Insights into the REY inventory of seep carbonates from the Northern Norwegian margin using geochemical screening

Katharina Schier, Tobias Himmler, Aivo Lepland, Dennis Kraemer, Jasmin Schönenberger, Michael Bau

PII: S0009-2541(20)30396-X
DOI: https://doi.org/10.1016/j.chemgeo.2020.119857
Reference: CHEMGE 119857
To appear in: Chemical Geology

Received date: 27 May 2020
Revised date: 25 August 2020
Accepted date: 26 August 2020

Please cite this article as: K. Schier, T. Himmler, A. Lepland, et al., Insights into the REY inventory of seep carbonates from the Northern Norwegian margin using geochemical screening, Chemical Geology (2020), https://doi.org/10.1016/j.chemgeo.2020.119857

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.
Insights into the REY inventory of seep carbonates from the Northern Norwegian margin using geochemical screening

Katharina Schiera*, Tobias Himmlerb, c, Aivo Leplandb, c, d, e, Dennis Kraemera, Jasmin Schönenbergerb, and Michael Baua

aDepartment of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany

bGeological Survey of Norway, 7491 Trondheim, Norway

cCentre for Arctic Gas Hydrate, Environment and Climate, Arctic University of Norway (UiT), Tromsø, Norway

dDepartment of Geology, Tallinn University of Technology, Tallinn, Estonia

eDepartment of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia

*corresponding author, tel.: +49 421 200 3053, E-Mail address: k.schier@jacobs-university.de

\textit{(Katharina Schier)}

\textbf{ABSTRACT}

Rare earth element and yttrium (REY) systematics of authigenic seep carbonates can provide insights into the physicochemical characteristics of seep systems and allow discrimination of carbonate precipitation under seawater- or porewater-dominated fluid regimes. However, care must be taken when interpreting their REY systematics, since seep carbonates comprise a mixture of detrital silicates and authigenic carbonate cement. Since concentrations of trace elements, including Rb, Zr, Th and REY, are considerably lower in the carbonate fraction than in the detrital silicate fraction, leaching of these trace elements from detrital components (particularly aluminosilicates) even during a rather “mild” sample decomposition approach with,
for example, nitric acid (HNO₃) can effectively mask the authigenic carbonate REY signal. To assess this effect, trace element concentrations were determined in seep carbonates and detrital sediments from two sites off the Norwegian margin (Lofoten-Vesterålen margin and Vestnesa Ridge). Seep carbonate samples included bulk crusts and nodules, and individual microfacies (microcrystalline aragonite and/or Mg-calcite cementing detrital sediment and void-filling fibrous aragonite cement) microdrilled from crusts. A screening procedure based on Rb, Zr, Th and REY reveals effective masking of the carbonate REY systematics by leaching of trace elements from even minute amounts (0.1-1%) of detrital components. The latter cause elevated trace element concentrations and flat shale-normalized REY patterns. They are prominent in the bulk crusts and nodules, and in microcrystalline carbonate cementing sediment microfacies, which makes these unsuitable as archives of the REY inventory of the carbonate-precipitating fluid even when digested with HNO₃. Some void-filling cements, however, contain little detrital material and show REY signatures characterized by light REY-depletion in shale-normalized (subscript SN) patterns and small negative Ceₜ SN anomalies.

Comparison of the seep carbonate REYₜ SN patterns with seawater and seep porewater REEₜ SN patterns indicate that the detrital contribution considerably masks putative pore water REYₜ SN patterns of microcrystalline carbonate cement. Seawater-like REYₜ SN patterns of void-filling fibrous cements, however, agree with precipitation of this microfacies in an open system dominated largely by seawater near the sediment-water-interface.

Keywords: Rare earth elements, methane seeps, seep carbonates, geochemical screening, trace elements, leaching

1 INTRODUCTION

Methane seeps occur along continental margins where reducing methane-rich fluids escape from
hydrocarbon reservoirs at depth, migrate upwards along faults and fractures, and eventually emanate at the seafloor into the water column (Suess, 2014). Based on geophysical and hydroacoustic data, numerous methane seeps have been found and studied along the Norwegian continental margin (e.g., Hustoft et al., 2009; Mau et al., 2017; Mazzini et al., 2005). Steep geochemical gradients at such methane seeps provide ecological niches for microbial communities mediating the anaerobic oxidation of methane (AOM; Boetius et al., 2000; Reeburgh, 2007), coupling it to either sulfate reduction (Boetius et al., 2000) or the reduction of Fe-(oxyhydr)oxides or Mn-oxides (Beal et al., 2009). A consequence of AOM is the production of bicarbonate (HCO_3^-), resulting in increased pore fluid alkalinity that induces the precipitation of authigenic seep carbonates (e.g., Aloisi et al., 2002; Greinert et al., 1987). Depending on the methane flux and the environmental conditions during carbonate precipitation, seep carbonates comprise variable proportions of aragonite, calcite and dolomite cements (e.g., Aloisi et al., 2002; Greinert et al., 2001; Luff et al., 2004; Naehr et al., 2007; Tong et al., 2019). Aragonite cements typically form mm- to cm-thick linings within open voids, whereas calcite and dolomite mostly occur as microcrystalline cement filling the pore space of detrital seafloor sediments which mainly consist of quartz, feldspar and clay minerals (Greinert et al., 2001; Naehr et al., 2007; Tong et al., 2019). The distribution of the different mineral assemblages between microcrystalline matrix and fibrous cement are not necessarily always the same. In some cases, the microcrystalline matrix may also comprise aragonite and the fibrous cement can be calcite or dolomite.

Carbonate precipitation at methane seeps promotes local sediment lithification and formation of extensive seafloor authigenic carbonate crusts (e.g., Aloisi et al., 2002; Liebetrau et al., 2010; Römer et al., 2014). Geochemical and isotopic characteristics, such as C and O isotope
compositions and Th-U systematics of the crusts provide information for reconstructing sources of emanating fluids and seepage histories (e.g., Aloisi et al., 2002, 2000; Bayon et al., 2013; Crémière et al., 2016, 2013; Hu et al., 2014; Luff et al., 2004; Magalhães et al., 2012; Naehr et al., 2007; Peckmann et al., 2001; Peckmann and Thiel, 2004; Pierre et al., 2014; Ritger et al., 1987; Roberts et al., 2010; Watanabe et al., 2008; Zwicker et al., 2018). Rare earth elements and yttrium (REY) distributions in seep carbonates have also been applied as proxies for discriminating between fluid sources (i.e. seawater vs. porewater) and redox-conditions during carbonate precipitation (e.g., Crémière et al., 2016; Feng et al., 2009; Himmler et al., 2010; Novikova et al., 2015; Rongemaille et al., 2011). Shale-normalized (subscript SN; shale = European Shale of Bau et al., 2018) REY distributions in modern oxic seawater are typically characterized by light REY$_{SN}$ (LREY$_{SN}$) depletion relative to the heavy REY$_{SN}$ (HREY$_{SN}$), positive La$_{SN}$ and Gd$_{SN}$ anomalies, a distinct negative anomaly of redox-sensitive Ce, and a positive Y$_{SN}$ anomaly, i.e. a super-chondritic Y/Ho ratio (e.g., Alibo and Nozaki, 1999; Douville et al., 2002; Elderfield, 1988; Sholkovitz et al., 1994). In contrast, REY$_{SN}$ distributions of pore fluids can differ significantly from those of modern oxic seawater and display much higher REY concentrations and often but not always lack an anomaly of redox-sensitive Ce (Abbott et al., 2015; Deng et al., 2017; Haley et al., 2004; Himmler et al., 2013; Kim et al., 2012; Paul et al., 2019b, 2019a; Soyol-Erdene and Huh, 2013). Reductive dissolution of Fe-oxides in the sediment may release REY with a distinct enrichment of the middle REY (MREY) in their shale-normalized patterns (Haley et al., 2004; Himmler et al., 2010), while reduction of Mn-oxides does not significantly contribute to the REY budget of pore waters (Haley et al., 2004).

Since REY are incorporated into inorganic carbonates without significant fractionation (Nothdurft et al., 2004; Palmer, 1985; Terakado and Masuda, 1988; Zhong and Mucci, 1995), the
REY distribution of the carbonate-precipitating fluid is captured by the seep carbonates (Himler et al., 2013; Rongemaille et al., 2011). Therefore, the REY distribution of authigenic seep carbonates can be a valuable geochemical tool to distinguish different fluid sources and to constrain the physico-chemical conditions during carbonate formation.

