
Renewable Solvents for Palladium-Catalyzed Carbonylation
Reactions
Aya Ismael, Ashot Gevorgyan, Troels Skrydstrup, and Annette Bayer*

Cite This: Org. Process Res. Dev. 2020, 24, 2665−2675 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Solvents constitute the largest component for many chemical processes and substitution of nonrenewable solvents is a
longstanding goal for green chemistry. Here, we show that Pd-catalyzed carbonylative couplings, such as carbonylative cross-
couplings, aminocarbonylations, and alkoxycarbonylations, can be successfully realized using renewable solvents. The present
research covers not only well-established renewable solvents, such as 2-methyltetrahydrofuran (2MeTHF), limonene, and dimethyl
carbonate, but also recently introduced biomass-derived 1,1-diethoxyethane, isosorbide dimethyl ether, eucalyptol, rose oxide, γ-
terpinene, and α-pinene. The carbonylative coupling of boronic acids and aryl bromides works well in limonene.
Aminocarbonylation gave excellent results in dimethyl carbonate, α-pinene, and limonene, while alkoxycarbonylation was successful
in 2MeTHF, α-pinene, γ-terpinene, and dimethyl carbonate. The developed methods based on renewable solvents can be used for
the synthesis of commercial drug Trimetozine and an analogue of Itopride.

KEYWORDS: renewable solvents, carbonylative C−C coupling, aminocarbonylation, alkoxycarbonylation, palladium catalysis,
carbon monoxide

■ INTRODUCTION

According to the development plan of the United Nations
General Assembly “Transforming Our World: The 2030 Agenda
for Sustainable Development” initiated in 2015, considerable
efforts are needed over the coming decade to build a better and
more sustainable future.1 The realization of most of the aspects
of “The 2030 Agenda for Sustainable Development” can be
directly conditioned by sustainable innovations in chemical
research.
Today, most of the industrial processes and particularly the

pharmaceutical industry are largely based on the application of
nonrenewable solvents, which usually constitute over 80% of
materials needed for the production of the final ingredients.2

As a result, yearly manufacture of nonrenewable and hazardous
common organic solvents exceeds 20 million metric tons.2d A
recent survey on the solvents used in the pharmaceutical
industry for the period 1997−2012 revealed that the top 10
most frequently used solvents are dichloromethane, hexane,
diisopropyl ether, 1,2-dimethoxyethane, 1,4-dioxane, 1,2-
dichloroethane, diethyl ether, chloroform, diglyme, and
chlorobenzene.3 This unsustainable practice can be addressed
by the development and popularization of renewable and safe
solvent candidates.
Liquids or low melting chemicals available from the

valorization of biomass4,5 as well as chemicals derived from
the reduction of CO2

6,7 have enormous potential to replace the
common nonrenewable solvents utilized in organic synthesis.3

The most frequently used solvents available from biomass are
polar protic ethanol, glycerol and its derivatives, and choline
chloride-based deep eutectic solvents, polar aprotic 2-
methyltetrahydrofuran (2MeTHF), cyrene and γ-valerolactone
(GVL), as well as nonpolar limonene and p-cymene (Figure

1).4,5 Moreover, CO2-derived carbonates and ethers such as
dimethoxymethane (methylal) have attracted attention as
solvents (Figure 1).6,7 Recently, we have shown that
biomass-derived solvents such as nonpolar ethers (1,1-
diethoxyethane (acetal), dimethyl isosorbide, eucalyptol, rose
oxide) and terpenes (γ-terpinene and α-pinene) can be
successfully used in Cu-catalyzed carboxylation reactions
(Figure 1).5l

