

order of tk (1 ≤ tk ≤ 2) can also be removed by developing slightly dif-

ferent procedures for the cases of tk > 2.

The generation of loops over XYZ components of inner and outer

indices requires a different consideration. During the loops, one needs

to figure out:

• For an inner index, which of its XYZ component(s) on the right

hand side will contribute to the recurrence relation along a direc-

tion x, y or z that was set during the loops of the output

index; and

F IGURE 6 Loops over XYZ components of the output index ik for the evaluation of the left hand side (ik + eζk ) of a recurrence relaiton from
contributing components on the right hand side (ik and ik−eζk ) with the descending XY-major order and the 4xYZ

! y
Zz recurrence relationship

being chosen. The loops are first performed for parts (1a) and (1b) along x direction, then for (2a) and (2b) along y direction, and finally for (3)
along z direction [Color figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

F IGURE 7 Contributing RHS components of inner and outer indices for the evaluation of LHS components of the triangle ip, with the
increment (a) e�ζp = −eζp and (b) e�ζp = eζp , and with the descending XY-major order and the 4xYZ

! y
Zz recurrence relationship being chosen. In (a), an

LHS component in one of the 7 parts may have a contributing RHS component along some direction(s) as given on top of the black arrow. In (b),
all LHS components have their contributing RHS components along x, y and z directions as marked in gray color [Color figure can be viewed at
wileyonlinelibrary.com]
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• For an outer index, along which direction(s) x, y and/or z, one of its

XYZ components on the right hand side will contribute to the

recurrence relation.

Actually, the above slightly different statements for inner and

outer indices require the same and important information for the gen-

eration of their loops over XYZ components—contributing RHS com-

ponents along direction(s) x, y and/or z. For any inner or outer index ip,

the contributing RHS components of the increment
P
ζp

e�ζp




 


=0 are obvi-

ous—each LHS component Xl
pY

m
p Z

n
p (l+m+ n = jipj) has the contribut-

ing RHS component Xl
pY

m
p Z

n
p regardless of the direction.

In Figure 7, we present contributing RHS components of inner

and outer indices with the descending XY-major order and the

4xYZ
! y

Zz recurrence relationship for the increment (a) e�ζp = −eζp and

(b) e�ζp = eζp . The loops over XYZ components of inner and outer indi-

ces can therefore be performed by looping the LHS components and

determined contributing RHS components from given direction(s), which

also holds for any other increment
P
ζp

e�ζp




 


≥2.
We also note that there are noncontributing RHS components for

the increment e�ζp = eζp that need to be skipped during loops. For

example, RHS components of the last row—from Y3 to Z3 as shown in

Figure 7(b)—will not contribute to the recurrence relation along

x direction and should be skipped.

A more general form of contributing and noncontributing RHS

components is given in Figure 8 for an increment
P
ζp

e�ζp � τp . Take the

increment e�ζp = eζp for example, which gives τpx = 1 and τpy = τpz = 0

along x direction, so that jipj+2 noncontributing components should

be skipped after loops.

After converting the bottom-up procedure to different loops, the

left and the only step that one needs to manually program is the eval-

uation of integrals 0� � �0½ �HGTO
Ô , which is usually trivial compared with

the implementation of the aforementioned different loops. Therefore,

our developed automatic programming approach can work for almost

all different molecular integrals in computational-chemistry calcula-

tions. Furthermore, by considering the recently developed just-in-time

compilation technique[21] in computer science, users can even intro-

duce new electron operators and evaluate their integrals during

runtime. This will become quite useful for developers to quickly test

their new idea in computational chemistry.

4 | DESIGN AND IMPLEMENTATION

The previous section has presented our two key steps for integral

evaluation from an algorithmic view, in which the proposed scheme,

data structures and algorithms can in principle be served to guide the

practical implementation—the development of the tIntegral library.[20]

More exactly, what we have presented so far can fall into either

software requirements (which functionalities of the tIntegral library

we expect), or software construction (coding, data structures and

algorithms) in the software engineering discipline.

One important software development process between the soft-

ware requirements and the software construction is software design. A

considered design can help one develop modularized, reusable, main-

tainable and extensible software. We have therefore followed stan-

dards of the software design in the development of the tIntegral library.