A prerequisite for the applicability of seep carbonate REY distributions as a geochemical proxy for the physico-chemical environment, however, is an assessment of sample purity, i.e. the verification of the absence of significant contributions from detrital (alumino)silicates that can mask the authigenic carbonate REY signal. Seep carbonates comprise a mixture of authigenic carbonate cement and silicates of which especially the aluminosilicates are characterized by high concentrations of elements such as aluminum (Al), rubidium (Rb), zirconium (Zr), and thorium (Th), but also of REY. Contribution of even minor amounts of aluminosilicates to the carbonate samples can, therefore, effectively mask the carbonate REY distribution (e.g., Kamber et al., 2014; Rongemaille et al., 2011; Schier et al., 2018; Tostevin et al., 2016; Webb and Kamber, 2000). Therefore, a thorough screening procedure is necessary to identify samples which can serve as reliable geochemical archives of the authigenic carbonate REY distribution.

This study presents trace element data, including REY, for authigenic seep carbonates and for adjacent seep carbonate-poor detrital sediments, sampled from two sites at the Norwegian continental margin (Fig. 1). Our study applies a detailed screening procedure for the detrital aluminosilicate contribution in seep carbonates based on the composition of the adjacent detrital sediment. The screening provides insights into the degrees and effects of aluminosilicate contribution and potential trace element leaching from non-carbonate material during sample preparation using nitric acid. It allows to identify the least aluminosilicate-affected samples which can then serve as archives of the authigenic carbonate REY distribution. The assessment
presented here helps to characterize samples most suitable for the interpretation of the environmental conditions during authigenic seep carbonate formation.

2 SAMPLES, METHODS AND ANALYTICAL TECHNIQUES

2.1 Sampling sites

Seep carbonates were collected from two sites at the Norwegian continental margin (Fig. 1), i.e. from the Lofoten-Vesterålen margin (hereafter L-V site; 80 km offshore, 68°9’ N, 10°28’ E, ~750 m water depth; Hong et al., 2019) and from the Vestnesa Ridge (hereafter VR site; 79° N, ~6°54’ E, ~1200 m water depth; Hustoft et al., 2009; Bünz et al., 2012). Samples from the L-V site were collected from two canyons incised into the Lofoten-Vesterålen continental slope. Permeable horizontal sandstone beds of Eocene age are exposed in the canyon walls and serve as conduits for fluid seepage (Hong et al., 2019). U-Th dating of authigenic carbonates from the L-V site suggest protracted seep carbonate formation throughout the last 22 000 years (Hong et al., 2019). The VR site is characterized by active methane seeps at its ridge crest (Bünz et al., 2012; Hustoft et al., 2009; Plaza-Faverola et al., 2015). Uranium-Th dating of seabed and sub-seabed seep carbonates suggest three main episodes of past methane seepage between 160-130 ka, 50-40 ka and 20-5 ka ago (Himmler et al., 2019). Past methane seepage is attributed to fault reactivation and associated methane release due to the waxing and waning of the Svalbard ice sheet (Himmler et al., 2019).

2.2 Sample collection

At the L-V site, carbonate crust and sediment samples (push cores) were collected from the seafloor with the remotely operated vehicle (ROV) Ægir 6000 during R/V G.O. Sars NGU cruise 1710 in 2017 (Fig. 1c; Hong et al., 2019; Sen et al., 2019).
At the VR site, carbonate crusts and nodules were sampled with the ROV from the seafloor and from drill cores intersecting the subsurface down to ~23 meters below seafloor (mbsf). Seafloor carbonate crusts were sampled from metre-scale depressions and mounds within the two up to ~700 m wide actively seeping pockmarks Lunde and Lomvi during the R/V G.O. Sars cruise 1606 in 2016 (Fig. 1b). Subsurface carbonates representing former seafloor crusts were sampled between 5.8 and 21.7 mbsf from two MeBo cores (GeoB21616-1 and GeoB21673-1) drilled within the central Lunde pockmark during expedition MSM57 with R/V Maria S. Merian in 2016 (Fig. 1b; Table 1; Bohrmann et al., 2017; Himmler et al., 2019). Nodular seep carbonates were sampled between 0.1 and 7.5 mbsf from ROV-sampled push cores at Lomvi (P1606-009) and Lunde (P1606-017), and from two gravity cores (GeoB21601-GC02 and GeoB21605-GC04) from Lunde pockmark (Table 1). Carbonate-poor detrital sediment was sampled at various depths from gravity and MeBo drill cores within the pockmarks (Table 1).

2.3 Subsampling procedure

In order to study the REY geochemistry of the authigenic carbonate fraction, four types of samples were taken for geochemical analysis: (1) two types of carbonate microfacies – sampled on a millimeter scale from crust slabs with a handheld microdrill (Figs. 2a, b and 3) – represented by (1a) microcrystalline carbonate cementing detrital sediment (hereafter called microdrilled matrix samples; see Fig. 3 for photomicrographs) and (1b) void-filling fibrous carbonate cement (hereafter called microdrilled fibrous cements; see Fig. 3 for photomicrographs); (2) bulk carbonate crusts comprising pulverized cm-sized crust chips including an undefined mixture of matrix and fibrous cement (Figs. 2c, d and 3g, h); (3) bulk carbonate nodules comprising microcrystalline carbonate cementing sediment, i.e. matrix (Fig. 2e, f); and (4) seep carbonate-poor unlithified seafloor sediment sampled from cores adjacent to
the seep carbonates. The sediments represent the detrital endmember; their REY signatures are used to assess the aluminosilicate components present in the seep carbonates and to constrain the degree of contamination of the REY signature of the authigenic carbonate precipitates. All four sample types were analyzed from the VR site, whereas only bulk carbonate crusts and sediments were analyzed from the L-V site.

2.4 Mineralogy

The mineralogical compositions of bulk carbonate crusts (L-V site) and microdrilled microfacies-specific (VR site) samples were determined by X-ray diffraction (XRD) using a BRUKER D8 Advance diffractometer at the Geological Survey of Norway (Cu-Kα radiation; 3 to 75° 2θ scanning angle; step size 0.02°, 1 second per step). Minerals were identified by automatic and manual peak search using the BRUKER Diffrac.EVA 3.1 software with ICDD’s PDF 4 Minerals database as well as the Crystallographic Open Database. Quantification was performed applying Rietveld refinement with the TOPAS 5 software. Seep carbonate XRD-samples comprised powdered as well as. The uncertainty of mineral quantification is mineral-dependent but generally better than 2 wt%.

2.5 Digestion procedure for trace element analysis

The digestion method applied here uses a 5 M HNO₃ leach which (i) is strong enough to ensure that leached tri- and tetravalent trace elements of interest (e.g., REY) do not re-precipitate or re-adsorb to the residual fraction and are lost during sample decomposition, and (ii) represents the strongest acid previously used in studies investigating trace elements in seep carbonates (e.g. Crémière et al., 2016) in order to quantify the highest possible REY contribution from leaching effects during the applied digestion.

For the 5 M HNO₃ digestion, powders of carbonate and sediment samples were dried for
approximately 12 hours at 110°C. Up to 250 mg (lowest amount: 2.5 mg) of sample powder was digested in 5 M HNO₃ for 2 hours at 60°C in closed acid-cleaned Savillex PTFE vessels on a hotplate. A certified reference material (J-Do1; dolomite CRM, GSJ) was digested along with the carbonate samples for quality control purposes. The digested samples were then filtered using acid-cleaned filter syringes (0.2 μm). The sample solutions were subsequently evaporated to incipient dryness twice and redissolved in 0.5M suprapure HNO₃.

In addition, one sediment sample from the L-V site and two from the VR site were fully digested in a PicoTrace high-temperature high-pressure digestion system (PAS, Bovenden, Germany) at 165 °C overnight using 50 mg of dried sample powder and 3 ml of conc. HClO₄ and 3 ml of conc. HF. Sample solutions were evaporated to incipient dryness, redissolved in conc. HCl twice and finally diluted using 0.5 M HNO₃. The reference material SCo-1 (Cody Shale, USGS) was digested along with the samples for quality control. Details regarding this sample digestion procedure are provided in (Dulski, 2001).