A complete life cycle assessment (LCA) of the latter solvents
is not available, but most of them are significantly less toxic
compared to common organic solvents.8 Low toxicity is
particularly inherent to naturally occurring dimethyl iso-
sorbide, GVL and eucalyptol, ethanol-derived acetal, as well
as CO2-derived diethyl carbonate (DEC), dimethyl carbonate
(DMC), and methylal. Among others, these solvents are used
in large quantities in the pharmaceutical and food industries as
additives, antiseptics, and flavoring agents.9 There is no need
to continue increasing the consumption of nonrenewable
solvents for processes where renewable solvents provide
comparable outcome.
Renewable solvents have proven to be suitable for a variety

of transformations including classical condensation reactions
and transition-metal (TM)-catalyzed cross-couplings.4−6 How-
ever, the use of renewable solvents as reaction media for
carbonylative couplings with CO remain largely unex-
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plored.10,11 The fact that the Pd-catalyzed carbonylations have
found numerous applications in modern drug discovery and
isotopic labeling of pharmaceuticals10d,e,g makes the develop-
ment of renewable methodologies for carbonylations a task of
great significance. This work describes the use of newly
introduced biomass-derived solvents (acetal, dimethyl iso-
sorbide, γ-terpinene, α-pinene, eucalyptol, and rose oxide,
Figure 1) and previously studied renewable solvents
(2MeTHF, GVL, limonene, p-cymene, DMC, DEC, ethylene
carbonate (EC), propylene carbonate (PC), methylal and
diethoxymethane (ethylal), Figure 1) for Pd-catalyzed carbon-
ylations.

■ RESULTS AND DISCUSSION

A range of renewable solvents were studied for carbonylative
couplings of aryl bromides with arylboronic acids,12 amines
(aminocarbonylation),13 and alcohols (alkoxycarbonylation)
(Figure 1).14 We decided to focus on Pd-based catalytic
systems that have proven to be versatile catalysts for
carbonylative couplings.11k,12−14 For safety reasons, the
reactions were conducted in two chamber reactors (COware)
developed in the group of Skrydstrup using stoichiometric
quantities of CO generated ex situ from COgen (9-methyl-9H-
fluorene-9-carbonyl chloride).10e The solvent’s polarity was
approximated as nonpolar and polar based on their dielectric
constant; a solvent was classified as polar if the dielectric
constant was over 5 (Figure 1, Table S1).
Carbonylative C−C Couplings of Aryl Bromides and

Arylboronic Acids. As a starting point, we analyzed the
carbonylative coupling of 3-bromoanisole with m-tolylboronic

acid (Chart 1). We focused on the catalytic system based on
Pd(acac)2 as catalyst precursor and di(1-adamantyl)-n-

butylphosphine hydroiodide (cataCXium AHI) as ligand,
developed in the group of Skrydstrup.12g The original protocol
relied on cyclic diethanolamine esters of boronic acids (DABO
boronates) or aryl trihydroxyborates as successful starting
materials and used toluene/H2O (10:1) or toluene as
solvent.12g We initiated our work by developing a simplified
protocol where the aryl trihydroxyborates were generated in
situ from simple boronic acids by addition of 1 M aqueous

Figure 1. Overview of the present work and renewable solvents used in the work (pictures taken by A.G.).

Chart 1. Screening of Renewable Solvents for Carbonylative
Coupling of m-Tolylboronic Acid and 3-Bromoanisole
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NaOH, thus preventing the external, up-front preparation of
the organoboronate (see Table S1, entry 3).
Using the modified protocol, we investigated the efficiency

of various renewable solvents in the Pd-catalyzed carbonylative
coupling of m-tolylboronic acid and 3-bromoanisole (Chart 1,
see also Table S1 for a correlation of solvent polarity and
yields). It has to be noted that the final reaction media
contained approximately 15% (v/v) of water in all cases
because of the addition of aqueous NaOH. Our studies
revealed that nonpolar ethers and carbonates (rose oxide,

methylal, DMC) and polar ether 2MeTHF provide the
carbonylation product in low to moderate yields (16−50%).
In contrast, biomass-derived nonpolar hydrocarbons (limo-
nene, p-cymene, γ-terpinene, α-pinene) gave consistently
better yields with p-cymene and limonene being the best
solvents (75 and 80% isolated yield, respectively), an
observation that correlates well with the use of toluene or
toluene/water as solvent in previous studies providing the
corresponding product in 90% yield.12g Although limonene
possesses a terminal and an internal double bond, the Heck-