In particular, we have applied well-known design patterns[22] to solve

design problems we have encountered, and we have also employed

unified modeling language (UML) to describe and to help us understand

how our chosen design works both structurally and behaviorally.

We will in the next two subsections present our software design

for integral computation and integral code generation using the

tIntegral library. The object-oriented programming has been chosen as

our programming paradigm and C++ programming language for the

implementation.

4.1 | Integral computation

In Figure 9, we collect (important) classes of the tIntegral library (ver-

sion 1.0.0) for one-electron integral computation as an example. The

overall structure can be divided into (a) one-electron operators, (b) basis

functions, (c) integration classes, and (d) a set of low-level classes for

the execution of the top-down and bottom-up procedures—including

the classes RecurArray, RecurNode and RecurBuffer.

The one-electron operators are derived from the base class

OneElecOperator that is defined in the other library tSymbolic

(https://gitlab.com/tglue-mathematics/tsymbolic). The reason of

introducing the tSymbolic library is that it can take care of different

symbolic operations, in particular the symbolic differentiation with

respect to different (external) perturbations that is required for our

developed open-ended response theory library OpenRSP (https://

github.com/openrsp/openrsp). As such, one can directly send differ-

ent (one-)electron operators to the tSymbolic and OpenRSP libraries,

F IGURE 8 Contributing and noncontributing RHS components of
inner and outer indices for the evaluation of LHS components with an
increment

P
ζp

e�ζp � τp, and with the descending XY-major order and the

4xYZ
! y

Zz recurrence relationship being chosen [Color figure can be
viewed at wileyonlinelibrary.com]
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and a seamless integration of symbolic operations and numerical eval-

uation can be expected for the response theory calculations.

Similarly, we define classes GaussianFunction (for primitive

Hermite Gaussian functions) and ContractedGTO (for contracted

real solid-harmonic GTOs or contracted Cartesian GTOs) derived from

the base class Symbol so that they can also be used for symbolic

operations in the response theory calculations.

For ordinary users, it is advisable to use the template class

OneElecGTOIntegration for computing integrals of different one-

electron operators with either contracted real solid-harmonic GTOs or

contracted Cartesian GTOs. The template parameter RealType will

be specified during compile time that determines the type of floating

point numbers.

The class OneElecGTOIntegration actually works as the skel-

eton of integral computations. As illustrated in Figure 10, it will con-

struct appropriate concrete integration classes during runtime

according to the types of one-electron operator and basis functions

on bra and ket centers. When the member method integrate is

called, the class OneElecGTOIntegration will invoke these con-

crete integration classes one by one to perform the top-down and the

bottom-up procedures.

Here, we follow the tradition of object-oriented programming by

first introducing an abstract integration class RecurIntegration,

and define all concrete integration classes as its derived class. The

class RecurIntegration specifies the common interface that its

derived classes should implemnet for the top-down and the bottom-

up procedures. As illustrated in the deduction of Equation (10) and its

following recurrence relations according to the operator Ô rCαf gð Þ, the
integration classes for one-electron operators fall into two categories:

1. Integration of different one electron operators with primitive

Hermite Gaussian functions. For instance, the classes

CartMultMomentHGTOIntegration and NucAttract

PotentialHGTOIntegration respectively take care of the inte-

gration of Cartesian multipole moment operator and nuclear

attraction potential operator.

2. Transformation of integrals between primitive Hermite Gaussian

functions and contracted Cartesian GTOs (by the class Contrac-

tedCGTOIntegration) or contracted real solid-harmonic GTOs

(by the class ContractedSGTOIntegration).

Except for the class ContractedSGTOIntegration, all other

concrete integration classes are automatically generated from the

general recurrence-relation compiler RecurCompiler, whose design

and implementation will be presented in the next subsection.

One may notice that the construction of an appropriate concrete

integration requires the knowledge of either the one-electron opera-

tor class or the basis function class. A possible solution is to resort to

F IGURE 9 UML class diagram of the tIntegral library (version 1.0.0)[20] for one-electron integral computation with Gaussian type orbitals.
Classes of basis functions and the abstract one-electron operator class OneElecOperator are respectively from our other developed libraries
tBasisSet (https://gitlab.com/tglue-chemistry/tbasis-set) and tSymbolic (https://gitlab.com/tglue-mathematics/tsymbolic). Integration classes
marked in red color are automatically generated from the general recurrence-relation compiler RecurCompiler (see Figure 11) [Color figure can
be viewed at wileyonlinelibrary.com]

2732 GAO

https://gitlab.com/tglue-chemistry/tbasis-set
https://gitlab.com/tglue-mathematics/tsymbolic
http://wileyonlinelibrary.com


the so-called visitor pattern.[22] However, it is not trivial to introduce

any new (one-)electron operator or basis function class using the visi-

tor pattern.