Trace elements were analyzed with a PerkinElmer NexION 350X quadrupole ICP-MS at Jacobs University Bremen using standard-sample-bracketing and 2 μg/kg Ru, Re, Rh and Bi as internal standard elements. Interference corrections were implemented using a method modified after Dulski (1994). Uncertainties of ICP-MS measurements are conservatively estimated to be 10% based on results from numerous previous studies. Due to very low REY abundances some samples were further subjected to a column separation/preconcentration technique (Bau et al., 2010) modified after Shabani et al. (1992) and Bau and Dulski (1996a). Anomalies of REY were calculated for shale-normalized data as

\[(\text{La}/\text{La}^*)_{SN} = \text{La}_{SN}/(3\text{Pr}_{SN} - 2\text{Nd}_{SN}).\]

\[(\text{Ce}/\text{Ce}^*)_{SN} = \text{Ce}_{SN}/(2\text{Pr}_{SN} - \text{Nd}_{SN}),\]
\[(Pr/Pr^*)_{SN} = Pr_{SN}/(0.5Ce_{SN} + 0.5Nd_{SN})\]
\[(Eu/Eu^*)_{SN} = Eu_{SN}/(0.67Sm_{SN} + 0.33Tb_{SN}),\]
\[(Gd/Gd^*)_{SN} = Gd_{SN}/(2Tb_{SN} - Dy_{SN}),\]

after Bau and Dulski (1996b) and Bolhar et al. (2004).

2.6 Calculation of mixing hyperbolas

For the assessment of carbonate and aluminosilicate fractions, mixing hyperbolas were calculated following the computational approach of Langmuir et al. (1978). This calculation does not require the actual elemental concentrations of endmembers to be known. Instead, it is based on the elemental concentrations of two samples of different composition, which are assumed to have intermediate concentrations between the theoretical endmembers. Consequently, the calculated mixing hyperbola intersects the two sample compositions its calculation is based on and points towards the composition of the potential endmembers.

3 RESULTS

3.1 Petrography and mineralogy

Seafloor crust samples from the I-V site comprise hemipelagic sediment cemented by authigenic Mg-calcite and barite (Hong et al., 2019). Quartz (2-33 wt%), feldspars (up to 3 wt%), and clay minerals (up to 6 wt%) constitute the major non-authigenic minerals. The proportion of authigenic cement phases amounts to 66-98 wt%, with high barite content (up to 86 wt%, Table A.1) in some samples.

Seafloor and carbonates from drill cores of the VR site show brecciated fabrics, comprising relatively early microcrystalline calcite- and aragonite-cemented sediments subsequently cemented by void-filling botryoidal and radial-fibrous aragonite (Himmler et al., 2019). The major non-carbonate phases are quartz (11-18 wt%), plagioclase (up to 6 wt%), and clay
minerals (up to 5 wt%); (Table A.1; Himmler et al., 2019).
Carbonate cemented nodules comprise mainly Mg-calcites, aragonite, and calcite. Quartz, plagioclase and clay minerals are the main non-carbonate minerals. Please note that mineralogical data are not available for all seep carbonate samples analysed in this study.

3.2 Trace elements

3.2.1 Lofoten-Vesterålen site – Bulk carbonate crusts and sediments
Concentrations of trace elements associated with detrital aluminosilicates (e.g., Rb, Zr, and Th) are variable in the HNO₃-digested bulk crust samples, with Rb, Zr and Th concentrations between 1.53 and 26.6 mg/kg, 0.115 and 9.06 mg/kg, and 0.094 and 2.64 mg/kg, respectively (Figs. 4, 5a, b; Table 1 and A.2). All three elements covary, i.e. samples with elevated Rb concentrations also show high Zr and Th concentrations (Fig. 4). Samarium (as a representative of the REY) also shows a positive covariation with Rb and Th (Fig. 5a, b). Total REY concentrations (ΣREY) range from 3.20 to 63.9 mg/kg (Table 1 and A.2).
Shale-normalized REY patterns of 1-2% bulk crust samples show a slight increase from La to Gd and a moderate decrease from Gd to Lu resulting in an overall depletion of the heavy relative to the light REY ((Yb/Pr)SN between 0.61 and 0.78; Fig. 6a; Table A.2) and a slight enrichment of the middle REYSN (MREYSN). The samples do not show pronounced anomalies of LaSN ((La/La*)SN: 0.84-1.07), CeSN ((Ce/Ce*)SN: 0.98-1.21), and GdSN ((Gd/Gd*)SN: 0.95-1.03; Fig. 6a; Table A.2). Y/Ho ratios range between 28.3 and 32.9 (Figs. 6a, 7a-c; Table 1 and A.2). Three samples (P1710-045, -004 and -038) yield slightly different REYSN patterns with superchondritic Y/Ho ratios between 36.0 and 43.5 and total REY concentrations (ΣREY: 3.20, 10.4, and 17.6 mg/kg, respectively) below those of the other bulk crust samples (Fig. 6a; Table 1 and A.2). Sample P1710-045 additionally shows a small positive LaSN anomaly ((La/La*)SN: 1.31),
while the other two do not (Table A.2).

The HNO₃-digested L-V sediment samples show Rb, Th and Sm in the same range as the HNO₃-digested bulk crusts with concentrations between 10.9 and 19.8 mg/kg, 1.70 and 3.14 mg/kg, and 1.59 and 2.61 mg/kg, respectively (Figs. 4c, 5a, b; Table 1 and A.2). Total REY concentrations range from 42.6 to 69.2 mg/kg (Table 1 and A.2). Their REY_{SN} patterns are similar to those of the bulk crusts with a lack of La_{SN}, Ce_{SN} Eu_{SN} and Gd_{SN} anomalies ((La/La*)_{SN}: 0.93-1.03, (Ce/Ce*)_{SN}: 1.00-1.07, (Eu/Eu*)_{SN}: 0.94-1.01, (Gd/Gd*)_{SN}: 1.02-1.18) and Y/Ho ratios between 24.2 and 26.1 (Fig. 6a; Table 1 and A.2). The HClO₄-HF-digested L-V sediment sample (sample P1710-16) shows much higher concentrations of Rb, Zr and Th of 124 mg/kg, 69.4 mg/kg, and 5.62 mg/kg, respectively (Fig. 4), as well as increased Sm, i.e. total REY concentrations of \(\Sigma \text{REY} = 129 \) mg/kg (Fig. 5a, b; Table 1 and A.2) relative to HNO₃-digested bulk carbonate crusts and sediments (Fig. 6a). The REY_{SN} pattern of the fully digested L-V sediment is rather flat (Fig. 6a). Its Y/Ho ratio is 26.7, i.e. chondritic (Table 1 and A.2).

3.2.2 Vestnesa Ridge site – Bulk carbonate nodules, microdrilled matrix and sediment

Microdrilled matrix and bulk nodules from the Vestnesa Ridge generally show trace element concentrations similar to bulk crusts and HNO₃-digested sediments of the L-V site. Rubidium, Zr and Th concentrations range from 13.5 to 40.9 mg/kg, 2.70 to 8.17 mg/kg, and 1.10 to 5.70 mg/kg, respectively (Figs. 4, 5; Tables 1, A.2, A.3), with the bulk nodules extending the range of values to the higher elemental concentrations (Fig. 5c, d). Samarium concentrations (0.99-2.38 mg/kg) and \(\Sigma \text{REY} \) (32.5-74.0 mg/kg) are also similar in both HNO₃-digested sample sets (Tables 1, A.2, A.3; Fig. 5c, d) with the exception of nodule samples T34, T36 and T38, which show elevated \(\Sigma \text{REY} \) of 113 mg/kg, 130 mg/kg and 186 mg/kg, respectively (Table 1 and A.3).
REY_{SN} distributions of VR microdrilled matrix samples are also remarkably similar to those of the L-V bulk carbonate crusts and sediments with a gradual increase from La to Gd and a decrease from Gd to Lu, i.e. a slight MREY_{SN} enrichment (Fig. 6b) resulting in (Yb/Pr)_{SN} between 0.46 and 0.97 (Table A.3). The REY_{SN} patterns are devoid of pronounced anomalies ((La/La^*)_{SN} = 0.78-1.39, (Ce/Ce^*)_{SN} = 0.96-1.22, (Gd/Gd^*)_{SN} = 0.89-1.42, and (Eu/Eu^*)_{SN} = 1.06-1.24). The slightly elevated (Gd/Gd^*)_{SN} in some samples can be attributed to the underestimation of Tb. None of the samples exhibits super-chondritic Y/Ho ratios (Y/Ho = 23.1-27.4; Fig. 7a-c; Table 1 and A.3). Again, bulk nodule samples T26 and T38 are exceptional in that they show higher (Yb/Pr)_{SN} ratios of 1.31 and 1.42, respectively (Table A.3), and the microdrilled matrix sample T01 exhibits a negative Ce_{SN} anomaly with (Ce/Ce^*)_{SN} = 0.71 and a super-chondritic Y/Ho ratio of 40.7 while sample T03 shows no negative Ce anomaly ((Ce/Ce^*)_{SN} = 1.15) and Y/Ho of 36.1 (Table 1 and A.3).