Scheme 1. Scope of Carbonylative Coupling of Boronic Acids and Aryl Bromides Using the Sustainable Solvent Limonene

Chart 2. Screening of Renewable Solvents for Aminocarbonylation with Resulting Isolated Yields
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type arylation of the solvent was not observed under the
reaction conditions. Neither were related side products noted
for reactions in rose oxide, γ-terpinene, and α-pinene.
We proceeded to analyze the generality of the Pd-catalyzed

carbonylative couplings in limonene as solvent (Scheme 1).
Examination of a variety of aromatic boronic acids and aryl

bromides indicated a good substrate scope. The yields varied
from 71 to 95% for electron-rich (3a, 3c, 3d, 3e, 3h, 3i),
electron-deficient aryl (3f, 3g), and heterocyclic boronic acids
(3j, 3k). The broad applicability of boronic acids is particularly
interesting as the use of in situ-generated aryl trihydroxyborates
extended the substrate scope beyond the limitations associated

Scheme 2. Scope of Aminocarbonylation of Aryl Bromidesa

aUnless otherwise mentioned, the reaction was performed in DMC. bXantPhos Pd G3 was used instead of Pd(OAc)2/XantPhos.
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with isolation of unstable trihydroxyborate salts.12g Similarly,
both electron-rich (3m, 75%; 3o, 79%) and electron-deficient
(3n, 83%; 3p, 83%) aryl bromides as well as heteroaryl
bromides (3l, 91%) were successful in the carbonylative
couplings. We observed a low yield only for 2-methoxycarbo-
nylphenylboronic acid (3b, 40%), which may be due to steric
hindrance or side reactions such as hydrolysis of the ester.
Overall, the observed yields were at the same level as
previously reported protocols using toluene as solvent,12e,g

indicating that limonene is a renewable alternative for
carbonylative couplings of boronic acids and aryl bromides.
Aminocarbonylation of Aryl Bromides. Next, we

examined the Pd-catalyzed aminocarbonylation reaction of
aryl bromides. Here, we focused on the catalytic system
developed in the group of Buchwald using Pd(OAc)2 as Pd
source, 4,5-bis(diphenylphosphino)-9,9-dimethyl−xanthene
(XantPhos) as ligand, and toluene as solvent.14c The Pd-
catalyst was tested in renewable solvents on the model reaction
of N-methylaniline with 4-bromobenzonitrile (Chart 2).
Our studies demonstrated that for this aminocarbonylation,

exceptional results can be obtained in most of the renewable
solvents (Chart 2). As a general trend, all reactions in nonpolar
hydrocarbons provided excellent yield (limonene, 99%; p-
cymene, 97%; γ-terpinene, 94%; α-pinene; 97%), in good
correlation with previous work performed with toluene as
solvent, providing the product in 97% yield.14c Excellent yields
were also obtained in nonpolar carbonates (DMC, 97%; DEC,
94%). Other solvents such as polar carbonate PC and lactone
GVL, and nonpolar and polar ethers (ethylal, acetal, rose oxide,
eucalyptol, dimethyl isosorbide, 2MeTHF) were less efficient,
with yields ranging between 62 and 89%.
Noteworthily, under the conditions used for amino-

carbonylation, we did not observe side reactions such as
hydroamination or Mizoroki−Heck coupling for solvents
possessing double bonds.
As several renewable solvents provided good yields, we

screened the top three best solvents (DMC, α-pinene,
limonene) for several aminocarbonylations (Scheme 2).
These studies revealed that except for the products 5m and
5n, the best solvents DMC, α-pinene, and limonene gave
comparable results for several aminocarbonylations (5d, 5h,
5l). For the product 5m, α-pinene (39%) turned out far less
effective than other solvents, while for the product 5n, DMC

provided low yield (16%) (Scheme 2). For an extended
analysis of the substrate scope, we therefore decided to focus
on the use of DMC, as it is considerably less toxic and less
expensive than the two other solvents.15

