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ABSTRACT

This work evaluates three machine learning methods with
respect to their ability of learning the functional relationship
between dual-polarimetric (dual-pol) input data and quad-
polarimetric (quad-pol) output parameters. We chose to study
and compare the learning strength of a Neural Network (NN)
approach, two kernel-methods, the Support Vector Machine
(SVM) and the Gaussian Process Regression (GPR). Over-
lapping quad-pol Radarsat-2 (RS2) and dual-pol ScanSAR
Sentinel-1 (S1) sea ice Synthetic Aperture Radar (SAR)
scenes, with 20 minutes time difference, were used for es-
tablishing the relationship between the dual-pol input data
and corresponding quad-pol output parameters. We then used
the learned relationship to predict quad-pol parameters for
the overlapping S1 dual-pol scene, and show the results of
the three machine learning methods, visually, by showing
images of the predicted polarimetric features, and quanti-
tively, by computing statistical performance measures. The
results indicate that all three methods have strong learning
capacity, however, the computed statistical measures and the
visual comparisons suggest the best performance for the GPR
model.

Index Terms— Neural Network, Support Vector Ma-
chine, Gaussian Process Regression, Polarimetry, Sea Ice

1. INTRODUCTION

The on-going climate change has dramatic impact on the Arc-
tic sea ice cover, and has enabled more human activities in
this sensitive environment. This puts forward new demands
for reliable, high-resolution, large scale sea ice monitoring.
Currently, this type of monitoring can only be performed
from space using single or dual-pol Synthetic Aperture Radar
(SAR) systems, such as the Sentinel 1A and 1B satellites. On
the other hand, previous studies have found (see e.g. [1]) that
some quad-pol parameters are sensitive to ice type character-
ics, like roughness and dielectric properties. Unfortunately,
the narrow swath-width of a quad-pol SAR (usually around
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25-50 km) makes it challenging to use it for operational mon-
itoring purposes. In our previous work [2], we studied the
possibility of using the machine learning Gaussian Process
Regression (GPR) model for learning the relationship be-
tween dual-pol observations (input) and quad-pol parameters
(output). Although the GPR model showed promising per-
formance, there are several other relevant machine learning
approaches frequently used for remote sensing applications;
for instance, Neural Networks (NN) and the Support Vector
Machine (SVM). The SVM, similarly to the GPR, is a non-
linear kernel method, however, the underlying mathematical
principles differs from those of the GPR approach.

Our objective in this work is to examine and compare
the performances of the three sophisticated machine learn-
ing methods, the NN, the GPR and the SVM for polarimet-
ric information up-scaling from dual-pol to quad-pol systems.
Dual-pol ScanSAR Sentinel-1 (S1) scene overlapping with
a quad-pol Radarsat-2 (RS2) scene are used to evaluate the
up-scaling performances of these machine learning methods.
In the training phase, the true output parameters, which de-
scribe sea ice surface characteristics such as surface rough-
ness and dielectric properties, were generated from the RS2
image, whereas the input data was obtained from the S1 data.
Then we trained and tested all the three methods on the same
training and test data. The remaining of this paper gives an
overview of the materials and machine learning methods used
(Sec. 2). Sec. 3 shows the results of the comparison study,
and Sec. 4 concludes the findings.

2. MATERIALS AND METHODS

2.1. Data

2.1.1. Data for learning

We aim to estimate two quad-pol output parameters from a
dual-pol input data. The output is denoted by y

i, for i = 1, 2,
and the input by X . In this study, we will estimate the circular
RR � LL coherence, defined in Eq.(1), and the co-pol ratio
defined in Eq. (2), below. In the X-Bragg surface scattering
model, the circular RR � LL coherence is directly related to
surface roughness, whereas, the co-pol ratio in e.g. the Bragg



scattering model is related to the dielectric constant. The two
outputs can be expressed by
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In order to avoid speckle noise, spatial averaging is used. This
is indicated by h·i in Eq. (1) and (2). The outputs y1 and y
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have been used to describe the geo-physical properties of sea
ice surface [3], [4], which are surface roughness and dielectric
parameters, respectively. The co-pol ratio is also sensitive to
thin sea ice thickness [5].