For the time being, we employ the member function type_id of

the base class Symbol (see Figure 9) to create the correct concrete

integration in the class OneElecGTOIntegration during runtime.

This function returns the runtime type informaiton (RTTI) of an object

(a given one-electron operator or basis function).

Nevertheless, the use of RTTI is not a reasonable choice within the

framework of object-oriented programming, and the code structure of

the class OneElecGTOIntegration is also a bit “brutal” that has

many conditional statements to check each RTTI. We have considered

the other probably better solution—pattern matching[23] for the imple-

mentation of the class OneElecGTOIntegration, which may

become available in the next release of the tIntegral library.

Last but not least, we would like to point out that one can also

directly use, for instance the derived class CartMultMoment

HGTOIntegration or NucAttractPotentialHGTOIntegration

to compute integrals with primitive Hermite Gaussian functions. It can

be useful for some computational chemistry programs that have their

own routines for the transformation to contracted Cartesian GTOs or

contracted real solid-harmonic GTOs.

F IGURE 10 UML sequence diagram of the tIntegral library (version 1.0.0)[20] for computing integrals of Cartesian multipole moment operator
with contracted Cartesian GTOs [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Integral code generation

Figure 11 shows the UML class diagram of integral code generation

using the tIntegral library (version 1.0.0). The key class is the

RecurCompiler, with which users can interact to generate different

concrete integration classes derived from the base one

RecurIntegration.

Following the discussion of the bottom-up procedure, the

main task of the RecurCompiler is to analyze the RHS of a given

recurrence relation (in the form of the class RecurSymbol), in par-

ticular to figure out the increment of each index in each RHS term.

Afterwards, the loops of different indices can be generated by fol-

lowing a given combination of the triangle-component ordering

and the one-to-one recurrence relationship in Table 1, together

with the schemes presented in Figures 6–8. Finally, the code to

compute each individual LHS component needs to be generated

within the innermost loop by following the formula of the recur-

rence relation.

Based on the above task analysis, we can divide the general

recurrence-relation compiler into the following (categories of) classes:

1. RecurTraversal is a simple class for recording which combina-

tion of the triangle-component ordering and the one-to-one recur-

rence relationship in Table 1 is chosen.

2. RecurExpression (marked in red color in Figure 11) contains

detailed information of a recurrence relation that the

RecurCompiler accepts, including the RHS and indices involved

into the recurrence relation. It will also create a RecurAnalyzer

object for the recurrence relation during runtime.

The RecurCompiler takes a vector of RecurExpression

objects as one input argument for the integral code generation.

Currently, we manually prepare these RecurExpression objects

for different one-electron operators and basis functions in a class

RecurRelation (see Figure 12). However, our long-term objec-

tive is to “teach” the class RecurRelation to automatically gen-

erate the RecurExpression objects for given electron operators

F IGURE 11 UML class diagram of the tIntegral library (version 1.0.0)[20] for integral code generation. See main text for detailed explanation
of classes in different colors and design patterns used [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 12 UML sequence diagram of the tIntegral library (version 1.0.0)[20] for integral code generation. See main text for detailed
explanation of the use of the general recurrence-relation compiler RecurCompiler [Color figure can be viewed at wileyonlinelibrary.com]
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and basis functions so that the manual coding work can be further

reduced.

3. The classes RecurAnalyzer, RecurVarProcessor and Rec-

urGenerator (marked in orange color in Figure 11) are derived

from the base class RecurExprVisitor. They are respectively

responsible for the analysis of the RHS of a recurrence relation, for

the declaration and assigment of different variables of a recurrence

relation, and for the generation of the code to compute each indi-

vidual LHS component within the innermost loop.