Reactions with variously substituted aryl bromides illustrated
that many functional groups (CHO, CN, CO2Me) were well
tolerated. In general, aryl bromides with electron-withdrawing
substituents provided corresponding aminocarbonylation
products in good to quantitative yields (5b, 99%; 5c, 98%;
5d, 87%; 5h, 97%; 5i, 81%; 5k, 83%; 5m 94%), except for 5a
(51% yield). Electron-rich aryl bromides were less effective,
producing the corresponding amides from low to acceptable
yields (5e, 62%; 5f, 35%; 5g, 64%; 5n, 16%). However, the
aminocarbonylation of electron-rich 3,4,5-trimethoxyphenyl
bromide, using XantPhos Pd G3 as the catalyst, provided the
commercial drug Trimetozine (5v, 96% yield, a sedative) and
an analogue of Itopride (5u, 95% yield, Itopride is used for the
treatment of gastrointestinal symptoms) in excellent yields.13h

The reaction worked well also with fused systems such as
naphthalene (5l, 99%) and heterocycles (5j, 65%) (Scheme 2).
Changes in the amine structure were tolerated well and both
anilines with electron-donating and -withdrawing substituents,
and primary and secondary aliphatic amines were successfully
coupled with 4-bromobenzonitrile and CO (Scheme 2, 5o,
87%; 5p, 90%; 5q, 85%; 5r, 90%; 5s, 93%; 5t, 94%). Overall,
the observed trends were in agreement with reports of
aminocarbonylations performed in nonrenewable sol-
vents.13,14c The good yields and substrate scope indicate that
renewable solvents such as DMC, α-pinene, and limonene can
effectively replace 1,4-dioxane, toluene, and THF frequently
used in Pd-catalyzed aminocarbonylation reactions.10b,13,14c

Alkoxycarbonylation of Arylbromides. Finally, we
analyzed the potential adaptation of renewable solvents for
Pd-catalyzed alkoxycarbonylation.14 For the initial studies, we
examined the alkoxycarbonylation of 2-bromonaphthalene
with sodium tert-butoxide and CO using the catalytic system
based on Pd(dba)2 as catalyst precursor and 1,1′-bis-
(diisopropylphosphino)ferrocene (dippf) as ligand first
reported by Skrydstrup and co-workers for alkoxycarbonyla-
tions in THF (Chart 3).14f The screening of renewable
solvents showed that excellent results can be achieved also for
the Pd-catalyzed alkoxycarbonylations (Chart 3).

Chart 3. Screening of Renewable Solvents for Alkoxycarbonylation with Resulting Isolated Yieldsa

aIn DMC, methoxycarbonylation was observed.
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Not surprisingly, the polar ether 2MeTHF (91% yield) was
among the best solvents, as previous studies were performed in
THF (88% yield).14f Interestingly, excellent yields of 93% were
also obtained in some nonpolar hydrocarbons (γ-terpinene, α-
pinene), while other nonpolar hydrocarbons (limonene, 56%),
ethers (methylal, 45%; ethylal, 64%; acetal, 55%; rose oxide,
36%; eucalyptol, 82%), and carbonates (DEC, 45%) provided
low to moderate yields. In nonpolar carbonate DMC, instead
of tert-butoxycarbonylation, the product of methoxycarbony-
lation was isolated in 93% yield (Chart 3, Scheme 4). This was
the only observation where the solvent was chemically
transformed in the reaction. Similar transesterifications were
not observed for the other carbonates (DEC, PC, EC). Polar
solvents (dimethyl isosorbide, 30%; GVL, 64%; PC, 60%; EC,
30% yield) were less efficient.
As for aminocarbonylation, we screened the top three best