The two HClO_4-HF-digested sediment samples from the VR site show Rb, Zr and Th concentrations in the same order of magnitude as the corresponding L-V site sediment, with Rb concentrations of 228 and 175 mg/kg, Zr concentrations of 151 and 159 mg/kg, and Th concentrations of 10.6 and 7.25 mg/kg, respectively (Figs. 4, 5a, b; Table 1 and A.3). REY concentrations in the VR sediment samples (ΣREY: 156 and 206 mg/kg; Table 1 and A.3) are higher than those of the VR microdrilled matrix and most of the bulk nodule samples (except for T38) (ΣREY: 32.5 to 53.5 mg/kg; Table 1 and A.3; Fig. 6b), but their REY_{SN} patterns are similar, except for the lack of a distinct HREY_{SN} depletion ((Yb/Pr)_{SN}: 0.96 and 1.15; Table A.3). They do not show any REY anomalies and close-to-chondritic Y/Ho ratios of 26.4 and 25.8 (Fig. 7b; Table 1 and A.3).

3.2.3 Vestnesa Ridge site – Void-filling fibrous cements
Microdrilled fibrous aragonite cements show overall very low trace element concentrations and larger variability in REY concentrations and REY$_{SN}$ distributions compared to the microdrilled matrix samples. Rubidium, Zr and Th concentrations range from 0.117 to 2.15 mg/kg, from 0.135 to 0.865 mg/kg and 0.0073 to 0.132 mg/kg, respectively (Fig. 5c, d; Table 1 and A.4). Total REY concentrations are an order of magnitude lower than in the VR microdrilled matrix samples (Figs. 5c, d, 6b, c, d), ranging from 0.39 to 4.27 mg/kg (Table 1 and A.4). Some REY$_{SN}$ patterns are LREY$_{SN}$-depleted with (Yb/Pr)$_{SN}$ up to 3.26, along with strongly super-chondritic Y/Ho ratios as high as 62.7 (Figs. 6c, 7d-f; Table 1 and A.4). On the other hand, some samples show relatively high total REY concentrations (see Sm in Figs. 5c, d, 7d; Table 1 and A.4) and rather flat REY$_{SN}$ patterns with (Yb/Pr)$_{SN}$ ratios close to or below unity (e.g., samples T08, T24, T04; Fig. 6c; Table A.4).

4 DISCUSSION

4.1 Impact of detrital aluminosilicates

Previous studies on the REY geochemistry of authigenic seep carbonates have commonly applied a single step digestion method with acetic acid or HNO$_3$ of various strengths (e.g., Crémière et al., 2016; Feng et al., 2009; Himmler et al., 2010; Rongemaill et al., 2011). However, systematic studies on the effects of REY liberation from non-carbonate phases during digestion with HNO$_3$ demonstrate that leaching of REY and other elements potentially associated with detrital aluminosilicates (e.g., Rb, Zr and Th) may not be negligible, even during partial leaching with 2% HNO$_3$ or weak acetic acid (Rongemaill et al., 2011; Tostevin et al., 2016). This may lead to a strong masking effect of the authigenic carbonate-hosted REY inventory by detritus-derived REY, depending on the relative proportions of pure carbonate and non-carbonate phases. This masking effect may be reflected by an increase of the LREY$_{SN}$ and the attenuation
of super-chondritic Y/Ho ratios and (Ce/Ce*)\textsubscript{SN} anomalies in carbonates carrying a pristine seawater REY\textsubscript{SN} pattern (Tostevin et al., 2016). Therefore, when interpreting the REY geochemistry of carbonates, a thorough screening procedure needs to be applied to ensure that the targeted carbonate REY content and, therefore, its distribution is not controlled by the presence of leached REY from detrital phases (e.g., Schier et al., 2018). Alternatively, laser ablation (LA) ICP-MS can be applied to target individual carbonate mineral phases with high spatial resolution, omitting the detrital components if the different minerals are not too tightly intergrown. This method was used for example by Himmler et al. (2010) and Smrzka et al. (2016) on different kinds of seep carbonate samples to measure trace element contents, especially REY, in aragonite. However, REY data obtained by LA-ICP-MS often produce less smooth REY patterns than solution ICP-MS due to (very) low REY concentrations. This hampers reliable interpretation of REY patterns and calculation of the respective anomalies. When applying solution ICP-MS on digested sample material – as in our study – leaching effects have to be considered, which requires a detailed screening procedure to identify the samples that are adequate archives of the carbonate-precipitating fluid.

Constraining the detrital aluminosilicate endmember composition represented by the sediments from the respective sites, is of utmost importance to the aforementioned screening procedure. At both the L-V and the VR site, the HClO\textsubscript{4}-HF-digested sediments are characterized by significantly higher Rb, Zr, Th and REY concentrations than bulk crusts and nodules, microdrilled matrix and fibrous cement samples and show rather flat REY\textsubscript{SN} patterns (Tables A.2-A.4; Figs. 4, 5, 6a, b). The HNO\textsubscript{3}-digested L-V sediments, however, show Rb, Th and Sm concentrations that are in the same range as in the L-V bulk crusts.

Also, the composition of the authigenic carbonate-precipitating fluid needs to be constrained. At
seeps, the carbonate-precipitating fluid is mainly influenced by either seawater or porewater. Whereas seawater REY distributions are well-studied, REY data for porewaters are scarce – especially for methane seeps (Bayon et al., 2011; Himmler et al., 2013) – and do not show uniform characteristics (Abbott et al., 2015; Deng et al., 2017; Paul et al., 2019a, 2019b; Soyol-Erdene and Huh, 2013) since their distribution is governed by the respective biogeochemical processes within the sediment such as Fe-, Mn- and sulfate-reduction.

We therefore approximate the possible REY\textsubscript{SN} distribution of porewaters near methane seeps by using the average dissolved REE composition of five samples from 0 to 80 cm below seafloor sampled at an active methane seep in the Niger Delta (Bayon et al., 2011). The average seep porewater shows a rather flat REE\textsubscript{SN} pattern with a positive Ce\textsubscript{SN} anomaly and a slight MREY\textsubscript{SN} enrichment (Fig. 6a). In contrast, modern oxic seawater is characterized by a LREY\textsubscript{SN} depletion, a positive La\textsubscript{SN} and Gd\textsubscript{SN} anomaly, a distinct negative Ce\textsubscript{SN} anomaly and a super-chondritic Y/Ho ratio (e.g., Alibo and Nozaki, 1999; Douville et al., 2002; Sholkovitz et al., 1994; Fig. 6). Since the pore water REE\textsubscript{SN} pattern is very similar to that of the sediments sampled for the present study (except for the positive Ce\textsubscript{SN} anomaly), applying a screening procedure based on detrital indicators (Th, Rb, and REY concentrations) and a specific anomaly characterizing the REY\textsubscript{SN} pattern of the precipitating fluid would be ineffective due to the lack of distinctive REY\textsubscript{SN} features of the seep porewater compared to the sediments (Fig. 6a).

In the case of seawater, on the other hand, a screening procedure based on Sm (as a representative of the REY), Rb and Th concentrations (as an indicator of the presence of detrital material) and Y/Ho ratios (super-chondritic values as an indicator of a seawater-like REY distribution) works reasonably well.