We have used the visitor pattern[22] for the above three classes to

process different RecurSymbol derived classes that are used to

construct the (RHS) of a recurrence relation. Within the visitor pat-

tern, each RecurSymbol derived class needs to implement a dis-

patching operation accept that dispatches a request to the base

class RecurExprVisitor as shown in Figure 11.

Meanwhile, each class derived from the RecurExprVisitor

needs to implement several dispatch operations to make sure all

different RecurSymbol derived classes can be visited, which is a

double dispatch approach.[22]

4. RecurOutputConverter and RecurNonOutputConverter

(marked in green color in Figure 11) respectively convert a recur-

rence relation to loops for the output index and nonoutput (inner

and outer) indices. Both of them are derived from the class

RecurConverter, which takes care of a few common tasks in

the loop generation, for example, adding debug information.

Because the loops of each index are converted in a few steps (see

Figures 6 and 7), we further introduce two other classes

RecurOutputSnippeter and RecurNonOutputSnippeter,

which generate a snippet for a single step of the loop converting

for the output and nonoutput indices respectively.

Furthermore, we have employed the abstract factory pattern[22]

for creating RecurOutputConverter and Rec-

urNonOutputConverter objects during runtime. As illustrated

in Figure 11, the RecurCompiler refers to the class

RecurConverterFactory's member functions make_output_

converter and make_non_output_converter for creating

the “converter” objects, which also construct corresponding vec-

tors of RecurOutputSnippeter and RecurNonOutput

Snippeter objects for the converter objects.

5. RecurTranslator is a base class that any other class can and

should use to generate the final source codes, and for the time

being we have a derived class RecurCppTranslator that can be

used to generate source codes in C++ programming language.It is

straightforward to implement new derived classes for the genera-

tion of source codes in other programming languages like Fortran

and GPU computing language.

A typical procedure for the integral code generation using the

tIntegral library (version 1.0.0) is illustrated in Figure 12, where the key

operation for generating the integral code is the RecurCompiler's

member function to_loops. This function will call itself in a recursive

manner and move to the next index to be processed at the same time.

When all indices are processed (i.e., an empty index got from the class

RecurExpression), the RecurGenerator object will execute to

generate the source code for the computation of each individual LHS

component within the innermost loop.

The general recurrence-relation compiler can be used to automat-

ically generate different concrete integration classes as introduced in

the previous subsection. The only left manual work is to write a mem-

ber function to compute the integrals 0� � �0½ �HGTO
Ô with the zeroth

order Hermite Gaussian functions, which is much less and simpler

than writing such recurrence relation codes manually.

5 | EXAMPLES AND DISCUSSIONS

To test the performance of the tIntegral library, we have chosen our

previous implementation—Gen1Int library (version 0.2.1)[24] for refer-

ence. In Table 3, we present the CPU time used by these libraries with

different one-electron operators and Hermite Gaussian functions.

Different from the general recurrence-relation generation scheme

proposed here, all recurrence relation codes were manually converted

TABLE 3 CPU time (millisecond) used by Gen1Int (version 0.2.1)[24] and tIntegral (version 1.0.0)[20] libraries with different one-electron
operators, and Hermite Gaussian functions 2aκð Þ− jlκ j∂lκRκ

exp −aκr2κ
� �

on bra and 2bλð Þ− jlλ j∂lλRλ
exp −bλr2λ
� �

on ket centers

hlκjlλi hsjsi hpjpi hdjdi hfjfi hgjgi hhjhi hijii hjjji
Ô=1 Gen1Int 0.0001 0.0003 0.0007 0.0013 0.0022 0.0040 0.0067 0.0113

tIntegral 0.002 0.006 0.009 0.012 0.015 0.018 0.023 0.028

Ô= rM Gen1Int 0.0002 0.0004 0.0012 0.0028 0.0059 0.0111 0.0200 0.0337

tIntegral 0.004 0.011 0.015 0.020 0.024 0.031 0.040 0.054

Ô= r2M Gen1Int 0.0002 0.0016 0.0038 0.0080 0.0166 0.0309 0.0543 0.1045

tIntegral 0.005 0.015 0.023 0.031 0.042 0.057 0.080 0.114

Ô= r3M Gen1Int 0.0004 0.0031 0.0072 0.0175 0.0436 0.0726 0.1287 0.2142

tIntegral 0.006 0.018 0.031 0.048 0.073 0.109 0.161 0.237

Top-down 0.005 0.012 0.017 0.021 0.028 0.031 0.034 0.037

Note: All computations were performed on the Linux cluster Stallo at UiT The Arctic University of Norway, which has 2.60 GHz Intel Xeon E5 2,670 pro-