The dual-pol input data is represented by the covariance
matrix C, and can be written by
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The dual-pol system C depends on the polarization of the
transmitted and received signals. We use a system that trans-
mits on the horizontal H channel and receives on H and ver-
tical channel V , i.e.:
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Using this input system C we generated five features for
the input matrix X. The five input features are denoted by
f1, ..., f5, and can be written as
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The input matrix X has a dimension of 5⇥N , corresponding
to the five input features, where N is the total number of pix-
els. Finally, the dataset for the learning can be expressed by
D = {yi

,X}, for i = 1, 2. The rationality for our approach
is based on the anticipation that there is some functional re-
lationships between the input features and output parameters,
and that the ML models are able learn these in the training
phase.

2.1.2. Data for prediction

We tested the prediction power of the machine learning ap-
proaches on an dual-pol ScanSAR S1. This can be seen in
Fig. 1. The three machine learning models learn the relation-
ship between the input systems obtained from the ScanSAR
S1 data and the corresponding output features generated from
the overlapping RS2 scene. The overlapping scenes are re-
sampled, geocoded, and co-registered on a common grid with
equal spatial resolution. This is used to predict the quad-pol
features for the overlapping S1 scene. This way of predicting
features that can only be estimated from a quad-pol system
by using data from a dual-pol system, is what we refer to as
information up-scaling.

Sentinel-1:		28.08.2016	– 16:19	UTC	
Radarsat-2:		28.08.2016	– 16:42	UTC	

Fig. 1. Left is the HH intensity of RS2, and right is the HH
intensity image of the S1 scene. The yellow box indicates the
area of overlap.

2.2. Machine Learning Methods

2.2.1. Neural Network

The chosen NN was a Multi Layer Perceptron (MLP). The
input to the MLP is the dual-pol input system, and the output
is the corresponding quad-pol output features. The MLP has
one hidden layer and 25 neurons. (It was found that this set
up yielded robust and high accuracy results.) We used the
Levenberg - Marquardt (L-M) training algorithm. (Note, we
have also tested Bayesian regularization, however this has not
impacted the results.) We used 70 % of the learning data for
training, 15 % for testing and 15 % for validating, which is
default in case of the NN.

The MLP operates by assigning weights (w) to the five
input features, and then summing the products of the neurons
in the hidden layer by a bias term (b). This sum goes through
an activation function g to result in the output of the given
node (ni). This can be mathematically expressed be ni =
g
�P

D

d=1 wdixd + bi

�
, where d is the dimension of the input

data and i = 1, ..., 25 is the number of neurons in the hidden
layer. The final outputs of the hidden layer of the MLP NN
was trained by using a back-propagation algorithm (L - M). In
this work, the hyperbolic tangent sigmoid activation function
was used.

2.2.2. Support Vector Machine

The SVM for regression estimates the output yn from the in-
put xn by yn = wTxn + b, where the term wT is the trans-
posed weight vector and b is the bias [6, 7, 8, 9]. An ✏-
intensitive loss function is used to obtain estimates, which are
penalized by errors exceeding ✏, while keeping the regression
function flat. In order to obtain the estimates, the weights
need to be computed. This is done by introducing an objective
function J = 1
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P
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2 ||w||2, and minimizing
it with respect to the weights and constrained to
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The terms ⇣+
n

and ⇣
�
n

are the so-called slack variables. They
ensure flexibility of the approach by allowing measurements
to take larger values than ✏, and � > 0. The weights are esti-
mated by introducing support vectors, which are Lagrangian
multipliers, and are obtained from the Lagrange function.
This can be expressed by
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where the terms ↵+
n

and ↵
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are the support vectors. Finally,
introducing an = ↵

+
n
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, an estimate for the output vector
(ŷ) can be computed by
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We used the Squared Exponential (SE) kernel function to ap-
ply it to the term xT

n
x, and hence the output parameters are

estimated by

ŷ =
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The SE kernel function can be written by
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where the hyper-parameters are �d and ⌫, and they are the
length-scale and scaling-factor for the five dimension d.