4.2 Screening procedure based on detrital indicators and a seawater-like fluid endmember
4.2.1 Lofoten-Vesterålen bulk crust samples

High concentrations of Rb, Th and Sm and a positive covariation of the Sm concentration with Rb (Fig. 5a) and Th abundances (Fig. 5b) in the bulk carbonate crust samples suggest a detrital control of the Sm concentrations and, hence, their entire REY inventory. This is corroborated by the mixing hyperbolas that were calculated using the lowest and highest concentrations of Rb, Sm, Zr and Th in the L-V sample set, respectively (Figs. 4, 5a, b). These mixing hyperbolas give an indication of the composition of a possible endmember, i.e. in this case of the detrital fraction in the samples. Samarium, Rb and Th concentrations of the L-V bulk carbonate crusts plot along the mixing hyperbolas based on the samples P1710-045 and P1710-056-17 of the L-V sample set (Fig. 5a, b). These mixing hyperbolas point towards an endmember composition that closely resembles that of the HClO₄-HF-digested L-V sediment (Fig. 5a, b).

Consequently, samples with the lowest Rb, Th, and REY concentrations show the least impact of detrital aluminosilicates on their REY distribution, which is corroborated by Y/Ho ratios in relation to Sm, Rb, and Th concentration (Fig. 7a-c): Super-chondritic Y/Ho ratios are characteristic of seawater (e.g., Aliu and Nozaki, 1999; Bau et al., 1995) and are shown by samples that show low concentrations of Sm, i.e. REY (Fig. 7a), Rb (Fig. 7b) and Th (Fig. 7c) while quickly approaching chondritic Y/Ho ratios ((Y/Ho)chondrite = 28; Anders and Grevesse, 1989) with increasing Sm, Rb and Th content. Therefore, samples P1710-045, -038 and -004, which are the samples with the least aluminosilicate contribution of the L-V bulk carbonates, may point towards a carbonate-precipitating fluid endmember, the composition of which is seawater-like rather than porewater-like. Still, their REY distribution is markedly influenced by detritus-derived REY, as indicated by elevated Rb, Th, and Sm concentrations combined with only “mildly” super-chondritic Y/Ho ratios. Given that REY easily desorb/leach from detritus
during sample digestion with weak nitric acid (Rongemaille et al., 2011; Tostevin et al., 2016), the majority of the carbonate REY in our bulk carbonate crust samples is likely derived from leaching of the detrital fraction with its abundant clay minerals. This obscures the genuine authigenic carbonate REY$_{SN}$ patterns. This is corroborated by the mineralogical composition which reveals trace amounts of plagioclase and kaolinite in the three samples with the least aluminosilicate contribution (Table A.1). The remainder of the L-V bulk crusts shows even higher amounts of detrital clay minerals and, therefore, also a larger detritus imprint on their REY distribution (Figs. 6a, 7a-c).

A comparison of the 5 M HNO$_3$ and a full HClO$_4$-HF digestion reveals the effect of increased detrital influence: Bulk crust samples that were digested in HNO$_3$ generally show lower REY concentrations than those that underwent a full acid digestion (Fig. A.1 of the supplementary material). Moreover, samples that show slightly super-chondritic Y/Ho ratios in the HNO$_3$ digest lose this feature when fully digested, i.e. when the detrital fraction is also dissolved and contributes to the sample’s total REY budget (Fig. A.1). Assuming that the REY content of the carbonate fraction in the bulk crusts is almost negligible relative to that of the residual fraction, simple mass balance calculations show that using 5 M HNO$_3$ liberates more than 32% of the REY in a sample (Table A.5), underlining that the digestion with 5 M HNO$_3$ not only attacks the authigenic carbonate phases but also leaches a significant proportion of REY from the residual fraction. Additionally, this is supported by HNO$_3$-digested L-V sediments which show similar elemental concentrations and REY$_{SN}$ patterns as the L-V bulk crusts (Figs. 4c, 5a, b). Therefore, we consider a leaching effect of the aluminosilicate fraction (best approximated by the HNO$_3$-digested L-V sediments) in our bulk crust samples to be responsible for the REY$_{SN}$ patterns (Fig. 6a). Because of the significant influence of detrital material on the REY abundances and
distribution of the bulk carbonate crusts digested with 5 M HNO₃, none of the samples is considered a suitable geochemical archive of the REYₜₚ signature of the ambient fluid from which the authigenic carbonate fraction of the bulk samples precipitated. Whether the dominant REY source for the authigenic carbonate fraction of the bulk crust samples was seawater or a diagenetic pore fluid remains, therefore, elusive.

It should also be noted, that not only the digestion with 5 M HNO₃ will result in significant trace element leaching from the detrital fraction as shown here, but digestions applying weaker acids to similar sample material will suffer from the same effect, albeit less pronounced. However, a quantification of the leaching effect using weaker acids is not possible based on the results for a 5 M HNO₃ digestion presented in this work. This would rather require digestions and screening procedures – similar the one presented here – to be conducted with different acid strengths, most preferably those that are commonly used in trace element analysis of seep carbonates (2 to 5% acetic acid and weaker nitric acid strengths than 5 M HNO₃). Nevertheless, we re-emphasize that data determined using weaker acids may suffer from experimental artifacts such as re-precipitation or re-adsorption of analytes.

4.2.2. Vestnesa Ridge bulk nodules and microdrilled matrix samples

Rubidium, Th and Sm concentrations in the VR bulk nodules cover the same range as the microdrilled VR matrix samples (Figs. 5c, d, 7d-f) and their REYₜₚ patterns are very much alike with a few exceptions (T34, T36, T38; Fig. 6b). Their mostly (sub-)chondritic Y/Ho ratios are similar to those of the HClO₄-HF-digested VR sediment samples (Fig. 7d-f), indicating that the bulk nodules and the microdrilled matrix samples suffer from the same masking effect with respect to their REYₜₚ patterns as the bulk carbonate crust samples from the L-V site. The microdrilled matrix samples comprise carbonate cemented seafloor sediment. The REY
concentrations in the carbonate cement fraction are very low compared to those of the seafloor sediment (Figs. 6a, b, 7) that mainly consists of clay minerals, plagioclase and quartz. Leaching of the latter during the digestion procedure very likely releases REY (with flat, sediment-like patterns; Fig. 6b), and other elements associated with the detrital fraction of the sample, resulting in effective masking of the carbonate REY\textsubscript{SN} patterns (e.g., Tostevin et al., 2016). A straightforward interpretation of the authigenic carbonate REY distribution is, therefore, hampered by the aluminosilicate contribution to the VR bulk nodules and microdrilled matrix samples.

Concentrations of Th and Sm as well as the shape of the VR microdrilled matrix REY\textsubscript{SN} patterns are similar (Figs. 5d, 6b, 7d, f) to previously published data of HNO\textsubscript{3}-digested seep carbonate matrix samples from the Alvheim channel (Crémière et al., 2016). Texturally early microcrystalline aragonites of carbonate crusts from the Northern Arabian Sea also show MREY-enriched REY\textsubscript{SN} patterns with total REY concentrations of 39 to 52 mg/kg (Himmler et al., 2010), which are in the same range as in the VR matrix samples. Both studies attribute the relatively high REY concentrations and non-seawater like, MREY-enriched REY\textsubscript{SN} patterns of the microcrystalline cement (see Fig. 6b for an exemplary REY\textsubscript{SN} pattern from Crémière et al. (2016)) to carbonate precipitation from an early diagenetic and possibly anoxic fluid that showed MREY\textsubscript{SN} enrichment due to the remobilization of MREY during diagenetic processes (Crémière et al., 2016; Himmler et al., 2010). Previous studies on anoxic pore waters from the Peru Basin revealed elevated REY concentrations relative to seawater and a MREY\textsubscript{SN} bulge in their REY\textsubscript{SN} patterns due to MREY release during the reduction of Fe(III)-oxides by early diagenetic processes and subsequent incorporation of this MREY\textsubscript{SN} enrichment in diagenetic carbonate precipitates (Haley et al., 2004; Himmler et al., 2013). A study by Paul et al. (2019a), on the
other hand, revealed seawater-like REYSN patterns in pore waters of the Peru Basin showing that pore water characteristics and elemental distributions are highly heterogeneous at relatively small spatial scales.