cessor. The Gen1Int library was built with GNU Fortran (GCC) 7.3.0, and the tIntegral library was built with GCC 7.3.0, and both at level -O3. The CPU time

is the average of 10,000 times.
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into loops in the Gen1Int library. Instead of explicitly constructing jag-

ged arrays for different recurrence relation terms, the loops of differ-

ent indices in the Gen1Int library were prepared by specifying their

maximum and minimum orders. As such, there may be extra and

unnecessary integrals computed using the Gen1Int library in some

cases.

Another pitfall of the Gen1Int library is that it only accepts one

pair of exponents on bra and ket centers at a time, different from the

tIntegral library that can take multiple exponents on both centers.

Nevertheless, we only use one pair of exponents aκ and bλ for our

comparison in Table 3.

It is not surprised that the computations using the tIntegral library

take more CPU time than those of the Gen1Int library, in particular in

the cases of lower order Hermite Gaussian functions (till f shell) where

the CPU time is dominated by the top-down procedure as illustrated

for the operator Ô= r3M in Table 3.

However, we need to point out that the integrals with s and

p shells are directly calculated in the Gen1Int library without any loop

of indices, whereas the top-down procedure is always performed and

the jagged arrays are always constructed in the current implementa-

tion of the tIntegral library. It can be improved by adding conditional

statements in the concrete integration classes so that Hermite Gauss-

ian functions with lower orders (such as s, p and d shells) will be com-

puted directly.

We would also like to argue that the current implementation of

the top-down procedure can be further optimized in the tIntegral

library. For example, we currently compare orders of all indices when

trying to find matching RHS nodes, which can be performed only for

indices involved in the recurrence relation.

Furthermore, it is worth mentioning that the comparison in

Table 3 is carried out with only one pair of exponents (aκ and bλ). The

percentage of the CPU time used for the top-down procedure will

become less if there are multipole exponents on bra and/or ket cen-

ters, which is usually the case in computational chemistry calculations.

One should also observe that, for higher order Hermite Gaussian

functions, the CPU time used by the tIntegral library becomes more

and more comparable with that of the Gen1Int library. Moreover, by

only considering the bottom-up procedure, the tIntegral library has

used less CPU time than that of the Gen1Int library in the cases of

i and j shells as revealed in Table 3. It can be explained from the afore-

mentioned fact that the loops of different indices in the Gen1Int

library are carried out from a given minimum order to a maximum one,

so that there may be extra and unnecessary integrals computed and

more CPU time can be taken.

We have also compared the performance of the tIntegral library

to the Libint library (version 2.1.0).[25] The CPU time is given in

Table 4 for different one-electron operators and Cartesian Gaussian

functions. We have chosen the horizontal recurrence relation for the

order of the Cartesian multipole moment operator and the Obara-

Saika recurrence relations for the angular momenta of Cartesian

Gaussian functions[15] in the tIntegral library.

The Libint library generates integral codes for a given maximum

angular momentum and (intermediate) integrals are explicitly

addressed without any loop. As such, the codes are highly efficient as

revealed in Table 4. But the pitfall is that the Libint library can not

handle arbitrary orders of (geometrical) derivatives and angular

momenta without regenerating codes. In contrast, our proposed

scheme in the current paper and the tIntegral library can compute dif-

ferent integrals as well as their (geometrical) derivatives to arbitrary

order, which is vital for (high-order) response theory calculations.