solvents (2MeTHF, α-pinene, and γ-terpinene) for alkox-
ycarbonylations of several substrates (Chart 3, Scheme 3).
These studies revealed that the choice of solvent is dependent
on the substrate. 2MeTHF was the best solvent for the
products 7c (52%) and 7d (45%). The best yields of 7b were
seen in γ-terpinene (98%), whereas γ-terpinene was not a good
reaction media for the product 7f (44%). α-Pinene appeared to
be the best solvent for the products 7a (93%) and 7f (51%)
and in general showed good performance for most of the
substrates.
The following investigation of the scope of tert-butox-

ycarbonylation in α-pinene as solvent showed that both
electron-rich and -deficient aryl bromides can be effectively
transformed into the corresponding products in moderate to
good yields (Scheme 3). The best yields were observed for tert-
butoxycarbonylation of electron-rich aryl bromides (7a, 93%;

7b, 91%; 7e, 80%; 7g, 85%; 7h, 90%; 7i, 93%). It should be
noted that aryl bromides possessing electron-withdrawing
groups and electron-deficient 3-bromopyridine were less
effective and gave products in moderate yields (7c, 45%; 7d,
25%; 7f, 51%). Similar observations were reported by
Skrydstrup et al. for alkoxycarbonylations performed in
THF.14f Overall, our studies indicate that for alkoxycarbony-
lations, renewable solvents perform on the same level and, in
some cases, even better than previously reported nonrenewable
solvents.10,14 Renewable solvents such as 2MeTHF, DMC, α-
pinene, and γ-terpinene can be useful alternatives for
trimethylamine, hexafluoroisopropanol, THF, toluene, and
dimethyl sulfoxide frequently used for alkoxycarbonylation
reactions.14

Studies on the Alkoxycarbonylation in DMC. In
general, alkoxycarbonylation reactions rely on the use of
bulky alcohols, phenols, or corresponding alkoxides.14 Alcohols
possessing α-hydrogens have found limited applications
because of the side processes associated with β-hydride
elimination.14b,d Therefore, we had a closer look at the
methoxycarbonylations observed in DMC. The scope of the
reaction was briefly studied on a range of substituted aryl
bromides (Scheme 4). The reaction gave good yields for
electron-rich 4-bromoanisole (8b 90%) and 4-bromotoluene
(8d, 80%) as well as for 2-bromonaphthalene (8a, 93%) and 6-
bromoquinoline (8e, 93%). Moderate yields were observed for
electron-deficient aryl bromides (8c, 58%). For most of the
products in Scheme 4, traces of tert-butoxycarbonylation were
seen along with the main methoxycarbonylation product.
To gain a better understanding of the mechanism of the

observed methoxycarbonylation, we performed a set of control
experiments (Scheme 5). The tert-butyl ester 7a was

Scheme 3. Scope of tert-Butoxycarbonylation of Aryl Bromidesa

aUnless otherwise mentioned, the reaction was performed in α-pinene.
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transformed into corresponding methyl ester 8a in quantitative
yield when treated with NaOtBu in DMC. The trans-
esterification took place in the presence and absence of the
Pd-catalyst (Scheme 5A, B). In addition, the Pd-catalyzed
methoxycarbonylation of 2-bromonaphthalene with sodium
methoxide in DMC provided the methoxycarbonylated
product in 67% yield, while an equivalent experiment in α-
pinene did not lead to methoxycarbonylation (Scheme 5C).
These findings indicate that two different reaction pathways
may contribute to the formation of methoxycarbonylated
products: (i) the Pd-catalyzed alkoxycarbonlyation with tert-
butoxide followed by a transesterification with sodium
methoxide generated in situ from the reaction of excess
sodium tert-butoxide with DMC and (ii) the Pd-catalyzed
methoxycarbonylation with in situ-generated sodium meth-
oxide.