However, our screening procedure reveals an alternative explanation for the elevated REY concentrations and the MREYSN enrichment in microcrystalline seep carbonate cement. Since nitric acid was used to digest the microcrystalline carbonate samples, it is likely that a similar leaching effect is responsible for the REYSN patterns described by Crémière et al. (2016) and Himmler et al. (2010).

4.2.3 Vestnesa Ridge microdrilled void-filling fibrous cements

Fibrous cements show much more variable REYSN patterns and lower REY concentrations than the matrix samples (Fig. 6c, d). However, a positive covariation of Sm with detrital indicators (Rb, Th; Fig. 5c, d) and decreasing Y/Ho ratios with increasing Sm, Rb and Th concentrations (Fig. 7d-f) suggest at least a partial control of the REY systematics by detrital material in some of the fibrous cement samples.

To illustrate the impact of a leaching effect by even minute amounts of aluminosilicate minerals on the REY signature of the VR fibrous cements, binary mixing calculations were performed (Fig. 8a, b). We calculated the REYSN patterns of sample T02, assuming the presence of different amounts of aluminosilicates (given in % of the total sample; Fig. 8a). We chose sample T02, because judging from its low Rb and Th concentrations it is a rather pure carbonate and the complete REY pattern is available. For the endmember of the aluminosilicate fraction, REY concentrations and patterns were assumed to be equal to HClO$_4$-HF-digested VR sediment which represents the most likely aluminosilicate contributor to the sample set. The results demonstrate that only 0.1% of aluminosilicates in the total sample would already result in a significant
attenuation of the super-chondritic Y/Ho ratio, a less pronounced LREY$_{SN}$ depletion, and an overall increase in REY concentrations (green REY$_{SN}$ pattern in Fig. 8a). With a share of 1% (brown REY$_{SN}$ pattern in Fig. 8a), all seawater-like characteristics of the carbonate endmember in sample T02 are fully obscured and the REY$_{SN}$ pattern is similar to that of VR background sediment, although REY concentrations are still two orders of magnitude lower (Fig. 8a).

Additionally, the same calculations were performed for sample T02, assuming it had a pronounced negative Ce$_{SN}$ anomaly (Fig. 8b). For this purpose, an artificial negative Ce$_{SN}$ anomaly was implemented, setting the Ce concentration of sample T02 to only 50% of its original value. These mixing calculations demonstrate how a potentially present negative Ce$_{SN}$ anomaly would be obscured by 0.1% and 1% aluminosilicates in the sample: Like for the Y/Ho ratio, a share of 0.1% significantly suppresses the size of the negative Ce$_{SN}$ anomaly (green REY$_{SN}$ pattern in Fig. 8b) and a share of 1% fully erases it (brown REY$_{SN}$ patterns in Fig. 8b), resulting in a similar REY$_{SN}$ distribution as in the VR background sediment sample but lower concentrations.

However, samples with very low Sn, Rb and Th concentrations, i.e. small detrital contribution, show the highest Y/Ho ratios (Fig. 7d-f) and REY$_{SN}$ patterns that are similar to those of modern seawater with the characteristic LREY$_{SN}$ depletion and super-chondritic Y/Ho ratio (Figs. 6d, 7d-f). Only these samples (T02, T05, T20, T26, T28, and T53) approach the true composition of the precipitating fluid. Hence, these are considered the most reliable geochemical archives that give meaningful insights into the REY composition of their parental fluid and the physico-chemical conditions during their precipitation. Hence, when performed carefully, microdrilling of fibrous cements is a useful technique to gather interpretable seep carbonate REY samples.

4.3 Seawater origin of VR void-filling fibrous cements
The remarkable similarity of REY\textsubscript{SN} patterns of the purest VR microdrilled fibrous cements (Fig. 6d) with similar cements of Crémière et al. (2016) suggests that fibrous cements of the VR site precipitated most likely under similar conditions and from a parental fluid of similar composition. The seawater-like REY\textsubscript{SN} patterns with small negative Ce\textsubscript{SN} anomalies (Fig. 6d; Table A.4) indicate precipitation from a fluid influenced by oxic seawater (Himmler et al., 2010). Assuming that the REY\textsubscript{SN} pattern of the parental fluid is incorporated into the carbonates without major fractionation (Kamber et al., 2004; Kamber and Webb, 2001; Nothdurft et al., 2004; Van Kranendonk et al., 2003; Webb and Kamber, 2000), this indicates that precipitation of aragonitic fibrous cements in the carbonate crusts of the VR site occurred in rather open conditions with respect to seawater at or very close to the sediment-water interface where the parental fluid (most probably seawater) was negligibly influenced by diagenetic remobilization and enrichment of REY in pore waters (Himmler et al., 2019). Brecciated fabrics (Fig. 2a, b) of the samples and anomalously high δ18O values indicate past gas hydrate dissolution (see Himmler et al., 2019) and corroborate the implications of their REY geochemistry. This is in line with aragonite precipitation primarily taking place under more open conditions during enhanced methane release, i.e. more vigorous emanation of CH\textsubscript{4}-bubbles, at the methane seep site. These conditions enable the entrainment of sulfate-rich seawater (Greinert et al., 2001; Luff et al., 2004) most probably carrying the typical seawater REY\textsubscript{SN} distribution to the site of aragonite formation, where it is readily captured by the precipitating aragonitic fibrous cements (Crémière et al., 2016; Himmler et al., 2010).

Most recently, Bayon et al. (in press) reported large positive La anomalies in chitinous tubes of siboglinid tube worms (Escarpia southwardae) from methane seeps off the coast of West Africa. These unusual La anomalies were attributed to vital effects of aerobic methanotrophs living in
symbiosis with the tube worms. It has been suggested that these symbionts preferentially incorporate LREY – especially La and Ce – utilizing these specific REY as enzymatic cofactors in methanol hydrogenase (e.g., Pol et al., 2014; Roszczenko-Jasińska et al., 2020). Lanthanum anomalies calculated following the quantification used by Bayon et al. (in press) for the purest Vestnesa void-filling aragonite fibrous cements investigated in our study, do not exceed values of 1.3 for (La/La*), i.e. they do not show unusually large positive La anomalies. This suggests that aerobic methanotrophs did not affect the REY distribution recorded by this aragonite.

5 CONCLUSIONS

Seep carbonate crusts from two sampling sites off the Norwegian margin (Lofoten-Vesterålen margin and Vestnesa Ridge) were analyzed for their trace and rare earth element systematics to gain insights into the characteristics of the carbonate-precipitating fluid, i.e. to discriminate between a porewater and a seawater source of the latter. Carbonate crusts at marine methane seeps are mixtures of authigenic carbonate and detrital (alumino)silicate components which show markedly higher concentrations of trace elements like Rb, Zr, Th and REY than the authigenic carbonate fraction. Therefore, the presence of even small amounts of such detrital aluminosilicates may mask the targeted authigenic carbonate REY inventory. A detailed screening procedure based on detrital indicators (e.g., Rb, Th, REY) allows to identify the seep carbonate samples with the least contribution from detrital aluminosilicates and is therefore an essential prerequisite for successfully assessing the REY systematics of the authigenic carbonate fraction. We show that during the applied sample digestion with 5 M HNO₃, significant leaching of elements such as Rb, Th, Zr and also REY from the detrital fraction of a carbonate crust may occur. This leaching effect may not be confined to the digestion method applied here but most likely also occurs when weaker acids are used. It effectively masks the carbonate REY signature
and leads to REY_{SN} patterns controlled by detrital aluminosilicates, even when they are present at very low amounts (< 1%). This compromises the use of such HNO₃-digested aluminosilicate-containing seep carbonate samples as archives of the authigenic carbonate REY inventory. Alternatively, analysis by LA-ICP-MS may circumvent this problem by targeting individual minerals. However, due to low REY concentrations, this usually produces rather irregular REY patterns that are difficult to interpret. Careful microdrilling of aluminosilicate-poor void-filling fibrous aragonite cements produces sample material that is suitable for solution ICP-MS and pure enough to serve as archives of the carbonate-precipitating fluid. Seawater-like REY_{SN} patterns of the Vestnesa Ridge fibrous cements, characterized by LREY_{SN} depletion and small negative Ce_{SN} anomalies, suggest precipitation of such cements from a fluid dominated by seawater, most probably in an open system close to the sediment-water interface. This is consistent with the precipitation of aragonite rather than calcite as void-filling cements during more vigorous emanation of methane bubbles at the seep site.