We have also measured the CPU time with more than one Gauss-

ian function on bra and ket centers. In Table 4, we present the CPU

time used for computing integrals of Ô=1 and Ô= r3M with 5 Cartesian

Gaussian functions on bra and ket centers. Interestingly, the perfor-

mance of the tIntegral library becomes comparable with that of the

Libint library, and even better for Ô= r3M and Gaussian functions with

TABLE 4 CPU time (millisecond)
used by Libint (version 2.1.0)[25] and
tIntegral (version 1.0.0)[20] libraries with
different one-electron operators, and
Cartesian Gaussian functions
rlκκ exp −aκr2κ

� �
on bra and rlλλ exp −bλr2λ

� �
on ket centers

hlκjlλi hsjsi hpjpi hdjdi hfjfi hgjgi hhjhi hijii
Ô=1 Libint 0.0001 0.0001 0.0001 0.0003 0.0004 0.0007 0.0015

tIntegral 0.003 0.007 0.012 0.017 0.025 0.039 0.063

Ô=1 (a) Libint 0.0014 0.0017 0.0024 0.0042 0.0086 0.0159 0.0273

tIntegral 0.005 0.012 0.019 0.038 0.085 0.187 0.378

Ô= rM Libint 0.0001 0.0001 0.0003 0.0006 0.0022 0.0048 0.0084

tIntegral 0.007 0.011 0.018 0.025 0.038 0.058 0.093

Ô= r2M Libint 0.0001 0.0002 0.0005 0.0031 0.0066 0.0139 0.0295

tIntegral 0.010 0.018 0.025 0.036 0.055 0.087 0.161

Ô= r3M Libint 0.0001 0.0004 0.0020 0.0063 0.0160 0.0348 0.0623

tIntegral 0.013 0.023 0.033 0.051 0.083 0.161 0.272

Ô= r3M
(a) Libint 0.0021 0.0064 0.0416 0.1493 0.3514 0.8514 1.4442

tIntegral 0.020 0.038 0.078 0.172 0.369 0.735 1.368

Note: All computations were performed on the Linux cluster Stallo at UiT The Arctic University of Nor-

way, which has 2.60 GHz Intel Xeon E5 2,670 processor. Both the Libint and the tIntegral libraries were

built with Intel(R) C++ Compiler 16.0.3 and at level -O3. The CPU time is the average of 10,000 times. (a)

CPU time was measured with five Cartesian Gaussian functions on bra and ket centers.
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angular momenta h and i. It may be due to the Libint library places the

loops of Gaussian functions outside recurrence relations, while the

tIntegral library puts these loops inside recurrence relations and at the

deepest level–which is more efficient.

To briefly summarize, it is worthy of using the current version the

tIntegral library in practical calculations, especially for the computa-

tions of different one-electron integrals. Except for further improve-

ment of the library itself, users can consider to generate all possible

jagged arrays in advance so that they can be (re)used during runtime.

As such, the total CPU time used for the top-down procedure will

become trivial.

6 | CONCLUSIONS

A general recurrence-relation generation scheme has been proposed in

the current contribution, and its implementation in the recently devel-

oped tIntegral library[20] has also been discussed. In particular, the appli-

cation of software design patterns[22] has been highlighted for

developing a modularized, reusable, maintainable and extensible library.

This new scheme and the tIntegral library are able to program dif-

ferent molecular integrals automatically and thus significantly reduces

the programming and maintaining effort for the integral evaluation in

computational chemistry. Our chosen software designs have also

made the tIntegral library be able to work with the just-in-time compi-

lation technique. For instance, it can be straightforward to use the

tIntegral library in the recently developed interactive C++ inter-

preter—Cling[21] (which is built on top of the LLVM compiler infra-

structure[26]) so that one can generate source codes for any new

electron operator and immediately evaluate its integrals during

runtime.

Our current focus is on the further improvement and develop-

ment of the currently proposed scheme and the tIntegral library. More

explicitly, we have considered and begun to work on the following

issues:

1. Evaluation of integrals using London atomic orbitals[27] and their

derivatives with respect to the external electric and magnetic fields

are important for molecular property calculations, which will

require new recurrence relations and can be fitted into the current

proposed scheme.

2. Our general recurrence-relation generation scheme can also be

used for programming two-electron integrals, but the top-down

procedure needs to be further optimized or discarded so that loops

of indices will be performed for a given range of orders.

3. Although the RecurCompiler class has provided an automatic,

generic and simple way to program various recurrence relations,

one still needs to prepare the right hand side of a recurrence rela-

tion using the RecurSymbol derived classes, which usually

requires tens of lines or a few hundred lines of coding work.

To further reduce human's coding work, we can “teach” the class

RecurRelation to automatically generate the right hand side of

a recurrence relation based on the tSymbolic library (https://gitlab.

com/tglue-mathematics/tsymbolic).
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