2.2.3. Gaussian Process Regression

The GPR assumes that the output yi is a function of the input
X, which can be expressed by y = f(X) + ". The term
" is the noise, which is independently, identically Gaussian
distributed with zero mean and constant variance.

Fitting a multivariate joint Gaussian distribution over the
function values allows to derive the posterior distribution of
the output values [10]. For a new output y⇤, this can be writ-
ten by

p(y⇤|X⇤,D) = N (y⇤|µGP⇤,�
2
GP⇤)
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where µGP⇤ is the estimated output, �GP⇤ is the certainty level
of the estimates, kf⇤ is the covariance between the training
vector and the test point, ↵ = (K↵ +�

2In)�1y is the weight
vector and k⇤⇤ is the covariance between the test point with
itself. The elements of the covariance matrices are computed
by the SE kernel function, defined in Eq. (12).

Fig. 2 shows the workflow of the different steps of the
three models.

Fig. 2. Flowchart of the different steps involving the data in-
put, the three models tested, training, testing, and validation.

Table 1. Computed statistical measures for the machine
learning models for the overlapping S1 scene.

y
1

y
2

Model NRMSE MAE R2 NRMSE MAE R2

SVM 0.0326 0.0201 0.9936 0.1061 0.2009 0.8450
GPR 0.0300 0.0185 0.9946 0.0919 0.1579 0.8827
NN 0.0307 0.0188 0.9943 0.0924 0.1654 0.8816

3. RESULTS

Fig. 3 shows the results of the estimated outputs, y1 (left-
column) and y

2 (right-column). The top-row is the ground
truth, which is the generated output data form the RS2 quad-
pol system, the second-, third- and bottom rows show the es-
timated outputs from the S1 input system for the SVM, GPR
and NN models, respectively. We used 494 randomly sampled
observations for training the machine learning methods, and
for testing and prediction the whole RS2 and S1 scenes were
used, respectively. This corresponds to 4.9·105 pixels (ob-
servations). Fig. 3 shows that although all the thee machine
learning methods seem to follow the pattern of the ground
truth, there are differences in the assigned values between the
methods. The SVM seems to show underestimates in both
outputs. Both the NN and GPR show correct estimates for y1
and y

2. In case of the output y1, the GPR model might show
some smoothing in comparison to the NN. Note, this can be
adjusted by setting the length-scale parameters in the kernel
function. The computed statistical measures (Table 1) also
confirms these results. We used the Normalized Root Mean
Squared Errors (NRMSE), the Mean Absolute Error (MAE)
and the squared Pearson correlation coefficient for compar-
ing the performance of the three machine learning methods.
Although both the NN and GPR performed well for both out-
puts, the GPR showed slightly lower NRMSE and MAE, and
higher R2 than the NN.
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Fig. 3. The output features y
1 (left column) and y

2 (right-
column) for the ground truth, the SVM, GPR and NN models.
The number of samples used for training is 494 and for testing
is 4.9·105.

4. CONCLUSION

In this study, we compared three well-recognized machine
learning approaches for spatial up-scaling of quad-pol infor-
mation using dual-pol observations. Our results indicate that
the NN and GPR models are excellent candidates to estab-
lish a functional relationship between the quad-pol outputs
and the dual-pol input system. We evaluated the three meth-
ods for two outputs describing sea ice surface characteristics.
The NN and the GPR could capture the smoother (yellow in
Fig. 3) and rougher surfaces (blue in Fig. 3) according to
the generated ground truth RS2 data. This was in contrast
with the SVM model, which showed in general underesti-
mates for both y

1 and y
2. This was also supported by the

computed statistical measures (Table 1), which revealed that
both the NN and GPR models performed well for this task.
This comparison study showed, that based on the computed
measures, the strongest performance was obtained by using
the GPR model. Both the NN and GPR models have differ-
ent advantageous properties. Both models can be applied to
large datasets, hence they can be used for operational pur-
poses. Therefore, for future work, we will continue to further
exploit the possibilities of using NN, in addition to the GPR
for for up-scaling.
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