ACKNOWLEDGEMENTS

Professional support at sea by the masters and crews during expeditions on R/V G.O. Sars (P1710) and R/V Maria S. Merian (MSM57) and the skilful works of the ROV Ægir 6000 team (University of Bergen) and the MARUM-MeBo70 team (University of Bremen) are acknowledged. Further, we appreciate the help of Annika Moje (Jacobs University Bremen) with laboratory work. This study was supported by the Research Council of Norway through Petromaks2-NORCRUST (project 255150) and its Centre of Excellence funding scheme for CAGE (project 223259). We would also like to thank three anonymous reviewers whose contributions significantly improved the first version of this manuscript, and Dr. M. Böttcher for all editorial handling.
REFERENCES

Bau, M., Dulski, P., 1996b. Distribution of yttrium and rare-earth elements in the Penge and

https://doi.org/10.1038/35036572

Feng, D., Chen, D., Peckmann, J., 2009. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nov. 21, 49–56. https://doi.org/10.1111/j.1365-3121.2008.00855.x

Hustoft, S., Bünz, S., Mienert, J., Chand, S., 2009. Gas hydrate reservoir and active methane-venting province in sediments on < 20 Ma young oceanic crust in the Fram Strait, offshore

https://doi.org/10.1016/S0016-7037(03)00422-8

https://doi.org/10.1016/j.gca.2019.02.019

https://doi.org/10.1016/j.chemgeo.2013.08.047

https://doi.org/10.1007/s00531-014-1010-0

FIGURE CAPTIONS

Fig. 1: Sampling locations and bathymetry. a) Overview of the sampled locations; asterisks indicate sampled seepage sites (VR = Vestnesa Ridge; L-V = Lofoten-Vesterålen). b) ROV-acquired micro bathymetry of two active pockmarks on Vestnesa Ridge; white triangles = MeBo cores 127 (station GeoB21616-1) and 138 (station GeoB21637-1). c) ROV-acquired micro bathymetry of two canyons off Lofoten islands. a) and b) are modified after Himmler et al. (2019), c) is modified after Zhong et al. (2019).

Fig. 2: Photographs of representative seep carbonates. a) to d) Cut slabs of surface crusts sampled from Vestnesa Ridge (a and b) and the Lofoten-Vesterålen site (c and d); respective micro drilled areas (e.g., T57) are highlighted in a) and b); cm-sized chunks were used for bulk-rock analyses for samples c) and d); note skate-egg cases (arrows) in c). e) and f) carbonate nodules sampled from gravity cores and respective bulk-rock trace element samples (e.g., T35). Fig. 2b) is modified after Himmler et al. (2019).

Fig. 3: Photomicrographs of representative seep carbonate textures. a) and b) Scans of epoxy-impregnated slabs of drill core samples (a: sample GeoB21616-2R-1B; b: GeoB21637-12R-2Q) and marked respective micro drilled areas (T05, T06, T21, and T22). c) and d) thin-section micrographs of samples shown in a) and b), respectively; Mic = microcrystalline carbonate
cementing sediment with abundant silt-sized quartz grains; Vfc = void-filling aragonite cement; P = pore space (crossed-polarized light, pore space appears black). e) to h) thin section micrographs of seabed crusts sampled from Vestnesa Ridge (samples e: P1606-002; f: P1606-012) and the Lofoten-Vesterålen site (g: P1710-001; h: P1710-043); parallel-polarized light (i.e. pore space appears bright) in e) and f), cross-polarized light in g) and h); Mic = microcrystalline carbonate cementing sediment; Vfc = void-filling aragonite cement; B = bivalve fragment; P = pore space; note sand-sized quartz grains cemented by microcrystalline carbonate cement (Mic) and authigenic barite (Bar, arrow) in h). Fig. 3a) and b) are modified after Himmler et al. (2019).

Fig. 4: Graphs of detrital indicators – a) Zr vs. Rb, b) Zr vs. Th, and c) Rb vs. Th – for bulk carbonate crusts and sediment from the Lofoten-Vesterålen (L-V) margin, Norway. All graphs also include pelagic clay for comparison (data from Li and Schoonmaker, 2003).

Fig. 5: Graphs of a) Sm as a representative of the REY vs. Rb for bulk carbonate crusts and sediments from the Lofoten-Vesterålen (L-V) margin, b) Sm vs. Th for the same bulk carbonate crusts and sediments, c) Sm vs. Rb for microdrilled matrix and fibrous cement samples, bulk nodules, and sediments from the Vestnesa Ridge (VR), and d) Sm vs. Th for the same samples. d) additionally shows matrix and fibrous cements of carbonate crusts from the Alvheim Channel (data from Crémière et al., 2016). All graphs also include pelagic clay for comparison (data from Li and Schoonmaker, 2003).

Fig. 6: Shale-normalized (shale = European Shale of Bau et al., 2018) REY patterns of a) bulk carbonate crusts and sediments from the Lofoten-Vesterålen (L-V) margin, Norway, and average seep pore water (n = 5) from a cold seep in the Niger delta (average calculated from Bayon et al., 2011), b) of bulk nodules, microdrilled matrix and sediments from the Vestnesa Ridge (VR), Norway, c) all microdrilled fibrous cements from carbonate crusts from the Vestnesa Ridge, and d) fibrous cements with the least impact of detrital aluminosilicates on their REY geochemistry following our screening procedure (for more details see text). A fibrous cement of a carbonate crust from the Alvheim Channel is shown for comparison (data from Crémière et al., 2016). All graphs show a modern seawater REY$_{SN}$ pattern for comparison (data from Alibo and Nozaki, 1999).

Fig. 7: a) Sm vs. Y/Ho ratios for bulk crust samples and sediments from the Lofoten-Vesterålen margin (L-V), Norway, b) Rb vs. Y/Ho ratios, and c) Th vs. Y/Ho ratios for the same samples, d) Sm vs. Y/Ho ratios of bulk nodules, microdrilled matrix samples and fibrous cements from the
Vestnesa Ridge (VR), e) Rb vs. Y/Ho ratios, and f) Th vs. Y/Ho ratios for the same samples. d) and e) also include matrix and fibrous cements of carbonate crusts from the Alvheim Channel (data from Crémière et al., 2016). All graphs include the corresponding sediments for the respective locations, pelagic clay (Li and Schoonmaker, 2003), and the chondritic Y/Ho ratio (C1 data from Anders and Grevesse, 1989).

Fig. 8: Calculated shale-normalized (shale = European Shale from Bau et al., 2018) REY patterns resulting from the mixing of a) a detrital aluminosilicate component (given in % of the sample) represented by Vestnesa Ridge (VR) sediment, and VR fibrous cement sample T02, and b) the same calculated REY$_{SN}$ patterns but with an artificially added negative Ce$_{SN}$ anomaly in the REY$_{SN}$ pattern of T02.
Fig. 1

--- two column fitting image ---
Fig. 2

--- two column fitting image ---
Fig. 3

--- two column fitting image ---
Fig. 4

--- one column fitting image ---
Fig. 6

--- two column fitting image ---
Fig. 7

--- two column fitting image ---
Fig. 8

--- two column fitting image ---
Table 1: Overview of all sample locations and sample types from the Lofoten-Vesterålen site and the Vestnesa Ridge, and relevant trace element concentrations discussed in this study. Trace element concentrations are given in mg/kg; Y/Ho is given as weight ratio.