■ CONCLUSIONS
We have shown that Pd-catalyzed carbonylative trans-
formations can be conducted in biomass- and CO2-derived
solvents with exceptionally high efficiency. A vast array of
renewable solvents was analyzed for this purpose, including
both well-established (2MeTHF, GVL, limonene, p-cymene,
DMC, DEC, PC, and EC) and recently introduced solvent
candidates (acetal, dimethyl isosorbide, γ-terpinene, α-pinene,
eucalyptol, rose oxide, methylal, and ethylal). The work
covered Pd-catalyzed carbonylative coupling of boronic acids
and aryl bromides, aminocarbonylation and alkoxycarbonyla-

tion. For each of these transformations, we have found several
renewable solvents, which can successfully substitute tradi-
tional nonrenewable solvents. For carbonylative coupling of
boronic acids and aryl bromides the best results were observed
in limonene and p-cymene. Aminocarbonylation worked well
in DMC, α-pinene, and limonene, whereas the best solvents for
alkoxycarbonylation turned out to be 2MeTHF, α-pinene, γ-
terpinene, and DMC. Most of the known methodologies on
alkoxycarbonylation are limited to bulky alkoxides and
alcohols. We could show that this drawback can be overcome
by the use of DMC, which led to methoxycarbonylated
products. Finally, yet importantly, aminocarbonylation in
renewable solvents can be used for the production of
commercial drug Trimetozine and an analogue of Itopride.

■ EXPERIMENTAL METHODS
General Considerations. Solvents used in the work are

purchased from Sigma-Aldrich if not otherwise stated.
2MeTHF (anhydrous, ≥99%, inhibitor-free, 673277-1L),
methylal (absolute, over molecular sieve, ≥99.0%, 47676-
250ML), ethylal (absolute, over molecular sieve, ≥99.0%,
47675-500ML-F), DMC (anhydrous, ≥99%, 517127-1L),
DEC (anhydrous, ≥99%, 517135-1L), PC (anhydrous,
99.7%, 310328-1L), and EC (anhydrous, 99%, 676802-1L)
were bought as anhydrous solvents equipped with a septa.
Other renewable solvents were reagent grade; they were
degassed, kept over activated molecular sieves (4 Å) for at least
a week before use and stored under an Ar atmosphere. The
purity of the solvents used in the work were as follows: acetal
(99%, inhibitor-free, A902-500ML); dimethyl isosorbide (98%,
inhibitor-free, 247898-100G); GVL (99%, V403-500G); γ-
terpinene (97%, 223190-100ML); α-pinene (98%, 147524-
250ML); limonene (97%, 183164-100ML); p-cymene (99%,
C121452-1L); eucalyptol (99%, inhibitor-free, C80601-
500ML); and rose oxide (97%, inhibitor-free, TCI, M2363-
25G).
2MeTHF, acetal, dimethyl isosorbide, eucalyptol, rose oxide,

methylal, and ethylal are ethers and may form peroxides when
stored under air. However, peroxide tests (test strips for
peroxide, MQuant, Supelco, VWR/Merck 1.10081.0001) of
freshly bought solvents did not show any noticeable levels of
peroxides. Acetal, methylal, and ethylal can be hydrolyzed in
the presence of strong acids when heated. Under basic
conditions, which are frequently used for the reactions
involving organometallics, acetal, methylal, and ethylal are
stable. GVL, DMC, DEC, PC, and EC can be hydrolyzed in
the presence of strongly basic water solutions; under
anhydrous conditions, they are stable. γ-Terpinene, limonene,
and eucalyptol can be converted to p-cymene when heated
above 220 °C.4b Overall, the examined renewable solvents
appeared to be stable under the conditions used in the work.
We have not observed the formation of side-products, for
example, originating from hydrolysis of the carbonates, ethers,
and esters used as solvents in the work (an exception was
alkoxycarbonylation in DMC). It should be noted that the
oxidation products of terpenes can be allergens.9