MCS = microcrystalline carbonate cementing sediment; Vfc = void-filling cement.

| Location | Sample/core | Lab ID | Sample type | Latitude (°N) | Longitude (°E) | Sampling device | Sample depth (mbsf) | Remarks | Rb (mg/kg) | Zr (mg/kg) | Th (mg/kg) | Sm (mg/kg) | Y/Ho | ∑ REV (mg/kg) |
|-------------------|--------------|--------|------------------------------|---------------|---------------|----------------|-----------------|-------------|------------|------------|------------|------|---------------|
| Lofoten- | P1710-001 | n.a. | bulk crust | 68° 9' 27" | 39°27' 24" | ROV | seafloor sample | MCS | 29.7 | 23.9 | | | |
| Vesterålen | P1710-003 | n.a. | bulk crust | 68° 9' 30.24' | 38° 38.8' | ROV | seafloor sample | MCS | 28.7 | 25.0 | | | |
| Vesterålen | P1710-004 | n.a. | bulk crust | 68° 9' 30.24' | 38° 38.8' | ROV | seafloor sample | MCS | 36.8 | 10.4 | | | |
| Lofoten- | P1710-038 | n.a. | bulk crust | 68° 9' 28.8' | 57°27' 60" | ROV | seafloor sample | MCS | 36.0 | 17.6 | | | |
| Vesterålen | P1710-039 | n.a. | bulk crust | 68° 9' 28.8' | 57°27' 60" | ROV | seafloor sample | MCS | 32.4 | 38.4 | | | |
| Lofoten- | P1710-042 | n.a. | bulk crust | 68° 9' 28.8' | 57°27' 60" | ROV | seafloor sample | MCS | 32.8 | 22.8 | | | |
| Vesterålen | P1710-043 | n.a. | bulk crust | 68° 9' 10.12' | 51°27' 84" | ROV | seafloor sample | MCS | 28.3 | 63.9 | | | |
| Lofoten- | P1710-044 | n.a. | bulk crust | 68° 9' 10.12' | 52°56' | ROV | seafloor sample | MCS | 32.9 | 27.2 | | | |
| Vesterålen | P1710-045 | n.a. | bulk crust | 68° 9' 10.84' | 52°30' 60" | ROV | seafloor sample | MCS | 43.5 | 3.2 | | | |
| Lofoten- | P1710-047 | n.a. | bulk crust | 68° 9' 10.64' | 50°12' 76" | ROV | seafloor sample | MCS | 32.6 | 33.0 | | | |
| Vesterålen | P1710-056 | 7 | sediment | 68° 9' 1.56' | 10°28' 72" | Push core | 0.07 | Silty clay | 25.2 | 42.6 | | | |
| Lofoten- | P1710-056 | 10 | sediment | 68° 9' 1.56' | 10°28' 72" | Push core | 0.10 | Silty clay | 25.6 | 44.9 | | | |
| Vesterålen | P1710-056 | 11 | sediment | 68° 9' 1.56' | 10°28' 72" | Push core | 0.11 | Silty clay | 24.6 | 60.8 | | | |
| Lofoten- | P1710-056 | 12 | sediment | 68° 9' 1.56' | 10°28' 72" | Push core | 0.12 | Silty clay | 24.2 | 67.7 | | | |
| Vesterålen | P1710-056 | 13 | sediment | 68° 9' 1.56' | 10°28' 72" | Push core | 0.13 | Silty clay | 24.9 | 69.2 | | | |
| Lofoten- | P1710-056 | 17 | sediment | 68° 9' 1.56' | 10°28' 72" | Push core | 0.17 | Silty clay | 26.1 | 65.1 | | | |
| Vesterålen | P1710-016 | n.a. | sediment | 68° 9' 30.96' | 21°60' | Push core | 0.1 | Silty clay | 26.7 | 129 | | | |

| Location | Sample/core | Lab ID | Sample type | Latitude (°N) | Longitude (°E) | Sampling device | Sample depth (mbsf) | Remarks | Rb (mg/kg) | Zr (mg/kg) | Th (mg/kg) | Sm (mg/kg) | Y/Ho | ∑ REV (mg/kg) |
|-------------------|--------------|--------|------------------------------|---------------|---------------|----------------|-----------------|-------------|------------|------------|------------|------|---------------|
| Vestnesa Ridge | P1606-012 | T41 | crust - microcrystalline | 79°0' 46" | 6°53' 95" | ROV | seafloor sample | MCS | 26.2 | 38.2 | | | |
| Vestnesa Ridge | P1606-016 | T411 | crust - microcrystalline | 79°0' 46" | 6°53' 95" | ROV | seafloor sample | MCS | 42.4 | 42.4 | | | |
| Vestnesa Ridge | P1606-013 | T421 | crust - microcrystalline | 76°0' 27" | 6°53' 56" | ROV | seafloor sample | MCS | 19.8 | 48.8 | | | |
| Vestnesa Ridge | P1606-014 | T431 | crust - microcrystalline | 79°0' 27" | 6°53' 55" | ROV | seafloor sample | MCS | 32.6 | 32.6 | | | |
| Vestnesa Ridge | P1606-023 | T441 | crust - microcrystalline | 79°0' 41" | 6°54' 07" | ROV | seafloor sample | MCS | 41.1 | 41.1 | | | |
| Vestnesa Ridge | P1606-012 | T50 | crust - microcrystalline | 79°0' 46" | 6°53' 55" | ROV | seafloor sample | MCS | 43.0 | 43.0 | | | |
| Vestnesa Ridge | P1606-023 | T52 | crust - microcrystalline | 79°0' 41" | 6°54' 07" | ROV | seafloor sample | MCS | 46.8 | 46.8 | | | |
| Vestnesa Ridge | P1606-002 | T54 | crust - microcrystalline | 79°0' 16" | 6°55' 28" | ROV | seafloor sample | MCS | 40.5 | 40.5 | | | |
| Vestnesa Ridge | P1606-013 | T56 | crust - microcrystalline | 76°0' 27" | 6°53' 56" | ROV | seafloor sample | MCS | 50.0 | 50.0 | | | |
| Depth (m) | Location | Vessel | Core Type | Core Length (m) | Core Diameter (mm) | Core Top Depth (m) | Core Bottom Depth (m) | Core Orientation (°) | Core Temperature (°C) | Core Humidity (%) | Core Moisture (%) | Core Porosity (%) | Core Density (g/cm³) | Core Methane (% | Core Methane (%) | Core Met
| Location | Core ID | Type | Latitude | Longitude | Core Type | M, X, Y Values | Vfc | Vc | Density | Porosity | Water | % | % | % | % | % | % | % | % | % | % |
|----------|---------|------|----------|-----------|-----------|---------------|-----|----|---------|-----------|-------|-----|----|----|----|----|----|----|----|----|----|----|
| Vestnesa Ridge GeoB21637-1 | T14 | crust - microdrilled fibrous cement | 79°0.43′ | 6°54.26′ | MeBo core 138 | 21.73 | Vfc | 0.748 | 0.404 | 0.0677 | 0.0420 | 39.3 | 1.38 |
| Vestnesa Ridge GeoB21637-1 | T18 | crust - microdrilled fibrous cement | 79°0.43′ | 6°54.26′ | MeBo core 138 | 21.73 | Vfc | 0.117 | 0.135 | . | . | 63.8 | 0.387 |
| Vestnesa Ridge GeoB21637-1 | T20 | crust - microdrilled fibrous cement | 79°0.43′ | 6°54.26′ | MeBo core 138 | 21.73 | Vfc | 0.161 | 0.398 | 0.0170 | 0.00821 | 62.7 | 0.389 |
| Vestnesa Ridge GeoB21637-1 | T28 | crust - microdrilled fibrous cement | 79°0.43′ | 6°54.26′ | MeBo core 138 | 21.73 | Vfc | 0.140 | 0.187 | 0.0311 | 0.0312 | 53.2 | 1.09 |
| Vestnesa Ridge GeoB21637-1 | T16 | crust - microdrilled fibrous cement | 79°0.43′ | 6°54.26′ | MeBo core 138 | 21.73 | Vfc | 0.156 | 0.309 | 0.0362 | 0.0176 | 43.4 | 0.649 |
| Vestnesa Ridge GeoB21601-1 | M1 | sediment | 79°0.50′ | 6°54.64′ | Gravity core GC-1 | 0.04 | Silty clay | 228 | 151 | 10.6 | 6.27 | 26.4 | 206 |
| Vestnesa Ridge GeoB21637-1 | M6025 | sediment | 79°0.43′ | 6°54.26′ | MeBo core 138 | 15.11 | Silty clay | 76 | 159 | 7.38 | 4.80 | 25.8 | 156 |
Declaration of competing interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:
HIGHLIGHTS

- screening procedure to study REY geochemistry of seep carbonate crusts
- trace element leaching from silicates of carbonate crusts during HNO₃ digestion
- masking of authigenic carbonate REY signal
- void-filling cements are reliable archives of REY in carbonate-precipitating fluid
- seawater-like REY₅₆ patterns in purest void-filling cements