The reactions were performed in the previously reported
two-chamber system (COware with total volume 20 mL,
Supporting Information Figure S1) under an argon atmos-
phere, and a glovebox was employed for weighing out the
reagents.
Warning! Most of the reactions were performed in

specialized glassware under pressure. The glassware should

Scheme 4. Scope of Methoxycarbonylation of Aryl Bromides

Scheme 5. Control Experiments to Elucidate the Formation
of Methoxycarbonylated Products
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always be examined for damages before any manipulation. All
laboratory safety procedures must be followed strictly and the
work with pressure tubes must be conducted behind a shield.
General Procedure for Pd-Catalyzed Carbonylative

Coupling of Boronic Acids and Aryl Bromides (Scheme
1). Chamber A was sequentially charged with aryl bromide (50
mg, 1.0 equiv), boronic acid (1.2 equiv), Pd(acac)2 (5 mol %),
cataCXium AHI (10 mol %), 1 M NaOH (500 μl), and
corresponding dry solvent (3 mL). The reaction mixtures
consisted of an organic and an aqueous layer. Precipitation of
palladium was not observed.
Chamber B was sequentially charged with COgen (2 equiv),

Pd(dba)2 (5 mol %), tri-tert-butylphosphonium tetrafluorobo-
rate (TTBP·HBF4) (5 mol %), DIPEA (3 equiv), and 1,4-
dioxane (3 mL). The two-chamber system was closed tightly
with suitable caps and Chamber B was stirred at 80 °C until
the release of CO was stopped. This was followed by stirring of
both chambers at 80 °C for 18 h. The resulting mixture of
Chamber A was filtered through celite and concentrated using
a rotary evaporator. The crude was purified by column
chromatography with heptane:EtOAc (9:1) eluent.
General Procedure for Pd-Catalyzed Aminocarbony-

lation (Scheme 2). Chamber A was sequentially charged
with aryl bromide (50 mg, 1.0 equiv), amine (1.5 equiv),
Pd(OAc)2 (2 mol %), XantPhos (2 mol %), triethylamine (3
equiv), and corresponding dry solvent (3 mL). At the onset of
the reaction, the mixture was homogeneous, while precip-
itation of palladium species (Pd-black) was observed during
the course of the reaction both in conventional and renewable
solvents.
Chamber B was sequentially charged with COgen (2 equiv),

Pd(dba)2 (5 mol %), tri-tert-butylphosphonium tetrafluorobo-
rate (TTBP·HBF4) (5 mol %), 1,4-dioxane (3 mL), and
DIPEA (3 equiv). Addition of DIPEA initialized the release of
CO. The two-chamber system was closed tightly with suitable
caps and stirred at 80 °C for 18 h. The resulting mixture of
Chamber A was filtered through celite and concentrated using
a rotary evaporator. The crude was purified by column
chromatography with heptane:EtOAc (9:2) eluent.
General Procedure for Pd-Catalyzed Alkoxycarbony-

lation (Schemes 3 and 4). Chamber A was sequentially
charged with aryl bromide (50 mg, 1.0 equiv), tBuONa (1.5
equiv), Pd(dba)2 (5 mol %), 1,1′-bis(diisopropylphosphino)-
ferrocene (dippf) (5 mol %), and corresponding dry solvent (3
mL). At the onset of the reaction, the mixture was
homogeneous, while precipitation of palladium species was
observed during the course of the reactions both in
conventional and renewable solvents.
Chamber B was sequentially charged with COgen (2 equiv),

Pd(dba)2 (5 mol %), tri-tert-butylphosphonium tetrafluorobo-
rate (TTBP·HBF4) (5 mol %), 1,4-dioxane (3 mL), and
DIPEA (3 equiv). Addition of DIPEA initialized the release of
CO. The two-chamber system was closed tightly with suitable
caps and stirred at 80 °C for 18 h. The resulting mixture of
Chamber A was filtered through celite and concentrated using
a rotary evaporator. The crude was purified by column
chromatography with heptane:EtOAc (9:1) eluent.
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